sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2562399680/4wib1f3f19eup8pvy7w6_400x400.gif&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Centenary College</div> <div style="text-align: center; font-size: 14px;">@centenaryla</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Centenary College. | Data | Centenary College | | --- | --- | | Tweets downloaded | 3187 | | Retweets | 708 | | Short tweets | 143 | | Tweets kept | 2336 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3h9syzxm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @centenaryla's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6ym91qam) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6ym91qam/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/centenaryla') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/centenaryla/1628127894127/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/centenaryla
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Centenary College @centenaryla I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Centenary College. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @centenaryla's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308125167608934400/CHIV0pn3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ty</div> <div style="text-align: center; font-size: 14px;">@cf__bundy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ty. | Data | ty | | --- | --- | | Tweets downloaded | 1009 | | Retweets | 117 | | Short tweets | 200 | | Tweets kept | 692 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2li311zj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cf__bundy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hxi4q6u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hxi4q6u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cf__bundy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cf__bundy/1625285188781/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cf__bundy
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ty @cf\_\_bundy I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ty. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cf\_\_bundy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1376951341709418502/GGg8ox0R_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">chafenti 🌸 🤖 AI Bot </div> <div style="font-size: 15px">@chafickle bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chafickle's tweets](https://twitter.com/chafickle). | Data | Quantity | | --- | --- | | Tweets downloaded | 3199 | | Retweets | 530 | | Short tweets | 845 | | Tweets kept | 1824 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/npilc6ji/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chafickle's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3b1pr6zw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3b1pr6zw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chafickle') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chafickle/1617818342784/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chafickle
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
chafenti AI Bot @chafickle bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chafickle's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chafickle's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361069631625117698/F6PdMuIb_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">molly, trash queen 🤖 AI Bot </div> <div style="font-size: 15px">@chainchompist bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chainchompist's tweets](https://twitter.com/chainchompist). | Data | Quantity | | --- | --- | | Tweets downloaded | 3184 | | Retweets | 671 | | Short tweets | 656 | | Tweets kept | 1857 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qv4iz34/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chainchompist's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qd5tae0m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qd5tae0m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chainchompist') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chainchompist/1614096733243/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chainchompist
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
molly, trash queen AI Bot @chainchompist bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chainchompist's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chainchompist's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337294609786015747/bPpnompo_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dick Ohmann shadiest/diva moments 🤖 AI Bot </div> <div style="font-size: 15px">@chainsaw_gutsfk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chainsaw_gutsfk's tweets](https://twitter.com/chainsaw_gutsfk). | Data | Quantity | | --- | --- | | Tweets downloaded | 3204 | | Retweets | 440 | | Short tweets | 733 | | Tweets kept | 2031 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gflwr6wo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chainsaw_gutsfk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hj6x8dr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hj6x8dr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chainsaw_gutsfk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chainsaw_gutsfk/1616648166421/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chainsaw_gutsfk
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Dick Ohmann shadiest/diva moments AI Bot @chainsaw\_gutsfk bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chainsaw\_gutsfk's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chainsaw\_gutsfk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372875234630598657/AjLGJ8S8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Niel ⚙ 🤖 AI Bot </div> <div style="font-size: 15px">@chalklings bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chalklings's tweets](https://twitter.com/chalklings). | Data | Quantity | | --- | --- | | Tweets downloaded | 3073 | | Retweets | 1146 | | Short tweets | 250 | | Tweets kept | 1677 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2sqd8rq6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chalklings's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/s0popiel) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/s0popiel/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chalklings') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chalklings/1617810524934/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chalklings
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Niel AI Bot @chalklings bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chalklings's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chalklings's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1257066367892639744/Yh-QS3we_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chamath Palihapitiya 🤖 AI Bot </div> <div style="font-size: 15px">@chamath bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chamath's tweets](https://twitter.com/chamath). | Data | Quantity | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 134 | | Short tweets | 728 | | Tweets kept | 2335 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/y5wkphb1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chamath's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/yygp8qao) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/yygp8qao/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chamath') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chamath/1618092686446/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chamath
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Chamath Palihapitiya AI Bot @chamath bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chamath's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chamath's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/774353332009734144/xbmDLNjF_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mychal Thompson 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@champagnennuts bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@champagnennuts's tweets](https://twitter.com/champagnennuts). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3235</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>400</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2834</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vddub0d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @champagnennuts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1xxuv1pp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1xxuv1pp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/champagnennuts'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/champagnennuts/1607666485102/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/champagnennuts
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mychal Thompson AI Bot </div> <div style="font-size: 15px; color: #657786">@champagnennuts bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @champagnennuts's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3235</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>400</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2834</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @champagnennuts's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/champagnennuts'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @champagnennuts's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3235</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>400</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2834</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @champagnennuts's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/champagnennuts'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @champagnennuts's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3235</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>400</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2834</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @champagnennuts's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/champagnennuts'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1284421024294068225/PBpbNdz__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chana 🤖 AI Bot </div> <div style="font-size: 15px">@chanamessinger bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chanamessinger's tweets](https://twitter.com/chanamessinger). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 30 | | Short tweets | 395 | | Tweets kept | 2825 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ltcasbb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chanamessinger's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uksyqmr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uksyqmr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chanamessinger') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chanamessinger/1616927468486/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chanamessinger
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Chana AI Bot @chanamessinger bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chanamessinger's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chanamessinger's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377218037284270081/GN1cv26d_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Skinny La Drug 🤖 AI Bot </div> <div style="font-size: 15px">@chaneldrug_ bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chaneldrug_'s tweets](https://twitter.com/chaneldrug_). | Data | Quantity | | --- | --- | | Tweets downloaded | 2160 | | Retweets | 376 | | Short tweets | 668 | | Tweets kept | 1116 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24ua01ny/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chaneldrug_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/26vdld9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/26vdld9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chaneldrug_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chaneldrug_/1617788025995/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chaneldrug_
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Skinny La Drug AI Bot @chaneldrug\_ bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chaneldrug\_'s tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chaneldrug\_'s tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1193999833935175680/vl0zwc9f_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chani Nicholas 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@chaninicholas bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chaninicholas's tweets](https://twitter.com/chaninicholas). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3225</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>575</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1059</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1591</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/geodw5lc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chaninicholas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2v93yl3w) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2v93yl3w/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/chaninicholas'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chaninicholas/1600992781392/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chaninicholas
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chani Nicholas AI Bot </div> <div style="font-size: 15px; color: #657786">@chaninicholas bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @chaninicholas's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3225</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>575</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1059</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1591</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @chaninicholas's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/chaninicholas'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @chaninicholas's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3225</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>575</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1059</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1591</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @chaninicholas's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/chaninicholas'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @chaninicholas's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3225</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>575</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1059</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1591</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @chaninicholas's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/chaninicholas'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1320840184494108674/d7A64nIG_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Charles 🎉 Frye 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@charles_irl bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@charles_irl's tweets](https://twitter.com/charles_irl). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1218</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>250</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>48</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>920</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3nnaa30i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charles_irl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/179wxtxr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/179wxtxr/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/charles_irl'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/charles_irl/1610648632242/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/charles_irl
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Charles Frye AI Bot </div> <div style="font-size: 15px; color: #657786">@charles_irl bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @charles_irl's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1218</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>250</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>48</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>920</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @charles_irl's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/charles_irl'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @charles_irl's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1218</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>250</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>48</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>920</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @charles_irl's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/charles_irl'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @charles_irl's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1218</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>250</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>48</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>920</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @charles_irl's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/charles_irl'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1361732645659566091/SHcjb5xP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">brakott</div> <div style="text-align: center; font-size: 14px;">@charlespegging</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from brakott. | Data | brakott | | --- | --- | | Tweets downloaded | 709 | | Retweets | 158 | | Short tweets | 176 | | Tweets kept | 375 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34tvnkpv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charlespegging's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e4h7uhh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e4h7uhh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/charlespegging') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/charlespegging/1620481508223/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/charlespegging
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT brakott @charlespegging I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from brakott. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @charlespegging's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349014040245399553/HtoNnDxI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">charle 🤖 AI Bot </div> <div style="font-size: 15px">@charletwt bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@charletwt's tweets](https://twitter.com/charletwt). | Data | Quantity | | --- | --- | | Tweets downloaded | 1097 | | Retweets | 128 | | Short tweets | 312 | | Tweets kept | 657 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17r5ayxr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charletwt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p65fp7p2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p65fp7p2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/charletwt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/charletwt/1614174725593/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/charletwt
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
charle AI Bot @charletwt bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @charletwt's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @charletwt's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1261151443077251072/wnbZPCJe_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Charli 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@charli_xcx bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@charli_xcx's tweets](https://twitter.com/charli_xcx). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3185</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>353</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>497</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2335</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/v2phuw1p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charli_xcx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ljeskfu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ljeskfu/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/charli_xcx'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/charli_xcx/1608310170050/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/charli_xcx
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Charli AI Bot </div> <div style="font-size: 15px; color: #657786">@charli_xcx bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @charli_xcx's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3185</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>353</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>497</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2335</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @charli_xcx's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/charli_xcx'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @charli_xcx's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3185</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>353</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>497</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2335</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @charli_xcx's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/charli_xcx'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @charli_xcx's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3185</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>353</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>497</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2335</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @charli_xcx's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/charli_xcx'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 78, 9, 170, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493256091421061122/VidYLdbx_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477273095140433924/PIoCpFux_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1481536189312253953/0Q62EiMi_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Damo & retro kat - retro blogger and Discord chatterbox🐾 & Sexual Lazy Susan</div> <div style="text-align: center; font-size: 14px;">@charlievivante-darkerfirestar-retrokatg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Damo & retro kat - retro blogger and Discord chatterbox🐾 & Sexual Lazy Susan. | Data | Damo | retro kat - retro blogger and Discord chatterbox🐾 | Sexual Lazy Susan | | --- | --- | --- | --- | | Tweets downloaded | 1860 | 3250 | 3232 | | Retweets | 518 | 4 | 1141 | | Short tweets | 105 | 192 | 458 | | Tweets kept | 1237 | 3054 | 1633 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/flprc1ro/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charlievivante-darkerfirestar-retrokatg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2g1pklik) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2g1pklik/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/charlievivante-darkerfirestar-retrokatg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/charlievivante-darkerfirestar-retrokatg/1645197908512/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/charlievivante-darkerfirestar-retrokatg
