sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/ed9a330b2539058076e0c48398599b09.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joni Mitchell</div> <a href="https://genius.com/artists/joni-mitchell"> <div style="text-align: center; font-size: 14px;">@joni-mitchell</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Joni Mitchell. Dataset is available [here](https://huggingface.co/datasets/huggingartists/joni-mitchell). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/joni-mitchell") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1m5n59kk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Joni Mitchell's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34saoh5x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34saoh5x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/joni-mitchell') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/joni-mitchell") model = AutoModelWithLMHead.from_pretrained("huggingartists/joni-mitchell") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/joni-mitchell"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/joni-mitchell
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/joni-mitchell", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/joni-mitchell #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joni Mitchell</div> <a href="URL <div style="text-align: center; font-size: 14px;">@joni-mitchell</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Joni Mitchell. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Joni Mitchell's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Joni Mitchell.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Joni Mitchell's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/joni-mitchell #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Joni Mitchell.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Joni Mitchell's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/joni-mitchell #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Joni Mitchell.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Joni Mitchell's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.040699318051338196, 0.17783977091312408, -0.002562006236985326, 0.051645513623952866, 0.09995340555906296, 0.008734412491321564, 0.08780484646558762, 0.10993945598602295, 0.01515869703143835, 0.07950081676244736, 0.07477694004774094, 0.037503428757190704, 0.06395974010229111, 0.08426068723201752, 0.06065952777862549, -0.2074059695005417, 0.035280585289001465, -0.07851062715053558, 0.018562104552984238, 0.10516487807035446, 0.08495660126209259, -0.06705959886312485, 0.0820305347442627, 0.025763479992747307, -0.06401609629392624, 0.024511754512786865, 0.0006131581612862647, -0.05341619253158569, 0.08695728331804276, 0.05637991428375244, 0.031036386266350746, 0.04227782040834427, 0.06175912544131279, -0.18379122018814087, 0.0321674644947052, 0.12727223336696625, 0.03409545496106148, 0.08165566623210907, 0.05009489879012108, -0.08664771914482117, 0.12785308063030243, -0.02782919444143772, 0.08322932571172714, 0.05039925128221512, -0.11610706150531769, -0.11960164457559586, -0.13500317931175232, 0.1052650436758995, 0.08913680166006088, 0.08556243777275085, -0.02810593694448471, 0.0869792029261589, -0.022625746205449104, 0.04681749641895294, 0.24152599275112152, -0.22711938619613647, -0.006974548101425171, 0.07619684189558029, 0.058902908116579056, 0.024110140278935432, -0.08364126086235046, 0.011946817860007286, 0.05196380615234375, 0.0330367386341095, 0.044793274253606796, -0.027357185259461403, 0.13867498934268951, 0.030676456168293953, -0.09969311952590942, -0.08225918561220169, 0.1110047772526741, -0.02882266417145729, -0.08150007575750351, -0.13331598043441772, -0.007432587910443544, -0.00711936317384243, 0.04169532656669617, 0.017473367974162102, -0.00244001648388803, 0.0057467808946967125, -0.046693526208400726, -0.11395721137523651, -0.06675322353839874, -0.04403140768408775, -0.009446673095226288, 0.05605100095272064, 0.041248664259910583, 0.04132316634058952, -0.08762940764427185, 0.23012010753154755, 0.01098307128995657, -0.10575457662343979, -0.05359587445855141, -0.10574518889188766, -0.07753267884254456, -0.04944440349936485, 0.0016461332561448216, 0.0044784629717469215, -0.031160324811935425, 0.15049172937870026, -0.04681308940052986, 0.02340848185122013, -0.02269776165485382, 0.0020407564006745815, 0.13594308495521545, 0.12840276956558228, -0.11822552978992462, -0.0522119365632534, 0.07403421401977539, 0.018913602456450462, -0.06489089876413345, -0.04671680927276611, -0.006952311843633652, -0.016421813517808914, 0.04136631265282631, 0.07619402557611465, 0.07861600816249847, 0.05587770417332649, 0.0015179780311882496, -0.06305287778377533, 0.08957330137491226, -0.129400834441185, 0.011808434501290321, -0.0030781500972807407, -0.050228193402290344, 0.026270611211657524, 0.06747794151306152, 0.004738950170576572, -0.11487039178609848, 0.08879484236240387, -0.07273989170789719, -0.0512344166636467, -0.07915830612182617, -0.10185617953538895, -0.0038285194896161556, -0.04957161098718643, -0.03419855982065201, -0.0769476592540741, -0.19496506452560425, -0.04151906818151474, 0.021015822887420654, -0.04575515538454056, -0.03468997776508331, 0.023175163194537163, -0.025206532329320908, 0.004909212701022625, -0.01949932426214218, -0.03434273973107338, -0.029921256005764008, 0.029280800372362137, -0.06895080953836441, 0.03897592052817345, 0.08057834953069687, 0.04704006761312485, -0.12339303642511368, 0.07770203799009323, -0.10807878524065018, 0.12482253462076187, -0.018274987116456032, 0.005817204248160124, -0.10278607904911041, -0.07455079257488251, -0.0265547726303339, -0.03105539083480835, 0.023199504241347313, 0.133253276348114, -0.1524280607700348, -0.03779826685786247, 0.19194792211055756, -0.06855296343564987, -0.07548557221889496, 0.06564974784851074, -0.07350603491067886, 0.028708795085549355, 0.11780344694852829, 0.0669056698679924, 0.1454695612192154, -0.10922332108020782, -0.07472249865531921, -0.04450177028775215, -0.05608842894434929, 0.16812607645988464, 0.034860529005527496, -0.02384248934686184, 0.02673124335706234, 0.0003832844668067992, -0.03879810869693756, -0.002341187559068203, -0.019670242443680763, -0.02994052693247795, -0.025608429685235023, -0.019189922139048576, 0.020302874967455864, -0.032335661351680756, -0.05145740136504173, -0.013913729228079319, -0.09683874994516373, 0.07754656672477722, 0.09826456755399704, -0.07207535207271576, 0.014004629105329514, -0.09178545325994492, 0.03437921777367592, -0.06634167581796646, 0.007869100198149681, -0.1747138351202011, -0.03651777282357216, 0.024934418499469757, -0.07878876477479935, 0.06723707169294357, 0.027125872671604156, 0.04717016592621803, 0.07355088740587234, -0.01965697482228279, -0.008862107060849667, -0.038375526666641235, -0.005110091995447874, -0.030345886945724487, -0.16955789923667908, -0.052188485860824585, -0.045020248740911484, 0.07506291568279266, -0.1146467849612236, 0.00041542205144651234, 0.07331907004117966, 0.1401415914297104, 0.029303962364792824, -0.07231411337852478, 0.052425771951675415, -0.028949040919542313, -0.03065783716738224, -0.10357128083705902, -0.04107581079006195, 0.0012339428067207336, -0.01634160242974758, 0.15449625253677368, -0.13859446346759796, -0.09538383781909943, 0.1170249730348587, 0.11037930101156235, -0.07776229828596115, 0.04944963753223419, -0.06826326251029968, -0.022949159145355225, -0.05492035299539566, -0.04780183359980583, 0.25840508937835693, 0.03008512780070305, 0.09267731010913849, -0.0967053547501564, -0.08520495891571045, -0.011387254111468792, -0.03407076373696327, -0.03629545867443085, 0.040059156715869904, 0.03736197575926781, -0.14862190186977386, 0.04988401010632515, -0.0061838822439312935, 0.08192449808120728, 0.20743781328201294, 0.03304218873381615, -0.09838329255580902, -0.04817431420087814, -0.06874223798513412, -0.0028633123729377985, 0.08537746220827103, -0.005659116897732019, 0.03337150812149048, 0.039520446211099625, 0.04427899047732353, 0.04499206691980362, -0.11739309877157211, 0.00898969266563654, 0.06371291726827621, -0.029402200132608414, -0.06891670823097229, 0.018213964998722076, 0.02667129784822464, 0.07769230753183365, 0.07242469489574432, 0.11829591542482376, -0.05352404713630676, -0.05413256958127022, -0.13867570459842682, 0.1316094994544983, -0.08844006806612015, -0.20391741394996643, -0.14624910056591034, -0.051000673323869705, -0.0031164318788796663, 0.003788225119933486, 0.030811414122581482, -0.04843141511082649, -0.044328395277261734, -0.10651504993438721, 0.08485627919435501, -0.02692258544266224, -0.02066817879676819, 0.011890355497598648, 0.015464247204363346, -0.01501033641397953, -0.12229153513908386, -0.029167596250772476, 0.030945423990488052, -0.06800958514213562, -0.011722334660589695, 0.023210598155856133, 0.04452500864863396, 0.151119202375412, 0.0056401691399514675, 0.007787719834595919, -0.01754191517829895, 0.2768819034099579, -0.11060033738613129, 0.06745406240224838, 0.18177956342697144, -0.012808839790523052, 0.05221196636557579, 0.0655839741230011, -0.0023186253383755684, -0.04896474629640579, 0.05721620097756386, 0.06161130219697952, -0.06989741325378418, -0.21681061387062073, -0.02966785430908203, -0.017810529097914696, 0.007393082603812218, 0.11612629145383835, 0.030861398205161095, 0.04761974513530731, 0.010589158162474632, -0.10448560118675232, 0.05749117583036423, 0.02628553844988346, 0.0970381498336792, -0.06294772773981094, 0.0005998577689751983, 0.05166758969426155, -0.05740879848599434, 0.04045878350734711, 0.11397457867860794, 0.04355590417981148, 0.21232227981090546, -0.07703730463981628, 0.08445446193218231, 0.0814492329955101, 0.09939272701740265, 0.019130637869238853, 0.03361488878726959, -0.034500181674957275, 0.027317531406879425, 0.013385619036853313, -0.09767341613769531, -0.007109686732292175, 0.03599921241402626, 0.030085867270827293, 0.00044469465501606464, -0.04700058326125145, -0.07789471000432968, 0.0472855307161808, 0.23208755254745483, 0.045022569596767426, -0.1723601073026657, -0.09963226318359375, 0.06611992418766022, -0.04778195917606354, -0.0509629063308239, -0.012052238918840885, 0.08256068825721741, -0.20336224138736725, 0.04111919924616814, -0.026431160047650337, 0.11462627351284027, -0.12902019917964935, -0.0023488234728574753, 0.06377128511667252, 0.038713205605745316, -0.06633705645799637, 0.06407416611909866, -0.14036232233047485, 0.07409502565860748, 0.006378420628607273, 0.07826883345842361, -0.06390087306499481, 0.021622730419039726, 0.03382877632975578, 0.050017062574625015, 0.0828351229429245, 0.019990526139736176, 0.04108397662639618, -0.0364263691008091, -0.03750171512365341, -0.005293537862598896, 0.041733209043741226, -0.09546449780464172, 0.1229739561676979, -0.03518156334757805, 0.026384789496660233, -0.030377378687262535, -0.06663218885660172, -0.10017520189285278, -0.13768675923347473, 0.07501877844333649, -0.1009850949048996, -0.004289700649678707, -0.06593791395425797, -0.027935052290558815, 0.01640797220170498, 0.20870272815227509, -0.10684589296579361, -0.08147839456796646, -0.12919233739376068, -0.011027669534087181, 0.14286011457443237, -0.07603485137224197, -0.0038698960561305285, -0.007739243097603321, 0.15737655758857727, -0.0129782073199749, -0.14444299042224884, -0.009116320870816708, -0.06724648177623749, -0.1800563484430313, -0.024079790338873863, 0.15020647644996643, 0.06963476538658142, 0.03248180076479912, 0.0033441931009292603, 0.012542899698019028, -0.05015033856034279, -0.15600046515464783, 0.03083076700568199, 0.16460692882537842, 0.013723757117986679, 0.03472509980201721, 0.03095279075205326, 0.011080414988100529, -0.11873694509267807, 0.025004686787724495, 0.04366396367549896, 0.1818075329065323, -0.06968671083450317, 0.16619986295700073, 0.03198093920946121, -0.09377255290746689, -0.183275043964386, 0.04076438397169113, -0.0031238803640007973, 0.027741262689232826, 0.027975639328360558, -0.1743626594543457, 0.02880030684173107, 0.011437886394560337, 0.0020577791146934032, 0.0637381300330162, -0.3537907600402832, -0.14815738797187805, 0.020188242197036743, 0.023239756003022194, -0.07410692423582077, -0.04411296173930168, -0.03700132668018341, -0.07210657000541687, -0.26938438415527344, 0.07033169269561768, -0.12818120419979095, 0.08036000281572342, 0.00443424005061388, 0.07595425844192505, 0.04665917158126831, -0.06759577989578247, 0.1306140422821045, -0.019472340121865273, 0.06738143414258957, -0.0833817720413208, -0.045972101390361786, 0.09602653235197067, -0.06517583131790161, 0.10332508385181427, 0.007255190517753363, 0.0919698104262352, -0.10908198356628418, -0.07511445879936218, -0.08381880819797516, 0.013219153508543968, -0.05250047147274017, -0.09477061778306961, -0.07441116869449615, 0.09355122596025467, 0.12337030470371246, -0.034022752195596695, -0.08009819686412811, -0.05272752791643143, -0.0018113047117367387, 0.0887996107339859, 0.1142200157046318, 0.08323097229003906, -0.08854763209819794, 0.017581157386302948, 0.0054625957272946835, 0.032457027584314346, -0.1711927205324173, 0.038297057151794434, 0.0832182765007019, 0.04997977241873741, 0.10854632407426834, 0.006640230305492878, -0.16100026667118073, 0.016719549894332886, 0.03436266630887985, -0.16817685961723328, -0.10480265319347382, -0.04715840891003609, -0.010228557512164116, -0.0914907231926918, -0.040496211498975754, 0.14496010541915894, -0.04294419288635254, -0.0340748131275177, -0.00046044966438785195, 0.05427013337612152, -0.04954423010349274, 0.10176914185285568, 0.021001793444156647, 0.05239444598555565, -0.06786009669303894, 0.11519581824541092, 0.060310378670692444, 0.0169502142816782, 0.033613137900829315, 0.05025557801127434, -0.08421944081783295, -0.0017799260094761848, -0.08740934729576111, 0.02006254531443119, -0.026546793058514595, -0.00930013321340084, -0.011266949586570263, -0.03589567542076111, 0.028733378276228905, 0.09907399863004684, -0.014036139473319054, 0.11003929376602173, -0.037565018981695175, -0.014980433508753777, -0.13372153043746948, 0.07494322210550308, 0.04718978703022003, 0.01808203011751175, -0.10493189841508865, 0.19177396595478058, 0.028088195249438286, 0.08938992768526077, -0.04029123857617378, -0.05614318326115608, -0.07819361984729767, -0.007238524500280619, -0.1696578562259674, -0.05199268087744713, -0.09389811009168625, -0.03220604732632637, -0.02179787866771221, -0.03886936232447624, -0.022174717858433723, 0.06571979075670242, -0.026572726666927338, -0.057870227843523026, -0.04785565659403801, 0.05399591848254204, -0.1530875563621521, 0.017958208918571472, 0.11649610102176666, -0.06278155744075775, 0.10876671969890594, 0.05219985172152519, -0.040875695645809174, 0.01417767908424139, -0.09202703833580017, 0.02265160158276558, -0.037171751260757446, 0.008689794689416885, 0.02825663797557354, -0.14737775921821594, 0.015116601251065731, -0.052797649055719376, -0.06896372139453888, 0.010635188780725002, 0.013071388006210327, -0.1060071587562561, 0.0018610181286931038, 0.07678472250699997, -0.003077940084040165, -0.07082511484622955, 0.0711468979716301, 0.08098627626895905, 0.0265391543507576, 0.059746697545051575, -0.035750940442085266, 0.07743378728628159, -0.16480231285095215, -0.05283176153898239, 0.0079277278855443, 0.011852462776005268, 0.03330716863274574, -0.011122950352728367, 0.04380543902516365, -0.022104987874627113, 0.19408495724201202, -0.002963704988360405, -0.02609734982252121, 0.03824149817228317, -0.03776067495346069, -0.006593210157006979, 0.042121294885873795, 0.04380565509200096, -0.048677992075681686, -0.031031066551804543, -0.025132430717349052, -0.013467693701386452, -0.07106795161962509, -0.01578211598098278, 0.11368674039840698, 0.06601230055093765, 0.175767183303833, -0.03144191578030586, 0.05765073373913765, -0.0258334893733263, -0.11693117022514343, -0.033994387835264206, -0.027388792484998703, 0.04705481231212616, -0.07784023135900497, 0.07440517097711563, 0.16579237580299377, -0.16002069413661957, 0.11290562897920609, 0.017650846391916275, -0.053083933889865875, -0.0999208316206932, -0.17834343016147614, -0.009698253124952316, -0.035907451063394547, 0.03966492414474487, -0.1267891675233841, 0.07644155621528625, 0.018277935683727264, 0.03200783208012581, -0.06852751225233078, 0.1295952945947647, -0.043343450874090195, -0.1119760200381279, 0.03597726672887802, 0.021503455936908722, 0.018036577850580215, 0.039835259318351746, 0.07152451574802399, 0.03444186598062515, -0.011206169612705708, 0.05646016076207161, 0.034198615700006485, 0.029757395386695862, 0.03368985652923584, -0.021036049351096153, -0.05957861617207527, 0.02327350527048111, 0.011499021202325821, 0.028243504464626312, 0.11397207528352737, 0.07833950966596603, -0.014237681403756142, -0.03150489553809166, 0.28447192907333374, -0.03465630114078522, -0.03749050572514534, -0.17903661727905273, 0.16473320126533508, 0.024555396288633347, -0.01655900664627552, 0.04017352685332298, -0.1336991786956787, 0.009996084496378899, 0.14931412041187286, 0.17563574016094208, -0.04891271889209747, 0.015624643303453922, -0.04292074218392372, 0.013684128411114216, 0.03211422637104988, 0.07837504893541336, 0.06337743252515793, 0.18745239078998566, -0.039185117930173874, 0.04201902076601982, -0.006225785240530968, -0.0215946976095438, 0.00031231323373503983, 0.11379320919513702, -0.032588109374046326, -0.00466671260073781, -0.061905309557914734, 0.091963991522789, -0.07552969455718994, -0.25785043835639954, -0.006194679532200098, -0.06273217499256134, -0.09074095636606216, 0.041704315692186356, -0.03243505209684372, -0.024585122242569923, 0.08344641327857971, 0.02020643651485443, -0.023918883875012398, 0.13674719631671906, 0.0358223132789135, -0.0408247672021389, -0.02277054823935032, 0.09193473309278488, -0.047762349247932434, 0.17859631776809692, -0.02858850546181202, -0.003912097774446011, 0.08603503555059433, 0.026804259046912193, -0.12219460308551788, 0.003206853987649083, 0.04529832676053047, -0.08724559098482132, -0.036869797855615616, 0.19630450010299683, 0.007258618250489235, 0.05107130482792854, 0.0588516928255558, -0.03895953670144081, 0.027899164706468582, -0.06639634072780609, 0.04747842624783516, -0.14578299224376678, 0.047278713434934616, -0.07105923444032669, 0.14709541201591492, 0.17941364645957947, -0.071189284324646, 0.021147359162569046, -0.05390048027038574, 0.0036214529536664486, -0.019812941551208496, 0.06212766468524933, -0.021123986691236496, -0.10423088818788528, 0.028107549995183945, -0.0006165773374959826, 0.032895129173994064, -0.2039535939693451, -0.07249213755130768, 0.04897138103842735, -0.05833946168422699, 0.017134549096226692, 0.17423416674137115, 0.04615454003214836, 0.056599024683237076, -0.024956032633781433, -0.011062834411859512, -0.010420436970889568, 0.11104533821344376, -0.14597639441490173, -0.08584507554769516 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/54520386ec39aca6408c7e2c156ae10a.399x399x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kanye West</div> <a href="https://genius.com/artists/kanye-west"> <div style="text-align: center; font-size: 14px;">@kanye-west</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Kanye West. Dataset is available [here](https://huggingface.co/datasets/huggingartists/kanye-west). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kanye-west") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/hl7afoso/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Kanye West's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28dw8m5v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28dw8m5v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kanye-west') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kanye-west") model = AutoModelWithLMHead.from_pretrained("huggingartists/kanye-west") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/kanye-west"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/kanye-west
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kanye-west", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kanye-west #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kanye West</div> <a href="URL <div style="text-align: center; font-size: 14px;">@kanye-west</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Kanye West. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Kanye West's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Kanye West.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kanye West's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kanye-west #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Kanye West.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kanye West's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kanye-west #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Kanye West.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kanye West's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.0425255186855793, 0.16753380000591278, -0.002695259638130665, 0.051314905285835266, 0.10421875864267349, 0.013224514201283455, 0.07250922173261642, 0.10899911820888519, 0.01257864385843277, 0.06882788985967636, 0.05594370886683464, 0.04283688962459564, 0.07708586752414703, 0.07227626442909241, 0.06749610602855682, -0.22831329703330994, 0.03806208074092865, -0.07179915904998779, 0.007202340755611658, 0.09403928369283676, 0.08373034745454788, -0.08015129715204239, 0.07609052956104279, 0.037608273327350616, -0.062340278178453445, 0.0023708376102149487, 0.0017012666212394834, -0.05855265259742737, 0.0720592737197876, 0.06405556201934814, 0.03575054556131363, 0.029916811734437943, 0.06771650165319443, -0.17575925588607788, 0.02637522481381893, 0.11761898547410965, 0.025725331157445908, 0.07677415013313293, 0.07842504978179932, -0.08464475721120834, 0.11818554997444153, -0.028401106595993042, 0.08211593329906464, 0.05769116058945656, -0.11144234985113144, -0.10313320904970169, -0.14569413661956787, 0.0798511728644371, 0.08752654492855072, 0.09538514912128448, -0.030681679025292397, 0.0909324586391449, -0.03437374159693718, 0.053847234696149826, 0.2420729398727417, -0.2394215315580368, -0.00021819029643666, 0.08396017551422119, 0.0645621195435524, 0.006250872276723385, -0.0985889658331871, 0.014622333459556103, 0.0473073311150074, 0.02722201868891716, 0.045604217797517776, -0.023056847974658012, 0.1430990993976593, 0.018916010856628418, -0.11045292764902115, -0.07801163196563721, 0.10181017220020294, -0.02014191262423992, -0.0751742273569107, -0.13660190999507904, 0.00812356173992157, -0.04942691698670387, 0.03036898747086525, 0.022505633533000946, -0.0060769980773329735, -0.0036487914621829987, -0.046712785959243774, -0.10598058253526688, -0.07288065552711487, -0.03768826276063919, -0.02699965052306652, 0.06260906904935837, 0.041173055768013, 0.03302907571196556, -0.07311379164457321, 0.22082650661468506, 0.014900355599820614, -0.1057288870215416, -0.050009727478027344, -0.10401774197816849, -0.09467493742704391, -0.05049801245331764, -0.004796587862074375, 0.010121087543666363, -0.027975143864750862, 0.14498595893383026, -0.01763297989964485, 0.020438456907868385, -0.0219708364456892, -0.0010168799199163914, 0.13580898940563202, 0.15376056730747223, -0.12739142775535583, -0.0470317006111145, 0.07001365721225739, -0.0036338032223284245, -0.06787822395563126, -0.0489465668797493, -0.005551052279770374, -0.034150902181863785, 0.051291000097990036, 0.08318990468978882, 0.07383941113948822, 0.06361538916826248, -0.003898151684552431, -0.058425337076187134, 0.07997963577508926, -0.14031541347503662, 0.012582904659211636, -0.004366665612906218, -0.06095659360289574, 0.0467870756983757, 0.05257648974657059, 0.008058990351855755, -0.10656731575727463, 0.07467597723007202, -0.08237982541322708, -0.03778989985585213, -0.08110934495925903, -0.10973221808671951, 0.001383093185722828, -0.06139114871621132, -0.021250369027256966, -0.07981178164482117, -0.17992866039276123, -0.04331924393773079, 0.009540854953229427, -0.0536184199154377, -0.018454698845744133, 0.020745068788528442, -0.04547495394945145, 0.006188425701111555, -0.009617993608117104, -0.004283316433429718, -0.02614113688468933, 0.03237059339880943, -0.08377719670534134, 0.03676219284534454, 0.09632343798875809, 0.04468461871147156, -0.11910159140825272, 0.07225757092237473, -0.13755428791046143, 0.12692959606647491, -0.027994846925139427, 0.021766025573015213, -0.09023129940032959, -0.08165664970874786, -0.003893323941156268, -0.03621729090809822, 0.027819376438856125, 0.12418114393949509, -0.1698436588048935, -0.014610758051276207, 0.1868952363729477, -0.0666826143860817, -0.07489553838968277, 0.06937749683856964, -0.07347361743450165, 0.03630102798342705, 0.11243308335542679, 0.07354222238063812, 0.16546320915222168, -0.11565142124891281, -0.08629430830478668, -0.041456446051597595, -0.07757201045751572, 0.1653624027967453, 0.03144332766532898, -0.021429218351840973, 0.021293694153428078, 0.007607963401824236, -0.030815627425909042, 0.006438515614718199, -0.03067304566502571, -0.03602275252342224, -0.016960928216576576, -0.016513779759407043, 0.019685819745063782, -0.04237537086009979, -0.043103013187646866, -0.01345116551965475, -0.09538206458091736, 0.05671374127268791, 0.10365147143602371, -0.07908812165260315, 0.015768665820360184, -0.10217691212892532, 0.04950091615319252, -0.060487885028123856, 0.0035720644518733025, -0.18072712421417236, -0.04204922169446945, 0.022765159606933594, -0.08495954424142838, 0.0537278838455677, 0.031121809035539627, 0.04975797235965729, 0.06890834122896194, -0.01145879179239273, -0.01423278171569109, -0.03725185617804527, 0.005036313086748123, -0.04838038608431816, -0.15793143212795258, -0.048939626663923264, -0.04654496908187866, 0.06786736845970154, -0.1073710173368454, 0.00004720703145721927, 0.08496066182851791, 0.14931730926036835, 0.024015186354517937, -0.05434662103652954, 0.042891085147857666, -0.030249228700995445, -0.034430429339408875, -0.10121820122003555, -0.047191064804792404, 0.010011042468249798, -0.03537708520889282, 0.16269385814666748, -0.14802886545658112, -0.11284427344799042, 0.12841439247131348, 0.08470217883586884, -0.08146380633115768, 0.041247159242630005, -0.06195629760622978, -0.019062694162130356, -0.043649762868881226, -0.05850197374820709, 0.23231501877307892, 0.03646785020828247, 0.08841543644666672, -0.08979756385087967, -0.08725675940513611, -0.0011221891036257148, -0.04010162129998207, -0.04059891402721405, 0.04839828982949257, 0.011287340894341469, -0.14179551601409912, 0.04899400472640991, 0.002500085858628154, 0.07737997174263, 0.19699060916900635, 0.01804172247648239, -0.09669876098632812, -0.062288157641887665, -0.07661473751068115, 0.002787192352116108, 0.07909546047449112, -0.005714788567274809, 0.035994719713926315, 0.04678330197930336, 0.04630381613969803, 0.04601731151342392, -0.11093778163194656, 0.008421559818089008, 0.05201173201203346, -0.03196528181433678, -0.04811060056090355, 0.02560732141137123, 0.02647976018488407, 0.08239399641752243, 0.05805131420493126, 0.11232791841030121, -0.0433310940861702, -0.0539327934384346, -0.1303785890340805, 0.12493683397769928, -0.10122857987880707, -0.18913845717906952, -0.13506457209587097, -0.07363269478082657, 0.002849075011909008, 0.0061089638620615005, 0.0254720076918602, -0.04197777435183525, -0.05159325152635574, -0.09884878247976303, 0.07047345489263535, -0.038135185837745667, -0.01263126078993082, 0.009785233996808529, 0.024490250274538994, -0.0205912496894598, -0.11758970469236374, -0.02699018456041813, 0.037845510989427567, -0.08257002383470535, 0.00913604162633419, 0.025947317481040955, 0.06532801687717438, 0.14274924993515015, 0.0037097998429089785, 0.006081691011786461, -0.02219107747077942, 0.27417758107185364, -0.11395273357629776, 0.05620737373828888, 0.17232315242290497, -0.01231724489480257, 0.05725722387433052, 0.05651334673166275, -0.006957316305488348, -0.04640345275402069, 0.058014996349811554, 0.052104394882917404, -0.06063924357295036, -0.21003314852714539, -0.032641805708408356, -0.019394146278500557, 0.014257188886404037, 0.09500741213560104, 0.027152806520462036, 0.04133496806025505, 0.01625903695821762, -0.09008516371250153, 0.0421089231967926, 0.03042774833738804, 0.09725344926118851, -0.05696575343608856, -0.002627372043207288, 0.04538986459374428, -0.0596323199570179, 0.03569311276078224, 0.11691747605800629, 0.027310341596603394, 0.2383863627910614, -0.07502268999814987, 0.08489414304494858, 0.08207877725362778, 0.11070018261671066, 0.026246698573231697, 0.04759138822555542, -0.014575671404600143, 0.028170011937618256, 0.016009453684091568, -0.09325597435235977, 0.0003071548999287188, 0.03265024349093437, 0.03712359815835953, -0.01604137197136879, -0.056445103138685226, -0.07502719014883041, 0.05752547085285187, 0.1983923763036728, 0.047458335757255554, -0.1662411242723465, -0.08500338345766068, 0.0656849592924118, -0.03911387175321579, -0.049448996782302856, -0.016901768743991852, 0.06532947719097137, -0.20776736736297607, 0.03990389406681061, -0.02821127325296402, 0.10811666399240494, -0.12731648981571198, -0.011706305667757988, 0.04293106123805046, 0.052834849804639816, -0.06719128042459488, 0.08415266871452332, -0.17814838886260986, 0.0737719014286995, 0.0051333289593458176, 0.08565108478069305, -0.07388393580913544, 0.010890139266848564, 0.037716783583164215, 0.02364804595708847, 0.09401170909404755, 0.016452716663479805, 0.030970660969614983, -0.07974818348884583, -0.04587452858686447, -0.01322850864380598, 0.054020266979932785, -0.07834901660680771, 0.13890023529529572, -0.032380424439907074, 0.024812787771224976, -0.02800729312002659, -0.07785383611917496, -0.11028263717889786, -0.14456133544445038, 0.06851418316364288, -0.12157685309648514, 0.003159607294946909, -0.05535290762782097, -0.032179418951272964, -0.030304893851280212, 0.16717886924743652, -0.08157419413328171, -0.07926076650619507, -0.13539929687976837, -0.012650824151933193, 0.15945333242416382, -0.08464370667934418, 0.017607077956199646, 0.0064550102688372135, 0.1626701056957245, 0.0045433249324560165, -0.13057662546634674, -0.01194720808416605, -0.07073512673377991, -0.1892256885766983, -0.01024250965565443, 0.13087108731269836, 0.08355884999036789, 0.04252636060118675, 0.017215196043252945, 0.008775962516665459, -0.04373215138912201, -0.16592726111412048, 0.021885130554437637, 0.15920059382915497, 0.03422863781452179, 0.0403020866215229, 0.015417439863085747, 0.011635730043053627, -0.137424036860466, 0.02176677994430065, 0.0558541938662529, 0.19195853173732758, -0.07612843066453934, 0.1469598263502121, 0.014313476160168648, -0.09046675264835358, -0.18070848286151886, 0.03307751566171646, 0.005432982929050922, 0.03856941685080528, 0.04446221515536308, -0.1543581485748291, 0.020543362945318222, 0.02065013349056244, 0.0037778657861053944, 0.06179411709308624, -0.33143821358680725, -0.14298753440380096, 0.02167542092502117, 0.02576545625925064, -0.08858050405979156, -0.03890867158770561, -0.03129839524626732, -0.07270451635122299, -0.25965696573257446, 0.08257466554641724, -0.11875572055578232, 0.08560662716627121, 0.01705329306423664, 0.06583859771490097, 0.049874722957611084, -0.06608140468597412, 0.13698601722717285, -0.002463557990267873, 0.07491568475961685, -0.09151842445135117, -0.04032976180315018, 0.12467958778142929, -0.05826058238744736, 0.09453261643648148, 0.02738804556429386, 0.08644270151853561, -0.10815690457820892, -0.07212547212839127, -0.07898560166358948, 0.01517182681709528, -0.05921219661831856, -0.09202295541763306, -0.08398265391588211, 0.10209982842206955, 0.1306600570678711, -0.04281394183635712, -0.10129435360431671, -0.03887443616986275, -0.049168042838573456, 0.06981920450925827, 0.11212538927793503, 0.11513156443834305, -0.0795416459441185, 0.011329789645969868, 0.003809301881119609, 0.016938893124461174, -0.12599849700927734, 0.0427515022456646, 0.08948277682065964, 0.033502548933029175, 0.10379499942064285, 0.012860961258411407, -0.16940943896770477, 0.025853516533970833, 0.03141381964087486, -0.15044665336608887, -0.10996948927640915, -0.03910337761044502, -0.03235061466693878, -0.0811736211180687, -0.04729466512799263, 0.13021013140678406, -0.03020426444709301, -0.03256713226437569, -0.0007709471392445266, 0.05626467615365982, -0.0457397922873497, 0.11224576085805893, 0.029491860419511795, 0.043802373111248016, -0.07188087701797485, 0.10836241394281387, 0.05601423978805542, 0.012987713329494, 0.0342126227915287, 0.03450416028499603, -0.09329661726951599, -0.007878057658672333, -0.07724989950656891, 0.047886352986097336, -0.04851609840989113, -0.0073800962418317795, -0.003904603887349367, -0.04184727743268013, 0.022689271718263626, 0.09429410099983215, 0.0035038532223552465, 0.1111137792468071, -0.0268397256731987, -0.014106130227446556, -0.1351795792579651, 0.08768709003925323, 0.07150468230247498, 0.01088707335293293, -0.11480841040611267, 0.20016634464263916, 0.023327047005295753, 0.09547065198421478, -0.0424051396548748, -0.05173712968826294, -0.07396908104419708, -0.007366804406046867, -0.1545209139585495, -0.041375987231731415, -0.09859548509120941, -0.03425329551100731, -0.0208315160125494, -0.04147091507911682, -0.02296193316578865, 0.0509125255048275, -0.02831103652715683, -0.06177511066198349, -0.05026252940297127, 0.05264928936958313, -0.1337774246931076, -0.0009204915841110051, 0.11823313683271408, -0.07307472079992294, 0.10526365041732788, 0.058472540229558945, -0.03149762377142906, 0.02594643644988537, -0.07947413623332977, 0.020454654470086098, -0.0347457230091095, 0.013600684702396393, 0.0321713425219059, -0.15142765641212463, 0.0053667291067540646, -0.04946253076195717, -0.061769999563694, 0.011829079128801823, 0.00018156730220653117, -0.1192987784743309, -0.00405106320977211, 0.06961287558078766, 0.006494322791695595, -0.07661646604537964, 0.07469647377729416, 0.08281219005584717, 0.03572085127234459, 0.08678782731294632, -0.02565123327076435, 0.09339313954114914, -0.1559542864561081, -0.050525564700365067, -0.000738846545573324, 0.010075613856315613, 0.06633161753416061, -0.012856118381023407, 0.0528167225420475, -0.022321032360196114, 0.20306888222694397, 0.007668107748031616, -0.026481136679649353, 0.027733875438570976, -0.020479336380958557, -0.0018743299879133701, 0.04896659776568413, 0.08943777531385422, -0.03847630321979523, -0.03206731379032135, -0.021747414022684097, 0.001015205169096589, -0.06686141341924667, -0.03851686045527458, 0.1124008446931839, 0.052287567406892776, 0.14459948241710663, -0.029678544029593468, 0.05593908205628395, -0.0339956171810627, -0.10849793255329132, -0.04528651386499405, -0.038314808160066605, 0.03589005768299103, -0.07914307713508606, 0.08909851312637329, 0.15747421979904175, -0.1635020524263382, 0.12106169760227203, 0.02330624870955944, -0.06889799982309341, -0.09488330781459808, -0.2041439712047577, -0.018651194870471954, -0.015410943888127804, 0.037515789270401, -0.12471533566713333, 0.08528894186019897, 0.0412847101688385, 0.029867587611079216, -0.06602760404348373, 0.11878043413162231, -0.06156120076775551, -0.10985038429498672, 0.03592308610677719, 0.023410966619849205, 0.01369519717991352, 0.03915075212717056, 0.06825733929872513, 0.02852996438741684, -0.0010511560831218958, 0.05038842558860779, 0.034951452165842056, 0.02379227615892887, 0.038774821907281876, -0.029085304588079453, -0.06700961291790009, 0.02034817449748516, 0.005761772859841585, 0.03716180846095085, 0.10507620871067047, 0.07846038043498993, -0.009249568916857243, -0.035948701202869415, 0.28678950667381287, -0.03528410568833351, -0.037390630692243576, -0.16670015454292297, 0.12611360847949982, 0.031207870692014694, -0.014845872297883034, 0.04016122594475746, -0.14572873711585999, 0.03081849403679371, 0.16835631430149078, 0.16952024400234222, -0.05828280374407768, 0.013661973178386688, -0.042179349809885025, 0.010718178004026413, 0.03313026577234268, 0.07930931448936462, 0.057606443762779236, 0.17675527930259705, -0.04305758327245712, 0.054857902228832245, -0.018603986129164696, -0.026493269950151443, -0.007927690632641315, 0.10711027681827545, -0.03205019235610962, -0.0071862731128931046, -0.06116066500544548, 0.08932521194219589, -0.07495323568582535, -0.24389126896858215, -0.01844075322151184, -0.029449861496686935, -0.09019278734922409, 0.04610004648566246, -0.033838845789432526, -0.0046435389667749405, 0.08599098026752472, 0.019395381212234497, -0.017216116189956665, 0.15356621146202087, 0.037597641348838806, -0.03672224283218384, -0.004071781411767006, 0.0841674879193306, -0.007576900068670511, 0.17860452830791473, -0.017520664259791374, 0.015153869055211544, 0.09301416575908661, 0.03289199247956276, -0.12883248925209045, 0.014354382641613483, 0.04403642565011978, -0.07665508985519409, -0.011950732208788395, 0.18881002068519592, 0.010681596584618092, -0.00406417204067111, 0.05655647814273834, -0.04165066406130791, 0.04350515455007553, -0.08152010291814804, 0.042624685913324356, -0.13822969794273376, 0.04676587134599686, -0.07666334509849548, 0.15133824944496155, 0.17805729806423187, -0.0755574181675911, 0.027500422671437263, -0.0405266135931015, -0.008590033277869225, -0.02030012011528015, 0.05113959684967995, -0.01868978701531887, -0.10041923820972443, 0.020061669871211052, 0.02851506695151329, 0.022754495963454247, -0.17000429332256317, -0.07099322974681854, 0.0439506396651268, -0.06427107006311417, 0.009813886135816574, 0.1762545257806778, 0.03385971859097481, 0.0535997673869133, -0.028215890750288963, 0.03184984624385834, -0.02249050699174404, 0.10741017758846283, -0.15164320170879364, -0.08970140665769577 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4fb42a447843eee46b0b77439ecd8fd2.800x800x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Каста (Kasta)</div> <a href="https://genius.com/artists/kasta"> <div style="text-align: center; font-size: 14px;">@kasta</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Каста (Kasta). Dataset is available [here](https://huggingface.co/datasets/huggingartists/kasta). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kasta") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3k79xvbx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Каста (Kasta)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1rphmch0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1rphmch0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kasta') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kasta") model = AutoModelWithLMHead.from_pretrained("huggingartists/kasta") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/kasta"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/kasta
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kasta", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kasta #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Каста (Kasta)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@kasta</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Каста (Kasta). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Каста (Kasta)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Каста (Kasta).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Каста (Kasta)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kasta #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Каста (Kasta).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Каста (Kasta)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 81, 21, 53, 76, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kasta #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Каста (Kasta).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Каста (Kasta)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.043287716805934906, 0.14848238229751587, -0.002456442452967167, 0.04592591151595116, 0.11508986353874207, 0.011130958795547485, 0.08537808060646057, 0.11468136310577393, 0.017952842637896538, 0.08427902311086655, 0.07857263833284378, 0.048470571637153625, 0.07553501427173615, 0.1033661738038063, 0.06610741466283798, -0.2202347368001938, 0.04314742982387543, -0.07469180971384048, 0.005920478608459234, 0.10232478380203247, 0.09406823664903641, -0.06276653707027435, 0.07693932205438614, 0.022328931838274002, -0.07758871465921402, 0.007630180101841688, 0.009782930836081505, -0.07209942489862442, 0.08891601860523224, 0.06284300237894058, 0.03972780331969261, 0.022496389225125313, 0.058056507259607315, -0.1741846203804016, 0.029822688549757004, 0.12390506267547607, 0.03950214758515358, 0.07822044938802719, 0.04718679189682007, -0.08275948464870453, 0.12301292270421982, -0.0280293095856905, 0.08489227294921875, 0.05203888565301895, -0.1206277385354042, -0.12536373734474182, -0.14417055249214172, 0.09847857058048248, 0.1053985208272934, 0.08823714405298233, -0.029332224279642105, 0.08350047469139099, -0.02778369002044201, 0.051047954708337784, 0.22520489990711212, -0.240461066365242, -0.011340438388288021, 0.07865967601537704, 0.05775029957294464, 0.025079810991883278, -0.08432584255933762, 0.01953422836959362, 0.052021000534296036, 0.034839171916246414, 0.035936180502176285, -0.030411910265684128, 0.1448386013507843, 0.014131154865026474, -0.10641440004110336, -0.08093090355396271, 0.11982519924640656, -0.019345691427588463, -0.08228405565023422, -0.1258801519870758, 0.00509515730664134, -0.03504735231399536, 0.030131245031952858, 0.0168108232319355, -0.006843764800578356, -0.004804096184670925, -0.0377509631216526, -0.1112947091460228, -0.07663441449403763, -0.042377617210149765, -0.0007082685478962958, 0.06670035421848297, 0.04400022327899933, 0.03577038273215294, -0.09178149700164795, 0.22085757553577423, -0.012444247491657734, -0.10163991153240204, -0.06066672503948212, -0.10243729501962662, -0.0843224748969078, -0.0437282957136631, 0.0065069436095654964, -0.007095947861671448, -0.030285466462373734, 0.14816853404045105, -0.035363201051950455, 0.0283956378698349, -0.024290431290864944, 0.009855601005256176, 0.13467621803283691, 0.14867283403873444, -0.11819528788328171, -0.04340868815779686, 0.07667353749275208, -0.0006037574494257569, -0.06510818004608154, -0.05561317503452301, -0.0047275903634727, -0.014560929499566555, 0.04416745528578758, 0.08858270198106766, 0.07969075441360474, 0.06706862896680832, 0.008487233892083168, -0.05861630663275719, 0.05879559740424156, -0.12824547290802002, 0.010059560649096966, -0.015901144593954086, -0.05338572338223457, 0.030317863449454308, 0.06586437672376633, 0.0008223168551921844, -0.10927555710077286, 0.10382218658924103, -0.07386072725057602, -0.04869333282113075, -0.08224917948246002, -0.1053566187620163, -0.002718126866966486, -0.05649491772055626, -0.029025165364146233, -0.08315502107143402, -0.17936785519123077, -0.04851038008928299, 0.016390416771173477, -0.04983178526163101, -0.026694541797041893, 0.029488857835531235, -0.040427617728710175, 0.012605957686901093, -0.025187315419316292, -0.02665725164115429, -0.02969757467508316, 0.036225322633981705, -0.07245835661888123, 0.03318268060684204, 0.06167241185903549, 0.044920481741428375, -0.12280502170324326, 0.07763449102640152, -0.14293216168880463, 0.11548490077257156, -0.0306084044277668, 0.010517331771552563, -0.0971914529800415, -0.07272513210773468, -0.01158120296895504, -0.026986919343471527, 0.031591709703207016, 0.12019416689872742, -0.15663264691829681, -0.022799117490649223, 0.20697475969791412, -0.07276154309511185, -0.08361873775720596, 0.06462546437978745, -0.06239869445562363, 0.052399709820747375, 0.12056493759155273, 0.08613645285367966, 0.14642775058746338, -0.10555971413850784, -0.08494234085083008, -0.0486396886408329, -0.06887675076723099, 0.16293439269065857, 0.031055757775902748, -0.021017592400312424, 0.025142397731542587, 0.0031799066346138716, -0.03594955429434776, 0.003192219417542219, -0.03179479017853737, -0.03305819630622864, -0.022806620225310326, -0.015920203179121017, -0.009762325324118137, -0.04005271568894386, -0.04623038321733475, -0.026921946555376053, -0.09688198566436768, 0.06910881400108337, 0.10215609520673752, -0.07112089544534683, 0.01727175898849964, -0.09773629158735275, 0.04722319543361664, -0.06241462007164955, 0.014242691919207573, -0.17167289555072784, -0.040295571088790894, 0.01787308230996132, -0.057621121406555176, 0.06877340376377106, 0.010562541894614697, 0.03946183994412422, 0.07047377526760101, -0.011510048992931843, -0.0043556890450417995, -0.039596088230609894, 0.0031223068945109844, -0.04741673171520233, -0.1720612794160843, -0.04580056294798851, -0.045206137001514435, 0.08710160106420517, -0.11170534789562225, 0.0032163066789507866, 0.07762330770492554, 0.13835513591766357, 0.019837377592921257, -0.06480877101421356, 0.04408636316657066, -0.0244124848395586, -0.03062613494694233, -0.10976818948984146, -0.04162949323654175, 0.008265704847872257, -0.019867392256855965, 0.16014540195465088, -0.15161626040935516, -0.1079574003815651, 0.12213531881570816, 0.11238154023885727, -0.10125748813152313, 0.05824969336390495, -0.06659413129091263, -0.023591328412294388, -0.04490247368812561, -0.05664481967687607, 0.24165625870227814, 0.030858725309371948, 0.09179352968931198, -0.08228237181901932, -0.07313090562820435, 0.002372513758018613, -0.0477568693459034, -0.03186558559536934, 0.04533403739333153, 0.02735559456050396, -0.16685204207897186, 0.05435946583747864, -0.0008673178963363171, 0.08419466018676758, 0.1973053365945816, 0.02981029450893402, -0.09232889860868454, -0.055047161877155304, -0.06758434325456619, 0.0039991820231080055, 0.09825089573860168, -0.003242941340431571, 0.026514844968914986, 0.04026029258966446, 0.045632053166627884, 0.04029190540313721, -0.10649840533733368, 0.00963063444942236, 0.05960406735539436, -0.027705684304237366, -0.052280548959970474, 0.020672688260674477, 0.02317221276462078, 0.092685766518116, 0.0760829746723175, 0.11323052644729614, -0.05385207012295723, -0.04460631310939789, -0.13450074195861816, 0.1417435109615326, -0.09036539494991302, -0.20837946236133575, -0.13496778905391693, -0.06938605010509491, 0.010889957658946514, 0.005231333430856466, 0.03834807500243187, -0.0493616983294487, -0.039008840918540955, -0.08869590610265732, 0.08989337831735611, -0.033131565898656845, -0.012373985722661018, 0.00046948590897955, 0.008786200545728207, -0.01850697211921215, -0.11752437055110931, -0.034165892750024796, 0.025292115285992622, -0.07383847236633301, 0.006135893985629082, 0.027995329350233078, 0.05335993319749832, 0.15655402839183807, -0.00582576310262084, 0.007066989783197641, -0.023413749411702156, 0.27240028977394104, -0.1174766942858696, 0.06468615680932999, 0.17020446062088013, -0.0061643957160413265, 0.048383716493844986, 0.06781236082315445, -0.003423454938456416, -0.06070578470826149, 0.05314560979604721, 0.06515730172395706, -0.07523149996995926, -0.21070417761802673, -0.03193499892950058, -0.017723500728607178, 0.01989290490746498, 0.10814578831195831, 0.03053772822022438, 0.05693870410323143, 0.019044820219278336, -0.09908006340265274, 0.053706299513578415, 0.00801345519721508, 0.10350394248962402, -0.06393972039222717, -0.006654393393546343, 0.04955137148499489, -0.05505181476473808, 0.04191739112138748, 0.11889994889497757, 0.03687544912099838, 0.22725601494312286, -0.07287628948688507, 0.06443610787391663, 0.09188533574342728, 0.10022714734077454, 0.020272618159651756, 0.028448715806007385, -0.023434780538082123, 0.023853007704019547, 0.009996980428695679, -0.09518245607614517, -0.007312108762562275, 0.034836579114198685, 0.016194850206375122, -0.011205199174582958, -0.06554509699344635, -0.07976657152175903, 0.05087617412209511, 0.23036932945251465, 0.04353739321231842, -0.1662193089723587, -0.10673992335796356, 0.06171184033155441, -0.035919953137636185, -0.06051452457904816, -0.01930498518049717, 0.06808453053236008, -0.214067280292511, 0.03650019317865372, -0.03455174341797829, 0.11236699670553207, -0.12668345868587494, -0.001071567414328456, 0.05076267570257187, 0.037243373692035675, -0.06977174431085587, 0.073966383934021, -0.16897203028202057, 0.08902046829462051, 0.004567637108266354, 0.08915012329816818, -0.06624317914247513, 0.01504361443221569, 0.02934212237596512, 0.03477504849433899, 0.08732171356678009, 0.01809123158454895, 