sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1307765220107001859/cEfzmr1c_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Adrian Gregory 🤖 AI Bot </div> <div style="font-size: 15px">@adriangregory20 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@adriangregory20's tweets](https://twitter.com/adriangregory20). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 587 | | Short tweets | 204 | | Tweets kept | 2455 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4phwvtdq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @adriangregory20's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tlt3nyy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tlt3nyy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/adriangregory20') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/adriangregory20/1617002077884/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/adriangregory20
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Adrian Gregory AI Bot @adriangregory20 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @adriangregory20's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @adriangregory20's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1267145246359474176/OtRIrSIL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Adrienna Wong 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@adrienna_w bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@adrienna_w's tweets](https://twitter.com/adrienna_w). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2000</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1570</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>46</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>384</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3r42s34p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @adrienna_w's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3n5znqzh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3n5znqzh/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/adrienna_w'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/adrienna_w/1610164811243/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/adrienna_w
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Adrienna Wong AI Bot </div> <div style="font-size: 15px; color: #657786">@adrienna_w bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @adrienna_w's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2000</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1570</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>46</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>384</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @adrienna_w's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/adrienna_w'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @adrienna_w's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2000</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1570</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>46</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>384</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @adrienna_w's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/adrienna_w'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @adrienna_w's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2000</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1570</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>46</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>384</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @adrienna_w's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/adrienna_w'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1385948567622324230/XKbD4BWp_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">aeva 🤖 AI Bot </div> <div style="font-size: 15px">@ae333mage bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ae333mage's tweets](https://twitter.com/ae333mage). | Data | Quantity | | --- | --- | | Tweets downloaded | 3169 | | Retweets | 1776 | | Short tweets | 592 | | Tweets kept | 801 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31fkltap/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ae333mage's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jg2xbkk5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jg2xbkk5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ae333mage') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ae333mage/1619282749797/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ae333mage
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
aeva AI Bot @ae333mage bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ae333mage's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ae333mage's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1471448753353670660/T0h3zXn-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">aeva</div> <div style="text-align: center; font-size: 14px;">@aevaeavaevevave</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from aeva. | Data | aeva | | --- | --- | | Tweets downloaded | 3184 | | Retweets | 985 | | Short tweets | 659 | | Tweets kept | 1540 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g4kejp0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aevaeavaevevave's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ikuw0pg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ikuw0pg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aevaeavaevevave') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/aevaeavaevevave/1642691608974/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aevaeavaevevave
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT aeva @aevaeavaevevave I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from aeva. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aevaeavaevevave's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1250126825109544960/8ndvxL2E_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ashley Finch 🔞 🤖 AI Bot </div> <div style="font-size: 15px">@afinchwrites bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@afinchwrites's tweets](https://twitter.com/afinchwrites). | Data | Quantity | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 1236 | | Short tweets | 265 | | Tweets kept | 1713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bwfztuv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @afinchwrites's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39vriclf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39vriclf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/afinchwrites') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/afinchwrites/1617758836679/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/afinchwrites
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ashley Finch AI Bot @afinchwrites bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @afinchwrites's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @afinchwrites's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1216156392/afm-marketing_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AFM Marketing</div> <div style="text-align: center; font-size: 14px;">@afm_marketing</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AFM Marketing. | Data | AFM Marketing | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 1051 | | Short tweets | 64 | | Tweets kept | 2123 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6tgdc3wa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @afm_marketing's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36mudapr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36mudapr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/afm_marketing') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/afm_marketing
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
AI BOT AFM Marketing @afm\_marketing I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from AFM Marketing. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @afm\_marketing's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 0.01490766927599907, -0.029707439243793488, -0.005551214329898357, 0.019200731068849564, 0.13538123667240143, 0.031960584223270416, 0.07854003459215164, 0.15176640450954437, -0.03478027135133743, 0.020825274288654327, 0.17780765891075134, 0.13369141519069672, -0.025615064427256584, 0.10110418498516083, -0.04495277628302574, -0.27562591433525085, 0.05076512694358826, 0.04804648086428642, -0.03660755604505539, 0.13914404809474945, 0.08130049705505371, -0.04002818092703819, 0.09946437180042267, -0.02348330244421959, -0.18448196351528168, 0.03603345900774002, 0.03874115273356438, -0.10113959014415741, 0.1245182529091835, 0.042210761457681656, 0.097016341984272, 0.02144498936831951, -0.08173582702875137, -0.09949471801519394, 0.04076211526989937, 0.0524214468896389, -0.06747427582740784, 0.07371947914361954, 0.06548287719488144, -0.09104428440332413, 0.15018822252750397, 0.032346583902835846, -0.015613866969943047, 0.05642572045326233, -0.17452795803546906, -0.05158021301031113, -0.038718461990356445, 0.007089211139827967, 0.026932736858725548, 0.0765126645565033, -0.03151388466358185, 0.1801837533712387, -0.09969375282526016, 0.08080597966909409, 0.19449612498283386, -0.3136744201183319, -0.008555608801543713, 0.09032562375068665, 0.10929754376411438, 0.04874800145626068, -0.027296993881464005, 0.0915885642170906, 0.06193246319890022, 0.01960965059697628, 0.03833269700407982, -0.04861060902476311, -0.10319411009550095, 0.05647158622741699, -0.09057577699422836, -0.06054073944687843, 0.21635963022708893, -0.04008340463042259, 0.06982671469449997, -0.06175680458545685, -0.10815948247909546, -0.04076464846730232, -0.0019450898980721831, 0.007722846698015928, -0.04665110260248184, 0.07648039609193802, -0.018055662512779236, -0.07031384110450745, -0.16104750335216522, 0.004024024587124586, -0.19634990394115448, 0.15040342509746552, -0.007091521751135588, 0.03826533630490303, -0.18292304873466492, 0.11239926517009735, -0.00463539082556963, -0.09352986514568329, 0.05768691375851631, -0.09079932421445847, 0.06515228003263474, 0.012864203192293644, -0.07714717835187912, -0.01476553175598383, 0.07529455423355103, 0.14459288120269775, -0.03202451393008232, -0.014661530964076519, 0.005731707438826561, 0.08028950542211533, 0.0649947077035904, 0.0529506653547287, -0.05044480413198471, -0.04604479670524597, 0.023471293970942497, -0.12279047816991806, 0.005323461256921291, -0.08722265064716339, -0.11850544810295105, -0.06324991583824158, 0.02913680486381054, 0.0409526452422142, 0.05413410812616348, 0.11646701395511627, -0.03819722682237625, 0.003125704126432538, 0.0790749341249466, -0.04754907265305519, 0.014819944277405739, -0.019563961774110794, 0.019939353689551353, 0.10169259458780289, -0.004264532588422298, 0.02739645354449749, -0.08098349720239639, 0.053036682307720184, -0.10909318923950195, -0.01619906909763813, -0.01401914469897747, -0.08360559493303299, 0.03495157137513161, -0.13044656813144684, 0.003459199797362089, -0.1794617623090744, -0.08515556156635284, 0.004473025444895029, -0.02669714391231537, -0.029448989778757095, -0.07044726610183716, -0.000012087725735909771, -0.03782980516552925, 0.09037511795759201, -0.049331095069646835, 0.02187872678041458, -0.05999310687184334, 0.10105309635400772, -0.06390658020973206, 0.10026112198829651, -0.14347022771835327, 0.062101077288389206, -0.13453714549541473, -0.007185438182204962, -0.056844428181648254, 0.06125464290380478, 0.003428247757256031, 0.14510339498519897, -0.0019743351731449366, -0.024058373644948006, -0.11893454194068909, 0.07660667598247528, -0.013276024721562862, 0.20594745874404907, -0.08867699652910233, -0.12363981455564499, 0.18977078795433044, -0.05639764666557312, -0.13151882588863373, 0.12418028712272644, 0.014429234899580479, 0.0632154569029808, 0.06213442608714104, 0.22679246962070465, 0.019381923601031303, -0.012931653298437595, 0.022296493873000145, 0.09503678232431412, -0.14555561542510986, -0.009661003015935421, 0.00841028243303299, -0.0034040703903883696, -0.08606491982936859, 0.03532338887453079, 0.11260384321212769, 0.09308808296918869, -0.06410733610391617, -0.02130906470119953, -0.04973118007183075, -0.002825164934620261, 0.08984078466892242, -0.004783526994287968, 0.10731708258390427, -0.1087048277258873, -0.0696249008178711, -0.030250849202275276, -0.0012943379115313292, 0.019239740446209908, 0.047808386385440826, -0.02344650961458683, 0.12562713027000427, -0.007734235376119614, 0.03894360736012459, -0.1425095796585083, -0.08136747777462006, -0.0352344736456871, 0.1538124978542328, 0.043824564665555954, 0.12064811587333679, 0.05824866518378258, -0.05751828849315643, -0.01182011142373085, -0.0009749550954438746, 0.1436033844947815, -0.01271585002541542, -0.0852496474981308, -0.05857346951961517, 0.08234002441167831, -0.07005385309457779, 0.025747623294591904, -0.044775284826755524, 0.034807976335287094, 0.07559926062822342, 0.12458331137895584, -0.012196341529488564, 0.03711283579468727, -0.0114806042984128, -0.00011358146002748981, -0.0896436795592308, -0.017758425325155258, 0.08426769077777863, -0.01031328085809946, -0.06891145557165146, 0.2548580765724182, -0.20196770131587982, 0.2299574315547943, 0.2296006977558136, -0.24926680326461792, -0.031021486967802048, -0.033769410103559494, -0.053823258727788925, 0.017695831134915352, 0.037970591336488724, -0.06758655607700348, 0.04836089164018631, -0.04798879474401474, 0.14743368327617645, -0.039952509105205536, -0.067154660820961, 0.011684614233672619, -0.06448059529066086, -0.05935867503285408, 0.06313008069992065, 0.042497556656599045, -0.12196247279644012, 0.19907300174236298, 0.256646990776062, 0.05731065943837166, 0.19537882506847382, 0.018505526706576347, -0.008647909387946129, 0.05532584711909294, -0.06024787575006485, -0.05939318984746933, -0.047756556421518326, -0.17080695927143097, -0.04192587733268738, 0.08264796435832977, 0.03818074241280556, 0.10142038762569427, -0.10767655074596405, -0.07215311378240585, 0.009001186117529869, 0.015298610553145409, -0.0071457610465586185, 0.13598360121250153, 0.0518062487244606, 0.13914446532726288, -0.005930832587182522, 0.025881925597786903, 0.06802397966384888, 0.02908273972570896, -0.08634071797132492, 0.1456945538520813, -0.1443340927362442, -0.3761582672595978, -0.1337488889694214, -0.09692523628473282, -0.01728254184126854, 0.04180695861577988, 0.12187701463699341, -0.12770286202430725, 0.0015871572541072965, -0.038519375026226044, 0.11093265563249588, -0.08619660884141922, 0.05064225569367409, -0.09312444925308228, 0.013121986761689186, -0.05371590703725815, -0.09208092838525772, -0.03968694806098938, -0.025510141626000404, -0.09566790610551834, 0.17000380158424377, -0.06683114916086197, 0.06858081370592117, 0.18506819009780884, 0.00719145592302084, 0.0289844311773777, -0.048802170902490616, 0.19252337515354156, -0.11087619513273239, 0.03966445475816727, 0.16040337085723877, 0.017642250284552574, 0.0870000347495079, 0.1063152626156807, -0.012242939323186874, -0.0729413852095604, 0.045604314655065536, 0.00838512647897005, -0.1192161962389946, -0.1628645360469818, -0.12800830602645874, -0.09412717819213867, 0.11832976341247559, 0.04896165430545807, 0.06800009310245514, 0.15884871780872345, 0.07476164400577545, -0.026399539783596992, -0.014989175833761692, -0.030628371983766556, 0.06698833405971527, 0.1810096949338913, -0.03410731256008148, 0.14575767517089844, -0.058808114379644394, -0.11332095414400101, 0.13757702708244324, 0.02930915355682373, 0.041703663766384125, 0.02182352915406227, -0.00909164547920227, 0.002967006294056773, 0.1275966912508011, 0.12905162572860718, 0.09085892140865326, -0.009210709482431412, -0.02600487507879734, -0.043374914675951004, -0.013961076736450195, -0.004321942571550608, 0.0544881634414196, 0.04976500943303108, -0.17056837677955627, -0.05252770707011223, -0.15036118030548096, 0.10635104030370712, 0.0658026859164238, 0.1097705140709877, -0.1943172961473465, -0.002813685918226838, 0.07878942042589188, -0.032336506992578506, -0.10688291490077972, 0.0711626410484314, 0.08084181696176529, -0.10172833502292633, 0.061861153692007065, -0.006532561499625444, 0.10406243056058884, 0.023742493242025375, 0.09878388792276382, -0.05866028368473053, -0.06148262321949005, -0.016518592834472656, 0.0939461812376976, -0.2926773428916931, 0.18179792165756226, -0.02907240390777588, -0.09844435751438141, -0.07134795933961868, -0.027840720489621162, 0.02770385891199112, 0.08060616999864578, 0.07026281952857971, 0.03338824585080147, 0.004331306088715792, -0.096750907599926, -0.025082198902964592, 0.01906721480190754, 0.12366755306720734, -0.05625581368803978, -0.01350511983036995, -0.041342347860336304, 0.02173074521124363, 0.00881099235266447, 0.06707418709993362, 0.021282022818922997, -0.16175130009651184, 0.07081238180398941, 0.03874411806464195, 0.03632965683937073, 0.02809896133840084, -0.02992626093327999, -0.1548270583152771, 0.1699383705854416, 0.02149343490600586, -0.06355534493923187, -0.12458667904138565, -0.04415702819824219, 0.06474760919809341, -0.04559854418039322, 0.039427343755960464, -0.0629853680729866, -0.001072446582838893, -0.07396374642848969, -0.19678819179534912, 0.1352648138999939, -0.06877507269382477, -0.07956159859895706, -0.03609750047326088, 0.17941854894161224, -0.07844837009906769, 0.018584884703159332, 0.007694936357438564, 0.047691553831100464, -0.14645716547966003, -0.11046357452869415, 0.06859224289655685, -0.04709484800696373, 0.036693572998046875, 0.01622764952480793, -0.02127574197947979, 0.005549534223973751, -0.012371892109513283, -0.0025305403396487236, 0.27376097440719604, 0.22965525090694427, -0.0802733525633812, 0.17710179090499878, 0.0630764365196228, -0.0507618673145771, -0.326980859041214, -0.09341348707675934, -0.14117297530174255, -0.009823985397815704, 0.023037875071167946, -0.13106577098369598, 0.05048951879143715, 0.029267780482769012, -0.014271927997469902, 0.11641538888216019, -0.20954635739326477, -0.09825599938631058, 0.09716890752315521, -0.06865759193897247, 0.4034286141395569, -0.1301247775554657, -0.07252515107393265, -0.03537401184439659, -0.14370368421077728, 0.1951674520969391, -0.06888531148433685, 0.09445398300886154, -0.02521556057035923, 0.13606955111026764, 0.05328543111681938, -0.02234726957976818, 0.11178411543369293, -0.01972258649766445, 0.0011309145484119654, -0.13865596055984497, -0.0604546032845974, 0.08001494407653809, -0.007717274595052004, 0.009300438687205315, -0.10272051393985748, 0.02493043802678585, -0.1687590479850769, -0.0011172585655003786, -0.11747178435325623, 0.09020119160413742, 0.021906770765781403, -0.06782494485378265, -0.050800591707229614, -0.0397600457072258, -0.009170935489237309, -0.01781470514833927, 0.14266571402549744, -0.05449723079800606, 0.1958875209093094, 0.07874593138694763, 0.06835102289915085, -0.1398908495903015, 0.05150968208909035, -0.027329890057444572, -0.0722222700715065, 0.07193705439567566, -0.1763947606086731, 0.04665200039744377, 0.08747349679470062, -0.03685600683093071, 0.04361190274357796, 0.09054525941610336, 0.0016616116045042872, 0.015259911306202412, 0.17542323470115662, -0.26249444484710693, -0.009265073575079441, -0.05851370841264725, -0.07754334062337875, 0.09399785101413727, 0.05022705718874931, 0.17302869260311127, 0.01883954182267189, -0.042071253061294556, 0.01570643112063408, 0.01509455218911171, -0.059037789702415466, 0.045513592660427094, 0.02684464305639267, 0.008570663630962372, -0.1221366673707962, 0.05156322568655014, 0.023951835930347443, -0.13511396944522858, 0.028608962893486023, 0.18224509060382843, -0.11025255918502808, -0.12385176122188568, -0.05918734520673752, 0.014604943804442883, -0.1147887259721756, 0.022507676854729652, -0.0024671610444784164, -0.09835006296634674, 0.062000639736652374, 0.13879112899303436, 0.06231173500418663, 