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Damo & retro kat - retro blogger and Discord chatterbox & Sexual Lazy Susan @charlievivante-darkerfirestar-retrokatg I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Damo & retro kat - retro blogger and Discord chatterbox & Sexual Lazy Susan. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @charlievivante-darkerfirestar-retrokatg's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/780199274046976001/ewIzqDV5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Charlie Kim</div> <div style="text-align: center; font-size: 14px;">@charlieykim</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Charlie Kim. | Data | Charlie Kim | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 234 | | Short tweets | 29 | | Tweets kept | 2985 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ql0zb69/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charlieykim's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/arss897f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/arss897f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/charlieykim') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/charlieykim
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Charlie Kim @charlieykim I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Charlie Kim. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @charlieykim's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1144360407173423110/_aOgQ_QU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Charlotte Fare 🤖 AI Bot </div> <div style="font-size: 15px">@charlottefare bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@charlottefare's tweets](https://twitter.com/charlottefare). | Data | Quantity | | --- | --- | | Tweets downloaded | 3163 | | Retweets | 1889 | | Short tweets | 141 | | Tweets kept | 1133 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cilpmqxj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charlottefare's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qxbfgd4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qxbfgd4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/charlottefare') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/charlottefare/1617808412743/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/charlottefare
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Charlotte Fare AI Bot @charlottefare bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @charlottefare's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @charlottefare's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/594202303025950720/8gB7TYkC_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984455379659575296/-0punyb9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Charmin & Claire</div> <div style="text-align: center; font-size: 14px;">@charmin-claireredacted</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Charmin & Claire. | Data | Charmin | Claire | | --- | --- | --- | | Tweets downloaded | 3250 | 3241 | | Retweets | 22 | 523 | | Short tweets | 129 | 627 | | Tweets kept | 3099 | 2091 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rtv7eufi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charmin-claireredacted's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rw1se40) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rw1se40/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/charmin-claireredacted') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/charmin-claireredacted/1627080262136/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/charmin-claireredacted
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Charmin & Claire @charmin-claireredacted I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Charmin & Claire. Data: Tweets downloaded, Charmin: 3250, Claire: 3241 Data: Retweets, Charmin: 22, Claire: 523 Data: Short tweets, Charmin: 129, Claire: 627 Data: Tweets kept, Charmin: 3099, Claire: 2091 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @charmin-claireredacted's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1297070424375754753/F9p-KOj7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chaz Firestone 🤖 AI Bot </div> <div style="font-size: 15px">@chazfirestone bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chazfirestone's tweets](https://twitter.com/chazfirestone). | Data | Quantity | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 512 | | Short tweets | 407 | | Tweets kept | 2323 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pncq1l1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chazfirestone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2z06ysmr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2z06ysmr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chazfirestone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chazfirestone
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Chaz Firestone AI Bot @chazfirestone bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chazfirestone's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chazfirestone's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378827669790461953/GLEmzCyo_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Eel Enthusiast 🤖 AI Bot </div> <div style="font-size: 15px">@cheascake bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cheascake's tweets](https://twitter.com/cheascake). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 216 | | Short tweets | 732 | | Tweets kept | 2300 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pgthrar/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cheascake's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ndb8e5s3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ndb8e5s3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cheascake') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cheascake/1617656786247/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cheascake
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Eel Enthusiast AI Bot @cheascake bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cheascake's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cheascake's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365566121592692736/KP8KDo2-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1377901699038281731/TTIYjheT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385653866088251392/WqLyTioi_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">KitsuneSpirit🦊💝 VTuber ~ & Cheekin😈Vtuber & GEEGA ギガ 🔝</div> <div style="text-align: center; font-size: 14px;">@cheekinvt-generalgeega-kitsune__spirit</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from KitsuneSpirit🦊💝 VTuber ~ & Cheekin😈Vtuber & GEEGA ギガ 🔝. | Data | KitsuneSpirit🦊💝 VTuber ~ | Cheekin😈Vtuber | GEEGA ギガ 🔝 | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3245 | 3249 | | Retweets | 64 | 239 | 147 | | Short tweets | 991 | 614 | 1488 | | Tweets kept | 2195 | 2392 | 1614 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1926tsg5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cheekinvt-generalgeega-kitsune__spirit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22yw3ot0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22yw3ot0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cheekinvt-generalgeega-kitsune__spirit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cheekinvt-generalgeega-kitsune__spirit/1620683320106/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cheekinvt-generalgeega-kitsune__spirit
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG KitsuneSpirit VTuber ~ & CheekinVtuber & GEEGA ギガ @cheekinvt-generalgeega-kitsune\_\_spirit I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from KitsuneSpirit VTuber ~ & CheekinVtuber & GEEGA ギガ . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cheekinvt-generalgeega-kitsune\_\_spirit's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/485435685814300672/dOZBbo0S_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chen Weihua (陈卫华) 🤖 AI Bot </div> <div style="font-size: 15px">@chenweihua bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chenweihua's tweets](https://twitter.com/chenweihua). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 1972 | | Short tweets | 97 | | Tweets kept | 1177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3nn5asnt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chenweihua's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29y23q19) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29y23q19/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chenweihua') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chenweihua/1619283089103/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chenweihua
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Chen Weihua (陈卫华) AI Bot @chenweihua bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chenweihua's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chenweihua's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1201634247775264768/MxO2TCOj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cher 🤖 AI Bot </div> <div style="font-size: 15px">@cher bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cher's tweets](https://twitter.com/cher). | Data | Quantity | | --- | --- | | Tweets downloaded | 3216 | | Retweets | 142 | | Short tweets | 566 | | Tweets kept | 2508 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1udtrx5t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cher's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hrjcq92) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hrjcq92/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cher') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cher/1614129199723/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cher
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cher AI Bot @cher bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cher's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cher's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1364595665830092803/P58O-LXT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">based king????</div> <div style="text-align: center; font-size: 14px;">@chexmixfan8</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from based king????. | Data | based king???? | | --- | --- | | Tweets downloaded | 550 | | Retweets | 103 | | Short tweets | 111 | | Tweets kept | 336 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gad2ytk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chexmixfan8's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zbryz29) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zbryz29/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chexmixfan8') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chexmixfan8/1627462638364/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chexmixfan8
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT based king???? @chexmixfan8 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from based king????. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chexmixfan8's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477561163961438208/7HnhxOo__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pratik Desai</div> <div style="text-align: center; font-size: 14px;">@chheplo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pratik Desai. | Data | Pratik Desai | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 362 | | Short tweets | 139 | | Tweets kept | 2747 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4tv1dtfa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chheplo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p7d97s36) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p7d97s36/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chheplo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/chheplo/1641187409438/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chheplo
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Pratik Desai @chheplo I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Pratik Desai. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chheplo's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1390379478627536900/OYI2did1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mallory Moore - #LetKidsBeCamp</div> <div style="text-align: center; font-size: 14px;">@chican3ry</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mallory Moore - #LetKidsBeCamp. | Data | Mallory Moore - #LetKidsBeCamp | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 1118 | | Short tweets | 166 | | Tweets kept | 1948 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1oemrwph/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chican3ry's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fgix2q6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fgix2q6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chican3ry') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chican3ry/1627497197305/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chican3ry
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Mallory Moore - #LetKidsBeCamp @chican3ry I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Mallory Moore - #LetKidsBeCamp. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chican3ry's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349926213205323776/jKgAjVE6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Talia Lavin 🤖 AI Bot </div> <div style="font-size: 15px">@chick_in_kiev bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chick_in_kiev's tweets](https://twitter.com/chick_in_kiev). | Data | Quantity | | --- | --- | | Tweets downloaded | 3185 | | Retweets | 2343 | | Short tweets | 121 | | Tweets kept | 721 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ns7ik8b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chick_in_kiev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/26rtvpc9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/26rtvpc9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chick_in_kiev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chick_in_kiev/1614096527753/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chick_in_kiev
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Talia Lavin AI Bot @chick\_in\_kiev bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chick\_in\_kiev's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chick\_in\_kiev's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1482989404125806596/JtLgKHTu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">chicken sandwich</div> <div style="text-align: center; font-size: 14px;">@chickenhalf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from chicken sandwich. | Data | chicken sandwich | | --- | --- | | Tweets downloaded | 3202 | | Retweets | 126 | | Short tweets | 427 | | Tweets kept | 2649 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3r0cwhle/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chickenhalf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zvaxh71) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zvaxh71/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chickenhalf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/chickenhalf/1642665052826/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chickenhalf
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT chicken sandwich @chickenhalf I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from chicken sandwich. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chickenhalf's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/964824116237713408/JVM90sUV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Glory Boy</div> <div style="text-align: center; font-size: 14px;">@chiefkeef</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Glory Boy. | Data | Glory Boy | | --- | --- | | Tweets downloaded | 3213 | | Retweets | 89 | | Short tweets | 930 | | Tweets kept | 2194 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e3hy76x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chiefkeef's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f5mhzg7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f5mhzg7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chiefkeef') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chiefkeef/1626835977590/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chiefkeef
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Glory Boy @chiefkeef I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Glory Boy. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chiefkeef's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363669247944196096/pto7dyEG_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">R. K. (Productive for 9/14 straight days) 🤖 AI Bot </div> <div style="font-size: 15px">@childermass4 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@childermass4's tweets](https://twitter.com/childermass4). | Data | Quantity | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 87 | | Short tweets | 545 | | Tweets kept | 2615 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3szpvshy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @childermass4's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2x2ddbef) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2x2ddbef/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/childermass4') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/childermass4/1616900186649/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/childermass4
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
R. K. (Productive for 9/14 straight days) AI Bot @childermass4 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @childermass4's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @childermass4's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1351977667977994247/WQaeeUds_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🌈titzel✨ 🤖 AI Bot </div> <div style="font-size: 15px">@chipzel bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chipzel's tweets](https://twitter.com/chipzel). | Data | Quantity | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 600 | | Short tweets | 875 | | Tweets kept | 1764 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fbonam4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chipzel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8i1yf5s3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8i1yf5s3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chipzel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chipzel/1620116607583/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chipzel
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
titzel AI Bot @chipzel bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chipzel's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chipzel's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
null
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1311655714767601665/8z7UZ1u5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1145832571214815232/KYNcOP04_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1396296635672502273/ZLagDVRa_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">千坂恭二 :『哲学問答2020・ウィルス塹壕戦』 & Go Ando / PREDUCTS / THE GUILD & takano@MAMORI0</div> <div style="text-align: center; font-size: 14px;">@chisaka_kyoji-goando-iototaku</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 千坂恭二 :『哲学問答2020・ウィルス塹壕戦』 & Go Ando / PREDUCTS / THE GUILD & takano@MAMORI0. | Data | 千坂恭二 :『哲学問答2020・ウィルス塹壕戦』 | Go Ando / PREDUCTS / THE GUILD | takano@MAMORI0 | | --- | --- | --- | --- | | Tweets downloaded | 3246 | 3246 | 3233 | | Retweets | 957 | 90 | 1144 | | Short tweets | 455 | 1680 | 634 | | Tweets kept | 1834 | 1476 | 1455 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/i7bv0620/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chisaka_kyoji-goando-iototaku's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yl0izon) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yl0izon/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chisaka_kyoji-goando-iototaku') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
null
huggingtweets/chisaka_kyoji-goando-iototaku
[ "huggingtweets", "en", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #huggingtweets #en #region-us
AI CYBORG 千坂恭二 :『哲学問答2020・ウィルス塹壕戦』 & Go Ando / PREDUCTS / THE GUILD & takano@MAMORI0 @chisaka\_kyoji-goando-iototaku I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from 千坂恭二 :『哲学問答2020・ウィルス塹壕戦』 & Go Ando / PREDUCTS / THE GUILD & takano@MAMORI0. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chisaka\_kyoji-goando-iototaku's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#huggingtweets #en #region-us \n" ]
[ 13 ]
[ "passage: TAGS\n#huggingtweets #en #region-us \n" ]