0.015256829559803009, -0.07248067855834961, -0.04331527277827263, -0.0023475547786802053, 0.05047009140253067, -0.08528749644756317, 0.1292797327041626, -0.02497382089495659, 0.03292542323470116, -0.029520967975258827, -0.08889364451169968, -0.10331372171640396, -0.13235634565353394, 0.07490360736846924, -0.09053251147270203, -0.00048676636652089655, -0.06187961623072624, -0.01802029274404049, 0.025862203910946846, 0.21718578040599823, -0.09580940753221512, -0.07977228611707687, -0.13436803221702576, 0.003993970807641745, 0.13963794708251953, -0.07847174257040024, 0.0035441212821751833, -0.00843577180057764, 0.15243881940841675, 0.0010524465469643474, -0.13103127479553223, -0.0020100364927202463, -0.06878986954689026, -0.17331178486347198, -0.022364074364304543, 0.13452129065990448, 0.06230246648192406, 0.03332848474383354, 0.007378898095339537, 0.008468660525977612, -0.03580441698431969, -0.17081627249717712, 0.029154503718018532, 0.14995455741882324, 0.0191818680614233, 0.031070537865161896, 0.025062059983611107, 0.022550521418452263, -0.1341966688632965, 0.012969564646482468, 0.05199594423174858, 0.20363536477088928, -0.07533860951662064, 0.15803903341293335, 0.010595192201435566, -0.09423378854990005, -0.17958565056324005, 0.03602536767721176, -0.00042640246101655066, 0.03436353802680969, 0.018683716654777527, -0.164581298828125, 0.031149841845035553, 0.02076389081776142, -0.006312344688922167, 0.06591547280550003, -0.3483850061893463, -0.15052981674671173, 0.027466505765914917, 0.02707480825483799, -0.08203425258398056, -0.04658539593219757, -0.03675997257232666, -0.06719119101762772, -0.23634295165538788, 0.08946327865123749, -0.1272897571325302, 0.09390096366405487, 0.009883121587336063, 0.07465281337499619, 0.0493951179087162, -0.06472910195589066, 0.1366027444601059, -0.030443642288446426, 0.05978923663496971, -0.08843068778514862, -0.04190080612897873, 0.09320919215679169, -0.06517979502677917, 0.10488324612379074, 0.0243767611682415, 0.0910639613866806, -0.11878176033496857, -0.06377115100622177, -0.08423396199941635, 0.020935051143169403, -0.05635558068752289, -0.09422183781862259, -0.08387982100248337, 0.09671307355165482, 0.11027420312166214, -0.03721889108419418, -0.09151194989681244, -0.050171513110399246, -0.0024398064706474543, 0.06927338987588882, 0.08703146874904633, 0.09524974226951599, -0.09079360961914062, 0.013947302475571632, 0.003554326482117176, 0.03520229458808899, -0.16517274081707, 0.028522223234176636, 0.08187582343816757, 0.04089803993701935, 0.10611554980278015, 0.00942274834960699, -0.16560505330562592, 0.023193171247839928, 0.04186549037694931, -0.15877480804920197, -0.09469561278820038, -0.029808323830366135, -0.0006848249468021095, -0.07756365835666656, -0.04499397426843643, 0.14765603840351105, -0.04856926202774048, -0.02909369394183159, -0.004455565940588713, 0.050468798726797104, -0.05618884786963463, 0.11524683982133865, 0.02678101323544979, 0.052309222519397736, -0.06744991987943649, 0.112526074051857, 0.061360228806734085, 0.018338661640882492, 0.05109533295035362, 0.05430112034082413, -0.0834970623254776, -0.0012484841281548142, -0.08197633177042007, 0.0230678953230381, -0.0476565808057785, -0.017035560682415962, -0.008081821724772453, -0.038495127111673355, 0.02601579576730728, 0.11081589013338089, -0.015168349258601665, 0.10714316368103027, -0.029517902061343193, -0.01444382406771183, -0.14362485706806183, 0.06675482541322708, 0.05002925172448158, 0.019462401047348976, -0.11644817888736725, 0.19967634975910187, 0.029662786051630974, 0.10586784780025482, -0.04102969169616699, -0.05563494190573692, -0.09098012745380402, -0.006097191013395786, -0.13790825009346008, -0.0442412830889225, -0.08257675915956497, -0.041357774287462234, -0.016325628384947777, -0.04222001135349274, -0.023698212578892708, 0.05380373075604439, -0.026929078623652458, -0.06222701817750931, -0.052401356399059296, 0.053107213228940964, -0.14515702426433563, 0.005331664811819792, 0.11321713030338287, -0.06091679260134697, 0.10338950157165527, 0.06453319638967514, -0.034999702125787735, 0.016213279217481613, -0.10754016786813736, 0.0394028015434742, -0.029769141227006912, 0.003966374788433313, 0.030813639983534813, -0.14230746030807495, 0.008881518617272377, -0.056792620569467545, -0.05384942889213562, 0.017384421080350876, 0.011459734290838242, -0.122575543820858, -0.005949587561190128, 0.06444711238145828, 0.0014603795716539025, -0.06683872640132904, 0.0751214250922203, 0.07360439747571945, 0.0308016799390316, 0.058838870376348495, -0.04269290715456009, 0.08335232734680176, -0.16363386809825897, -0.04900061711668968, -0.0010794172994792461, 0.006491254083812237, 0.054316047579050064, -0.005413380451500416, 0.04429484158754349, -0.021608460694551468, 0.1847836971282959, -0.0014565177261829376, -0.009789040312170982, 0.04369749501347542, -0.053376905620098114, -0.007081784773617983, 0.04652321711182594, 0.057860467582941055, -0.04377622529864311, -0.027100475504994392, -0.02713777683675289, 0.0066225468181073666, -0.07313552498817444, -0.018664905801415443, 0.10556147992610931, 0.05644350126385689, 0.16780583560466766, -0.027201829478144646, 0.04711497202515602, -0.026236671954393387, -0.11361782997846603, -0.03487979248166084, -0.036971721798181534, 0.04400220513343811, -0.07270856946706772, 0.06652657687664032, 0.16695834696292877, -0.15135698020458221, 0.10875026881694794, 0.008115287870168686, -0.06382255256175995, -0.0944848284125328, -0.16270361840724945, -0.008498278446495533, -0.02527124620974064, 0.03323817998170853, -0.12735259532928467, 0.08273464441299438, 0.03663903847336769, 0.036367762833833694, -0.06689105182886124, 0.13836587965488434, -0.059800151735544205, -0.10444075614213943, 0.037484060972929, 0.021985074505209923, 0.021321196109056473, 0.02217610739171505, 0.07353727519512177, 0.02495846338570118, 0.004855467472225428, 0.06070554628968239, 0.04365798830986023, 0.01834426447749138, 0.043768398463726044, -0.019566912204027176, -0.062062934041023254, 0.03079848363995552, 0.014006242156028748, 0.043912455439567566, 0.10667379200458527, 0.07527808845043182, -0.022759320214390755, -0.03546764701604843, 0.30556508898735046, -0.034463316202163696, -0.03805399686098099, -0.17317236959934235, 0.1725642830133438, 0.018714526668190956, -0.024858178570866585, 0.01628362573683262, -0.13719043135643005, 0.010586128570139408, 0.16189861297607422, 0.16532662510871887, -0.041921913623809814, 0.011701931245625019, -0.05380859225988388, 0.011968309059739113, 0.024157658219337463, 0.09682080149650574, 0.06046013534069061, 0.18982535600662231, -0.04514184594154358, 0.05437064915895462, -0.010991285555064678, -0.02069629728794098, -0.019578874111175537, 0.11115600168704987, -0.027238992974162102, -0.0005473341443575919, -0.06104394793510437, 0.1000024750828743, -0.07519553601741791, -0.2559100389480591, -0.009631372056901455, -0.054554495960474014, -0.10123323649168015, 0.050962258130311966, -0.03868647664785385, -0.020792890340089798, 0.09397188574075699, 0.013486982323229313, -0.02383464388549328, 0.12184324860572815, 0.0360359326004982, -0.031061511486768723, -0.0283480416983366, 0.0837901309132576, -0.021420197561383247, 0.2001090794801712, -0.027002114802598953, 0.003764532273635268, 0.09441249817609787, 0.022012488916516304, -0.1242431178689003, 0.0012274585897102952, 0.04341312125325203, -0.07764337956905365, -0.014677360653877258, 0.19275003671646118, 0.002762713236734271, 0.034797027707099915, 0.05896266549825668, -0.06365270167589188, 0.027607887983322144, -0.06694609671831131, 0.05027717351913452, -0.1381232738494873, 0.04624977707862854, -0.07370059937238693, 0.15172412991523743, 0.18414925038814545, -0.08084077388048172, 0.01795009896159172, -0.058546025305986404, -0.001897686393931508, -0.016768094152212143, 0.049344323575496674, -0.02350054308772087, -0.11730213463306427, 0.02486126683652401, 0.0243681687861681, 0.027708053588867188, -0.1990373432636261, -0.06828246265649796, 0.050216350704431534, -0.05077982321381569, 0.010685290209949017, 0.17572595179080963, 0.03882269561290741, 0.0560620091855526, -0.03274542838335037, -0.0071373917162418365, -0.014887976460158825, 0.11604058742523193, -0.14206257462501526, -0.09787554293870926 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a77a2cb56da25c8f9e895bc1df12252b.750x750x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kehlani</div> <a href="https://genius.com/artists/kehlani"> <div style="text-align: center; font-size: 14px;">@kehlani</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Kehlani. Dataset is available [here](https://huggingface.co/datasets/huggingartists/kehlani). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kehlani") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3t2b2m5y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Kehlani's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/35pweb11) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/35pweb11/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kehlani') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kehlani") model = AutoModelWithLMHead.from_pretrained("huggingartists/kehlani") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/kehlani"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/kehlani
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kehlani", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kehlani #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kehlani</div> <a href="URL <div style="text-align: center; font-size: 14px;">@kehlani</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Kehlani. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Kehlani's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Kehlani.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kehlani's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kehlani #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Kehlani.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kehlani's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kehlani #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Kehlani.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kehlani's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.019599908962845802, 0.14223158359527588, -0.0027121908497065306, 0.03184455260634422, 0.08589964359998703, -0.0022961196955293417, 0.0917106494307518, 0.11174745112657547, -0.003185066394507885, 0.07063622772693634, 0.07764037698507309, 0.016595488414168358, 0.06490512937307358, 0.142403706908226, 0.09123872965574265, -0.26905587315559387, 0.031742364168167114, -0.10389957576990128, 0.027345886453986168, 0.12002066522836685, 0.09190642833709717, -0.055855829268693924, 0.08599842339754105, 0.03722122684121132, -0.07547368109226227, 0.029497286304831505, -0.01708098128437996, -0.07585547119379044, 0.0948706790804863, 0.07678834348917007, 0.03186768665909767, 0.028619037941098213, 0.061051756143569946, -0.1956416815519333, 0.03584256395697594, 0.12396479398012161, 0.031199628487229347, 0.06532131880521774, 0.03813626244664192, -0.07687773555517197, 0.17515631020069122, -0.03244399651885033, 0.08404739946126938, 0.04014000669121742, -0.10418295860290527, -0.16864590346813202, -0.12229423969984055, 0.09002355486154556, 0.10689016431570053, 0.0790950134396553, -0.03145698085427284, 0.05078703165054321, 0.0007928169216029346, 0.04775350168347359, 0.24051427841186523, -0.24814100563526154, -0.015358809381723404, 0.09637203812599182, 0.03182896599173546, 0.03573911637067795, -0.07732340693473816, 0.022388441488146782, 0.05013122782111168, 0.017694910988211632, 0.045388802886009216, -0.019629186019301414, 0.21197409927845, 0.0183454230427742, -0.09306445717811584, -0.08094104379415512, 0.10914482921361923, -0.030145496129989624, -0.0810033455491066, -0.1534222811460495, 0.003157953964546323, -0.020302828401327133, 0.041491687297821045, -0.014231500215828419, -0.006585122551769018, -0.006654949393123388, -0.03985459357500076, -0.09871986508369446, -0.09417171031236649, -0.02443845383822918, -0.02913050912320614, 0.08202088624238968, 0.03229876980185509, 0.024620788171887398, -0.07132185250520706, 0.23303000628948212, -0.0016568520804867148, -0.10623738914728165, -0.05988134816288948, -0.08739344030618668, -0.09202035516500473, -0.059266433119773865, 0.011760895140469074, 0.01557914074510336, -0.06071972846984863, 0.16168272495269775, -0.027354905381798744, 0.03063175641000271, 0.006761936005204916, -0.025485390797257423, 0.1527375429868698, 0.12934689223766327, -0.09491929411888123, -0.02818150259554386, 0.047758232802152634, -0.0175314974039793, -0.06505049765110016, -0.059315044432878494, -0.00979423988610506, -0.026076937094330788, 0.028943849727511406, 0.09775347262620926, 0.04158319905400276, 0.06217937543988228, 0.036413926631212234, -0.05661425366997719, 0.09929770231246948, -0.146875262260437, 0.004468556027859449, -0.015610363334417343, -0.03237488120794296, 0.015968648716807365, 0.04587879776954651, 0.016325337812304497, -0.09874191135168076, 0.11319047957658768, -0.05114554986357689, -0.05123278498649597, -0.06543032079935074, -0.08026210218667984, -0.007130175828933716, -0.015426014550030231, -0.047232937067747116, -0.09052342921495438, -0.16128532588481903, -0.031158335506916046, 0.021293992176651955, -0.040031518787145615, -0.04139338806271553, 0.04185332730412483, -0.03607845678925514, 0.0013319142162799835, -0.01811879314482212, -0.024965697899460793, -0.032636020332574844, 0.019153324887156487, -0.0568501241505146, 0.03514929488301277, 0.08706817030906677, 0.03391989693045616, -0.10927581787109375, 0.06839825958013535, -0.17080287635326385, 0.1442452371120453, -0.01268813293427229, 0.013023310340940952, -0.11349573731422424, -0.09336397796869278, -0.0259984340518713, -0.025656744837760925, -0.0076559497974812984, 0.09871268272399902, -0.18648314476013184, -0.041483428329229355, 0.1925034523010254, -0.07160944491624832, -0.08924620598554611, 0.06856643408536911, -0.07796012610197067, 0.044684067368507385, 0.13841359317302704, 0.07026392221450806, 0.16266536712646484, -0.1210668683052063, -0.07408558577299118, -0.04006146267056465, -0.05499732121825218, 0.220387265086174, 0.053250472992658615, -0.007664029952138662, 0.02557913213968277, 0.011825315654277802, -0.03009355627000332, -0.02831478975713253, -0.022090435028076172, -0.04422886297106743, -0.008510409854352474, 0.013367881067097187, -0.013189628720283508, -0.052177250385284424, -0.06138532981276512, -0.01551257073879242, -0.10873428732156754, 0.04742554947733879, 0.10792570561170578, -0.07476581633090973, 0.012139983475208282, -0.09063860774040222, -0.0013762557646259665, -0.035858530551195145, 0.0204737838357687, -0.18406426906585693, -0.06544061750173569, 0.025341540575027466, -0.07630953937768936, 0.08903411775827408, 0.024472340941429138, 0.03563779965043068, 0.06210232898592949, -0.013651191256940365, 0.021149588748812675, -0.04428504779934883, -0.01974109746515751, -0.03697482496500015, -0.14218634366989136, -0.06616916507482529, -0.04992317780852318, 0.08159095048904419, -0.13358192145824432, 0.005983781535178423, 0.10724848508834839, 0.12026610225439072, 0.021801672875881195, -0.05316699668765068, 0.011410397477447987, -0.035923104733228683, -0.039975423365831375, -0.1141958013176918, -0.06152300909161568, 0.003667547134682536, -0.03898425027728081, 0.161490336060524, -0.17230992019176483, -0.06893658638000488, 0.09663192182779312, 0.17462414503097534, -0.10616862773895264, 0.016421670094132423, -0.09226176887750626, -0.014079098589718342, -0.04889514669775963, -0.03055127151310444, 0.2722906768321991, 0.04092152789235115, 0.07563913613557816, -0.11138925701379776, -0.10342907160520554, -0.002846651943400502, -0.04026324301958084, -0.029406743124127388, 0.02785087563097477, 0.008885069750249386, -0.17863993346691132, 0.023117661476135254, 0.0010030443081632257, 0.11553332954645157, 0.21519054472446442, 0.05014776811003685, -0.09608399868011475, -0.06412092596292496, -0.08359905332326889, 0.0009945862693712115, 0.05470261350274086, 0.032366830855607986, 0.024534588679671288, 0.042413096874952316, 0.0488356314599514, 0.03501087799668312, -0.10578933358192444, 0.008951567113399506, 0.07643041759729385, -0.04545639827847481, -0.04736274108290672, 0.02776603400707245, 0.017297422513365746, 0.08171715587377548, 0.07950127869844437, 0.14281481504440308, -0.0724673643708229, -0.04633985832333565, -0.1354040503501892, 0.14607743918895721, -0.07726415246725082, -0.2637869417667389, -0.13456124067306519, -0.06637279689311981, 0.01674840599298477, 0.0009876512922346592, 0.03966757282614708, -0.062333572655916214, -0.03926468268036842, -0.1027519628405571, 0.09260177612304688, -0.04477030411362648, -0.013527837581932545, -0.0019503254443407059, 0.01439512986689806, -0.03686010465025902, -0.11055978387594223, -0.03045973740518093, 0.04330964386463165, -0.11244871467351913, -0.014035453088581562, 0.03101355768740177, 0.03892979398369789, 0.15247611701488495, -0.011783495545387268, -0.004388357046991587, -0.03505568206310272, 0.2761506736278534, -0.12514670193195343, 0.06933794915676117, 0.1540806144475937, -0.02043081261217594, 0.053878169506788254, 0.0820641741156578, 0.0017903457628563046, -0.06684610247612, 0.07742678374052048, 0.07728763669729233, -0.08827849477529526, -0.21956586837768555, -0.0258003119379282, -0.002774633700028062, 0.027993159368634224, 0.12132325023412704, 0.05803968384861946, 0.06696571409702301, -0.0001543228718219325, -0.10706895589828491, 0.04779290780425072, 0.026079639792442322, 0.11193553358316422, -0.058952778577804565, -0.00865525659173727, 0.04667846858501434, -0.06708338111639023, 0.027390221133828163, 0.1401555985212326, 0.04578176140785217, 0.20427514612674713, -0.07003168016672134, 0.09015890955924988, 0.08018761873245239, 0.10532871633768082, 0.033306822180747986, 0.003399943932890892, -0.0043270583264529705, 0.011539948172867298, -0.0004298414569348097, -0.09732583910226822, -0.0027711696457117796, 0.05016160011291504, 0.03150281310081482, -0.028174662962555885, -0.03532605245709419, -0.040849026292562485, 0.047124747186899185, 0.2365516871213913, -0.009570014663040638, -0.17645937204360962, -0.1170027032494545, 0.039912737905979156, -0.08462416380643845, -0.05148930847644806, -0.026371696963906288, 0.07798545807600021, -0.2239142209291458, 0.07866079360246658, -0.03295165300369263, 0.10130157321691513, -0.11795586347579956, 0.0006598628242500126, 0.08099385350942612, 0.040558602660894394, -0.0658852607011795, 0.0985853299498558, -0.16910462081432343, 0.07345188409090042, -0.009674151428043842, 0.06936261057853699, -0.07668807357549667, 0.023044997826218605, 0.0015865279128775, 0.046558696776628494, 0.09074538946151733, 0.013485300354659557, 0.03570171073079109, -0.004245638847351074, -0.05053786560893059, 0.013803948648273945, 0.062241435050964355, -0.13272333145141602, 0.12637373805046082, -0.02227756381034851, 0.03477197885513306, -0.047836530953645706, -0.09140750765800476, -0.09680020064115524, -0.16191187500953674, 0.09297142177820206, -0.12546147406101227, -0.005035132635384798, -0.07109932601451874, -0.03444485366344452, 0.038889650255441666, 0.2650737762451172, -0.052276600152254105, -0.07335589826107025, -0.13348154723644257, 0.010511950589716434, 0.1477571278810501, -0.0919126570224762, 0.012060406617820263, -0.013200913555920124, 0.20856718719005585, -0.0006024098838679492, -0.12460847944021225, -0.021996354684233665, -0.059050824493169785, -0.1654072254896164, -0.00026905754930339754, 0.16643404960632324, 0.061942726373672485, 0.023155780509114265, 0.014563716016709805, -0.014951988123357296, -0.0376957468688488, -0.17085111141204834, 0.01719966158270836, 0.15974105894565582, -0.008477997034788132, -0.0017446366837248206, 0.04776237532496452, 0.019406026229262352, -0.141323521733284, 0.007542154286056757, 0.04792054370045662, 0.1844107061624527, -0.07651955634355545, 0.1893550604581833, 0.03400576859712601, -0.09304932504892349, -0.15045166015625, 0.006793529260903597, 0.035010915249586105, 0.03508869931101799, 0.04421313479542732, -0.20956425368785858, 0.047500479966402054, 0.03810085728764534, 0.007188952993601561, 0.02497240900993347, -0.32850661873817444, -0.16612090170383453, 0.0005260538309812546, 0.008542097173631191, -0.1424284428358078, -0.04208460822701454, -0.034937407821416855, -0.09615671634674072, -0.23936469852924347, 0.09715340286493301, -0.12054318934679031, 0.07782044261693954, 0.027841128408908844, 0.10386725515127182, 0.04480360820889473, -0.041557468473911285, 0.1319497674703598, -0.006707335356622934, 0.06853898614645004, -0.09855610132217407, -0.06467879563570023, 0.0797785148024559, -0.0773794874548912, 0.09561728686094284, 0.03366144001483917, 0.0806303396821022, -0.09994695335626602, -0.08760301023721695, -0.06307268887758255, 0.005426906049251556, -0.0505145899951458, -0.09137821197509766, -0.09453394263982773, 0.08973032981157303, 0.12053272873163223, -0.047396961599588394, -0.08893565088510513, -0.06237517297267914, 0.002639860613271594, 0.03431851789355278, 0.1227007806301117, 0.08649744838476181, -0.05558100715279579, 0.002253330312669277, 0.01730169914662838, 0.007867829874157906, -0.17678718268871307, 0.04252731800079346, 0.0932404100894928, 0.04240894690155983, 0.09873855859041214, -0.000003134909320579027, -0.1702236384153366, 0.009328415617346764, 0.053583260625600815, -0.16484303772449493, -0.13553166389465332, -0.03706604614853859, 0.01906546764075756, -0.09468608349561691, -0.04055352881550789, 0.13847891986370087, -0.038623761385679245, -0.037608396261930466, 0.001886769663542509, 0.03246182203292847, -0.03897514566779137, 0.08769500255584717, -0.008183776400983334, 0.04212503135204315, -0.06563950330018997, 0.12512443959712982, 0.06628945469856262, 0.007932829670608044, 0.044405773282051086, 0.059355732053518295, -0.09395705908536911, 0.014478244818747044, -0.09710171818733215, 0.0016190540045499802, -0.030915016308426857, -0.012035354971885681, 0.028851062059402466, -0.02543550170958042, 0.04390260577201843, 0.10777243971824646, -0.01279140543192625, 0.10624413937330246, -0.0465228408575058, 0.023651426658034325, -0.1267954260110855, 0.07243606448173523, 0.04141748324036598, 0.021563326939940453, -0.11538269370794296, 0.20969824492931366, 0.03312792256474495, 0.1111534908413887, -0.03674018755555153, -0.06705732643604279, -0.049501221626996994, -0.014834754168987274, -0.07598718255758286, -0.03749744966626167, -0.08988437801599503, -0.023637861013412476, -0.005879915785044432, -0.03312878683209419, -0.03337881341576576, 0.04535745456814766, -0.03329480439424515, -0.05896027758717537, -0.07419413328170776, 0.05313543975353241, -0.14485976099967957, 0.03235295042395592, 0.11765982955694199, -0.055719926953315735, 0.1299542784690857, 0.05747218802571297, -0.03348029777407646, 0.027777671813964844, -0.1303737610578537, 0.05183732137084007, -0.0037331997882574797, 0.02105199731886387, 0.01741214096546173, -0.15631382167339325, 0.003913081716746092, -0.03534001111984253, -0.05760367587208748, 0.009242299944162369, -0.00957972090691328, -0.12833631038665771, -0.013869832269847393, 0.08444135636091232, -0.013063587248325348, -0.06634771078824997, 0.07391127198934555, 0.05936558172106743, 0.023944521322846413, 0.05675925686955452, -0.014182123355567455, 0.06801905483007431, -0.17022991180419922, -0.062427714467048645, -0.004545420873910189, 0.024263637140393257, 0.04533875361084938, -0.025131655856966972, 0.034294936805963516, -0.018368709832429886, 0.20827503502368927, 0.016096672043204308, -0.006857279688119888, 0.03746810927987099, -0.08072419464588165, -0.010833442211151123, 0.042372237890958786, 0.08404538035392761, -0.01530675683170557, -0.028684651479125023, -0.000612646050285548, -0.02438618242740631, -0.09858140349388123, -0.01895143650472164, 0.09911350160837173, 0.01977945864200592, 0.20332098007202148, -0.05622631311416626, 0.06487957388162613, -0.022263692691922188, -0.10774117708206177, -0.03921094909310341, -0.05462157726287842, 0.034145157784223557, -0.05749864503741264, 0.05473877117037773, 0.19315598905086517, -0.1614764779806137, 0.11460363119840622, 0.041220396757125854, -0.06213293969631195, -0.12112188339233398, -0.19638745486736298, -0.015117887407541275, -0.03420133516192436, 0.0301278755068779, -0.13718432188034058, 0.09778168052434921, 0.018298910930752754, 0.04431301727890968, -0.060268934816122055, 0.15366452932357788, -0.09223874658346176, -0.13569729030132294, 0.05429233983159065, 0.019347315654158592, 0.02335834503173828, 0.04199717566370964, 0.09249826520681381, 0.027796855196356773, -0.00020815727475564927, 0.06581274420022964, 0.04021269828081131, 0.033260244876146317, 0.040398210287094116, -0.02985217608511448, -0.039747241884469986, 0.029233520850539207, -0.005387295037508011, 0.02683454006910324, 0.09318101406097412, 0.0695638433098793, -0.0224338099360466, -0.01629832200706005, 0.3119502365589142, -0.017279958352446556, -0.0363963358104229, -0.18240559101104736, 0.15815888345241547, 0.014625941403210163, -0.0028882448095828295, 0.01957833208143711, -0.11548469215631485, 0.011564054526388645, 0.11565234512090683, 0.14395232498645782, -0.015753628686070442, 0.025010719895362854, -0.026504240930080414, 0.019170161336660385, 0.03362700715661049, 0.10865660756826401, 0.06098635867238045, 0.1896866410970688, -0.026823891326785088, 0.05207977071404457, -0.008317840285599232, -0.023951930925250053, 0.008629546500742435, 0.1053009107708931, -0.04221734404563904, 0.0020496186334639788, -0.053307849913835526, 0.10187053680419922, -0.062380943447351456, -0.30844298005104065, -0.0420929491519928, -0.018420448526740074, -0.09130524843931198, 0.07445729523897171, -0.03487040475010872, -0.022686675190925598, 0.08005542308092117, 0.030254781246185303, -0.04660924896597862, 0.16025516390800476, 0.05792200192809105, -0.04526343569159508, -0.008334226906299591, 0.11564365029335022, -0.0314735509455204, 0.16151878237724304, -0.03824429214000702, 0.019718414172530174, 0.07508647441864014, 0.009788129478693008, -0.12698893249034882, 0.0032619962003082037, 0.04290146753191948, -0.051313191652297974, -0.022898593917489052, 0.20382340252399445, 0.011650875210762024, 0.02365751378238201, 0.07608849555253983, -0.04801664128899574, 0.024327119812369347, -0.03424884378910065, 0.06288540363311768, -0.14109085500240326, 0.0687166154384613, -0.08112675696611404, 0.11966025084257126, 0.1781708151102066, -0.06751236319541931, 0.0387994609773159, -0.056641336530447006, 0.006405964493751526, -0.02825186401605606, 0.0666365846991539, -0.01473157573491335, -0.11032599210739136, 0.00632079504430294, 0.016471706330776215, 0.0175881739705801, -0.17096956074237823, -0.0836188793182373, 0.07742272317409515, -0.052044566720724106, 0.020473206415772438, 0.1827009916305542, 0.013597442768514156, 0.05388854071497917, -0.03807111084461212, -0.02558865398168564, -0.008310693316161633, 0.112873874604702, -0.17777042090892792, -0.08090994507074356 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d4ae6ad73ca63bc97b2a10dfefc47b63.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Кипелов (Kipelov)</div> <a href="https://genius.com/artists/kipelov"> <div style="text-align: center; font-size: 14px;">@kipelov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Кипелов (Kipelov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/kipelov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kipelov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/225m5y65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Кипелов (Kipelov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/38es269x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/38es269x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kipelov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kipelov") model = AutoModelWithLMHead.from_pretrained("huggingartists/kipelov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/kipelov"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/kipelov
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kipelov", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kipelov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Кипелов (Kipelov)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@kipelov</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Кипелов (Kipelov). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Кипелов (Kipelov)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Кипелов (Kipelov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Кипелов (Kipelov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kipelov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Кипелов (Kipelov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Кипелов (Kipelov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 55, 78, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kipelov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Кипелов (Kipelov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Кипелов (Kipelov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.009994798339903355, 0.17418701946735382, -0.005135289393365383, 0.05727871134877205, 0.07471833378076553, -0.007907617837190628, 0.08077890425920486, 0.1177932471036911, 0.0048050484620034695, 0.08459369838237762, 0.06298396736383438, 0.050116632133722305, 0.09348615258932114, 0.07334890961647034, 0.038618020713329315, -0.25727954506874084, 0.03816414624452591, -0.0670984536409378, -0.015283011831343174, 0.09557662159204483, 0.08739816397428513, -0.08834763616323471, 0.07861518114805222, 0.026654161512851715, -0.0318935289978981, -0.005551149137318134, 0.009036914445459843, -0.05935634300112724, 0.06819383800029755, 0.08048047125339508, 0.04952595382928848, 0.05108998343348503, 0.06083669513463974, -0.18542499840259552, 0.022596783936023712, 0.11694213002920151, 0.02701953984797001, 0.08710982650518417, 0.07674543559551239, -0.05153338238596916, 0.12303280085325241, -0.04255792871117592, 0.08098621666431427, 0.050997912883758545, -0.1080060601234436, -0.06616459786891937, -0.14168132841587067, 0.062458693981170654, 0.07915209978818893, 0.06985357403755188, -0.02340705506503582, 0.0900871679186821, -0.04538692906498909, 0.05741254240274429, 0.24471445381641388, -0.2680136263370514, -0.017820652574300766, 0.038486629724502563, 0.06035880371928215, 0.01803472638130188, -0.09494324773550034, 0.013603711500763893, 0.02968290075659752, 0.03472290560603142, 0.052255891263484955, -0.03558148443698883, 0.1452646404504776, -0.01001313328742981, -0.10584589093923569, -0.07447549700737, 0.07650484889745712, -0.008853470906615257, -0.0757434293627739, -0.10315553098917007, -0.0047956728376448154, -0.017361704260110855, 0.025637617334723473, 0.0007486541289836168, 0.0013579443329945207, -0.016289277002215385, -0.08567251265048981, -0.1207905113697052, -0.07732825726270676, -0.03688667714595795, -0.0370558425784111, 0.06073911115527153, 0.052627481520175934, 0.041479066014289856, -0.0474558025598526, 0.18770751357078552, 0.04372318461537361, -0.10845131427049637, -0.07207091152667999, -0.10727556049823761, -0.08992664515972137, -0.04057351127266884, 0.0014325371012091637, 0.011013612151145935, -0.0152601208537817, 0.12424805015325546, -0.03400455415248871, 0.02426820993423462, -0.04589487239718437, 0.014780723489820957, 0.1041889637708664, 0.13372129201889038, -0.10997427999973297, -0.049850497394800186, 0.06322012841701508, -0.0175620224326849, -0.056956008076667786, -0.046920567750930786, -0.009838610887527466, -0.044101908802986145, 0.06267114728689194, 0.08434315025806427, 0.08109515905380249, 0.04991631582379341, -0.004918168298900127, -0.05137287452816963, 0.01443040743470192, -0.14501303434371948, 0.026771988719701767, -0.013057311065495014, -0.06095726415514946, 0.016123194247484207, 0.03734874725341797, -0.0017272179247811437, -0.12195031344890594, 0.0697249323129654, -0.07062181830406189, -0.020818151533603668, -0.0833364725112915, -0.11287140101194382, 0.015441027469933033, -0.040020138025283813, -0.029161052778363228, -0.08170322328805923, -0.14438359439373016, -0.038717083632946014, 0.019107485190033913, -0.07501620799303055, -0.017372749745845795, 0.028123535215854645, -0.04092389717698097, -0.003957060631364584, -0.015714779496192932, 0.00035193804069422185, -0.010327036492526531, 0.05183402821421623, -0.09629988670349121, 0.05054178461432457, 0.08792507648468018, 0.03888964280486107, -0.11326872557401657, 0.07606250792741776, -0.15689203143119812, 0.14387895166873932, -0.04234027490019798, -0.04361649602651596, -0.10243618488311768, -0.10632584244012833, -0.019334398210048676, -0.04864642024040222, 0.03392038494348526, 0.12098713219165802, -0.16823400557041168, -0.011169741861522198, 0.2139626145362854, -0.08036317676305771, -0.048123620450496674, 0.08461003005504608, -0.07041606307029724, 0.03230190649628639, 0.11956465244293213, 0.043636616319417953, 0.1288638710975647, -0.08694496750831604, -0.0982852354645729, -0.029453614726662636, -0.07554295659065247, 0.19635915756225586, 0.037136953324079514, -0.01538878958672285, 0.05556846037507057, -0.005108964629471302, -0.006147158797830343, -0.03010958433151245, -0.04163754731416702, -0.03706168755888939, -0.00829251017421484, 0.0019221317488700151, 0.028516562655568123, -0.04791070893406868, -0.023160377517342567, -0.013550890609622002, -0.09943031519651413, 0.06104772165417671, 0.08383980393409729, -0.07158581912517548, 0.031641773879528046, -0.11305076628923416, 0.03255258500576019, -0.06763119250535965, 0.009449725039303303, -0.17145657539367676, -0.023951906710863113, 0.02537335269153118, -0.07360010594129562, 0.057060811668634415, 0.030199041590094566, 0.05427161231637001, 0.06741102784872055, -0.02921709418296814, 0.011479604057967663, -0.054390449076890945, 0.00432561757043004, -0.06663668900728226, -0.16389216482639313, -0.05860831215977669, -0.035947877913713455, 0.04483228176832199, -0.09864947944879532, -0.004272019024938345, 0.10654094815254211, 0.1698359251022339, 0.04250238463282585, -0.05133978649973869, 0.01804761402308941, -0.01877385750412941, -0.02983122132718563, -0.09501704573631287, -0.0481589138507843, 0.008709846064448357, -0.02616279385983944, 0.16792210936546326, -0.12958867847919464, -0.08742529898881912, 0.11650655418634415, 0.08438955992460251, -0.07878712564706802, 0.02257128432393074, -0.058860164135694504, -0.026046713814139366, -0.04690695181488991, -0.047813255339860916, 0.21360746026039124, 0.05226393789052963, 0.08224113285541534, -0.09207173436880112, -0.07791100442409515, -0.0033651916310191154, -0.038486361503601074, -0.021324636414647102, 0.05496605113148689, 0.023360127583146095, -0.22159245610237122, 0.05516553297638893, 0.010298214852809906, 0.066497303545475, 0.16376174986362457, 0.011306841857731342, -0.10567349940538406, -0.07289479672908783, -0.048404742032289505, 0.01704336702823639, 0.07685914635658264, 0.020366642624139786, 0.05550803616642952, 0.039209239184856415, 0.038919609040021896, 0.029635578393936157, -0.11121420562267303, 0.028051871806383133, 0.04883774742484093, -0.038907382637262344, -0.02776978723704815, -0.013545469380915165, 0.039299968630075455, 0.08872295171022415, 0.07584061473608017, 0.09805116057395935, -0.036163508892059326, -0.05006686970591545, -0.11079911142587662, 0.1239185631275177, -0.09249396622180939, -0.20175553858280182, -0.12714236974716187, -0.07639223337173462, 0.022931378334760666, 0.01361618097871542, 0.021883588284254074, -0.0132173215970397, -0.03303249925374985, -0.09107393026351929, 0.07024756073951721, -0.044316861778497696, -0.010256732814013958, 0.0006611169665120542, 0.061230938881635666, -0.008840505965054035, -0.10255839675664902, -0.021380169317126274, 0.021724825724959373, -0.08437798172235489, 0.006539108697324991, 0.045688360929489136, 0.04546738788485527, 0.11697344481945038, -0.014732223935425282, -0.002570813987404108, -0.031218841671943665, 0.25699618458747864, -0.11018375307321548, 0.06685168296098709, 0.14486034214496613, -0.04621405154466629, 0.07233145833015442, 0.07906898111104965, -0.001167414360679686, -0.03594401478767395, 0.04783255606889725, 0.05518509820103645, -0.05854368582367897, -0.21247003972530365, -0.00882572028785944, -0.030428867787122726, 0.016413304954767227, 0.10605255514383316, 0.025224054232239723, 0.023135052993893623, 0.02625652216374874, -0.09834418445825577, 0.06997452676296234, 0.0685405358672142, 0.10103823989629745, -0.02035694196820259, -0.008358052000403404, 0.06757262349128723, -0.053140901029109955, 0.01562870480120182, 0.10486157983541489, 0.036925628781318665, 0.273213267326355, -0.07954858243465424, 0.0687124952673912, 0.08584989607334137, 0.08192413300275803, 0.026260344311594963, 0.036036573350429535, -0.013525971211493015, 0.040642689913511276, -0.00015318243822548538, -0.09292765706777573, -0.010523805394768715, 0.04116719961166382, 0.04542384669184685, -0.018655870109796524, -0.02969423495233059, -0.05798680707812309, 0.04318470507860184, 0.21225140988826752, 0.08489980548620224, -0.14546488225460052, -0.0918438732624054, 0.07581086456775665, -0.0632178857922554, -0.057976629585027695, -0.021056439727544785, 0.10579932481050491, -0.21728846430778503, 0.018573421984910965, -0.035819098353385925, 0.1167575865983963, -0.16419543325901031, -0.015357043594121933, -0.009054428897798061, 0.058593932539224625, -0.06574495136737823, 0.0780959352850914, -0.1863216757774353, 0.0851145014166832, 0.012578384019434452, 0.09095935523509979, -0.06354951113462448, 0.029316028580069542, 0.04315795749425888, 0.008544113487005234, 0.09672898799180984, 0.012874828651547432, -0.013710621744394302, -0.09099677205085754, -0.07714027166366577, 0.0005814523319713771, 0.07049686461687088, -0.06432265788316727, 0.13053791224956512, -0.031193165108561516, 0.026705073192715645, -0.024482611566781998, -0.0569918267428875, -0.12057853490114212, -0.15195201337337494, 0.07389868050813675, -0.12345040589570999, 0.006374490447342396, -0.05611991509795189, -0.032484252005815506, 0.03580285981297493, 0.19873255491256714, -0.11731569468975067, -0.08702130615711212, -0.11025109887123108, 0.026489857584238052, 0.160843625664711, -0.08709453046321869, 0.019958144053816795, 0.01396354753524065, 0.15642917156219482, 0.005884693004190922, -0.11387240886688232, -0.018552076071500778, -0.04916246980428696, -0.19618357717990875, -0.018595144152641296, 0.11883839964866638, 0.07659035176038742, 0.059427376836538315, 0.021971028298139572, 0.014714137651026249, -0.011652836576104164, -0.1511625498533249, 0.014202948659658432, 0.11328645795583725, 0.0566011480987072, 0.032018840312957764, 0.016106687486171722, 0.03433656319975853, -0.14068707823753357, 0.025756975635886192, 0.07280748337507248, 0.20654401183128357, -0.07828906178474426, 0.14824634790420532, 0.013381082564592361, -0.0883287861943245, -0.17255574464797974, 0.00822618417441845, 0.015176934190094471, 0.029654093086719513, 0.02378658391535282, -0.16580556333065033, -0.0086774667724967, 0.03857136517763138, -0.011638849973678589, 0.09092702716588974, -0.29614928364753723, -0.13288095593452454, 0.019588785246014595, 0.03303687646985054, -0.08032752573490143, -0.02893766574561596, -0.062190908938646317, -0.0727263018488884, -0.23111161589622498, 0.08367756009101868, -0.09548509865999222, 0.08483479917049408, 0.019673090428113937, 0.022668153047561646, 0.03882841020822525, -0.04470372572541237, 0.14337465167045593, -0.05756855383515358, 0.04995061457157135, -0.09566446393728256, -0.028301656246185303, 0.08094803243875504, -0.05395080894231796, 0.05889090150594711, 0.014649853110313416, 0.06123919412493706, -0.0668938085436821, -0.06673016399145126, -0.08002743870019913, 0.015459368005394936, -0.06460300832986832, -0.09047801792621613, -0.08672165125608444, 0.10560236871242523, 0.12368495017290115, -0.0233566015958786, -0.08990245312452316, -0.046357009559869766, -0.045656975358724594, 0.116949662566185, 0.10553445667028427, 0.11899589002132416, -0.06392157077789307, 0.009961754083633423, 0.0034164676908403635, 0.03852333500981331, -0.09423723816871643, 0.054092030972242355, 0.08672507107257843, 0.02109583653509617, 0.11071249097585678, 0.021370887756347656, -0.16808444261550903, 0.03691013902425766, 0.02373608388006687, -0.11444008350372314, -0.11833927035331726, -0.01732574589550495, -0.011597221717238426, -0.08944686502218246, -0.04076666757464409, 0.15333114564418793, -0.03687397763133049, -0.03522134944796562, 0.005689600482583046, 0.06263025104999542, -0.03438280150294304, 0.1183929517865181, 0.03746401518583298, 0.046163562685251236, -0.07106729596853256, 0.09628252685070038, 0.07382600009441376, 0.01149215642362833, 0.033090777695178986, 0.04933176562190056, -0.08108551055192947, -0.006512862164527178, -0.07563997060060501, -0.0028256443329155445, -0.0014686533249914646, -0.007205586414784193, -0.009197867475450039, -0.05201239883899689, 0.04668271541595459, 0.11223391443490982, -0.01088613923639059, 0.11192197352647781, -0.014124195091426373, 0.004314953461289406, -0.11776095628738403, 0.09022646397352219, 0.05337328836321831, 0.017219718545675278, -0.08984529227018356, 0.16331593692302704, 0.019303996115922928, 0.09000726044178009, -0.0415872186422348, -0.04642867669463158, -0.0775001123547554, -0.012883596122264862, -0.15412306785583496, -0.015377325005829334, -0.10183797031641006, -0.04580412060022354, -0.016138305887579918, -0.0476248562335968, -0.04401013255119324, 0.05635016784071922, -0.033483296632766724, -0.0666237622499466, -0.06453221291303635, 0.048345740884542465, -0.14586611092090607, -0.011336018331348896, 0.13177286088466644, -0.08937650918960571, 0.1064760684967041, 0.04698842763900757, -0.03411681205034256, 0.005450322292745113, -0.0642874464392662, 0.021608194336295128, -0.03391771763563156, 0.013742868788540363, 0.03371232748031616, -0.14202430844306946, 0.01659887470304966, -0.05672186240553856, -0.04065380617976189, 0.01224820502102375, 0.02174808830022812, -0.1131293922662735, -0.0037328877951949835, 0.033622708171606064, -0.010165373794734478, -0.06584028899669647, 0.08322624862194061, 0.05223074182868004, 0.025689059868454933, 0.0775870680809021, -0.030334005132317543, 0.10872545838356018, -0.16944897174835205, -0.032522570341825485, 0.017434289678931236, 0.003175563644617796, 0.10643152892589569, -0.023152317851781845, 0.059730008244514465, -0.0193552915006876, 0.17407715320587158, -0.00038467362173832953, -0.017931772395968437, 0.03592798486351967, -0.04673773795366287, -0.021289560943841934, 0.05570041760802269, 0.06650707125663757, -0.015307115390896797, -0.056724913418293, -0.033647049218416214, -0.012724076397716999, -0.0677531361579895, -0.06969638168811798, 0.12188446521759033, 0.09497711062431335, 0.1542218178510666, -0.02775813825428486, 0.07266024500131607, -0.003278735326603055, -0.10999835282564163, -0.019237183034420013, -0.018239669501781464, 0.028795285150408745, -0.04722141474485397, 0.08731597661972046, 0.1458178609609604, -0.16286325454711914, 0.11738789081573486, 0.011865402571856976, -0.062445249408483505, -0.10867412388324738, -0.1961454153060913, -0.04209223762154579, -0.014207018539309502, 0.036172907799482346, -0.12371501326560974, 0.07148168236017227, 0.05805528908967972, 0.03231004998087883, -0.05526595190167427, 0.08827277272939682, -0.043293751776218414, -0.11588539928197861, 0.030975326895713806, 0.034717146307229996, 0.03230871632695198, 0.04302559792995453, 0.050278183072805405, 0.028161438181996346, 0.024698792025446892, 0.06847470998764038, 0.03666026517748833, 0.03602631017565727, 0.013878395780920982, -0.013104529120028019, -0.058799706399440765, 0.023362915962934494, 0.012114617973566055, 0.04238336160778999, 0.1329079419374466, 0.0650663748383522, -0.007354229222983122, -0.03940906748175621, 0.29479044675827026, -0.04694712162017822, -0.05097276344895363, -0.1710059940814972, 0.15595726668834686, 0.02794729359447956, 0.0029265363700687885, 0.029733750969171524, -0.14136143028736115, 0.008956799283623695, 0.1458337903022766, 0.15132595598697662, -0.056074026972055435, 0.009425792843103409, -0.014961965382099152, 0.01113386545330286, 0.03769358620047569, 0.06968172639608383, 0.044758912175893784, 0.18689702451229095, -0.06229132041335106, 0.05901852995157242, 0.005183176603168249, -0.012033512815833092, -0.037079617381095886, 0.11513617634773254, -0.039785441011190414, 0.013000772334635258, -0.07972477376461029, 0.07998789101839066, -0.05370943620800972, -0.2712017893791199, 0.013195825740695, -0.04212168604135513, -0.09769075363874435, 0.06401990354061127, -0.028014587238430977, -0.016489049419760704, 0.08155360072851181, 0.02718099020421505, -0.004442788194864988, 0.11476816982030869, 0.04581242427229881, -0.020493945106863976, 0.00329833896830678, 0.09488411992788315, -0.027434436604380608, 0.1900167316198349, -0.01730179786682129, 0.04420863837003708, 0.10205227136611938, 0.033789023756980896, -0.11431289464235306, 0.0022695220541208982, 0.04864419251680374, -0.07455992698669434, -0.006735506001859903, 0.20581069588661194, 0.010164429433643818, 0.006420065648853779, 0.08732733875513077, -0.032579485327005386, 0.030274460092186928, -0.059227105230093, 0.03073223866522312, -0.12035267800092697, 0.03655758872628212, -0.08505482226610184, 0.11887888610363007, 0.18303370475769043, -0.0669974535703659, 0.032701365649700165, -0.04592831805348396, -0.0129669439047575, -0.01445765234529972, 0.0474943183362484, -0.02313688024878502, -0.08744213730096817, 0.009126012213528156, 0.03588784858584404, 0.03618369624018669, -0.19386693835258484, -0.07942317426204681, 0.05080679804086685, -0.06570432335138321, -0.006675345823168755, 0.1479630470275879, 0.019548434764146805, 0.04611874744296074, -0.030322665348649025, -0.05425046756863594, -0.024563787505030632, 0.07958128303289413, -0.13682183623313904, -0.06184064969420433 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c0c7e74ec794ad44eb0957d6afdd383d.815x815x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Кишлак (Kishlak)</div> <a href="https://genius.com/artists/kishlak"> <div style="text-align: center; font-size: 14px;">@kishlak</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Кишлак (Kishlak). Dataset is available [here](https://huggingface.co/datasets/huggingartists/kishlak). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kishlak") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2654f8ic/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Кишлак (Kishlak)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/12gu37uv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/12gu37uv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kishlak') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kishlak") model = AutoModelWithLMHead.from_pretrained("huggingartists/kishlak") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/kishlak"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/kishlak