0.12207856774330139, -0.016749046742916107, -0.009889025241136551, -0.02596008963882923, -0.03651546314358711, 0.030208537355065346, 0.03168511390686035, -0.0861181765794754, 0.11346250027418137, -0.02512839064002037, 0.1417820155620575, -0.10664749890565872, -0.05201685056090355, -0.14300444722175598, -0.032158151268959045, -0.08575893938541412, -0.11310356855392456, -0.07854323089122772, -0.07035478204488754, 0.009079275652766228, -0.06144321709871292, -0.04742341861128807, -0.07850945740938187, -0.1071249470114708, 0.0065527972765266895, -0.04037778079509735, 0.04593488946557045, -0.08211231976747513, -0.0025119397323578596, 0.11637649685144424, -0.022535819560289383, 0.16392095386981964, 0.11117493361234665, -0.09679865092039108, 0.07616551965475082, -0.12686336040496826, -0.10472826659679413, 0.09312791377305984, -0.011926734820008278, 0.03812364861369133, 0.11054535210132599, 0.005196572281420231, 0.026585882529616356, 0.05407439172267914, 0.06366553902626038, 0.03967318683862686, -0.10743927955627441, 0.0886315256357193, -0.020753242075443268, -0.1556011289358139, -0.045647621154785156, -0.0805148333311081, 0.03534896299242973, 0.01974404975771904, 0.10271792113780975, -0.034986238926649094, 0.0667109340429306, -0.08902619034051895, 0.024180470034480095, -0.000016180018064915203, -0.17815378308296204, -0.01795545034110546, -0.044853758066892624, 0.03495967015624046, 0.017773056402802467, 0.24157072603702545, 0.06085042282938957, -0.06760483235120773, 0.04657021537423134, 0.12547647953033447, 0.015325317159295082, 0.0012204478261992335, 0.15906299650669098, 0.09267544746398926, -0.07720284163951874, -0.1355191469192505, 0.06737678498029709, 0.019282789900898933, -0.045628830790519714, 0.09535399079322815, 0.009011821821331978, 0.021824736148118973, 0.0726994201540947, -0.01307250652462244, 0.0016560814110562205, -0.10145208984613419, -0.11841893196105957, -0.038609180599451065, 0.056700821965932846, -0.03823903948068619, 0.08270184695720673, 0.1624554693698883, -0.01529943011701107, 0.038163430988788605, -0.03936288133263588, -0.01488962396979332, -0.12554575502872467, -0.1426725685596466, -0.06450272351503372, -0.16302600502967834, -0.007763232104480267, -0.08333444595336914, 0.06433288753032684, 0.07949802279472351, 0.059826187789440155, -0.04269853234291077, 0.07651268690824509, 0.041022781282663345, -0.10034794360399246, 0.07510355859994888, -0.02059151791036129, 0.05323530361056328, -0.021385202184319496, -0.019656827673316002, -0.10213424265384674, 0.05417940020561218, -0.020723329856991768, 0.0416044183075428, -0.05111391469836235, 0.009476713836193085, -0.17171601951122284, -0.1145220696926117, -0.06269708275794983, 0.05981360003352165, -0.05057463422417641, 0.05945824086666107, 0.01168898493051529, 0.011022492311894894, 0.016294511035084724, 0.24577881395816803, -0.06521986424922943, -0.04237864539027214, -0.039796773344278336, 0.1401647925376892, -0.010960960760712624, 0.07910837978124619, -0.04971875622868538, -0.026874123141169548, -0.11801496148109436, 0.31808507442474365, 0.3330231308937073, -0.09461544454097748, 0.042824193835258484, -0.011730561032891273, 0.03255566582083702, 0.12393459677696228, 0.12263859808444977, 0.1047649085521698, 0.23149316012859344, -0.07330518960952759, -0.04662523791193962, -0.0235530287027359, -0.011487046256661415, -0.07061693072319031, 0.09144455194473267, 0.024042300879955292, -0.06604029983282089, -0.04112962633371353, 0.061292614787817, -0.1968756765127182, 0.09409318119287491, -0.08292321115732193, -0.2009436935186386, -0.043561115860939026, 0.03980926424264908, 0.11663878709077835, -0.0058410209603607655, 0.12327833473682404, 0.0021221975330263376, -0.06928802281618118, 0.0007765711052343249, 0.021609993651509285, -0.21508292853832245, 0.024919532239437103, 0.07233009487390518, -0.12181923538446426, -0.003256353549659252, -0.03614840656518936, -0.0016090048011392355, 0.08110456168651581, 0.041294027119874954, -0.03950197249650955, 0.026108399033546448, 0.004547862336039543, -0.03431681916117668, -0.023192770779132843, 0.04429425671696663, 0.04074658825993538, -0.15583069622516632, 0.0852603018283844, -0.15913386642932892, 0.045099467039108276, -0.033806633204221725, 0.0012128398520871997, -0.010232296772301197, -0.0017561162821948528, -0.040829166769981384, 0.08149882405996323, 0.07333235442638397, -0.022076698020100594, -0.0061705452390015125, -0.06384896486997604, -0.055786989629268646, -0.027778856456279755, -0.08865642547607422, -0.09847963601350784, -0.12417391687631607, -0.10101866722106934, 0.09827395528554916, -0.022276965901255608, -0.17602279782295227, 0.008451612666249275, -0.09465660154819489, 0.06178250536322594, -0.14477479457855225, 0.11634210497140884, 0.08996126055717468, 0.0033104352187365294, 0.006666821893304586, -0.021679235622286797, 0.07054676860570908, 0.1143367812037468, -0.09097250550985336, -0.06963858008384705 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1223585534561472512/QO-CQ64Z_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alfredo Casero</div> <div style="text-align: center; font-size: 14px;">@agencialavieja</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alfredo Casero. | Data | Alfredo Casero | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 854 | | Short tweets | 565 | | Tweets kept | 1778 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xpelzjw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @agencialavieja's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1q128hty) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1q128hty/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/agencialavieja') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/agencialavieja/1621053473805/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/agencialavieja
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Alfredo Casero @agencialavieja I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Alfredo Casero. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @agencialavieja's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1279628481073041409/mtT5QVq__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🥰Gender Nihilist/Nihilist Anarchist🥰 🤖 AI Bot </div> <div style="font-size: 15px">@agendernihilist bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@agendernihilist's tweets](https://twitter.com/agendernihilist). | Data | Quantity | | --- | --- | | Tweets downloaded | 3172 | | Retweets | 1457 | | Short tweets | 187 | | Tweets kept | 1528 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37jo5lqx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @agendernihilist's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hzj8j9p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hzj8j9p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/agendernihilist') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/agendernihilist/1617923598463/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/agendernihilist
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Gender Nihilist/Nihilist Anarchist AI Bot @agendernihilist bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @agendernihilist's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @agendernihilist's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1344775686586847233/QkHU_dIP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">A.G. Holdier Loves Coors Cat</div> <div style="text-align: center; font-size: 14px;">@agholdier</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from A.G. Holdier Loves Coors Cat. | Data | A.G. Holdier Loves Coors Cat | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 460 | | Short tweets | 423 | | Tweets kept | 2352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xot2p53/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @agholdier's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fke0tr2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fke0tr2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/agholdier') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/agholdier
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT A.G. Holdier Loves Coors Cat @agholdier I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from A.G. Holdier Loves Coors Cat. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @agholdier's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1302422740507516929/zD7GvA0H_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Agnes Callard 🤖 AI Bot </div> <div style="font-size: 15px">@agnescallard bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@agnescallard's tweets](https://twitter.com/agnescallard). | Data | Quantity | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 371 | | Short tweets | 410 | | Tweets kept | 2459 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w2jn5h4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @agnescallard's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hgprm6he) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hgprm6he/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/agnescallard') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/agnescallard/1616718656775/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/agnescallard
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Agnes Callard AI Bot @agnescallard bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @agnescallard's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @agnescallard's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404846924226695174/_oELkFsx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">##ahleeuwu</div> <div style="text-align: center; font-size: 14px;">@ahleemuhleek</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ##ahleeuwu. | Data | ##ahleeuwu | | --- | --- | | Tweets downloaded | 480 | | Retweets | 149 | | Short tweets | 86 | | Tweets kept | 245 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17rz3rct/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ahleemuhleek's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32bqa4q7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32bqa4q7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ahleemuhleek') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ahleemuhleek/1623782310895/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ahleemuhleek
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ##ahleeuwu @ahleemuhleek I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ##ahleeuwu. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ahleemuhleek's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1297351407809380352/gW1wWpRv_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ahmed 🤖 AI Bot </div> <div style="font-size: 15px">@ahmedallibhoy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ahmedallibhoy's tweets](https://twitter.com/ahmedallibhoy). | Data | Quantity | | --- | --- | | Tweets downloaded | 226 | | Retweets | 82 | | Short tweets | 1 | | Tweets kept | 143 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6cjgzd9a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ahmedallibhoy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3g9v31lb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3g9v31lb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ahmedallibhoy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ahmedallibhoy/1616643813999/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ahmedallibhoy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ahmed AI Bot @ahmedallibhoy bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ahmedallibhoy's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ahmedallibhoy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1250356895199760384/fOxe1Ymd_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1391882949650440200/lmEKl2ZQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Art Prompts & AI Hexcrawl</div> <div style="text-align: center; font-size: 14px;">@ai_hexcrawl-dailyartprompts</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Art Prompts & AI Hexcrawl. | Data | Art Prompts | AI Hexcrawl | | --- | --- | --- | | Tweets downloaded | 726 | 741 | | Retweets | 16 | 27 | | Short tweets | 1 | 1 | | Tweets kept | 709 | 713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/prw4k5r4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ai_hexcrawl-dailyartprompts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kxaov1u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kxaov1u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ai_hexcrawl-dailyartprompts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ai_hexcrawl-dailyartprompts/1632004437614/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ai_hexcrawl-dailyartprompts
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Art Prompts & AI Hexcrawl @ai\_hexcrawl-dailyartprompts I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Art Prompts & AI Hexcrawl. Data: Tweets downloaded, Art Prompts: 726, AI Hexcrawl: 741 Data: Retweets, Art Prompts: 16, AI Hexcrawl: 27 Data: Short tweets, Art Prompts: 1, AI Hexcrawl: 1 Data: Tweets kept, Art Prompts: 709, AI Hexcrawl: 713 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ai\_hexcrawl-dailyartprompts's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1386749605216407555/QIJeyWfE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1391882949650440200/lmEKl2ZQ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wintbot_neo & wint but Al & AI Hexcrawl</div> <div style="text-align: center; font-size: 14px;">@ai_hexcrawl-dril_gpt2-drilbot_neo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wintbot_neo & wint but Al & AI Hexcrawl. | Data | wintbot_neo | wint but Al | AI Hexcrawl | | --- | --- | --- | --- | | Tweets downloaded | 3207 | 3198 | 737 | | Retweets | 268 | 41 | 26 | | Short tweets | 272 | 49 | 1 | | Tweets kept | 2667 | 3108 | 710 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2g9pfbo8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ai_hexcrawl-dril_gpt2-drilbot_neo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/226pt34g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/226pt34g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ai_hexcrawl-dril_gpt2-drilbot_neo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ai_hexcrawl-dril_gpt2-drilbot_neo/1631932214962/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ai_hexcrawl-dril_gpt2-drilbot_neo
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG wintbot\_neo & wint but Al & AI Hexcrawl @ai\_hexcrawl-dril\_gpt2-drilbot\_neo I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from wintbot\_neo & wint but Al & AI Hexcrawl. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ai\_hexcrawl-dril\_gpt2-drilbot\_neo's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1391882949650440200/lmEKl2ZQ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1288860183515607041/uHoTEsFz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AI Hexcrawl & GPT-2 Religion AI</div> <div style="text-align: center; font-size: 14px;">@ai_hexcrawl-gods_txt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AI Hexcrawl & GPT-2 Religion AI. | Data | AI Hexcrawl | GPT-2 Religion AI | | --- | --- | --- | | Tweets downloaded | 245 | 3249 | | Retweets | 8 | 68 | | Short tweets | 0 | 9 | | Tweets kept | 237 | 3172 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37knqj1s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ai_hexcrawl-gods_txt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/acyab0oh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/acyab0oh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ai_hexcrawl-gods_txt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ai_hexcrawl-gods_txt/1623775960967/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ai_hexcrawl-gods_txt
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG AI Hexcrawl & GPT-2 Religion AI @ai\_hexcrawl-gods\_txt I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from AI Hexcrawl & GPT-2 Religion AI. Data: Tweets downloaded, AI Hexcrawl: 245, GPT-2 Religion AI: 3249 Data: Retweets, AI Hexcrawl: 8, GPT-2 Religion AI: 68 Data: Short tweets, AI Hexcrawl: 0, GPT-2 Religion AI: 9 Data: Tweets kept, AI Hexcrawl: 237, GPT-2 Religion AI: 3172 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ai\_hexcrawl-gods\_txt's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1391882949650440200/lmEKl2ZQ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1261895681561804800/r6vOZGoH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AI Hexcrawl & GPT2-Microfic</div> <div style="text-align: center; font-size: 14px;">@ai_hexcrawl-gptmicrofic</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AI Hexcrawl & GPT2-Microfic. | Data | AI Hexcrawl | GPT2-Microfic | | --- | --- | --- | | Tweets downloaded | 737 | 1127 | | Retweets | 26 | 9 | | Short tweets | 1 | 9 | | Tweets kept | 710 | 1109 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cmbpada/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ai_hexcrawl-gptmicrofic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5g9tts1o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5g9tts1o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ai_hexcrawl-gptmicrofic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ai_hexcrawl-gptmicrofic/1631934945678/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ai_hexcrawl-gptmicrofic
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG AI Hexcrawl & GPT2-Microfic @ai\_hexcrawl-gptmicrofic I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from AI Hexcrawl & GPT2-Microfic. Data: Tweets downloaded, AI Hexcrawl: 737, GPT2-Microfic: 1127 Data: Retweets, AI Hexcrawl: 26, GPT2-Microfic: 9 Data: Short tweets, AI Hexcrawl: 1, GPT2-Microfic: 9 Data: Tweets kept, AI Hexcrawl: 710, GPT2-Microfic: 1109 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ai\_hexcrawl-gptmicrofic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1467327234365181953/gFho8YCv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AI Hexcrawl</div> <div style="text-align: center; font-size: 14px;">@ai_hexcrawl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AI Hexcrawl. | Data | AI Hexcrawl | | --- | --- | | Tweets downloaded | 1164 | | Retweets | 42 | | Short tweets | 2 | | Tweets kept | 1120 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vdxugbwr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ai_hexcrawl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/r9ejkubu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/r9ejkubu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ai_hexcrawl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/ai_hexcrawl/1639597537705/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ai_hexcrawl
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT AI Hexcrawl @ai\_hexcrawl I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from AI Hexcrawl. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ai\_hexcrawl's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374061160132186116/NV6XVCdH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jritter AI 🤖 AI Bot </div> <div style="font-size: 15px">@aijritter bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@aijritter's tweets](https://twitter.com/aijritter). | Data | Quantity | | --- | --- | | Tweets downloaded | 2484 | | Retweets | 21 | | Short tweets | 271 | | Tweets kept | 2192 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16pwaloe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aijritter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1l866lhx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1l866lhx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aijritter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aijritter/1619426792472/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aijritter