[ 0.06862699240446091, -0.10726692527532578, -0.010401245206594467, -0.06321337819099426, 0.08621513843536377, 0.10232581198215485, 0.027164114639163017, 0.0985046774148941, 0.13242372870445251, 0.0191008560359478, 0.14544545114040375, -0.02377847209572792, -0.059302784502506256, 0.05649275705218315, 0.013633874244987965, -0.17248544096946716, 0.03670460358262062, -0.015605193562805653, 0.026972385123372078, 0.09363088756799698, 0.021145451813936234, 0.020441683009266853, 0.0902106985449791, -0.08021455258131027, -0.1398237943649292, 0.10563203692436218, 0.07052353769540787, 0.034161631017923355, 0.12517565488815308, -0.03278198093175888, 0.135564923286438, -0.03551725298166275, -0.11858534812927246, -0.20654892921447754, 0.05404523015022278, 0.03882395476102829, -0.061763372272253036, 0.03536899387836456, 0.07869033515453339, -0.15818791091442108, 0.11689841002225876, 0.05036948621273041, 0.036260005086660385, 0.13469965755939484, -0.22866027057170868, -0.07904011756181717, -0.04602409526705742, -0.07707278430461884, 0.10253201425075531, 0.00002397169555479195, 0.009154452942311764, 0.2598714828491211, -0.1161927580833435, 0.01967962086200714, 0.12730732560157776, -0.17017430067062378, 0.01806800253689289, 0.019835561513900757, 0.08412177860736847, 0.09157158434391022, 0.011509888805449009, 0.10852907598018646, 0.0707852765917778, -0.0101486686617136, -0.1360270082950592, -0.04950163885951042, -0.009859689511358738, 0.0853719413280487, -0.019690826535224915, -0.05046107620000839, 0.17664311826229095, 0.058999452739953995, 0.010314999148249626, 0.05766073241829872, -0.05329941213130951, 0.02751901187002659, 0.006196039728820324, -0.020993784070014954, 0.018363341689109802, 0.14473530650138855, 0.01760878413915634, -0.05249418318271637, -0.13410590589046478, 0.07058989256620407, -0.18945349752902985, 0.05454850196838379, -0.03698793053627014, 0.06096231937408447, -0.258131206035614, -0.01568523794412613, -0.14322851598262787, 0.012979496270418167, 0.09651564061641693, -0.0732380747795105, 0.03764953464269638, -0.012448606081306934, -0.021792607381939888, 0.11723798513412476, 0.10804640501737595, 0.1609608232975006, -0.04320541396737099, -0.00869857519865036, -0.0065362900495529175, 0.07786694169044495, 0.09295008331537247, -0.07654742151498795, 0.07032539695501328, -0.0564110204577446, -0.04492797330021858, -0.21906612813472748, 0.0008765582460910082, -0.030310221016407013, 0.04600467532873154, -0.01984437182545662, -0.13926945626735687, 0.0724203959107399, 0.028251374140381813, 0.005772269796580076, -0.10059063136577606, 0.07909262925386429, -0.02333223633468151, -0.002073736162856221, -0.04910872504115105, -0.043945688754320145, 0.01002762746065855, 0.056697506457567215, -0.10170026123523712, 0.03527959808707237, 0.07433190196752548, 0.07395917177200317, -0.16713260114192963, -0.013432089239358902, 0.04245100915431976, 0.042995184659957886, 0.062102507799863815, -0.17763984203338623, 0.0445265956223011, -0.15618294477462769, -0.0354858934879303, -0.00870739296078682, -0.05047069117426872, 0.01355440728366375, 0.06636203825473785, -0.027222590520977974, 0.11233346909284592, 0.01111317053437233, 0.005379479844123125, -0.12045124173164368, -0.06185131147503853, 0.06667035073041916, -0.02369607612490654, 0.0511794276535511, -0.14944906532764435, 0.007654519751667976, -0.180730938911438, 0.07720775902271271, 0.016102097928524017, 0.026931453496217728, -0.026627028360962868, 0.3114912509918213, 0.030569342896342278, 0.10634830594062805, -0.22846999764442444, 0.05719701200723648, -0.023560456931591034, 0.28067547082901, -0.1065937876701355, -0.12447673082351685, 0.18407796323299408, -0.06522929668426514, -0.12309088557958603, 0.12086527794599533, 0.03488042950630188, 0.10873927175998688, 0.09767720103263855, 0.3835752606391907, -0.10195262730121613, -0.08146942406892776, 0.03636458143591881, 0.1353151649236679, -0.25350436568260193, 0.02267700806260109, 0.025416342541575432, -0.08121002465486526, -0.1325274407863617, -0.01190396212041378, 0.2367665320634842, 0.14369091391563416, -0.11477484554052353, -0.02520707994699478, 0.020064817741513252, -0.016537215560674667, 0.05091886967420578, 0.017726575955748558, -0.0013406252255663276, -0.21194274723529816, 0.02760516293346882, -0.124215267598629, 0.03498653694987297, 0.13977846503257751, 0.04585346579551697, -0.07557849586009979, -0.040234941989183426, 0.08057703077793121, -0.01661347784101963, -0.02294166386127472, -0.16728036105632782, -0.06481286138296127, 0.1498730629682541, 0.1340765357017517, 0.013609949499368668, 0.09578457474708557, -0.12554091215133667, 0.002669427078217268, 0.013310762122273445, 0.13174262642860413, -0.007498446851968765, -0.04374158754944801, -0.022994134575128555, 0.1897602677345276, -0.09339086711406708, 0.07846151292324066, -0.05010027438402176, 0.001938516623340547, 0.10550153255462646, 0.060221847146749496, 0.0357060432434082, -0.013110004365444183, 0.03018314018845558, 0.005840349942445755, 0.018294237554073334, -0.06945645809173584, 0.12700411677360535, -0.011421116068959236, -0.11599461734294891, 0.22505104541778564, -0.12537546455860138, 0.1077398806810379, 0.1641158014535904, -0.15259717404842377, -0.09176535904407501, -0.05451177433133125, -0.05600990727543831, -0.04779776558279991, 0.12334655225276947, -0.07418269664049149, -0.04411538317799568, -0.044391438364982605, -0.0011415277840569615, 0.017120715230703354, -0.07650631666183472, 0.019346725195646286, -0.08435862511396408, -0.19952528178691864, 0.0862463191151619, -0.048986468464136124, -0.15294228494167328, 0.12348992377519608, 0.3562917411327362, 0.1481546014547348, 0.23727938532829285, -0.044758010655641556, 0.017626842483878136, 0.026004822924733162, -0.0384499691426754, -0.045703496783971786, 0.004267206881195307, -0.1251041442155838, -0.0365486666560173, -0.0015835420927032828, 0.004274635575711727, 0.10203591734170914, -0.036351218819618225, -0.14834646880626678, 0.02251344546675682, 0.0014692102558910847, -0.08886273205280304, 0.10843174904584885, -0.027543172240257263, 0.07448233664035797, 0.032922543585300446, 0.03858240693807602, 0.05848072096705437, 0.002110567642375827, -0.11813180893659592, 0.006854616105556488, -0.22355535626411438, -0.2711923122406006, -0.09768662601709366, -0.08925486356019974, 0.03989091515541077, 0.041187938302755356, 0.051699478179216385, -0.18302172422409058, 0.03948478400707245, 0.003198040649294853, 0.10697315633296967, -0.06025030463933945, 0.04016250744462013, -0.06218542903661728, 0.039252810180187225, -0.026844710111618042, -0.036029912531375885, -0.0012391663622111082, -0.0970999225974083, -0.10773636400699615, 0.11318950355052948, -0.12849527597427368, 0.08555713295936584, 0.14430534839630127, 0.03159665688872337, 0.02274978905916214, -0.06426727026700974, 0.08118022978305817, -0.10766161978244781, -0.02468705177307129, -0.020854998379945755, -0.012126539833843708, 0.08575579524040222, 0.08519800752401352, 0.02189561165869236, -0.15146233141422272, 0.0591089241206646, 0.048329032957553864, -0.13319815695285797, -0.13935089111328125, -0.09409863501787186, 5.991143439132429e-7, 0.2797071039676666, -0.002339477650821209, 0.023659970611333847, 0.14668741822242737, -0.005060214549303055, 0.07289005070924759, -0.20045752823352814, -0.05620472878217697, 0.018704742193222046, -0.004834607243537903, -0.022842248901724815, -0.008816422894597054, -0.08761768788099289, 0.006385814398527145, 0.2184516340494156, -0.004971520509570837, -0.12653324007987976, 0.13448448479175568, 0.0007297596894204617, 0.0038821459747850895, 0.1352946162223816, 0.08407466113567352, 0.06298195570707321, -0.07155273109674454, -0.03599351644515991, -0.043885089457035065, 0.03730371966958046, 0.0007575029158033431, 0.01575464755296707, 0.03105960786342621, -0.22486138343811035, -0.016705667600035667, -0.2129937708377838, 0.10879084467887878, -0.04748593270778656, 0.13807302713394165, 0.0026444492395967245, 0.04441913589835167, 0.10906891524791718, -0.005030614789575338, -0.011882180348038673, 0.10863572359085083, 0.1383846551179886, -0.03977278992533684, 0.07618652284145355, 0.10392951220273972, 0.08540554344654083, 0.10903793573379517, 0.06167486310005188, -0.08492720872163773, -0.021127475425601006, -0.053188424557447433, 0.04624804109334946, -0.20438914000988007, 0.16149352490901947, -0.038125935941934586, -0.14207349717617035, 0.04278627038002014, -0.1275794953107834, 0.047217957675457, 0.02532968670129776, 0.05271764472126961, 0.09215202182531357, 0.04994546249508858, -0.08136153966188431, -0.047041911631822586, -0.009494416415691376, 0.20800645649433136, -0.04930320754647255, -0.10087979584932327, -0.015097087249159813, 0.02010302059352398, -0.0005327145336195827, 0.11119779944419861, 0.02447434328496456, -0.04610208794474602, -0.08690282702445984, 0.03303453326225281, -0.03661355376243591, 0.08763010054826736, 0.09737902879714966, -0.02698802947998047, -0.05718262121081352, 0.1235092505812645, 0.06895491480827332, -0.1251404732465744, -0.14452208578586578, 0.015589582733809948, -0.007731362245976925, -0.003907877020537853, -0.03874189779162407, -0.17162851989269257, -0.09909867495298386, -0.1906745284795761, 0.12603247165679932, -0.02163488231599331, 0.030842140316963196, -0.054747339338064194, 0.230157732963562, -0.009354943409562111, 0.009969666600227356, -0.03108477219939232, -0.013541288673877716, -0.012568399310112, -0.05987691134214401, 0.17130033671855927, -0.1589484065771103, -0.04290361702442169, 0.08715757727622986, 0.03195212036371231, 0.022129757329821587, -0.07987111806869507, -0.03223046660423279, 0.13554437458515167, 0.35851117968559265, 0.0012283556861802936, 0.2099764049053192, 0.2042219638824463, -0.05234047770500183, -0.21901710331439972, -0.09460500627756119, -0.2348603904247284, -0.07078184932470322, 0.18186907470226288, -0.07664406299591064, 0.0643012747168541, 0.12657569348812103, 0.02973685972392559, 0.20995554327964783, -0.12457278370857239, -0.044523198157548904, 0.04818897321820259, -0.08845916390419006, 0.6114599704742432, -0.061698999255895615, -0.10802759975194931, -0.01825915277004242, -0.15282532572746277, 0.2387581467628479, -0.05154171586036682, 0.013269291259348392, 0.03874128684401512, 0.1005491390824318, 0.05056579411029816, 0.05772935599088669, 0.19292889535427094, 0.02319646254181862, 0.058188073337078094, -0.13999897241592407, -0.1260925531387329, 0.10026954114437103, -0.0229759830981493, -0.08925508707761765, -0.017890285700559616, -0.02936561405658722, -0.19818171858787537, 0.05141949653625488, -0.1515510380268097, 0.05321922153234482, 0.056100163608789444, -0.02688506431877613, -0.039986640214920044, -0.002744022523984313, -0.09706974029541016, -0.04741370305418968, 0.13259218633174896, -0.08547285199165344, 0.21339218318462372, -0.08619081228971481, 0.062479544430971146, -0.1132776141166687, 0.09236282855272293, -0.05286029726266861, -0.06702502816915512, 0.020908309146761894, -0.17462939023971558, 0.04489823803305626, 0.05220690742135048, -0.02032669261097908, 0.0322212353348732, 0.03294215351343155, -0.09376110136508942, 0.04418664798140526, 0.21215519309043884, -0.20752321183681488, -0.10239655524492264, -0.032411038875579834, -0.18671981990337372, 0.19688937067985535, 0.007372637744992971, 0.09758103638887405, 0.1276085525751114, -0.02415306493639946, 0.05030597373843193, 0.02030378393828869, -0.13016556203365326, -0.019506316632032394, 0.02471683733165264, -0.04843040183186531, -0.07417872548103333, 0.16410969197750092, 0.003125022863969207, -0.17150603234767914, -0.0407160185277462, 0.33249592781066895, -0.06882669776678085, -0.021546127274632454, -0.15638038516044617, 0.06429695338010788, -0.03442022576928139, 0.031490225344896317, 0.08549392223358154, 0.021496908739209175, -0.01903107762336731, 0.243308424949646, -0.0012956787832081318, 0.20592927932739258, 0.08698756247758865, 0.02289220504462719, 0.06535287946462631, -0.1015409454703331, 0.003708842908963561, -0.019963471218943596, -0.06298170238733292, -0.025758573785424232, -0.03440312668681145, 0.12883484363555908, -0.08708789944648743, -0.08515651524066925, -0.18808633089065552, -0.00678415410220623, -0.045131731778383255, -0.14115594327449799, -0.0497581847012043, -0.09431345015764236, 0.08569512516260147, -0.01951061561703682, -0.0172411035746336, -0.13612228631973267, -0.0707104429602623, 0.06029095500707626, 0.08022084087133408, 0.056907493621110916, -0.02142960950732231, -0.005597047973424196, 0.202048197388649, 0.0028164649847894907, 0.19390766322612762, 0.20113031566143036, -0.061333067715168, 0.1175730898976326, -0.2240629494190216, -0.10820194333791733, 0.09987909346818924, -0.1013496071100235, 0.02835783362388611, 0.2528587877750397, -0.06944312155246735, -0.07183004170656204, 0.023082008585333824, 0.0819302424788475, 0.0695723444223404, -0.06962034851312637, 0.13945920765399933, 0.11123763024806976, -0.24406595528125763, -0.029789475724101067, -0.22912776470184326, 0.10466330498456955, 0.026690829545259476, 0.05581321194767952, 0.030828367918729782, 0.025830436497926712, 0.02255583181977272, -0.011340123601257801, 0.06775032728910446, -0.11715590953826904, 0.07594534754753113, -0.006308197975158691, -0.0009284214465878904, 0.020968755707144737, 0.15689221024513245, -0.06443887948989868, -0.07048701494932175, 0.06289470195770264, 0.19063851237297058, -0.0735047310590744, -0.017401263117790222, 0.032150279730558395, 0.07059439271688461, -0.10505253821611404, -0.21839775145053864, 0.07302705198526382, -0.03587287291884422, -0.19983458518981934, 0.04817315936088562, -0.014539380557835102, 0.08539435267448425, 0.02739058807492256, 0.003347607795149088, 0.06624280661344528, 0.08827538043260574, -0.12586817145347595, -0.0005465050344355404, -0.06126665323972702, 0.040976397693157196, 0.1078856810927391, 0.16836385428905487, 0.012725654058158398, 0.0595620721578598, -0.091275155544281, 0.034217145293951035, -0.04657742381095886, -0.0708092749118805, 0.03863679990172386, -0.17856280505657196, 0.032593801617622375, -0.003704255213961005, -0.02675822377204895, 0.14164531230926514, 0.08683508634567261, -0.023918727412819862, 0.011150016449391842, -0.09630842506885529, -0.10818011313676834, 0.0868176817893982, -0.0019381127785891294, 0.03816099464893341, 0.013883480802178383, -0.11632172018289566, -0.13214722275733948, 0.006640009116381407, -0.10724195092916489, 0.014073909260332584, -0.015860673040151596, -0.027241721749305725, -0.2226807177066803, -0.07590645551681519, -0.021995285525918007, 0.0819355845451355, -0.15479689836502075, -0.07021456956863403, 0.03772281855344772, 0.07989605516195297, 0.010158415883779526, 0.18902714550495148, 0.04430154338479042, 0.06323259323835373, -0.021539712324738503, -0.03570494055747986, -0.1826917976140976, 0.08993129432201385, -0.10861438512802124, -0.0066994610242545605, -0.11356137692928314, 0.20738758146762848, 0.22770558297634125, -0.08759643882513046, -0.011138317175209522, -0.12471133470535278, 0.05767860263586044, 0.08991259336471558, 0.13322731852531433, 0.04955065995454788, 0.2215200960636139, -0.053830891847610474, -0.00016504255472682416, 0.07554452121257782, 0.005791462026536465, -0.03607539087533951, -0.0017499765381217003, 0.008505070582032204, 0.0027193266432732344, -0.05850288271903992, 0.12590549886226654, -0.22327828407287598, 0.09907186031341553, 0.011895917356014252, -0.216516375541687, 0.031215285882353783, -0.07893261313438416, 0.06044485419988632, -0.01862451434135437, 0.17547211050987244, -0.0153840696439147, -0.13527122139930725, -0.1813722848892212, 0.07340814918279648, -0.3564576506614685, -0.16425473988056183, 0.04304486885666847, -0.09049394726753235, 0.024793129414319992, -0.04938378185033798, -0.12449127435684204, -0.007948409765958786, 0.016860339790582657, -0.004252702929079533, -0.008621524088084698, 0.03531380742788315, 0.07221032679080963, -0.19206926226615906, 0.0369514636695385, 0.04588461294770241, -0.18126672506332397, 0.06043267995119095, -0.12337397038936615, -0.036451902240514755, 0.07750041782855988, 0.0004883371293544769, 0.037772078067064285, 0.06528574228286743, -0.12008415907621384, 0.058698076754808426, -0.008846146054565907, -0.0022655015345662832, 0.03388579562306404, -0.040226709097623825, -0.0697655975818634, 0.037853848189115524, -0.16796614229679108, -0.0534391887485981, 0.07193274796009064, -0.07208003848791122, 0.17316791415214539, -0.08974345773458481, -0.052828285843133926, 0.02319551631808281, -0.11347067356109619, 0.09840789437294006, -0.11054719239473343, 0.1294768750667572, 0.13222336769104004, 0.03777482360601425, 0.04262825846672058, -0.22420136630535126, 0.17175815999507904, 0.10596811026334763, 0.03310242295265198, -0.06821910291910172 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/736992518110224384/fmqQxFEr_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chris Albon 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@chrisalbon bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chrisalbon's tweets](https://twitter.com/chrisalbon). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1538</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>172</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>320</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1046</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1lrw5klc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrisalbon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2ks2mbxm) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2ks2mbxm/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/chrisalbon'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chrisalbon/1602242689246/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chrisalbon
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chris Albon AI Bot </div> <div style="font-size: 15px; color: #657786">@chrisalbon bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @chrisalbon's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1538</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>172</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>320</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1046</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @chrisalbon's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/chrisalbon'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @chrisalbon's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1538</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>172</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>320</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1046</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @chrisalbon's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/chrisalbon'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @chrisalbon's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1538</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>172</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>320</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1046</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @chrisalbon's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/chrisalbon'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1298727808869564417/9cVAujWa_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chris in the garden 🤖 AI Bot </div> <div style="font-size: 15px">@chrisgardenuk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chrisgardenuk's tweets](https://twitter.com/chrisgardenuk). | Data | Quantity | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 421 | | Short tweets | 109 | | Tweets kept | 2713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17jlvaab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrisgardenuk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4xztnbs8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4xztnbs8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrisgardenuk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chrisgardenuk/1616932244072/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chrisgardenuk
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Chris in the garden AI Bot @chrisgardenuk bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chrisgardenuk's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chrisgardenuk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1438283137692446720/2Xc5tmwD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Ray Gun 🇵🇷</div> <div style="text-align: center; font-size: 14px;">@chrisrgun</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Ray Gun 🇵🇷. | Data | Chris Ray Gun 🇵🇷 | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 364 | | Short tweets | 484 | | Tweets kept | 2382 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/245uz5wp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrisrgun's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fjh34bsj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fjh34bsj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrisrgun') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/chrisrgun/1638926316305/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chrisrgun
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Chris Ray Gun 🇵🇷 @chrisrgun I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Chris Ray Gun 🇵🇷. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chrisrgun's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1243351734757425152/e8JZwf03_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">chrissy teigen 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@chrissyteigen bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chrissyteigen's tweets](https://twitter.com/chrissyteigen). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3211</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>187</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>458</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2566</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3rq9c0fg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrissyteigen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/bsu3mmey) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/bsu3mmey/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/chrissyteigen'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chrissyteigen
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">chrissy teigen AI Bot </div> <div style="font-size: 15px; color: #657786">@chrissyteigen bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @chrissyteigen's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3211</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>187</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>458</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2566</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @chrissyteigen's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/chrissyteigen'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @chrissyteigen's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3211</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>187</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>458</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2566</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @chrissyteigen's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/chrissyteigen'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @chrissyteigen's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3211</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>187</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>458</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2566</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @chrissyteigen's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/chrissyteigen'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1086645278067830789/XqFPR8S9_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Christian Reber 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@christianreber bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@christianreber's tweets](https://twitter.com/christianreber). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2399</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1076</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>347</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>976</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3mu0oy0d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @christianreber's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/31hsw1pc) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/31hsw1pc/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/christianreber'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/christianreber/1603809204163/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/christianreber
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Christian Reber AI Bot </div> <div style="font-size: 15px; color: #657786">@christianreber bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @christianreber's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2399</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1076</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>347</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>976</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @christianreber's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/christianreber'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @christianreber's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2399</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1076</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>347</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>976</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @christianreber's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/christianreber'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @christianreber's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2399</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1076</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>347</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>976</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @christianreber's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/christianreber'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/512256295542333440/8Jo4w8kV_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Christopher Manning</div> <div style="text-align: center; font-size: 14px;">@chrmanning</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Christopher Manning. | Data | Christopher Manning | | --- | --- | | Tweets downloaded | 1115 | | Retweets | 428 | | Short tweets | 57 | | Tweets kept | 630 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ik3m24hb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrmanning's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rlj5183) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rlj5183/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrmanning') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chrmanning/1625552271211/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chrmanning