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kishlak", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kishlak #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Кишлак (Kishlak)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@kishlak</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Кишлак (Kishlak). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Кишлак (Kishlak)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Кишлак (Kishlak).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Кишлак (Kishlak)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kishlak #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Кишлак (Kishlak).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Кишлак (Kishlak)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 55, 78, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kishlak #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Кишлак (Kishlak).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Кишлак (Kishlak)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01320144347846508, 0.17815858125686646, -0.004975680261850357, 0.05907735601067543, 0.07314284145832062, -0.005048792343586683, 0.07774533331394196, 0.1181679368019104, 0.000309767754515633, 0.0847925916314125, 0.06438404321670532, 0.04660846292972565, 0.09206283092498779, 0.07198773324489594, 0.03672691434621811, -0.26078730821609497, 0.03700045496225357, -0.06686011701822281, -0.013585629872977734, 0.09712836891412735, 0.08657962083816528, -0.08630352467298508, 0.0797499418258667, 0.0273140799254179, -0.03734937682747841, -0.006614841520786285, 0.0077054863795638084, -0.058330025523900986, 0.06594320386648178, 0.07736267894506454, 0.05250698700547218, 0.04899759963154793, 0.06212360039353371, -0.18572907149791718, 0.024047482758760452, 0.11695877462625504, 0.030046116560697556, 0.08767358958721161, 0.07559315860271454, -0.04892865568399429, 0.12323517352342606, -0.042173121124506, 0.08560621738433838, 0.052770160138607025, -0.10858581215143204, -0.07031706720590591, -0.14066924154758453, 0.05840924754738808, 0.08427245914936066, 0.06644371151924133, -0.02617071382701397, 0.08911222219467163, -0.048987533897161484, 0.0565844401717186, 0.24090255796909332, -0.26249563694000244, -0.01990683004260063, 0.03544931858778, 0.06496473401784897, 0.02333812229335308, -0.09611448645591736, 0.01478155329823494, 0.031139841303229332, 0.03589360788464546, 0.05315139517188072, -0.036545004695653915, 0.14747686684131622, -0.010324383154511452, -0.1050024926662445, -0.07355847954750061, 0.07607840746641159, -0.008112183772027493, -0.07641328871250153, -0.11063720285892487, -0.004781830590218306, -0.01380032580345869, 0.02427035942673683, 0.0003414629027247429, 0.002906760200858116, -0.016452083364129066, -0.08641104400157928, -0.12326273322105408, -0.07441498339176178, -0.0362810380756855, -0.033241841942071915, 0.053671594709157944, 0.052975963801145554, 0.039018452167510986, -0.051700253039598465, 0.18936359882354736, 0.0468030609190464, -0.11181756108999252, -0.07673879712820053, -0.10615662485361099, -0.09361691027879715, -0.04046338051557541, 0.0009617733885534108, 0.013876114971935749, -0.01563168689608574, 0.12989459931850433, -0.02858664095401764, 0.025506479665637016, -0.049310434609651566, 0.012716542929410934, 0.10326307266950607, 0.13532616198062897, -0.10770071297883987, -0.054552264511585236, 0.0651453509926796, -0.013616198673844337, -0.054371125996112823, -0.04837644100189209, -0.007685426622629166, -0.042376354336738586, 0.05905698612332344, 0.08574497699737549, 0.08511017262935638, 0.048827216029167175, -0.0056149596348404884, -0.05170103535056114, 0.018095333129167557, -0.1433851420879364, 0.02757355198264122, -0.01026884000748396, -0.05887569859623909, 0.01082298718392849, 0.03764466196298599, -0.0006269046571105719, -0.11742794513702393, 0.0723966732621193, -0.07505062967538834, -0.023642173036932945, -0.0818258747458458, -0.11170891672372818, 0.01535371970385313, -0.0393814854323864, -0.029538951814174652, -0.07686880975961685, -0.1467341184616089, -0.03713667392730713, 0.017875460907816887, -0.0746273621916771, -0.021034805104136467, 0.024529434740543365, -0.041686370968818665, 0.0005495283403433859, -0.015856416895985603, 0.0032070737797766924, -0.00819968618452549, 0.051799166947603226, -0.09251595288515091, 0.04794947803020477, 0.08500542491674423, 0.03980972617864609, -0.11365005373954773, 0.08019678294658661, -0.15624523162841797, 0.14781586825847626, -0.04020457714796066, -0.03813156113028526, -0.09759567677974701, -0.10775694251060486, -0.016084076836705208, -0.04589276388287544, 0.032511934638023376, 0.12052100896835327, -0.16606460511684418, -0.011839164420962334, 0.21364934742450714, -0.0770619586110115, -0.049800317734479904, 0.08552399277687073, -0.07258079200983047, 0.03148103505373001, 0.11639297008514404, 0.0516461543738842, 0.13054737448692322, -0.08811958134174347, -0.09189868718385696, -0.028931332752108574, -0.07545026391744614, 0.19414366781711578, 0.03832279518246651, -0.01754358969628811, 0.0593564473092556, -0.00521132443100214, -0.007292459718883038, -0.025769397616386414, -0.04034621641039848, -0.0373733751475811, -0.007983140647411346, 0.00014579355774912983, 0.022480135783553123, -0.04854953661561012, -0.0245889313519001, -0.01603863202035427, -0.10160476714372635, 0.06294923275709152, 0.08418736606836319, -0.07201997935771942, 0.029141122475266457, -0.10928144305944443, 0.0328303724527359, -0.06743330508470535, 0.008628380484879017, -0.17254438996315002, -0.0311181228607893, 0.02533818781375885, -0.07442381978034973, 0.059285279363393784, 0.027059921994805336, 0.05242615565657616, 0.070728600025177, -0.030207369476556778, 0.010743273422122002, -0.04869094118475914, 0.003461653832346201, -0.06749534606933594, -0.15862251818180084, -0.058397360146045685, -0.03639379143714905, 0.048951487988233566, -0.10181285440921783, -0.0016495566815137863, 0.10695463418960571, 0.1674083024263382, 0.04305930435657501, -0.054432835429906845, 0.02238224260509014, -0.020198071375489235, -0.028570685535669327, -0.09777141362428665, -0.04866185411810875, 0.009567179717123508, -0.029009055346250534, 0.16453228890895844, -0.13648585975170135, -0.09071231633424759, 0.11519108712673187, 0.08966881036758423, -0.07808705419301987, 0.028101589530706406, -0.05847508832812309, -0.02640702947974205, -0.04810883477330208, -0.050741046667099, 0.2127302587032318, 0.05166887864470482, 0.0837867259979248, -0.09401801228523254, -0.07981342822313309, -0.0060659428127110004, -0.0355357751250267, -0.021634317934513092, 0.05529753863811493, 0.021428650245070457, -0.22443342208862305, 0.055382248014211655, 0.012854143045842648, 0.06766640394926071, 0.16334669291973114, 0.011170153506100178, -0.10529720783233643, -0.07190126180648804, -0.05066167563199997, 0.015595930628478527, 0.07688776403665543, 0.024645930156111717, 0.056554898619651794, 0.03888624906539917, 0.041982974857091904, 0.026706960052251816, -0.11320861428976059, 0.026173360645771027, 0.04946787282824516, -0.03639458119869232, -0.03187902271747589, -0.009084013290703297, 0.0389651395380497, 0.08867283910512924, 0.07506152987480164, 0.0989394560456276, -0.036585111171007156, -0.05145878717303276, -0.11194723099470139, 0.12650424242019653, -0.0936795026063919, -0.20206837356090546, -0.1283288598060608, -0.07894808053970337, 0.024212773889303207, 0.010706700384616852, 0.023894261568784714, -0.01248213741928339, -0.03329704701900482, -0.09179726988077164, 0.06585495918989182, -0.04570050165057182, -0.013165244832634926, 0.0008027370204217732, 0.056665681302547455, -0.008883550763130188, -0.10705707222223282, -0.02063601464033127, 0.02490154094994068, -0.08252080529928207, 0.0041404301300644875, 0.04422427713871002, 0.045911382883787155, 0.11882616579532623, -0.010748901404440403, -0.003118081483989954, -0.031141670420765877, 0.26003703474998474, -0.11188732832670212, 0.06507904827594757, 0.14044253528118134, -0.049878042191267014, 0.07435458898544312, 0.0824916735291481, -0.00037808052729815245, -0.037647198885679245, 0.048273082822561264, 0.05544726923108101, -0.05850609764456749, -0.20851115882396698, -0.004183812998235226, -0.030499203130602837, 0.013872845098376274, 0.1050371527671814, 0.02594740130007267, 0.021890917792916298, 0.024561945348978043, -0.09577570110559464, 0.06646622717380524, 0.06878818571567535, 0.1009104922413826, -0.021641260012984276, -0.008516423404216766, 0.067005455493927, -0.05286639556288719, 0.016703367233276367, 0.10630462318658829, 0.03241344541311264, 0.27086445689201355, -0.08019015192985535, 0.07373017817735672, 0.08479102700948715, 0.08298353850841522, 0.028062729164958, 0.03687964752316475, -0.014191624708473682, 0.044613394886255264, -0.0022659674286842346, -0.09096433967351913, -0.00766889238730073, 0.04104071110486984, 0.05072692036628723, -0.018282322213053703, -0.03191722184419632, -0.05925928056240082, 0.04175087809562683, 0.21171295642852783, 0.08408869802951813, -0.14924943447113037, -0.08802332729101181, 0.07883661985397339, -0.06538071483373642, -0.05933372303843498, -0.020608285441994667, 0.10545989125967026, -0.21792417764663696, 0.0215822234749794, -0.035777684301137924, 0.1180180236697197, -0.16046375036239624, -0.015084167011082172, -0.008934262208640575, 0.05971674621105194, -0.0667271688580513, 0.07726242393255234, -0.19008681178092957, 0.08334563672542572, 0.012795332819223404, 0.09022531658411026, -0.0616501122713089, 0.02821550890803337, 0.04836243391036987, 0.007926052436232567, 0.0995350256562233, 0.011939525604248047, -0.01749688759446144, -0.08811111748218536, -0.07535075396299362, 0.0022228946909308434, 0.07140202075242996, -0.06613132357597351, 0.12972182035446167, -0.03166878595948219, 0.024153640493750572, -0.023766597732901573, -0.05929175764322281, -0.1174822524189949, -0.15322963893413544, 0.07240205258131027, -0.12283746153116226, 0.003273589536547661, -0.0574125237762928, -0.03302202746272087, 0.041652437299489975, 0.19786830246448517, -0.1158982515335083, -0.08881713449954987, -0.11368624120950699, 0.025282112881541252, 0.16206003725528717, -0.08778967708349228, 0.02067088522017002, 0.013672553934156895, 0.1549890637397766, 0.0070078191347420216, -0.11377854645252228, -0.015446937642991543, -0.04675047844648361, -0.19535808265209198, -0.01894736848771572, 0.11673249304294586, 0.07753415405750275, 0.060167986899614334, 0.022109653800725937, 0.016409369185566902, -0.01487291231751442, -0.15232105553150177, 0.013870694674551487, 0.11158345639705658, 0.057789042592048645, 0.03381207957863808, 0.01541066449135542, 0.03326379507780075, -0.13931314647197723, 0.029922576621174812, 0.07180135697126389, 0.21296828985214233, -0.0768469050526619, 0.14803844690322876, 0.015402548015117645, -0.08949930965900421, -0.17059317231178284, 0.006563760805875063, 0.013896838761866093, 0.032663505524396896, 0.02767980471253395, -0.1657358556985855, -0.0068191662430763245, 0.03809846192598343, -0.01270588394254446, 0.08955737203359604, -0.2938997745513916, -0.13222314417362213, 0.021502789109945297, 0.03509969264268875, -0.08464129269123077, -0.030675647780299187, -0.062279123812913895, -0.07059191912412643, -0.23180434107780457, 0.08715551346540451, -0.09719832986593246, 0.08579649031162262, 0.019810780882835388, 0.025348147377371788, 0.03874516859650612, -0.04621252045035362, 0.1461966186761856, -0.05715145543217659, 0.051450613886117935, -0.09613016247749329, -0.02783367782831192, 0.08359018713235855, -0.055947717279195786, 0.06072423979640007, 0.007930602878332138, 0.06296499818563461, -0.06938432157039642, -0.0654204860329628, -0.08085648715496063, 0.014964544214308262, -0.06758541613817215, -0.08861404657363892, -0.08793557435274124, 0.10165251046419144, 0.12260828167200089, -0.024678606539964676, -0.0945490226149559, -0.04640932381153107, -0.042658235877752304, 0.10655012726783752, 0.111228808760643, 0.11808307468891144, -0.06369918584823608, 0.006952458992600441, 0.0027801035903394222, 0.03593182936310768, -0.09504154324531555, 0.05295217037200928, 0.08723380416631699, 0.022153284400701523, 0.11323530972003937, 0.023096410557627678, -0.1656336784362793, 0.04061117023229599, 0.024777323007583618, -0.11089590191841125, -0.12000301480293274, -0.01826409250497818, -0.02065572328865528, -0.09508057683706284, -0.05108736827969551, 0.14973676204681396, -0.030321933329105377, -0.03819044679403305, 0.005323303397744894, 0.06389642506837845, -0.03360111266374588, 0.11448069661855698, 0.03726154565811157, 0.04968638718128204, -0.06907177716493607, 0.09308495372533798, 0.07339219748973846, 0.011936770752072334, 0.035403139889240265, 0.05663250386714935, -0.08093678206205368, -0.005209742579609156, -0.07547701895236969, 0.0010949996067211032, -0.0007636781665496528, -0.0036293768789619207, -0.01037968136370182, -0.050960689783096313, 0.04472453147172928, 0.11442885547876358, -0.011626334860920906, 0.11208152770996094, -0.017330056056380272, 0.00421479344367981, -0.11605551838874817, 0.09291600435972214, 0.05141998082399368, 0.017732931300997734, -0.0883055180311203, 0.16376902163028717, 0.022028034552931786, 0.08988127112388611, -0.04134216532111168, -0.046940259635448456, -0.07761707901954651, -0.015076863579452038, -0.15594595670700073, -0.01657131314277649, -0.10048224776983261, -0.0446002371609211, -0.01757662743330002, -0.04909326881170273, -0.04367867857217789, 0.05582893267273903, -0.0340593121945858, -0.06965335458517075, -0.0618789903819561, 0.049092456698417664, -0.14789129793643951, -0.011714901775121689, 0.1341928243637085, -0.09042326360940933, 0.10868934541940689, 0.04406813904643059, -0.03720316290855408, 0.006860452238470316, -0.05841801315546036, 0.016841890290379524, -0.03580658510327339, 0.01496606133878231, 0.03222247213125229, -0.1441631317138672, 0.016203731298446655, -0.056837134063243866, -0.03853871673345566, 0.014063495211303234, 0.02198956161737442, -0.11199820786714554, -0.005521416664123535, 0.035052500665187836, -0.01245200913399458, -0.06836923956871033, 0.08209549635648727, 0.050625868141651154, 0.025023451074957848, 0.07812678813934326, -0.027523931115865707, 0.10738105326890945, -0.17117580771446228, -0.03460225090384483, 0.01600101962685585, 0.002778884954750538, 0.10492966324090958, -0.02539774589240551, 0.06093747168779373, -0.020165560767054558, 0.17503654956817627, -0.008111521601676941, -0.022647688165307045, 0.037078797817230225, -0.04021121934056282, -0.015311036258935928, 0.054721683263778687, 0.07266790419816971, -0.014998546801507473, -0.05756957083940506, -0.027981068938970566, -0.013826943002641201, -0.06841568648815155, -0.07377942651510239, 0.12386829406023026, 0.09198722243309021, 0.15642671287059784, -0.029011331498622894, 0.0740983784198761, -0.0029600218404084444, -0.11428292840719223, -0.024312380701303482, -0.013259275816380978, 0.026649316772818565, -0.047824520617723465, 0.0863368809223175, 0.14680027961730957, -0.1619790643453598, 0.11676067858934402, 0.011681797914206982, -0.06408625096082687, -0.11248353868722916, -0.19104786217212677, -0.04143812134861946, -0.009601840749382973, 0.03454006090760231, -0.12460103631019592, 0.0724637508392334, 0.05963711813092232, 0.03265988826751709, -0.05431288853287697, 0.09270155429840088, -0.04468651860952377, -0.11349670588970184, 0.03265861049294472, 0.03483021259307861, 0.03404894843697548, 0.04459294304251671, 0.050770364701747894, 0.02783908322453499, 0.026573657989501953, 0.07081708312034607, 0.03228439390659332, 0.030169624835252762, 0.016219893470406532, -0.019336016848683357, -0.06004032865166664, 0.023474611341953278, 0.013509591110050678, 0.041503604501485825, 0.1263808310031891, 0.0650472640991211, -0.010089685209095478, -0.03773464262485504, 0.29384365677833557, -0.047834016382694244, -0.05188571661710739, -0.17205218970775604, 0.15741883218288422, 0.023617161437869072, -0.003836811287328601, 0.030388936400413513, -0.14108318090438843, 0.011026225984096527, 0.1435696929693222, 0.15224556624889374, -0.061969079077243805, 0.007914328016340733, -0.01580161787569523, 0.010621706955134869, 0.035487256944179535, 0.07281143218278885, 0.04687413200736046, 0.18878187239170074, -0.061384689062833786, 0.058773063123226166, 0.009551897644996643, -0.015886835753917694, -0.03610031679272652, 0.11097216606140137, -0.038402751088142395, 0.015300331637263298, -0.07942438125610352, 0.08190049976110458, -0.05407636985182762, -0.26308128237724304, 0.008506033569574356, -0.03893657028675079, -0.09936510026454926, 0.06408923864364624, -0.03219976648688316, -0.018743503838777542, 0.07736652344465256, 0.026828667148947716, -0.003744756104424596, 0.1173979863524437, 0.04393022879958153, -0.02084827423095703, 0.002987528685480356, 0.09748939424753189, -0.033018484711647034, 0.19069775938987732, -0.015880724415183067, 0.03669153153896332, 0.10304155200719833, 0.032367050647735596, -0.1135624498128891, 0.002394809853285551, 0.0492059588432312, -0.070876345038414, -0.004375731106847525, 0.21131271123886108, 0.010576746426522732, 0.006090240087360144, 0.08648069202899933, -0.031214557588100433, 0.03141503781080246, -0.06700421124696732, 0.02725563570857048, -0.12255888432264328, 0.03343028202652931, -0.08386458456516266, 0.1215539202094078, 0.18029500544071198, -0.06766945123672485, 0.03324109688401222, -0.0438021644949913, -0.015303442254662514, -0.01181082334369421, 0.0485173799097538, -0.0221396591514349, -0.08900214731693268, 0.00820528157055378, 0.037404946982860565, 0.03412561118602753, -0.20282427966594696, -0.07970321178436279, 0.050204042345285416, -0.06469444185495377, -0.00714643020182848, 0.15020206570625305, 0.024091096594929695, 0.045118365436792374, -0.030813202261924744, -0.05652284994721413, -0.02730826660990715, 0.08335133641958237, -0.13999305665493011, -0.06090330705046654 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/8d81c49a2d84e2a69faf1a725343874b.434x434x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">​kizaru</div> <a href="https://genius.com/artists/kizaru"> <div style="text-align: center; font-size: 14px;">@kizaru</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ​kizaru. Dataset is available [here](https://huggingface.co/datasets/huggingartists/kizaru). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kizaru") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2goru0fu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ​kizaru's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1zni18k7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1zni18k7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kizaru') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kizaru") model = AutoModelWithLMHead.from_pretrained("huggingartists/kizaru") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/kizaru"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/kizaru
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kizaru", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kizaru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">​kizaru</div> <a href="URL <div style="text-align: center; font-size: 14px;">@kizaru</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ​kizaru. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ​kizaru's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​kizaru.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​kizaru's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kizaru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​kizaru.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​kizaru's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kizaru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ​kizaru.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​kizaru's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.012610354460775852, 0.14649902284145355, -0.0029472645837813616, 0.0349498875439167, 0.09330473840236664, 0.011948094703257084, 0.09400350600481033, 0.10352344065904617, 0.013087328523397446, 0.07771340012550354, 0.06546135991811752, 0.022411631420254707, 0.07814367115497589, 0.10908141732215881, 0.07997634261846542, -0.25978538393974304, 0.03404596447944641, -0.09668288379907608, 0.005931476131081581, 0.11651001125574112, 0.09937155991792679, -0.06054732948541641, 0.0845545306801796, 0.039430905133485794, -0.07045330107212067, 0.015902560204267502, -0.0018142644548788667, -0.07104067504405975, 0.09012262523174286, 0.06566189229488373, 0.03969300910830498, 0.02779141068458557, 0.06085102632641792, -0.18822914361953735, 0.031053930521011353, 0.1246989369392395, 0.03787437081336975, 0.06991571933031082, 0.04698946699500084, -0.07545115053653717, 0.16410240530967712, -0.022483373060822487, 0.09266580641269684, 0.040730319917201996, -0.12121059745550156, -0.13245676457881927, -0.1321270912885666, 0.09007787704467773, 0.09597054868936539, 0.08516491204500198, -0.028716858476400375, 0.04996523633599281, -0.02358957566320896, 0.0401666983962059, 0.23123803734779358, -0.2393580824136734, -0.01738150604069233, 0.09376572072505951, 0.0423622727394104, 0.02864742837846279, -0.08319848030805588, 0.013821030035614967, 0.040249478071928024, 0.016148505732417107, 0.042296186089515686, -0.01887584663927555, 0.19667378067970276, 0.019347570836544037, -0.09674347937107086, -0.0842728242278099, 0.12109144032001495, -0.02543342113494873, -0.07053491473197937, -0.13570399582386017, 0.0023946405854076147, -0.007062045391649008, 0.03487658500671387, -0.008701485581696033, -0.006434778217226267, -0.0007136321510188282, -0.040680255740880966, -0.10273377597332001, -0.08943299204111099, -0.028827982023358345, -0.03136434778571129, 0.0834580659866333, 0.03363419696688652, 0.03496992960572243, -0.07637874782085419, 0.22810710966587067, -0.01948816515505314, -0.10178923606872559, -0.05215410888195038, -0.09051131457090378, -0.09059194475412369, -0.058517150580883026, 0.012140047736465931, 0.012129039503633976, -0.045540645718574524, 0.14231324195861816, -0.03549626097083092, 0.02979794144630432, -0.0008139573037624359, -0.00965144019573927, 0.15190446376800537, 0.13673965632915497, -0.10200381278991699, -0.043063610792160034, 0.057997606694698334, -0.015543277375400066, -0.06784694641828537, -0.05520438775420189, -0.009704941883683205, -0.02128542959690094, 0.03654224053025246, 0.08447129279375076, 0.060990799218416214, 0.06204293668270111, 0.019870992749929428, -0.07001426070928574, 0.0888570249080658, -0.13985657691955566, 0.01084828469902277, -0.006926553789526224, -0.047448210418224335, 0.023985544219613075, 0.040325041860342026, 0.017627976834774017, -0.10614661127328873, 0.11311114579439163, -0.0569971464574337, -0.04772014915943146, -0.08198438584804535, -0.08774358034133911, -0.0030056778341531754, -0.02683907188475132, -0.04157426580786705, -0.0715389996767044, -0.16888843476772308, -0.04859360307455063, 0.03356727957725525, -0.047204289585351944, -0.045968662947416306, 0.031210778281092644, -0.017650829628109932, 0.011558746919035912, -0.016691770404577255, -0.03149623051285744, -0.030029555782675743, 0.028028791770339012, -0.0642511323094368, 0.0285057220607996, 0.08363659679889679, 0.04466719552874565, -0.11198816448450089, 0.0709177777171135, -0.17114152014255524, 0.12558704614639282, -0.015250083059072495, 0.015422927215695381, -0.10440387576818466, -0.0867323949933052, -0.029009278863668442, -0.03584359586238861, -0.0030442196875810623, 0.09858959913253784, -0.17118629813194275, -0.032956574112176895, 0.191597118973732, -0.07727126032114029, -0.08383385092020035, 0.06743604689836502, -0.07787473499774933, 0.04565349221229553, 0.12605006992816925, 0.07133768498897552, 0.15926750004291534, -0.11326267570257187, -0.06327222287654877, -0.04702383652329445, -0.06112281605601311, 0.2002813071012497, 0.05121438950300217, -0.013512169942259789, 0.022453386336565018, 0.0068196081556379795, -0.04281886667013168, -0.026204759255051613, -0.02070808969438076, -0.035618048161268234, -0.014795673079788685, 0.011683745309710503, -0.0033877345267683268, -0.04201562702655792, -0.06154245510697365, -0.022417889907956123, -0.09749890118837357, 0.047155771404504776, 0.10600006580352783, -0.06970907002687454, 0.00705533055588603, -0.0969911515712738, 0.007471269462257624, -0.03621472045779228, 0.009850596077740192, -0.1655411571264267, -0.054001424461603165, 0.025706076994538307, -0.07291612774133682, 0.08226144313812256, 0.035684794187545776, 0.03603994846343994, 0.05201132595539093, -0.014986432157456875, 0.013495482504367828, -0.04782876744866371, -0.018377473577857018, -0.026510154828429222, -0.15115690231323242, -0.0548454187810421, -0.04319652169942856, 0.08171067386865616, -0.1188414916396141, 0.003859267570078373, 0.09414567053318024, 0.12853382527828217, 0.019991053268313408, -0.05925530940294266, 0.019326424226164818, -0.041501328349113464, -0.03175294026732445, -0.10851388424634933, -0.05286702513694763, 0.011428271420300007, -0.016692698001861572, 0.16001369059085846, -0.16367468237876892, -0.08183982223272324, 0.10298432409763336, 0.13250906765460968, -0.09075753390789032, 0.035504940897226334, -0.07899558544158936, -0.016373861581087112, -0.04960646107792854, -0.029894331470131874, 0.2618131637573242, 0.03570007532835007, 0.07637640088796616, -0.10437370836734772, -0.10141696780920029, -0.00508051086217165, -0.047980573028326035, -0.026552777737379074, 0.024468742311000824, 0.021005872637033463, -0.18300078809261322, 0.03597735986113548, -0.0023199717979878187, 0.10081296414136887, 0.20725807547569275, 0.043594133108854294, -0.08828108757734299, -0.06479544937610626, -0.07091541588306427, -0.0016535731265321374, 0.0610882006585598, 0.002170783234760165, 0.024874674156308174, 0.04250900074839592, 0.05551150068640709, 0.04385726898908615, -0.1121102049946785, 0.01524598803371191, 0.0702706128358841, -0.04005172476172447, -0.043317392468452454, 0.016818532720208168, 0.023018795996904373, 0.08043397963047028, 0.0925515666604042, 0.14203833043575287, -0.06484133750200272, -0.049022600054740906, -0.13926689326763153, 0.1345745325088501, -0.07831160724163055, -0.24499928951263428, -0.13156983256340027, -0.07385168224573135, 0.012224827893078327, 0.005903886165469885, 0.025236353278160095, -0.044620685279369354, -0.0378698892891407, -0.08728926628828049, 0.09735359996557236, -0.04988446086645126, -0.022611696273088455, 0.009898850694298744, 0.02502255141735077, -0.033168498426675797, -0.10878647863864899, -0.03280993551015854, 0.03672882169485092, -0.10119090974330902, -0.008676799014210701, 0.03223558887839317, 0.03953562676906586, 0.16645166277885437, -0.015066972002387047, 0.0039161075837910175, -0.021040938794612885, 0.2787437438964844, -0.12809227406978607, 0.08001489192247391, 0.16138096153736115, -0.009766449220478535, 0.05730752646923065, 0.07934676110744476, 0.0027003823779523373, -0.057657770812511444, 0.07328919321298599, 0.0721624344587326, -0.07676398009061813, -0.21990306675434113, -0.03104250319302082, -0.013836749829351902, 0.005808084737509489, 0.11333834379911423, 0.04700398072600365, 0.04971757531166077, 0.017378728836774826, -0.10535795986652374, 0.046012960374355316, 0.027919210493564606, 0.10453954339027405, -0.05923869088292122, -0.006001134403049946, 0.04489990323781967, -0.05909891054034233, 0.027949193492531776, 0.13112130761146545, 0.05095967277884483, 0.20627708733081818, -0.06833086162805557, 0.09014728665351868, 0.08364611864089966, 0.10826119035482407, 0.0302598737180233, 0.010981929488480091, -0.017655640840530396, 0.017399495467543602, 0.0010154892224818468, -0.08929892629384995, -0.016441985964775085, 0.038689497858285904, 0.027657555416226387, -0.01989750750362873, -0.03714681789278984, -0.060324784368276596, 0.045487385243177414, 0.24048630893230438, 0.014825190417468548, -0.16361568868160248, -0.11093685030937195, 0.05463242530822754, -0.06958948820829391, -0.06164495646953583, -0.01941240020096302, 0.07250099629163742, -0.22289612889289856, 0.06419223546981812, -0.027145082131028175, 0.1065160259604454, -0.13178254663944244, -0.006975425407290459, 0.07948440313339233, 0.04412849247455597, -0.06784942001104355, 0.09832596033811569, -0.16440026462078094, 0.06666296720504761, -0.009156759828329086, 0.0809481143951416, -0.07397623360157013, 0.024807190522551537, 0.010263154283165932, 0.05235932767391205, 0.07691797614097595, 0.02275366336107254, 0.013831478543579578, -0.008341263979673386, -0.04103432968258858, 0.002810301026329398, 0.060072313994169235, -0.12212872505187988, 0.12627635896205902, -0.03173750638961792, 0.037457775324583054, -0.041345030069351196, -0.07815581560134888, -0.08998596668243408, -0.15335145592689514, 0.08810018748044968, -0.12147750705480576, -0.0018613499123603106, -0.06871570646762848, -0.016094114631414413, 0.03050241246819496, 0.2471417784690857, -0.059951309114694595, -0.07654242217540741, -0.1310679167509079, -0.00746941426768899, 0.1404348611831665, -0.08517599105834961, 0.0021342255640774965, -0.014047957956790924, 0.19666631519794464, -0.0001413431018590927, -0.12697023153305054, -0.017237940803170204, -0.06729044765233994, -0.17253263294696808, -0.007903678342700005, 0.16430281102657318, 0.06267641484737396, 0.028376996517181396, 0.009544056840240955, -0.0015772286569699645, -0.04531518369913101, -0.17429590225219727, 0.022752581164240837, 0.15055973827838898, -0.017728334292769432, 0.01961837150156498, 0.048391710966825485, 0.021512437611818314, -0.1345401108264923, 0.009414863772690296, 0.053098175674676895, 0.17138537764549255, -0.0691356360912323, 0.17502374947071075, 0.03429952636361122, -0.09559027850627899, -0.1588730365037918, 0.02026892825961113, 0.019902074709534645, 0.03054106794297695, 0.02129708230495453, -0.19543787837028503, 0.038562845438718796, 0.032146669924259186, -0.003943825140595436, 0.052245646715164185, -0.33525320887565613, -0.15148773789405823, 0.004030579701066017, 0.01336644496768713, -0.11081275343894958, -0.03824493661522865, -0.03833664953708649, -0.08059560507535934, -0.25267550349235535, 0.09532617032527924, -0.10819803178310394, 0.07765711098909378, 0.018082452937960625, 0.09961981326341629, 0.04411064460873604, -0.04926903173327446, 0.1304742842912674, -0.02419198490679264, 0.059973057359457016, -0.10348028689622879, -0.06417517364025116, 0.08842385560274124, -0.06985627114772797, 0.09365488588809967, 0.045070286840200424, 0.08471616357564926, -0.10672963410615921, -0.0852908343076706, -0.07844678312540054, 0.009044768288731575, -0.0597342886030674, -0.09456449002027512, -0.09835778921842575, 0.09595391154289246, 0.12488654255867004, -0.038229260593652725, -0.09243512153625488, -0.054847925901412964, -0.0038243026938289404, 0.06314843147993088, 0.10741687566041946, 0.08940093219280243, -0.07163082808256149, 0.006492717657238245, 0.020802153274416924, 0.017017873004078865, -0.16433677077293396, 0.0432884655892849, 0.0886913537979126, 0.04259946942329407, 0.10525735467672348, 0.004120604135096073, -0.17072562873363495, 0.006617218255996704, 0.04743387922644615, -0.16061681509017944, -0.12285641580820084, -0.04173911735415459, 0.018440797924995422, -0.1020287573337555, -0.049184221774339676, 0.1333579570055008, -0.034860365092754364, -0.03707841411232948, 0.0006063659675419331, 0.04329053685069084, -0.04575616121292114, 0.09427475184202194, 0.005727814044803381, 0.04436684027314186, -0.06743091344833374, 0.11860351264476776, 0.07622071355581284, 0.011612423695623875, 0.03451100364327431, 0.06550365686416626, -0.0900958776473999, 0.007986960932612419, -0.09531369060277939, 0.01020888052880764, -0.031307995319366455, -0.016739942133426666, 0.017777450382709503, -0.03900568187236786, 0.03807063028216362, 0.0786764845252037, -0.015048260800540447, 0.10679523646831512, -0.033485766500234604, 0.009418284520506859, -0.13192644715309143, 0.0694541335105896, 0.046211160719394684, 0.020121626555919647, -0.1163141131401062, 0.19144299626350403, 0.02947007492184639, 0.10253701359033585, -0.03547132387757301, -0.06414400041103363, -0.06121331825852394, -0.010286127217113972, -0.08100536465644836, -0.03807364031672478, -0.09874743223190308, -0.02564709633588791, -0.0057069105096161366, -0.04571343958377838, -0.0327833816409111, 0.04445042088627815, -0.036490023136138916, -0.05454283580183983, -0.0732213705778122, 0.05156504735350609, -0.12589260935783386, 0.033088382333517075, 0.12443643808364868, -0.059097979217767715, 0.12042086571455002, 0.05774153396487236, -0.033348437398672104, 0.024507997557520866, -0.1214783638715744, 0.04548653960227966, -0.02551397867500782, 0.018164265900850296, 0.023447565734386444, -0.16135051846504211, 0.010159237310290337, -0.04294830560684204, -0.06070826202630997, 0.0043120854534208775, -0.007480882573872805, -0.1320933997631073, -0.0005739816115237772, 0.0784192830324173, -0.023937398567795753, -0.06818808615207672, 0.07246075570583344, 0.06013847142457962, 0.017226610332727432, 0.0562373623251915, -0.024900421500205994, 0.07968924194574356, -0.16637495160102844, -0.05273939296603203, 0.006916638929396868, 0.033239297568798065, 0.052375003695487976, -0.015944909304380417, 0.03700689598917961, -0.01724139042198658, 0.19556070864200592, 0.0166156068444252, -0.017317138612270355, 0.03580435737967491, -0.06528088450431824, -0.01503553707152605, 0.04424669221043587, 0.07262054085731506, -0.033779919147491455, -0.03748193010687828, -0.004114271607249975, -0.019769152626395226, -0.09889563918113708, -0.036648694425821304, 0.11260437965393066, 0.04777798801660538, 0.1948368400335312, -0.05378438159823418, 0.06400365382432938, -0.014445992186665535, -0.10690207779407501, -0.005047845188528299, -0.04955904185771942, 0.0356576032936573, -0.058153409510850906, 0.06124809756875038, 0.18403850495815277, -0.16677197813987732, 0.11884705722332001, 0.02123168297111988, -0.06142747029662132, -0.10923544317483902, -0.20273597538471222, -0.02106344699859619, -0.04312562942504883, 0.03325348347425461, -0.13858310878276825, 0.09243620932102203, 0.030612191185355186, 0.039365254342556, -0.07055526226758957, 0.1331462413072586, -0.07315993309020996, -0.12619853019714355, 0.042837176471948624, 0.024691108614206314, 0.030131207779049873, 0.04287024959921837, 0.07870487123727798, 0.026154663413763046, 0.010442673228681087, 0.07497997581958771, 0.04093845561146736, 0.02801516465842724, 0.03164912760257721, -0.02220534346997738, -0.044881876558065414, 0.03255613148212433, -0.0033406028524041176, 0.0332382395863533, 0.09091997146606445, 0.0636138990521431, -0.015815475955605507, -0.023314110934734344, 0.3079041540622711, -0.03289036080241203, -0.05073949694633484, -0.18050745129585266, 0.15147584676742554, 0.01108130905777216, -0.011066215112805367, 0.02992711402475834, -0.12358408421278, 0.006124896928668022, 0.1316710114479065, 0.15428738296031952, -0.019053971394896507, 0.01866808719933033, -0.03001299872994423, 0.01944500021636486, 0.038338977843523026, 0.09307888150215149, 0.05953298881649971, 0.19271361827850342, -0.03651994466781616, 0.05224807187914848, -0.012735150754451752, -0.01876974292099476, 0.003130711382254958, 0.10412076860666275, -0.033556289970874786, 0.0040757195092737675, -0.059862732887268066, 0.10605388879776001, -0.06017617508769035, -0.2919390797615051, -0.0218941830098629, -0.0344279520213604, -0.09762442857027054, 0.060647182166576385, -0.026932738721370697, -0.02449149452149868, 0.08950496464967728, 0.02903241664171219, -0.04496967792510986, 0.13461744785308838, 0.05485863238573074, -0.043986983597278595, -0.009147134609520435, 0.10941286385059357, -0.01722201332449913, 0.17618973553180695, -0.031100403517484665, 0.014605507254600525, 0.08483626693487167, 0.014954320155084133, -0.12514062225818634, 0.008954189717769623, 0.04053812474012375, -0.06667820364236832, -0.02211434207856655, 0.19945591688156128, 0.01487430464476347, 0.018626660108566284, 0.07569810748100281, -0.06475696712732315, 0.024438703432679176, -0.04633670300245285, 0.06662764400243759, -0.1507245898246765, 0.06708323210477829, -0.08506496995687485, 0.13097625970840454, 0.18654541671276093, -0.0656077042222023, 0.03007175214588642, -0.060573507100343704, 0.009802300482988358, -0.026538414880633354, 0.0798315778374672, -0.022675300016999245, -0.10904443264007568, 0.007071825675666332, 0.016689421609044075, 0.02553284727036953, -0.17515690624713898, -0.06776654720306396, 0.06996839493513107, -0.051840152591466904, 0.023871665820479393, 0.17906200885772705, 0.02077869139611721, 0.06244775280356407, -0.03647499531507492, -0.02263534627854824, -0.015866907313466072, 0.11504067480564117, -0.16153989732265472, -0.08076480776071548 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/61181ccb60b6a0e1e7f8fb8ae2a2ab0a.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Krechet</div> <a href="https://genius.com/artists/krechet"> <div style="text-align: center; font-size: 14px;">@krechet</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Krechet. Dataset is available [here](https://huggingface.co/datasets/huggingartists/krechet). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/krechet") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1c2yk38s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Krechet's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/39bxkroc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/39bxkroc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/krechet') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/krechet") model = AutoModelWithLMHead.from_pretrained("huggingartists/krechet") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/krechet"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/krechet
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/krechet", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/krechet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Krechet</div> <a href="URL <div style="text-align: center; font-size: 14px;">@krechet</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Krechet. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Krechet's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Krechet.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Krechet's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/krechet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Krechet.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Krechet's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/krechet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Krechet.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Krechet's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.020147861912846565, 0.14715367555618286, -0.002584086498245597, 0.031190091744065285, 0.08619878441095352, -0.003824254497885704, 0.07422403246164322, 0.11361298710107803, -0.009134630672633648, 0.06748659163713455, 0.07822433114051819, 0.01849527657032013, 0.0679992064833641, 0.13787037134170532, 0.09115477651357651, -0.276035338640213, 0.023867717012763023, -0.10404447466135025, 0.020701967179775238, 0.12196794897317886, 0.09040415287017822, -0.060520950704813004, 0.08054333925247192, 0.03768311068415642, -0.07116058468818665, 0.029334699735045433, -0.013459119014441967, -0.07940777391195297, 0.09564090520143509, 0.07555454224348068, 0.034648772329092026, 0.0367114432156086, 0.062477629631757736, -0.18628931045532227, 0.03601915389299393, 0.12810494005680084, 0.035562340170145035, 0.06594264507293701, 0.03272626921534538, -0.07717904448509216, 0.17461545765399933, -0.048412520438432693, 0.08707359433174133, 0.040548935532569885, -0.09877470880746841, -0.18859702348709106, -0.1252671629190445, 0.08477512747049332, 0.10272272676229477, 0.0748988538980484, -0.030981549993157387, 0.04684107378125191, 0.0011069090105593204, 0.049348507076501846, 0.23809050023555756, -0.2454405426979065, -0.010009952820837498, 0.09104949235916138, 0.03171231225132942, 0.0378141850233078, -0.07734740525484085, 0.018488897010684013, 0.046450819820165634, 0.016439905390143394, 0.05114498361945152, -0.023770220577716827, 0.20314155519008636, 0.018598424270749092, -0.09628429263830185, -0.08182138949632645, 0.11008801311254501, -0.030999967828392982, -0.0793152004480362, -0.15430499613285065, 0.005080081056803465, -0.031544242054224014, 0.03915305808186531, -0.0050055100582540035, -0.009605959989130497, -0.015679137781262398, -0.0499323271214962, -0.09563102573156357, -0.0928732380270958, -0.030607065185904503, -0.026197031140327454, 0.08407342433929443, 0.035251468420028687, 0.027694696560502052, -0.06900989264249802, 0.2350972294807434, -0.0014887849101796746, -0.10377521067857742, -0.054217513650655746, -0.09185167402029037, -0.09809303283691406, -0.05348912253975868, 0.004788680467754602, 0.008119907230138779, -0.058660876005887985, 0.15834559500217438, -0.032159510999917984, 0.03585522249341011, 0.01182070653885603, -0.02338607795536518, 0.1591796875, 0.13011661171913147, -0.09417018294334412, -0.02249736152589321, 0.05079895630478859, -0.014631434343755245, -0.06664680689573288, -0.05948774889111519, -0.0067523811012506485, -0.03104764223098755, 0.0377616360783577, 0.09633490443229675, 0.04339207336306572, 0.06465676426887512, 0.03941988945007324, -0.0587020181119442, 0.09385368227958679, -0.14847415685653687, 0.002152042230591178, -0.00728161446750164, -0.04280749335885048, 0.016030991449952126, 0.04553776979446411, 0.016400033608078957, -0.09428319334983826, 0.1194777712225914, -0.04581981897354126, -0.06061583757400513, -0.06960227340459824, -0.08859789371490479, -0.009598656557500362, -0.023116884753108025, -0.043003711849451065, -0.08670777082443237, -0.15301786363124847, -0.03323794901371002, 0.025295505300164223, -0.035194337368011475, -0.04599707946181297, 0.039325203746557236, -0.03760284185409546, 0.0035210882779210806, -0.017340656369924545, -0.0048241764307022095, -0.03035968728363514, 0.024745462462306023, -0.061865925788879395, 0.0373416431248188, 0.07948540151119232, 0.03609364479780197, -0.1066819429397583, 0.06998426467180252, -0.1685071438550949, 0.14606988430023193, -0.01775389537215233, 0.0010371144162490964, -0.1139613687992096, -0.09682951122522354, -0.02255723439157009, -0.029961764812469482, -0.006076030433177948, 0.08722839504480362, -0.18185120820999146, -0.04038214683532715, 0.19500328600406647, -0.06904739886522293, -0.08352098613977432, 0.06084124371409416, -0.07952481508255005, 0.03765922784805298, 0.1371830552816391, 0.06123817339539528, 0.17835605144500732, -0.1136712059378624, -0.07740584760904312, -0.03391563519835472, -0.06038032844662666, 0.21938835084438324, 0.05284509435296059, -0.007381651550531387, 0.024201497435569763, 0.016271358355879784, -0.03309351205825806, -0.03058689832687378, -0.019210467115044594, -0.04125043377280235, -0.010168259032070637, 0.012050420045852661, 0.002217116765677929, -0.05451856553554535, -0.05904991552233696, -0.012408736161887646, -0.11244860291481018, 0.04651322960853577, 0.10877307504415512, -0.07614441961050034, 0.010295324958860874, -0.0870337188243866, -0.00872084777802229, -0.0293301772326231, 0.023805489763617516, -0.195201575756073, -0.06621956825256348, 0.02522926963865757, -0.08166537433862686, 0.08529067039489746, 0.02914435602724552, 0.032735489308834076, 0.064018614590168, -0.010821190662682056, 0.020433852449059486, -0.05071205273270607, -0.014386757276952267, -0.036192867904901505, -0.13891810178756714, -0.06603872030973434, -0.04940779134631157, 0.0804215669631958, -0.12150055170059204, 0.006800746079534292, 0.11474740505218506, 0.11182498931884766, 0.017085393890738487, -0.045437291264534, 0.0066259256564080715, -0.032324034720659256, -0.03435476869344711, -0.10803738981485367, -0.05559171363711357, 0.003599727526307106, -0.03956351801753044, 0.15962474048137665, -0.1734020859003067, -0.09358817338943481, 0.09563892334699631, 0.18069173395633698, -0.10548482090234756, 0.010314024984836578, -0.09305262565612793, -0.012778404168784618, -0.04401484131813049, -0.03943684324622154, 0.28262171149253845, 0.046708542853593826, 0.07931636273860931, -0.1107628121972084, -0.106941819190979, 0.0012760449899360538, -0.033224791288375854, -0.023526722565293312, 0.032402604818344116, 0.009961414150893688, -0.17356084287166595, 0.017700688913464546, -0.001997973769903183, 0.11236560344696045, 0.21302580833435059, 0.041452839970588684, -0.09489989280700684, -0.06023544445633888, -0.08708889037370682, -0.0025387059431523085, 0.054340045899152756, 0.039589762687683105, 0.024787520989775658, 0.043617118149995804, 0.04943586513400078, 0.03573554754257202, -0.1098310574889183, 0.016143081709742546, 0.07329225540161133, -0.04308585450053215, -0.05628682300448418, 0.0323861800134182, 0.020887693390250206, 0.0815325602889061, 0.08435990661382675, 0.14093327522277832, -0.06787056475877762, -0.05347343161702156, -0.1329246610403061, 0.1457265466451645, -0.07925515621900558, -0.25343820452690125, -0.12936381995677948, -0.06999843567609787, 0.01806940883398056, -0.006141671445220709, 0.037969812750816345, -0.05503074452280998, -0.030939511954784393, -0.10125274211168289, 0.08927641063928604, -0.05151933431625366, -0.013069565407931805, -0.009531295858323574, 0.01485221553593874, -0.04075941815972328, -0.10700983554124832, -0.030755171552300453, 0.03923981264233589, -0.10721778869628906, -0.011366459541022778, 0.03726013004779816, 0.038669440895318985, 0.1572696566581726, -0.01955500617623329, -0.005472126882523298, -0.03708844259381294, 0.26476359367370605, -0.11780467629432678, 0.07111195474863052, 0.1517653912305832, -0.02309318631887436, 0.05919893458485603, 0.0777151957154274, 0.0006260934169404209, -0.057208240032196045, 0.08253542333841324, 0.07886840403079987, -0.09013494849205017, -0.21413595974445343, -0.025924330577254295, -0.0029318295419216156, 0.027845054864883423, 0.12248652428388596, 0.05322450399398804, 0.04985278472304344, 0.00004475742389331572, -0.09649908542633057, 0.04617023095488548, 0.027448071166872978, 0.10621195286512375, -0.05826287344098091, -0.011864413507282734, 0.044697705656290054, -0.0681299939751625, 0.029902542009949684, 0.1374804824590683, 0.04872841760516167, 0.2154514193534851, -0.08115464448928833, 0.0905650332570076, 0.08898643404245377, 0.10462891310453415, 0.035536643117666245, 0.006592400372028351, -0.005855629686266184, 0.01799219287931919, -0.0029479011427611113, -0.09614858776330948, -0.006944646593183279, 0.04607048258185387, 0.031009748578071594, -0.024421701207756996, -0.04583865404129028, -0.04321017861366272, 0.03863624110817909, 0.25073370337486267, -0.014964759349822998, -0.16929952800273895, -0.11614897102117538, 0.039612215012311935, -0.07381244748830795, -0.045214105397462845, -0.023982921615242958, 0.07727202773094177, -0.2310013771057129, 0.07324828952550888, -0.04466653987765312, 0.10131486505270004, -0.11821019649505615, 0.00010152719914913177, 0.07537464052438736, 0.050936564803123474, -0.06397375464439392, 0.10159578174352646, -0.1690739393234253, 0.06463072448968887, -0.013740350492298603, 0.068235382437706, -0.08217224478721619, 0.02178850769996643, 0.0026559242978692055, 0.04610322415828705, 0.08409696817398071, 0.01139818225055933, 0.010837111622095108, -0.004937933757901192, -0.04304037615656853, 0.019419191405177116, 0.06258556246757507, -0.12730111181735992, 0.12948696315288544, -0.024826684966683388, 0.029884448274970055, -0.044698748737573624, -0.09418344497680664, -0.09108743071556091, -0.16485027968883514, 0.08545451611280441, -0.12977929413318634, -0.008730375207960606, -0.0720793604850769, -0.03058927319943905, 0.03347562253475189, 0.257996529340744, -0.05880604311823845, -0.0799749493598938, -0.12899449467658997, 0.019453832879662514, 0.1476985216140747, -0.0961083173751831, 0.013574541546404362, -0.016718626022338867, 0.2075299620628357, 0.000015939041986712255, -0.1283753663301468, -0.022769374772906303, -0.05858524143695831, -0.16900865733623505, -0.000548788346350193, 0.15999959409236908, 0.06405437737703323, 0.018924079835414886, 0.01056448370218277, -0.014593030326068401, -0.0426829494535923, -0.17206598818302155, 0.02208741195499897, 0.15699131786823273, -0.005451075732707977, 0.00004694661402027123, 0.03903645649552345, 0.011832487769424915, -0.1404440551996231, 0.014026436023414135, 0.06528040021657944, 0.18497125804424286, -0.08256897330284119, 0.19192731380462646, 0.03531702980399132, -0.08789243549108505, -0.1591271162033081, 0.0063817440532147884, 0.04190313443541527, 0.038169652223587036, 0.04459623619914055, -0.2143530398607254, 0.036078453063964844, 0.03810296580195427, 0.004307115916162729, 0.03765071555972099, -0.3448128402233124, -0.16629184782505035, 0.0009400537237524986, 0.016128890216350555, -0.1504799872636795, -0.038535669445991516, -0.03476917743682861, -0.09397270530462265, -0.22753079235553741, 0.10545074194669724, -0.12475679069757462, 0.07862451672554016, 0.0266877468675375, 0.0955623909831047, 0.04540816321969032, -0.044819846749305725, 0.12431759387254715, -0.013588669709861279, 0.0636657327413559, -0.09558701515197754, -0.066428542137146, 0.08479080349206924, -0.07890424132347107, 0.0882856473326683, 0.027463436126708984, 0.09229385107755661, -0.0998232364654541, -0.08340472728013992, -0.07069084793329239, 0.00922810472548008, -0.05184583738446236, -0.09061960130929947, -0.09511574357748032, 0.0876496210694313, 0.12165822833776474, -0.04685966670513153, -0.10010498762130737, -0.0631631463766098, -0.00319575984030962, 0.04335593804717064, 0.11571671813726425, 0.10326102375984192, -0.06181300804018974, 0.0029067217838019133, 0.01785343512892723, 0.008201849646866322, -0.17985951900482178, 0.04258996248245239, 0.09730621427297592, 0.044963616877794266, 0.09383498877286911, 0.0009045163751579821, -0.17565660178661346, 0.012486646883189678, 0.04927267134189606, -0.15751683712005615, -0.1288708597421646, -0.03759137913584709, 0.029462575912475586, -0.10183089971542358, -0.04531128332018852, 0.13382865488529205, -0.03331396356225014, -0.04057348892092705, -0.0015440876595675945, 0.030460640788078308, -0.03335827961564064, 0.08588992804288864, -0.0011414708569645882, 0.04750168323516846, -0.0659954771399498, 0.12624841928482056, 0.06510569155216217, 0.006211545318365097, 0.04241387918591499, 0.056825146079063416, -0.0983588695526123, 0.015332757495343685, -0.09947241097688675, -0.00404442148283124, -0.02650572918355465, -0.014536012895405293, 0.031052129343152046, -0.0280777495354414, 0.04566479101777077, 0.09853726625442505, -0.017906544730067253, 0.10258706659078598, -0.047804515808820724, 0.0166276004165411, -0.12688004970550537, 0.08516446501016617, 0.031246108934283257, 0.019314894452691078, -0.10571294277906418, 0.20282424986362457, 0.03774218261241913, 0.11914068460464478, -0.03581149876117706, -0.06799618154764175, -0.04568317532539368, -0.015149712562561035, -0.07340993732213974, -0.038916897028684616, -0.08122623711824417, -0.026141485199332237, -0.010881364345550537, -0.02564234472811222, -0.032608818262815475, 0.05137822404503822, -0.03423130884766579, -0.06271746009588242, -0.0763527974486351, 0.05063369497656822, -0.14032235741615295, 0.0262973103672266, 0.11961498111486435, -0.05669400468468666, 0.12765981256961823, 0.053578946739435196, -0.032116200774908066, 0.03603782877326012, -0.1269579976797104, 0.051019083708524704, -0.009429451078176498, 0.024615904316306114, 0.012425646185874939, -0.15420739352703094, 0.006349861156195402, -0.04223102331161499, -0.060601089149713516, 0.0059622288681566715, -0.023289965465664864, -0.1338842362165451, -0.010419622994959354, 0.09142325073480606, -0.0075255148112773895, -0.07087650150060654, 0.07416350394487381, 0.05013551190495491, 0.030526304617524147, 0.06397337466478348, -0.014902216382324696, 0.07050725072622299, -0.16188941895961761, -0.061293672770261765, -0.00488368421792984, 0.02774716168642044, 0.047812655568122864, -0.027539394795894623, 0.0321691669523716, -0.019353460520505905, 0.2056664377450943, 0.014216992072761059, -0.002955181524157524, 0.037721145898103714, -0.07819163799285889, -0.020238498225808144, 0.04819772019982338, 0.09665899723768234, -0.016216792166233063, -0.030056914314627647, 0.00356864626519382, -0.018076548352837563, -0.10442337393760681, -0.023803794756531715, 0.10698002576828003, 0.018306221812963486, 0.21456126868724823, -0.059106022119522095, 0.07153847068548203, -0.01679476723074913, -0.09837254136800766, -0.022434914484620094, -0.049723636358976364, 0.0347399078309536, -0.06172990798950195, 0.06231177970767021, 0.18116824328899384, -0.15696842968463898, 0.11900029331445694, 0.04223889112472534, -0.06405449658632278, -0.11974358558654785, -0.19314922392368317, -0.014664982445538044, -0.025462070479989052, 0.027271904051303864, -0.13272921741008759, 0.0962638333439827, 0.02037396840751171, 0.03692061826586723, -0.05829812213778496, 0.14573873579502106, -0.09748686105012894, -0.1400545984506607, 0.054975491017103195, 0.018522249534726143, 0.020540624856948853, 0.04849562048912048, 0.09341618418693542, 0.03428129851818085, 0.0029405371751636267, 0.0674491748213768, 0.03958752378821373, 0.02507786639034748, 0.035271819680929184, -0.025561293587088585, -0.03651031479239464, 0.025305235758423805, -0.0039000764954835176, 0.03328967094421387, 0.08509472757577896, 0.07516627013683319, -0.02359350025653839, -0.020501768216490746, 0.31914186477661133, -0.016012731939554214, -0.038575559854507446, -0.17780710756778717, 0.15951482951641083, 0.021003058180212975, -0.0012189856497570872, 0.024909235537052155, -0.12503904104232788, 0.01194211095571518, 0.10618096590042114, 0.14429007470607758, -0.014042533002793789, 0.02746562659740448, -0.027389472350478172, 0.019029565155506134, 0.03528645262122154, 0.11109238862991333, 0.06465456634759903, 0.18294475972652435, -0.02906053327023983, 0.060274843126535416, -0.011004548519849777, -0.017945513129234314, 0.011803683824837208, 0.10349199920892715, -0.039692237973213196, -0.0017496199579909444, -0.05213339626789093, 0.09777175635099411, -0.061019930988550186, -0.31636038422584534, -0.04552055522799492, -0.014530251733958721, -0.09289642423391342, 0.07297205924987793, -0.040524277836084366, -0.015946853905916214, 0.08065562695264816, 0.029141152277588844, -0.042788684368133545, 0.15705285966396332, 0.05564515292644501, -0.041611481457948685, -0.004710481036454439, 0.11385568976402283, -0.030936062335968018, 0.15857838094234467, -0.038779366761446, 0.031310200691223145, 0.07973968982696533, 0.0037784737069159746, -0.12225443869829178, 0.009309009648859501, 0.03945959731936455, -0.05256863310933113, -0.015754926949739456, 0.2052345722913742, 0.01547977700829506, 0.01975111849606037, 0.07138053327798843, -0.04441146180033684, 0.02818283624947071, -0.030527761206030846, 0.06498376280069351, -0.14127850532531738, 0.07299982756376266, -0.08049602806568146, 0.12032673507928848, 0.17956145107746124, -0.06821275502443314, 0.04214739426970482, -0.05912197753787041, 0.00032141213887371123, -0.03146808221936226, 0.07120394706726074, -0.017438102513551712, -0.10187405347824097, 0.0094947824254632, 0.024580800905823708, 0.015013046562671661, -0.17778714001178741, -0.07705170661211014, 0.07443702220916748, -0.05064919963479042, 0.02644466608762741, 0.17804069817066193, 0.004919351544231176, 0.05663808062672615, -0.03868774697184563, -0.017950965091586113, -0.014429534785449505, 0.11081838607788086, -0.1889597773551941, -0.07855670899152756 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/8c394f5b79ddaa5349e8a4cc10c1ab48.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kurt Cobain</div> <a href="https://genius.com/artists/kurt-cobain"> <div style="text-align: center; font-size: 14px;">@kurt-cobain</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Kurt Cobain. Dataset is available [here](https://huggingface.co/datasets/huggingartists/kurt-cobain). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kurt-cobain") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/tjfuj6tr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Kurt Cobain's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3enopofm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3enopofm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kurt-cobain') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kurt-cobain") model = AutoModelWithLMHead.from_pretrained("huggingartists/kurt-cobain") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/kurt-cobain"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/kurt-cobain