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Jritter AI AI Bot @aijritter bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @aijritter's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aijritter's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409725677495009283/RPVDIGan_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1413348777243512833/dvnUJ-du_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞 & ADMIRAL JIANGSHI 🐉🇭🇹🏴‍☠️</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy-coldjiangshi-ladydarknest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞 & ADMIRAL JIANGSHI 🐉🇭🇹🏴‍☠️. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | Demon Lord Yeefi NSFW🔞 | ADMIRAL JIANGSHI 🐉🇭🇹🏴‍☠️ | | --- | --- | --- | --- | | Tweets downloaded | 518 | 3242 | 2899 | | Retweets | 60 | 957 | 1462 | | Short tweets | 127 | 392 | 324 | | Tweets kept | 331 | 1893 | 1113 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/348if7b6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy-coldjiangshi-ladydarknest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dzd34gb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dzd34gb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy-coldjiangshi-ladydarknest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aimbotaimy-coldjiangshi-ladydarknest/1627243217316/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aimbotaimy-coldjiangshi-ladydarknest
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG AimbotAimy NSFW V-Tuber & Demon Lord Yeefi NSFW & ADMIRAL JIANGSHI 🇭🇹‍️ @aimbotaimy-coldjiangshi-ladydarknest I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from AimbotAimy NSFW V-Tuber & Demon Lord Yeefi NSFW & ADMIRAL JIANGSHI 🇭🇹‍️. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aimbotaimy-coldjiangshi-ladydarknest's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405364006475296773/0i4RCEH5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408966863804063749/fTuaNcZ__400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber & Poe's Law 🇷🇺: 3.33 You can (not) redo & Demi 'ドヤ顔' Naga</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy-demi_naga-livingscribe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber & Poe's Law 🇷🇺: 3.33 You can (not) redo & Demi 'ドヤ顔' Naga. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | Poe's Law 🇷🇺: 3.33 You can (not) redo | Demi 'ドヤ顔' Naga | | --- | --- | --- | --- | | Tweets downloaded | 497 | 3242 | 3234 | | Retweets | 60 | 433 | 909 | | Short tweets | 125 | 564 | 341 | | Tweets kept | 312 | 2245 | 1984 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32v27r5o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy-demi_naga-livingscribe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qs4c0sr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qs4c0sr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy-demi_naga-livingscribe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aimbotaimy-demi_naga-livingscribe/1627235967135/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aimbotaimy-demi_naga-livingscribe
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG AimbotAimy NSFW V-Tuber & Poe's Law 🇷🇺: 3.33 You can (not) redo & Demi 'ドヤ顔' Naga @aimbotaimy-demi\_naga-livingscribe I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from AimbotAimy NSFW V-Tuber & Poe's Law 🇷🇺: 3.33 You can (not) redo & Demi 'ドヤ顔' Naga. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aimbotaimy-demi\_naga-livingscribe's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409725677495009283/RPVDIGan_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy-ladydarknest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | Demon Lord Yeefi NSFW🔞 | | --- | --- | --- | | Tweets downloaded | 528 | 3242 | | Retweets | 61 | 957 | | Short tweets | 130 | 392 | | Tweets kept | 337 | 1893 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uz56dprc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy-ladydarknest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1di7czlx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1di7czlx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy-ladydarknest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aimbotaimy-ladydarknest/1627245180529/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aimbotaimy-ladydarknest
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG AimbotAimy NSFW V-Tuber & Demon Lord Yeefi NSFW @aimbotaimy-ladydarknest I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from AimbotAimy NSFW V-Tuber & Demon Lord Yeefi NSFW. Data: Tweets downloaded, AimbotAimy NSFW V-Tuber: 528, Demon Lord Yeefi NSFW: 3242 Data: Retweets, AimbotAimy NSFW V-Tuber: 61, Demon Lord Yeefi NSFW: 957 Data: Short tweets, AimbotAimy NSFW V-Tuber: 130, Demon Lord Yeefi NSFW: 392 Data: Tweets kept, AimbotAimy NSFW V-Tuber: 337, Demon Lord Yeefi NSFW: 1893 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aimbotaimy-ladydarknest's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | | --- | --- | | Tweets downloaded | 491 | | Retweets | 59 | | Short tweets | 125 | | Tweets kept | 307 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38rsh6x7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2sn41u12) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2sn41u12/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aimbotaimy/1627185142630/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aimbotaimy
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT AimbotAimy NSFW V-Tuber @aimbotaimy I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from AimbotAimy NSFW V-Tuber. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aimbotaimy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429115399975497731/JZdA725e_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433245625429204993/xzzFE2CJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405992051427229698/V3W-1gOb_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨たち Tommy’s an Orbit 🌙 たち✨ & everyone in the system this isn’t normal & AK</div> <div style="text-align: center; font-size: 14px;">@ak92501-cafe_orbitinnit-ihatesinglets</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨たち Tommy’s an Orbit 🌙 たち✨ & everyone in the system this isn’t normal & AK. | Data | ✨たち Tommy’s an Orbit 🌙 たち✨ | everyone in the system this isn’t normal | AK | | --- | --- | --- | --- | | Tweets downloaded | 2256 | 1151 | 3250 | | Retweets | 1350 | 78 | 403 | | Short tweets | 323 | 352 | 464 | | Tweets kept | 583 | 721 | 2383 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mhwl02od/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ak92501-cafe_orbitinnit-ihatesinglets's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m05466la) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m05466la/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ak92501-cafe_orbitinnit-ihatesinglets') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ak92501-cafe_orbitinnit-ihatesinglets/1630972983357/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ak92501-cafe_orbitinnit-ihatesinglets
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG たち Tommy’s an Orbit たち & everyone in the system this isn’t normal & AK @ak92501-cafe\_orbitinnit-ihatesinglets I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from たち Tommy’s an Orbit たち & everyone in the system this isn’t normal & AK. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ak92501-cafe\_orbitinnit-ihatesinglets's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1017476480501104640/KJ_2cey1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sarah Sweeney 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@akasarahjean bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@akasarahjean's tweets](https://twitter.com/akasarahjean). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1116</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>358</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>68</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>690</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2hxdrlnu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @akasarahjean's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/38b2s9q1) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/38b2s9q1/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/akasarahjean'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/akasarahjean/1603135242100/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/akasarahjean
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sarah Sweeney AI Bot </div> <div style="font-size: 15px; color: #657786">@akasarahjean bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @akasarahjean's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1116</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>358</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>68</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>690</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @akasarahjean's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/akasarahjean'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @akasarahjean's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1116</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>358</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>68</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>690</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @akasarahjean's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/akasarahjean'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @akasarahjean's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1116</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>358</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>68</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>690</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @akasarahjean's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/akasarahjean'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410861223273549825/HwwcW6y2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew</div> <div style="text-align: center; font-size: 14px;">@alampaydavis</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew. | Data | Matthew | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 1067 | | Short tweets | 228 | | Tweets kept | 1924 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qawxu8m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alampaydavis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ub62hd1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ub62hd1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alampaydavis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alampaydavis/1626995945354/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alampaydavis
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Matthew @alampaydavis I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Matthew. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alampaydavis's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1227172949033177088/La6S5irD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alan O'Callaghan 🤖 AI Bot </div> <div style="font-size: 15px">@alanbocallaghan bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alanbocallaghan's tweets](https://twitter.com/alanbocallaghan). | Data | Quantity | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 319 | | Short tweets | 218 | | Tweets kept | 2701 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/96yxlut9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alanbocallaghan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ma22odg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ma22odg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alanbocallaghan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alanbocallaghan/1616681961860/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alanbocallaghan
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Alan O'Callaghan AI Bot @alanbocallaghan bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alanbocallaghan's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alanbocallaghan's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/974155432678785024/dFFYSfSi_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alan Watts 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@alanwattsdaily bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alanwattsdaily's tweets](https://twitter.com/alanwattsdaily). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3248</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>17</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3227</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k8o9ly2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alanwattsdaily's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32i7r9zd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32i7r9zd/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alanwattsdaily'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alanwattsdaily/1611766517715/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alanwattsdaily
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alan Watts AI Bot </div> <div style="font-size: 15px; color: #657786">@alanwattsdaily bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @alanwattsdaily's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3248</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>17</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3227</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @alanwattsdaily's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alanwattsdaily'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alanwattsdaily's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3248</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>4</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>17</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3227</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alanwattsdaily's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alanwattsdaily'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alanwattsdaily's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3248</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>4</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>17</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3227</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alanwattsdaily's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alanwattsdaily'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1148966885024837635/8ihdfQKv_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Albert 🤖 AI Bot </div> <div style="font-size: 15px">@albertletranger bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@albertletranger's tweets](https://twitter.com/albertletranger). | Data | Quantity | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 1299 | | Short tweets | 362 | | Tweets kept | 1569 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/x4s90a6l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @albertletranger's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10wrv1a0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10wrv1a0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/albertletranger') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/albertletranger/1616779907134/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/albertletranger
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Albert AI Bot @albertletranger bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @albertletranger's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @albertletranger's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/849030859462246401/ATk3_aiW_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alberto Bagnai 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@albertobagnai bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@albertobagnai's tweets](https://twitter.com/albertobagnai). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3216</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1688</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>447</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1081</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/p67geizd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @albertobagnai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1m7quiii) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1m7quiii/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/albertobagnai'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/albertobagnai/1600589127001/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/albertobagnai
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alberto Bagnai AI Bot </div> <div style="font-size: 15px; color: #657786">@albertobagnai bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @albertobagnai's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3216</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1688</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>447</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1081</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @albertobagnai's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/albertobagnai'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @albertobagnai's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3216</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1688</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>447</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1081</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @albertobagnai's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/albertobagnai'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @albertobagnai's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3216</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1688</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>447</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1081</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @albertobagnai's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/albertobagnai'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410065266847985667/Sj4WiXAu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">albert 🇹🇼</div> <div style="text-align: center; font-size: 14px;">@albertsstuff</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from albert 🇹🇼. | Data | albert 🇹🇼 | | --- | --- | | Tweets downloaded | 3187 | | Retweets | 240 | | Short tweets | 825 | | Tweets kept | 2122 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e0c8502/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @albertsstuff's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rsgjsom) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rsgjsom/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/albertsstuff') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/albertsstuff/1627873459813/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/albertsstuff
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT albert 🇹🇼 @albertsstuff I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from albert 🇹🇼. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @albertsstuff's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425007522067386368/k0GygSdD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Albin Kurti</div> <div style="text-align: center; font-size: 14px;">@albinkurti</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Albin Kurti. | Data | Albin Kurti | | --- | --- | | Tweets downloaded | 741 | | Retweets | 32 | | Short tweets | 11 | | Tweets kept | 698 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yhql26z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @albinkurti's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/txe5baun) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/txe5baun/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/albinkurti') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/albinkurti/1644579521299/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/albinkurti