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Christopher Manning @chrmanning I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Christopher Manning. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chrmanning's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1332400588248682496/On_IvHC7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">cam🍀 🤖 AI Bot </div> <div style="font-size: 15px">@chumphreys1999 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chumphreys1999's tweets](https://twitter.com/chumphreys1999). | Data | Quantity | | --- | --- | | Tweets downloaded | 1280 | | Retweets | 370 | | Short tweets | 177 | | Tweets kept | 733 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lp1b1t5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chumphreys1999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1sog79lw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1sog79lw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chumphreys1999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/chumphreys1999/1617766114142/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/chumphreys1999
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
cam AI Bot @chumphreys1999 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @chumphreys1999's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @chumphreys1999's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1312034574956986369/LFet-8jS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Summoning Exodia at Charlie's 4 🤖 AI Bot </div> <div style="font-size: 15px">@ciarandold bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ciarandold's tweets](https://twitter.com/ciarandold). | Data | Quantity | | --- | --- | | Tweets downloaded | 3179 | | Retweets | 675 | | Short tweets | 199 | | Tweets kept | 2305 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wvabhvd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ciarandold's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11dwi7cz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11dwi7cz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ciarandold') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ciarandold/1614256896076/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ciarandold
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Summoning Exodia at Charlie's 4 AI Bot @ciarandold bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ciarandold's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ciarandold's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1296993530364047360/FjmaIiEb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ciggie Toad</div> <div style="text-align: center; font-size: 14px;">@ciggietoad</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ciggie Toad. | Data | Ciggie Toad | | --- | --- | | Tweets downloaded | 146 | | Retweets | 5 | | Short tweets | 24 | | Tweets kept | 117 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ncp22w8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ciggietoad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hne016u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hne016u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ciggietoad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ciggietoad/1630233008215/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ciggietoad
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Ciggie Toad @ciggietoad I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Ciggie Toad. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ciggietoad's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1373682632286896133/ejdKO_bO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">arne ness 🤖 AI Bot </div> <div style="font-size: 15px">@cindersthereare bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cindersthereare's tweets](https://twitter.com/cindersthereare). | Data | Quantity | | --- | --- | | Tweets downloaded | 1548 | | Retweets | 138 | | Short tweets | 86 | | Tweets kept | 1324 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gmybfyv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cindersthereare's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1aog9e99) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1aog9e99/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cindersthereare') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cindersthereare/1616675711050/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cindersthereare
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
arne ness AI Bot @cindersthereare bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cindersthereare's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cindersthereare's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1226173496029523973/aMFUlJUp_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Emil Cioran 🤖 AI Bot </div> <div style="font-size: 15px">@cioran481911 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cioran481911's tweets](https://twitter.com/cioran481911). | Data | Quantity | | --- | --- | | Tweets downloaded | 211 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 211 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37v494fs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cioran481911's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2w59cxmb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2w59cxmb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cioran481911') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cioran481911/1614113718717/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cioran481911
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Emil Cioran AI Bot @cioran481911 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cioran481911's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cioran481911's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339425166879846402/cz2uFrU7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">꧁༒ ripple star 🤖 AI Bot </div> <div style="font-size: 15px">@ciphersbane bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ciphersbane's tweets](https://twitter.com/ciphersbane). | Data | Quantity | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 1853 | | Short tweets | 471 | | Tweets kept | 881 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2iovn6wx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ciphersbane's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/311rulis) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/311rulis/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ciphersbane') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ciphersbane/1617767732812/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ciphersbane
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
꧁༒ ripple star AI Bot @ciphersbane bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ciphersbane's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ciphersbane's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1407468186195349509/gjnJ1puQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mannan</div> <div style="text-align: center; font-size: 14px;">@circlekpolarpop</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mannan. | Data | mannan | | --- | --- | | Tweets downloaded | 3130 | | Retweets | 1000 | | Short tweets | 433 | | Tweets kept | 1697 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uvyj480y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @circlekpolarpop's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gxud7br2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gxud7br2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/circlekpolarpop') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/circlekpolarpop/1628301626888/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/circlekpolarpop
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT mannan @circlekpolarpop I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from mannan. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @circlekpolarpop's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1297737393404096513/uNcRkHW1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ALAMO TRAP HOUSE 🇺🇸 ❁ 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@citizenhush bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@citizenhush's tweets](https://twitter.com/citizenhush). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3171</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1630</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>398</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1143</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2z8pk217/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @citizenhush's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3rlx8ct5) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3rlx8ct5/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/citizenhush'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/citizenhush/1601334107003/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/citizenhush
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ALAMO TRAP HOUSE 🇺🇸 AI Bot </div> <div style="font-size: 15px; color: #657786">@citizenhush bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @citizenhush's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3171</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1630</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>398</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1143</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @citizenhush's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/citizenhush'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @citizenhush's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3171</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1630</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>398</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1143</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @citizenhush's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/citizenhush'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @citizenhush's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3171</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1630</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>398</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1143</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @citizenhush's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/citizenhush'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1229936832764358656/RDxpoKaU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Colin Kinz-Thompson 🤖 AI Bot </div> <div style="font-size: 15px">@ckinzthompson bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ckinzthompson's tweets](https://twitter.com/ckinzthompson). | Data | Quantity | | --- | --- | | Tweets downloaded | 503 | | Retweets | 228 | | Short tweets | 24 | | Tweets kept | 251 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tph4rst/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ckinzthompson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xoo3o9mc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xoo3o9mc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ckinzthompson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ckinzthompson/1616644271573/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ckinzthompson
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Colin Kinz-Thompson AI Bot @ckinzthompson bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ckinzthompson's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ckinzthompson's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381764452098437120/74IgKP07_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984455379659575296/-0punyb9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Boston Psychology PhD & Claire</div> <div style="text-align: center; font-size: 14px;">@claire_v0ltaire-praisegodbarbon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Boston Psychology PhD & Claire. | Data | Boston Psychology PhD | Claire | | --- | --- | --- | | Tweets downloaded | 3211 | 3237 | | Retweets | 798 | 494 | | Short tweets | 272 | 566 | | Tweets kept | 2141 | 2177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qvxkc6zt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @claire_v0ltaire-praisegodbarbon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ssxlnhr9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ssxlnhr9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/claire_v0ltaire-praisegodbarbon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/claire_v0ltaire-praisegodbarbon/1635306972772/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/claire_v0ltaire-praisegodbarbon
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Boston Psychology PhD & Claire @claire\_v0ltaire-praisegodbarbon I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Boston Psychology PhD & Claire. Data: Tweets downloaded, Boston Psychology PhD: 3211, Claire: 3237 Data: Retweets, Boston Psychology PhD: 798, Claire: 494 Data: Short tweets, Boston Psychology PhD: 272, Claire: 566 Data: Tweets kept, Boston Psychology PhD: 2141, Claire: 2177 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @claire\_v0ltaire-praisegodbarbon's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984455379659575296/-0punyb9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Claire</div> <div style="text-align: center; font-size: 14px;">@claire_v0ltaire</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Claire. | Data | Claire | | --- | --- | | Tweets downloaded | 3236 | | Retweets | 491 | | Short tweets | 574 | | Tweets kept | 2171 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5yprh52r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @claire_v0ltaire's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33jg2b88) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33jg2b88/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/claire_v0ltaire') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/claire_v0ltaire/1635393819410/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/claire_v0ltaire
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Claire @claire\_v0ltaire I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Claire. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @claire\_v0ltaire's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984455379659575296/-0punyb9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Claire & Deep Leffen Bot</div> <div style="text-align: center; font-size: 14px;">@claireredacted-deepleffen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Claire & Deep Leffen Bot. | Data | Claire | Deep Leffen Bot | | --- | --- | --- | | Tweets downloaded | 3241 | 493 | | Retweets | 523 | 13 | | Short tweets | 627 | 26 | | Tweets kept | 2091 | 454 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uxfbhyv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @claireredacted-deepleffen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rdhjvg7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rdhjvg7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/claireredacted-deepleffen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/claireredacted-deepleffen/1627080578772/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/claireredacted-deepleffen
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Claire & Deep Leffen Bot @claireredacted-deepleffen I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Claire & Deep Leffen Bot. Data: Tweets downloaded, Claire: 3241, Deep Leffen Bot: 493 Data: Retweets, Claire: 523, Deep Leffen Bot: 13 Data: Short tweets, Claire: 627, Deep Leffen Bot: 26 Data: Tweets kept, Claire: 2091, Deep Leffen Bot: 454 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @claireredacted-deepleffen's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984455379659575296/-0punyb9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Claire</div> <div style="text-align: center; font-size: 14px;">@claireredacted</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Claire. | Data | Claire | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 518 | | Short tweets | 616 | | Tweets kept | 2099 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39vy8r67/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @claireredacted's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/h52pysz1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/h52pysz1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/claireredacted') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/claireredacted/1627519832927/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/claireredacted
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Claire @claireredacted I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Claire. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @claireredacted's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1387170139599212547/6jVRvWgF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408716131867713538/rg3HSZ5D_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409230363906424832/67a8m2BA_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ari @ 😴 & clementine!!!! 𓃠 & Ho3K | Daramgar 🔜 CROSSxUP</div> <div style="text-align: center; font-size: 14px;">@clamtime-daramgaria-lazar181</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ari @ 😴 & clementine!!!! 𓃠 & Ho3K | Daramgar 🔜 CROSSxUP. | Data | Ari @ 😴 | clementine!!!! 𓃠 | Ho3K | Daramgar 🔜 CROSSxUP | | --- | --- | --- | --- | | Tweets downloaded | 3232 | 3185 | 3249 | | Retweets | 512 | 438 | 30 | | Short tweets | 590 | 720 | 805 | | Tweets kept | 2130 | 2027 | 2414 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/397xumbr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clamtime-daramgaria-lazar181's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37plk0db) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37plk0db/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clamtime-daramgaria-lazar181') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clamtime-daramgaria-lazar181/1627186361489/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clamtime-daramgaria-lazar181
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI CYBORG </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ari @ & clementine!!!! 𓃠 & Ho3K | Daramgar CROSSxUP</div> <div style="text-align: center; font-size: 14px;">@clamtime-daramgaria-lazar181</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on tweets from Ari @ & clementine!!!! 𓃠 & Ho3K | Daramgar CROSSxUP. | Data | Ari @ | clementine!!!! 𓃠 | Ho3K | Daramgar CROSSxUP | | --- | --- | --- | --- | | Tweets downloaded | 3232 | 3185 | 3249 | | Retweets | 512 | 438 | 30 | | Short tweets | 590 | 720 | 805 | | Tweets kept | 2130 | 2027 | 2414 | Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-daramgaria-lazar181's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from Ari @ & clementine!!!! 𓃠 & Ho3K | Daramgar CROSSxUP.\n\n| Data | Ari @ | clementine!!!! 𓃠 | Ho3K | Daramgar CROSSxUP |\n| --- | --- | --- | --- |\n| Tweets downloaded | 3232 | 3185 | 3249 |\n| Retweets | 512 | 438 | 30 |\n| Short tweets | 590 | 720 | 805 |\n| Tweets kept | 2130 | 2027 | 2414 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-daramgaria-lazar181's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from Ari @ & clementine!!!! 𓃠 & Ho3K | Daramgar CROSSxUP.\n\n| Data | Ari @ | clementine!!!! 𓃠 | Ho3K | Daramgar CROSSxUP |\n| --- | --- | --- | --- |\n| Tweets downloaded | 3232 | 3185 | 3249 |\n| Retweets | 512 | 438 | 30 |\n| Short tweets | 590 | 720 | 805 |\n| Tweets kept | 2130 | 2027 | 2414 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-daramgaria-lazar181's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 54, 34, 178, 83, 18, 47, 38 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on tweets from Ari @ & clementine!!!! 𓃠 & Ho3K | Daramgar CROSSxUP.\n\n| Data | Ari @ | clementine!!!! 