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kurt-cobain", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kurt-cobain #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kurt Cobain</div> <a href="URL <div style="text-align: center; font-size: 14px;">@kurt-cobain</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Kurt Cobain. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Kurt Cobain's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Kurt Cobain.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kurt Cobain's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kurt-cobain #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Kurt Cobain.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kurt Cobain's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/kurt-cobain #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Kurt Cobain.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Kurt Cobain's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.027796566486358643, 0.13293378055095673, -0.0018949377117678523, 0.04799859970808029, 0.07276330888271332, 0.0013035653391852975, 0.08801263570785522, 0.08697682619094849, 0.020242173224687576, 0.08005091547966003, 0.0779084861278534, -0.0006566196097992361, 0.0636402890086174, 0.11011966317892075, 0.06860406696796417, -0.21557970345020294, 0.03690583258867264, -0.10154523700475693, 0.007756783626973629, 0.10201361775398254, 0.08261695504188538, -0.06521841138601303, 0.07933106273412704, 0.033609189093112946, -0.08926305174827576, -0.0024940406437963247, -0.005063599906861782, -0.044343896210193634, 0.08279630541801453, 0.061012592166662216, 0.04522741213440895, 0.04538111761212349, 0.06913244724273682, -0.18264926970005035, 0.03164262697100639, 0.12626047432422638, 0.03622948005795479, 0.07106321305036545, 0.04812392592430115, -0.08172132819890976, 0.11063605546951294, -0.011047493666410446, 0.09015528112649918, 0.050543855875730515, -0.10624565184116364, -0.0892842561006546, -0.1447771042585373, 0.1044708788394928, 0.08525293320417404, 0.09373868256807327, -0.030119121074676514, 0.04168511554598808, -0.025285176932811737, 0.02406621351838112, 0.23846694827079773, -0.21357806026935577, -0.02171921730041504, 0.0992482602596283, 0.056466493755578995, 0.016374776139855385, -0.09167815744876862, 0.02986443042755127, 0.05292147025465965, 0.01067950390279293, 0.0528506338596344, -0.025066819041967392, 0.16393736004829407, 0.01339763030409813, -0.1027720719575882, -0.07719996571540833, 0.09696008265018463, -0.015551558695733547, -0.07671289145946503, -0.12306997179985046, 0.0069887675344944, -0.036442991346120834, 0.03674902766942978, -0.011718463152647018, -0.007328257896006107, 0.0010485899401828647, -0.05822673439979553, -0.13626337051391602, -0.09403068572282791, -0.03691336140036583, -0.011850393377244473, 0.059669893234968185, 0.029660839587450027, 0.02795330248773098, -0.05794084817171097, 0.22780108451843262, -0.04427129775285721, -0.0945725217461586, -0.053339194506406784, -0.10616286098957062, -0.1051776185631752, -0.043412815779447556, -0.005682815797626972, 0.01789979636669159, -0.03792315721511841, 0.15720176696777344, -0.025748755782842636, 0.008081485517323017, -0.02131400816142559, 0.009388805367052555, 0.1308569759130478, 0.13797730207443237, -0.1053234115242958, -0.036447182297706604, 0.06871158629655838, -0.0011774096637964249, -0.0742129236459732, -0.05232197418808937, -0.02526811510324478, -0.021433064714074135, 0.05656609311699867, 0.06618520617485046, 0.06878115981817245, 0.053135231137275696, 0.0034587394911795855, -0.06605212390422821, 0.07573393732309341, -0.10752784460783005, 0.015841826796531677, -0.003205046523362398, -0.035592082887887955, 0.013216285035014153, 0.062431056052446365, 0.024510879069566727, -0.09681485593318939, 0.12849117815494537, -0.06755927205085754, -0.0404088981449604, -0.06880352646112442, -0.08414580672979355, -0.0026732110418379307, -0.08324144035577774, -0.04110952466726303, -0.08144514262676239, -0.1498657912015915, -0.04838072508573532, 0.027521472424268723, -0.03882218524813652, -0.032845355570316315, 0.011120053008198738, -0.03206690773367882, 0.018379174172878265, -0.022917412221431732, -0.032811593264341354, -0.03271375969052315, 0.014157025143504143, -0.09345012903213501, 0.027825897559523582, 0.07037929445505142, 0.04877269268035889, -0.1113651916384697, 0.0631151795387268, -0.13496828079223633, 0.10790600627660751, -0.02535640075802803, 0.01358224917203188, -0.09843418002128601, -0.08307529985904694, -0.031583767384290695, -0.03443470224738121, 0.0062058246694505215, 0.1004299744963646, -0.16542892158031464, -0.030423922464251518, 0.17789845168590546, -0.054624129086732864, -0.06689482182264328, 0.07851337641477585, -0.07148580998182297, 0.026730095967650414, 0.0978398248553276, 0.06958816200494766, 0.16169656813144684, -0.14559926092624664, -0.05341451242566109, -0.048163868486881256, -0.056230757385492325, 0.19236768782138824, 0.033654678612947464, -0.027449248358607292, 0.019174473360180855, 0.0015691728331148624, -0.02999144233763218, -0.03718729317188263, -0.013046765699982643, -0.045089345425367355, -0.020408932119607925, -0.004107776563614607, 0.003446887480095029, -0.04475942999124527, -0.06097976118326187, -0.022598713636398315, -0.10486695170402527, 0.018496433272957802, 0.0906384140253067, -0.05996329337358475, 0.016676362603902817, -0.07896324247121811, 0.016146644949913025, -0.04276781529188156, 0.00023725924256723374, -0.16140078008174896, -0.05496836453676224, 0.024577053263783455, -0.041924141347408295, 0.09879275411367416, 0.06807425618171692, 0.028767181560397148, 0.0638238787651062, -0.008680468425154686, 0.004720509052276611, -0.04261552914977074, -0.012179936282336712, -0.026225658133625984, -0.15655960142612457, -0.0366654098033905, -0.05177412927150726, 0.11018539220094681, -0.1055915430188179, -0.013279727660119534, 0.09645520150661469, 0.12093204259872437, 0.022000139579176903, -0.06540647894144058, 0.03186795487999916, -0.032978594303131104, -0.03399591147899628, -0.10518637299537659, -0.04391477629542351, 0.0078080338425934315, -0.017708756029605865, 0.14955773949623108, -0.14591345191001892, -0.11569485813379288, 0.11608244478702545, 0.13593554496765137, -0.10970836132764816, 0.03814312070608139, -0.07849757373332977, -0.02061142399907112, -0.056553956121206284, -0.03831710293889046, 0.27743080258369446, 0.02535579912364483, 0.07403822243213654, -0.10137704759836197, -0.0857774019241333, -0.004017121158540249, -0.03599747270345688, -0.0319099947810173, 0.02526015229523182, 0.016449712216854095, -0.17688588798046112, 0.05038497596979141, -0.015644323080778122, 0.06980409473180771, 0.20226415991783142, 0.04532531276345253, -0.07929526269435883, -0.055721722543239594, -0.07256340980529785, 0.005893077235668898, 0.09715528786182404, 0.020541340112686157, 0.030689341947436333, 0.03482798486948013, 0.04459390789270401, 0.04152166470885277, -0.13413816690444946, 0.0019787619821727276, 0.05791245773434639, -0.02872494049370289, -0.031477637588977814, 0.017429975792765617, 0.023956172168254852, 0.07768449187278748, 0.09475049376487732, 0.0950147956609726, -0.0679936483502388, -0.05718250945210457, -0.13175994157791138, 0.13014927506446838, -0.09478641301393509, -0.2269389033317566, -0.12171857804059982, -0.04664898291230202, -0.004754206631332636, 0.019269391894340515, 0.038037918508052826, -0.03793422877788544, -0.04024704918265343, -0.09771037101745605, 0.09678863734006882, -0.049716267734766006, -0.010803784243762493, -0.004597070626914501, 0.02085193432867527, -0.03213103860616684, -0.1021195501089096, -0.03697064518928528, 0.02589244954288006, -0.09346935153007507, -0.005134744103997946, 0.016623549163341522, 0.04692477732896805, 0.15849711000919342, 0.010115928947925568, 0.0015156554291024804, -0.020113937556743622, 0.23842062056064606, -0.12682247161865234, 0.06529804319143295, 0.1286875605583191, -0.007087302394211292, 0.0532960519194603, 0.06845700740814209, -0.005966035649180412, -0.04907666891813278, 0.06710422039031982, 0.06687863171100616, -0.07671529799699783, -0.19355379045009613, -0.04577559232711792, -0.01637742668390274, 0.015146167017519474, 0.1359739452600479, 0.028741735965013504, 0.07731960713863373, 0.020410288125276566, -0.10607274621725082, 0.05132327601313591, 0.030759230256080627, 0.09664421528577805, -0.0882020965218544, 0.0021546517964452505, 0.05175364390015602, -0.04268110916018486, 0.03204333782196045, 0.12521156668663025, 0.04484247416257858, 0.22537344694137573, -0.0603242889046669, 0.07464323192834854, 0.08057211339473724, 0.10300830006599426, 0.021698709577322006, 0.022924765944480896, -0.015069511719048023, 0.020363526418805122, 0.004329577088356018, -0.09773502498865128, 0.0003988889802712947, 0.0600120909512043, 0.06320817768573761, -0.026925833895802498, -0.03772380203008652, -0.07685443758964539, 0.0401533842086792, 0.25203654170036316, 0.043999187648296356, -0.15674681961536407, -0.10792364925146103, 0.0487915463745594, -0.04649367555975914, -0.044900547713041306, -0.0077180382795631886, 0.08053453266620636, -0.2106272429227829, 0.05776969715952873, -0.025607293471693993, 0.11177882552146912, -0.10998649150133133, -0.007646962534636259, 0.05632629990577698, 0.038683678954839706, -0.05823421850800514, 0.0816836878657341, -0.14370040595531464, 0.08541811257600784, -0.0055945501662790775, 0.06720666587352753, -0.06536418944597244, 0.011855370365083218, 0.02671177126467228, 0.05132140591740608, 0.09593328833580017, 0.019327349960803986, 0.024801481515169144, -0.020980658009648323, -0.04912776127457619, -0.006595780607312918, 0.0722188949584961, -0.12491486221551895, 0.11955173313617706, -0.03687085211277008, 0.023587336763739586, -0.027694066986441612, -0.06344273686408997, -0.09982486069202423, -0.14520253241062164, 0.08048390597105026, -0.11779794842004776, -0.014200601726770401, -0.05742546170949936, -0.022225046530365944, 0.02828381210565567, 0.23936253786087036, -0.09211590886116028, -0.05297474190592766, -0.1328255981206894, -0.012722739018499851, 0.1397489309310913, -0.07128738611936569, 0.010929487645626068, -0.01822405867278576, 0.18169984221458435, -0.026467997580766678, -0.12971358001232147, -0.003971510101109743, -0.06813501566648483, -0.18928050994873047, -0.02231333777308464, 0.16412225365638733, 0.07536540180444717, 0.039123691618442535, 0.014394676312804222, 0.015075242146849632, -0.060411036014556885, -0.17015303671360016, 0.03859291598200798, 0.16271908581256866, 0.016143297776579857, 0.02249172516167164, 0.04301339015364647, 0.01878872513771057, -0.12401340901851654, 0.02598690427839756, 0.05315268784761429, 0.1829732209444046, -0.08980602771043777, 0.17530976235866547, 0.011425123549997807, -0.08296213299036026, -0.19641391932964325, 0.0494576171040535, 0.01033588033169508, 0.026730800047516823, -0.01838572695851326, -0.17160052061080933, 0.020542921498417854, 0.01870613917708397, -0.009664933197200298, 0.061767831444740295, -0.3062451183795929, -0.16754436492919922, 0.017080992460250854, -0.006043733097612858, -0.07987898588180542, -0.028544291853904724, -0.03140232339501381, -0.09099487960338593, -0.23720309138298035, 0.11646302789449692, -0.11126990616321564, 0.09623898565769196, 0.01567463018000126, 0.08455273509025574, 0.04865938052535057, -0.0564633347094059, 0.12411685287952423, -0.020347876474261284, 0.05945735052227974, -0.08982435613870621, -0.04374561086297035, 0.0808819979429245, -0.07177815586328506, 0.10512086749076843, 0.028905171900987625, 0.0838538110256195, -0.07220696657896042, -0.0768120214343071, -0.07319805026054382, 0.026480261236429214, -0.05504162982106209, -0.10097578167915344, -0.11745543032884598, 0.10228782892227173, 0.12119854241609573, -0.04643581807613373, -0.08164099603891373, -0.04972454905509949, -0.005908821243792772, 0.055539242923259735, 0.10973486304283142, 0.0829058364033699, -0.08235041797161102, 0.02426057495176792, 0.004252270329743624, 0.03430550545454025, -0.16145837306976318, 0.03174041584134102, 0.08837313205003738, 0.042410511523485184, 0.09776632487773895, 0.007192002609372139, -0.1699010729789734, 0.009127712808549404, 0.044120777398347855, -0.18482306599617004, -0.13085006177425385, -0.0382758304476738, -0.0036860965192317963, -0.07252877205610275, -0.04862156882882118, 0.1514117419719696, -0.05119965597987175, -0.03347299247980118, 0.0017953719943761826, 0.05751125514507294, -0.05130598321557045, 0.09115128219127655, 0.029579397290945053, 0.0482855848968029, -0.052391521632671356, 0.12293549627065659, 0.058334484696388245, 0.018662475049495697, 0.026348834857344627, 0.048465169966220856, -0.0867888554930687, -0.0002225527132395655, -0.06326113641262054, -0.0008985463064163923, -0.04701297730207443, -0.0010972642339766026, 0.0301496684551239, -0.03413814306259155, 0.02693120390176773, 0.11657405644655228, -0.012111903168261051, 0.09869948774576187, -0.02821890264749527, -0.002936599077656865, -0.12310424447059631, 0.06886221468448639, 0.026019463315606117, 0.02888311818242073, -0.09775996953248978, 0.18379256129264832, 0.02092403545975685, 0.10823769867420197, -0.04506183788180351, -0.0529281347990036, -0.07880457490682602, -0.015243827365338802, -0.11890489608049393, -0.03519418463110924, -0.0822630226612091, -0.035407017916440964, -0.016795119270682335, -0.04496029019355774, -0.014099829830229282, 0.056442201137542725, -0.028039196506142616, -0.05321407690644264, -0.07155242562294006, 0.038417719304561615, -0.14437687397003174, 0.02557339146733284, 0.12411709874868393, -0.04980771616101265, 0.11700055003166199, 0.061272814869880676, -0.032682303339242935, 0.02249271050095558, -0.1374976933002472, 0.028281357139348984, -0.021289700642228127, 0.02473846822977066, 0.03535245358943939, -0.15192969143390656, -0.01115489937365055, -0.05334637314081192, -0.047124553471803665, 0.008914547972381115, 0.03147825971245766, -0.1104244738817215, -0.0175357423722744, 0.07808849215507507, -0.014479986391961575, -0.0712110698223114, 0.06582863628864288, 0.08004555851221085, 0.038427699357271194, 0.05252789705991745, -0.031595420092344284, 0.09415429830551147, -0.1441175490617752, -0.05053042992949486, 0.00918200146406889, 0.007099320646375418, 0.0625327080488205, -0.012500721029937267, 0.04319985955953598, -0.016335539519786835, 0.18496912717819214, -0.001282169483602047, -0.005860824603587389, 0.030700871720910072, -0.06037864461541176, -0.001059594564139843, 0.05704749375581741, 0.02538379281759262, -0.0325864739716053, -0.04151488468050957, -0.028649935498833656, -0.013742485083639622, -0.06680712103843689, -0.02048812434077263, 0.14778423309326172, 0.04338505119085312, 0.19154469668865204, -0.038399588316679, 0.07645233720541, -0.031599730253219604, -0.11705402284860611, -0.02362084574997425, -0.057763293385505676, 0.041901037096977234, -0.07992801070213318, 0.054632220417261124, 0.15161876380443573, -0.1720651239156723, 0.11537165194749832, 0.009991592727601528, -0.05667481943964958, -0.09731631726026535, -0.1848515272140503, -0.026681119576096535, -0.03148302435874939, 0.03507726639509201, -0.12278106063604355, 0.07593148201704025, 0.017569612711668015, 0.040702417492866516, -0.05802745744585991, 0.139807790517807, -0.078249990940094, -0.11340295523405075, 0.0558028519153595, 0.03475557267665863, 0.011123813688755035, 0.04071692004799843, 0.07125714421272278, 0.03527553379535675, -0.009692540392279625, 0.06773556768894196, 0.027237242087721825, 0.03510190173983574, 0.04697158932685852, -0.013408626429736614, -0.04485920071601868, 0.029199063777923584, 0.004772476386278868, 0.037456292659044266, 0.08400999009609222, 0.07105978578329086, -0.0017705404898151755, -0.020016880705952644, 0.2851320803165436, -0.02663128450512886, -0.048389680683612823, -0.17190584540367126, 0.15599247813224792, -0.005529455374926329, -0.010501893237233162, 0.03285416215658188, -0.1165657714009285, 0.01255250908434391, 0.13821598887443542, 0.1890905201435089, -0.053189877420663834, 0.03313453868031502, -0.04283615201711655, 0.014256496913731098, 0.03112592175602913, 0.07358257472515106, 0.05892541632056236, 0.19785046577453613, -0.032441653311252594, 0.033464450389146805, 0.010962783358991146, -0.024634025990962982, 0.005622042343020439, 0.09044577926397324, -0.03984445333480835, 0.001364568481221795, -0.07221893221139908, 0.09054604917764664, -0.06364919990301132, -0.27542150020599365, 0.0008572643273510039, -0.051476750522851944, -0.1017063707113266, 0.058652613312006, -0.030649177730083466, -0.046246226876974106, 0.0938306674361229, 0.014861943200230598, -0.03951608017086983, 0.10669779032468796, 0.03979828953742981, -0.03594677150249481, -0.010322876274585724, 0.08222220838069916, -0.009800407104194164, 0.184523805975914, -0.03179701417684555, 0.007208488415926695, 0.07837782055139542, 0.04011018946766853, -0.1123836562037468, 0.0010925133246928453, 0.051789291203022, -0.08267558366060257, -0.03492564707994461, 0.2038942575454712, -0.0060435510240495205, 0.03952562436461449, 0.08738041669130325, -0.0544927641749382, 0.03673771768808365, -0.0666382759809494, 0.05992366746068001, -0.1400715410709381, 0.0542374886572361, -0.10183445364236832, 0.1488673985004425, 0.1767979860305786, -0.0676955133676529, 0.007646819110959768, -0.047226693481206894, 0.0026873473543673754, -0.029255559667944908, 0.0922899842262268, -0.017655711621046066, -0.10171735286712646, 0.019448144361376762, 0.03214676305651665, 0.033111002296209335, -0.180354043841362, -0.07944688946008682, 0.049099840223789215, -0.043065253645181656, 0.03459790349006653, 0.1753818541765213, 0.02522183768451214, 0.04578103870153427, -0.034910548478364944, -0.016427604481577873, -0.013318018987774849, 0.09436120837926865, -0.15013869106769562, -0.0963938981294632 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e7e76c378cb43b4b1ff03947d5c0481a.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lady Gaga</div> <a href="https://genius.com/artists/lady-gaga"> <div style="text-align: center; font-size: 14px;">@lady-gaga</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lady Gaga. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lady-gaga). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lady-gaga") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/17c0d4ej/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lady Gaga's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2j7yp9qd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2j7yp9qd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lady-gaga') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lady-gaga") model = AutoModelWithLMHead.from_pretrained("huggingartists/lady-gaga") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lady-gaga"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lady-gaga
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lady-gaga", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lady-gaga #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lady Gaga</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lady-gaga</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Lady Gaga. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Lady Gaga's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lady Gaga.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lady Gaga's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lady-gaga #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lady Gaga.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lady Gaga's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lady-gaga #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Lady Gaga.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lady Gaga's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.023861071094870567, 0.1803734451532364, -0.0030989402439445257, 0.05024458095431328, 0.10731852799654007, 0.00409632408991456, 0.046019554138183594, 0.11164604872465134, 0.0001427118550054729, 0.10062984377145767, 0.04504247009754181, -0.0014721053885295987, 0.05190594121813774, 0.09723103791475296, 0.08155625313520432, -0.2277979552745819, 0.020420381799340248, -0.074039988219738, 0.011388762854039669, 0.10207550972700119, 0.09258739650249481, -0.06710264086723328, 0.06684724986553192, 0.03924206644296646, -0.057433515787124634, 0.02164759486913681, -0.018115554004907608, -0.046303361654281616, 0.06067998707294464, 0.05419542267918587, 0.03106502816081047, 0.04211502894759178, 0.06518716365098953, -0.1901790201663971, 0.030049622058868408, 0.11674948781728745, 0.029317013919353485, 0.06944362074136734, 0.05739110708236694, -0.10636604577302933, 0.11663240939378738, -0.027823062613606453, 0.07367878407239914, 0.08145264536142349, -0.09980699419975281, -0.12813745439052582, -0.1413726955652237, 0.1105748862028122, 0.06208709254860878, 0.0993327796459198, -0.04504750669002533, 0.07477060705423355, -0.024791210889816284, 0.01758626475930214, 0.2451174259185791, -0.24507176876068115, -0.006536177359521389, 0.0638781413435936, 0.09237752109766006, 0.03331003338098526, -0.07783355563879013, 0.0550815686583519, 0.040260784327983856, 0.02729765512049198, 0.01612972654402256, -0.020218608900904655, 0.18848775327205658, 0.00411731842905283, -0.10948879271745682, -0.05636971443891525, 0.11934005469083786, -0.0016983408713713288, -0.08287054300308228, -0.13352377712726593, 0.01376564335078001, -0.001823377562686801, 0.00851138774305582, 0.0032743492629379034, -0.009384064003825188, 0.010685666464269161, -0.06260568648576736, -0.14416439831256866, -0.07059960812330246, -0.027298014611005783, -0.002996814902871847, 0.06327919661998749, 0.028780145570635796, 0.027577461674809456, -0.08013300597667694, 0.20069222152233124, -0.05906960740685463, -0.09664282947778702, -0.039894960820674896, -0.100338414311409, -0.09037427604198456, -0.060474056750535965, -0.004606982693076134, -0.004851052071899176, -0.01031822431832552, 0.1521899551153183, -0.03844074904918671, 0.022191092371940613, -0.01923220045864582, 0.007221819367259741, 0.16080299019813538, 0.13233980536460876, -0.1517653465270996, -0.032791685312986374, 0.0723455473780632, 0.0008725281222723424, -0.06281903386116028, -0.03226030245423317, 0.006113443057984114, -0.05153854563832283, 0.016145605593919754, 0.08025956153869629, 0.09382031857967377, 0.05464906990528107, -0.02717726305127144, -0.042649030685424805, 0.07479308545589447, -0.12127512693405151, 0.04557587578892708, 0.007167566101998091, -0.031441811472177505, 0.01266003679484129, 0.04769593104720116, 0.03572534769773483, -0.08055809885263443, 0.05720125511288643, -0.09097199887037277, -0.06211371719837189, -0.07447605580091476, -0.06212223693728447, 0.006062497850507498, -0.07121892273426056, -0.028212279081344604, -0.08585604280233383, -0.1635621041059494, -0.03711073845624924, 0.00813382025808096, -0.08824887126684189, -0.011554407887160778, 0.02401241473853588, -0.03227470815181732, 0.027293656021356583, -0.006840036250650883, -0.03608470782637596, -0.021547820419073105, 0.04164056107401848, -0.06744833290576935, 0.024782244116067886, 0.08359219133853912, 0.05650751665234566, -0.11840879917144775, 0.07128172367811203, -0.15247321128845215, 0.14366769790649414, -0.00919046439230442, 0.014681766740977764, -0.120169997215271, -0.0806659534573555, -0.05111054331064224, -0.01356434915214777, 0.04709639027714729, 0.12389031797647476, -0.16560453176498413, -0.025297589600086212, 0.18515482544898987, -0.0534043088555336, -0.06977329403162003, 0.06810397654771805, -0.049739059060811996, 0.07047685235738754, 0.10399152338504791, 0.09756019711494446, 0.1606157422065735, -0.08788195252418518, -0.07053571939468384, -0.0728132426738739, -0.08316037803888321, 0.18784914910793304, 0.01985384337604046, -0.060839734971523285, 0.08705205470323563, -0.012162006460130215, -0.0365888886153698, -0.00751112774014473, -0.015703340992331505, -0.041219115257263184, -0.023034073412418365, -0.014080433174967766, 0.010123360902071, -0.03170322999358177, -0.07780272513628006, -0.01347145065665245, -0.12806068360805511, 0.025088520720601082, 0.08436903357505798, -0.06978640705347061, 0.012616622261703014, -0.09386759251356125, 0.02148675173521042, -0.014567519538104534, 0.0039535402320325375, -0.18139223754405975, -0.003740264568477869, 0.0030713481828570366, -0.07983791828155518, 0.09041174501180649, 0.005741706117987633, 0.047445785254240036, 0.053211510181427, -0.006189875770360231, -0.007090135011821985, -0.057016607373952866, 0.007717449683696032, -0.023378925397992134, -0.16444271802902222, -0.049768462777137756, -0.05462782457470894, 0.061064645648002625, -0.08467329293489456, -0.00522234383970499, 0.09283097088336945, 0.1489453911781311, 0.029304949566721916, -0.07778895646333694, 0.05055452138185501, -0.012437394820153713, -0.02510068565607071, -0.07934849709272385, -0.03322497010231018, -0.002135908231139183, -0.010235116817057133, 0.14907191693782806, -0.12067397683858871, -0.14460526406764984, 0.11144649982452393, 0.11591695249080658, -0.0954492837190628, 0.09018853306770325, -0.053555943071842194, -0.011903596110641956, -0.03912642225623131, -0.07207802683115005, 0.263764351606369, 0.02596817910671234, 0.07100085914134979, -0.08478481322526932, -0.05417640507221222, -0.00726745929569006, -0.05055510625243187, -0.07747269421815872, 0.028750130906701088, 0.055591367185115814, -0.1499348133802414, 0.04686570167541504, -0.013768336735665798, 0.06687604635953903, 0.266891747713089, 0.03474200889468193, -0.08224957436323166, -0.04070846736431122, -0.11035243421792984, -0.013093926012516022, 0.06539756059646606, -0.02398734912276268, 0.021385427564382553, 0.032182056456804276, 0.04731559753417969, 0.03605823591351509, -0.10941586643457413, -0.005426629446446896, 0.058334916830062866, -0.019068384543061256, -0.061546266078948975, 0.029206590726971626, 0.024178560823202133, 0.08576536178588867, 0.09666311740875244, 0.1000191941857338, -0.05696053057909012, -0.03921842202544212, -0.15987032651901245, 0.09258303791284561, -0.09246031939983368, -0.16946040093898773, -0.1276269406080246, -0.02937590517103672, 0.030129216611385345, 0.019599422812461853, 0.04555322602391243, -0.047298382967710495, -0.04252191260457039, -0.09815163165330887, 0.12774795293807983, -0.05585891380906105, -0.016434162855148315, 0.009748073294758797, 0.03970198705792427, -0.004690080415457487, -0.09763280302286148, -0.03652171418070793, 0.03766936436295509, -0.07935880124568939, -0.02020413987338543, 0.015348593704402447, 0.08279094099998474, 0.1357017159461975, 0.0030104019679129124, 0.005733884405344725, -0.00881929136812687, 0.24756133556365967, -0.1522977203130722, 0.09271226823329926, 0.19552211463451385, 0.027622506022453308, 0.054551295936107635, 0.09046650677919388, 0.005690691526979208, -0.03537426516413689, 0.047160353511571884, 0.050978634506464005, -0.06280830502510071, -0.17138242721557617, -0.06795916706323624, -0.004185649566352367, 0.013126466423273087, 0.08757437765598297, 0.027717573568224907, 0.033151011914014816, 0.013490185141563416, -0.10607124865055084, 0.008210021071135998, 0.028976919129490852, 0.08329740911722183, -0.07708808779716492, 0.008348651230335236, 0.0548681877553463, -0.04296072572469711, 0.02777428738772869, 0.10609672963619232, 0.018945379182696342, 0.21932083368301392, -0.05779852345585823, 0.08177310228347778, 0.10042104125022888, 0.08079506456851959, 0.030189719051122665, 0.01078030839562416, 0.018908608704805374, 0.01829363778233528, 0.01630481332540512, -0.09608303010463715, 0.03156097233295441, 0.03254895657300949, 0.07092937082052231, -0.06396018713712692, -0.059262715280056, -0.10238707810640335, 0.05275457352399826, 0.23489198088645935, 0.040595460683107376, -0.1417481005191803, -0.0720110833644867, 0.06544212251901627, -0.04054591432213783, -0.042046401649713516, -0.012815693393349648, 0.053154002875089645, -0.2068694531917572, 0.03593538701534271, -0.0056297932751476765, 0.11077186465263367, -0.11967714875936508, -0.008435613475739956, 0.08987957239151001, 0.042049504816532135, -0.06727872788906097, 0.08536500483751297, -0.1546372026205063, 0.06502744555473328, 0.010645298287272453, 0.09906700253486633, -0.03510945290327072, 0.0003596360911615193, 0.032071344554424286, 0.018698154017329216, 0.07890473306179047, 0.009596505202353, 0.046948324888944626, -0.04271721467375755, -0.01998000219464302, -0.008580282330513, 0.05874441936612129, -0.0930175855755806, 0.14096775650978088, -0.0395299531519413, 0.020535331219434738, -0.032726213335990906, -0.04300018027424812, -0.14078892767429352, -0.12329946458339691, 0.05740974470973015, -0.09737052023410797, 0.012981734238564968, -0.050150446593761444, -0.01609293930232525, 0.02632475644350052, 0.18122027814388275, -0.06368090212345123, -0.08553431928157806, -0.12442691624164581, 0.0005735177546739578, 0.1528899371623993, -0.06901644915342331, 0.040315404534339905, -0.0035149711184203625, 0.1582575887441635, -0.012066594325006008, -0.1313129961490631, -0.018414068967103958, -0.05994287505745888, -0.18441402912139893, -0.029984312132000923, 0.13406525552272797, 0.09137514233589172, 0.035775087773799896, 0.023880895227193832, 0.03482833877205849, -0.059375204145908356, -0.15150052309036255, 0.07336314767599106, 0.13860782980918884, 0.017917092889547348, 0.019112976267933846, -0.0003120966430287808, -0.04066191613674164, -0.13154643774032593, 0.01230451837182045, 0.04380617290735245, 0.18378642201423645, -0.09144776314496994, 0.13933327794075012, 0.04346603527665138, -0.06538791954517365, -0.21492509543895721, 0.022777758538722992, 0.019703367725014687, 0.0327826626598835, 0.04106421023607254, -0.21779616177082062, -0.006813527550548315, 0.030795199796557426, -0.004878162406384945, 0.07186707109212875, -0.36455437541007996, -0.13103123009204865, 0.014286903664469719, -0.0024272371083498, -0.10091490298509598, -0.04179127886891365, -0.03976661339402199, -0.06234212964773178, -0.2360127717256546, 0.06200629845261574, -0.11419065296649933, 0.09455236047506332, 0.021599825471639633, 0.06701599061489105, 0.050083938986063004, -0.05775294080376625, 0.10859499871730804, -0.020104171708226204, 0.042125154286623, -0.07374443858861923, -0.049614254385232925, 0.0876966044306755, -0.046363286674022675, 0.12193276733160019, 0.006291538011282682, 0.06682154536247253, -0.08426300436258316, -0.05265030637383461, -0.08942465484142303, 0.006695035845041275, -0.04928368330001831, -0.0805753841996193, -0.09975065290927887, 0.08684422075748444, 0.09854037314653397, -0.037612367421388626, -0.10235501825809479, -0.06838294863700867, -0.05005708336830139, 0.04312652722001076, 0.1059117242693901, 0.11755936592817307, -0.1126006692647934, 0.007394780404865742, -0.0098025007173419, 0.029849952086806297, -0.17553949356079102, 0.053198058158159256, 0.07562942802906036, 0.043198175728321075, 0.10725146532058716, 0.008160228841006756, -0.17689044773578644, 0.028597040101885796, 0.07038090378046036, -0.16584394872188568, -0.11475545167922974, -0.041114870458841324, -0.041187845170497894, -0.08471738547086716, -0.062272779643535614, 0.14227086305618286, -0.018787605687975883, -0.04997890070080757, -0.002369706518948078, 0.07459195703268051, -0.07473263144493103, 0.10688453167676926, 0.030322756618261337, 0.04296543449163437, -0.03913972154259682, 0.12120093405246735, 0.058500975370407104, 0.04673793539404869, 0.05171161890029907, 0.057107727974653244, -0.09152612090110779, -0.013186865486204624, -0.07222742587327957, -0.01677493005990982, -0.06161216273903847, 0.005266317166388035, -0.004537323955446482, -0.027543559670448303, 0.014740095473825932, 0.09837768971920013, -0.02921406365931034, 0.10085999220609665, -0.030363181605935097, -0.02507725916802883, -0.12140259146690369, 0.09803736954927444, 0.040540456771850586, -0.0022651436738669872, -0.1362612545490265, 0.18578889966011047, 0.029373064637184143, 0.07630660384893417, -0.04350709170103073, -0.03787912055850029, -0.07296270877122879, 0.006797550246119499, -0.14643923938274384, -0.07220261543989182, -0.08401758223772049, -0.06881344318389893, -0.027852628380060196, -0.0334007702767849, -0.020690325647592545, 0.04253923520445824, -0.011848344467580318, -0.09127773344516754, -0.0609445683658123, 0.04865485802292824, -0.167436882853508, 0.02688704803586006, 0.12018263339996338, -0.05742207169532776, 0.1009073406457901, 0.06546182185411453, -0.023131925612688065, -0.018139855936169624, -0.09788218140602112, 0.017122672870755196, -0.036138761788606644, -0.00520893232896924, 0.031813737004995346, -0.12496598809957504, -0.0018257792107760906, -0.06276078522205353, -0.058794353157281876, 0.014896553941071033, 0.01407285314053297, -0.10379958152770996, 0.04408545047044754, 0.08461027592420578, -0.013014541938900948, -0.08432810753583908, 0.07166985422372818, 0.09769293665885925, 0.03601226955652237, 0.0694802775979042, -0.04273080453276634, 0.0726228877902031, -0.13476364314556122, -0.034673094749450684, -0.006378612946718931, 0.044776249676942825, 0.06482644379138947, -0.0067902435548603535, 0.038552552461624146, -0.025741176679730415, 0.16654323041439056, 0.04365536943078041, -0.032061535865068436, 0.03551267832517624, -0.03570752590894699, 0.020471379160881042, 0.07254210859537125, 0.04700633883476257, -0.058306485414505005, -0.044555895030498505, -0.042105045169591904, 0.031913358718156815, -0.08629224449396133, -0.018759092316031456, 0.07360155880451202, 0.06234106793999672, 0.20048753917217255, -0.041565459221601486, 0.0677298754453659, -0.0402427576482296, -0.1510033756494522, -0.028919430449604988, -0.009065922349691391, 0.0167813953012228, -0.09687458723783493, 0.059937480837106705, 0.16593532264232635, -0.1693076640367508, 0.12440118938684464, -0.00856314692646265, -0.05458936467766762, -0.0767359733581543, -0.19081617891788483, -0.015063970349729061, -0.04067467525601387, 0.04156716540455818, -0.11718446016311646, 0.05135054141283035, 0.0216712336987257, -0.0011293910210952163, -0.08981791138648987, 0.10957204550504684, -0.07168219238519669, -0.13491830229759216, 0.024762436747550964, 0.03709987923502922, 0.029200978577136993, 0.06591581553220749, 0.10031387954950333, 0.04785928130149841, -0.01094137318432331, 0.05212073773145676, 0.06067227944731712, -0.02872718870639801, 0.04586845263838768, -0.04766978695988655, -0.0698949471116066, 0.0287905465811491, 0.006935767829418182, 0.03579283133149147, 0.0783618688583374, 0.08009719103574753, -0.02213297411799431, -0.020697560161352158, 0.2997978627681732, 0.00007002001802902669, 0.014927343465387821, -0.17065969109535217, 0.16093626618385315, 0.015392450615763664, -0.003945543430745602, 0.02814878337085247, -0.17443686723709106, 0.003244664752855897, 0.17088459432125092, 0.17837105691432953, -0.06922822445631027, 0.022126086056232452, -0.023551329970359802, 0.011830279603600502, 0.039887648075819016, 0.053905438631772995, 0.08082596212625504, 0.21576832234859467, -0.05433981120586395, 0.06262046098709106, -0.03422227501869202, -0.025826405733823776, -0.020962122827768326, 0.09376280009746552, -0.05083134397864342, 0.003651738865301013, -0.06761789321899414, 0.12428875267505646, -0.04479140415787697, -0.2557618021965027, 0.00465718749910593, -0.047973960638046265, -0.07826866954565048, 0.05576477199792862, -0.058986786752939224, -0.005976563785225153, 0.1109563484787941, 0.013263748958706856, -0.0217540692538023, 0.09925627708435059, 0.05366411432623863, -0.029818035662174225, -0.0075632063671946526, 0.05987716093659401, -0.06105557829141617, 0.2034635692834854, -0.05250931903719902, -0.014127489179372787, 0.08419569581747055, 0.025600459426641464, -0.10887759178876877, 0.020121682435274124, 0.04124412685632706, -0.057661984115839005, -0.024332663044333458, 0.21816076338291168, -0.0014412534656003118, 0.041199229657649994, 0.08323466032743454, -0.046329811215400696, 0.04193682596087456, -0.06035569682717323, 0.044821348041296005, -0.13870255649089813, 0.08466292917728424, -0.10414646565914154, 0.1327742636203766, 0.16257169842720032, -0.07922922074794769, 0.016206150874495506, -0.0384344719350338, 0.01648230478167534, -0.009181302972137928, 0.09118568897247314, -0.026320667937397957, -0.12254827469587326, 0.031687598675489426, 0.03766573220491409, 0.037167031317949295, -0.17849601805210114, -0.05851410701870918, 0.034475140273571014, -0.04389325529336929, 0.019883641973137856, 0.16538693010807037, 0.07471559941768646, 0.03386478126049042, -0.032762058079242706, -0.011673912405967712, 0.0036225863732397556, 0.1052156463265419, -0.15683871507644653, -0.0882185697555542 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c3045337575e2ce646bbc54369de4143.450x427x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lazy Jay</div> <a href="https://genius.com/artists/lazy-jay"> <div style="text-align: center; font-size: 14px;">@lazy-jay</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lazy Jay. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lazy-jay). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lazy-jay") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/tlb735a4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lazy Jay's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/36z52xfj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/36z52xfj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lazy-jay') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lazy-jay") model = AutoModelWithLMHead.from_pretrained("huggingartists/lazy-jay") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lazy-jay"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lazy-jay