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Albin Kurti @albinkurti I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Albin Kurti. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @albinkurti's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369997482000781312/kRWof8b8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Albi 🌸 🤖 AI Bot </div> <div style="font-size: 15px">@albiuwu_ bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@albiuwu_'s tweets](https://twitter.com/albiuwu_). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 38 | | Short tweets | 569 | | Tweets kept | 2641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tndawti/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @albiuwu_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gswiupus) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gswiupus/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/albiuwu_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/albiuwu_/1617915531860/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/albiuwu_
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Albi AI Bot @albiuwu\_ bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @albiuwu\_'s tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @albiuwu\_'s tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/480053897382199298/jZba2UiA_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alec Dawson 🤖 AI Bot </div> <div style="font-size: 15px">@aledaws bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@aledaws's tweets](https://twitter.com/aledaws). | Data | Quantity | | --- | --- | | Tweets downloaded | 1155 | | Retweets | 67 | | Short tweets | 71 | | Tweets kept | 1017 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3agqmwhg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aledaws's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3xwitci1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3xwitci1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aledaws') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aledaws/1617245961730/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aledaws
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Alec Dawson AI Bot @aledaws bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @aledaws's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aledaws's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1128605157602877441/R2nQEZZZ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alexandre Sanchez 🦦 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@alex73630 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alex73630's tweets](https://twitter.com/alex73630). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3160</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>928</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>296</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1936</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/ru1nivmp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alex73630's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/14qg9e3j) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/14qg9e3j/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alex73630'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alex73630/1600703549505/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alex73630
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alexandre Sanchez AI Bot </div> <div style="font-size: 15px; color: #657786">@alex73630 bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @alex73630's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3160</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>928</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>296</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1936</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @alex73630's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alex73630'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alex73630's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3160</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>928</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>296</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1936</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alex73630's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alex73630'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alex73630's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3160</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>928</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>296</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1936</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alex73630's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alex73630'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1063527363638525952/H-DKF-LP_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alex Ramek 🤖 AI Bot </div> <div style="font-size: 15px">@alexanderramek bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alexanderramek's tweets](https://twitter.com/alexanderramek). | Data | Quantity | | --- | --- | | Tweets downloaded | 402 | | Retweets | 171 | | Short tweets | 60 | | Tweets kept | 171 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fmckgrk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexanderramek's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3clt5uj2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3clt5uj2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexanderramek') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alexanderramek/1614096947716/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alexanderramek
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Alex Ramek AI Bot @alexanderramek bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alexanderramek's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alexanderramek's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1231013808560197632/QRIgsFUE_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">NomaK96 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@alexfiguii bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alexfiguii's tweets](https://twitter.com/alexfiguii). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2867</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1539</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>127</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1201</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/38gby6t0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexfiguii's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3fa48eut) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3fa48eut/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alexfiguii'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alexfiguii/1601463760497/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alexfiguii
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">NomaK96 AI Bot </div> <div style="font-size: 15px; color: #657786">@alexfiguii bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @alexfiguii's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2867</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1539</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>127</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1201</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @alexfiguii's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alexfiguii'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alexfiguii's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2867</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1539</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>127</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1201</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alexfiguii's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alexfiguii'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alexfiguii's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2867</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1539</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>127</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1201</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alexfiguii's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alexfiguii'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1186330591383474178/etcJHSkY_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alexis Perrier 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@alexip bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alexip's tweets](https://twitter.com/alexip). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3199</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2059</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>49</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1091</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/157sg90v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexip's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1wz9te3l) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1wz9te3l/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alexip'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alexip/1602315863564/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alexip
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alexis Perrier AI Bot </div> <div style="font-size: 15px; color: #657786">@alexip bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @alexip's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3199</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2059</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>49</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1091</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @alexip's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alexip'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alexip's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3199</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2059</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>49</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1091</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alexip's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alexip'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alexip's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3199</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2059</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>49</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1091</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alexip's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alexip'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1274068177215827968/g9sB0dE1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">alexis 🤖 AI Bot </div> <div style="font-size: 15px">@alexisgallagher bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alexisgallagher's tweets](https://twitter.com/alexisgallagher). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 104 | | Short tweets | 232 | | Tweets kept | 2914 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28ak07sx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexisgallagher's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kmu6pnu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kmu6pnu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexisgallagher') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alexisgallagher/1616871355671/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alexisgallagher
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
alexis AI Bot @alexisgallagher bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alexisgallagher's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alexisgallagher's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1337389555863982083/GFu_etbo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alexis (she/her) 🏳️‍⚧️</div> <div style="text-align: center; font-size: 14px;">@alexisuwualexis</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alexis (she/her) 🏳️‍⚧️. | Data | Alexis (she/her) 🏳️‍⚧️ | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 2988 | | Short tweets | 64 | | Tweets kept | 167 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/t0aheh4s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexisuwualexis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18q8udnh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18q8udnh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexisuwualexis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alexisuwualexis/1624474156240/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alexisuwualexis
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Alexis (she/her) ️‍️ @alexisuwualexis I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Alexis (she/her) ️‍️. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alexisuwualexis's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/929801699623088129/gNlIjLwr_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alex Salmond 🤖 AI Bot </div> <div style="font-size: 15px">@alexsalmond bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alexsalmond's tweets](https://twitter.com/alexsalmond). | Data | Quantity | | --- | --- | | Tweets downloaded | 3194 | | Retweets | 1155 | | Short tweets | 19 | | Tweets kept | 2020 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fhlpwx8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexsalmond's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2esw52d4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2esw52d4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexsalmond') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alexsalmond/1617827259731/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alexsalmond
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Alex Salmond AI Bot @alexsalmond bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alexsalmond's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alexsalmond's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1104572830123986944/3eG16BFY_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alexander Wade Craig 🤖 AI Bot </div> <div style="font-size: 15px">@alexwadecraig bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alexwadecraig's tweets](https://twitter.com/alexwadecraig). | Data | Quantity | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 404 | | Short tweets | 112 | | Tweets kept | 2704 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l824189/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexwadecraig's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3kat9k6l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3kat9k6l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexwadecraig') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alexwadecraig/1616646989893/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alexwadecraig
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Alexander Wade Craig AI Bot @alexwadecraig bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alexwadecraig's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alexwadecraig's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241620963768201216/sG68m_iE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1266844418281275392/9fhpx3n1_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1097426990699855873/lEI3EWIL_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cyrus & Aleyda Solis 👩🏻‍💻 & 🧀 John 🧀</div> <div style="text-align: center; font-size: 14px;">@aleyda-cyrusshepard-johnmu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cyrus & Aleyda Solis 👩🏻‍💻 & 🧀 John 🧀. | Data | Cyrus | Aleyda Solis 👩🏻‍💻 | 🧀 John 🧀 | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 3247 | 3251 | | Retweets | 343 | 995 | 358 | | Short tweets | 729 | 128 | 267 | | Tweets kept | 2176 | 2124 | 2626 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jr2ggcg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aleyda-cyrusshepard-johnmu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/elwosmqy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/elwosmqy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aleyda-cyrusshepard-johnmu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aleyda-cyrusshepard-johnmu/1632495995480/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aleyda-cyrusshepard-johnmu
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Cyrus & Aleyda Solis ‍ & John @aleyda-cyrusshepard-johnmu I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Cyrus & Aleyda Solis ‍ & John . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aleyda-cyrusshepard-johnmu's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1321484463365361664/uJaI229z_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🏴🏳️‍🌈Alfy🏳️‍🌈🚩 🤖 AI Bot </div> <div style="font-size: 15px">@alfieghill1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alfieghill1's tweets](https://twitter.com/alfieghill1). | Data | Quantity | | --- | --- | | Tweets downloaded | 3171 | | Retweets | 1187 | | Short tweets | 510 | | Tweets kept | 1474 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e2bmrwg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alfieghill1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1n271342) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1n271342/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alfieghill1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alfieghill1/1614109293232/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alfieghill1
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
️‍Alfy️‍ AI Bot @alfieghill1 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alfieghill1's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alfieghill1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1039301837885661184/UoKzoFb__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ali Abunimah 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@aliabunimah bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@aliabunimah's tweets](https://twitter.com/aliabunimah). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3239</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1336</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>96</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1807</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3esavnex/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aliabunimah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2mzn2mn5) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2mzn2mn5/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/aliabunimah'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aliabunimah/1603107521865/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aliabunimah