𓃠 | Ho3K | Daramgar CROSSxUP |\n| --- | --- | --- | --- |\n| Tweets downloaded | 3232 | 3185 | 3249 |\n| Retweets | 512 | 438 | 30 |\n| Short tweets | 590 | 720 | 805 |\n| Tweets kept | 2130 | 2027 | 2414 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-daramgaria-lazar181's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04814743623137474, 0.11583302915096283, -0.0028747613541781902, 0.08147121965885162, 0.0862005427479744, 0.01502026617527008, 0.053683049976825714, 0.11275988817214966, 0.01629003696143627, 0.13605493307113647, 0.10652365535497665, 0.048759251832962036, 0.05427991598844528, 0.16124309599399567, 0.06593404710292816, -0.25498008728027344, 0.02742365002632141, -0.11757194995880127, -0.027701037004590034, 0.13897250592708588, 0.09932909160852432, -0.0956890806555748, 0.09659883379936218, -0.041386500000953674, -0.05310451611876488, 0.017729518935084343, -0.05225798487663269, -0.07238536328077316, 0.06403809785842896, 0.049234021455049515, 0.020865479484200478, 0.04012347385287285, 0.09957300126552582, -0.17430514097213745, 0.0379653200507164, 0.10164706408977509, 0.007077325601130724, 0.08341723680496216, 0.07540319859981537, -0.002842110814526677, 0.16043031215667725, -0.08805497735738754, 0.0686102956533432, 0.0497884675860405, -0.1364639550447464, -0.09956131130456924, -0.15853768587112427, 0.10329995304346085, 0.14736753702163696, 0.09986849129199982, -0.045805711299180984, 0.126474991440773, -0.05035832151770592, 0.042311422526836395, 0.181472048163414, -0.2585758864879608, -0.038740262389183044, 0.10542814433574677, 0.03895070031285286, 0.0987110435962677, -0.09562848508358002, 0.0198063924908638, 0.03536294773221016, 0.0017427619313821197, 0.024759946390986443, -0.046598076820373535, 0.12286178022623062, 0.01882319152355194, -0.11638779193162918, -0.060867756605148315, 0.06201415881514549, 0.04070185869932175, -0.04800575599074364, -0.11425818502902985, -0.011545361019670963, -0.11811649799346924, -0.022400187328457832, -0.037245988845825195, 0.018729347735643387, 0.007305164821445942, -0.029626507312059402, -0.04962379112839699, -0.07943010330200195, -0.01663569174706936, -0.01646377705037594, 0.056697167456150055, 0.04690239951014519, 0.004849322605878115, -0.037889204919338226, 0.16586154699325562, 0.03177269175648689, -0.12704257667064667, -0.053405702114105225, -0.060906391590833664, -0.09617554396390915, -0.062019430100917816, 0.04398234188556671, 0.059393662959337234, 0.06068594008684158, 0.17262890934944153, 0.0004527920391410589, 0.10740841925144196, 0.05241290479898453, -0.017508992925286293, 0.09897002577781677, 0.14612478017807007, -0.14944753050804138, -0.12288486957550049, 0.0626007467508316, 0.0342576764523983, -0.06496594846248627, -0.05267591401934624, 0.007466857321560383, 0.0361233614385128, 0.0650152713060379, 0.07089534401893616, 0.036103468388319016, 0.07846253365278244, 0.026378681883215904, -0.0018436125246807933, 0.020256662741303444, -0.15595325827598572, 0.038886066526174545, 0.04500523582100868, -0.061913419514894485, -0.013935615308582783, 0.01690470613539219, -0.0024620103649795055, -0.10156306624412537, 0.05345260724425316, -0.09012747555971146, -0.06320594251155853, -0.06417041271924973, -0.06343527883291245, 0.003995525185018778, -0.018632985651493073, -0.06197638064622879, -0.08970009535551071, -0.09528196603059769, -0.10100613534450531, 0.02832154929637909, -0.06062974035739899, -0.01004938967525959, 0.0029315068386495113, -0.06080587953329086, -0.0014938336098566651, 0.020540446043014526, 0.005010093562304974, -0.046059053391218185, 0.05024658516049385, -0.0417180098593235, 0.01870632730424404, 0.06999164819717407, 0.03664514794945717, -0.09350233525037766, 0.09186863899230957, -0.15257401764392853, 0.1484803855419159, -0.06463415175676346, 0.08333170413970947, -0.16723023355007172, -0.10324476659297943, -0.02822786755859852, -0.011392085812985897, 0.05585753545165062, 0.11453485488891602, -0.17138969898223877, -0.00294822477735579, 0.1484898328781128, -0.042694151401519775, -0.1129903718829155, 0.09194311499595642, -0.0846891924738884, 0.054505132138729095, 0.09359569847583771, 0.1121845617890358, 0.12857800722122192, -0.08240954577922821, -0.03094557300209999, -0.08528131991624832, -0.03838822618126869, 0.17724615335464478, 0.04171322286128998, -0.049881868064403534, 0.01203714869916439, 0.0004331176169216633, -0.0416671484708786, -0.0720260888338089, -0.0661437138915062, -0.04851292818784714, 0.028323035687208176, 0.0077929068356752396, -0.08549252897500992, -0.028084086254239082, -0.037098001688718796, -0.05316866189241409, -0.11327885836362839, -0.041995830833911896, 0.10653875023126602, -0.05415619909763336, -0.015486705116927624, -0.11628798395395279, 0.019263584166765213, 0.004883293528109789, 0.03676063194870949, -0.15400606393814087, -0.07261918485164642, 0.01625828444957733, -0.04991154745221138, 0.1351279318332672, -0.04963831230998039, 0.056241247802972794, 0.04607249051332474, 0.03497723117470741, 0.002189729595556855, -0.04345118999481201, 0.014457081444561481, -0.09234560281038284, -0.14964041113853455, -0.03446856886148453, -0.046021606773138046, 0.15142850577831268, -0.18257369101047516, -0.006537281442433596, 0.11204560101032257, 0.12176670879125595, -0.00497674522921443, -0.046483129262924194, 0.01421013381332159, -0.026652660220861435, 0.013616243377327919, -0.10923279821872711, -0.026422876864671707, -0.030449004843831062, -0.015102204866707325, 0.034109748899936676, -0.21308134496212006, -0.0972735583782196, 0.09752834588289261, 0.0627276599407196, -0.1177746132016182, -0.010773997753858566, -0.06895992904901505, -0.02063032053411007, -0.01711168698966503, -0.05803559720516205, 0.26236096024513245, 0.03346318006515503, 0.07481040060520172, -0.056612055748701096, -0.05823396518826485, -0.013307681307196617, -0.03983288258314133, -0.04015319421887398, 0.09907569736242294, 0.03426593169569969, -0.18707755208015442, 0.061722517013549805, 0.053532764315605164, 0.09371531754732132, 0.1091914027929306, -0.0018463556189090014, -0.09851469844579697, -0.08949006348848343, -0.03580236807465553, 0.004679171834141016, 0.05853107571601868, 0.006785237696021795, -0.01071256585419178, 0.025487400591373444, 0.017811095342040062, 0.052707184106111526, -0.11268777400255203, 0.025042522698640823, 0.04996486380696297, -0.008322665467858315, 0.017224827781319618, 0.011646020226180553, 0.012556268833577633, 0.1148538887500763, 0.06720741093158722, 0.032741278409957886, -0.07244294136762619, -0.04201504960656166, -0.13092806935310364, 0.16610704362392426, -0.0892983078956604, -0.17014522850513458, -0.10463716089725494, 0.002949357032775879, 0.022901233285665512, -0.019775759428739548, 0.020786793902516365, -0.09072604775428772, -0.07871948182582855, -0.13422061502933502, 0.007782438769936562, 0.016856584697961807, -0.015913110226392746, 0.03871365264058113, -0.008345807902514935, -0.01592344045639038, -0.11940404772758484, -0.038431890308856964, 0.026117632165551186, -0.10238870978355408, 0.018596692010760307, 0.057811591774225235, 0.07610797882080078, 0.14024928212165833, -0.018414802849292755, 0.04320673644542694, -0.007906594313681126, 0.22533705830574036, -0.12974722683429718, 0.066693015396595, 0.09460844844579697, -0.025816883891820908, 0.03597012534737587, 0.12438460439443588, 0.009263266809284687, -0.11373642832040787, 0.0685378685593605, 0.07310248166322708, -0.05950773134827614, -0.20435817539691925, -0.0280748438090086, -0.026722900569438934, 0.01984776183962822, 0.10254625976085663, 0.08965341001749039, 0.04085717722773552, -0.015766151249408722, -0.04846460744738579, -0.02294236421585083, 0.04494890198111534, 0.07757791876792908, -0.009475858882069588, 0.002822990994900465, 0.020290251821279526, -0.05837733671069145, -0.0028795083053410053, 0.1080089658498764, -0.007609191816300154, 0.2032834142446518, -0.009989697486162186, 0.1243450790643692, 0.05938825383782387, 0.07987350225448608, -0.01562797836959362, -0.02459949068725109, 0.028291478753089905, 0.029653888195753098, 0.005325471516698599, -0.09606078267097473, -0.00596204586327076, 0.028677834197878838, 0.0193408764898777, -0.07112851738929749, -0.03357988968491554, 0.03071245178580284, 0.10727549344301224, 0.20757344365119934, -0.004434596747159958, -0.20297813415527344, -0.05410343036055565, 0.03977818042039871, -0.055610332638025284, -0.03591213747859001, 0.003953037783503532, 0.021257346495985985, -0.15824297070503235, 0.00468419911339879, -0.010234245099127293, 0.11327280849218369, -0.10784177482128143, 0.0012229358544573188, 0.08063215762376785, 0.12250964343547821, -0.04723556339740753, 0.06244503706693649, -0.1762886345386505, 0.13921280205249786, -0.0019309050403535366, 0.06338948756456375, -0.061969030648469925, 0.0016478856559842825, 0.01955346390604973, -0.038283269852399826, 0.1102704182267189, 0.017062339931726456, -0.02925284020602703, -0.08455758541822433, -0.11347951740026474, 0.014443978667259216, 0.10002806782722473, -0.12012401968240738, 0.13386571407318115, -0.02987067587673664, 0.010115643963217735, -0.0467863604426384, -0.05327896401286125, -0.1308218389749527, -0.09806731343269348, 0.08059608191251755, -0.11119485646486282, 0.005492311902344227, -0.064163438975811, -0.015246790833771229, -0.09194956719875336, 0.21302415430545807, -0.03821679949760437, -0.04377218335866928, -0.1632152497768402, 0.08345512300729752, 0.12116287648677826, -0.08261144906282425, -0.001376523170620203, 0.01237819530069828, 0.06318046897649765, 0.045950207859277725, -0.09002930670976639, 0.07537960261106491, -0.03867396339774132, -0.19391772150993347, -0.0013095394242554903, 0.16202831268310547, 0.09746292978525162, 0.02080358751118183, 0.014462285675108433, 0.028091691434383392, -0.010169368237257004, -0.17642761766910553, 0.0005652020336128771, 0.0782642662525177, 0.012962608598172665, -0.0011270811082795262, 0.029528921470046043, -0.002099770586937666, -0.12207222729921341, 0.0006284356932155788, 0.09749389439821243, 0.22195495665073395, -0.07726575434207916, 0.09987770766019821, 0.07923981547355652, -0.05908495560288429, -0.2119980752468109, 0.02788124606013298, 0.02458760142326355, 0.010015892796218395, -0.01180635578930378, -0.1507880836725235, 0.05187312141060829, 0.12036482244729996, 0.013695075176656246, 0.01812594011425972, -0.34462040662765503, -0.1394985169172287, 0.07665799558162689, 0.04756831005215645, -0.14884406328201294, -0.1356053501367569, -0.03933979943394661, -0.022696947678923607, -0.23363880813121796, 0.0651572123169899, -0.10355299711227417, 0.06611313670873642, 0.03146049380302429, 0.038383111357688904, 0.0379960723221302, -0.05971486493945122, 0.16845348477363586, 0.023007242009043694, 0.07440394163131714, -0.11790761351585388, -0.10594657808542252, 0.0627066045999527, -0.0560859739780426, 0.09711576253175735, 0.041047267615795135, 0.07294756174087524, -0.1418975293636322, -0.017471550032496452, -0.06315489858388901, 0.004374280571937561, -0.07945994287729263, -0.055222898721694946, -0.07393840700387955, 0.10408124327659607, 0.10419832170009613, -0.047893136739730835, -0.015146199613809586, -0.05958425626158714, -0.020303431898355484, 0.11275829374790192, 0.09401383250951767, 0.0850115716457367, -0.026905812323093414, 0.02395990677177906, 0.008751284331083298, 0.010368434712290764, -0.13221031427383423, 0.047267764806747437, 0.1462385058403015, 0.023089654743671417, 0.14582304656505585, -0.012545846402645111, -0.13378727436065674, -0.0076906317844986916, 0.06647568196058273, -0.1402074545621872, -0.13263779878616333, 0.0016108981799334288, 0.019357722252607346, -0.07260286808013916, -0.04363685101270676, 0.10790878534317017, -0.05043494701385498, -0.03373483195900917, 0.007420110981911421, 0.060645051300525665, -0.04409689083695412, 0.16613568365573883, 0.02882392145693302, 0.03389905393123627, -0.08344775438308716, 0.12647217512130737, 0.09332218766212463, -0.04812154173851013, 0.03978787735104561, 0.17963248491287231, -0.10822633653879166, -0.0365980826318264, 0.015349017456173897, 0.03589054197072983, 0.017752425745129585, -0.005627513863146305, 0.025775214657187462, -0.06432490050792694, 0.05351988971233368, 0.10923627763986588, -0.01062515564262867, 0.0685821920633316, 0.01044820062816143, 0.044629476964473724, -0.10152749717235565, 0.07387350499629974, 0.08473777025938034, 0.009930718690156937, -0.07174445688724518, 0.17763283848762512, -0.010263821110129356, 0.05857156962156296, -0.03639301285147667, -0.04686223343014717, -0.11450382322072983, -0.04073219373822212, -0.08678067475557327, -0.01862875185906887, -0.08182752132415771, -0.024731893092393875, 0.009265435859560966, -0.0409194715321064, -0.035409558564424515, 0.03205909579992294, -0.05936523899435997, -0.09034416079521179, -0.04705443233251572, 0.08181107044219971, -0.1359880119562149, -0.006507209036499262, 0.09732174128293991, -0.04741564020514488, 0.1471952199935913, 0.07540226727724075, -0.013864874839782715, -0.019901785999536514, -0.11612053215503693, 0.04165814444422722, -0.014354337938129902, 0.012264673598110676, 0.05227728188037872, -0.15740804374217987, 0.025124534964561462, -0.07755713909864426, -0.06186585873365402, 0.007181376684457064, 0.0703863576054573, -0.12118923664093018, 0.00955903995782137, -0.02736256644129753, -0.020359506830573082, -0.08232522755861282, 0.03129087761044502, 0.05328096076846123, 0.042500078678131104, 0.056876201182603836, -0.04790697246789932, 0.05443497747182846, -0.18833887577056885, -0.05764111503958702, 0.005900411866605282, 0.021252023056149483, 0.02485867403447628, -0.04913769289851189, 0.07564602792263031, -0.04527338966727257, 0.1149354875087738, -0.0030307366978377104, -0.0573948509991169, 0.05055036395788193, 0.011152287945151329, -0.014232398010790348, 0.058028340339660645, 0.04452593997120857, -0.026745472103357315, -0.02684158831834793, -0.004443446174263954, -0.0025466152001172304, -0.04035549610853195, -0.12080440670251846, 0.13681729137897491, 0.08744717389345169, 0.1330891251564026, -0.027571137994527817, 0.06973356008529663, -0.08069939911365509, -0.05127929896116257, 0.04205654188990593, -0.05662066116929054, 0.00874188169836998, -0.1101178303360939, 0.0552152656018734, 0.19962890446186066, -0.16430215537548065, 0.08287602663040161, -0.04249442741274834, -0.0646214634180069, -0.05879783257842064, -0.15158002078533173, -0.04806557297706604, -0.03501889482140541, 0.019717004150152206, -0.1024903804063797, 0.07657759636640549, 0.01729278638958931, 0.08321787416934967, -0.03586320951581001, 0.17580819129943848, -0.11609534174203873, -0.09505179524421692, 0.02922535501420498, 0.03957904875278473, 0.009093050844967365, 0.02838609367609024, 0.03160196542739868, -0.017360148951411247, -0.011821188032627106, 0.07439813017845154, 0.04163723811507225, 0.03808259218931198, 0.02752036415040493, -0.0577111579477787, -0.07098367065191269, 0.016958240419626236, -0.014279084280133247, 0.019011933356523514, 0.10309485346078873, 0.07629498094320297, -0.051868051290512085, -0.016191134229302406, 0.26440009474754333, -0.04237034544348717, -0.025212323293089867, -0.15650466084480286, 0.18761248886585236, 0.018434613943099976, -0.0014119957340881228, 0.004462231881916523, -0.13413843512535095, 0.029904963448643684, 0.14145873486995697, 0.18207088112831116, -0.09043022245168686, 0.015110500156879425, -0.047286201268434525, 0.019955206662416458, 0.03525851294398308, 0.10933889448642731, 0.08026310801506042, 0.11844684928655624, -0.027108078822493553, 0.04143455624580383, -0.04578036814928055, -0.03894593194127083, -0.061598557978868484, 0.11571082472801208, 0.02636926993727684, 0.00675715459510684, -0.045335281640291214, 0.12822653353214264, -0.06858021020889282, -0.2893284857273102, 0.00011118780821561813, -0.10024026781320572, -0.12706390023231506, 0.04178524762392044, -0.03874998912215233, 0.030211973935365677, 0.06420836597681046, 0.04974300041794777, -0.004474582616239786, 0.09268447756767273, 0.056312885135412216, -0.030466392636299133, -0.003393062623217702, 0.08971055597066879, -0.06862016767263412, 0.21028852462768555, -0.01971443183720112, 0.04111897945404053, 0.1288805454969406, -0.003240218386054039, -0.13797657191753387, 0.06650763005018234, 0.07316987961530685, -0.07890946418046951, -0.014383090659976006, 0.12172967195510864, 0.0013745275791734457, -0.007936478592455387, 0.08547136187553406, -0.022161535918712616, -0.009451733902096748, -0.09147375822067261, 0.055681027472019196, -0.12468741089105606, 0.08430654555559158, -0.05934533104300499, 0.16043473780155182, 0.15118974447250366, -0.07630801945924759, 0.04964739456772804, -0.06907166540622711, -0.006279167719185352, -0.019817017018795013, 0.08524413406848907, -0.021069375798106194, -0.15855233371257782, 0.03182041645050049, -0.07846807688474655, 0.032643407583236694, -0.09835712611675262, -0.06515149772167206, 0.008915235288441181, -0.023122897371649742, -0.014765646308660507, 0.2144021987915039, 0.08451954275369644, 0.02970178797841072, -0.03049735724925995, -0.06354426592588425, -0.01097460649907589, 0.1789427548646927, -0.17762491106987, -0.049424219876527786 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409230363906424832/67a8m2BA_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408716131867713538/rg3HSZ5D_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1415805087868391427/r5M55HF9_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ho3K | Daramgar 🔜 CROSSxUP & clementine!!!! 𓃠 & camera! (low tier)</div> <div style="text-align: center; font-size: 14px;">@clamtime-daramgaria-ledgeguard</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ho3K | Daramgar 🔜 CROSSxUP & clementine!!!! 𓃠 & camera! (low tier). | Data | Ho3K | Daramgar 🔜 CROSSxUP | clementine!!!! 𓃠 | camera! (low tier) | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3185 | 3211 | | Retweets | 30 | 439 | 1053 | | Short tweets | 807 | 719 | 556 | | Tweets kept | 2412 | 2027 | 1602 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2z4hkysf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clamtime-daramgaria-ledgeguard's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2viwbf33) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2viwbf33/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clamtime-daramgaria-ledgeguard') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clamtime-daramgaria-ledgeguard
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI CYBORG </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ho3K | Daramgar CROSSxUP & clementine!!!! 𓃠 & camera! (low tier)</div> <div style="text-align: center; font-size: 14px;">@clamtime-daramgaria-ledgeguard</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on tweets from Ho3K | Daramgar CROSSxUP & clementine!!!! 𓃠 & camera! (low tier). | Data | Ho3K | Daramgar CROSSxUP | clementine!!!! 𓃠 | camera! (low tier) | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3185 | 3211 | | Retweets | 30 | 439 | 1053 | | Short tweets | 807 | 719 | 556 | | Tweets kept | 2412 | 2027 | 1602 | Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-daramgaria-ledgeguard's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from Ho3K | Daramgar CROSSxUP & clementine!!!! 𓃠 & camera! (low tier).\n\n| Data | Ho3K | Daramgar CROSSxUP | clementine!!!! 𓃠 | camera! (low tier) |\n| --- | --- | --- | --- |\n| Tweets downloaded | 3249 | 3185 | 3211 |\n| Retweets | 30 | 439 | 1053 |\n| Short tweets | 807 | 719 | 556 |\n| Tweets kept | 2412 | 2027 | 1602 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-daramgaria-ledgeguard's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from Ho3K | Daramgar CROSSxUP & clementine!!!! 𓃠 & camera! (low tier).\n\n| Data | Ho3K | Daramgar CROSSxUP | clementine!!!! 𓃠 | camera! (low tier) |\n| --- | --- | --- | --- |\n| Tweets downloaded | 3249 | 3185 | 3211 |\n| Retweets | 30 | 439 | 1053 |\n| Short tweets | 807 | 719 | 556 |\n| Tweets kept | 2412 | 2027 | 1602 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-daramgaria-ledgeguard's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 54, 34, 189, 81, 18, 47, 38 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on tweets from Ho3K | Daramgar CROSSxUP & clementine!!!! 𓃠 & camera! (low tier).\n\n| Data | Ho3K | Daramgar CROSSxUP | clementine!!!! 𓃠 | camera! (low tier) |\n| --- | --- | --- | --- |\n| Tweets downloaded | 3249 | 3185 | 3211 |\n| Retweets | 30 | 439 | 1053 |\n| Short tweets | 807 | 719 | 556 |\n| Tweets kept | 2412 | 2027 | 1602 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-daramgaria-ledgeguard's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.047171469777822495, 0.10051681846380234, -0.003335618181154132, 0.08434530347585678, 0.07831963151693344, 0.010425974614918232, 0.06838393956422806, 0.1262127012014389, -0.009144631214439869, 0.14780642092227936, 0.0932355523109436, 0.03221743553876877, 0.07924369722604752, 0.14881420135498047, 0.07906059920787811, -0.26576733589172363, 0.013633894734084606, -0.10637283325195312, -0.030766012147068977, 0.1417132169008255, 0.1018124669790268, -0.09926138073205948, 0.08183906972408295, -0.049061521887779236, -0.04779655486345291, 0.007891233079135418, -0.03668123856186867, -0.07631829380989075, 0.0518341064453125, 0.02722320146858692, 0.007321045733988285, 0.027355100959539413, 0.07219889760017395, -0.15285739302635193, 0.03471343219280243, 0.11414673924446106, 0.008313098922371864, 0.09016644209623337, 0.07385697215795517, -0.01480979286134243, 0.12040650099515915, -0.1328258067369461, 0.05968679115176201, 0.04774419963359833, -0.15049199759960175, -0.14804814755916595, -0.1518809050321579, 0.13336779177188873, 0.13623066246509552, 0.10396461933851242, -0.044658880680799484, 0.14273525774478912, -0.0468604639172554, 0.03376816585659981, 0.19860628247261047, -0.24473907053470612, -0.04212380200624466, 0.041579414159059525, 0.04753182455897331, 0.10437528789043427, -0.10525232553482056, 0.020936815068125725, 0.015065424144268036, 0.007432065904140472, 0.023519735783338547, -0.0430634543299675, 0.13519184291362762, 0.009200569242238998, -0.11825590580701828, -0.042590510100126266, 0.042448192834854126, 0.04420677199959755, -0.05257800966501236, -0.11672579497098923, -0.01622304506599903, -0.120986208319664, -0.038112178444862366, -0.03542052209377289, 0.01407550647854805, -0.0025723555590957403, -0.05048510059714317, -0.06746885925531387, -0.07570984214544296, -0.007986467331647873, 0.0026738704182207584, 0.05022773891687393, 0.04671314358711243, 0.019114932045340538, -0.055435940623283386, 0.154330313205719, 0.05875428393483162, -0.13166974484920502, -0.056609440594911575, -0.05370433256030083, -0.06441687792539597, -0.0463765487074852, 0.05424719303846359, 0.049588970839977264, 0.06484438478946686, 0.1736089140176773, -0.010859660804271698, 0.09063074737787247, 0.04767189174890518, -0.0003882257151417434, 0.07368529587984085, 0.13161087036132812, -0.1421198844909668, -0.13865229487419128, 0.08268914371728897, 0.020205801352858543, -0.04875640943646431, -0.050281938165426254, 0.017865631729364395, 0.03314308449625969, 0.06811597943305969, 0.06669891625642776, 0.06698855012655258, 0.060197487473487854, 0.007522922940552235, -0.02696617692708969, 0.047909706830978394, -0.1433570683002472, 0.055848799645900726, 0.04674466326832771, -0.05943144112825394, 0.01939409412443638, 0.014591283164918423, -0.0075831287540495396, -0.11436040699481964, 0.048573367297649384, -0.08133932948112488, -0.041282009333372116, -0.057632770389318466, -0.06900309771299362, 0.005063729360699654, -0.027888212352991104, -0.06734314560890198, -0.07817937433719635, -0.08119022846221924, -0.09441669285297394, 0.022339779883623123, -0.0620325542986393, 0.009941846132278442, 0.00427689915522933, -0.03862684592604637, 0.02708445116877556, 0.026813462376594543, 0.0045361388474702835, -0.050097111612558365, 0.058649688959121704, -0.052895914763212204, 0.020949600264430046, 0.04888097196817398, 0.03304998204112053, -0.09546371549367905, 0.07329202443361282, -0.17781101167201996, 0.1302313506603241, -0.06054553762078285, 0.0679325982928276, -0.17571434378623962, -0.11554435640573502, -0.016863787546753883, -0.019304297864437103, 0.04524186626076698, 0.10847646743059158, -0.14162546396255493, -0.023213831707835197, 0.13770891726016998, -0.0503707155585289, -0.08045211434364319, 0.09895185381174088, -0.06790512800216675, 0.04158191382884979, 0.0946199893951416, 0.08596913516521454, 0.15222109854221344, -0.10601722449064255, -0.017543800175189972, -0.07283808290958405, -0.06415273994207382, 0.1599312275648117, 0.04649115353822708, -0.04745020717382431, 0.039304159581661224, -0.015710631385445595, -0.04030800610780716, -0.054177407175302505, -0.06032424420118332, -0.02961244061589241, 0.03231636434793472, 0.021934038028120995, -0.0861412063241005, -0.024210277944803238, -0.025547469034790993, -0.066531240940094, -0.1248902827501297, -0.040404073894023895, 0.07923056185245514, -0.0336579866707325, -0.002091523725539446, -0.11457987129688263, 0.0237302053719759, 0.021329466253519058, 0.012185530737042427, -0.116038478910923, -0.06096538156270981, 0.017348874360322952, -0.023065095767378807, 0.12630832195281982, -0.0631202682852745, 0.058302588760852814, 0.046192802488803864, 0.026262667030096054, -0.00182074005715549, -0.04288055747747421, 0.012868361547589302, -0.08403097838163376, -0.15756340324878693, -0.028586143627762794, -0.028937742114067078, 0.13058769702911377, -0.14160120487213135, -0.01968785934150219, 0.11264515668153763, 0.1293592005968094, 0.010317384265363216, -0.05522317439317703, 0.016213802620768547, -0.03485075384378433, 0.03276100009679794, -0.10481160134077072, -0.019449561834335327, -0.018936634063720703, 0.0078087132424116135, 0.04143046960234642, -0.19557099044322968, -0.12178102880716324, 0.10249140858650208, 0.03984064981341362, -0.12235896289348602, 0.0066173798404634, -0.06048578396439552, -0.023652348667383194, -0.019615568220615387, -0.05052786320447922, 0.23240885138511658, 0.018351104110479355, 0.06744183599948883, -0.0484282560646534, -0.067562535405159, -0.012497944757342339, -0.042284827679395676, -0.026532156392931938, 0.1074579730629921, -0.007431090343743563, -0.2242336869239807, 0.07404392212629318, 0.04158509150147438, 0.09498448669910431, 0.11952979862689972, -0.00040558469481766224, -0.09748856723308563, -0.07539074867963791, -0.018639158457517624, 0.020120719447731972, 0.06992153078317642, 0.015100115910172462, -0.007469173055142164, 0.03565225750207901, 0.027259700000286102, 0.034660398960113525, -0.10152821987867355, 0.02801312319934368, 0.04791819676756859, -0.012794634327292442, 0.026717940345406532, 0.0006335462094284594, 0.03289247304201126, 0.12183533608913422, 0.08808216452598572, 0.0440724678337574, -0.05458221584558487, -0.042764727026224136, -0.13904818892478943, 0.15707360208034515, -0.09581875056028366, -0.19735288619995117, -0.10111600160598755, -0.00909142941236496, 0.06532652676105499, -0.023477505892515182, 0.022507477551698685, -0.08012440800666809, -0.06894693523645401, -0.11999212950468063, 