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lazy-jay", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lazy-jay #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lazy Jay</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lazy-jay</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Lazy Jay. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Lazy Jay's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lazy Jay.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lazy Jay's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lazy-jay #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lazy Jay.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lazy Jay's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lazy-jay #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Lazy Jay.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lazy Jay's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.023355957120656967, 0.14894957840442657, -0.0027250030543655157, 0.03616327792406082, 0.09830819815397263, 0.011817689053714275, 0.08562856167554855, 0.11870913952589035, 0.015790212899446487, 0.07775459438562393, 0.07250930368900299, 0.04062933847308159, 0.07105927914381027, 0.0932937040925026, 0.07402732223272324, -0.22963988780975342, 0.03174782916903496, -0.08240185678005219, 0.020179765298962593, 0.10334359854459763, 0.09405851364135742, -0.0612628236413002, 0.08107717335224152, 0.029771635308861732, -0.07248352468013763, 0.01210363581776619, 0.0006768268067389727, -0.061500802636146545, 0.09213976562023163, 0.05730588361620903, 0.03390197828412056, 0.03418414667248726, 0.06354400515556335, -0.18912829458713531, 0.03066186234354973, 0.12747445702552795, 0.035488326102495193, 0.0817512795329094, 0.04210277274250984, -0.07889358699321747, 0.1420808881521225, -0.029019556939601898, 0.08718512952327728, 0.05392783135175705, -0.12155172973871231, -0.15083900094032288, -0.13567137718200684, 0.084955133497715, 0.0969153344631195, 0.07776409387588501, -0.027434665709733963, 0.07723609358072281, -0.022981200367212296, 0.037958964705467224, 0.2374640256166458, -0.24372294545173645, -0.011536279693245888, 0.09523149579763412, 0.06068316474556923, 0.01817941851913929, -0.07862677425146103, 0.021507594734430313, 0.04518495500087738, 0.02533387579023838, 0.05411184951663017, -0.025753391906619072, 0.16969969868659973, 0.031214289367198944, -0.10026739537715912, -0.08331143856048584, 0.11414414644241333, -0.022177554666996002, -0.07602564990520477, -0.14450816810131073, -0.004734561312943697, -0.010254383087158203, 0.03249617666006088, 0.0052131423726677895, -0.004544730763882399, 0.007722186390310526, -0.048128169029951096, -0.11546939611434937, -0.07710946351289749, -0.04135382920503616, -0.006575464271008968, 0.054912421852350235, 0.040142375975847244, 0.032109156250953674, -0.08641668409109116, 0.22775974869728088, -0.012649466283619404, -0.10483197122812271, -0.052475083619356155, -0.09924102574586868, -0.08917238563299179, -0.045866213738918304, 0.01580916717648506, 0.0030459947884082794, -0.032988328486680984, 0.157479390501976, -0.0050358218140900135, 0.023443851619958878, -0.01943841762840748, 0.002834414364770055, 0.14511196315288544, 0.13042566180229187, -0.10486271232366562, -0.0517653189599514, 0.07235848158597946, 0.0023170425556600094, -0.05801354721188545, -0.05521543323993683, -0.007595119997859001, -0.011641590856015682, 0.046047013252973557, 0.08325227349996567, 0.08014211058616638, 0.061935313045978546, 0.006177830044180155, -0.062393032014369965, 0.08468155562877655, -0.12649357318878174, 0.01260064635425806, -0.007924077101051807, -0.052464354783296585, 0.009874843060970306, 0.054324205964803696, 0.016483861953020096, -0.10118257254362106, 0.10529407858848572, -0.06766532361507416, -0.054179172962903976, -0.07857649773359299, -0.09635192900896072, -0.0035764630883932114, -0.05111418664455414, -0.03379324451088905, -0.07714527100324631, -0.18692371249198914, -0.04151061549782753, 0.02788575552403927, -0.05235201120376587, -0.03669491782784462, 0.02522331289947033, -0.03144052252173424, 0.008830410428345203, -0.023078933358192444, -0.02149784378707409, -0.030096186324954033, 0.034880898892879486, -0.05857454985380173, 0.03444630652666092, 0.073127880692482, 0.04275321960449219, -0.11952199786901474, 0.0704462006688118, -0.1418602019548416, 0.11764795333147049, -0.0217923354357481, 0.016929704695940018, -0.10567886382341385, -0.07403512299060822, -0.020444650202989578, -0.028676645830273628, 0.013039499521255493, 0.10359068959951401, -0.16496922075748444, -0.03447471559047699, 0.19399870932102203, -0.06631748378276825, -0.0827740877866745, 0.06811396032571793, -0.07067917287349701, 0.050690166652202606, 0.1187550351023674, 0.08159197866916656, 0.1438770294189453, -0.12210677564144135, -0.06802447140216827, -0.04402322322130203, -0.0633409395813942, 0.1754792332649231, 0.04075716435909271, -0.020593516528606415, 0.02713865041732788, 0.00455176318064332, -0.02962500974535942, -0.0045438483357429504, -0.022834140807390213, -0.036217913031578064, -0.022889038547873497, -0.006653750780969858, -0.01318691298365593, -0.036231640726327896, -0.05963916331529617, -0.026391267776489258, -0.10417265444993973, 0.05436209216713905, 0.10418332368135452, -0.06440357863903046, 0.008747037500143051, -0.09908679127693176, 0.019359368830919266, -0.042178694158792496, 0.009520020335912704, -0.16143099963665009, -0.04461253061890602, 0.025599144399166107, -0.06881512701511383, 0.07233212888240814, 0.03369496017694473, 0.03828999027609825, 0.06573035567998886, -0.011547607369720936, -0.004646499175578356, -0.03440965712070465, -0.006683066952973604, -0.03460916131734848, -0.15866753458976746, -0.05821837857365608, -0.04351850599050522, 0.07726972550153732, -0.10079323500394821, 0.005208820570260286, 0.07882196456193924, 0.13949429988861084, 0.026752104982733727, -0.06694667041301727, 0.037393976002931595, -0.0370672270655632, -0.031307533383369446, -0.10886064171791077, -0.03797925263643265, 0.007360311225056648, -0.016226809471845627, 0.15191510319709778, -0.15298332273960114, -0.09996014833450317, 0.11809536069631577, 0.11165269464254379, -0.0814669281244278, 0.05816430598497391, -0.07152130454778671, -0.02217588946223259, -0.05156554654240608, -0.051284778863191605, 0.24727146327495575, 0.02861131727695465, 0.09205752611160278, -0.09409875422716141, -0.08627535402774811, -0.0015699409414082766, -0.04230488836765289, -0.02822568453848362, 0.03066306561231613, 0.031809136271476746, -0.1647346317768097, 0.04489542543888092, -0.007714287377893925, 0.09409695118665695, 0.2002851366996765, 0.039038605988025665, -0.08660851418972015, -0.05937005206942558, -0.06693363189697266, 0.002265143906697631, 0.08592517673969269, -0.0088923629373312, 0.021636631339788437, 0.041909027844667435, 0.04882246255874634, 0.04027504101395607, -0.11548908054828644, 0.008635942824184895, 0.06263751536607742, -0.031657811254262924, -0.03586941584944725, 0.019465990364551544, 0.018377205356955528, 0.08149601519107819, 0.08185708522796631, 0.11590553820133209, -0.05452395975589752, -0.054487600922584534, -0.13313309848308563, 0.12839238345623016, -0.08259423822164536, -0.21859636902809143, -0.12758849561214447, -0.06026294082403183, 0.01461509708315134, 0.012160219252109528, 0.03920400142669678, -0.044538307934999466, -0.03773372620344162, -0.09379155188798904, 0.09234432876110077, -0.041388582438230515, -0.02039434015750885, 0.005532154813408852, 0.02109806425869465, -0.022803712636232376, -0.11972083896398544, -0.03445714712142944, 0.03186620771884918, -0.08812471479177475, -0.0004778092261403799, 0.024218495935201645, 0.04191512241959572, 0.14830030500888824, 0.00002185705307056196, 0.008708623237907887, -0.022697532549500465, 0.2654237449169159, -0.11046458780765533, 0.06783067435026169, 0.18013229966163635, 0.00654709804803133, 0.05134192109107971, 0.060702383518218994, 0.0005884076817892492, -0.05840369686484337, 0.06088045984506607, 0.06919815391302109, -0.07490438967943192, -0.1999492347240448, -0.03818857669830322, -0.013610572554171085, 0.022038467228412628, 0.11544033139944077, 0.0357915423810482, 0.04781130328774452, 0.012241079472005367, -0.10681886970996857, 0.05947200208902359, 0.019475793465971947, 0.10514239966869354, -0.07220201194286346, -0.007874884642660618, 0.04918527975678444, -0.05072837322950363, 0.02938123047351837, 0.12238442897796631, 0.04122152179479599, 0.20153558254241943, -0.06806880235671997, 0.09706909954547882, 0.0777519941329956, 0.1190904974937439, 0.022993367165327072, 0.01557983923703432, -0.02787124551832676, 0.02424842305481434, 0.001293324283324182, -0.09649244695901871, -0.018826289102435112, 0.04429329186677933, 0.02838764153420925, -0.013530110009014606, -0.04458951950073242, -0.070722796022892, 0.05270777642726898, 0.22269171476364136, 0.033153288066387177, -0.1619744747877121, -0.09578704833984375, 0.06628222018480301, -0.0508805587887764, -0.06286322325468063, -0.010814693756401539, 0.07435136288404465, -0.21477589011192322, 0.04033675417304039, -0.031959082931280136, 0.11174802482128143, -0.12796442210674286, 0.0032263929024338722, 0.06575197726488113, 0.04138673096895218, -0.06098471209406853, 0.0850926861166954, -0.16244962811470032, 0.06108653172850609, 0.0014646847266703844, 0.08373956382274628, -0.0712537094950676, 0.02284402959048748, 0.018321316689252853, 0.027955669909715652, 0.08833085745573044, 0.015288255177438259, 0.03267649933695793, -0.030699364840984344, -0.046025730669498444, 0.0023194204550236464, 0.05494853854179382, -0.10733091086149216, 0.12747174501419067, -0.03256157040596008, 0.031165726482868195, -0.027380196377635002, -0.0743088647723198, -0.0949825718998909, -0.13700583577156067, 0.07736457884311676, -0.1061001569032669, -0.000041263574530603364, -0.07305415719747543, -0.009921426884829998, 0.02899622544646263, 0.23577165603637695, -0.07852154225111008, -0.0785633772611618, -0.13332855701446533, -0.0027471857611089945, 0.13507798314094543, -0.07588987052440643, -0.005279433913528919, -0.00874070543795824, 0.16355016827583313, -0.00895081926137209, -0.13620992004871368, -0.0016170426970347762, -0.06824157387018204, -0.17732878029346466, -0.032956644892692566, 0.15656167268753052, 0.06218869611620903, 0.03094276413321495, 0.009365701116621494, 0.008055723272264004, -0.05421525612473488, -0.1649542599916458, 0.041436441242694855, 0.1515384018421173, 0.011790737509727478, 0.022744551301002502, 0.034846946597099304, 0.01887807622551918, -0.11986339837312698, 0.01413775235414505, 0.053451765328645706, 0.19197744131088257, -0.07469863444566727, 0.17357975244522095, 0.022648360580205917, -0.0898531824350357, -0.17974425852298737, 0.021568285301327705, 0.003920977935194969, 0.027592234313488007, 0.01616927608847618, -0.1921136975288391, 0.02881436049938202, 0.02221648395061493, -0.010472182184457779, 0.049245357513427734, -0.353476345539093, -0.14787138998508453, 0.019177652895450592, 0.015208980068564415, -0.08492441475391388, -0.050972919911146164, -0.04086571931838989, -0.07371814548969269, -0.26170942187309265, 0.1047791838645935, -0.13423402607440948, 0.08580444753170013, 0.00894237495958805, 0.07204413414001465, 0.051111381500959396, -0.06373969465494156, 0.12782591581344604, -0.027731701731681824, 0.061317477375268936, -0.08777475357055664, -0.06258218735456467, 0.09362780302762985, -0.06507719308137894, 0.10111638903617859, 0.016581060364842415, 0.09030143171548843, -0.12960971891880035, -0.07226041704416275, -0.08272884041070938, 0.017635231837630272, -0.055391933768987656, -0.10350005328655243, -0.088862843811512, 0.09121551364660263, 0.12030445039272308, -0.0368824265897274, -0.06950773298740387, -0.04636003077030182, -0.0020318333990871906, 0.07508151978254318, 0.09968449175357819, 0.07416658103466034, -0.0816735252737999, 0.010988809168338776, 0.011072136461734772, 0.028269806876778603, -0.17144522070884705, 0.03837646171450615, 0.07995590567588806, 0.04481551796197891, 0.10400500148534775, 0.007319467607885599, -0.17265592515468597, 0.018128177151083946, 0.04273376986384392, -0.1712290495634079, -0.10355304926633835, -0.04553164914250374, 0.012305916287004948, -0.08182387799024582, -0.04194219782948494, 0.13774418830871582, -0.03943682461977005, -0.03716986998915672, 0.002442867960780859, 0.051533810794353485, -0.049972984939813614, 0.09512189775705338, 0.015704434365034103, 0.04898274317383766, -0.06725315004587173, 0.11246317625045776, 0.0644778162240982, 0.026554254814982414, 0.038967277854681015, 0.06351880729198456, -0.08827419579029083, 0.0011300399200990796, -0.09293608367443085, 0.029449982568621635, -0.03788668289780617, -0.006592440418899059, 0.004484742879867554, -0.038653627038002014, 0.02493332140147686, 0.08417435735464096, -0.011555411852896214, 0.10813608765602112, -0.02980176918208599, -0.0034666378051042557, -0.13556121289730072, 0.07220448553562164, 0.03159567713737488, 0.02108113281428814, -0.10439906269311905, 0.2050408273935318, 0.025352727621793747, 0.09882022440433502, -0.04118410870432854, -0.0566692054271698, -0.07780639082193375, -0.0067573366686701775, -0.1399902105331421, -0.049092937260866165, -0.08857861161231995, -0.03676183894276619, -0.00904735829681158, -0.03856485337018967, -0.013975038193166256, 0.04967866092920303, -0.02976742386817932, -0.061078187078237534, -0.062269847840070724, 0.050892848521471024, -0.1442773938179016, 0.019763335585594177, 0.1157083585858345, -0.060271669179201126, 0.11143595725297928, 0.05507601052522659, -0.02731483057141304, 0.020053211599588394, -0.09500132501125336, 0.027164887636899948, -0.029461296275258064, 0.012030698359012604, 0.031341757625341415, -0.1477380245923996, 0.004113348200917244, -0.05268197879195213, -0.06410149484872818, 0.006941290106624365, 0.015227807685732841, -0.12798531353473663, -0.001241335179656744, 0.07688676565885544, -0.005432402715086937, -0.07236508280038834, 0.07217632234096527, 0.0651683434844017, 0.02999427728354931, 0.05591084063053131, -0.02916726842522621, 0.07584276795387268, -0.1718541383743286, -0.050371523946523666, 0.0020849043503403664, 0.013738477602601051, 0.04140392318367958, -0.003791461931541562, 0.039647068828344345, -0.021534398198127747, 0.18719390034675598, 0.009627473540604115, -0.03237525373697281, 0.037194035947322845, -0.05718885362148285, 0.0006535621942020953, 0.042284585535526276, 0.06501401960849762, -0.035285718739032745, -0.02696981653571129, -0.015545278787612915, -0.010517260991036892, -0.07897793501615524, -0.029899153858423233, 0.10479962825775146, 0.046253059059381485, 0.18438273668289185, -0.03906208276748657, 0.058406487107276917, -0.033990103751420975, -0.1212558001279831, -0.0059036435559391975, -0.033692121505737305, 0.04448369890451431, -0.06906567513942719, 0.07290372997522354, 0.17361442744731903, -0.15872904658317566, 0.10860889405012131, 0.014212598092854023, -0.05406201258301735, -0.10200268775224686, -0.1817137748003006, -0.013814321719110012, -0.033706095069646835, 0.03500621020793915, -0.1318650096654892, 0.08553583920001984, 0.024139242246747017, 0.026481682434678078, -0.06340686976909637, 0.11737564951181412, -0.058426350355148315, -0.11280317604541779, 0.029845871031284332, 0.02301733009517193, 0.020759915933012962, 0.03320883587002754, 0.07404705137014389, 0.02771480195224285, 0.009480379521846771, 0.06408905982971191, 0.04069135710597038, 0.025374585762619972, 0.040329813957214355, -0.022684307768940926, -0.05943838506937027, 0.024148570373654366, 0.004906825255602598, 0.03168534114956856, 0.09092816710472107, 0.07289004325866699, -0.01863120123744011, -0.026495473459362984, 0.303845077753067, -0.03536427393555641, -0.04518724977970123, -0.1664968878030777, 0.1784677356481552, 0.01319783367216587, -0.015581130981445312, 0.032203126698732376, -0.12575110793113708, 0.010516387410461903, 0.15168824791908264, 0.17922507226467133, -0.036097243428230286, 0.014967591501772404, -0.03761424124240875, 0.011971834115684032, 0.030836064368486404, 0.0843883603811264, 0.06395260244607925, 0.1998378485441208, -0.048804063349962234, 0.05547047406435013, -0.005862993188202381, -0.02343684621155262, -0.011061571538448334, 0.10511013120412827, -0.030917754396796227, 0.0013949412386864424, -0.05638034641742706, 0.09013360738754272, -0.06393149495124817, -0.2755707800388336, -0.004677235148847103, -0.04668697342276573, -0.09258949011564255, 0.05436694249510765, -0.02687293477356434, -0.024348221719264984, 0.09478893876075745, 0.017794005572795868, -0.02426985837519169, 0.12734510004520416, 0.03697643801569939, -0.050343889743089676, -0.014363499358296394, 0.09132959693670273, -0.034284960478544235, 0.1810452789068222, -0.027596566826105118, 0.001483400585129857, 0.09032667428255081, 0.018001224845647812, -0.12491611391305923, 0.010660349391400814, 0.0424448661506176, -0.0787036195397377, -0.025737667456269264, 0.19383229315280914, 0.006373430136591196, 0.0493570938706398, 0.06527997553348541, -0.05549033358693123, 0.023566463962197304, -0.05397094413638115, 0.04842490330338478, -0.14301122725009918, 0.04784570634365082, -0.0766112208366394, 0.14378418028354645, 0.17811530828475952, -0.07641047239303589, 0.01788543537259102, -0.05768696591258049, 0.002818275475874543, -0.013578597456216812, 0.07061943411827087, -0.023605983704328537, -0.10630940645933151, 0.019381297752261162, 0.02799624390900135, 0.02440098114311695, -0.18750517070293427, -0.06948737055063248, 0.050771065056324005, -0.04976823553442955, 0.01725246198475361, 0.17566527426242828, 0.042071688920259476, 0.05979078635573387, -0.036521799862384796, -0.006869780831038952, -0.012832606211304665, 0.11510244011878967, -0.14928746223449707, -0.0946754515171051 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e4763bba12e6411077a3e573cd290da0.433x433x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Led Zeppelin</div> <a href="https://genius.com/artists/led-zeppelin"> <div style="text-align: center; font-size: 14px;">@led-zeppelin</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Led Zeppelin. Dataset is available [here](https://huggingface.co/datasets/huggingartists/led-zeppelin). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/led-zeppelin") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/cpexpb1w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Led Zeppelin's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/bna2epba) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/bna2epba/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/led-zeppelin') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/led-zeppelin") model = AutoModelWithLMHead.from_pretrained("huggingartists/led-zeppelin") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/led-zeppelin"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/led-zeppelin
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/led-zeppelin", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/led-zeppelin #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Led Zeppelin</div> <a href="URL <div style="text-align: center; font-size: 14px;">@led-zeppelin</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Led Zeppelin. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Led Zeppelin's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Led Zeppelin.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Led Zeppelin's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/led-zeppelin #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Led Zeppelin.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Led Zeppelin's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/led-zeppelin #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Led Zeppelin.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Led Zeppelin's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.047770146280527115, 0.15447798371315002, -0.002664712956175208, 0.06016269698739052, 0.10418025404214859, 0.012497365474700928, 0.07097500562667847, 0.11205153912305832, 0.029666954651474953, 0.08044079691171646, 0.0631319209933281, 0.04913655295968056, 0.06272202730178833, 0.07387185096740723, 0.061789460480213165, -0.2278509885072708, 0.038607530295848846, -0.08384399116039276, -0.000833532540127635, 0.09021733701229095, 0.08765518665313721, -0.06628752499818802, 0.07979214191436768, 0.025024648755788803, -0.05885393172502518, 0.015794163569808006, 0.005037068855017424, -0.054305415600538254, 0.09140607714653015, 0.06155784800648689, 0.02592853643000126, 0.02925996668636799, 0.06769625842571259, -0.17801983654499054, 0.025457963347434998, 0.12196996062994003, 0.03068637102842331, 0.07644970715045929, 0.05639686435461044, -0.08433430641889572, 0.12102492898702621, -0.02583375945687294, 0.08998122811317444, 0.059168774634599686, -0.10707978904247284, -0.12817305326461792, -0.15005072951316833, 0.09827703982591629, 0.0894465371966362, 0.09020336717367172, -0.02703549526631832, 0.07898324728012085, -0.01796756125986576, 0.04434553533792496, 0.24825090169906616, -0.23834817111492157, -0.005762972868978977, 0.07782439142465591, 0.0565277636051178, 0.025051917880773544, -0.09552118927240372, 0.02502000704407692, 0.050092875957489014, 0.03918686881661415, 0.02927345782518387, -0.02990086004137993, 0.1481199860572815, 0.01775943487882614, -0.11445800960063934, -0.0712524875998497, 0.09613044559955597, -0.019878625869750977, -0.0831744372844696, -0.1248580664396286, -0.0022369450889527798, -0.038824521005153656, 0.02779565192759037, 0.016116932034492493, 0.00204113544896245, 0.002575947903096676, -0.03367723152041435, -0.11752602458000183, -0.06929538398981094, -0.04884351044893265, -0.012495908886194229, 0.06089087203145027, 0.04722895845770836, 0.036894652992486954, -0.08531569689512253, 0.2325480580329895, -0.008819370530545712, -0.09396787732839584, -0.06625809520483017, -0.10812333226203918, -0.08669335395097733, -0.04410460963845253, 0.0020139445550739765, -0.0003443590539973229, -0.026715056970715523, 0.1612958014011383, -0.03458915650844574, 0.023927269503474236, -0.03164185583591461, 0.0012373061617836356, 0.13459695875644684, 0.14692308008670807, -0.12764975428581238, -0.04435841739177704, 0.07918905466794968, -0.0015028539346531034, -0.068789042532444, -0.04082394391298294, -0.00024767141439951956, -0.01654350943863392, 0.04594738036394119, 0.08414992690086365, 0.0779518336057663, 0.06450662016868591, 0.003896682523190975, -0.05902568995952606, 0.05961274355649948, -0.12904956936836243, 0.014257566072046757, -0.0131920101121068, -0.05644821375608444, 0.02361450344324112, 0.07838475704193115, 0.001371289137750864, -0.10367170721292496, 0.09218154847621918, -0.06880496442317963, -0.053759537637233734, -0.07892721146345139, -0.09962449967861176, -0.008024078793823719, -0.04638925939798355, -0.03023838996887207, -0.06898517161607742, -0.18613336980342865, -0.047656696289777756, 0.019647734239697456, -0.05440974235534668, -0.02670806087553501, 0.024595806375145912, -0.03758443892002106, 0.013668419793248177, -0.013316575437784195, -0.013766179792582989, -0.024047529324889183, 0.029496297240257263, -0.08104436844587326, 0.03470467031002045, 0.057128939777612686, 0.04559260979294777, -0.1243271678686142, 0.07472295314073563, -0.1420401781797409, 0.126250222325325, -0.03976720944046974, 0.0016982939559966326, -0.09366356581449509, -0.07474274188280106, -0.01078752614557743, -0.03285659849643707, 0.031044118106365204, 0.1193639263510704, -0.16647052764892578, -0.021304313093423843, 0.19525817036628723, -0.05990788713097572, -0.07599056512117386, 0.06667003035545349, -0.0709896832704544, 0.047517791390419006, 0.11225268989801407, 0.06319048255681992, 0.1599094718694687, -0.11803288757801056, -0.0868559181690216, -0.047961924225091934, -0.07066850364208221, 0.17018190026283264, 0.01826687529683113, -0.03716353327035904, 0.02303771860897541, 0.007496585138142109, -0.04529516026377678, -0.00722126942127943, -0.025696054100990295, -0.032582562416791916, -0.028639215975999832, -0.015104720368981361, 0.011476799845695496, -0.04173017665743828, -0.04685359448194504, -0.01848764158785343, -0.09271503984928131, 0.08847618848085403, 0.10363464802503586, -0.06328226625919342, 0.019513344392180443, -0.07999105751514435, 0.031074613332748413, -0.05679892376065254, 0.015173360705375671, -0.1817428171634674, -0.043294042348861694, 0.020653873682022095, -0.07462926208972931, 0.07115957140922546, 0.014492061920464039, 0.046714846044778824, 0.0737065002322197, -0.020664159208536148, -0.013637494295835495, -0.049591951072216034, 0.007822110317647457, -0.0514298640191555, -0.17376229166984558, -0.0477701872587204, -0.04217882454395294, 0.07227113842964172, -0.10548994690179825, 0.002346266293898225, 0.07840786874294281, 0.1416558474302292, 0.022995570674538612, -0.05987633764743805, 0.03899301961064339, -0.03665206953883171, -0.02966010570526123, -0.10657809674739838, -0.04858388751745224, 0.00434970622882247, -0.017418095842003822, 0.14749883115291595, -0.12468745559453964, -0.11679118871688843, 0.12540887296199799, 0.10989413410425186, -0.08725732564926147, 0.06384919583797455, -0.07061184197664261, -0.022885637357831, -0.054417748004198074, -0.06328482925891876, 0.24403950572013855, 0.035869091749191284, 0.08327696472406387, -0.08520835638046265, -0.07979647070169449, -0.0017479030648246408, -0.03960297629237175, -0.033965546637773514, 0.044303737580776215, 0.04025251790881157, -0.1599242091178894, 0.05705228075385094, -0.0160488523542881, 0.0820811539888382, 0.18895454704761505, 0.029676388949155807, -0.0900629535317421, -0.04828239977359772, -0.07265966385602951, 0.006263403221964836, 0.10626158118247986, 0.007476162631064653, 0.0402783565223217, 0.04375891014933586, 0.045755092054605484, 0.04312388598918915, -0.11184916645288467, 0.013916142284870148, 0.05434936285018921, -0.03213125467300415, -0.04923319071531296, 0.027785858139395714, 0.026837697252631187, 0.09150504320859909, 0.06653643399477005, 0.10558521747589111, -0.054684121161699295, -0.04596109315752983, -0.13476669788360596, 0.13160577416419983, -0.09560860693454742, -0.18394728004932404, -0.13866625726222992, -0.07105325162410736, -0.010318798013031483, 0.003806684399023652, 0.035068120807409286, -0.05026460811495781, -0.040723126381635666, -0.09052445739507675, 0.09925615042448044, -0.030924297869205475, -0.004468665923923254, -0.009807043708860874, 0.014092298224568367, -0.010039483197033405, -0.1251707375049591, -0.03715750202536583, 0.015516892075538635, -0.06862173229455948, -0.0017245467752218246, 0.03256019949913025, 0.04896274209022522, 0.13913658261299133, 0.004266383592039347, 0.011016281321644783, -0.02280619367957115, 0.26716265082359314, -0.10535334050655365, 0.06997589021921158, 0.16312448680400848, -0.0016446851659566164, 0.059139277786016464, 0.06768985837697983, 0.0037957478780299425, -0.06431027501821518, 0.057745542377233505, 0.07521678507328033, -0.06616926193237305, -0.2072427123785019, -0.03742745518684387, -0.026090726256370544, 0.015252542681992054, 0.10803402215242386, 0.033652231097221375, 0.056029062718153, 0.008981670252978802, -0.09856723248958588, 0.06160412356257439, 0.01791396178305149, 0.09394561499357224, -0.06390159577131271, -0.0026928905863314867, 0.03895178437232971, -0.055313531309366226, 0.04010573774576187, 0.12375568598508835, 0.036659061908721924, 0.24123357236385345, -0.07663234323263168, 0.06227433681488037, 0.09441232681274414, 0.09789539873600006, 0.014140002429485321, 0.04063417389988899, -0.02908525988459587, 0.028125597164034843, 0.02040378749370575, -0.09746396541595459, 0.00916303787380457, 0.03480331227183342, 0.017457960173487663, 0.004382494371384382, -0.0608927346765995, -0.07136142253875732, 0.05341249331831932, 0.23886877298355103, 0.03496205434203148, -0.15575461089611053, -0.09406892955303192, 0.060085028409957886, -0.033647146075963974, -0.05579928308725357, -0.023608043789863586, 0.05235530436038971, -0.20987457036972046, 0.037965647876262665, -0.0409461110830307, 0.10697870701551437, -0.12246036529541016, -0.003135108854621649, 0.05510704964399338, 0.054572317749261856, -0.07190221548080444, 0.07082175463438034, -0.1599801927804947, 0.07494233548641205, -0.000849585107062012, 0.08768875896930695, -0.061745207756757736, 0.02255454659461975, 0.04400614649057388, 0.03658530116081238, 0.09623894095420837, 0.018692409619688988, 0.045839156955480576, -0.04881443828344345, -0.0498727522790432, -0.008411132730543613, 0.047298405319452286, -0.09611990302801132, 0.12809810042381287, -0.03244461491703987, 0.02151753567159176, -0.019656367599964142, -0.08425009995698929, -0.10975697636604309, -0.1402217000722885, 0.07120636105537415, -0.11800448596477509, -0.016910191625356674, -0.06704987585544586, -0.02336217649281025, 0.010353068821132183, 0.20600418746471405, -0.09148872643709183, -0.0847785547375679, -0.14137934148311615, 0.00301838805899024, 0.15325112640857697, -0.07969971001148224, 0.01425231620669365, -0.004702843260020018, 0.14511804282665253, -0.005066250916570425, -0.14571906626224518, -0.001975699793547392, -0.07242556661367416, -0.18248212337493896, -0.03148019313812256, 0.13354989886283875, 0.07377102226018906, 0.036707859486341476, 0.0010444039944559336, 0.010055970400571823, -0.03762221336364746, -0.17278121411800385, 0.03141476958990097, 0.15698349475860596, 0.011222331784665585, 0.022051064297556877, 0.008156812749803066, 0.012082758359611034, -0.12507709860801697, 0.0200894046574831, 0.04644343629479408, 0.19104507565498352, -0.07953692227602005, 0.15837568044662476, 0.005293205846101046, -0.09391960501670837, -0.1836862713098526, 0.03947744891047478, 0.0007780743180774152, 0.029541291296482086, 0.013980710878968239, -0.16739775240421295, 0.032285623252391815, 0.020399898290634155, -0.006231734063476324, 0.07025370001792908, -0.34992125630378723, -0.15663151443004608, 0.040949929505586624, 0.024046985432505608, -0.07634709775447845, -0.0328206792473793, -0.0352889746427536, -0.07209364324808121, -0.23444145917892456, 0.08193978667259216, -0.11954253166913986, 0.08614098280668259, 0.0034644524566829205, 0.0695682018995285, 0.045780375599861145, -0.06085381656885147, 0.12980973720550537, -0.02083440311253071, 0.06875360012054443, -0.07695517688989639, -0.04479841887950897, 0.08298337459564209, -0.06801585853099823, 0.11172296106815338, 0.023738693445920944, 0.09248203784227371, -0.10562404990196228, -0.06379856914281845, -0.07891140133142471, 0.02270153909921646, -0.05519639700651169, -0.0978948101401329, -0.07957189530134201, 0.09313531965017319, 0.11779198050498962, -0.040165260434150696, -0.10357003659009933, -0.03735630214214325, -0.04538991302251816, 0.06042282283306122, 0.09623490273952484, 0.10912959277629852, -0.10853973031044006, 0.01573656126856804, 0.006381852086633444, 0.03016754798591137, -0.1434413492679596, 0.039647266268730164, 0.08555472642183304, 0.04554135724902153, 0.09652408212423325, 0.012343158014118671, -0.1649428904056549, 0.0162497628480196, 0.030583828687667847, -0.15872764587402344, -0.11645254492759705, -0.031483955681324005, -0.01754145883023739, -0.08273691684007645, -0.027472497895359993, 0.13499248027801514, -0.04422906041145325, -0.03091658465564251, -0.0031224009580910206, 0.05518799647688866, -0.05490827560424805, 0.11350314319133759, 0.034205351024866104, 0.03975814953446388, -0.07025604695081711, 0.12163782119750977, 0.055480025708675385, 0.04193349927663803, 0.03746267035603523, 0.048276156187057495, -0.08890871703624725, 0.0003385203890502453, -0.0666324719786644, 0.027092278003692627, -0.05615873262286186, -0.007368157152086496, -0.007428052369505167, -0.04243606701493263, 0.02840539626777172, 0.11237110942602158, -0.005113354884088039, 0.10319245606660843, -0.041199296712875366, -0.012975921854376793, -0.13438650965690613, 0.07955996692180634, 0.05200474336743355, 0.02972233109176159, -0.11170725524425507, 0.16880494356155396, 0.02825107052922249, 0.09295032173395157, -0.04303833097219467, -0.049478769302368164, -0.08283308148384094, -0.008076471276581287, -0.16280624270439148, -0.051355309784412384, -0.06685427576303482, -0.03763588145375252, -0.01702188514173031, -0.04482230171561241, -0.01287347637116909, 0.06442998349666595, -0.030572684481739998, -0.07110460847616196, -0.05311185494065285, 0.05661485716700554, -0.15687599778175354, 0.003708405653014779, 0.11694815754890442, -0.06879521906375885, 0.10801681876182556, 0.0685955360531807, -0.02598593756556511, 0.0158744715154171, -0.0937042236328125, 0.019842781126499176, -0.029894869774580002, 0.013095945119857788, 0.04879337176680565, -0.1362871676683426, 0.00200826209038496, -0.055388301610946655, -0.06040339916944504, 0.008202183060348034, 0.013247623108327389, -0.12018714100122452, 0.007177951280027628, 0.06818831712007523, 0.010036563500761986, -0.05992812290787697, 0.06781843304634094, 0.07676590234041214, 0.0353037491440773, 0.06457565724849701, -0.03683841973543167, 0.0778924822807312, -0.16912096738815308, -0.04812223091721535, 0.00558256171643734, 0.012082758359611034, 0.060146018862724304, -0.004773442167788744, 0.044813502579927444, -0.01544510293751955, 0.18936994671821594, -0.0024804328568279743, -0.014890461228787899, 0.03599398955702782, -0.021312901750206947, -0.007362705189734697, 0.04942803829908371, 0.049796123057603836, -0.048287149518728256, -0.022210191935300827, -0.026707082986831665, -0.00031871075043454766, -0.06270348280668259, -0.029686076566576958, 0.11992458254098892, 0.05109559744596481, 0.16735652089118958, -0.03573742136359215, 0.06746909767389297, -0.026371465995907784, -0.12258896231651306, -0.040975671261548996, -0.03453022986650467, 0.038995932787656784, -0.07196170091629028, 0.08953798562288284, 0.15035855770111084, -0.16152487695217133, 0.12270138412714005, 0.0220816507935524, -0.058257315307855606, -0.0882798433303833, -0.16219942271709442, -0.00839242059737444, -0.029196981340646744, 0.03293212875723839, -0.11793848127126694, 0.07578083127737045, 0.022038990631699562, 0.03667736425995827, -0.06057093292474747, 0.12987011671066284, -0.07311053574085236, -0.10674307495355606, 0.026514966040849686, 0.0251849927008152, 0.007795549929141998, 0.030572589486837387, 0.07703348249197006, 0.031784217804670334, 0.0017383748199790716, 0.05228826403617859, 0.03641063719987869, 0.017457759007811546, 0.04001985862851143, -0.00843724049627781, -0.049032390117645264, 0.027750307694077492, 0.004480548668652773, 0.026674246415495872, 0.10602200776338577, 0.08352245390415192, -0.01627580262720585, -0.033731915056705475, 0.28352344036102295, -0.04068933427333832, -0.04639260098338127, -0.17153087258338928, 0.17661795020103455, 0.02822697162628174, -0.014142624102532864, 0.030876362696290016, -0.1503034383058548, 0.012275410816073418, 0.1564846932888031, 0.1714804619550705, -0.05231669545173645, 0.014587465673685074, -0.04061036556959152, 0.0081956060603261, 0.02630971372127533, 0.07923135161399841, 0.06938962638378143, 0.20137755572795868, -0.043354082852602005, 0.0589577741920948, -0.012992295436561108, -0.019910763949155807, -0.008095785975456238, 0.13036414980888367, -0.029271520674228668, -0.0006970344111323357, -0.05692049860954285, 0.09504444897174835, -0.07044637203216553, -0.27883607149124146, -0.01003848947584629, -0.03780389949679375, -0.09833967685699463, 0.04725164920091629, -0.04130113124847412, -0.017906324937939644, 0.0822000652551651, 0.017386101186275482, -0.021377434954047203, 0.1469433456659317, 0.03562594950199127, -0.03878462687134743, -0.03227506950497627, 0.0869486853480339, -0.02988155372440815, 0.20874640345573425, -0.024543579667806625, -0.007852960377931595, 0.0881064310669899, 0.023135153576731682, -0.12362471967935562, 0.004181661643087864, 0.04244275763630867, -0.0907553881406784, -0.016864731907844543, 0.18293730914592743, 0.006955836899578571, 0.025993462651968002, 0.042921796441078186, -0.03296159207820892, 0.032082173973321915, -0.06161124259233475, 0.036501459777355194, -0.1400466412305832, 0.05016598105430603, -0.07848621904850006, 0.1395418792963028, 0.17970603704452515, -0.07441235333681107, 0.033599045127630234, -0.05812624469399452, 0.00036462981370277703, -0.013172207400202751, 0.047293562442064285, -0.01781194657087326, -0.10226624459028244, 0.03276143595576286, 0.037333738058805466, 0.019507406279444695, -0.18428738415241241, -0.08347181975841522, 0.05285600572824478, -0.04940928518772125, 0.013898861594498158, 0.16393519937992096, 0.04371416196227074, 0.059629134833812714, -0.027926841750741005, 0.011571701616048813, -0.025193803012371063, 0.10342033207416534, -0.14035749435424805, -0.0874517485499382 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/98367f3cd4548347b114452eb3a5927f.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil Baby</div> <a href="https://genius.com/artists/lil-baby"> <div style="text-align: center; font-size: 14px;">@lil-baby</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lil Baby. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lil-baby). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lil-baby") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/vueaothh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lil Baby's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/257bod1h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/257bod1h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lil-baby') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lil-baby") model = AutoModelWithLMHead.from_pretrained("huggingartists/lil-baby") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lil-baby"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lil-baby
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lil-baby", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-baby #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil Baby</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lil-baby</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Lil Baby. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Lil Baby's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lil Baby.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Baby's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-baby #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lil Baby.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Baby's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-baby #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Lil Baby.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Baby's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.013975700363516808, 0.15495546162128448, -0.0032872972078621387, 0.03066921979188919, 0.0889480784535408, 0.019459053874015808, 0.10182452201843262, 0.11028039455413818, -0.009174712933599949, 0.06870589405298233, 0.06584716588258743, -0.006378489080816507, 0.0746823251247406, 0.1012498140335083, 0.08358945697546005, -0.26497313380241394, 0.02718396671116352, -0.08978920429944992, 0.021702680736780167, 0.12290918081998825, 0.08627429604530334, -0.06094752252101898, 0.08638784289360046, 0.03869575262069702, -0.08749125152826309, 0.01012282632291317, 0.0021882227156311274, -0.058329325169324875, 0.08079874515533447, 0.052523523569107056, 0.05215350165963173, 0.03301958739757538, 0.063052237033844, -0.17737025022506714, 0.0256193857640028, 0.12460632622241974, 0.031170561909675598, 0.07393532991409302, 0.03832096979022026, -0.0987311452627182, 0.17412498593330383, -0.016423990949988365, 0.09007269144058228, 0.059528227895498276, -0.12362901866436005, -0.13879528641700745, -0.1115996316075325, 0.09362558275461197, 0.08371401578187943, 0.07627908140420914, -0.029399419203400612, 0.05239817872643471, -0.02564110793173313, 0.040577832609415054, 0.24496136605739594, -0.22707976400852203, -0.026010682806372643, 0.09826250374317169, 0.05564364418387413, 0.012434653006494045, -0.0767970085144043, 0.02178948000073433, 0.05070030316710472, 0.014922546222805977, 0.03754857927560806, -0.028876975178718567, 0.2253943532705307, 0.010001094080507755, -0.10304658114910126, -0.07670342177152634, 0.12080107629299164, -0.02748066559433937, -0.07646221667528152, -0.13653773069381714, -0.012919911183416843, -0.020595751702785492, 0.020169401541352272, 0.005684548057615757, 0.002811155281960964, 0.003475760342553258, -0.03755629435181618, -0.12252866476774216, -0.09067521244287491, -0.025845017284154892, -0.014084449037909508, 0.07756729423999786, 0.031875431537628174, 0.026219094172120094, -0.08329135924577713, 0.22894270718097687, -0.0024808405432850122, -0.10370407998561859, -0.04434382542967796, -0.09775850921869278, -0.0817243754863739, -0.05147520825266838, -0.0011585912434384227, 0.015485995449125767, -0.04862075299024582, 0.14658215641975403, -0.03128376975655556, 0.03060220554471016, -0.021680491045117378, -0.0077510722912848, 0.1625414937734604, 0.1352328658103943, -0.08001739531755447, -0.042611125856637955, 0.05332563444972038, 0.0037122315261512995, -0.06745928525924683, -0.04884890839457512, -0.014889762736856937, -0.012320565059781075, 0.042263492941856384, 0.08301848918199539, 0.06252618879079819, 0.05786046385765076, 0.00196771789342165, -0.06821589171886444, 0.0970282033085823, -0.1354573518037796, 0.0199618861079216, 0.0035320529714226723, -0.036222800612449646, 0.014147026464343071, 0.04734105244278908, 0.015312557108700275, -0.10879043489694595, 0.10113266855478287, -0.06043626740574837, -0.04618321731686592, -0.08007343858480453, -0.057965464890003204, -0.012030702084302902, -0.016561085358262062, -0.043042510747909546, -0.07564150542020798, -0.1599324494600296, -0.03960370644927025, 0.03962480649352074, -0.05900294706225395, -0.03512376546859741, 0.02902437560260296, -0.0299605131149292, 0.011904595419764519, -0.015093695372343063, -0.05346931889653206, -0.015735648572444916, 0.032469868659973145, -0.04416155815124512, 0.010827332735061646, 0.09250794351100922, 0.041674546897411346, -0.1226293295621872, 0.08072220534086227, -0.16671808063983917, 0.14892341196537018, 0.0021579896565526724, 0.0036091352812945843, -0.09720632433891296, -0.09270702302455902, -0.03817833960056305, -0.015912890434265137, -0.013558860868215561, 0.1042243242263794, -0.16775818169116974, -0.04748738557100296, 0.19573524594306946, -0.08111797273159027, -0.08953197300434113, 0.053430844098329544, -0.07401575148105621, 0.043850768357515335, 0.13792070746421814, 0.07479707896709442, 0.13996827602386475, -0.11174115538597107, -0.05486394092440605, -0.057014111429452896, -0.05665553733706474, 0.20240625739097595, 0.05558720603585243, -0.018526889383792877, 0.016430260613560677, -0.003799321362748742, -0.03834765404462814, -0.024986984208226204, -0.015536929480731487, -0.039802245795726776, -0.01743188500404358, 0.010524162091314793, -0.005331424064934254, -0.030305661261081696, -0.07727660983800888, -0.020425226539373398, -0.11138225346803665, 0.0626893937587738, 0.10237392038106918, -0.0687219426035881, 0.0029813535511493683, -0.09677767008543015, 0.0039279828779399395, -0.03180193901062012, 0.008958778344094753, -0.16909246146678925, -0.06734835356473923, 0.022958921268582344, -0.06717804819345474, 0.09473530203104019, 0.021388236433267593, 0.035513196140527725, 0.05222645401954651, -0.014715712517499924, 0.009103279560804367, -0.03902255743741989, -0.021577347069978714, -0.015508961863815784, -0.14546014368534088, -0.061727121472358704, -0.04496145248413086, 0.09276731312274933, -0.11766010522842407, 0.009239745326340199, 0.08197678625583649, 0.1302725076675415, 0.03724774345755577, -0.06306791305541992, 0.029688583686947823, -0.05041639506816864, -0.028744306415319443, -0.10159792751073837, -0.039333462715148926, 0.010636063292622566, -0.002742321230471134, 0.1525084674358368, -0.1629050374031067, -0.10139406472444534, 0.10154223442077637, 0.12544211745262146, -0.10423152893781662, 0.028305452316999435, -0.08805373311042786, -0.00998682901263237, -0.04080820083618164, -0.04631265625357628, 0.2652353346347809, 0.03964856639504433, 0.08957549929618835, -0.1163783073425293, -0.10672718286514282, -0.0014517379458993673, -0.04809258505702019, -0.03463296964764595, 0.022600125521421432, 0.020233863964676857, -0.17374016344547272, 0.03253764286637306, -0.004971555899828672, 0.11647564172744751, 0.20136241614818573, 0.04327620193362236, -0.08594533801078796, -0.06464681029319763, -0.07106480002403259, -0.005089058540761471, 0.0550495870411396, -0.0026344722136855125, 0.0217717494815588, 0.04105187579989433, 0.057499464601278305, 0.045714281499385834, -0.11752776056528091, 0.02111990563571453, 0.07557172328233719, -0.0313936211168766, -0.029098113998770714, -0.0026620703283697367, 0.022413194179534912, 0.08601595461368561, 0.0815587043762207, 0.13304951786994934, -0.059383224695920944, -0.04668714851140976, -0.14928095042705536, 0.1378818154335022, -0.07882833480834961, -0.235038623213768, -0.1149769276380539, -0.08572079241275787, 0.01432914286851883, 0.01692785508930683, 0.022194312885403633, -0.034340839833021164, -0.023636361584067345, -0.09034417569637299, 0.0948825404047966, -0.04308046028017998, -0.03360458463430405, 0.0019684177823364735, 0.020430628210306168, -0.031799547374248505, -0.11102379858493805, -0.03526950627565384, 0.042241211980581284, -0.10024938732385635, -0.0028068828396499157, 0.03139714151620865, 0.016073081642389297, 0.1815902143716812, -0.009556237608194351, -0.01220729760825634, -0.021174689754843712, 0.2815433144569397, -0.12555989623069763, 0.0863434448838234, 0.15276384353637695, -0.018154211342334747, 0.05182291939854622, 0.08412455022335052, 0.009875896386802197, -0.07481475174427032, 0.06700056046247482, 0.07703134417533875, -0.07411715388298035, -0.21955733001232147, -0.0429072305560112, -0.013001698069274426, 0.008431837894022465, 0.1208777204155922, 0.050783634185791016, 0.03529860079288483, 0.014703307300806046, -0.11699943989515305, 0.05314233899116516, 0.02311459369957447, 0.10022895038127899, -0.06906741857528687, -0.01904749497771263, 0.03965623304247856, -0.04983114078640938, 0.010707087814807892, 0.1272232085466385, 0.03639877215027809, 0.18529939651489258, -0.06624557077884674, 0.09407305717468262, 0.07960126549005508, 0.08701302111148834, 0.027750447392463684, 0.002709218766540289, -0.026847252622246742, 0.021189041435718536, 0.0001873375877039507, -0.09551096707582474, -0.025172201916575432, 0.039952777326107025, 0.027066022157669067, -0.01109537947922945, -0.049312181770801544, -0.07539941370487213, 0.04613061994314194, 0.22799821197986603, 0.024645380675792694, -0.173024982213974, -0.09241312742233276, 0.05927989259362221, -0.06770328432321548, -0.07066776603460312, -0.01179882138967514, 0.06494155526161194, -0.22091765701770782, 0.07240613549947739, -0.038783829659223557, 0.10315170139074326, -0.12246835976839066, -0.00876903347671032, 0.08799619227647781, 0.04156702756881714, -0.06451334059238434, 0.09243466705083847, -0.1668587177991867, 0.05648435652256012, -0.0009677226771600544, 0.07077042013406754, -0.07103115320205688, 0.028570882976055145, 0.00400694040581584, 0.05266942083835602, 0.08000197261571884, 0.018606042489409447, 0.025859864428639412, 0.005733547266572714, -0.038482218980789185, 0.0065804170444607735, 0.0712784081697464, -0.12390439957380295, 0.12485571205615997, -0.039633192121982574, 0.027480727061629295, -0.040578968822956085, -0.08178673684597015, -0.10342452675104141, -0.14327305555343628, 0.08440109342336655, -0.1306433230638504, -0.005496440455317497, -0.06743468344211578, -0.012468451634049416, 0.04891526699066162, 0.25911423563957214, -0.059137023985385895, -0.1029815673828125, -0.13682901859283447, -0.0085438909009099, 0.12712031602859497, -0.07913567870855331, -0.004818078596144915, -0.017034629359841347, 0.20747336745262146, 0.0010186271974816918, -0.13294617831707, -0.011454293504357338, -0.061460986733436584, -0.19282764196395874, -0.017910024151206017, 0.186747744679451, 0.07439252734184265, 0.03890478238463402, 0.005941892042756081, -0.011155433021485806, -0.0424349345266819, -0.1534775197505951, 0.0385248064994812, 0.16480354964733124, -0.00047750413068570197, 0.019764622673392296, 0.04156138375401497, 0.009629063308238983, -0.12890464067459106, 0.039300963282585144, 0.05340957269072533, 0.174429252743721, -0.0576338954269886, 0.17005452513694763, 0.05207698419690132, -0.09423747658729553, -0.1548980176448822, 0.023044714704155922, 0.03655359148979187, 0.020809141919016838, 0.016904639080166817, -0.21490497887134552, 0.04672139510512352, 0.03290862962603569, -0.007574322167783976, 0.06289616972208023, -0.32989853620529175, -0.1397581547498703, -0.007059767376631498, 0.0036550508812069893, -0.11725320667028427, -0.04974116012454033, -0.044961873441934586, -0.06692519038915634, -0.2539159953594208, 0.12417421489953995, -0.09745719283819199, 0.08166922628879547, 0.023618726059794426, 0.09010385721921921, 0.049356091767549515, -0.047303706407547, 0.1166444718837738, -0.02355024218559265, 0.0582231767475605, -0.09818189591169357, -0.08452387154102325, 0.0780421644449234, -0.07365957647562027, 0.08205068856477737, 0.04507313296198845, 0.08959703892469406, -0.11190729588270187, -0.08677974343299866, -0.08079409599304199, 0.010663383640348911, -0.05996382609009743, -0.10134442150592804, -0.10014323890209198, 0.09581993520259857, 0.11672023683786392, -0.043304167687892914, -0.07710082083940506, -0.06645093858242035, -0.016205614432692528, 0.07027974724769592, 0.12113388627767563, 0.06663864850997925, -0.06882558763027191, -0.01877438835799694, 0.020504357293248177, 0.022135930135846138, -0.17515000700950623, 0.047008465975522995, 0.0837588831782341, 0.0363432951271534, 0.11572674661874771, 0.0019926289096474648, -0.18069908022880554, 0.00338284601457417, 0.05048661679029465, -0.1417025774717331, -0.10300620645284653, -0.057536669075489044, 0.015105171129107475, -0.1263256072998047, -0.054057374596595764, 0.13420873880386353, -0.034894030541181564, -0.04611501097679138, 0.004507879726588726, 0.029425332322716713, -0.047223202884197235, 0.08772183954715729, 0.011674334295094013, 0.041681669652462006, -0.07536745071411133, 0.12435492873191833, 0.06388086825609207, 0.02171335369348526, 0.04743606224656105, 0.07570864260196686, -0.0802670493721962, 0.006273393053561449, -0.07914206385612488, 0.030601464211940765, -0.034951578825712204, 0.002356080338358879, 0.033007021993398666, -0.04116492718458176, 0.04629318416118622, 0.0610121451318264, -0.01915902830660343, 0.10689809918403625, -0.027753710746765137, 0.016714701429009438, -0.12729518115520477, 0.07874112576246262, 0.01852058805525303, 0.02494872361421585, -0.11492864787578583, 0.19121873378753662, 0.036032259464263916, 0.10233055800199509, -0.041377726942300797, -0.0638473853468895, -0.06403433531522751, -0.004123243503272533, -0.08643240481615067, -0.029287895187735558, -0.09195335954427719, -0.024960463866591454, 0.0008433291804976761, -0.0404951274394989, -0.03191620111465454, 0.0334278829395771, -0.041566863656044006, -0.059651002287864685, -0.0606645867228508, 0.05087176710367203, -0.13334326446056366, 0.04296063631772995, 0.11436182260513306, -0.049189914017915726, 0.11681484431028366, 0.04455797001719475, -0.04175596311688423, 0.02965369261801243, -0.1143578290939331, 0.030558990314602852, -0.022439468652009964, 0.011814246885478497, 0.027317121624946594, -0.13942638039588928, 0.02434893511235714, -0.04393582046031952, -0.07294434309005737, 0.0009297972428612411, -0.0030991805251687765, -0.13932877779006958, 0.0045178597792983055, 0.06776843219995499, -0.021171201020479202, -0.07161877304315567, 0.055056728422641754, 0.028890810906887054, 0.011682478711009026, 0.072596974670887, -0.01800960674881935, 0.07960207015275955, -0.18163080513477325, -0.055024173110723495, 0.003271062159910798, 0.029017610475420952, 0.04144345223903656, -0.01984715275466442, 0.030959878116846085, -0.025447839871048927, 0.18643929064273834, 0.02532222867012024, -0.028937455266714096, 0.02662336453795433, -0.06353085488080978, 0.010141156613826752, 0.040779612958431244, 0.08193036168813705, -0.028500501066446304, -0.04200519993901253, -0.008872084319591522, -0.010935847647488117, -0.08533412963151932, -0.05573968589305878, 0.12346532195806503, 0.036524150520563126, 0.19040441513061523, -0.041104014962911606, 0.07058429718017578, -0.0169703159481287, -0.12660135328769684, -0.011863121762871742, -0.028080342337489128, 0.02686907909810543, -0.06544741243124008, 0.052121780812740326, 0.1958598792552948, -0.15745319426059723, 0.11985764652490616, 0.02198178879916668, -0.04845979064702988, -0.11305581778287888, -0.20842747390270233, -0.014080643653869629, -0.040217068046331406, 0.025959093123674393, -0.14169175922870636, 0.06422550231218338, 0.02408873848617077, 0.02535625547170639, -0.07061170786619186, 0.12859909236431122, -0.07980117201805115, -0.12041899561882019, 0.0428653210401535, 0.035847797989845276, 0.03597208857536316, 0.059343159198760986, 0.0694810226559639, 0.03405917063355446, 0.016251347959041595, 0.08111022412776947, 0.04277479276061058, 0.028014611452817917, 0.033911604434251785, -0.0412905216217041, -0.05979281663894653, 0.03245619311928749, -0.005411515478044748, 0.033851079642772675, 0.06757177412509918, 0.056134019047021866, -0.019761255010962486, -0.020356733351945877, 0.30480295419692993, -0.029743477702140808, -0.027104858309030533, -0.17579540610313416, 0.17378321290016174, 0.002467744518071413, -0.014290171675384045, 0.022643690928816795, -0.12774205207824707, 0.005059335380792618, 0.160317525267601, 0.17146632075309753, -0.017231741920113564, 0.018298281356692314, -0.01610444486141205, 0.023900602012872696, 0.036104146391153336, 0.12458161264657974, 0.051941026002168655, 0.1976473331451416, -0.021943768486380577, 0.04578966274857521, -0.008733462542295456, -0.027699021622538567, 0.010530872270464897, 0.10187213867902756, -0.025713296607136726, 0.002141537144780159, -0.05239435285329819, 0.10614793002605438, -0.06594231724739075, -0.27191779017448425, -0.008821696043014526, -0.022219063714146614, -0.09775097668170929, 0.06294284760951996, -0.03144138678908348, -0.0006854419480077922, 0.09046655148267746, 0.02944648638367653, -0.04896219074726105, 0.14183016121387482, 0.04292087256908417, -0.05582638084888458, 0.0010467750253155828, 0.09222283959388733, -0.03101690113544464, 0.19961512088775635, -0.02485032007098198, -0.004574145656079054, 0.08346005529165268, 0.010971534997224808, -0.13026823103427887, 0.006726811174303293, 0.03920185565948486, -0.06354551762342453, -0.016377964988350868, 0.20943382382392883, 0.012255355715751648, 0.015036572702229023, 0.08595167100429535, -0.04989570751786232, 0.018406549468636513, -0.051458679139614105, 0.06521929055452347, -0.16530098021030426, 0.07680128514766693, -0.08472606539726257, 0.12265849858522415, 0.19340196251869202, -0.06617943197488785, 0.018123360350728035, -0.06460542976856232, 0.014480212703347206, -0.010418704710900784, 0.09962145239114761, -0.020149610936641693, -0.11670639365911484, 0.007765225134789944, 0.0416698157787323, 0.020338203758001328, -0.17733760178089142, -0.057712871581315994, 0.06878754496574402, -0.0487445630133152, 0.009968551807105541, 0.18106193840503693, 0.01592768169939518, 0.07333161681890488, -0.036468151956796646, -0.012307933531701565, -0.00990469753742218, 0.12655507028102875, -0.17007367312908173, -0.07827630639076233 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f50e1ac333da1f744f98eec38e44dd29.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil Nas X</div> <a href="https://genius.com/artists/lil-nas-x"> <div style="text-align: center; font-size: 14px;">@lil-nas-x</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lil Nas X. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lil-nas-x). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lil-nas-x") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/n5s2tj7p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lil Nas X's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/334lnf7p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/334lnf7p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lil-nas-x') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lil-nas-x") model = AutoModelWithLMHead.from_pretrained("huggingartists/lil-nas-x") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lil-nas-x"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lil-nas-x