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ali Abunimah AI Bot </div> <div style="font-size: 15px; color: #657786">@aliabunimah bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @aliabunimah's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3239</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1336</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>96</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1807</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @aliabunimah's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/aliabunimah'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @aliabunimah's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3239</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1336</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>96</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1807</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @aliabunimah's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/aliabunimah'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @aliabunimah's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3239</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1336</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>96</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1807</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @aliabunimah's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/aliabunimah'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/922921690459283456/rwVj6I1R_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alibaba Group 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@alibabagroup bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alibabagroup's tweets](https://twitter.com/alibabagroup). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3218</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>981</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>31</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2206</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32a64yp5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alibabagroup's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30lknnvx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30lknnvx/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alibabagroup'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alibabagroup/1609715889377/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alibabagroup
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alibaba Group AI Bot </div> <div style="font-size: 15px; color: #657786">@alibabagroup bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @alibabagroup's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3218</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>981</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>31</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2206</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @alibabagroup's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/alibabagroup'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alibabagroup's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3218</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>981</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>31</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2206</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alibabagroup's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alibabagroup'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @alibabagroup's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3218</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>981</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>31</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2206</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @alibabagroup's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/alibabagroup'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410515009252302852/sah1ksNb_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393311358293356546/tXc-X9fx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alice Cream 🐇🍓 Vtuber & 👁️⃤ lison</div> <div style="text-align: center; font-size: 14px;">@alice333ai-alicecweam</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alice Cream 🐇🍓 Vtuber & 👁️⃤ lison. | Data | Alice Cream 🐇🍓 Vtuber | 👁️⃤ lison | | --- | --- | --- | | Tweets downloaded | 3244 | 3216 | | Retweets | 359 | 1062 | | Short tweets | 463 | 200 | | Tweets kept | 2422 | 1954 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4cfpc23c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alice333ai-alicecweam's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r62epp4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r62epp4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alice333ai-alicecweam') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alice333ai-alicecweam/1625611976936/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alice333ai-alicecweam
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Alice Cream Vtuber & ️⃤ lison @alice333ai-alicecweam I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Alice Cream Vtuber & ️⃤ lison. Data: Tweets downloaded, Alice Cream Vtuber: 3244, ️⃤ lison: 3216 Data: Retweets, Alice Cream Vtuber: 359, ️⃤ lison: 1062 Data: Short tweets, Alice Cream Vtuber: 463, ️⃤ lison: 200 Data: Tweets kept, Alice Cream Vtuber: 2422, ️⃤ lison: 1954 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alice333ai-alicecweam's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393311358293356546/tXc-X9fx_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412466315240030217/yDDNt3-0_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">👁️⃤ lison & JJ (comms closed)</div> <div style="text-align: center; font-size: 14px;">@alice333ai-jj_visuals</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 👁️⃤ lison & JJ (comms closed). | Data | 👁️⃤ lison | JJ (comms closed) | | --- | --- | --- | | Tweets downloaded | 3216 | 3221 | | Retweets | 1062 | 781 | | Short tweets | 200 | 229 | | Tweets kept | 1954 | 2211 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sqkkxt9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alice333ai-jj_visuals's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/327x2oet) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/327x2oet/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alice333ai-jj_visuals') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alice333ai-jj_visuals/1625605011527/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alice333ai-jj_visuals
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG ️⃤ lison & JJ (comms closed) @alice333ai-jj\_visuals I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ️⃤ lison & JJ (comms closed). Data: Tweets downloaded, ️⃤ lison: 3216, JJ (comms closed): 3221 Data: Retweets, ️⃤ lison: 1062, JJ (comms closed): 781 Data: Short tweets, ️⃤ lison: 200, JJ (comms closed): 229 Data: Tweets kept, ️⃤ lison: 1954, JJ (comms closed): 2211 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alice333ai-jj\_visuals's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1343482928014237696/51aKOINn_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408716131867713538/rg3HSZ5D_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1378382707625975812/vYek426__400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">che 💜 & clementine!!!! 𓃠 & 𝓡𝓮𝓭 𝓟𝓪𝓷𝓭𝓪'𝓼 𝓖𝓪𝓶𝓮 𝓒𝓸𝓻𝓷𝓮𝓻</div> <div style="text-align: center; font-size: 14px;">@aliceaeterna-clamtime-redpandasmash</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from che 💜 & clementine!!!! 𓃠 & 𝓡𝓮𝓭 𝓟𝓪𝓷𝓭𝓪'𝓼 𝓖𝓪𝓶𝓮 𝓒𝓸𝓻𝓷𝓮𝓻. | Data | che 💜 | clementine!!!! 𓃠 | 𝓡𝓮𝓭 𝓟𝓪𝓷𝓭𝓪'𝓼 𝓖𝓪𝓶𝓮 𝓒𝓸𝓻𝓷𝓮𝓻 | | --- | --- | --- | --- | | Tweets downloaded | 1587 | 3187 | 2492 | | Retweets | 682 | 500 | 367 | | Short tweets | 158 | 687 | 362 | | Tweets kept | 747 | 2000 | 1763 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1814x6xo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aliceaeterna-clamtime-redpandasmash's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kvo9buwa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kvo9buwa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aliceaeterna-clamtime-redpandasmash') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aliceaeterna-clamtime-redpandasmash/1625925715720/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aliceaeterna-clamtime-redpandasmash
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG che & clementine!!!! 𓃠 & 𝓡𝓮𝓭 𝓟𝓪𝓷𝓭𝓪'𝓼 𝓖𝓪𝓶𝓮 𝓒𝓸𝓻𝓷𝓮𝓻 @aliceaeterna-clamtime-redpandasmash I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from che & clementine!!!! 𓃠 & 𝓡𝓮𝓭 𝓟𝓪𝓷𝓭𝓪'𝓼 𝓖𝓪𝓶𝓮 𝓒𝓸𝓻𝓷𝓮𝓻. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aliceaeterna-clamtime-redpandasmash's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343482928014237696/51aKOINn_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">che 💜 🤖 AI Bot </div> <div style="font-size: 15px">@aliceaeterna bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@aliceaeterna's tweets](https://twitter.com/aliceaeterna). | Data | Quantity | | --- | --- | | Tweets downloaded | 1419 | | Retweets | 586 | | Short tweets | 130 | | Tweets kept | 703 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26doepxr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aliceaeterna's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1any0jue) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1any0jue/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aliceaeterna') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aliceaeterna
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
che AI Bot @aliceaeterna bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @aliceaeterna's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aliceaeterna's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1372804858068230149/aSZcjxvN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dread Alice</div> <div style="text-align: center; font-size: 14px;">@alicefromqueens</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dread Alice. | Data | Dread Alice | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 50 | | Short tweets | 511 | | Tweets kept | 2688 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/frqs20kj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alicefromqueens's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2c7152gp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2c7152gp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alicefromqueens') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alicefromqueens/1626903533456/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alicefromqueens
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Dread Alice @alicefromqueens I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Dread Alice. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alicefromqueens's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1354527838070779905/9ju2ltnm_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">alice 🌸 🤖 AI Bot </div> <div style="font-size: 15px">@alicesblossoms bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alicesblossoms's tweets](https://twitter.com/alicesblossoms). | Data | Quantity | | --- | --- | | Tweets downloaded | 3175 | | Retweets | 1633 | | Short tweets | 274 | | Tweets kept | 1268 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2nufi296/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alicesblossoms's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bwg8ycs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bwg8ycs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alicesblossoms') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alicesblossoms/1614213198879/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alicesblossoms
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
alice AI Bot @alicesblossoms bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alicesblossoms's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alicesblossoms's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1386473102171803649/nr3t9kft_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ali</div> <div style="text-align: center; font-size: 14px;">@alimaketweet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ali. | Data | ali | | --- | --- | | Tweets downloaded | 2478 | | Retweets | 38 | | Short tweets | 927 | | Tweets kept | 1513 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3syq75w5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alimaketweet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7cxndgon) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7cxndgon/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alimaketweet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alimaketweet/1621724029531/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alimaketweet
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ali @alimaketweet I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ali. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alimaketweet's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369323247519608836/MsoTG4Ir_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">AAH 🤖 AI Bot </div> <div style="font-size: 15px">@alisonaharris bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alisonaharris's tweets](https://twitter.com/alisonaharris). | Data | Quantity | | --- | --- | | Tweets downloaded | 1616 | | Retweets | 763 | | Short tweets | 85 | | Tweets kept | 768 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hmbkdpe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alisonaharris's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2c6keq3v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2c6keq3v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alisonaharris') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alisonaharris/1617826834667/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alisonaharris
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AAH AI Bot @alisonaharris bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alisonaharris's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alisonaharris's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406680256258482178/79-ZrVAg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alison Selby</div> <div style="text-align: center; font-size: 14px;">@alisonselby_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alison Selby. | Data | Alison Selby | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 319 | | Short tweets | 290 | | Tweets kept | 2609 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e6i4sab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alisonselby_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9gpt8ktz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9gpt8ktz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alisonselby_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alisonselby_/1624473155604/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alisonselby_
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Alison Selby @alisonselby\_ I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Alison Selby. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alisonselby\_'s tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416805116628422660/j0vQ8GP3_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merzy & wintbot_neo & xoxo</div> <div style="text-align: center; font-size: 14px;">@alivegirl001101-drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merzy & wintbot_neo & xoxo. | Data | merzy | wintbot_neo | xoxo | | --- | --- | --- | --- | | Tweets downloaded | 2598 | 3244 | 2731 | | Retweets | 449 | 218 | 574 | | Short tweets | 440 | 271 | 812 | | Tweets kept | 1709 | 2755 | 1345 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3600xjfx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alivegirl001101-drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cv1jefk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cv1jefk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alivegirl001101-drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alivegirl001101-drilbot_neo-rusticgendarme/1627500827534/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alivegirl001101-drilbot_neo-rusticgendarme
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG merzy & wintbot\_neo & xoxo @alivegirl001101-drilbot\_neo-rusticgendarme I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from merzy & wintbot\_neo & xoxo. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alivegirl001101-drilbot\_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369015830000861191/gWkHCd-b_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">N.O.R.A 🤖 AI Bot </div> <div style="font-size: 15px">@almostnora bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@almostnora's tweets](https://twitter.com/almostnora). | Data | Quantity | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 191 | | Short tweets | 494 | | Tweets kept | 2545 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hy929cp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @almostnora's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3l9u4t5m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3l9u4t5m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/almostnora') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/almostnora/1616897539959/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/almostnora
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
N.O.R.A AI Bot @almostnora bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @almostnora's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @almostnora's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1280197719571775488/IXebaRCu_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Arturs Logins 🤖 AI Bot </div> <div style="font-size: 15px">@alogins bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alogins's tweets](https://twitter.com/alogins). | Data | Quantity | | --- | --- | | Tweets downloaded | 1609 | | Retweets | 133 | | Short tweets | 177 | | Tweets kept | 1299 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ic2ynnv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alogins's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/anvz7gt2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/anvz7gt2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alogins') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alogins/1616706593981/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alogins
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Arturs Logins AI Bot @alogins bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alogins's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alogins's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1320844146664460288/W09Z-oPC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">April 🤖 AI Bot </div> <div style="font-size: 15px">@alotoforanges bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alotoforanges's tweets](https://twitter.com/alotoforanges). | Data | Quantity | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 186 | | Short tweets | 552 | | Tweets kept | 2502 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rgdnomb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alotoforanges's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e1tznc6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e1tznc6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alotoforanges') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alotoforanges/1616898775163/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alotoforanges
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