0.029234621673822403, 0.006669273599982262, -0.015810487791895866, 0.015509756281971931, 0.00619742926210165, -0.0034149407874792814, -0.11161395162343979, -0.03538394719362259, 0.015238706022500992, -0.09065031260251999, 0.019487690180540085, 0.06424997001886368, 0.04174825921654701, 0.11979250609874725, -0.006336080376058817, 0.04448309168219566, -0.012141798622906208, 0.24008050560951233, -0.1352098137140274, 0.09361918270587921, 0.11559437215328217, -0.005667116492986679, 0.053362615406513214, 0.09929505735635757, 0.00687340646982193, -0.08310212194919586, 0.06065962463617325, 0.05936494097113609, -0.051867902278900146, -0.1746540367603302, -0.022004149854183197, -0.0291092898696661, 0.01768477074801922, 0.10377150028944016, 0.08489905297756195, 0.02991746924817562, -0.008773639798164368, -0.06556399166584015, -0.02395523525774479, 0.0471319742500782, 0.08793400228023529, -0.035661257803440094, 0.028689224272966385, 0.022100921720266342, -0.04679426923394203, 0.011513813398778439, 0.12086065858602524, -0.029541296884417534, 0.1802145093679428, -0.033826738595962524, 0.11236262321472168, 0.05505627393722534, 0.0975123792886734, 0.013440921902656555, -0.018508305773139, 0.0001440624037059024, 0.03299074247479439, 0.004099284298717976, -0.10178135335445404, 0.024033384397625923, 0.02208981290459633, 0.018161790445446968, -0.05344627797603607, -0.029007161036133766, 0.015066176652908325, 0.09872463345527649, 0.232335165143013, 0.047326553612947464, -0.201653853058815, -0.0701807513833046, 0.02250327728688717, -0.045182496309280396, -0.04463277384638786, -0.005789531860500574, 0.023269645869731903, -0.17257291078567505, 0.00584679888561368, -0.020596982911229134, 0.09675721824169159, -0.09921544045209885, -0.017307907342910767, 0.10840676724910736, 0.11853156983852386, -0.04713132232427597, 0.05090015381574631, -0.17802955210208893, 0.12435880303382874, -0.00843063835054636, 0.07803422957658768, -0.0411326140165329, -0.004456347785890102, 0.016596823930740356, -0.0772983580827713, 0.10906404256820679, 0.03652067109942436, -0.0006715728668496013, -0.09354988485574722, -0.13042718172073364, -0.000990988570265472, 0.12909947335720062, -0.11693625152111053, 0.12066855281591415, -0.02164687216281891, -0.002137441886588931, -0.03753187134861946, -0.07805337756872177, -0.1252191960811615, -0.0932643860578537, 0.06955444812774658, -0.11805637925863266, 0.010830193758010864, -0.05742153525352478, -0.003952946979552507, -0.06251756846904755, 0.19373425841331482, -0.07138887792825699, -0.07109235227108002, -0.15313158929347992, 0.07723230868577957, 0.10829558968544006, -0.07886405289173126, 0.02201375737786293, -0.0000293875636998564, 0.045068010687828064, 0.055409159511327744, -0.10998442769050598, 0.0946679636836052, -0.0483323372900486, -0.22387948632240295, -0.01510327123105526, 0.17835059762001038, 0.12456225603818893, 0.01580606773495674, 0.010640106163918972, 0.04629402980208397, -0.02364162541925907, -0.16143587231636047, 0.015110653825104237, 0.03508951887488365, 0.03531588613986969, 0.01773197576403618, 0.056765373796224594, 0.012102256529033184, -0.12368465960025787, 0.012726351618766785, 0.09682180732488632, 0.20968277752399445, -0.07344552129507065, 0.11400368064641953, 0.05523268133401871, -0.05237489938735962, -0.2142246961593628, 0.02425152063369751, 0.030186394229531288, -0.007033330854028463, -0.02500232867896557, -0.15044330060482025, 0.08272479474544525, 0.10853346437215805, 0.0160420760512352, 0.055214934051036835, -0.3351495563983917, -0.12438194453716278, 0.04248930513858795, 0.039543189108371735, -0.1195230558514595, -0.12699545919895172, -0.04842831939458847, 0.0018361342372372746, -0.23055270314216614, 0.10246202349662781, -0.09540067613124847, 0.07218734920024872, 0.0056769028306007385, 0.008983180858194828, 0.02255008928477764, -0.06091596558690071, 0.14190509915351868, -0.007923504337668419, 0.058609407395124435, -0.11627636849880219, -0.09429743885993958, 0.05184776335954666, -0.056238554418087006, 0.06889045238494873, 0.040042370557785034, 0.06991685181856155, -0.1553470492362976, -0.008300954475998878, -0.08475355058908463, 0.020737672224640846, -0.07935364544391632, -0.04996876046061516, -0.08561599254608154, 0.10989407449960709, 0.0892692431807518, -0.04531622678041458, -0.004603083711117506, -0.03504834696650505, -0.0058881849981844425, 0.10283228754997253, 0.06008537486195564, 0.08877844363451004, -0.08152183145284653, 0.007353690918534994, 0.007894093170762062, 0.031257715076208115, -0.09518817812204361, 0.04658782109618187, 0.1275700181722641, 0.031213946640491486, 0.1333761066198349, -0.009724264964461327, -0.12872086465358734, 0.008639659732580185, 0.06355375796556473, -0.13814297318458557, -0.13973963260650635, 0.0021413855720311403, 0.001782620674930513, -0.05896948277950287, -0.046214133501052856, 0.1132664605975151, -0.043931037187576294, -0.043478697538375854, 0.007301710546016693, 0.06688962131738663, -0.05230187252163887, 0.15102480351924896, 0.04209030792117119, 0.03802203759551048, -0.0794924795627594, 0.1117333248257637, 0.08818752318620682, -0.02832108922302723, 0.03711816668510437, 0.21571320295333862, -0.11142200231552124, -0.02887243777513504, 0.03200520575046539, 0.006423054728657007, 0.030145326629281044, 0.0072710528038442135, 0.01866179145872593, -0.06595420837402344, 0.058432385325431824, 0.09277253597974777, -0.021738193929195404, 0.06266038119792938, 0.022548463195562363, 0.049804218113422394, -0.08032436668872833, 0.06639061123132706, 0.07324506342411041, 0.011937853880226612, -0.07042404264211655, 0.18447700142860413, -0.011387208476662636, 0.051047224551439285, -0.03614785894751549, -0.04505658894777298, -0.1205340251326561, -0.03247880935668945, -0.08462975174188614, 0.0035795983858406544, -0.08489257097244263, -0.03645271435379982, -0.012356232851743698, -0.04647328704595566, -0.01289945188909769, 0.042034607380628586, -0.04491250962018967, -0.09727708250284195, -0.03851877152919769, 0.053034473210573196, -0.13844601809978485, -0.002847943687811494, 0.08776704221963882, -0.05210595205426216, 0.16125598549842834, 0.0882100835442543, -0.01741614192724228, -0.02833694778382778, -0.1376284658908844, 0.02865082025527954, -0.022167416289448738, -0.004229237791150808, 0.05843928083777428, -0.1364654153585434, 0.03576130047440529, -0.0855005607008934, -0.07005849480628967, 0.011312691494822502, 0.07233113050460815, -0.13023598492145538, 0.041246943175792694, -0.044445764273405075, -0.006375142838805914, -0.09238695353269577, 0.02827286906540394, 0.038660962134599686, 0.03527991846203804, 0.06254730373620987, -0.07579854875802994, 0.0698501393198967, -0.19669336080551147, -0.0541246235370636, 0.011922231875360012, 0.02393169142305851, 0.0007352554821409285, -0.016433436423540115, 0.0868174284696579, -0.03596915304660797, 0.07184331119060516, -0.008950107730925083, -0.07945175468921661, 0.05516836419701576, -0.007432074286043644, -0.024135423824191093, 0.059101369231939316, 0.02877107635140419, -0.033106040209531784, -0.03499676659703255, -0.010915403254330158, -0.011086207814514637, -0.02937747910618782, -0.10306289047002792, 0.16056391596794128, 0.142063707113266, 0.14882910251617432, -0.01846233941614628, 0.05232608690857887, -0.0679641142487526, -0.08991913497447968, 0.04316159337759018, -0.042738497257232666, 0.024292711168527603, -0.10110392421483994, 0.03137337043881416, 0.18307743966579437, -0.16254426538944244, 0.07205676287412643, -0.04834403470158577, -0.06402236968278885, -0.05567314475774765, -0.16537849605083466, -0.046746283769607544, -0.04742639511823654, 0.015673834830522537, -0.09302402287721634, 0.0811096653342247, 0.02256168983876705, 0.09280596673488617, -0.02798490598797798, 0.1374572366476059, -0.07594215124845505, -0.09069830924272537, 0.057675231248140335, 0.04236258566379547, 0.02252502553164959, 0.06920944899320602, 0.03590921312570572, -0.018955113366246223, 0.005150620825588703, 0.08970416337251663, 0.04708268120884895, 0.030860641971230507, 0.016919830814003944, -0.06274960935115814, -0.09797973930835724, 0.027830947190523148, -0.011927846819162369, 0.00287388963624835, 0.10968020558357239, 0.07433849573135376, -0.031014801934361458, -0.02638458088040352, 0.27696189284324646, -0.0524749755859375, -0.05445186421275139, -0.13880378007888794, 0.19387944042682648, -0.014200150966644287, -0.008609740063548088, -0.0056182872503995895, -0.14662055671215057, 0.01757892593741417, 0.1417497992515564, 0.19728490710258484, -0.08446932584047318, 0.02238115295767784, -0.04082572087645531, 0.008403127081692219, 0.04206541180610657, 0.10117338597774506, 0.08703457564115524, 0.14634165167808533, -0.0453290157020092, 0.03912648186087608, -0.04680361598730087, -0.038374725729227066, -0.09576035290956497, 0.09244593977928162, 0.024469688534736633, 0.031214624643325806, -0.06359843164682388, 0.13029281795024872, -0.06000388413667679, -0.2982425093650818, 0.03167109936475754, -0.1009025052189827, -0.1345505714416504, 0.04246930032968521, -0.04758097603917122, 0.03367849811911583, 0.06521045416593552, 0.06131192296743393, -0.0005693481070920825, 0.05844501778483391, 0.0598100945353508, -0.018909180536866188, -0.006929715629667044, 0.10303764045238495, -0.078227199614048, 0.20563563704490662, -0.01410301961004734, 0.03971025347709656, 0.1254621148109436, -0.0024368956219404936, -0.14454084634780884, 0.0484376884996891, 0.05515645444393158, -0.08750391006469727, -0.016850711777806282, 0.14129771292209625, 0.015804793685674667, -0.0032112307380884886, 0.08122790604829788, -0.03244316950440407, -0.019389070570468903, -0.091063492000103, 0.05122558772563934, -0.13333040475845337, 0.06037662550806999, -0.056450288742780685, 0.16205954551696777, 0.15568113327026367, -0.0854775458574295, 0.04057283699512482, -0.0720675140619278, -0.028076499700546265, 0.00006632450094912201, 0.0910569354891777, -0.015403442084789276, -0.16197113692760468, 0.028098560869693756, -0.04846803843975067, 0.06147431954741478, -0.09160834550857544, -0.04769226163625717, -0.00272726034745574, -0.020915891975164413, -0.014529995620250702, 0.2021985948085785, 0.06883657723665237, 0.03295280784368515, -0.03236531466245651, -0.02023543417453766, 0.0012903008610010147, 0.17425939440727234, -0.1557776927947998, -0.03291443735361099 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429976146742026254/y93pPJs2_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1440173963615690759/BUjLTxuM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ari @ 😴 & clementine!!!! 𓃠</div> <div style="text-align: center; font-size: 14px;">@clamtime-lazar181</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ari @ 😴 & clementine!!!! 𓃠. | Data | Ari @ 😴 | clementine!!!! 𓃠 | | --- | --- | --- | | Tweets downloaded | 3235 | 3239 | | Retweets | 469 | 331 | | Short tweets | 612 | 845 | | Tweets kept | 2154 | 2063 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ulng7r9u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clamtime-lazar181's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33ajuie0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33ajuie0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clamtime-lazar181') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clamtime-lazar181/1632967787417/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clamtime-lazar181
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Ari @ & clementine!!!! 𓃠 @clamtime-lazar181 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Ari @ & clementine!!!! 𓃠. Data: Tweets downloaded, Ari @: 3235, clementine!!!! 𓃠: 3239 Data: Retweets, Ari @: 469, clementine!!!! 𓃠: 331 Data: Short tweets, Ari @: 612, clementine!!!! 𓃠: 845 Data: Tweets kept, Ari @: 2154, clementine!!!! 𓃠: 2063 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-lazar181's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486460616927858690/H_L_HiW-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486839044906618880/x1Q9ED9b_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">clementine!!!! & riley, twink eliminator 🐾🏳️‍⚧️</div> <div style="text-align: center; font-size: 14px;">@clamtime-madramami</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from clementine!!!! & riley, twink eliminator 🐾🏳️‍⚧️. | Data | clementine!!!! | riley, twink eliminator 🐾🏳️‍⚧️ | | --- | --- | --- | | Tweets downloaded | 3239 | 3247 | | Retweets | 340 | 114 | | Short tweets | 872 | 607 | | Tweets kept | 2027 | 2526 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lh3p7v6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clamtime-madramami's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gman3fy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gman3fy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clamtime-madramami') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/clamtime-madramami/1643699341002/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clamtime-madramami
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG clementine!!!! & riley, twink eliminator ️‍️ @clamtime-madramami I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from clementine!!!! & riley, twink eliminator ️‍️. Data: Tweets downloaded, clementine!!!!: 3239, riley, twink eliminator ️‍️: 3247 Data: Retweets, clementine!!!!: 340, riley, twink eliminator ️‍️: 114 Data: Short tweets, clementine!!!!: 872, riley, twink eliminator ️‍️: 607 Data: Tweets kept, clementine!!!!: 2027, riley, twink eliminator ️‍️: 2526 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime-madramami's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1471629178936176645/RPufrtAg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">clementine!!!!</div> <div style="text-align: center; font-size: 14px;">@clamtime</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from clementine!!!!. | Data | clementine!!!! | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 352 | | Short tweets | 892 | | Tweets kept | 1999 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/be98fl09/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clamtime's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24efu0w5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24efu0w5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clamtime') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/clamtime/1642318689772/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clamtime
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT clementine!!!! @clamtime I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from clementine!!!!. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clamtime's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356981273064054786/MDWBALP2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">clara 🤖 AI Bot </div> <div style="font-size: 15px">@clar_rah bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@clar_rah's tweets](https://twitter.com/clar_rah). | Data | Quantity | | --- | --- | | Tweets downloaded | 140 | | Retweets | 8 | | Short tweets | 12 | | Tweets kept | 120 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2un2vj37/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clar_rah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1i2jul1h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1i2jul1h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clar_rah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clar_rah/1616669392957/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clar_rah
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
clara AI Bot @clar\_rah bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @clar\_rah's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clar\_rah's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1296785738978201600/J9LDndke_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">👰Clare Siobhán👰</div> <div style="text-align: center; font-size: 14px;">@claresiobhan</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 👰Clare Siobhán👰. | Data | 👰Clare Siobhán👰 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 110 | | Short tweets | 504 | | Tweets kept | 2635 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vq9maap/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @claresiobhan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/375bmhre) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/375bmhre/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/claresiobhan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/claresiobhan/1645913945953/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/claresiobhan
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Clare Siobhán @claresiobhan I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Clare Siobhán. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @claresiobhan's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1311519620818448384/IC_S718C_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Clarjon1 🤖 AI Bot </div> <div style="font-size: 15px">@clarjon1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@clarjon1's tweets](https://twitter.com/clarjon1). | Data | Quantity | | --- | --- | | Tweets downloaded | 1366 | | Retweets | 194 | | Short tweets | 82 | | Tweets kept | 1090 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dkthawo1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clarjon1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1n12v8x8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1n12v8x8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clarjon1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clarjon1/1617835463867/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clarjon1
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Clarjon1 AI Bot @clarjon1 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @clarjon1's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clarjon1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1276366907881541632/5EJKuTq8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Classical Theist ✠ 🤖 AI Bot </div> <div style="font-size: 15px">@classicaltheis bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@classicaltheis's tweets](https://twitter.com/classicaltheis). | Data | Quantity | | --- | --- | | Tweets downloaded | 576 | | Retweets | 87 | | Short tweets | 31 | | Tweets kept | 458 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32qd4hmv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @classicaltheis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rv5ihcvb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rv5ihcvb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/classicaltheis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/classicaltheis/1616644678936/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/classicaltheis
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Classical Theist AI Bot @classicaltheis bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @classicaltheis's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @classicaltheis's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1100512198139498497/utHSJ4st_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1108502565925326850/zPsBf2BI_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1259944219881455617/asyRCk6l_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">clem 🤗 & Julien Chaumond & Thomas Wolf</div> <div style="text-align: center; font-size: 14px;">@clementdelangue-julien_c-thom_wolf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from clem 🤗 & Julien Chaumond & Thomas Wolf. | Data | clem 🤗 | Julien Chaumond | Thomas Wolf | | --- | --- | --- | --- | | Tweets downloaded | 3238 | 3240 | 1688 | | Retweets | 1743 | 1014 | 484 | | Short tweets | 297 | 357 | 102 | | Tweets kept | 1198 | 1869 | 1102 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14f834t6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clementdelangue-julien_c-thom_wolf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1b9cejln) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1b9cejln/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clementdelangue-julien_c-thom_wolf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clementdelangue-julien_c-thom_wolf/1620425745320/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clementdelangue-julien_c-thom_wolf
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG clem & Julien Chaumond & Thomas Wolf @clementdelangue-julien\_c-thom\_wolf I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from clem & Julien Chaumond & Thomas Wolf. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clementdelangue-julien\_c-thom\_wolf's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1100512198139498497/utHSJ4st_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">clem 🤗</div> <div style="text-align: center; font-size: 14px;">@clementdelangue</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from clem 🤗. | Data | clem 🤗 | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 1749 | | Short tweets | 300 | | Tweets kept | 1190 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rnflp7g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clementdelangue's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3drhbp6u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3drhbp6u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clementdelangue') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clementdelangue/1622219884919/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clementdelangue
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT clem @clementdelangue I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from clem . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clementdelangue's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1401892055882797060/rpFwU4ge_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cmt 🏳️‍⚧️🏳️‍🌈</div> <div style="text-align: center; font-size: 14px;">@click_mae_togay</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cmt 🏳️‍⚧️🏳️‍🌈. | Data | cmt 🏳️‍⚧️🏳️‍🌈 | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 1147 | | Short tweets | 1024 | | Tweets kept | 1044 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3df4sbkq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @click_mae_togay's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17ov0npx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17ov0npx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/click_mae_togay') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/click_mae_togay/1623330893696/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/click_mae_togay
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT cmt ️‍️️‍ @click\_mae\_togay I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from cmt ️‍️️‍. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @click\_mae\_togay's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374022530525200388/SKzDqiym_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">female himbo 🤖 AI Bot </div> <div style="font-size: 15px">@clickholebot bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@clickholebot's tweets](https://twitter.com/clickholebot). | Data | Quantity | | --- | --- | | Tweets downloaded | 3180 | | Retweets | 762 | | Short tweets | 273 | | Tweets kept | 2145 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dizhcxi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clickholebot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lfepi20) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lfepi20/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clickholebot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clickholebot