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lil-nas-x", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-nas-x #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil Nas X</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lil-nas-x</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Lil Nas X. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Lil Nas X's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lil Nas X.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Nas X's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-nas-x #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lil Nas X.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Nas X's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-nas-x #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Lil Nas X.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Nas X's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.042868051677942276, 0.16559140384197235, -0.0027465468738228083, 0.05196652188897133, 0.10006897896528244, 0.012327101081609726, 0.08018812537193298, 0.11244355887174606, 0.01866328902542591, 0.07889539003372192, 0.07173128426074982, 0.04883183166384697, 0.06993284821510315, 0.08468163758516312, 0.06582317501306534, -0.22956483066082, 0.044329725205898285, -0.08005683869123459, 0.013699224218726158, 0.09769807755947113, 0.08979080617427826, -0.06350692361593246, 0.07667846232652664, 0.03180774673819542, -0.06570824980735779, 0.009269670583307743, 0.005999782122671604, -0.06171472370624542, 0.08457524329423904, 0.07029064744710922, 0.041629109531641006, 0.03125551715493202, 0.068391352891922, -0.18809154629707336, 0.028149539604783058, 0.12678350508213043, 0.027103446424007416, 0.08004499971866608, 0.057790596038103104, -0.08474895358085632, 0.14847862720489502, -0.013495774939656258, 0.08884351700544357, 0.057988375425338745, -0.11068587005138397, -0.12663087248802185, -0.14356330037117004, 0.09402788430452347, 0.0937047079205513, 0.08722347021102905, -0.02962937392294407, 0.08199082314968109, -0.02409398928284645, 0.049894269555807114, 0.24052371084690094, -0.24245420098304749, -0.009505705907940865, 0.07623656094074249, 0.060883425176143646, 0.025846045464277267, -0.08391786366701126, 0.0161574799567461, 0.050420552492141724, 0.03234940767288208, 0.029690010473132133, -0.022439975291490555, 0.15521560609340668, 0.025610104203224182, -0.11111430823802948, -0.07731106132268906, 0.09699662029743195, -0.017728909850120544, -0.08017013967037201, -0.12730185687541962, 0.0009771902114152908, -0.042972829192876816, 0.02997158095240593, 0.01876128278672695, -0.0006166868843138218, 0.00007750128133920953, -0.03999221697449684, -0.11308489739894867, -0.07127068936824799, -0.04532533511519432, -0.009858678095042706, 0.0463542640209198, 0.045777566730976105, 0.04036460816860199, -0.0801258236169815, 0.21794435381889343, 0.019680840894579887, -0.09104018658399582, -0.056696850806474686, -0.10690926015377045, -0.09381195157766342, -0.04271873086690903, 0.00011086097947554663, -0.0005707786767743528, -0.030888788402080536, 0.14286160469055176, -0.037268854677677155, 0.02581089548766613, -0.03190721198916435, 0.0021656351163983345, 0.13319166004657745, 0.13972601294517517, -0.13182432949543, -0.03054625168442726, 0.06828193366527557, 0.000825838535092771, -0.07029068470001221, -0.04881000891327858, -0.0030838437378406525, -0.004712938331067562, 0.04628269746899605, 0.08572512865066528, 0.07177875190973282, 0.05912253260612488, 0.005501464009284973, -0.06307967007160187, 0.062178198248147964, -0.13068129122257233, 0.014040959998965263, -0.009850902482867241, -0.06027565896511078, 0.02307949960231781, 0.06413093954324722, 0.004337319638580084, -0.10864679515361786, 0.0885721743106842, -0.07777302712202072, -0.04793165251612663, -0.0800277516245842, -0.1053575649857521, -0.001566539634950459, -0.055255211889743805, -0.0312395878136158, -0.07388994842767715, -0.18331821262836456, -0.044944774359464645, 0.024613773450255394, -0.05716034024953842, -0.023209786042571068, 0.022321375086903572, -0.03717934340238571, 0.010183397680521011, -0.019056450575590134, -0.0202739629894495, -0.02906232886016369, 0.03320617228746414, -0.08140334486961365, 0.032257452607154846, 0.08029395341873169, 0.04307056963443756, -0.11181675642728806, 0.07741910219192505, -0.1177837923169136, 0.1271675080060959, -0.031596772372722626, 0.0028934914153069258, -0.09815973788499832, -0.0791674479842186, -0.007603124715387821, -0.029498375952243805, 0.022967353463172913, 0.11402329802513123, -0.1691417694091797, -0.02269519306719303, 0.20833009481430054, -0.06637944281101227, -0.07405998557806015, 0.06875453144311905, -0.07399389892816544, 0.02773907408118248, 0.11951608210802078, 0.07279565185308456, 0.1494923233985901, -0.11187557876110077, -0.08772362023591995, -0.04259815439581871, -0.0639871209859848, 0.1615207940340042, 0.026440581306815147, -0.019004562869668007, 0.022353075444698334, 0.0020464262925088406, -0.03689810633659363, 0.006311266217380762, -0.027100741863250732, -0.036924805492162704, -0.021447977051138878, -0.018089760094881058, -0.005474240984767675, -0.03776680678129196, -0.04735549911856651, -0.019259696826338768, -0.09962588548660278, 0.07440713047981262, 0.10840093344449997, -0.0749652236700058, 0.014950977638363838, -0.10662475973367691, 0.03487003967165947, -0.06041134521365166, 0.012352908961474895, -0.17704546451568604, -0.045143723487854004, 0.018400093540549278, -0.07684549689292908, 0.06028318405151367, 0.017007289454340935, 0.04225762560963631, 0.07184699922800064, -0.013768507167696953, -0.00793400313705206, -0.042121775448322296, 0.0014731065602973104, -0.04625187814235687, -0.170191690325737, -0.05158054083585739, -0.043985430151224136, 0.07299536466598511, -0.11646676808595657, 0.002631966955959797, 0.07517516613006592, 0.14057548344135284, 0.021477902308106422, -0.06588903069496155, 0.03966384753584862, -0.03368477523326874, -0.030333461239933968, -0.10826867818832397, -0.04461201652884483, 0.006701293867081404, -0.025414224714040756, 0.1515054702758789, -0.14036130905151367, -0.10540525615215302, 0.1214926466345787, 0.11081647127866745, -0.08017630875110626, 0.053451333194971085, -0.07251906394958496, -0.018007393926382065, -0.042955026030540466, -0.054302651435136795, 0.23637624084949493, 0.03488372266292572, 0.08992769569158554, -0.09619840234518051, -0.08333619683980942, 0.001676857122220099, -0.040437228977680206, -0.04168446362018585, 0.047470301389694214, 0.030484981834888458, -0.16395260393619537, 0.0526118203997612, -0.0216837078332901, 0.08069052547216415, 0.18902552127838135, 0.025476666167378426, -0.09286341071128845, -0.056346483528614044, -0.06368602067232132, 0.006610753480345011, 0.09348810464143753, 0.0074641346000134945, 0.035785626620054245, 0.039840009063482285, 0.04320940375328064, 0.04896242916584015, -0.11292044073343277, 0.0066797081381082535, 0.058645643293857574, -0.03795437514781952, -0.04980279132723808, 0.016867229714989662, 0.02228161320090294, 0.09310834109783173, 0.0647248774766922, 0.10077480226755142, -0.05791963264346123, -0.05173938348889351, -0.13658280670642853, 0.13655084371566772, -0.09488511830568314, -0.19833293557167053, -0.127389594912529, -0.07084254175424576, 0.0038155552465468645, 0.006455012131482363, 0.02554446831345558, -0.05624840408563614, -0.040326762944459915, -0.1005622074007988, 0.07385722547769547, -0.033207014203071594, -0.010782168246805668, 0.0033430650364607573, 0.01620630919933319, -0.014032585546374321, -0.12292070686817169, -0.031021328642964363, 0.02015307918190956, -0.07327057421207428, -0.003650045720860362, 0.021235907450318336, 0.05158807337284088, 0.15445871651172638, 0.004377159755676985, 0.010883365757763386, -0.02015070989727974, 0.277276873588562, -0.10814919322729111, 0.06020842865109444, 0.1672893762588501, -0.001570928725413978, 0.05255235359072685, 0.05697989836335182, -0.0026151048950850964, -0.060097306966781616, 0.05586356669664383, 0.07226835936307907, -0.07078205049037933, -0.21054337918758392, -0.03647776320576668, -0.017747322097420692, 0.016197850927710533, 0.10787612944841385, 0.035865627229213715, 0.051834527403116226, 0.011399626731872559, -0.10045973211526871, 0.05515776202082634, 0.021894928067922592, 0.09060987085103989, -0.08231495320796967, -0.005966643802821636, 0.04740886390209198, -0.05345732346177101, 0.03892607241868973, 0.12067784368991852, 0.04101240634918213, 0.23961897194385529, -0.07722422480583191, 0.08245309442281723, 0.09336938709020615, 0.1040266677737236, 0.01982826739549637, 0.03321385383605957, -0.031355686485767365, 0.029838670045137405, 0.015322337858378887, -0.09287656843662262, -0.004593821242451668, 0.03557369112968445, 0.023192115128040314, -0.006666896864771843, -0.05727990344166756, -0.07628032565116882, 0.05129261314868927, 0.2274303436279297, 0.03236253932118416, -0.1733296811580658, -0.09199220687150955, 0.0688135102391243, -0.040636561810970306, -0.0564168319106102, -0.01950422115623951, 0.06803029030561447, -0.20347492396831512, 0.03166324645280838, -0.04239293560385704, 0.10714700073003769, -0.12865379452705383, -0.003341471776366234, 0.055346082895994186, 0.04581930488348007, -0.07011455297470093, 0.07570455223321915, -0.15546904504299164, 0.07939035445451736, 0.0015810069162398577, 0.08737961202859879, -0.06286947429180145, 0.02060619182884693, 0.03136840835213661, 0.030407536774873734, 0.09668606519699097, 0.016353044658899307, 0.02648061141371727, -0.06320612132549286, -0.04196244105696678, -0.002585826674476266, 0.0473448745906353, -0.08016451448202133, 0.13191664218902588, -0.02708444744348526, 0.029990727081894875, -0.019883988425135612, -0.07953936606645584, -0.10251293331384659, -0.14952352643013, 0.07280711829662323, -0.11197009682655334, -0.008704591542482376, -0.06617946922779083, -0.019737252965569496, 0.010221291333436966, 0.2024211883544922, -0.10068782418966293, -0.08717329800128937, -0.136265367269516, 0.005638620350509882, 0.15101075172424316, -0.07961566001176834, 0.00012100276217097417, -0.004146814811974764, 0.15170566737651825, -0.003912972752004862, -0.13734328746795654, -0.009928707964718342, -0.07128360867500305, -0.17680983245372772, -0.026717061176896095, 0.12751787900924683, 0.07895758748054504, 0.03896879777312279, 0.007136128377169371, 0.0014593414962291718, -0.04208733141422272, -0.17010056972503662, 0.025904551148414612, 0.15581677854061127, 0.018409525975584984, 0.023682894185185432, 0.013459086418151855, 0.032775819301605225, -0.1311064213514328, 0.021612387150526047, 0.044822774827480316, 0.18973761796951294, -0.07537876069545746, 0.15986545383930206, 0.017896540462970734, -0.09658297151327133, -0.16606396436691284, 0.03095712885260582, 0.0031014366541057825, 0.0300730150192976, 0.017652876675128937, -0.1756393164396286, 0.02292991615831852, 0.03195507079362869, -0.003741474123671651, 0.06359266489744186, -0.35766273736953735, -0.1445465385913849, 0.038610924035310745, 0.024912623688578606, -0.08650544285774231, -0.04285478591918945, -0.03500472754240036, -0.07681787759065628, -0.22083088755607605, 0.09775137156248093, -0.12066944688558578, 0.08712632209062576, 0.011202938854694366, 0.060393210500478745, 0.047361720353364944, -0.06432423740625381, 0.1337444931268692, -0.022182278335094452, 0.07108351588249207, -0.08132433146238327, -0.04276058077812195, 0.08036709576845169, -0.06357573717832565, 0.10183374583721161, 0.016118906438350677, 0.08878064900636673, -0.11793649941682816, -0.0709601566195488, -0.08279304951429367, 0.013931779190897942, -0.055029068142175674, -0.09607946127653122, -0.0805506482720375, 0.10131726413965225, 0.1309225708246231, -0.038974981755018234, -0.0938381552696228, -0.04392518848180771, -0.01907561905682087, 0.0667380541563034, 0.09536807239055634, 0.09537893533706665, -0.09344875812530518, 0.012366126291453838, 0.012335559353232384, 0.028914334252476692, -0.1512942612171173, 0.03431650623679161, 0.08371628075838089, 0.03281805291771889, 0.11117585748434067, 0.01185634359717369, -0.1704017072916031, 0.020485520362854004, 0.033914245665073395, -0.1449744701385498, -0.10511565208435059, -0.03551803156733513, -0.0057164463214576244, -0.08653366565704346, -0.04045876860618591, 0.13820132613182068, -0.04226888343691826, -0.02998415194451809, -0.0029143206775188446, 0.0584740974009037, -0.04675353318452835, 0.11630088090896606, 0.030854374170303345, 0.043832432478666306, -0.0722234845161438, 0.11009258031845093, 0.06292955577373505, 0.024367941543459892, 0.04213996231555939, 0.043319329619407654, -0.0864032730460167, -0.0017801710637286305, -0.08565527200698853, 0.024904171004891396, -0.05741516500711441, -0.012246091850101948, -0.007584250532090664, -0.044143807142972946, 0.032895512878894806, 0.10579261183738708, -0.011437618173658848, 0.11292875558137894, -0.0341859795153141, -0.015066258609294891, -0.13486337661743164, 0.08020119369029999, 0.04938150569796562, 0.01668570004403591, -0.1090172752737999, 0.18791446089744568, 0.02956199459731579, 0.09599577635526657, -0.038983892649412155, -0.05038457363843918, -0.08647135645151138, -0.004505549557507038, -0.16419976949691772, -0.04006461799144745, -0.08303555846214294, -0.03577587381005287, -0.014247206039726734, -0.03499389439821243, -0.01917903870344162, 0.05816325545310974, -0.028915178030729294, -0.06625626981258392, -0.05217701941728592, 0.05648031085729599, -0.14938129484653473, 0.005672458093613386, 0.1089438870549202, -0.06407112628221512, 0.10315132886171341, 0.05627055466175079, -0.027422649785876274, 0.01756182685494423, -0.10059584677219391, 0.03317513316869736, -0.03558734431862831, 0.01530480571091175, 0.03626333549618721, -0.14308865368366241, 0.013517356477677822, -0.052617397159338, -0.06916534155607224, 0.010561753995716572, 0.003276636591181159, -0.12128284573554993, -0.001599010662175715, 0.06530725955963135, 0.01104260329157114, -0.06948746740818024, 0.07262090593576431, 0.07359190285205841, 0.030584951862692833, 0.0665564015507698, -0.032246071845293045, 0.07734702527523041, -0.16762828826904297, -0.048670873045921326, 0.00677972799167037, 0.014522632583975792, 0.05859994515776634, -0.0021953426767140627, 0.04506286233663559, -0.024266742169857025, 0.19084495306015015, 0.0031216302886605263, -0.019969044253230095, 0.036330465227365494, -0.03891613334417343, -0.004214953165501356, 0.04875458404421806, 0.058132220059633255, -0.03886255621910095, -0.02515801414847374, -0.013869175687432289, -0.007613442372530699, -0.0714908093214035, -0.028884751722216606, 0.10469390451908112, 0.05528274551033974, 0.16907301545143127, -0.02749457396566868, 0.05915330722928047, -0.035675037652254105, -0.1057237908244133, -0.025028636679053307, -0.03982599452137947, 0.03972357138991356, -0.0704122856259346, 0.0796157643198967, 0.16658298671245575, -0.15890470147132874, 0.11773847788572311, 0.028605254366993904, -0.06315520405769348, -0.10111907124519348, -0.1827591061592102, -0.011757784523069859, -0.02056153491139412, 0.035735324025154114, -0.12928172945976257, 0.07787947356700897, 0.030624305829405785, 0.035897307097911835, -0.06064301356673241, 0.11250188946723938, -0.06240583583712578, -0.10671041905879974, 0.02781168930232525, 0.029429389163851738, 0.019005805253982544, 0.037591177970170975, 0.07329244911670685, 0.03357497602701187, 0.0005584991886280477, 0.05837087705731392, 0.03557600826025009, 0.028272666037082672, 0.045788563787937164, -0.014410185627639294, -0.053471654653549194, 0.026973607018589973, 0.004621891304850578, 0.036565572023391724, 0.10816925019025803, 0.07835918664932251, -0.019558707252144814, -0.034440066665410995, 0.2884265184402466, -0.03667082637548447, -0.025297481566667557, -0.17452940344810486, 0.1646709144115448, 0.025098424404859543, -0.013904810883104801, 0.028480490669608116, -0.13838744163513184, 0.01240489911288023, 0.1595468372106552, 0.1744012087583542, -0.05445753410458565, 0.010084770619869232, -0.04465095326304436, 0.009895316325128078, 0.027364417910575867, 0.0878019630908966, 0.06822151690721512, 0.20279619097709656, -0.044998716562986374, 0.06051117181777954, -0.008301062509417534, -0.020122764632105827, -0.007213539909571409, 0.12042847275733948, -0.025089381262660027, 0.005165376700460911, -0.05628853663802147, 0.09413078427314758, -0.07739785313606262, -0.2610650658607483, -0.0014842222444713116, -0.030630238354206085, -0.09365293383598328, 0.05300922319293022, -0.04046114161610603, -0.02147822640836239, 0.08758271485567093, 0.015420550480484962, -0.025802835822105408, 0.1314312219619751, 0.0337601862847805, -0.048033565282821655, -0.024980736896395683, 0.08643621951341629, -0.010201365686953068, 0.19653476774692535, -0.023073049262166023, -0.0067655411548912525, 0.09138095378875732, 0.020393727347254753, -0.12216643989086151, 0.013035489246249199, 0.043822042644023895, -0.08455903828144073, -0.012872809544205666, 0.18606095016002655, 0.007206420414149761, 0.032338935881853104, 0.054776471108198166, -0.0406014546751976, 0.0290974173694849, -0.07506229728460312, 0.04123050346970558, -0.13893039524555206, 0.047785043716430664, -0.07887750118970871, 0.14604304730892181, 0.18698477745056152, -0.0775226578116417, 0.023220060393214226, -0.05408848449587822, -0.003109211102128029, -0.01931135170161724, 0.06041622906923294, -0.01478463876992464, -0.10352417826652527, 0.024722611531615257, 0.028846165165305138, 0.026416920125484467, -0.18983091413974762, -0.07012737542390823, 0.05409926548600197, -0.059580180794000626, 0.015769165009260178, 0.16956575214862823, 0.04314509779214859, 0.06360961496829987, -0.031543079763650894, 0.02001306787133217, -0.017086677253246307, 0.1034480556845665, -0.1376229226589203, -0.08907026052474976 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/919c7ba130d3861740cbe7fbd7f83c59.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil Peep</div> <a href="https://genius.com/artists/lil-peep"> <div style="text-align: center; font-size: 14px;">@lil-peep</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lil Peep. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lil-peep). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lil-peep") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/39q6kspr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lil Peep's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/g0nxk974) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/g0nxk974/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lil-peep') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lil-peep") model = AutoModelWithLMHead.from_pretrained("huggingartists/lil-peep") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lil-peep"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lil-peep
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lil-peep", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-peep #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil Peep</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lil-peep</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Lil Peep. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Lil Peep's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lil Peep.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Peep's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-peep #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lil Peep.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Peep's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-peep #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Lil Peep.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Peep's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.037041839212179184, 0.1567302793264389, -0.0027500195428729057, 0.04995088651776314, 0.10411444306373596, 0.009359246119856834, 0.08545682579278946, 0.11453694850206375, 0.01554508414119482, 0.08159283548593521, 0.07277300953865051, 0.05197974294424057, 0.0719262957572937, 0.08737441897392273, 0.07100382447242737, -0.22724685072898865, 0.04286878556013107, -0.07650390267372131, 0.02514926716685295, 0.10350089520215988, 0.09342731535434723, -0.060426387935876846, 0.07809262722730637, 0.03147140517830849, -0.07239693403244019, 0.012160630896687508, 0.009869241155683994, -0.06036964803934097, 0.08940168470144272, 0.061550322920084, 0.04014578089118004, 0.020824644714593887, 0.059911325573921204, -0.1855735182762146, 0.02798883430659771, 0.1318640112876892, 0.03211386129260063, 0.08095476031303406, 0.05408265069127083, -0.08739346265792847, 0.12869571149349213, -0.018360301852226257, 0.09121785312891006, 0.05663047358393669, -0.11942195147275925, -0.13312406837940216, -0.14120391011238098, 0.1074298694729805, 0.0924067497253418, 0.08892657607793808, -0.031101930886507034, 0.08566464483737946, -0.024956224486231804, 0.05163469910621643, 0.24419039487838745, -0.24253037571907043, -0.009819414466619492, 0.06917387992143631, 0.05317282676696777, 0.018570411950349808, -0.08301005512475967, 0.00865865871310234, 0.0446200892329216, 0.03406951203942299, 0.0315614752471447, -0.024394197389483452, 0.1502646952867508, 0.016704365611076355, -0.10772541910409927, -0.07861457765102386, 0.1059076189994812, -0.0236767940223217, -0.08101709932088852, -0.1330847591161728, -0.0030414708890020847, -0.03508496284484863, 0.03243683651089668, 0.020801667124032974, -0.0019490388222038746, 0.005752849392592907, -0.03716295585036278, -0.10970782488584518, -0.07383909076452255, -0.03828149288892746, -0.006911223288625479, 0.051606908440589905, 0.046107012778520584, 0.03741258382797241, -0.08597151935100555, 0.22479353845119476, 0.0022195647470653057, -0.09420714527368546, -0.05321354418992996, -0.10258080810308456, -0.08472698926925659, -0.041162580251693726, 0.0007178423693403602, 0.00012512879038695246, -0.037392016500234604, 0.14937074482440948, -0.040841590613126755, 0.027904927730560303, -0.03025566041469574, 0.00996997207403183, 0.13584543764591217, 0.13630042970180511, -0.12017360329627991, -0.0287867970764637, 0.06960388273000717, -0.0022505116648972034, -0.06328374147415161, -0.0481375977396965, -0.002171620260924101, -0.006625698879361153, 0.047392137348651886, 0.07976069301366806, 0.078709177672863, 0.061699774116277695, -0.0004331029485911131, -0.06014622375369072, 0.06768336892127991, -0.13108213245868683, 0.012693529948592186, -0.007632832508534193, -0.05212787911295891, 0.028896693140268326, 0.06964480876922607, 0.0023456676863133907, -0.11631693691015244, 0.10066498816013336, -0.07220055162906647, -0.046944309026002884, -0.08524998277425766, -0.10238303244113922, -0.002997600007802248, -0.053200434893369675, -0.036024708300828934, -0.07456529885530472, -0.1874493956565857, -0.04561948403716087, 0.02056722901761532, -0.05177809298038483, -0.027595652267336845, 0.028892340138554573, -0.030712774023413658, 0.005866679362952709, -0.020689472556114197, -0.034438472241163254, -0.03006342612206936, 0.03528817370533943, -0.07908972352743149, 0.030973471701145172, 0.0637127012014389, 0.04421369731426239, -0.11792197823524475, 0.07539952546358109, -0.136826291680336, 0.1240888237953186, -0.019672080874443054, 0.000396423798520118, -0.09612420201301575, -0.08245871961116791, -0.0174538716673851, -0.027339396998286247, 0.022290797904133797, 0.11248131096363068, -0.16551850736141205, -0.026595350354909897, 0.2090633660554886, -0.07289130240678787, -0.07220670580863953, 0.06442172080278397, -0.06898918002843857, 0.03632919490337372, 0.1251400262117386, 0.08855704963207245, 0.14926396310329437, -0.11443029344081879, -0.08553899079561234, -0.04259292408823967, -0.06416264176368713, 0.16494399309158325, 0.027377473190426826, -0.024825705215334892, 0.03142209351062775, 0.004837836138904095, -0.0340878888964653, 0.0018062108429148793, -0.025217078626155853, -0.030761413276195526, -0.02534109726548195, -0.011867869645357132, -0.017306294292211533, -0.03621124476194382, -0.05264288932085037, -0.022952387109398842, -0.09908020496368408, 0.08570855110883713, 0.10431299358606339, -0.07004453986883163, 0.018417946994304657, -0.09996183216571808, 0.039953768253326416, -0.045320507138967514, 0.011593463830649853, -0.18086576461791992, -0.03948798403143883, 0.01631545089185238, -0.07224123179912567, 0.06631528586149216, 0.022946810349822044, 0.04041765630245209, 0.06671635806560516, -0.013370628468692303, -0.005726605653762817, -0.040779341012239456, -0.004338009748607874, -0.04410110041499138, -0.17011615633964539, -0.0512726865708828, -0.041109416633844376, 0.07776135206222534, -0.10488410294055939, 0.006562083028256893, 0.08091431856155396, 0.1452903300523758, 0.024362687021493912, -0.07474430650472641, 0.03658822178840637, -0.028879590332508087, -0.02721664309501648, -0.10741542279720306, -0.040059734135866165, 0.01110336184501648, -0.014662622474133968, 0.1572481244802475, -0.14772577583789825, -0.10004450380802155, 0.12507478892803192, 0.10235832631587982, -0.09041773527860641, 0.051872801035642624, -0.07468889653682709, -0.018664177507162094, -0.0487307533621788, -0.05754054710268974, 0.24762199819087982, 0.03458704426884651, 0.09542760252952576, -0.09251168370246887, -0.08486215770244598, -0.003870856249704957, -0.04137455299496651, -0.03066084161400795, 0.04527205601334572, 0.02211078815162182, -0.15307022631168365, 0.054232772439718246, -0.012559488415718079, 0.08827609568834305, 0.19170959293842316, 0.03297344222664833, -0.09235197305679321, -0.05096108838915825, -0.062410395592451096, 0.002700231270864606, 0.089897520840168, 0.000904137035831809, 0.03396950289607048, 0.04170773923397064, 0.04550592601299286, 0.04351939633488655, -0.11437083780765533, 0.011554204858839512, 0.05957790091633797, -0.030924947932362556, -0.05416944622993469, 0.015709593892097473, 0.027319319546222687, 0.09216145426034927, 0.0717603862285614, 0.11762446910142899, -0.05814054608345032, -0.04977617412805557, -0.13675238192081451, 0.1356705278158188, -0.09329830855131149, -0.2149176001548767, -0.128816157579422, -0.07045461982488632, 0.007479936815798283, 0.009875665418803692, 0.036506716161966324, -0.054030805826187134, -0.03921254724264145, -0.09718842059373856, 0.08162926882505417, -0.0325070396065712, -0.014671269804239273, -0.0070487684570252895, 0.013571352697908878, -0.009506349451839924, -0.12267382442951202, -0.03283344581723213, 0.022557826712727547, -0.07366815954446793, -0.004219654481858015, 0.02770068123936653, 0.037885233759880066, 0.15490049123764038, 0.0020492568146437407, 0.01134162675589323, -0.020797383040189743, 0.27930331230163574, -0.10887289047241211, 0.05852491781115532, 0.17699626088142395, -0.005299164913594723, 0.05442708358168602, 0.05674277991056442, -0.0015919265570119023, -0.06319650262594223, 0.05461825430393219, 0.07430730760097504, -0.06966941803693771, -0.2089681327342987, -0.03685041144490242, -0.01751629263162613, 0.016406850889325142, 0.11777396500110626, 0.037702471017837524, 0.043561823666095734, 0.013409367762506008, -0.10602237284183502, 0.05983835831284523, 0.01206898782402277, 0.0991249606013298, -0.06586002558469772, -0.014980274252593517, 0.04942665249109268, -0.05407951399683952, 0.03667612001299858, 0.12069520354270935, 0.041060056537389755, 0.22137075662612915, -0.08187872171401978, 0.07577309012413025, 0.08886423707008362, 0.10706814378499985, 0.016326382756233215, 0.027478298172354698, -0.03112429566681385, 0.027107825502753258, 0.011613994836807251, -0.09683891385793686, -0.012517779134213924, 0.03376994654536247, 0.022831430658698082, -0.005272663664072752, -0.05788217857480049, -0.08106711506843567, 0.05486418306827545, 0.24079550802707672, 0.034322626888751984, -0.16961540281772614, -0.09682733565568924, 0.06320707499980927, -0.04408399760723114, -0.06183948367834091, -0.016608135774731636, 0.06537291407585144, -0.20853878557682037, 0.03568961098790169, -0.033828943967819214, 0.11291376501321793, -0.13807667791843414, 0.0018042075680568814, 0.06029853969812393, 0.04034942761063576, -0.06633524596691132, 0.07331964373588562, -0.14989185333251953, 0.07603295147418976, 0.002861987566575408, 0.08328011631965637, -0.06401462107896805, 0.020901530981063843, 0.023216279223561287, 0.032607026398181915, 0.09020665287971497, 0.021170536056160927, 0.03832576051354408, -0.05190533399581909, -0.04166673868894577, -0.005858100950717926, 0.049406953155994415, -0.0854635015130043, 0.1240297332406044, -0.030787011608481407, 0.033693935722112656, -0.02526780590415001, -0.10187329351902008, -0.10113951563835144, -0.14115788042545319, 0.0747389942407608, -0.09625371545553207, -0.0014001639792695642, -0.06745267659425735, -0.017253298312425613, 0.019551575183868408, 0.2246878743171692, -0.09810210019350052, -0.08362872898578644, -0.13649754226207733, 0.006584311369806528, 0.14006407558918, -0.07336889207363129, 0.0009628168772906065, -0.010623825713992119, 0.15594233572483063, -0.0007869836408644915, -0.13287334144115448, -0.006137868855148554, -0.06920463591814041, -0.17143718898296356, -0.026792870834469795, 0.1396903395652771, 0.06873578578233719, 0.032662712037563324, 0.004047393333166838, 0.0019278740510344505, -0.04877627268433571, -0.16999292373657227, 0.0277690589427948, 0.14764122664928436, 0.02008887007832527, 0.031081849709153175, 0.018984604626893997, 0.03248021379113197, -0.12607088685035706, 0.021939091384410858, 0.04961032792925835, 0.18726453185081482, -0.07244453579187393, 0.1644800454378128, 0.010684440843760967, -0.09215451776981354, -0.17509305477142334, 0.033920615911483765, 0.0036567554343491793, 0.024096887558698654, 0.017843468114733696, -0.1766839474439621, 0.032103970646858215, 0.02852843888103962, -0.0036958097480237484, 0.06536015123128891, -0.35864219069480896, -0.14879214763641357, 0.03215840086340904, 0.025619711726903915, -0.08802112936973572, -0.045115876942873, -0.035938750952482224, -0.0731436014175415, -0.2334122508764267, 0.08980650454759598, -0.1334230899810791, 0.08773234486579895, 0.006036428268998861, 0.06675697863101959, 0.04845248535275459, -0.06459540873765945, 0.12826666235923767, -0.027173962444067, 0.06515568494796753, -0.08501846343278885, -0.03711704909801483, 0.08116957545280457, -0.061547789722681046, 0.10209977626800537, 0.020211318507790565, 0.09069126844406128, -0.12122328579425812, -0.06784868240356445, -0.08327247202396393, 0.01691649854183197, -0.05425545945763588, -0.09581343829631805, -0.080340676009655, 0.09423256665468216, 0.12093666195869446, -0.03397832065820694, -0.09161590039730072, -0.051551271229982376, -0.010089491493999958, 0.0666903629899025, 0.0897563025355339, 0.09501169621944427, -0.11145810037851334, 0.011795802041888237, 0.009173966012895107, 0.029964877292513847, -0.1593160778284073, 0.030494244769215584, 0.07900071889162064, 0.03991548717021942, 0.10920139402151108, 0.013265266083180904, -0.16553573310375214, 0.018087150529026985, 0.03901457414031029, -0.16135017573833466, -0.09520614147186279, -0.0328243114054203, 0.010514872148633003, -0.08499491959810257, -0.042756084352731705, 0.14546823501586914, -0.0418221578001976, -0.030858976766467094, 0.00069707992952317, 0.05250181630253792, -0.0516328401863575, 0.10811223834753036, 0.022932425141334534, 0.04582986235618591, -0.07488326728343964, 0.11276432871818542, 0.0601830892264843, 0.02104959264397621, 0.044946640729904175, 0.05033125728368759, -0.08467742800712585, -0.0011372126173228025, -0.0858335867524147, 0.01810504123568535, -0.04776560887694359, -0.01457750704139471, -0.00550619512796402, -0.04564136639237404, 0.035064682364463806, 0.10010546445846558, -0.012714527547359467, 0.11044356226921082, -0.03327835351228714, -0.013172903098165989, -0.1354169249534607, 0.06727166473865509, 0.0426081158220768, 0.016560858115553856, -0.11198863387107849, 0.1969740241765976, 0.03309878334403038, 0.09390775859355927, -0.03634103015065193, -0.05413982644677162, -0.091208815574646, -0.0026568565517663956, -0.14347295463085175, -0.04818747565150261, -0.08090045303106308, -0.03613052889704704, -0.011541883461177349, -0.03481920063495636, -0.015205074101686478, 0.05512950196862221, -0.028737887740135193, -0.06625412404537201, -0.05163807049393654, 0.05259009078145027, -0.15363331139087677, 0.016222212463617325, 0.11364953219890594, -0.06325983256101608, 0.10632400214672089, 0.06407596170902252, -0.03642478957772255, 0.015268811024725437, -0.10762924700975418, 0.032285816967487335, -0.029714936390519142, 0.00977893453091383, 0.02972979098558426, -0.13856954872608185, 0.012170769274234772, -0.053228702396154404, -0.06447046250104904, 0.012251080013811588, 0.0184530857950449, -0.12781795859336853, 0.0036925808526575565, 0.07284512370824814, 0.002931703580543399, -0.07033152133226395, 0.0708484947681427, 0.06902622431516647, 0.03224140778183937, 0.057322144508361816, -0.036723390221595764, 0.07749785482883453, -0.17076697945594788, -0.04788217321038246, 0.008323527872562408, 0.013812722638249397, 0.05427395924925804, -0.00466336403042078, 0.041100360453128815, -0.01827658899128437, 0.193677619099617, -0.00044081301894038916, -0.02011559158563614, 0.042043011635541916, -0.041729241609573364, -0.015433333814144135, 0.04457732290029526, 0.055737704038619995, -0.04555324837565422, -0.026937419548630714, -0.020294243469834328, -0.00847461074590683, -0.07386559247970581, -0.028662053868174553, 0.1040259525179863, 0.0614544115960598, 0.1695188730955124, -0.03232298791408539, 0.05353758856654167, -0.02644478529691696, -0.11275368928909302, -0.02148386463522911, -0.037507399916648865, 0.04392841085791588, -0.07254665344953537, 0.07937595993280411, 0.16086632013320923, -0.1512063592672348, 0.11473928391933441, 0.02225320227444172, -0.056005772203207016, -0.09806123375892639, -0.16191132366657257, -0.006868137512356043, -0.02682889997959137, 0.03351287543773651, -0.12875571846961975, 0.0829668790102005, 0.031186554580926895, 0.03350125998258591, -0.06093927100300789, 0.12535996735095978, -0.06723109632730484, -0.10952792316675186, 0.02707969956099987, 0.025868425145745277, 0.01986832730472088, 0.025971436873078346, 0.07107499241828918, 0.026958737522363663, 0.0043662069365382195, 0.061463337391614914, 0.0448925644159317, 0.029048779979348183, 0.04082665592432022, -0.016780881211161613, -0.05388275161385536, 0.02828986756503582, 0.008115741424262524, 0.03423818573355675, 0.11283943802118301, 0.07286468893289566, -0.019301947206258774, -0.03824314847588539, 0.29164814949035645, -0.03868994116783142, -0.03601972758769989, -0.1734837293624878, 0.17771579325199127, 0.023296229541301727, -0.023716958239674568, 0.024572528898715973, -0.13539624214172363, 0.011227810755372047, 0.166932612657547, 0.17248548567295074, -0.04800239950418472, 0.014518730342388153, -0.04254351928830147, 0.011395365931093693, 0.03170643001794815, 0.08876944333314896, 0.06947273761034012, 0.1995331048965454, -0.047861047089099884, 0.05863868445158005, -0.007775601465255022, -0.01906454563140869, -0.016453245654702187, 0.10895504802465439, -0.028894653543829918, 0.0025833086110651493, -0.061334557831287384, 0.09528551995754242, -0.07512535899877548, -0.26402512192726135, -0.0005542287253774703, -0.041578538715839386, -0.09375355392694473, 0.05226493254303932, -0.038791485130786896, -0.025287706404924393, 0.09307022392749786, 0.014672009274363518, -0.028040653094649315, 0.13697390258312225, 0.032159674912691116, -0.04658031091094017, -0.028635770082473755, 0.08617551624774933, -0.020690947771072388, 0.19252163171768188, -0.026586689054965973, 0.00039074328378774226, 0.08941514790058136, 0.020718412473797798, -0.1198202595114708, 0.0007791944080963731, 0.03728938475251198, -0.08673368394374847, -0.02659960836172104, 0.18908433616161346, 0.0052047595381736755, 0.033092040568590164, 0.053237054497003555, -0.05128331482410431, 0.027553699910640717, -0.06101259961724281, 0.05045578256249428, -0.14080452919006348, 0.04641982167959213, -0.0764646902680397, 0.14390666782855988, 0.1884315460920334, -0.07381606101989746, 0.01808110810816288, -0.06021159887313843, -0.005256943870335817, -0.01915876939892769, 0.05047077313065529, -0.01793844997882843, -0.10537675768136978, 0.02839045599102974, 0.03347502648830414, 0.02213362231850624, -0.19801200926303864, -0.07409399747848511, 0.05769132822751999, -0.05577662214636803, 0.010161412879824638, 0.17051811516284943, 0.03399629518389702, 0.06379774957895279, -0.02984832413494587, 0.008956619538366795, -0.011856785975396633, 0.10907469689846039, -0.13440559804439545, -0.09343160688877106 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3619e57354afa7dd5e65b9c261982ccc.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil Uzi Vert</div> <a href="https://genius.com/artists/lil-uzi-vert"> <div style="text-align: center; font-size: 14px;">@lil-uzi-vert</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lil Uzi Vert. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lil-uzi-vert). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lil-uzi-vert") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14mmkidw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lil Uzi Vert's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3s5iqd7v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3s5iqd7v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lil-uzi-vert') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lil-uzi-vert") model = AutoModelWithLMHead.from_pretrained("huggingartists/lil-uzi-vert") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lil-uzi-vert"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lil-uzi-vert