April AI Bot @alotoforanges bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alotoforanges's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alotoforanges's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/711247322114609154/A2hfB3eL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alper Çuğun-Gscheidel 🏴🌻 🤖 AI Bot </div> <div style="font-size: 15px">@alper bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alper's tweets](https://twitter.com/alper). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 129 | | Tweets kept | 3121 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21a6dhyx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rkrg672y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rkrg672y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alper') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alper/1619479187969/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alper
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Alper Çuğun-Gscheidel AI Bot @alper bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alper's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alper's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475337078544248835/JRWM0Hsl_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1096066608034918401/m8wnTWsX_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1469027897209987081/fCdlufKH_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CoinMarketCap & TechCrunch & AlphaExchange</div> <div style="text-align: center; font-size: 14px;">@alphaxchange-coinmarketcap-techcrunch</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CoinMarketCap & TechCrunch & AlphaExchange. | Data | CoinMarketCap | TechCrunch | AlphaExchange | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3250 | 185 | | Retweets | 247 | 29 | 25 | | Short tweets | 209 | 9 | 17 | | Tweets kept | 2793 | 3212 | 143 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ii2008f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alphaxchange-coinmarketcap-techcrunch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28z1wzo5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28z1wzo5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alphaxchange-coinmarketcap-techcrunch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/alphaxchange-coinmarketcap-techcrunch/1643592683390/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alphaxchange-coinmarketcap-techcrunch
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG CoinMarketCap & TechCrunch & AlphaExchange @alphaxchange-coinmarketcap-techcrunch I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from CoinMarketCap & TechCrunch & AlphaExchange. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alphaxchange-coinmarketcap-techcrunch's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357168007055872000/QQez_OqS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kia‏☆ 🤖 AI Bot </div> <div style="font-size: 15px">@alt_kia bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alt_kia's tweets](https://twitter.com/alt_kia). | Data | Quantity | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 715 | | Short tweets | 449 | | Tweets kept | 2079 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oea8dpz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alt_kia's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1aog3cgu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1aog3cgu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alt_kia') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alt_kia/1616891056624/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alt_kia
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Kia‏ AI Bot @alt\_kia bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alt\_kia's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alt\_kia's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1388134163753185283/OrCvyNfy_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1004150565302034432/kRnEUZA8_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1343657798895366152/RMYAEzre_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">artchick.eth 🔥 & Altcoin Psycho & JUSTIN</div> <div style="text-align: center; font-size: 14px;">@altcoinpsycho-digitalartchick-justintrimble</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from artchick.eth 🔥 & Altcoin Psycho & JUSTIN. | Data | artchick.eth 🔥 | Altcoin Psycho | JUSTIN | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3249 | 3248 | | Retweets | 142 | 34 | 254 | | Short tweets | 654 | 461 | 863 | | Tweets kept | 2454 | 2754 | 2131 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uuqza2m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @altcoinpsycho-digitalartchick-justintrimble's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gis597aj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gis597aj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/altcoinpsycho-digitalartchick-justintrimble') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/altcoinpsycho-digitalartchick-justintrimble/1620934521680/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/altcoinpsycho-digitalartchick-justintrimble
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG URL & Altcoin Psycho & JUSTIN @altcoinpsycho-digitalartchick-justintrimble I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from URL & Altcoin Psycho & JUSTIN. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @altcoinpsycho-digitalartchick-justintrimble's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1467618648961527812/jtH0RZpT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468367771746672643/21w6R4SP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alter Huss & Zainab</div> <div style="text-align: center; font-size: 14px;">@alterhuss-zainabverse</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alter Huss & Zainab. | Data | Alter Huss | Zainab | | --- | --- | --- | | Tweets downloaded | 3229 | 3246 | | Retweets | 125 | 95 | | Short tweets | 1004 | 426 | | Tweets kept | 2100 | 2725 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8ibzokov/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alterhuss-zainabverse's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3d8wr9hg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3d8wr9hg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alterhuss-zainabverse') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alterhuss-zainabverse
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Alter Huss & Zainab @alterhuss-zainabverse I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Alter Huss & Zainab. Data: Tweets downloaded, Alter Huss: 3229, Zainab: 3246 Data: Retweets, Alter Huss: 125, Zainab: 95 Data: Short tweets, Alter Huss: 1004, Zainab: 426 Data: Tweets kept, Alter Huss: 2100, Zainab: 2725 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alterhuss-zainabverse's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1341634979587977217/1Dg48qEr_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">alth0u 😷🏠💉 🤖 AI Bot </div> <div style="font-size: 15px">@alth0u bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alth0u's tweets](https://twitter.com/alth0u). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 38 | | Short tweets | 371 | | Tweets kept | 2841 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uywhay29/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alth0u's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ipq5xuk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ipq5xuk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alth0u') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/alth0u/1616652713319/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alth0u
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
alth0u AI Bot @alth0u bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @alth0u's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alth0u's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/479052171837984768/mlO43FWa_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Álvaro Uribe Vélez</div> <div style="text-align: center; font-size: 14px;">@alvarouribevel</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Álvaro Uribe Vélez. | Data | Álvaro Uribe Vélez | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 1335 | | Short tweets | 228 | | Tweets kept | 1677 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1439yxv6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alvarouribevel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ly70v6r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ly70v6r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alvarouribevel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/alvarouribevel
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Álvaro Uribe Vélez @alvarouribevel I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Álvaro Uribe Vélez. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @alvarouribevel's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416541994952937474/yi5cJxnq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1368667185879584770/pKNxJut-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393327649318076417/cQWDVv-q_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">haley o'shaughnessy & Santiago & Aly Dixon</div> <div style="text-align: center; font-size: 14px;">@aly__dixon-haleyosomething-svpino</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from haley o'shaughnessy & Santiago & Aly Dixon. | Data | haley o'shaughnessy | Santiago | Aly Dixon | | --- | --- | --- | --- | | Tweets downloaded | 3241 | 3250 | 3003 | | Retweets | 430 | 7 | 426 | | Short tweets | 460 | 316 | 195 | | Tweets kept | 2351 | 2927 | 2382 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mt8xsda/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aly__dixon-haleyosomething-svpino's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31g4nsgq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31g4nsgq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aly__dixon-haleyosomething-svpino') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/aly__dixon-haleyosomething-svpino/1632660543535/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/aly__dixon-haleyosomething-svpino
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG haley o'shaughnessy & Santiago & Aly Dixon @aly\_\_dixon-haleyosomething-svpino I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from haley o'shaughnessy & Santiago & Aly Dixon. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @aly\_\_dixon-haleyosomething-svpino's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/949070360103698432/kXSiPeTk_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Amazon 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@amazon bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@amazon's tweets](https://twitter.com/amazon). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3242</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>40</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>60</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3142</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fd78mc2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amazon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/76pxw0n0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/76pxw0n0/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/amazon'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/amazon/1609713999453/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/amazon
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Amazon AI Bot </div> <div style="font-size: 15px; color: #657786">@amazon bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @amazon's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3242</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>40</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>60</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3142</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @amazon's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/amazon'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @amazon's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3242</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>40</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>60</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3142</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @amazon's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/amazon'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @amazon's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3242</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>40</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>60</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3142</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @amazon's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/amazon'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 428, 74, 9, 166, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357531747299315714/J1ar8m2X_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Adi/Gojiᵇˡᵐ⁺ᵇᵗˡᵐ⁺ᵃᶜᵃᵇ 🤖 AI Bot </div> <div style="font-size: 15px">@amberblaziken bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@amberblaziken's tweets](https://twitter.com/amberblaziken). | Data | Quantity | | --- | --- | | Tweets downloaded | 3195 | | Retweets | 907 | | Short tweets | 503 | | Tweets kept | 1785 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ebavto2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amberblaziken's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hz6lllz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hz6lllz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amberblaziken') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/amberblaziken/1617804897376/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/amberblaziken
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Adi/Gojiᵇˡᵐ⁺ᵇᵗˡᵐ⁺ᵃᶜᵃᵇ AI Bot @amberblaziken bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @amberblaziken's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @amberblaziken's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404698622579462144/8oiBunaK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tomboy housewives against cops & wint</div> <div style="text-align: center; font-size: 14px;">@ambivalegenic-dril</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tomboy housewives against cops & wint. | Data | tomboy housewives against cops | wint | | --- | --- | --- | | Tweets downloaded | 3154 | 3226 | | Retweets | 781 | 472 | | Short tweets | 266 | 304 | | Tweets kept | 2107 | 2450 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3m5g8gro/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ambivalegenic-dril's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/27fdnf8e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/27fdnf8e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ambivalegenic-dril') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/ambivalegenic-dril/1639117433317/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ambivalegenic-dril
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG tomboy housewives against cops & wint @ambivalegenic-dril I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from tomboy housewives against cops & wint. Data: Tweets downloaded, tomboy housewives against cops: 3154, wint: 3226 Data: Retweets, tomboy housewives against cops: 781, wint: 472 Data: Short tweets, tomboy housewives against cops: 266, wint: 304 Data: Tweets kept, tomboy housewives against cops: 2107, wint: 2450 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ambivalegenic-dril's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364898993998680066/stqI7iN8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">not the kind of princess that is princess-cis 🤖 AI Bot </div> <div style="font-size: 15px">@ambivalegenic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ambivalegenic's tweets](https://twitter.com/ambivalegenic). | Data | Quantity | | --- | --- | | Tweets downloaded | 2614 | | Retweets | 664 | | Short tweets | 228 | | Tweets kept | 1722 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mvt2owy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ambivalegenic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25yttpuo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25yttpuo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ambivalegenic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ambivalegenic/1616659230833/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ambivalegenic
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
not the kind of princess that is princess-cis AI Bot @ambivalegenic bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ambivalegenic's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ambivalegenic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/83933348/IMG00128_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alan McCarty 🤖 AI Bot </div> <div style="font-size: 15px">@amccarty bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@amccarty's tweets](https://twitter.com/amccarty). | Data | Quantity | | --- | --- | | Tweets downloaded | 569 | | Retweets | 172 | | Short tweets | 30 | | Tweets kept | 367 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/l51uxin3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amccarty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bw34kk4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bw34kk4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amccarty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/amccarty/1617899959147/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/amccarty
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Alan McCarty AI Bot @amccarty bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @amccarty's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @amccarty's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1453350245383946240/cBFwCk3J_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Amelka</div> <div style="text-align: center; font-size: 14px;">@amelamelcia</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Amelka. | Data | Amelka | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 101 | | Short tweets | 550 | | Tweets kept | 2593 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tomda94s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amelamelcia's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hxvf49x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hxvf49x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amelamelcia') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/amelamelcia/1637950041914/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/amelamelcia
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Amelka @amelamelcia I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Amelka. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @amelamelcia's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1347029113173798912/ayKe9SJB_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Quilogorath 🤖 AI Bot </div> <div style="font-size: 15px">@americanpineapp bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@americanpineapp's tweets](https://twitter.com/americanpineapp). | Data | Quantity | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 1339 | | Short tweets | 446 | | Tweets kept | 1420 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ouupjoy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @americanpineapp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x8qz0hii) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x8qz0hii/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/americanpineapp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/americanpineapp/1617768265807/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/americanpineapp