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
female himbo AI Bot @clickholebot bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @clickholebot's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clickholebot's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1335863007751049217/vJeTPrxk_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">buge 🤖 AI Bot </div> <div style="font-size: 15px">@clikehouse bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@clikehouse's tweets](https://twitter.com/clikehouse). | Data | Quantity | | --- | --- | | Tweets downloaded | 3204 | | Retweets | 435 | | Short tweets | 937 | | Tweets kept | 1832 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tm4bdtz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clikehouse's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bs62hf8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bs62hf8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clikehouse') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clikehouse/1616687549498/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clikehouse
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
buge AI Bot @clikehouse bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @clikehouse's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clikehouse's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447655419430809609/PIJr1Fky_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1452658892132032513/m4mpoMLK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1450907553769082881/spVYXld-_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">𝒟𝓇. 𝒞𝓁𝒾𝑜🌵🔪🌷🐍💕 & Marras 🖤 & 𝕄𝖆𝖑</div> <div style="text-align: center; font-size: 14px;">@cliobscure-mmmalign-weftofsoul</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 𝒟𝓇. 𝒞𝓁𝒾𝑜🌵🔪🌷🐍💕 & Marras 🖤 & 𝕄𝖆𝖑. | Data | 𝒟𝓇. 𝒞𝓁𝒾𝑜🌵🔪🌷🐍💕 | Marras 🖤 | 𝕄𝖆𝖑 | | --- | --- | --- | --- | | Tweets downloaded | 3051 | 3230 | 3247 | | Retweets | 2281 | 782 | 123 | | Short tweets | 133 | 284 | 893 | | Tweets kept | 637 | 2164 | 2231 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3turzf62/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cliobscure-mmmalign-weftofsoul's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rw7flqz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rw7flqz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cliobscure-mmmalign-weftofsoul') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cliobscure-mmmalign-weftofsoul
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG 𝒟𝓇. 𝒞𝓁𝒾𝑜 & Marras & 𝕄𝖆𝖑 @cliobscure-mmmalign-weftofsoul I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from 𝒟𝓇. 𝒞𝓁𝒾𝑜 & Marras & 𝕄𝖆𝖑. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cliobscure-mmmalign-weftofsoul's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1250182850059608072/wM1iECua_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Julien Cloarec 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@cloarecjulien bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cloarecjulien's tweets](https://twitter.com/cloarecjulien). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>969</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>543</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>163</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>263</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20w6mank/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cloarecjulien's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n9t26gk2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n9t26gk2/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cloarecjulien'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cloarecjulien/1609505793943/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cloarecjulien
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Julien Cloarec AI Bot </div> <div style="font-size: 15px; color: #657786">@cloarecjulien bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @cloarecjulien's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>969</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>543</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>163</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>263</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cloarecjulien's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cloarecjulien'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cloarecjulien's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>969</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>543</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>163</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>263</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cloarecjulien's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cloarecjulien'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cloarecjulien's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>969</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>543</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>163</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>263</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cloarecjulien's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cloarecjulien'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 78, 9, 170, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1168011991757348864/P-NwykQk_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">catherine 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@clovizio bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@clovizio's tweets](https://twitter.com/clovizio). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1929</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>331</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>404</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1194</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/x13avjqx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clovizio's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/xt4ygb8r) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/xt4ygb8r/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/clovizio'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clovizio/1601922083032/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clovizio
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">catherine AI Bot </div> <div style="font-size: 15px; color: #657786">@clovizio bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @clovizio's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1929</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>331</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>404</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1194</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @clovizio's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/clovizio'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @clovizio's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1929</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>331</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>404</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1194</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @clovizio's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/clovizio'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @clovizio's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1929</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>331</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>404</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1194</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @clovizio's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/clovizio'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1464138503382568961/SjBJOFyh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Club Penguin Lore</div> <div style="text-align: center; font-size: 14px;">@clubpenguinlore</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Club Penguin Lore. | Data | Club Penguin Lore | | --- | --- | | Tweets downloaded | 1891 | | Retweets | 148 | | Short tweets | 197 | | Tweets kept | 1546 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2du98ann/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clubpenguinlore's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/921o14nr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/921o14nr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clubpenguinlore') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clubpenguinlore
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Club Penguin Lore @clubpenguinlore I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Club Penguin Lore. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clubpenguinlore's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445644166470385673/X-cJSQV8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ℳ</div> <div style="text-align: center; font-size: 14px;">@clwsr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ℳ. | Data | ℳ | | --- | --- | | Tweets downloaded | 615 | | Retweets | 49 | | Short tweets | 211 | | Tweets kept | 355 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/380axzmm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clwsr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34en8tsg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34en8tsg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clwsr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/clwsr/1633505082431/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/clwsr
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ℳ @clwsr I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ℳ. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @clwsr's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442634650703237120/mXIcYtIs_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1278259160644227073/MfCyF7CG_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ye & Elon Musk & CNN</div> <div style="text-align: center; font-size: 14px;">@cnn-elonmusk-kanyewest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ye & Elon Musk & CNN. | Data | ye | Elon Musk | CNN | | --- | --- | --- | --- | | Tweets downloaded | 1856 | 3250 | 3250 | | Retweets | 186 | 186 | 104 | | Short tweets | 573 | 853 | 18 | | Tweets kept | 1097 | 2211 | 3128 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ehxjxud/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cnn-elonmusk-kanyewest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dcouz7e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dcouz7e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cnn-elonmusk-kanyewest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cnn-elonmusk-kanyewest
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG ye & Elon Musk & CNN @cnn-elonmusk-kanyewest I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ye & Elon Musk & CNN. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cnn-elonmusk-kanyewest's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1278259160644227073/MfCyF7CG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CNN</div> <div style="text-align: center; font-size: 14px;">@cnn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CNN. | Data | CNN | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 16 | | Short tweets | 5 | | Tweets kept | 3229 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/q0qwmbzx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cnn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ozw5h8lm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ozw5h8lm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cnn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cnn/1648647871411/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cnn
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT CNN @cnn I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from CNN. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cnn's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/925092227667304448/fAY1HUu3_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">CNN Breaking News 🤖 AI Bot </div> <div style="font-size: 15px">@cnnbrk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cnnbrk's tweets](https://twitter.com/cnnbrk). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 189 | | Short tweets | 1 | | Tweets kept | 3060 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xqs9b942/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cnnbrk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/279rfpx5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/279rfpx5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cnnbrk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cnnbrk/1616798839208/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cnnbrk
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
CNN Breaking News AI Bot @cnnbrk bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cnnbrk's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cnnbrk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1284828941170049024/F7JsMZKX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">aalis na ko sa acc na to bye 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@cnstnce_ bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cnstnce_'s tweets](https://twitter.com/cnstnce_). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3056</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>503</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>748</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1805</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zzbcppb9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cnstnce_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32cd3gw3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32cd3gw3/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cnstnce_'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cnstnce_/1608361711919/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cnstnce_
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">aalis na ko sa acc na to bye AI Bot </div> <div style="font-size: 15px; color: #657786">@cnstnce_ bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @cnstnce_'s tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3056</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>503</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>748</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1805</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cnstnce_'s tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cnstnce_'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cnstnce_'s tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3056</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>503</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>748</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1805</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cnstnce_'s tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cnstnce_'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cnstnce_'s tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3056</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>503</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>748</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1805</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cnstnce_'s tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cnstnce_'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1294299266710736901/-iukCWHQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Conceptual Canute, Anarchomonarch 🏴👑🚀🇲🇴🍺❌💉 🤖 AI Bot </div> <div style="font-size: 15px">@cnut_real bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cnut_real's tweets](https://twitter.com/cnut_real). | Data | Quantity | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 125 | | Short tweets | 902 | | Tweets kept | 2215 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/x3aa88kj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cnut_real's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tilxcaph) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tilxcaph/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cnut_real') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cnut_real/1617770335289/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cnut_real
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Conceptual Canute, Anarchomonarch 🇲🇴 AI Bot @cnut\_real bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cnut\_real's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cnut\_real's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394891459900231689/xXdX3yWP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418426594629066754/U8KMXKGU_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1471649307887558661/SpH6Dho7_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Crypto Bros Taking Ls & Girl Gone Crypto & Cobie</div> <div style="text-align: center; font-size: 14px;">@cobie-coinerstakingls-girlgone_crypto</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Crypto Bros Taking Ls & Girl Gone Crypto & Cobie. | Data | Crypto Bros Taking Ls | Girl Gone Crypto | Cobie | | --- | --- | --- | --- | | Tweets downloaded | 566 | 3250 | 3249 | | Retweets | 94 | 636 | 94 | | Short tweets | 222 | 315 | 500 | | Tweets kept | 250 | 2299 | 2655 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2x6499y0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cobie-coinerstakingls-girlgone_crypto's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vxfu34z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vxfu34z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cobie-coinerstakingls-girlgone_crypto') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cobie-coinerstakingls-girlgone_crypto
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Crypto Bros Taking Ls & Girl Gone Crypto & Cobie @cobie-coinerstakingls-girlgone\_crypto I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Crypto Bros Taking Ls & Girl Gone Crypto & Cobie. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cobie-coinerstakingls-girlgone\_crypto's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394891459900231689/xXdX3yWP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1471649307887558661/SpH6Dho7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Crypto Bros Taking Ls & Cobie</div> <div style="text-align: center; font-size: 14px;">@cobie-coinerstakingls</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Crypto Bros Taking Ls & Cobie. | Data | Crypto Bros Taking Ls | Cobie | | --- | --- | --- | | Tweets downloaded | 566 | 3248 | | Retweets | 94 | 93 | | Short tweets | 222 | 500 | | Tweets kept | 250 | 2655 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gjf29z1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cobie-coinerstakingls's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c8xc9umf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c8xc9umf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cobie-coinerstakingls') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cobie-coinerstakingls/1643368738479/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cobie-coinerstakingls
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Crypto Bros Taking Ls & Cobie @cobie-coinerstakingls I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Crypto Bros Taking Ls & Cobie. Data: Tweets downloaded, Crypto Bros Taking Ls: 566, Cobie: 3248 Data: Retweets, Crypto Bros Taking Ls: 94, Cobie: 93 Data: Short tweets, Crypto Bros Taking Ls: 222, Cobie: 500 Data: Tweets kept, Crypto Bros Taking Ls: 250, Cobie: 2655 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cobie-coinerstakingls's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1234873883850952704/JQhv0G7n_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Coca-Cola</div> <div style="text-align: center; font-size: 14px;">@cocacola</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Coca-Cola. | Data | Coca-Cola | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 101 | | Tweets kept | 3149 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7oxqhbkd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cocacola's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3l65cvcu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3l65cvcu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cocacola') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cocacola
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Coca-Cola @cocacola I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Coca-Cola. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cocacola's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1461533198001881092/bqlHextm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">meshawn maddock</div> <div style="text-align: center; font-size: 14px;">@cochairmeshawn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from meshawn maddock. | Data | meshawn maddock | | --- | --- | | Tweets downloaded | 2909 | | Retweets | 1334 | | Short tweets | 267 | | Tweets kept | 1308 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gcrdu5h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cochairmeshawn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pdiqrr1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pdiqrr1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cochairmeshawn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cochairmeshawn/1639363549909/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cochairmeshawn
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT meshawn maddock @cochairmeshawn I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from meshawn maddock. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cochairmeshawn's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1081720632042287106/W_D_Ir3Z_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cocojam™</div> <div style="text-align: center; font-size: 14px;">@cocojamgg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cocojam™. | Data | cocojam™ | | --- | --- | | Tweets downloaded | 3228 | | Retweets | 446 | | Short tweets | 523 | | Tweets kept | 2259 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jjl7x6f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cocojamgg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sgoyl3sa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sgoyl3sa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cocojamgg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cocojamgg/1621653883164/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cocojamgg
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT cocojam™ @cocojamgg I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from cocojam™. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cocojamgg's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1316993924297334784/rFkGii31_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cody 🤖 AI Bot </div> <div style="font-size: 15px">@cocojonesspace bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cocojonesspace's tweets](https://twitter.com/cocojonesspace). | Data | Quantity | | --- | --- | | Tweets downloaded | 609 | | Retweets | 439 | | Short tweets | 37 | | Tweets kept | 133 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1rf16z1e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cocojonesspace's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ppd5jtm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ppd5jtm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cocojonesspace') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cocojonesspace