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lil-uzi-vert", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-uzi-vert #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil Uzi Vert</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lil-uzi-vert</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Lil Uzi Vert. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Lil Uzi Vert's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lil Uzi Vert.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Uzi Vert's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-uzi-vert #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lil Uzi Vert.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Uzi Vert's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 54, 76, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lil-uzi-vert #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Lil Uzi Vert.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lil Uzi Vert's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.028692618012428284, 0.16950899362564087, -0.0039384011179208755, 0.051550738513469696, 0.09957204014062881, -0.0013251141645014286, 0.05934780463576317, 0.10934079438447952, -0.01302018016576767, 0.07865067571401596, 0.06566529721021652, 0.05406233295798302, 0.08820610493421555, 0.056607916951179504, 0.04739692434668541, -0.24301807582378387, 0.04043537750840187, -0.06652548164129257, -0.015801630914211273, 0.09374280273914337, 0.08383801579475403, -0.08655019849538803, 0.08388791978359222, 0.0419950932264328, -0.04990926384925842, -0.001084792660549283, 0.007089127320796251, -0.05402946099638939, 0.07369765639305115, 0.09006317704916, 0.040008239448070526, 0.041811253875494, 0.0609891377389431, -0.18316896259784698, 0.020286038517951965, 0.12237278372049332, 0.022390365600585938, 0.08487247675657272, 0.0650544986128807, -0.06053640693426132, 0.12625466287136078, -0.036222465336322784, 0.07978478819131851, 0.06525496393442154, -0.10552659630775452, -0.06893642246723175, -0.1483626812696457, 0.054491251707077026, 0.06905770301818848, 0.0790092945098877, -0.027177339419722557, 0.10121046751737595, -0.0504375696182251, 0.04788709059357643, 0.2573261857032776, -0.26974374055862427, -0.008566477335989475, 0.03824346885085106, 0.06716272234916687, 0.006781319621950388, -0.09583882987499237, 0.019915472716093063, 0.0403890423476696, 0.033986322581768036, 0.054741211235523224, -0.030608780682086945, 0.15991376340389252, -0.003951180260628462, -0.11123275756835938, -0.06667737662792206, 0.09581456333398819, -0.005826563574373722, -0.08311107009649277, -0.09771471470594406, 0.0037770832423120737, -0.019183026626706123, 0.018706874921917915, 0.01224944181740284, 0.004477305803447962, -0.023343026638031006, -0.06448779255151749, -0.11652230471372604, -0.08124575018882751, -0.03619954362511635, -0.021196682006120682, 0.04944474995136261, 0.05925508961081505, 0.03015110082924366, -0.06057246774435043, 0.19048266112804413, 0.03045041114091873, -0.10345521569252014, -0.07743712514638901, -0.11376675218343735, -0.09083579480648041, -0.04419892653822899, -0.01046020444482565, -0.011000359430909157, -0.01730469800531864, 0.1440037041902542, -0.036772292107343674, 0.027211816981434822, -0.05227535218000412, 0.015250923112034798, 0.11092785000801086, 0.14436455070972443, -0.1363600194454193, -0.04203590750694275, 0.07145127654075623, -0.01906443201005459, -0.061419785022735596, -0.04447682946920395, 0.00025805982295423746, -0.0443166084587574, 0.05653151497244835, 0.07829414308071136, 0.07505237311124802, 0.06667772680521011, -0.0005217232392169535, -0.051635511219501495, 0.013046100735664368, -0.1413685828447342, 0.01594860851764679, -0.012265697121620178, -0.06469115614891052, 0.01849338412284851, 0.05241427943110466, -0.0036593424156308174, -0.12596964836120605, 0.0769236609339714, -0.09042374044656754, -0.03736044466495514, -0.08606195449829102, -0.11900001019239426, 0.011824533343315125, -0.06216057017445564, -0.02230638638138771, -0.08958770334720612, -0.14477194845676422, -0.04279278591275215, 0.013447385281324387, -0.06303723156452179, -0.010964898392558098, 0.01780605874955654, -0.04187311604619026, 0.00551395770162344, -0.015687908977270126, 0.0015009973431006074, -0.012515801936388016, 0.04995470494031906, -0.08903818577528, 0.03857647255063057, 0.07143343985080719, 0.04448551684617996, -0.11217641830444336, 0.0717175230383873, -0.1402885466814041, 0.1285369098186493, -0.04373522102832794, -0.019197938963770866, -0.10051467269659042, -0.10804777592420578, -0.008575446903705597, -0.04419805854558945, 0.048028070479631424, 0.12821358442306519, -0.15268392860889435, -0.011122855357825756, 0.19856342673301697, -0.07418764382600784, -0.05124814808368683, 0.07951764017343521, -0.06667118519544601, 0.009924926795065403, 0.11333655565977097, 0.05442265421152115, 0.13794511556625366, -0.09402311593294144, -0.1044265553355217, -0.0320742130279541, -0.08524560928344727, 0.17167843878269196, 0.028399351984262466, -0.011187473312020302, 0.042823318392038345, -0.003025179961696267, -0.013784290291368961, -0.0012680904474109411, -0.03770516812801361, -0.037244733422994614, -0.0122050317004323, -0.015449883416295052, 0.02118435688316822, -0.040637124329805374, -0.02390115149319172, -0.0064220307394862175, -0.10211987793445587, 0.05082854628562927, 0.09347497671842575, -0.0751388818025589, 0.024569163098931313, -0.11434682458639145, 0.06333407014608383, -0.06294506043195724, 0.0203336663544178, -0.17713117599487305, -0.022989533841609955, 0.007197317201644182, -0.05576769635081291, 0.05924278870224953, 0.02936815656721592, 0.04386533051729202, 0.07057245820760727, -0.021304886788129807, 0.009375031106173992, -0.05379309505224228, 0.0037348868791013956, -0.046902112662792206, -0.16264651715755463, -0.0576239712536335, -0.03693867102265358, 0.05136316642165184, -0.10867642611265182, 0.0004940862418152392, 0.10171116888523102, 0.15576909482479095, 0.03171458840370178, -0.0505632720887661, 0.02506566047668457, -0.023765718564391136, -0.029448127374053, -0.09629599750041962, -0.04352426528930664, 0.008895870298147202, -0.03478967770934105, 0.17116110026836395, -0.12870588898658752, -0.09867577254772186, 0.12022141367197037, 0.06195209175348282, -0.07956358790397644, 0.02990359626710415, -0.058232247829437256, -0.025749899446964264, -0.04090532660484314, -0.06640729308128357, 0.21467164158821106, 0.04546906799077988, 0.09580723941326141, -0.08768482506275177, -0.07454095035791397, 0.006753419991582632, -0.03273378312587738, -0.025653013959527016, 0.05129200592637062, 0.03358999639749527, -0.20730169117450714, 0.050973597913980484, -0.0006583775393664837, 0.07141394168138504, 0.16045325994491577, 0.01963590830564499, -0.09356127679347992, -0.05119246989488602, -0.06283358484506607, 0.01892625354230404, 0.07659156620502472, 0.008614258840680122, 0.049692314118146896, 0.03553133085370064, 0.04852216690778732, 0.033947743475437164, -0.10555737465620041, 0.018032532185316086, 0.05376248061656952, -0.021058563143014908, -0.06146412715315819, 0.006336530204862356, 0.03519528731703758, 0.0880994200706482, 0.07052824646234512, 0.099382184445858, -0.03758827969431877, -0.05431092530488968, -0.12234670668840408, 0.14529216289520264, -0.09589923918247223, -0.21171797811985016, -0.1124749481678009, -0.09686916321516037, 0.024528319016098976, 0.014889026992022991, 0.02709382027387619, -0.03438109531998634, -0.03708193078637123, -0.0811946913599968, 0.07525715231895447, -0.05490119010210037, -0.004857663065195084, -0.015365645289421082, 0.04074222221970558, -0.003331064246594906, -0.11124055087566376, -0.018174875527620316, 0.017450477927923203, -0.08113057911396027, 0.00821321364492178, 0.04057759791612625, 0.06268396228551865, 0.11941265314817429, -0.012481107376515865, -0.0005039601237513125, -0.02553856000304222, 0.2680225968360901, -0.1072842925786972, 0.04331139102578163, 0.15400715172290802, -0.03673088923096657, 0.07281097024679184, 0.06126723438501358, -0.0025031855329871178, -0.048677001148462296, 0.046596311032772064, 0.057626571506261826, -0.05699271336197853, -0.2045878767967224, -0.01468250434845686, -0.035707078874111176, 0.0011366590624675155, 0.10536470264196396, 0.02493962086737156, 0.02014884725213051, 0.03139081969857216, -0.08915111422538757, 0.07963993400335312, 0.047173917293548584, 0.09792374074459076, -0.015741635113954544, -0.016544083133339882, 0.05941373109817505, -0.04506227374076843, 0.016165699809789658, 0.09272445738315582, 0.02732633426785469, 0.27738064527511597, -0.08864550292491913, 0.06364495307207108, 0.09197137504816055, 0.08647201210260391, 0.022243835031986237, 0.052758801728487015, -0.032255761325359344, 0.03376362845301628, 0.00136555265635252, -0.08909838646650314, -0.006936162710189819, 0.03449266031384468, 0.03703174740076065, -0.01978893205523491, -0.06573327630758286, -0.05973632261157036, 0.04052524268627167, 0.2121746987104416, 0.06730370223522186, -0.15874046087265015, -0.079973965883255, 0.06621832400560379, -0.04753054305911064, -0.054190054535865784, -0.01292453519999981, 0.08970288932323456, -0.2017914354801178, 0.02614177204668522, -0.043575674295425415, 0.11333025246858597, -0.15433743596076965, -0.005479917861521244, 0.004598533269017935, 0.06623515486717224, -0.06197359040379524, 0.078678660094738, -0.19055071473121643, 0.08123257756233215, 0.0093759810552001, 0.08820563554763794, -0.06542098522186279, 0.019229810684919357, 0.04726824164390564, 0.02396312914788723, 0.10392679274082184, 0.014162630774080753, 0.020821083337068558, -0.0877174660563469, -0.058494556695222855, 0.006042043678462505, 0.05861176177859306, -0.04944975674152374, 0.12768465280532837, -0.03328170254826546, 0.025795895606279373, -0.020609796047210693, -0.05497033894062042, -0.1340235024690628, -0.16360019147396088, 0.07589442282915115, -0.12175285071134567, 0.00416592787951231, -0.055410027503967285, -0.030788550153374672, 0.017683757469058037, 0.20067216455936432, -0.11029290407896042, -0.07707544416189194, -0.11391708999872208, 0.04848754405975342, 0.14902399480342865, -0.07799581438302994, 0.017902830615639687, 0.01345610711723566, 0.14196476340293884, 0.008421864360570908, -0.11830944567918777, -0.020662669092416763, -0.05912172421813011, -0.17770080268383026, -0.021375956013798714, 0.10327871143817902, 0.07923255860805511, 0.05037744343280792, 0.022438030689954758, 0.006614828482270241, -0.017509441822767258, -0.1616312563419342, 0.01078461017459631, 0.12296810746192932, 0.05771820619702339, 0.037004921585321426, 0.007952343672513962, 0.022119838744401932, -0.13295166194438934, 0.03279118984937668, 0.07658293843269348, 0.18628960847854614, -0.0794430524110794, 0.14069628715515137, 0.01861260086297989, -0.08850990235805511, -0.18217511475086212, 0.0184955857694149, 0.004856274928897619, 0.04051721841096878, 0.03239859640598297, -0.16871924698352814, -0.0015957660507410765, 0.02291230484843254, -0.0019101102370768785, 0.08719433099031448, -0.3078847825527191, -0.12924157083034515, 0.026997998356819153, 0.035616520792245865, -0.05443505942821503, -0.019514888525009155, -0.04693114757537842, -0.06941244751214981, -0.23713168501853943, 0.08405192196369171, -0.10216035693883896, 0.09632378071546555, 0.011169576086103916, 0.0243837907910347, 0.046628810465335846, -0.061654847115278244, 0.1242041289806366, -0.049830786883831024, 0.05071449279785156, -0.09705962985754013, -0.03181293234229088, 0.0716865286231041, -0.04610414803028107, 0.06934616714715958, 0.00394343351945281, 0.07559346407651901, -0.06923151016235352, -0.061781615018844604, -0.08057817071676254, 0.026293307542800903, -0.06350672990083694, -0.08017581701278687, -0.08343160152435303, 0.11057715117931366, 0.13295722007751465, -0.02317115291953087, -0.09851811081171036, -0.05347534269094467, -0.0503576435148716, 0.06721197813749313, 0.1180952787399292, 0.09119930863380432, -0.06978267431259155, 0.01412906963378191, 0.010761985555291176, 0.04273767024278641, -0.10995519906282425, 0.04646426811814308, 0.09632859379053116, 0.024536490440368652, 0.1049221009016037, 0.03432314097881317, -0.17450089752674103, 0.03942888602614403, 0.037940770387649536, -0.11755435168743134, -0.1096508726477623, -0.025987451896071434, -0.01370514091104269, -0.08161887526512146, -0.039498161524534225, 0.1447811722755432, -0.04220247268676758, -0.0322255939245224, 0.00033609429374337196, 0.06002902239561081, -0.03724602609872818, 0.11654651165008545, 0.03789779171347618, 0.047755707055330276, -0.07126536965370178, 0.0936746895313263, 0.06960543990135193, 0.016056939959526062, 0.03780239820480347, 0.04853634908795357, -0.08818017691373825, -0.011441059410572052, -0.09567111730575562, -0.005321759730577469, -0.02461943030357361, -0.012924307957291603, -0.004735404159873724, -0.0513048879802227, 0.04266606271266937, 0.1058463305234909, -0.012254895642399788, 0.11945760995149612, -0.02441822737455368, -0.009148858487606049, -0.12564922869205475, 0.07400037348270416, 0.04883434623479843, 0.017019756138324738, -0.09690514951944351, 0.1518602818250656, 0.029653670266270638, 0.10177606344223022, -0.041664063930511475, -0.041073989123106, -0.08756148815155029, -0.012462111189961433, -0.15520182251930237, -0.027818910777568817, -0.08755037933588028, -0.044147178530693054, -0.022663183510303497, -0.039760880172252655, -0.03841506689786911, 0.06133453920483589, -0.027532363310456276, -0.07097865641117096, -0.05620323866605759, 0.0467786081135273, -0.1438637524843216, -0.00394850131124258, 0.12797684967517853, -0.0811304897069931, 0.11222794651985168, 0.03489622101187706, -0.036016795784235, 0.01576734334230423, -0.08072938770055771, 0.004918665159493685, -0.04091864079236984, 0.016521546989679337, 0.03622857481241226, -0.14072482287883759, 0.023134971037507057, -0.060627635568380356, -0.0492083877325058, 0.00539302546530962, 0.009376592002809048, -0.12022148817777634, -0.003171891439706087, 0.04272095486521721, 0.004464434459805489, -0.07745634019374847, 0.07827754318714142, 0.046673912554979324, 0.028075218200683594, 0.07456748932600021, -0.023322999477386475, 0.0966956615447998, -0.1581885814666748, -0.029792889952659607, 0.014995302073657513, -0.0012350489851087332, 0.09497421234846115, -0.01788310706615448, 0.05902039632201195, -0.027518492192029953, 0.1642158478498459, -0.00988879706710577, -0.011786004528403282, 0.04068626090884209, -0.03146199509501457, -0.02180962823331356, 0.047321949154138565, 0.05745718628168106, -0.02565547078847885, -0.049097221344709396, -0.03179794177412987, -0.000879381550475955, -0.06465622037649155, -0.05043487623333931, 0.1299353837966919, 0.06666294485330582, 0.14846226572990417, -0.019717790186405182, 0.06983853131532669, -0.019897272810339928, -0.10652919858694077, -0.011453839018940926, -0.01576993055641651, 0.032744795083999634, -0.05695336312055588, 0.08646051585674286, 0.15564480423927307, -0.139031320810318, 0.11762528866529465, 0.0068416050635278225, -0.06687409430742264, -0.1055450364947319, -0.17875893414020538, -0.027371438220143318, -0.008305051364004612, 0.043671343475580215, -0.1261395364999771, 0.07358875870704651, 0.04052908346056938, 0.030735915526747704, -0.057117559015750885, 0.10117612779140472, -0.03963741660118103, -0.1131569892168045, 0.02988070249557495, 0.02704167738556862, 0.02395104058086872, 0.04783757030963898, 0.05558700114488602, 0.03264054283499718, 0.013622818514704704, 0.06420543044805527, 0.0336938314139843, 0.035545676946640015, 0.035309623926877975, -0.0160191860049963, -0.05420223996043205, 0.017214994877576828, 0.0146184042096138, 0.05452742800116539, 0.12360829859972, 0.06743218749761581, -0.007896989583969116, -0.047262340784072876, 0.29008057713508606, -0.03975263610482216, -0.035066425800323486, -0.17062173783779144, 0.1553182303905487, 0.046852562576532364, -0.009381919167935848, 0.025690119713544846, -0.15115727484226227, 0.01738511212170124, 0.1773497760295868, 0.16257606446743011, -0.05671641603112221, 0.01154919434338808, -0.026396475732326508, 0.007628757040947676, 0.03293498232960701, 0.07781662046909332, 0.0674087405204773, 0.19773192703723907, -0.06103385239839554, 0.05934811383485794, -0.006987779401242733, -0.002606707625091076, -0.0213155634701252, 0.11095487326383591, -0.02564431168138981, 0.02051750384271145, -0.06959513574838638, 0.07730230689048767, -0.06380713731050491, -0.25474488735198975, 0.004364429973065853, -0.03286108747124672, -0.09063342213630676, 0.054853424429893494, -0.053825464099645615, -0.018816782161593437, 0.08628220111131668, 0.01752968318760395, -0.012537415139377117, 0.11505208909511566, 0.04091724380850792, -0.02488229051232338, -0.008025522343814373, 0.09388280659914017, 0.0039247777312994, 0.19321668148040771, -0.022062432020902634, 0.0257602296769619, 0.10108056664466858, 0.04293226823210716, -0.11841665953397751, -0.00758354039862752, 0.034945204854011536, -0.07574595510959625, -0.00039764284156262875, 0.19936257600784302, 0.015017818659543991, 0.008853729814291, 0.05742489919066429, -0.03143296763300896, 0.03875930234789848, -0.0857657715678215, 0.04112118482589722, -0.10991567373275757, 0.04414387047290802, -0.08028337359428406, 0.1416291892528534, 0.18005897104740143, -0.06164298579096794, 0.024019582197070122, -0.05781036987900734, -0.015049519017338753, -0.020275713875889778, 0.041986193507909775, -0.0212949700653553, -0.09704387187957764, 0.019309835508465767, 0.0479462631046772, 0.020777978003025055, -0.1908894032239914, -0.0697932243347168, 0.05403740331530571, -0.057388730347156525, -0.00046696746721863747, 0.14794766902923584, 0.038392335176467896, 0.05624523386359215, -0.0396583117544651, -0.037691257894039154, -0.02708267979323864, 0.08632193505764008, -0.14273086190223694, -0.07806937396526337 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a865aac7693c39977b9b402dc364908e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Linkin Park</div> <a href="https://genius.com/artists/linkin-park"> <div style="text-align: center; font-size: 14px;">@linkin-park</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Linkin Park. Dataset is available [here](https://huggingface.co/datasets/huggingartists/linkin-park). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/linkin-park") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3mtr0u4z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Linkin Park's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/fxn4brd6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/fxn4brd6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/linkin-park') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/linkin-park") model = AutoModelWithLMHead.from_pretrained("huggingartists/linkin-park") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/linkin-park"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/linkin-park
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/linkin-park", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/linkin-park #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Linkin Park</div> <a href="URL <div style="text-align: center; font-size: 14px;">@linkin-park</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Linkin Park. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Linkin Park's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Linkin Park.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Linkin Park's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/linkin-park #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Linkin Park.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Linkin Park's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/linkin-park #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Linkin Park.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Linkin Park's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02304523065686226, 0.1599346399307251, -0.0029526737052947283, 0.048661183565855026, 0.09245581179857254, 0.00908150989562273, 0.08611376583576202, 0.10801051557064056, 0.022283274680376053, 0.07164989411830902, 0.06698929518461227, 0.02732008695602417, 0.07125163078308105, 0.08882540464401245, 0.07653383910655975, -0.2513458728790283, 0.03237726911902428, -0.09339547902345657, 0.004721518140286207, 0.1105988621711731, 0.0927014872431755, -0.055399708449840546, 0.08689578622579575, 0.04252577945590019, -0.07487989962100983, 0.015065882354974747, 0.006104319356381893, -0.05844825506210327, 0.09648153930902481, 0.05211490020155907, 0.040982190519571304, 0.025810757651925087, 0.06925305724143982, -0.18316897749900818, 0.029326608404517174, 0.1272680014371872, 0.038617584854364395, 0.07680138945579529, 0.05339159443974495, -0.07874494791030884, 0.1362427920103073, -0.005788513459265232, 0.10398941487073898, 0.05085337907075882, -0.11805332452058792, -0.14973755180835724, -0.1365790069103241, 0.0936456248164177, 0.08895418047904968, 0.08368249982595444, -0.02541627176105976, 0.053707465529441833, -0.025322098284959793, 0.043310537934303284, 0.22594739496707916, -0.24325203895568848, -0.011405657045543194, 0.09357009828090668, 0.053415119647979736, 0.022505346685647964, -0.08667702972888947, 0.008414044044911861, 0.03964117541909218, 0.022799290716648102, 0.055413275957107544, -0.01997803896665573, 0.18278668820858002, 0.02787243016064167, -0.10072100162506104, -0.07605340331792831, 0.10298643261194229, -0.022134855389595032, -0.07311513274908066, -0.13328294456005096, -0.004585090093314648, -0.014745851047337055, 0.03845851868391037, 0.0007694538799114525, 0.0027938310522586107, 0.012488058768212795, -0.035167619585990906, -0.11463785916566849, -0.08152066916227341, -0.034233689308166504, -0.020120719447731972, 0.04884995520114899, 0.03590620309114456, 0.038764290511608124, -0.07531367242336273, 0.23089389503002167, -0.014544414356350899, -0.09800688922405243, -0.04610747843980789, -0.09834951907396317, -0.09145674854516983, -0.0533599890768528, 0.010495223104953766, 0.0027703233063220978, -0.05047421529889107, 0.1578097641468048, -0.031075630336999893, 0.02908196486532688, -0.021212222054600716, -0.004794321954250336, 0.14566108584403992, 0.14260414242744446, -0.11399524658918381, -0.030046086758375168, 0.06607459485530853, -0.00572716211900115, -0.06661894172430038, -0.05325791612267494, -0.010513929650187492, -0.013383843004703522, 0.032878000289201736, 0.07996559143066406, 0.06378144025802612, 0.06651228666305542, 0.011858485639095306, -0.06632346659898758, 0.08863300830125809, -0.1292867660522461, 0.017871856689453125, -0.001607423764653504, -0.04770570620894432, 0.023824725300073624, 0.05653538554906845, 0.02178054489195347, -0.09956157952547073, 0.1078646183013916, -0.06599816679954529, -0.045930251479148865, -0.0812937468290329, -0.09021005779504776, -0.004187577869743109, -0.026123883202672005, -0.04494442045688629, -0.07425384968519211, -0.17544697225093842, -0.04259933531284332, 0.03521623834967613, -0.049749281257390976, -0.03512968495488167, 0.031344860792160034, -0.018709391355514526, 0.015058143995702267, -0.01735365204513073, -0.04677323251962662, -0.029387174174189568, 0.02596767246723175, -0.07088786363601685, 0.026468878611922264, 0.06932663917541504, 0.04457998648285866, -0.11619619280099869, 0.07500883936882019, -0.1638447493314743, 0.11980520933866501, -0.017489254474639893, 0.02211470529437065, -0.09652944654226303, -0.07976377010345459, -0.018429435789585114, -0.03811058774590492, 0.00006195718742674217, 0.0964955985546112, -0.16323789954185486, -0.029683241620659828, 0.1957152783870697, -0.06718883663415909, -0.08405681699514389, 0.07158180326223373, -0.07918643206357956, 0.035751909017562866, 0.1197730004787445, 0.08681970089673996, 0.16502024233341217, -0.12652064859867096, -0.05786989629268646, -0.039797741919755936, -0.07391536235809326, 0.18123163282871246, 0.04377158731222153, -0.02408837527036667, 0.01274175476282835, 0.009268227033317089, -0.03543885424733162, -0.012968139722943306, -0.016463574022054672, -0.03377310186624527, -0.024270420894026756, 0.0009343312121927738, 0.0028543644584715366, -0.044582121074199677, -0.0581129714846611, -0.024277787655591965, -0.09918252378702164, 0.06281030178070068, 0.09916267544031143, -0.06251246482133865, 0.011560273356735706, -0.09192346781492233, 0.013721266761422157, -0.03965383395552635, 0.006657748948782682, -0.1690090149641037, -0.05298885330557823, 0.027524426579475403, -0.06825493276119232, 0.07950174808502197, 0.03312832489609718, 0.03807200491428375, 0.060269031673669815, -0.015617169439792633, 0.006355192046612501, -0.04437817260622978, -0.014945273287594318, -0.025635821744799614, -0.15323340892791748, -0.0580013208091259, -0.043568093329668045, 0.08082642406225204, -0.1111767441034317, 0.004894787911325693, 0.08154266327619553, 0.13097475469112396, 0.019707605242729187, -0.06930625438690186, 0.021155431866645813, -0.04793138429522514, -0.026637976989150047, -0.10851592570543289, -0.046026043593883514, 0.01860448718070984, -0.011323605664074421, 0.16212227940559387, -0.16021166741847992, -0.07993379235267639, 0.11110909283161163, 0.11937663704156876, -0.08715817332267761, 0.04191349819302559, -0.0794074684381485, -0.015019923448562622, -0.042951278388500214, -0.04915080964565277, 0.26217758655548096, 0.03573830425739288, 0.08969836682081223, -0.10554832965135574, -0.09751926362514496, -0.010678568854928017, -0.04406581446528435, -0.028120901435613632, 0.02346678450703621, 0.033286526799201965, -0.16319608688354492, 0.040293872356414795, -0.012849715538322926, 0.09480360150337219, 0.20488984882831573, 0.0410630889236927, -0.07743823528289795, -0.06384028494358063, -0.06634938716888428, -0.004662397783249617, 0.07367690652608871, 0.013463303446769714, 0.031218281015753746, 0.041772954165935516, 0.059383805841207504, 0.04335584491491318, -0.11765997856855392, 0.010331562720239162, 0.06719228625297546, -0.038871701806783676, -0.05119875818490982, 0.012922432273626328, 0.02963039092719555, 0.08228227496147156, 0.09015639871358871, 0.13262712955474854, -0.05836533010005951, -0.049015019088983536, -0.1431044489145279, 0.13062722980976105, -0.08868199586868286, -0.23610691726207733, -0.13639524579048157, -0.0720403641462326, 0.013360468670725822, 0.008944091387093067, 0.029696492478251457, -0.04762681573629379, -0.0376102477312088, -0.09290272742509842, 0.09455029666423798, -0.048606615513563156, -0.02641495317220688, 0.0040799821726977825, 0.020348479971289635, -0.016029583290219307, -0.12032189965248108, -0.03439169377088547, 0.03427611291408539, -0.08643385022878647, -0.013591451570391655, 0.03174717724323273, 0.034767746925354004, 0.1639990508556366, -0.008126318454742432, 0.005767424590885639, -0.021086370572447777, 0.2742108404636383, -0.10886622220277786, 0.07883428782224655, 0.17141728103160858, -0.012812607921659946, 0.06350213289260864, 0.07495617866516113, 0.004615010228008032, -0.05467536672949791, 0.06684155017137527, 0.0774436816573143, -0.07358264178037643, -0.2144964337348938, -0.03212360292673111, -0.013884748332202435, 0.020315952599048615, 0.11791817098855972, 0.041929539293050766, 0.04651092737913132, 0.009287090972065926, -0.09866630285978317, 0.04610583558678627, 0.01923411153256893, 0.09970071911811829, -0.059251390397548676, -0.00913324300199747, 0.04714197292923927, -0.051769815385341644, 0.031767964363098145, 0.12658342719078064, 0.05174471065402031, 0.19599014520645142, -0.06932344287633896, 0.08545234799385071, 0.07934045046567917, 0.11771208047866821, 0.022201385349035263, 0.01823635771870613, -0.024214908480644226, 0.015840694308280945, 0.004783995915204287, -0.08751463890075684, -0.0035795336589217186, 0.03521740436553955, 0.0367906428873539, -0.008475677110254765, -0.0447927787899971, -0.06764707714319229, 0.04702497646212578, 0.23169805109500885, 0.017575286328792572, -0.16860266029834747, -0.09421373903751373, 0.05492359772324562, -0.06430437415838242, -0.0630192756652832, -0.013471357524394989, 0.06389765441417694, -0.22098873555660248, 0.04917757213115692, -0.0387345589697361, 0.10928662121295929, -0.13076017796993256, -0.0013851877301931381, 0.08290579915046692, 0.046065762639045715, -0.0686376541852951, 0.08829724788665771, -0.14979545772075653, 0.05433880537748337, -0.009457423351705074, 0.07605140656232834, -0.06399406492710114, 0.030838944017887115, 0.018403923138976097, 0.05002785846590996, 0.07319360971450806, 0.021182488650083542, 0.028186237439513206, -0.02227204293012619, -0.04211093485355377, -0.0023263180628418922, 0.055512771010398865, -0.11663295328617096, 0.11999813467264175, -0.0380818173289299, 0.03428167104721069, -0.029486365616321564, -0.08032204210758209, -0.08991000801324844, -0.1439753621816635, 0.08131533861160278, -0.11821113526821136, 0.003904261626303196, -0.067377008497715, -0.010658351704478264, 0.016221655532717705, 0.2438567876815796, -0.06617594510316849, -0.08127100765705109, -0.14327099919319153, -0.012857591733336449, 0.1389884352684021, -0.07657334208488464, 0.007787175942212343, -0.02259000390768051, 0.18276336789131165, -0.0072500514797866344, -0.14030160009860992, -0.004218855407088995, -0.06811302900314331, -0.1689993292093277, -0.02310384251177311, 0.16409079730510712, 0.061108607798814774, 0.028042588382959366, 0.006262360140681267, -0.002162729622796178, -0.05448899418115616, -0.17506375908851624, 0.03414145112037659, 0.14362698793411255, -0.001452318741939962, 0.011078908108174801, 0.035811807960271835, 0.04139979928731918, -0.11833617836236954, 0.022837067022919655, 0.05023452267050743, 0.17369036376476288, -0.07583602517843246, 0.17602483928203583, 0.02022981084883213, -0.0903242900967598, -0.16359925270080566, 0.032129112631082535, 0.01222655177116394, 0.020317675545811653, 0.02171904966235161, -0.1881369799375534, 0.044726453721523285, 0.033219803124666214, -0.01094195805490017, 0.05473693832755089, -0.3293209671974182, -0.15138587355613708, 0.005517292767763138, 0.011300366371870041, -0.1062859520316124, -0.03677031770348549, -0.03799251466989517, -0.07286254316568375, -0.2654644548892975, 0.10230075567960739, -0.1165672093629837, 0.0755995586514473, 0.013214977458119392, 0.09202077239751816, 0.04475082457065582, -0.057198088616132736, 0.12249982357025146, -0.029412660747766495, 0.06933603435754776, -0.09190578758716583, -0.056537460535764694, 0.08134273439645767, -0.07112636417150497, 0.11470051109790802, 0.02806057222187519, 0.093770831823349, -0.1125345304608345, -0.07665268331766129, -0.08232177793979645, 0.01144842617213726, -0.05872355401515961, -0.10101626068353653, -0.09564609080553055, 0.08779140561819077, 0.12080971151590347, -0.04274584725499153, -0.08897978812456131, -0.048777323216199875, -0.004479673691093922, 0.06964350491762161, 0.10115576535463333, 0.08371227234601974, -0.09234157204627991, 0.006832299288362265, 0.014293675310909748, 0.021756896749138832, -0.16972661018371582, 0.04512826353311539, 0.08559755235910416, 0.03957700356841087, 0.10362443327903748, 0.01141520868986845, -0.16659215092658997, 0.004898069426417351, 0.04038091003894806, -0.16117577254772186, -0.10604369640350342, -0.04367949441075325, 0.009872288443148136, -0.09878449887037277, -0.04875503107905388, 0.1332218199968338, -0.03651340678334236, -0.033891770988702774, 0.0032107755541801453, 0.04487508535385132, -0.04241514578461647, 0.08189772069454193, 0.022146862000226974, 0.04318217560648918, -0.06721149384975433, 0.12121634930372238, 0.06360355019569397, 0.02101939544081688, 0.03660891205072403, 0.06344711035490036, -0.08966685831546783, 0.006213100161403418, -0.08700034767389297, 0.023747580125927925, -0.0371304526925087, -0.008435986936092377, 0.007444819901138544, -0.046591680496931076, 0.038565315306186676, 0.08189775049686432, -0.016213085502386093, 0.11272282153367996, -0.04092229902744293, 0.0036116193514317274, -0.13605254888534546, 0.07576314359903336, 0.030812637880444527, 0.025411000475287437, -0.11711612343788147, 0.1949966847896576, 0.02539634145796299, 0.09423917531967163, -0.035515524446964264, -0.05778021737933159, -0.07359320670366287, -0.011595895513892174, -0.1126561090350151, -0.04817753657698631, -0.087246835231781, -0.027206268161535263, -0.008684346452355385, -0.04036737605929375, -0.01753159984946251, 0.048937857151031494, -0.03357170894742012, -0.06280604749917984, -0.06268084049224854, 0.043987568467855453, -0.14111001789569855, 0.02609291486442089, 0.12412969768047333, -0.05759940668940544, 0.11890579760074615, 0.058314938098192215, -0.03326291963458061, 0.018796976655721664, -0.11215797811746597, 0.035484444350004196, -0.03047594614326954, 0.014775610528886318, 0.026014957576990128, -0.14244499802589417, 0.004673021379858255, -0.04968995228409767, -0.06478807330131531, 0.0068909358233213425, -0.0023705633357167244, -0.13215310871601105, 0.00456754956394434, 0.08231756091117859, -0.01769557036459446, -0.06817799061536789, 0.06412596255540848, 0.05900096520781517, 0.019252469763159752, 0.05358445644378662, -0.024469703435897827, 0.07897687703371048, -0.1753983199596405, -0.05433447286486626, 0.013967749662697315, 0.029614700004458427, 0.04358049854636192, -0.011618486605584621, 0.03480714559555054, -0.01928470842540264, 0.19520802795886993, 0.014060546644032001, -0.024118246510624886, 0.034673385322093964, -0.046339500695466995, -0.001312927808612585, 0.046961989253759384, 0.06498053669929504, -0.046859368681907654, -0.036710094660520554, -0.0007857074961066246, -0.018377967178821564, -0.08507328480482101, -0.04876502975821495, 0.10825099050998688, 0.04713621735572815, 0.18959741294384003, -0.052469778805971146, 0.06933005899190903, -0.01801125891506672, -0.12935635447502136, -0.016019145026803017, -0.04373640939593315, 0.03700908645987511, -0.06687420606613159, 0.05889572575688362, 0.1747616082429886, -0.16080664098262787, 0.12064158171415329, 0.025557124987244606, -0.05720043554902077, -0.10564859956502914, -0.18352504074573517, -0.012318638153374195, -0.04925961792469025, 0.03588812053203583, -0.13241465389728546, 0.0869276374578476, 0.03125813603401184, 0.03403277322649956, -0.06633361428976059, 0.12788443267345428, -0.06568834185600281, -0.11985322833061218, 0.03430710732936859, 0.025308307260274887, 0.027959464117884636, 0.044432930648326874, 0.07629667967557907, 0.02505345270037651, 0.010289006866514683, 0.06789422035217285, 0.04349614679813385, 0.024459369480609894, 0.030057454481720924, -0.019425969570875168, -0.04759586602449417, 0.03210941329598427, -0.0004658576799556613, 0.021317075937986374, 0.08489559590816498, 0.06312344968318939, -0.01733233407139778, -0.030237538740038872, 0.30495598912239075, -0.038533538579940796, -0.03180787339806557, -0.17945615947246552, 0.16603170335292816, 0.0038733971305191517, -0.007415554020553827, 0.024698680266737938, -0.1263236403465271, 0.006123770028352737, 0.14325927197933197, 0.16512173414230347, -0.039078593254089355, 0.018994256854057312, -0.03357922285795212, 0.012828300707042217, 0.037516992539167404, 0.09950065612792969, 0.06349105387926102, 0.19361606240272522, -0.040665462613105774, 0.048288580030202866, -0.00575012993067503, -0.022274034097790718, -0.0005150273791514337, 0.112369105219841, -0.03866346925497055, 0.010135909542441368, -0.06297837942838669, 0.09560402482748032, -0.054248612374067307, -0.26541003584861755, -0.021180151030421257, -0.024856803938746452, -0.0903252586722374, 0.05901710316538811, -0.0298160370439291, -0.034875452518463135, 0.0876539796590805, 0.026622934266924858, -0.042776696383953094, 0.14035174250602722, 0.040884219110012054, -0.04810323566198349, -0.015735242515802383, 0.09729582071304321, -0.014595218934118748, 0.190394788980484, -0.024758456274867058, -0.0019243697170168161, 0.08440149575471878, 0.016580792143940926, -0.12391361594200134, 0.0008438810473307967, 0.04070538654923439, -0.07623087614774704, -0.032307304441928864, 0.18665364384651184, 0.01484385970979929, 0.03995600342750549, 0.062298908829689026, -0.06110229715704918, 0.023960884660482407, -0.054095558822155, 0.052836786955595016, -0.1529460996389389, 0.05532824620604515, -0.08421584963798523, 0.13741599023342133, 0.18429827690124512, -0.06920572370290756, 0.029187723994255066, -0.05833473056554794, 0.0038323174230754375, -0.024504071101546288, 0.07357264310121536, -0.02110064961016178, -0.10407485067844391, 0.014565341174602509, 0.03732556104660034, 0.022489994764328003, -0.1892678588628769, -0.07930128276348114, 0.0643501877784729, -0.05207010731101036, 0.019558968022465706, 0.17035658657550812, 0.02743380330502987, 0.06538829207420349, -0.030024489387869835, 0.001496530370786786, -0.016468025743961334, 0.11807168275117874, -0.15411560237407684, -0.08187270164489746 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/32e68b9d7093213fd4c06984ee3ff6aa.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Little Big</div> <a href="https://genius.com/artists/little-big"> <div style="text-align: center; font-size: 14px;">@little-big</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Little Big. Dataset is available [here](https://huggingface.co/datasets/huggingartists/little-big). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/little-big") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2rjstm9q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Little Big's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/289c46fn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/289c46fn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/little-big') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/little-big") model = AutoModelWithLMHead.from_pretrained("huggingartists/little-big") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/little-big"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/little-big
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/little-big", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/little-big #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Little Big</div> <a href="URL <div style="text-align: center; font-size: 14px;">@little-big</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Little Big. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Little Big's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Little Big.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Little Big's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/little-big #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Little Big.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Little Big's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/little-big #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Little Big.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Little Big's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.006545566022396088, 0.1390211284160614, -0.003269047709181905, 0.04269303381443024, 0.08659704029560089, 0.0020718493033200502, 0.09146930277347565, 0.10802552849054337, -0.011272880248725414, 0.07510926574468613, 0.06730800867080688, -0.01006367802619934, 0.07012578099966049, 0.10258280485868454, 0.0871439054608345, -0.2673763632774353, 0.014122633263468742, -0.09057293087244034, 0.003272776724770665, 0.11404695361852646, 0.1093931570649147, -0.06492315232753754, 0.08110091835260391, 0.03902887552976608, -0.06391267478466034, 0.022847294807434082, -0.0042523168958723545, -0.06500130146741867, 0.08248414844274521, 0.06650639325380325, 0.030495991930365562, 0.012947918847203255, 0.05644572898745537, -0.16233257949352264, 0.029974576085805893, 0.12134597450494766, 0.04143639653921127, 0.07240737974643707, 0.04771827533841133, -0.0688835009932518, 0.1737504005432129, -0.0411997027695179, 0.08855896443128586, 0.044373419135808945, -0.10712132602930069, -0.16653649508953094, -0.12180488556623459, 0.10470902174711227, 0.0846780389547348, 0.08592305332422256, -0.025483155623078346, 0.03700615093111992, -0.034594956785440445, 0.03988853096961975, 0.2366056740283966, -0.2234773188829422, -0.014362221583724022, 0.0823897048830986, 0.04261194169521332, 0.03814749792218208, -0.07748688012361526, -0.004145985934883356, 0.0377383716404438, 0.02446579746901989, 0.042229171842336655, -0.007270148955285549, 0.20070667564868927, 0.024646714329719543, -0.09177323430776596, -0.07582473009824753, 0.11824186146259308, -0.026251211762428284, -0.07244467735290527, -0.14937017858028412, -0.0005076106172055006, -0.03706258535385132, 0.028765922412276268, -0.008468808606266975, 0.003521457314491272, 0.002233049599453807, -0.031635187566280365, -0.10681179165840149, -0.09717278927564621, -0.015489197336137295, -0.049667514860630035, 0.06599923968315125, 0.027689926326274872, 0.033843111246824265, -0.10167276859283447, 0.21193063259124756, -0.0188711229711771, -0.10662394016981125, -0.060241445899009705, -0.08957980573177338, -0.07222813367843628, -0.058287832885980606, -0.002827481599524617, 0.03449038416147232, -0.05422177538275719, 0.16453665494918823, -0.03228161856532097, 0.025728369131684303, 0.0009475598344579339, -0.013421493582427502, 0.1422886848449707, 0.135590597987175, -0.10728800296783447, -0.03159964829683304, 0.06692016869783401, -0.014403728768229485, -0.051331158727407455, -0.047956179827451706, -0.011722216382622719, -0.02867816761136055, 0.023302458226680756, 0.08316627889871597, 0.05875550955533981, 0.04897848516702652, 0.02424980327486992, -0.06348168849945068, 0.08394753932952881, -0.14405237138271332, 0.017993910238146782, 0.005497021600604057, -0.05062398314476013, 0.05031328648328781, 0.029597504064440727, 0.012072823010385036, -0.10169603675603867, 0.12082061171531677, -0.05330698564648628, -0.04574643447995186, -0.07568395882844925, -0.07668512314558029, 0.0014460824895650148, -0.0019531046273186803, -0.03866565600037575, -0.06351113319396973, -0.16500087082386017, -0.040745314210653305, 0.025494001805782318, -0.052378855645656586, -0.045394256711006165, 0.035295866429805756, -0.03416922315955162, 0.009385880082845688, -0.01602534018456936, -0.025787170976400375, -0.026719100773334503, 0.028650959953665733, -0.06111960485577583, 0.03799944370985031, 0.07137349247932434, 0.037798065692186356, -0.11388815939426422, 0.05932534113526344, -0.15789610147476196, 0.13595901429653168, 0.010241144336760044, 0.012632125057280064, -0.10245707631111145, -0.09658081084489822, -0.033364541828632355, -0.027405165135860443, -0.011600933037698269, 0.09173296391963959, -0.17680339515209198, -0.04546691104769707, 0.20717670023441315, -0.06548505276441574, -0.07609772682189941, 0.0834040492773056, -0.07545819133520126, 0.03712856397032738, 0.1410134732723236, 0.05669045448303223, 0.16740655899047852, -0.09527896344661713, -0.07119006663560867, -0.03334098681807518, -0.06143224984407425, 0.1969447135925293, 0.06251417845487595, -0.0111676175147295, 0.020558521151542664, 0.008954296819865704, -0.03435707464814186, -0.026995709165930748, -0.01301563624292612, -0.04130220040678978, -0.01673651859164238, 0.01807207427918911, -0.01585666835308075, -0.04975161701440811, -0.05528787896037102, -0.03387300297617912, -0.1081250011920929, 0.04090948402881622, 0.10752423107624054, -0.060040976852178574, 0.010626428760588169, -0.10575532913208008, 0.00852250773459673, -0.03412964940071106, 0.012991344556212425, -0.16614799201488495, -0.03935419023036957, 0.015363216400146484, -0.06092395260930061, 0.08765067160129547, 0.030135486274957657, 0.04576627537608147, 0.04403802007436752, -0.0156482495367527, 0.027465296909213066, -0.037581779062747955, -0.035271767526865005, -0.026179684326052666, -0.14880941808223724, -0.05741163343191147, -0.044667694717645645, 0.08447765558958054, -0.11457480490207672, 0.0008539692498743534, 0.11026114970445633, 0.11243515461683273, 0.02738955058157444, -0.051204316318035126, 0.006587544456124306, -0.043199390172958374, -0.033157601952552795, -0.1066085547208786, -0.05272785201668739, 0.008743876591324806, -0.03176121041178703, 0.1473386138677597, -0.16981971263885498, -0.07811598479747772, 0.10906708985567093, 0.14937254786491394, -0.08659469336271286, 0.033481743186712265, -0.08127757906913757, -0.008284147828817368, -0.0394526906311512, -0.04341573268175125, 0.2623014450073242, 0.040717676281929016, 0.07811477780342102, -0.10901638865470886, -0.10983705520629883, -0.012202187441289425, -0.03924624249339104, -0.02133355289697647, 0.02856501191854477, 0.0164683535695076, -0.1765369325876236, 0.037500716745853424, 0.002314609009772539, 0.08952177315950394, 0.2068316787481308, 0.03851975500583649, -0.08756458014249802, -0.06233138218522072, -0.07338560372591019, 0.003740237792953849, 0.03753047063946724, 0.014795739203691483, 0.04005647450685501, 0.04605337604880333, 0.053903765976428986, 0.03940150886774063, -0.10167869180440903, 0.016014842316508293, 0.08355258405208588, -0.040663085877895355, -0.051126375794410706, 0.008020277135074139, 0.02860768884420395, 0.08946733176708221, 0.09575898200273514, 0.14366230368614197, -0.05398624762892723, -0.047664593905210495, -0.13692785799503326, 0.13442926108837128, -0.07522422820329666, -0.24594558775424957, -0.13956446945667267, -0.0722348690032959, 0.01690681464970112, 0.012016057036817074, 0.031401265412569046, -0.061100322753190994, -0.03989272192120552, -0.09509129822254181, 0.0942114070057869, -0.036635834723711014, -0.01766696199774742, 0.009413986466825008, 0.026891935616731644, -0.024007169529795647, -0.11456829309463501, -0.03105483204126358, 0.04425510764122009, -0.11278855055570602, -0.01596672646701336, 0.04122230038046837, 0.011687018908560276, 0.15554240345954895, -0.013939805328845978, -0.0046934084966778755, -0.020954251289367676, 0.2760888636112213, -0.12573298811912537, 0.06977206468582153, 0.1821693629026413, -0.010727901943027973, 0.052269358187913895, 0.07271809875965118, 0.011220897547900677, -0.0551222488284111, 0.06925764679908752, 0.07103358954191208, -0.0807621031999588, -0.21245606243610382, -0.03422466665506363, -0.0150455292314291, 0.014962950721383095, 0.12106046825647354, 0.05477408692240715, 0.02422478049993515, 0.01088709942996502, -0.10987014323472977, 0.04708123952150345, 0.0255486648529768, 0.09768398106098175, -0.05739213153719902, -0.004422779660671949, 0.04584251716732979, -0.06902986019849777, 0.015226045623421669, 0.14130063354969025, 0.03146204352378845, 0.17044144868850708, -0.06949988007545471, 0.10854543000459671, 0.06716159731149673, 0.08714869618415833, 0.03299210965633392, 0.02750345505774021, -0.033002495765686035, 0.008143809624016285, -0.0022832325194031, -0.09683684259653091, -0.010600071400403976, 0.04152187705039978, 0.036902014166116714, -0.006712802220135927, -0.04053212329745293, -0.05413052439689636, 0.04217372089624405, 0.24119651317596436, 0.0033114892430603504, -0.18126903474330902, -0.11024705320596695, 0.0598442479968071, -0.06995721161365509, -0.05397315323352814, -0.01456054113805294, 0.08318956196308136, -0.20531681180000305, 0.0722300261259079, -0.015740536153316498, 0.10452137887477875, -0.11684202402830124, 0.0030268121045082808, 0.06971599161624908, 0.05261605978012085, -0.052051667124032974, 0.0993993952870369, -0.18287333846092224, 0.025251181796193123, -0.008008037693798542, 0.07734237611293793, -0.08291351050138474, 0.0280894935131073, 0.009151407517492771, 0.027355382218956947, 0.08040402084589005, 0.014608066529035568, 0.018347153440117836, 0.0006041806191205978, -0.0510944128036499, 0.018241964280605316, 0.05691218003630638, -0.12340669333934784, 0.1297997534275055, -0.044484928250312805, 0.035095881670713425, -0.03648916631937027, -0.09864689409732819, -0.06321607530117035, -0.16947373747825623, 0.07408912479877472, -0.11747875809669495, -0.009010598063468933, -0.07260800153017044, -0.021703843027353287, 0.03677995875477791, 0.24407081305980682, -0.07432273775339127, -0.08445177227258682, -0.12982642650604248, 0.0024480014108121395, 0.14594018459320068, -0.08310015499591827, 0.0039000597316771746, -0.006635476369410753, 0.20880867540836334, 0.013051752001047134, -0.12792344391345978, -0.01789841614663601, -0.061518870294094086, -0.18157003819942474, -0.0012351388577371836, 0.17444048821926117, 0.058355774730443954, 0.03919565677642822, 0.006544953677803278, -0.00949034746736288, -0.055876657366752625, -0.1693609356880188, 0.015485802665352821, 0.16221678256988525, -0.01233595423400402, 0.015457212924957275, 0.04575406759977341, 0.030789434909820557, -0.11108440160751343, 0.024374106898903847, 0.0797743871808052, 0.1729879081249237, -0.07255246490240097, 0.19092166423797607, 0.03138111159205437, -0.08534952998161316, -0.16973137855529785, 0.015561634674668312, 0.025785554200410843, 0.04109305143356323, 0.02590218558907509, -0.19780457019805908, 0.06260062754154205, 0.04182914271950722, 0.0015861955471336842, 0.048906028270721436, -0.3321647047996521, -0.1498606950044632, -0.009940017946064472, -0.01207205094397068, -0.1189868152141571, -0.03622106835246086, -0.030710369348526, -0.0940755307674408, -0.2293539047241211, 0.11698150634765625, -0.11876184493303299, 0.07986518740653992, 0.015974145382642746, 0.09396998584270477, 0.05203159153461456, -0.04892037808895111, 0.1235198974609375, -0.039677396416664124, 0.059935446828603745, -0.10411180555820465, -0.06347601115703583, 0.08736178278923035, -0.06785351783037186, 0.10030998289585114, 0.02127191796898842, 0.07748458534479141, -0.10418614000082016, -0.08859055489301682, -0.07642082124948502, 0.006157800555229187, -0.059446703642606735, -0.0820007249712944, -0.10516197234392166, 0.08735089749097824, 0.12511178851127625, -0.044684067368507385, -0.08673449605703354, -0.053158558905124664, -0.000018712384189711884, 0.049160636961460114, 0.13778671622276306, 0.06076889857649803, -0.07810423523187637, 0.010869461111724377, 0.027348244562745094, 0.019500654190778732, -0.1710105687379837, 0.05689509958028793, 0.09350462257862091, 0.039172593504190445, 0.09335129708051682, 0.014146548695862293, -0.15825894474983215, 0.005349614657461643, 0.05849315971136093, -0.15433107316493988, -0.14102168381214142, -0.044451430439949036, 0.020039813593029976, -0.11791948974132538, -0.061569519340991974, 0.128263458609581, -0.02707153744995594, -0.04188639298081398, 0.0024451161734759808, 0.0478944331407547, -0.049791593104600906, 0.09083203971385956, 0.005813970696181059, 0.044545236974954605, -0.0768602192401886, 0.1051054522395134, 0.07508458942174911, -0.00755663588643074, 0.04592415690422058, 0.0758027508854866, -0.07938230782747269, 0.008464513346552849, -0.06712526082992554, 0.005393319763243198, -0.013074459508061409, -0.010541725903749466, 0.01753135211765766, -0.05286514386534691, 0.052745234221220016, 0.06253746896982193, -0.01435604877769947, 0.10827231407165527, -0.046219103038311005, 0.015637319535017014, -0.1393110752105713, 0.07901129871606827, 0.02844114974141121, 0.016905587166547775, -0.11158179491758347, 0.19844229519367218, 0.016815420240163803, 0.09805488586425781, -0.03480043634772301, -0.05222997069358826, -0.0607680007815361, -0.010618614964187145, -0.09313608705997467, -0.0345379002392292, -0.08667058497667313, -0.019115949049592018, -0.00474937167018652, -0.024054093286395073, -0.029088078066706657, 0.04098831117153168, -0.04148641228675842, -0.05787137895822525, -0.07821352779865265, 0.04818201810121536, -0.1301894187927246, 0.04668368771672249, 0.11913677304983139, -0.0585273914039135, 0.1325228363275528, 0.050047919154167175, -0.04167427867650986, 0.009446090087294579, -0.11087309569120407, 0.022802649065852165, -0.02153179422020912, 0.020952286198735237, 0.02137351594865322, -0.16059651970863342, 0.02136823907494545, -0.036411527544260025, -0.06387049704790115, 0.005674360785633326, -0.003224404761567712, -0.1307702511548996, 0.013745247386395931, 0.08095899224281311, -0.011977177113294601, -0.07450657337903976, 0.05631138011813164, 0.045029714703559875, 0.017690710723400116, 0.07070966064929962, -0.017606981098651886, 0.06811148673295975, -0.1700303852558136, -0.05063736438751221, -0.0032130007166415453, 0.0292881540954113, 0.03356939181685448, -0.014905210584402084, 0.04268299788236618, -0.014193259179592133, 0.1897503137588501, 0.017503496259450912, -0.037431713193655014, 0.04199899733066559, -0.06751076132059097, 0.010253115557134151, 0.0428226999938488, 0.0865393653512001, -0.026971688494086266, -0.04815908893942833, 0.004820188041776419, -0.03163756802678108, -0.08358617126941681, -0.0335831381380558, 0.12638577818870544, 0.04717407748103142, 0.18618908524513245, -0.05739421397447586, 0.06570930778980255, -0.017418459057807922, -0.1197284534573555, -0.026573166251182556, -0.0382859893143177, 0.025426598265767097, -0.06129305437207222, 0.0593431293964386, 0.19233115017414093, -0.15538156032562256, 0.11976826190948486, 0.010045269504189491, -0.0481516495347023, -0.12289184331893921, -0.19087934494018555, -0.0261637344956398, -0.029430093243718147, 0.0197215024381876, -0.14410695433616638, 0.0849369615316391, 0.04105328768491745, 0.04720412567257881, -0.07525517791509628, 0.130366250872612, -0.08691564202308655, -0.1281307488679886, 0.041126761585474014, 0.02689429000020027, 0.028016341850161552, 0.04763275757431984, 0.08426760137081146, 0.025756455957889557, 0.013095570728182793, 0.07821948081254959, 0.0526801198720932, 0.03883429616689682, 0.024071648716926575, -0.03366765007376671, -0.043184928596019745, 0.031550291925668716, -0.0038954569026827812, 0.03566693887114525, 0.08460620045661926, 0.04902182146906853, -0.024160349741578102, -0.024855569005012512, 0.30296874046325684, -0.03656024485826492, -0.05429359897971153, -0.17374944686889648, 0.17064011096954346, 0.009927022270858288, -0.009980598464608192, 0.021325331181287766, -0.11645132303237915, -0.0005904016434215009, 0.13405531644821167, 0.16491705179214478, -0.019398158416152, 0.02442091703414917, -0.022672578692436218, 0.017742522060871124, 0.02512790448963642, 0.1084928959608078, 0.07188005745410919, 0.22362445294857025, -0.03530086576938629, 0.07333098351955414, -0.0001340295420959592, -0.013389459811151028, -0.007811619434505701, 0.12113037705421448, -0.04429537430405617, 0.014614785090088844, -0.04609162360429764, 0.08579546958208084, -0.059482816606760025, -0.26666444540023804, -0.026194073259830475, -0.03272984176874161, -0.10351414978504181, 0.06709658354520798, -0.019848542287945747, -0.02032102458178997, 0.08803296089172363, 0.03267500177025795, -0.05505923926830292, 0.1267908811569214, 0.04292329028248787, -0.05592718720436096, 0.0017429045401513577, 0.11213837563991547, -0.018671393394470215, 0.18002039194107056, -0.02212526835501194, 0.007115680258721113, 0.08987866342067719, 0.009446660988032818, -0.1451246291399002, -0.00611652247607708, 0.03268132358789444, -0.057875439524650574, -0.014167373068630695, 0.1961384117603302, 0.010378255508840084, 0.0198409054428339, 0.08428646624088287, -0.05732441321015358, 0.014455866068601608, -0.04688277840614319, 0.07027071714401245, -0.1527193933725357, 0.060779206454753876, -0.08465860038995743, 0.1213030070066452, 0.18959149718284607, -0.07454730570316315, 0.022512231022119522, -0.06501637399196625, 0.018838683143258095, -0.014337790198624134, 0.08723213523626328, -0.02102844975888729, -0.11544748395681381, 0.012852488085627556, 0.0421498641371727, 0.025428663939237595, -0.18833844363689423, -0.06846392154693604, 0.0796603262424469, -0.044691361486911774, 0.014039256609976292, 0.1650792807340622, 0.024783218279480934, 0.06635546684265137, -0.03553641587495804, -0.011161775328218937, -0.022163324058055878, 0.10820910334587097, -0.1767352819442749, -0.07878425717353821 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/0f975524d106026e89de983689d007c4.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Logic</div> <a href="https://genius.com/artists/logic"> <div style="text-align: center; font-size: 14px;">@logic</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Logic. Dataset is available [here](https://huggingface.co/datasets/huggingartists/logic). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/logic") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2rp89nd3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Logic's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/25a9752b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/25a9752b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/logic') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/logic") model = AutoModelWithLMHead.from_pretrained("huggingartists/logic") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/logic"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/logic