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Quilogorath AI Bot @americanpineapp bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @americanpineapp's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @americanpineapp's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374784520742866949/RBO-C7n8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Amir of Amirs 🤖 AI Bot </div> <div style="font-size: 15px">@amirism_ bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@amirism_'s tweets](https://twitter.com/amirism_). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 137 | | Short tweets | 655 | | Tweets kept | 2454 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jwwptdm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amirism_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jf0rjdbf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jf0rjdbf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amirism_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/amirism_/1616611950115/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/amirism_
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Amir of Amirs AI Bot @amirism\_ bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @amirism\_'s tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @amirism\_'s tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1324792261775798272/hlRK8lBU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anne-Marie Scott 🤖 AI Bot </div> <div style="font-size: 15px">@ammienoot bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ammienoot's tweets](https://twitter.com/ammienoot). | Data | Quantity | | --- | --- | | Tweets downloaded | 3251 | | Retweets | 355 | | Short tweets | 209 | | Tweets kept | 2687 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/372xzuxt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ammienoot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2l19ykmz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2l19ykmz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ammienoot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ammienoot
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Anne-Marie Scott AI Bot @ammienoot bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ammienoot's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ammienoot's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433365322313043974/gPI08qaY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1377835980552474624/sxTjuspv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">halal talal & amna</div> <div style="text-align: center; font-size: 14px;">@amnananadeem-talal916</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from halal talal & amna. | Data | halal talal | amna | | --- | --- | --- | | Tweets downloaded | 3187 | 3132 | | Retweets | 484 | 778 | | Short tweets | 532 | 369 | | Tweets kept | 2171 | 1985 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/42dvu161/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amnananadeem-talal916's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2irbhtmu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2irbhtmu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amnananadeem-talal916') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/amnananadeem-talal916
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG halal talal & amna @amnananadeem-talal916 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from halal talal & amna. Data: Tweets downloaded, halal talal: 3187, amna: 3132 Data: Retweets, halal talal: 484, amna: 778 Data: Short tweets, halal talal: 532, amna: 369 Data: Tweets kept, halal talal: 2171, amna: 1985 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @amnananadeem-talal916's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1455270159975796736/PqmjT7Dr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Among Us</div> <div style="text-align: center; font-size: 14px;">@amongusgame</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Among Us. | Data | Among Us | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 75 | | Short tweets | 1295 | | Tweets kept | 1878 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pyl3gg2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amongusgame's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1vvgbbml) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1vvgbbml/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amongusgame') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/amongusgame/1643327156823/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/amongusgame
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Among Us @amongusgame I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Among Us. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @amongusgame's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377851124569370625/vh0fnxXt_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">amphy #nicechan 🤖 AI Bot </div> <div style="font-size: 15px">@amphydelic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@amphydelic's tweets](https://twitter.com/amphydelic). | Data | Quantity | | --- | --- | | Tweets downloaded | 3142 | | Retweets | 770 | | Short tweets | 711 | | Tweets kept | 1661 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o1nuvfq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amphydelic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mitl8mt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mitl8mt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amphydelic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/amphydelic/1617771402481/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/amphydelic
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
amphy #nicechan AI Bot @amphydelic bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @amphydelic's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @amphydelic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309620020981374976/VD0TF3jf_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ANA’s SOUL v The Machine 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ana_couper bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ana_couper's tweets](https://twitter.com/ana_couper). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3213</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>231</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1138</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1844</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/13v94unk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ana_couper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1bnsypnj) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1bnsypnj/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ana_couper'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ana_couper/1601267274995/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ana_couper
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ANA’s SOUL v The Machine AI Bot </div> <div style="font-size: 15px; color: #657786">@ana_couper bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @ana_couper's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3213</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>231</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1138</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1844</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @ana_couper's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ana_couper'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ana_couper's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3213</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>231</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1138</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1844</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ana_couper's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ana_couper'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ana_couper's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3213</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>231</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1138</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1844</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ana_couper's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ana_couper'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1304485450103439360/mD4PsYPQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Clara, Social Distancing World Champ (2010-2019) 🤖 AI Bot </div> <div style="font-size: 15px">@analogcitizen bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@analogcitizen's tweets](https://twitter.com/analogcitizen). | Data | Quantity | | --- | --- | | Tweets downloaded | 2997 | | Retweets | 1309 | | Short tweets | 189 | | Tweets kept | 1499 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3od4vbha/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @analogcitizen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1del2d6l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1del2d6l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/analogcitizen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/analogcitizen/1617805157885/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/analogcitizen
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Clara, Social Distancing World Champ (2010-2019) AI Bot @analogcitizen bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @analogcitizen's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @analogcitizen's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372091789549654016/L09IStLl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Terra 🐧🏴‍☠️ 🤖 AI Bot </div> <div style="font-size: 15px">@anarchystax bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@anarchystax's tweets](https://twitter.com/anarchystax). | Data | Quantity | | --- | --- | | Tweets downloaded | 239 | | Retweets | 59 | | Short tweets | 43 | | Tweets kept | 137 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ouqtufl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anarchystax's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3d1tkfmr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3d1tkfmr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anarchystax') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/anarchystax/1616622386680/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/anarchystax
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Terra ‍️ AI Bot @anarchystax bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @anarchystax's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @anarchystax's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364764641633701889/wk_YVSbd_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">N.P.C. Lovecraft 🤖 AI Bot </div> <div style="font-size: 15px">@ancapkid bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ancapkid's tweets](https://twitter.com/ancapkid). | Data | Quantity | | --- | --- | | Tweets downloaded | 2738 | | Retweets | 166 | | Short tweets | 589 | | Tweets kept | 1983 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1to3139m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ancapkid's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/27sth5f2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/27sth5f2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ancapkid') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ancapkid/1617897872455/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ancapkid
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
N.P.C. Lovecraft AI Bot @ancapkid bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ancapkid's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ancapkid's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1376978076962291717/HedQhFmm_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Abigail Devereaux 🏴 🏳️‍🌈🐿️ 🤘 🤖 AI Bot </div> <div style="font-size: 15px">@andevereaux bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@andevereaux's tweets](https://twitter.com/andevereaux). | Data | Quantity | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 359 | | Short tweets | 240 | | Tweets kept | 2640 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1q4g34cr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @andevereaux's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dbw2lmp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dbw2lmp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/andevereaux') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/andevereaux/1617929324096/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/andevereaux
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Abigail Devereaux ️‍️ AI Bot @andevereaux bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @andevereaux's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @andevereaux's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/962354978680487937/EXnFWdcZ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrés Dae Keun Kwon 권대건 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@andreskwon bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@andreskwon's tweets](https://twitter.com/andreskwon). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3150</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2468</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>163</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>519</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1magewvo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @andreskwon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2en2cxq7) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2en2cxq7/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/andreskwon'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/andreskwon/1600798823307/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/andreskwon
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrés Dae Keun Kwon 권대건 AI Bot </div> <div style="font-size: 15px; color: #657786">@andreskwon bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @andreskwon's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3150</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2468</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>163</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>519</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @andreskwon's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/andreskwon'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @andreskwon's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3150</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2468</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>163</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>519</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @andreskwon's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/andreskwon'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @andreskwon's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3150</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2468</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>163</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>519</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @andreskwon's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/andreskwon'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/999284567369383936/Zm7tWU0S_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrew Cuomo 🤖 AI Bot </div> <div style="font-size: 15px">@andrewcuomo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@andrewcuomo's tweets](https://twitter.com/andrewcuomo). | Data | Quantity | | --- | --- | | Tweets downloaded | 1074 | | Retweets | 353 | | Short tweets | 9 | | Tweets kept | 712 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2slpq0r3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @andrewcuomo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39xi2g7u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39xi2g7u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/andrewcuomo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/andrewcuomo/1619299470278/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/andrewcuomo
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Andrew Cuomo AI Bot @andrewcuomo bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @andrewcuomo's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @andrewcuomo's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1160595659482902528/qDolL48j_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrew Fleer 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@andrewfleer bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@andrewfleer's tweets](https://twitter.com/andrewfleer). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3177</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>691</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>493</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1993</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/sln2oh3p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @andrewfleer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1zx31faw) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1zx31faw/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/andrewfleer'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/andrewfleer/1602258436498/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/andrewfleer
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrew Fleer AI Bot </div> <div style="font-size: 15px; color: #657786">@andrewfleer bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @andrewfleer's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3177</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>691</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>493</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1993</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @andrewfleer's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/andrewfleer'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @andrewfleer's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3177</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>691</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>493</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1993</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @andrewfleer's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/andrewfleer'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @andrewfleer's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3177</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>691</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>493</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1993</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @andrewfleer's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/andrewfleer'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1450701284223324169/JBNbe32v_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Angad Singh Chowdhry</div> <div style="text-align: center; font-size: 14px;">@angadc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Angad Singh Chowdhry. | Data | Angad Singh Chowdhry | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 567 | | Short tweets | 685 | | Tweets kept | 1977 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wsxza1p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angadc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ck4g0as) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ck4g0as/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angadc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/angadc/1635793364907/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/angadc