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cody AI Bot @cocojonesspace bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cocojonesspace's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cocojonesspace's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/705003311083229184/qTBCIxpk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Programming Wisdom</div> <div style="text-align: center; font-size: 14px;">@codewisdom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Programming Wisdom. | Data | Programming Wisdom | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 601 | | Short tweets | 68 | | Tweets kept | 2580 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1v0fkmjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @codewisdom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1oohyzx0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1oohyzx0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/codewisdom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/codewisdom/1629833911172/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/codewisdom
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Programming Wisdom @codewisdom I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Programming Wisdom. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @codewisdom's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/794725967948181506/Zn4x_F6i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Coffee Burger</div> <div style="text-align: center; font-size: 14px;">@coffee__burger</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Coffee Burger. | Data | Coffee Burger | | --- | --- | | Tweets downloaded | 2471 | | Retweets | 525 | | Short tweets | 337 | | Tweets kept | 1609 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ad82qis/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coffee__burger's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kxzm2oz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kxzm2oz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coffee__burger') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/coffee__burger/1646125569654/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/coffee__burger
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Coffee Burger @coffee\_\_burger I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Coffee Burger. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @coffee\_\_burger's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/740063389527859201/BN9buLB9_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alan Levine 🤖 AI Bot </div> <div style="font-size: 15px">@cogdog bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cogdog's tweets](https://twitter.com/cogdog). | Data | Quantity | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 53 | | Short tweets | 105 | | Tweets kept | 3091 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21fxf40t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cogdog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3aydcvls) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3aydcvls/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cogdog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cogdog/1617221021153/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cogdog
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Alan Levine AI Bot @cogdog bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cogdog's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cogdog's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/670197998287241216/xU3fyjRH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cognifide 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@cognifide bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cognifide's tweets](https://twitter.com/cognifide). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3139</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>759</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>85</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2295</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2e5cnusk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cognifide's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/m3y18u6r) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/m3y18u6r/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cognifide'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cognifide
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cognifide AI Bot </div> <div style="font-size: 15px; color: #657786">@cognifide bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @cognifide's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3139</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>759</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>85</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2295</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cognifide's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cognifide'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cognifide's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3139</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>759</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>85</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2295</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cognifide's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cognifide'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cognifide's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3139</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>759</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>85</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2295</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cognifide's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cognifide'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1396939691870535682/062raFlk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Coinburn</div> <div style="text-align: center; font-size: 14px;">@coinburnm</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Coinburn. | Data | Coinburn | | --- | --- | | Tweets downloaded | 837 | | Retweets | 72 | | Short tweets | 141 | | Tweets kept | 624 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38wldrmx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coinburnm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2z4rh9o1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2z4rh9o1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coinburnm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/coinburnm/1631499945178/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/coinburnm
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Coinburn @coinburnm I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Coinburn. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @coinburnm's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1474910968157249536/FS8-70Ie_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394891459900231689/xXdX3yWP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1439959943067709448/Z-Dsp_Ge_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Crypto Bros Taking Ls & Tyler Winklevoss</div> <div style="text-align: center; font-size: 14px;">@coinerstakingls-elonmusk-tyler</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Crypto Bros Taking Ls & Tyler Winklevoss. | Data | Elon Musk | Crypto Bros Taking Ls | Tyler Winklevoss | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 566 | 3248 | | Retweets | 163 | 94 | 1550 | | Short tweets | 930 | 222 | 357 | | Tweets kept | 2157 | 250 | 1341 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mpyx1oz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coinerstakingls-elonmusk-tyler's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mnlaoaj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mnlaoaj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coinerstakingls-elonmusk-tyler') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/coinerstakingls-elonmusk-tyler/1643347618705/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/coinerstakingls-elonmusk-tyler
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Elon Musk & Crypto Bros Taking Ls & Tyler Winklevoss @coinerstakingls-elonmusk-tyler I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Elon Musk & Crypto Bros Taking Ls & Tyler Winklevoss. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @coinerstakingls-elonmusk-tyler's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1323859941527031809/VJMmmob6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cole 🖋🧪 🤖 AI Bot </div> <div style="font-size: 15px">@coleofthenerds bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@coleofthenerds's tweets](https://twitter.com/coleofthenerds). | Data | Quantity | | --- | --- | | Tweets downloaded | 945 | | Retweets | 222 | | Short tweets | 28 | | Tweets kept | 695 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2692ophd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coleofthenerds's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nf2ptebi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nf2ptebi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coleofthenerds') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/coleofthenerds/1616773544937/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/coleofthenerds
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cole AI Bot @coleofthenerds bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @coleofthenerds's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @coleofthenerds's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1392748308280406020/XckpJcJ8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Colin Bisson</div> <div style="text-align: center; font-size: 14px;">@colinb_pdx</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Colin Bisson. | Data | Colin Bisson | | --- | --- | | Tweets downloaded | 2057 | | Retweets | 161 | | Short tweets | 90 | | Tweets kept | 1806 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vpxju9g9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @colinb_pdx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/epdq8lc0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/epdq8lc0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/colinb_pdx') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/colinb_pdx/1627237168140/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/colinb_pdx
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Colin Bisson @colinb\_pdx I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Colin Bisson. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @colinb\_pdx's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2464132281/jbbxl9p7ratdyuposrif_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">John Collison</div> <div style="text-align: center; font-size: 14px;">@collision</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from John Collison. | Data | John Collison | | --- | --- | | Tweets downloaded | 3222 | | Retweets | 999 | | Short tweets | 206 | | Tweets kept | 2017 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ifqwdbm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @collision's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gdto8z3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gdto8z3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/collision') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/collision/1642526243846/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/collision
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT John Collison @collision I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from John Collison. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @collision's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362948147572572161/Pp0Kh-aA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">nathan(?) 🤖 AI Bot </div> <div style="font-size: 15px">@collywobbledd bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@collywobbledd's tweets](https://twitter.com/collywobbledd). | Data | Quantity | | --- | --- | | Tweets downloaded | 3101 | | Retweets | 1514 | | Short tweets | 400 | | Tweets kept | 1187 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ytwvko1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @collywobbledd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/daoqimwm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/daoqimwm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/collywobbledd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/collywobbledd/1614151252321/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/collywobbledd
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
nathan(?) AI Bot @collywobbledd bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @collywobbledd's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @collywobbledd's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1278680295114338304/9iD9B8s7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Наташа 🔪🖤 🤖 AI Bot </div> <div style="font-size: 15px">@combatfemme bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@combatfemme's tweets](https://twitter.com/combatfemme). | Data | Quantity | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 2329 | | Short tweets | 344 | | Tweets kept | 546 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/z3tee2kn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @combatfemme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2o836lhn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2o836lhn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/combatfemme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/combatfemme/1617903424496/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/combatfemme
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Наташа AI Bot @combatfemme bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @combatfemme's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @combatfemme's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363930888585703425/kbXPjWRV_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">CommanderWuffels 🤖 AI Bot </div> <div style="font-size: 15px">@commanderwuff bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@commanderwuff's tweets](https://twitter.com/commanderwuff). | Data | Quantity | | --- | --- | | Tweets downloaded | 2214 | | Retweets | 1573 | | Short tweets | 144 | | Tweets kept | 497 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2a74c2hq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @commanderwuff's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f3nzjf3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f3nzjf3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/commanderwuff') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/commanderwuff/1614170164099/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/commanderwuff
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
CommanderWuffels AI Bot @commanderwuff bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @commanderwuff's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @commanderwuff's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1756151612/biedermeier_gentleman_stickers-p217822578319417194z85xz_400_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Comment Etiquette</div> <div style="text-align: center; font-size: 14px;">@commentiquette</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Comment Etiquette. | Data | Comment Etiquette | | --- | --- | | Tweets downloaded | 3203 | | Retweets | 232 | | Short tweets | 359 | | Tweets kept | 2612 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oqoo5dz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @commentiquette's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kpz1912) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kpz1912/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/commentiquette') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/commentiquette/1628839828123/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/commentiquette
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Comment Etiquette @commentiquette I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Comment Etiquette. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @commentiquette's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1457496446886981633/eBIe-Bef_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Merry Krismas🎄</div> <div style="text-align: center; font-size: 14px;">@computerdefeat2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Merry Krismas🎄. | Data | Merry Krismas🎄 | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 827 | | Short tweets | 671 | | Tweets kept | 1740 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ut558an/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @computerdefeat2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36nzt8vn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36nzt8vn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/computerdefeat2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/computerdefeat2/1640674811300/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/computerdefeat2
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Merry Krismas @computerdefeat2 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Merry Krismas. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @computerdefeat2's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377946709163118593/fP4OTS0t_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Felix 🌶🥢🧢🌔🧨🏴‍☠️ 🤖 AI Bot </div> <div style="font-size: 15px">@comradegoomba bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@comradegoomba's tweets](https://twitter.com/comradegoomba). | Data | Quantity | | --- | --- | | Tweets downloaded | 3121 | | Retweets | 974 | | Short tweets | 383 | | Tweets kept | 1764 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kojhc3k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @comradegoomba's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/55koa964) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/55koa964/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/comradegoomba') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/comradegoomba/1617758746828/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/comradegoomba
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Felix ‍️ AI Bot @comradegoomba bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @comradegoomba's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @comradegoomba's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1381477973128265729/Ulqv-oNM_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">pollyamosrous 🤖 AI Bot </div> <div style="font-size: 15px">@comradekatebush bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@comradekatebush's tweets](https://twitter.com/comradekatebush). | Data | Quantity | | --- | --- | | Tweets downloaded | 3196 | | Retweets | 238 | | Short tweets | 564 | | Tweets kept | 2394 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/113j7mcs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @comradekatebush's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1fy72axl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1fy72axl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/comradekatebush') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/comradekatebush/1619214883291/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/comradekatebush
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
pollyamosrous AI Bot @comradekatebush bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @comradekatebush's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @comradekatebush's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/730612231021322240/Rl0_QYhL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Conan O'Brien 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@conanobrien bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@conanobrien's tweets](https://twitter.com/conanobrien). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3241</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>31</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>18</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3192</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fdxdxdd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conanobrien's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ffkm78bf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ffkm78bf/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/conanobrien'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/conanobrien/1606267014440/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/conanobrien
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Conan O'Brien AI Bot </div> <div style="font-size: 15px; color: #657786">@conanobrien bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @conanobrien's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3241</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>31</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>18</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3192</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @conanobrien's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/conanobrien'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @conanobrien's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3241</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>31</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>18</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3192</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @conanobrien's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/conanobrien'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @conanobrien's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3241</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>31</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>18</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3192</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @conanobrien's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/conanobrien'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419411594572873733/bCBGq8T9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">James Lindsay, manipulated media</div> <div style="text-align: center; font-size: 14px;">@conceptualjames</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from James Lindsay, manipulated media. | Data | James Lindsay, manipulated media | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 1436 | | Short tweets | 520 | | Tweets kept | 1270 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sj5ihe6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conceptualjames's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jnu1ceq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jnu1ceq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conceptualjames') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/conceptualjames/1629432543025/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/conceptualjames
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT James Lindsay, manipulated media @conceptualjames I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from James Lindsay, manipulated media. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @conceptualjames's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]