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Angad Singh Chowdhry @angadc I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Angad Singh Chowdhry. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @angadc's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/817164380081180673/TJnt3Lxe_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Angelina Jolie</div> <div style="text-align: center; font-size: 14px;">@angiejolielive</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Angelina Jolie. | Data | Angelina Jolie | | --- | --- | | Tweets downloaded | 1118 | | Retweets | 71 | | Short tweets | 45 | | Tweets kept | 1002 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fb12gam/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angiejolielive's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2g9ynpkt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2g9ynpkt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angiejolielive') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/angiejolielive/1638476268574/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/angiejolielive
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Angelina Jolie @angiejolielive I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Angelina Jolie. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @angiejolielive's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1220764691829608448/QWMxSgNV_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Angle of Ocean 🤖 AI Bot </div> <div style="font-size: 15px">@angularocean bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@angularocean's tweets](https://twitter.com/angularocean). | Data | Quantity | | --- | --- | | Tweets downloaded | 2933 | | Retweets | 843 | | Short tweets | 430 | | Tweets kept | 1660 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1q9wm9nt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angularocean's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1fr77sf3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1fr77sf3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angularocean') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/angularocean/1616713094074/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/angularocean
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Angle of Ocean AI Bot @angularocean bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @angularocean's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @angularocean's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340757816030720001/4S-FCkbq_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ocupado a ver animes 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@animemajg bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@animemajg's tweets](https://twitter.com/animemajg). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3208</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>42</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1190</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1976</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/10aspnal/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @animemajg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37uq91db) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37uq91db/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/animemajg'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/animemajg/1608731707053/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/animemajg
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ocupado a ver animes AI Bot </div> <div style="font-size: 15px; color: #657786">@animemajg bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @animemajg's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3208</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>42</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1190</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1976</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @animemajg's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/animemajg'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @animemajg's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3208</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>42</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1190</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1976</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @animemajg's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/animemajg'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @animemajg's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3208</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>42</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1190</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1976</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @animemajg's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/animemajg'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1651738261679734786/nx4BYc5Q_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Anitta</div> <div style="text-align: center; font-size: 14px;">@anitta</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Anitta. | Data | Anitta | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 810 | | Short tweets | 534 | | Tweets kept | 1888 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/376pphij/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anitta's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b4ef3pb5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b4ef3pb5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anitta') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/anitta
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Anitta @anitta I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Anitta. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @anitta's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1392739173979680768/0-9vXPxR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Annas</div> <div style="text-align: center; font-size: 14px;">@annasvirtual</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Annas. | Data | Annas | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 90 | | Short tweets | 1495 | | Tweets kept | 1662 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2n0tmbbi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @annasvirtual's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/133nq2yx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/133nq2yx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/annasvirtual') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/annasvirtual/1623063516917/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/annasvirtual
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Annas @annasvirtual I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Annas. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @annasvirtual's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1124513114463117313/QdJB-yA6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anne Billot 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@annel3illot bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@annel3illot's tweets](https://twitter.com/annel3illot). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>128</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>74</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>53</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/qrxucuqf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @annel3illot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3e99l3sl) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3e99l3sl/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/annel3illot'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/annel3illot
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anne Billot AI Bot </div> <div style="font-size: 15px; color: #657786">@annel3illot bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @annel3illot's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>128</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>74</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>53</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @annel3illot's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/annel3illot'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @annel3illot's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>128</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>74</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>53</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @annel3illot's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/annel3illot'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @annel3illot's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>128</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>74</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>53</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @annel3illot's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/annel3illot'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362547638919442435/emFneWlj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">♡ anneliese ♡ 🤖 AI Bot </div> <div style="font-size: 15px">@annepliese bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@annepliese's tweets](https://twitter.com/annepliese). | Data | Quantity | | --- | --- | | Tweets downloaded | 1173 | | Retweets | 256 | | Short tweets | 138 | | Tweets kept | 779 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1eyoidqu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @annepliese's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1vex6b74) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1vex6b74/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/annepliese') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/annepliese/1614355840660/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/annepliese
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
anneliese AI Bot @annepliese bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @annepliese's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @annepliese's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1209379972382461953/NQYeAuam_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ann Hearse 🤖 AI Bot </div> <div style="font-size: 15px">@annhertzz bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@annhertzz's tweets](https://twitter.com/annhertzz). | Data | Quantity | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 34 | | Short tweets | 501 | | Tweets kept | 2712 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3dqfesxb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @annhertzz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/201k0gu2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/201k0gu2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/annhertzz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/annhertzz/1617750291511/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/annhertzz
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ann Hearse AI Bot @annhertzz bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @annhertzz's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @annhertzz's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1186212398006505472/YSiUz0Bt_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">anya 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@annieqqqqqq bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@annieqqqqqq's tweets](https://twitter.com/annieqqqqqq). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>559</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>108</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>120</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>331</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s097d58/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @annieqqqqqq's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zr7lf2if) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zr7lf2if/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/annieqqqqqq'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/annieqqqqqq/1608310442616/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/annieqqqqqq
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">anya AI Bot </div> <div style="font-size: 15px; color: #657786">@annieqqqqqq bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @annieqqqqqq's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>559</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>108</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>120</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>331</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @annieqqqqqq's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/annieqqqqqq'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @annieqqqqqq's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>559</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>108</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>120</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>331</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @annieqqqqqq's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/annieqqqqqq'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @annieqqqqqq's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>559</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>108</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>120</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>331</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @annieqqqqqq's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/annieqqqqqq'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1356042144801316867/hwbU_t5x_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">FD Viktor Arvidsson</div> <div style="text-align: center; font-size: 14px;">@anotherday____</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from FD Viktor Arvidsson. | Data | FD Viktor Arvidsson | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 241 | | Short tweets | 633 | | Tweets kept | 2374 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/s1zlupxg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anotherday____'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tsuctw7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tsuctw7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anotherday____') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/anotherday____/1621191811798/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/anotherday____
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT FD Viktor Arvidsson @anotherday\_\_\_\_ I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from FD Viktor Arvidsson. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @anotherday\_\_\_\_'s tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1354989664906563587/F91Gg-Qj_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Another Eden: The Cat Beyond Time and Space 🤖 AI Bot </div> <div style="font-size: 15px">@anotheredenrpg bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@anotheredenrpg's tweets](https://twitter.com/anotheredenrpg). | Data | Quantity | | --- | --- | | Tweets downloaded | 1651 | | Retweets | 82 | | Short tweets | 75 | | Tweets kept | 1494 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gpo3g75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anotheredenrpg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rb3206ol) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rb3206ol/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anotheredenrpg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/anotheredenrpg/1615596205043/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/anotheredenrpg
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Another Eden: The Cat Beyond Time and Space AI Bot @anotheredenrpg bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @anotheredenrpg's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @anotheredenrpg's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375290305046528001/ghCDyYfm_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Another 🤖 AI Bot </div> <div style="font-size: 15px">@anotherpattern bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@anotherpattern's tweets](https://twitter.com/anotherpattern). | Data | Quantity | | --- | --- | | Tweets downloaded | 1137 | | Retweets | 2 | | Short tweets | 147 | | Tweets kept | 988 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3lb52jwv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anotherpattern's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33p25f4f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33p25f4f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anotherpattern') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/anotherpattern/1616768869837/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/anotherpattern
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Another AI Bot @anotherpattern bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @anotherpattern's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @anotherpattern's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1248767771875446784/m1vW-bvg_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anoush #JusticeforBreonnaTaylor 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@anoushnajarian bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@anoushnajarian's tweets](https://twitter.com/anoushnajarian). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3208</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2926</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>119</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>163</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/32edy0zq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anoushnajarian's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/47coh41e) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/47coh41e/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/anoushnajarian'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/anoushnajarian/1604082481494/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/anoushnajarian
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anoush #JusticeforBreonnaTaylor AI Bot </div> <div style="font-size: 15px; color: #657786">@anoushnajarian bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @anoushnajarian's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3208</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2926</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>119</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>163</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @anoushnajarian's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/anoushnajarian'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @anoushnajarian's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3208</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2926</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>119</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>163</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @anoushnajarian's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/anoushnajarian'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @anoushnajarian's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3208</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2926</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>119</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>163</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @anoushnajarian's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/anoushnajarian'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]