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/logic", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/logic #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Logic</div> <a href="URL <div style="text-align: center; font-size: 14px;">@logic</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Logic. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Logic's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Logic.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Logic's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/logic #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Logic.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Logic's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 81, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/logic #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Logic.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Logic's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02699398808181286, 0.15273846685886383, -0.0025914537254720926, 0.034416720271110535, 0.08162432163953781, -0.0068412283435463905, 0.08739607781171799, 0.10477742552757263, -0.0007128198631107807, 0.06947478652000427, 0.08313579857349396, 0.015333330258727074, 0.06853043287992477, 0.13673248887062073, 0.0967845693230629, -0.26983267068862915, 0.03321773558855057, -0.10992913693189621, 0.032004956156015396, 0.12627121806144714, 0.08657991141080856, -0.05593797191977501, 0.08478754013776779, 0.0401015467941761, -0.06531701236963272, 0.026527466252446175, -0.018468603491783142, -0.07013247162103653, 0.09599094092845917, 0.08131898939609528, 0.026753943413496017, 0.03717314824461937, 0.06834268569946289, -0.18610699474811554, 0.03759518265724182, 0.12380549311637878, 0.03308650478720665, 0.07283546775579453, 0.03791455551981926, -0.06927168369293213, 0.174656480550766, -0.017036451026797295, 0.0893864631652832, 0.04467274993658066, -0.10251034796237946, -0.1804341822862625, -0.11857691407203674, 0.08610724657773972, 0.09593774378299713, 0.07924740016460419, -0.03144102543592453, 0.047320473939180374, 0.01187679823487997, 0.04616836458444595, 0.23501598834991455, -0.23511949181556702, -0.011231373995542526, 0.10313034802675247, 0.034289661794900894, 0.04498539865016937, -0.07255787402391434, 0.012472966685891151, 0.046974509954452515, 0.01973835937678814, 0.04446101561188698, -0.015246924944221973, 0.21521061658859253, 0.02312568575143814, -0.09381958097219467, -0.09161176532506943, 0.101984404027462, -0.03509756177663803, -0.08335404098033905, -0.16150003671646118, 0.004088978748768568, -0.03332886844873428, 0.0422900915145874, -0.016251128166913986, -0.007087515201419592, -0.00022808581707067788, -0.03208122029900551, -0.10341887176036835, -0.09639786928892136, -0.026573268696665764, -0.030606290325522423, 0.07889144867658615, 0.023235389962792397, 0.03476349636912346, -0.0721072107553482, 0.23917779326438904, 0.009909316897392273, -0.10625555366277695, -0.05301712453365326, -0.09827025979757309, -0.09789038449525833, -0.05224085971713066, 0.012724178843200207, 0.0216341782361269, -0.0673782005906105, 0.1554572880268097, -0.029888924211263657, 0.03358779102563858, 0.00739241810515523, -0.023520277813076973, 0.1596202552318573, 0.13169215619564056, -0.09788288176059723, -0.014086493290960789, 0.040488410741090775, -0.004622440319508314, -0.06667587161064148, -0.06900639086961746, -0.015428799204528332, -0.021646713837981224, 0.024404969066381454, 0.09725244343280792, 0.043555039912462234, 0.058143988251686096, 0.03600402921438217, -0.060435950756073, 0.10909372568130493, -0.1458541303873062, 0.0041690608486533165, -0.010288440622389317, -0.03541909158229828, 0.020144546404480934, 0.04634304344654083, 0.014147903770208359, -0.09554708749055862, 0.10672679543495178, -0.05120732635259628, -0.05748952925205231, -0.06869444996118546, -0.08638302236795425, -0.01020007859915495, -0.0016778480494394898, -0.05176075920462608, -0.08895718306303024, -0.1606893092393875, -0.029969267547130585, 0.019868778064846992, -0.03267396241426468, -0.04059630259871483, 0.04956360533833504, -0.035165220499038696, -0.009888420812785625, -0.018399709835648537, -0.025838393718004227, -0.033990323543548584, 0.020205367356538773, -0.06587275117635727, 0.032672930508852005, 0.07878178358078003, 0.029811296612024307, -0.10968677699565887, 0.06943371891975403, -0.15927261114120483, 0.14731495082378387, -0.012801650911569595, 0.010695270262658596, -0.10513181239366531, -0.09976495802402496, -0.02413650043308735, -0.02770381048321724, -0.010019274428486824, 0.09486101567745209, -0.20009437203407288, -0.037493132054805756, 0.1878798007965088, -0.07900040596723557, -0.08571867644786835, 0.0631708949804306, -0.07935827970504761, 0.04432382807135582, 0.14281512796878815, 0.059256117790937424, 0.1764639914035797, -0.12315274775028229, -0.07040576636791229, -0.03882350027561188, -0.05877431482076645, 0.2300054132938385, 0.054742638021707535, -0.007093782536685467, 0.018194204196333885, 0.020096832886338234, -0.02700195088982582, -0.03241141512989998, -0.022679528221488, -0.04683433845639229, -0.009282788261771202, 0.016910986974835396, -0.00648175785318017, -0.055024001747369766, -0.07271096855401993, -0.008761978708207607, -0.1085888221859932, 0.030909277498722076, 0.1124287098646164, -0.07689724862575531, 0.004683792591094971, -0.09477393329143524, 0.001866827136836946, -0.03019849769771099, 0.02568434365093708, -0.19801554083824158, -0.06879269331693649, 0.024242350831627846, -0.07701728492975235, 0.08720556646585464, 0.035033393651247025, 0.038770340383052826, 0.06894322484731674, 0.004446246195584536, 0.026827886700630188, -0.051446396857500076, -0.023085253313183784, -0.028264924883842468, -0.13943879306316376, -0.07530447840690613, -0.05146430805325508, 0.08846579492092133, -0.12926211953163147, 0.011125900782644749, 0.10868595540523529, 0.10823199152946472, 0.02077820524573326, -0.0594828836619854, 0.007047715596854687, -0.04246284440159798, -0.04016062617301941, -0.11102329939603806, -0.06418048590421677, 0.003908500541001558, -0.040656398981809616, 0.15569627285003662, -0.18354856967926025, -0.06650682538747787, 0.09427633881568909, 0.18158820271492004, -0.09845787286758423, -0.0028968986589461565, -0.09760384261608124, -0.006097165867686272, -0.04294092208147049, -0.04224316030740738, 0.2774750292301178, 0.04675634577870369, 0.07429324835538864, -0.11599613726139069, -0.09679997712373734, 0.0027869651094079018, -0.03381402790546417, -0.023382805287837982, 0.027308616787195206, 0.013035789132118225, -0.15397100150585175, 0.02106464095413685, -0.005802934989333153, 0.13367781043052673, 0.20948278903961182, 0.053833745419979095, -0.09619144350290298, -0.06246204301714897, -0.09045369178056717, -0.004142742604017258, 0.050672031939029694, 0.04171282798051834, 0.029826998710632324, 0.04576180502772331, 0.04991510510444641, 0.03509369492530823, -0.11084697395563126, 0.008287834003567696, 0.08109354227781296, -0.04667311906814575, -0.05277736112475395, 0.017930051311850548, 0.018691467121243477, 0.08051994442939758, 0.07535462081432343, 0.14463672041893005, -0.07920335233211517, -0.05003591626882553, -0.13916145265102386, 0.1402721405029297, -0.07433390617370605, -0.2759230136871338, -0.14442655444145203, -0.07398224622011185, 0.010158908553421497, 0.003032098291441798, 0.03753577545285225, -0.060187939554452896, -0.03993555158376694, -0.10905411094427109, 0.09264977276325226, -0.04614204913377762, -0.014649261720478535, -0.0024940716102719307, 0.017934046685695648, -0.036283012479543686, -0.11600606888532639, -0.029378777369856834, 0.041117072105407715, -0.10401996225118637, -0.020081935450434685, 0.03792750462889671, 0.03861551731824875, 0.16014203429222107, -0.011240314692258835, -0.00844823569059372, -0.035681869834661484, 0.28718864917755127, -0.12059469521045685, 0.06113225594162941, 0.17777973413467407, -0.03445209562778473, 0.055111613124608994, 0.07824929803609848, 0.008775880560278893, -0.06970690190792084, 0.07790913432836533, 0.06454203277826309, -0.09385077655315399, -0.2103768140077591, -0.030449898913502693, -0.002677303273230791, 0.032931942492723465, 0.13501302897930145, 0.06171771138906479, 0.04976751655340195, -0.003789554350078106, -0.10182452946901321, 0.03942914307117462, 0.026719041168689728, 0.10917861014604568, -0.06208149716258049, -0.019909191876649857, 0.05088859423995018, -0.06316053122282028, 0.02252996899187565, 0.14400941133499146, 0.049629565328359604, 0.20078125596046448, -0.06977296620607376, 0.09393402189016342, 0.0799877792596817, 0.10311265289783478, 0.0414864644408226, 0.009552229195833206, 0.00530952587723732, 0.012311302125453949, -0.003503686748445034, -0.10183964669704437, -0.020765716210007668, 0.04796043410897255, 0.030315333977341652, -0.02487095445394516, -0.0363583043217659, -0.04149015620350838, 0.03841487318277359, 0.2281133383512497, -0.028073091059923172, -0.18163862824440002, -0.11848043650388718, 0.03461256995797157, -0.07746671885251999, -0.04950617998838425, -0.029558811336755753, 0.07930648326873779, -0.22135038673877716, 0.06434546411037445, -0.03202930465340614, 0.10747625678777695, -0.12513169646263123, 0.009714907966554165, 0.07553523033857346, 0.047604262828826904, -0.06422004848718643, 0.10177028924226761, -0.15159820020198822, 0.05741199478507042, -0.010170944966375828, 0.057899292558431625, -0.0880228579044342, 0.028140762820839882, -0.0012722429819405079, 0.04590016230940819, 0.0859888419508934, 0.009381162002682686, 0.03575857728719711, -0.0074527631513774395, -0.06123999506235123, 0.016863292083144188, 0.05628722161054611, -0.127872496843338, 0.12272430211305618, -0.023631177842617035, 0.0409078374505043, -0.052058786153793335, -0.1023796796798706, -0.08586155623197556, -0.17360557615756989, 0.09812761098146439, -0.1317284256219864, -0.00011691972758853808, -0.0726015642285347, -0.036641720682382584, 0.03960901126265526, 0.270164430141449, -0.055193617939949036, -0.0715051144361496, -0.13554084300994873, 0.021699003875255585, 0.15465129911899567, -0.08715448528528214, 0.007384101860225201, -0.017297521233558655, 0.22481873631477356, -0.0034754339139908552, -0.12489418685436249, -0.02772211655974388, -0.05765925720334053, -0.1658594161272049, -0.002014733385294676, 0.1658070981502533, 0.06116204336285591, 0.024323854595422745, 0.007803486194461584, -0.025438791140913963, -0.04993841052055359, -0.1778210997581482, 0.01594243012368679, 0.16907672584056854, -0.018959635868668556, -0.00638067489489913, 0.049674056470394135, 0.013685869053006172, -0.1377350091934204, 0.020288920029997826, 0.04596706107258797, 0.17853344976902008, -0.07899795472621918, 0.19539494812488556, 0.04461056739091873, -0.08435992151498795, -0.15106552839279175, 0.006002765614539385, 0.042416252195835114, 0.04005195572972298, 0.05909349396824837, -0.21239472925662994, 0.037454914301633835, 0.04615055024623871, 0.006529366597533226, 0.036045946180820465, -0.3309102952480316, -0.16196571290493011, -0.003842287929728627, 0.008774876594543457, -0.16520360112190247, -0.0374908521771431, -0.03554637357592583, -0.0959891676902771, -0.24500131607055664, 0.10340961068868637, -0.11269398778676987, 0.07056784629821777, 0.032032594084739685, 0.10494937002658844, 0.050163667649030685, -0.04310880973935127, 0.13736896216869354, -0.022143689915537834, 0.07072759419679642, -0.09212689101696014, -0.05927073583006859, 0.07963497936725616, -0.07390367239713669, 0.09775973856449127, 0.03828227147459984, 0.08664549887180328, -0.08787289261817932, -0.09178874641656876, -0.05809440463781357, -0.0067766341380774975, -0.046775806695222855, -0.09175128489732742, -0.09222030639648438, 0.0809594988822937, 0.11358717083930969, -0.04823114350438118, -0.10106451064348221, -0.07542244344949722, 0.0023658203426748514, 0.04219628870487213, 0.12520831823349, 0.07097179442644119, -0.061532001942396164, 0.0024714674800634384, 0.02105887234210968, 0.005344785749912262, -0.18563447892665863, 0.044509705156087875, 0.09580676257610321, 0.03549991548061371, 0.10142180323600769, 0.005050210282206535, -0.1729799211025238, 0.005833116360008717, 0.05134790763258934, -0.16754814982414246, -0.13124780356884003, -0.03700610250234604, 0.0442822203040123, -0.10476755350828171, -0.0475839227437973, 0.1361953765153885, -0.03351741284132004, -0.03687518090009689, 0.0023661137092858553, 0.03166758641600609, -0.030120043084025383, 0.08537371456623077, -0.012159546837210655, 0.04361077398061752, -0.07212783396244049, 0.11774580180644989, 0.06677866727113724, 0.005612627137452364, 0.0382939912378788, 0.05466965213418007, -0.09564084559679031, 0.017576437443494797, -0.1194615289568901, 0.0013125335099175572, -0.021525228396058083, -0.014490285888314247, 0.03082827664911747, -0.030205436050891876, 0.04416866973042488, 0.08571092784404755, -0.016361229121685028, 0.10775718837976456, -0.05116510018706322, 0.02097313106060028, -0.12225128710269928, 0.06977297365665436, 0.027691684663295746, 0.017862603068351746, -0.10459409654140472, 0.2005518078804016, 0.04066532850265503, 0.11708678305149078, -0.03808780759572983, -0.07258312404155731, -0.042927663773298264, -0.013661812990903854, -0.07165161520242691, -0.040941596031188965, -0.08702607452869415, -0.024018654599785805, 0.0012764972634613514, -0.025212362408638, -0.031071914359927177, 0.045381736010313034, -0.03210246562957764, -0.05668500065803528, -0.07541583478450775, 0.045283976942300797, -0.1465435028076172, 0.03904139995574951, 0.11933544278144836, -0.054642967879772186, 0.13200412690639496, 0.05207604542374611, -0.03607482090592384, 0.026066556572914124, -0.137934610247612, 0.05405566841363907, 0.0001977040956262499, 0.03221767395734787, 0.014078964479267597, -0.14182732999324799, 0.0061094495467841625, -0.030951522290706635, -0.07526276260614395, 0.004127834923565388, -0.013144327327609062, -0.1290692687034607, -0.008875391446053982, 0.10586721450090408, -0.006347468122839928, -0.06268920749425888, 0.07062258571386337, 0.0535663478076458, 0.029498575255274773, 0.054592158645391464, -0.0019050434930250049, 0.06726405769586563, -0.17706909775733948, -0.06838563829660416, -0.005996997933834791, 0.033410534262657166, 0.05244560167193413, -0.036999188363552094, 0.03445248678326607, -0.01660202257335186, 0.2246786206960678, 0.02556726336479187, 0.000390276632970199, 0.032425690442323685, -0.06004628911614418, -0.0021142582409083843, 0.03863292932510376, 0.07462170720100403, -0.010089929215610027, -0.02045772410929203, 0.006608576979488134, -0.023661378771066666, -0.10532280802726746, -0.02598837949335575, 0.08788829296827316, -0.0019267579773440957, 0.21390657126903534, -0.0700998306274414, 0.07436013966798782, -0.013110069558024406, -0.0973045602440834, -0.03810364007949829, -0.04996050149202347, 0.025076912716031075, -0.061689555644989014, 0.052420273423194885, 0.1871088743209839, -0.14259248971939087, 0.1211489662528038, 0.05229141190648079, -0.055540770292282104, -0.12146388739347458, -0.19389940798282623, -0.006433224771171808, -0.03438503295183182, 0.021785102784633636, -0.13788384199142456, 0.09600318223237991, 0.019040929153561592, 0.04080084338784218, -0.05864458531141281, 0.13657021522521973, -0.09377431124448776, -0.14413660764694214, 0.040837522596120834, 0.018528059124946594, 0.03092474304139614, 0.03619556128978729, 0.08845943212509155, 0.03938323259353638, 0.005433766171336174, 0.0729227364063263, 0.04291345551609993, 0.035810526460409164, 0.032824140042066574, -0.03216468542814255, -0.03847623988986015, 0.025136638432741165, -0.0157778263092041, 0.013614587485790253, 0.1032915860414505, 0.06795794516801834, -0.018710404634475708, -0.017895042896270752, 0.3126494586467743, -0.011811628937721252, -0.033175233751535416, -0.18164336681365967, 0.15896353125572205, 0.007835575379431248, 0.004800891969352961, 0.017632678151130676, -0.11767018586397171, 0.00992448441684246, 0.11849025636911392, 0.14941288530826569, -0.032445959746837616, 0.026356007903814316, -0.02334718219935894, 0.019616207107901573, 0.033713314682245255, 0.11809374392032623, 0.056408755481243134, 0.19779203832149506, -0.021447567269206047, 0.06013065576553345, -0.016187533736228943, -0.02203337289392948, 0.019541874527931213, 0.10245659202337265, -0.04559880867600441, 0.003991744015365839, -0.05357645824551582, 0.09935669600963593, -0.06253989040851593, -0.3048143684864044, -0.04437296837568283, -0.015724556520581245, -0.08626849204301834, 0.08047134429216385, -0.02921312116086483, -0.019089212641119957, 0.07942545413970947, 0.026252947747707367, -0.0482945553958416, 0.16445888578891754, 0.05023134499788284, -0.04843490198254585, -0.008189132437109947, 0.11565620452165604, -0.031999796628952026, 0.15904231369495392, -0.04018891230225563, 0.018717139959335327, 0.06910955905914307, 0.008690696209669113, -0.12764041125774384, 0.0038497839123010635, 0.03872441500425339, -0.05382047966122627, -0.028826287016272545, 0.19276930391788483, 0.0172952339053154, 0.02228037267923355, 0.07176301628351212, -0.05360965058207512, 0.017053445801138878, -0.024762872606515884, 0.06605656445026398, -0.12907670438289642, 0.06485981494188309, -0.07445468753576279, 0.11529465019702911, 0.16554780304431915, -0.06305480003356934, 0.04033574461936951, -0.061687637120485306, 0.008866281248629093, -0.032179076224565506, 0.070604607462883, -0.01605549082159996, -0.11478105187416077, 0.0014971659984439611, 0.03322109207510948, 0.00977516919374466, -0.17348407208919525, -0.08349978178739548, 0.08309164643287659, -0.05254201591014862, 0.03074713796377182, 0.17644311487674713, 0.002817416563630104, 0.05849447846412659, -0.03573787584900856, -0.005333573557436466, -0.001966385869309306, 0.11129746586084366, -0.18006335198879242, -0.07753442972898483 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6aa21ea8658908051e15b8d7808b5196.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Loud Luxury</div> <a href="https://genius.com/artists/loud-luxury"> <div style="text-align: center; font-size: 14px;">@loud-luxury</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Loud Luxury. Dataset is available [here](https://huggingface.co/datasets/huggingartists/loud-luxury). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/loud-luxury") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2a6kq74a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Loud Luxury's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2l3op3mf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2l3op3mf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/loud-luxury') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/loud-luxury") model = AutoModelWithLMHead.from_pretrained("huggingartists/loud-luxury") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/loud-luxury"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/loud-luxury
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/loud-luxury", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/loud-luxury #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Loud Luxury</div> <a href="URL <div style="text-align: center; font-size: 14px;">@loud-luxury</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Loud Luxury. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Loud Luxury's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Loud Luxury.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Loud Luxury's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/loud-luxury #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Loud Luxury.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Loud Luxury's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/loud-luxury #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Loud Luxury.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Loud Luxury's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02667444385588169, 0.14541125297546387, -0.0026224073953926563, 0.04502592980861664, 0.09622535854578018, 0.008848988451063633, 0.0817490816116333, 0.10705623030662537, 0.014314798638224602, 0.08227535337209702, 0.06518693268299103, 0.020889582112431526, 0.07090962678194046, 0.09411927312612534, 0.07877903431653976, -0.2353791743516922, 0.03478749096393585, -0.08734497427940369, 0.010549068450927734, 0.10591933876276016, 0.1009487584233284, -0.06097458302974701, 0.07628874480724335, 0.03208854794502258, -0.06845688074827194, 0.011727314442396164, 0.004429072141647339, -0.056907594203948975, 0.09386080503463745, 0.061463408172130585, 0.03846658766269684, 0.027388114482164383, 0.06459804624319077, -0.19655540585517883, 0.0312057975679636, 0.12167221307754517, 0.03003784641623497, 0.07639214396476746, 0.04448191449046135, -0.0777917355298996, 0.1437312215566635, -0.016282428056001663, 0.09321024268865585, 0.056114960461854935, -0.11272484064102173, -0.14054062962532043, -0.13584981858730316, 0.1052078828215599, 0.07861923426389694, 0.08101512491703033, -0.028602786362171173, 0.06602463126182556, -0.02768237516283989, 0.041798971593379974, 0.23621629178524017, -0.24277271330356598, -0.010408016853034496, 0.07498127967119217, 0.06332337856292725, 0.02971307933330536, -0.08072058111429214, 0.016853822395205498, 0.04239141568541527, 0.03035317175090313, 0.04596523940563202, -0.01521162036806345, 0.1622653752565384, 0.022680366411805153, -0.105804942548275, -0.07716426998376846, 0.11169945448637009, -0.01753249391913414, -0.0746484100818634, -0.14290070533752441, -0.007871353067457676, -0.0330449640750885, 0.03172166272997856, 0.0021260068751871586, 0.0006790997576899827, 0.012340499088168144, -0.036881186068058014, -0.11373985558748245, -0.08121193200349808, -0.03794357180595398, -0.014054619707167149, 0.05923233553767204, 0.03822445869445801, 0.035923149436712265, -0.08325771242380142, 0.21797160804271698, -0.026252245530486107, -0.10228337347507477, -0.051989976316690445, -0.09863141179084778, -0.09023602306842804, -0.04757719486951828, 0.00699567561969161, 0.010238724760711193, -0.030460722744464874, 0.15496133267879486, -0.03277241438627243, 0.022588862106204033, -0.0255803894251585, 0.0018718668725341558, 0.14118342101573944, 0.1335553079843521, -0.11029420793056488, -0.048279449343681335, 0.06437966227531433, -0.002398353535681963, -0.06055757403373718, -0.049113716930150986, -0.008138773962855339, -0.016851788386702538, 0.03822075203061104, 0.07843924313783646, 0.07117543369531631, 0.05162262171506882, 0.002845761366188526, -0.05851979926228523, 0.07702808082103729, -0.12614275515079498, 0.011387859471142292, -0.005489412695169449, -0.04585518687963486, 0.014594570733606815, 0.05484198406338692, 0.015588841401040554, -0.09742454439401627, 0.10852785408496857, -0.06277063488960266, -0.05334528908133507, -0.07899466902017593, -0.09175360202789307, -0.006107680965214968, -0.036342546343803406, -0.04249566048383713, -0.07068797945976257, -0.17843545973300934, -0.04381537809967995, 0.024564949795603752, -0.05133228749036789, -0.03693656250834465, 0.03055405616760254, -0.027974529191851616, 0.014064094983041286, -0.01875424012541771, -0.025218937546014786, -0.029049603268504143, 0.03789703547954559, -0.06586326658725739, 0.03241002932190895, 0.06145159527659416, 0.04453495144844055, -0.11357587575912476, 0.07018362730741501, -0.1384296417236328, 0.12571845948696136, -0.01770726591348648, 0.008539416827261448, -0.09493520110845566, -0.07971522957086563, -0.03173168748617172, -0.02429358847439289, 0.011829577386379242, 0.09909120202064514, -0.18138644099235535, -0.0350189283490181, 0.20777861773967743, -0.0762634426355362, -0.08438581973314285, 0.07703027874231339, -0.07429525256156921, 0.04601684957742691, 0.12091857939958572, 0.07631193846464157, 0.15353700518608093, -0.12133472412824631, -0.07478594034910202, -0.05042969062924385, -0.07145339995622635, 0.18060779571533203, 0.041347190737724304, -0.026668941602110863, 0.025803931057453156, 0.004173059482127428, -0.02552209049463272, -0.00893394835293293, -0.022637128829956055, -0.03628966957330704, -0.026905883103609085, -0.008892277255654335, 0.0019498775945976377, -0.043950874358415604, -0.05964575335383415, -0.02935340255498886, -0.10294990241527557, 0.06079699099063873, 0.1048736572265625, -0.05814147740602493, 0.011464856564998627, -0.0933636873960495, 0.03651955723762512, -0.030571304261684418, 0.005402708891779184, -0.17170052230358124, -0.03624238073825836, 0.02814827300608158, -0.061093203723430634, 0.08167489618062973, 0.030617672950029373, 0.040559735149145126, 0.06701645255088806, -0.01682901754975319, -0.0007317663985304534, -0.04402092844247818, -0.009679041802883148, -0.03337688371539116, -0.1619640588760376, -0.04801582172513008, -0.045460302382707596, 0.08218902349472046, -0.10462399572134018, 0.003724552458152175, 0.08568830788135529, 0.13514693081378937, 0.0244901180267334, -0.06655953079462051, 0.022852091118693352, -0.04143357276916504, -0.030126363039016724, -0.10094715654850006, -0.043369125574827194, 0.008412559516727924, -0.019041553139686584, 0.14440776407718658, -0.15689311921596527, -0.08590390533208847, 0.11805811524391174, 0.1154940277338028, -0.09239935129880905, 0.04438895359635353, -0.0742240846157074, -0.015165654942393303, -0.057597119361162186, -0.04928058013319969, 0.2551465332508087, 0.02911434881389141, 0.08861955255270004, -0.09533846378326416, -0.08595719933509827, -0.004942486993968487, -0.03792770579457283, -0.028954027220606804, 0.029962973669171333, 0.023432612419128418, -0.16431792080402374, 0.043222084641456604, -0.009349841624498367, 0.09046795964241028, 0.20233546197414398, 0.0349210724234581, -0.0873202458024025, -0.05687537416815758, -0.06165614724159241, -0.0013525222893804312, 0.08637277781963348, -0.0010655299993231893, 0.030360624194145203, 0.04087938368320465, 0.04360651597380638, 0.042424846440553665, -0.11651742458343506, 0.01646946743130684, 0.06655434519052505, -0.03406890481710434, -0.03888993337750435, 0.01624426431953907, 0.0228890273720026, 0.08994995057582855, 0.08511310070753098, 0.11781363189220428, -0.057638056576251984, -0.05377942696213722, -0.13663989305496216, 0.12649115920066833, -0.08919721096754074, -0.21564199030399323, -0.1333148181438446, -0.06728271394968033, 0.012455855496227741, 0.014372406527400017, 0.03969220444560051, -0.05476939305663109, -0.03583426773548126, -0.09189172089099884, 0.09474262595176697, -0.03883509337902069, -0.012748301029205322, 0.006815621163696051, 0.02490498684346676, -0.0205770842730999, -0.11718299239873886, -0.03249860554933548, 0.022061176598072052, -0.08370655030012131, -0.010534601286053658, 0.03380162641406059, 0.04045437276363373, 0.153951495885849, -0.007554192561656237, 0.006901109125465155, -0.021319599822163582, 0.27045413851737976, -0.11325724422931671, 0.06541553884744644, 0.17726482450962067, 0.0024309626314789057, 0.056838203221559525, 0.08078234642744064, 0.007447909563779831, -0.05539242550730705, 0.06429318338632584, 0.06611476093530655, -0.07388878613710403, -0.20388023555278778, -0.047997042536735535, -0.015344616957008839, 0.0025414798874408007, 0.10774891823530197, 0.0439201183617115, 0.04828665405511856, 0.012056454084813595, -0.10561619699001312, 0.046684835106134415, 0.023428557440638542, 0.09896587580442429, -0.06211135536432266, -0.007834081538021564, 0.05000433698296547, -0.055342696607112885, 0.027180099859833717, 0.13021224737167358, 0.034660473465919495, 0.20632344484329224, -0.06845374405384064, 0.08696319907903671, 0.08172725886106491, 0.10514192283153534, 0.0311578419059515, 0.01665591076016426, -0.024553755298256874, 0.02337043546140194, 0.004819181747734547, -0.09609799832105637, -0.011063889600336552, 0.04580840468406677, 0.04254535213112831, -0.006907769478857517, -0.048364341259002686, -0.06823445111513138, 0.051954567432403564, 0.23402777314186096, 0.024904189631342888, -0.15715689957141876, -0.1012081578373909, 0.06545370817184448, -0.05322887375950813, -0.06374603509902954, -0.008765348233282566, 0.07001326978206635, -0.21131867170333862, 0.044681962579488754, -0.026071621105074883, 0.11121637374162674, -0.11757347732782364, 0.0028439669404178858, 0.07181574404239655, 0.045914579182863235, -0.0641656219959259, 0.07846853882074356, -0.15942777693271637, 0.07249446958303452, -0.0006004423485137522, 0.07661817967891693, -0.067807137966156, 0.025694845244288445, 0.0200355127453804, 0.02902551367878914, 0.08735472708940506, 0.016644125804305077, 0.024564120918512344, -0.02810937725007534, -0.03502322733402252, -0.0007759456639178097, 0.061799898743629456, -0.10050790011882782, 0.12247845530509949, -0.03694985806941986, 0.03043275512754917, -0.027500653639435768, -0.08330123126506805, -0.09744442999362946, -0.1421004831790924, 0.07060316205024719, -0.10342336446046829, -0.0008856220520101488, -0.07601460814476013, -0.016468970105051994, 0.015285828150808811, 0.23147167265415192, -0.09105044603347778, -0.07838896661996841, -0.13459093868732452, -0.006709097418934107, 0.14123757183551788, -0.07591135799884796, 0.006601888220757246, -0.01107501145452261, 0.17890959978103638, -0.013162247836589813, -0.1301867663860321, 0.00011297302262391895, -0.0656966120004654, -0.17866069078445435, -0.031452566385269165, 0.1661173403263092, 0.06726347655057907, 0.03858000040054321, 0.0015718250069767237, 0.0072704944759607315, -0.051361702382564545, -0.1661023497581482, 0.029724447056651115, 0.152927428483963, -0.003120630979537964, 0.034611914306879044, 0.02554418332874775, 0.009140269830822945, -0.12375352531671524, 0.015724122524261475, 0.06452137231826782, 0.19233949482440948, -0.08405192196369171, 0.1869753748178482, 0.02419622801244259, -0.08678027987480164, -0.17511223256587982, 0.023606332018971443, 0.01007089950144291, 0.02977260947227478, 0.0205724835395813, -0.1824376881122589, 0.030823027715086937, 0.020676666870713234, -0.013192637823522091, 0.05351131781935692, -0.3334403932094574, -0.15350180864334106, 0.016811208799481392, 0.01084784884005785, -0.09737014025449753, -0.04395449161529541, -0.04186544567346573, -0.08223898708820343, -0.24273328483104706, 0.09467601776123047, -0.12676486372947693, 0.08281859010457993, 0.009469224140048027, 0.07583469152450562, 0.04755930230021477, -0.05682608485221863, 0.12585660815238953, -0.029016004875302315, 0.059319622814655304, -0.09006812423467636, -0.04267873987555504, 0.08804048597812653, -0.0631924420595169, 0.10117892175912857, 0.028356559574604034, 0.08902668207883835, -0.11325804889202118, -0.07125464826822281, -0.07754606753587723, 0.013722069561481476, -0.05627591907978058, -0.10046374797821045, -0.09275440126657486, 0.08932877331972122, 0.12267964333295822, -0.040991391986608505, -0.09885723143815994, -0.04939655587077141, 0.003870214568451047, 0.06376571953296661, 0.10343585908412933, 0.08723349869251251, -0.09970148652791977, 0.01057393103837967, 0.009593666531145573, 0.025818077847361565, -0.15782468020915985, 0.03976212814450264, 0.08329463005065918, 0.04099231958389282, 0.10592912137508392, 0.012177817523479462, -0.16518639028072357, 0.014506278559565544, 0.04617317020893097, -0.15972088277339935, -0.11172866076231003, -0.04306861758232117, 0.01463851798325777, -0.09352270513772964, -0.05430687218904495, 0.13192574679851532, -0.03828291594982147, -0.035960085690021515, -0.002883191918954253, 0.052047934383153915, -0.055384766310453415, 0.0916210487484932, 0.019323548302054405, 0.04910331591963768, -0.06880345940589905, 0.10784763097763062, 0.06172538921236992, 0.02563697285950184, 0.036966633051633835, 0.0666947290301323, -0.0857165977358818, 0.005903624463826418, -0.07803889364004135, 0.01578548364341259, -0.04184729605913162, -0.013051881454885006, 0.0077553377486765385, -0.04904349520802498, 0.03415551409125328, 0.0980229526758194, -0.009753759950399399, 0.10354943573474884, -0.03534732758998871, -0.003266839776188135, -0.13109801709651947, 0.07338318228721619, 0.03182465210556984, 0.01975688524544239, -0.11238197237253189, 0.1845540702342987, 0.02658802643418312, 0.09287609159946442, -0.041596509516239166, -0.056618571281433105, -0.07354894280433655, -0.004947442561388016, -0.13422903418540955, -0.04413101077079773, -0.08072776347398758, -0.02920505963265896, -0.013569297268986702, -0.03763848915696144, -0.014747263863682747, 0.04964868724346161, -0.03244595602154732, -0.058081939816474915, -0.060456372797489166, 0.04943529888987541, -0.15038251876831055, 0.02636592648923397, 0.12058936804533005, -0.05917523801326752, 0.11856861412525177, 0.05518637225031853, -0.032807569950819016, 0.018423469737172127, -0.12451274693012238, 0.021415548399090767, -0.02977251634001732, 0.013646125793457031, 0.025710685178637505, -0.1421608328819275, 0.008575277402997017, -0.052614323794841766, -0.06288015842437744, 0.007548248860985041, 0.008479172363877296, -0.1239946261048317, 0.002701500430703163, 0.06796041876077652, -0.0035565823782235384, -0.07064682990312576, 0.06484726816415787, 0.06609697639942169, 0.03277047723531723, 0.05512220785021782, -0.037229277193546295, 0.07511723786592484, -0.16948623955249786, -0.04684660956263542, 0.003617270151153207, 0.026881583034992218, 0.033498749136924744, -0.012131938710808754, 0.039295271039009094, -0.016151713207364082, 0.20396795868873596, 0.004529993981122971, -0.022739915177226067, 0.041017286479473114, -0.047363393008708954, -0.004661868792027235, 0.04023047909140587, 0.07287590950727463, -0.035240039229393005, -0.02849031612277031, -0.014624098315834999, -0.01649632304906845, -0.08008059859275818, -0.030632009729743004, 0.10731775313615799, 0.057282671332359314, 0.18419770896434784, -0.04598138853907585, 0.07044322788715363, -0.024043546989560127, -0.11452946811914444, -0.0201205275952816, -0.03925883397459984, 0.02875269018113613, -0.07288475334644318, 0.07278700172901154, 0.16398994624614716, -0.15663045644760132, 0.11470267921686172, 0.018350718542933464, -0.05274665355682373, -0.104127898812294, -0.16175195574760437, -0.01680724509060383, -0.031199563294649124, 0.033634789288043976, -0.1303434818983078, 0.08509156852960587, 0.023718398064374924, 0.03300505504012108, -0.06029817461967468, 0.11680258065462112, -0.08226491510868073, -0.10719078034162521, 0.0306928139179945, 0.026696665212512016, 0.026754124090075493, 0.03929644078016281, 0.07535602152347565, 0.030300987884402275, 0.006655288394540548, 0.06309021264314651, 0.04521011561155319, 0.01751471497118473, 0.035440269857645035, -0.019518090412020683, -0.05065522715449333, 0.031862761825323105, 0.0018498015124350786, 0.029395639896392822, 0.10406699776649475, 0.06861072033643723, -0.02377970889210701, -0.030651256442070007, 0.29780641198158264, -0.03843638300895691, -0.048472270369529724, -0.17114786803722382, 0.16736695170402527, 0.010930332355201244, -0.012954245321452618, 0.025808770209550858, -0.12825410068035126, 0.00489174947142601, 0.14612531661987305, 0.18545030057430267, -0.040438905358314514, 0.02097479999065399, -0.03041529282927513, 0.013314537703990936, 0.028880950063467026, 0.08364520221948624, 0.06469482183456421, 0.21130996942520142, -0.04455435648560524, 0.059791065752506256, -0.009798616170883179, -0.02190185897052288, -0.009753364138305187, 0.10536129772663116, -0.037036310881376266, 0.005142820067703724, -0.060811519622802734, 0.09873398393392563, -0.06364292651414871, -0.2787925601005554, -0.014118868857622147, -0.044863179326057434, -0.09662271291017532, 0.05657001957297325, -0.02320961095392704, -0.01753293164074421, 0.08329810947179794, 0.02234731800854206, -0.03329336270689964, 0.12609191238880157, 0.03806949779391289, -0.053877029567956924, -0.010526109486818314, 0.08927474170923233, -0.01838833838701248, 0.18886011838912964, -0.024557719007134438, 0.005514946766197681, 0.08771024644374847, 0.0197039432823658, -0.11892266571521759, 0.011077075265347958, 0.042382631450891495, -0.0874154269695282, -0.028831683099269867, 0.19940918684005737, 0.007030908949673176, 0.03769981488585472, 0.06742608547210693, -0.06256911903619766, 0.029187602922320366, -0.06722534447908401, 0.04354618117213249, -0.14805831015110016, 0.05654677376151085, -0.07787434011697769, 0.14422772824764252, 0.1797458529472351, -0.07096581161022186, 0.020478064194321632, -0.06259749829769135, 0.0003027346101589501, -0.01262617390602827, 0.07907985895872116, -0.019532442092895508, -0.11067158728837967, 0.019851932302117348, 0.0339142344892025, 0.020585237070918083, -0.19850456714630127, -0.08016026765108109, 0.04893918335437775, -0.04383350536227226, 0.015256296843290329, 0.17278346419334412, 0.04473968967795372, 0.06409795582294464, -0.03205138444900513, -0.007495461031794548, -0.014713102020323277, 0.11140193790197372, -0.15381348133087158, -0.08490092307329178 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a8a06b82765b2451bf65b21cf4384901.291x291x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LoveRance</div> <a href="https://genius.com/artists/loverance"> <div style="text-align: center; font-size: 14px;">@loverance</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from LoveRance. Dataset is available [here](https://huggingface.co/datasets/huggingartists/loverance). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/loverance") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2cr3cjd1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on LoveRance's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/18xbgyqf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/18xbgyqf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/loverance') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/loverance") model = AutoModelWithLMHead.from_pretrained("huggingartists/loverance") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/loverance"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/loverance
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/loverance", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/loverance #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">LoveRance</div> <a href="URL <div style="text-align: center; font-size: 14px;">@loverance</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from LoveRance. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on LoveRance's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from LoveRance.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on LoveRance's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/loverance #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from LoveRance.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on LoveRance's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/loverance #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from LoveRance.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on LoveRance's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01039214339107275, 0.1647798717021942, -0.003074903041124344, 0.040661461651325226, 0.08839226514101028, 0.01508511882275343, 0.07443279027938843, 0.10481492429971695, -0.011181763373315334, 0.0776703879237175, 0.07213171571493149, 0.0016354038380086422, 0.07304377108812332, 0.10935010761022568, 0.07867181301116943, -0.2561354637145996, 0.02586478367447853, -0.09313265234231949, 0.00916676502674818, 0.11496680229902267, 0.10441214591264725, -0.05197528377175331, 0.08806673437356949, 0.02858116663992405, -0.06268340349197388, 0.021897172555327415, -0.01091479416936636, -0.05531661957502365, 0.08630023151636124, 0.06649298220872879, 0.029307182878255844, 0.024537036195397377, 0.06354064494371414, -0.1862359493970871, 0.02833511494100094, 0.12642167508602142, 0.029750023037195206, 0.06820959597826004, 0.049068983644247055, -0.09266619384288788, 0.1728605031967163, -0.03169313445687294, 0.10284736007452011, 0.045723117887973785, -0.115420863032341, -0.1324845552444458, -0.13001319766044617, 0.08612562716007233, 0.10123415291309357, 0.09280302375555038, -0.02884487807750702, 0.0563802570104599, -0.010726320557296276, 0.038917336612939835, 0.24155093729496002, -0.22232447564601898, -0.020011240616440773, 0.09428314864635468, 0.035581186413764954, 0.03875010833144188, -0.07782632857561111, 0.01866609789431095, 0.04971466213464737, 0.024934573099017143, 0.06128155440092087, -0.015759268775582314, 0.20112033188343048, 0.0206593107432127, -0.10114985704421997, -0.09047531336545944, 0.10866834223270416, -0.026589641347527504, -0.07422956824302673, -0.14788544178009033, -0.00406659347936511, -0.016453713178634644, 0.0326908640563488, -0.010953960940241814, -0.0007055163150653243, 0.004175192676484585, -0.031293947249650955, -0.1063656210899353, -0.08850106596946716, -0.030068427324295044, -0.014259785413742065, 0.05870981141924858, 0.025382377207279205, 0.03535682335495949, -0.07336147874593735, 0.23031634092330933, -0.04010280966758728, -0.10122247040271759, -0.0473812036216259, -0.09245869517326355, -0.08021149784326553, -0.05753293260931969, 0.002784731099382043, 0.005749191157519817, -0.05026886612176895, 0.14294737577438354, -0.030507177114486694, 0.033010609447956085, -0.005768659058958292, -0.01812637224793434, 0.15446306765079498, 0.12933427095413208, -0.0971357524394989, -0.03989271819591522, 0.05493774637579918, -0.010510644875466824, -0.06155131757259369, -0.0552288256585598, -0.0030597876757383347, -0.026801232248544693, 0.027349598705768585, 0.08859805017709732, 0.056678496301174164, 0.05660584941506386, 0.01756495051085949, -0.054962918162345886, 0.08876567333936691, -0.13773998618125916, 0.0156461913138628, -0.0005947121535427868, -0.045914918184280396, 0.025847844779491425, 0.048067186027765274, 0.009925826452672482, -0.1042565181851387, 0.12033753842115402, -0.05513840168714523, -0.05136018991470337, -0.08270660787820816, -0.08151615411043167, 0.0035747173242270947, -0.036345623433589935, -0.040331944823265076, -0.07307370007038116, -0.16541001200675964, -0.050721459090709686, 0.025132805109024048, -0.04683801904320717, -0.0455281063914299, 0.024796348065137863, -0.016026092693209648, 0.009978443384170532, -0.009970269165933132, -0.018220817670226097, -0.02784276381134987, 0.023826532065868378, -0.06548693776130676, 0.029698729515075684, 0.07159221172332764, 0.04239002615213394, -0.1183541938662529, 0.07817830890417099, -0.14336492121219635, 0.13068509101867676, -0.011393342167139053, 0.022998567670583725, -0.09996633231639862, -0.09244709461927414, -0.025694742798805237, -0.037663016468286514, -0.0010065773967653513, 0.10096484422683716, -0.18540994822978973, -0.0358731746673584, 0.19423893094062805, -0.07796446979045868, -0.08509214222431183, 0.0688798725605011, -0.0745285227894783, 0.03489701449871063, 0.126169353723526, 0.06287755072116852, 0.17381475865840912, -0.10855495184659958, -0.06097052991390228, -0.04200514778494835, -0.06815978139638901, 0.20383702218532562, 0.04314753785729408, -0.015366114675998688, 0.01949983648955822, 0.01314500905573368, -0.04394090175628662, -0.0331890769302845, -0.014666134491562843, -0.04542562738060951, -0.020725112408399582, 0.0070958915166556835, -0.015316997654736042, -0.04645112529397011, -0.06894279271364212, -0.028591260313987732, -0.09883959591388702, 0.026975398883223534, 0.09999969601631165, -0.06670795381069183, 0.010053669102489948, -0.08757827430963516, 0.014615277759730816, -0.006471486762166023, 0.01747228391468525, -0.17632773518562317, -0.06331818550825119, 0.021284323185682297, -0.06828071177005768, 0.08622331917285919, 0.0268484428524971, 0.03968028724193573, 0.05570797994732857, -0.011247199028730392, 0.020484386011958122, -0.04245416074991226, -0.021374119445681572, -0.026873771101236343, -0.14491622149944305, -0.0583537220954895, -0.04865177348256111, 0.089472696185112, -0.12444979697465897, 0.0045395176857709885, 0.09458278864622116, 0.12774448096752167, 0.019284473732113838, -0.06057646870613098, 0.018022408708930016, -0.03197538107633591, -0.026597589254379272, -0.10789819806814194, -0.051439620554447174, 0.012394954450428486, -0.03210010379552841, 0.15439575910568237, -0.1774618923664093, -0.09329496324062347, 0.10256555676460266, 0.1336509883403778, -0.1006038710474968, 0.028671318665146828, -0.07956375181674957, -0.011536368168890476, -0.055427562445402145, -0.03711343929171562, 0.2620042860507965, 0.036317888647317886, 0.07795987278223038, -0.10106948763132095, -0.09740225970745087, -0.0049650222063064575, -0.04663575440645218, -0.03958432376384735, 0.027277082204818726, 0.016869015991687775, -0.16522085666656494, 0.03557451814413071, 0.0036333994939923286, 0.09101606905460358, 0.19546861946582794, 0.03834107145667076, -0.09247971326112747, -0.054913848638534546, -0.07408204674720764, -0.006550391670316458, 0.04574727267026901, -0.00392762990668416, 0.029543114826083183, 0.041201625019311905, 0.053301677107810974, 0.0401657298207283, -0.11583907157182693, 0.015601498074829578, 0.0794638842344284, -0.036488715559244156, -0.04431125521659851, 0.017207030206918716, 0.020446104928851128, 0.07823850214481354, 0.08739431202411652, 0.13961978256702423, -0.07074388861656189, -0.05061614140868187, -0.15052036941051483, 0.1307629644870758, -0.07529143989086151, -0.22996313869953156, -0.1251152902841568, -0.06721387058496475, 0.014623809605836868, 0.004784900229424238, 0.03207559138536453, -0.044351935386657715, -0.0427166149020195, -0.10179724544286728, 0.07094115763902664, -0.05115382373332977, -0.01867961511015892, 0.013762942515313625, 0.024220535531640053, -0.026134125888347626, -0.10676916688680649, -0.03112337365746498, 0.04399444907903671, -0.1025540754199028, -0.006765898782759905, 0.03867434337735176, 0.034984979778528214, 0.15644650161266327, -0.01689990423619747, 0.004101846367120743, -0.02551843784749508, 0.28780460357666016, -0.11425823718309402, 0.05836397781968117, 0.16528138518333435, -0.017703866586089134, 0.06264814734458923, 0.07012125104665756, 0.0012135760625824332, -0.06349580734968185, 0.07002761214971542, 0.07631995528936386, -0.08049529790878296, -0.2051112949848175, -0.035130202770233154, -0.008967554196715355, 0.018284952268004417, 0.12010441720485687, 0.05290711671113968, 0.044814687222242355, 0.010489985346794128, -0.09940383583307266, 0.036765266209840775, 0.022145837545394897, 0.0995151549577713, -0.05261890962719917, -0.018584204837679863, 0.04014758765697479, -0.06171182915568352, 0.03371383622288704, 0.13474774360656738, 0.03500676900148392, 0.19943365454673767, -0.07274935394525528, 0.09382244199514389, 0.07049726694822311, 0.11349384486675262, 0.022883905097842216, 0.012892131693661213, -0.01614387147128582, 0.01312971580773592, 0.0016616331413388252, -0.09562661498785019, -0.013778644613921642, 0.04727604612708092, 0.033597785979509354, -0.031135864555835724, -0.04498432204127312, -0.059370871633291245, 0.04324844852089882, 0.23212912678718567, 0.005120907910168171, -0.17599718272686005, -0.09373238682746887, 0.05593530088663101, -0.06607992202043533, -0.058122336864471436, -0.021571017801761627, 0.061495281755924225, -0.21858888864517212, 0.07639165222644806, -0.01985114999115467, 0.11138053238391876, -0.11991797387599945, -0.004092714749276638, 0.08240766823291779, 0.04198034480214119, -0.05974040925502777, 0.09739428013563156, -0.17495420575141907, 0.0642380490899086, -0.01063198409974575, 0.07527566701173782, -0.07166000455617905, 0.025279929861426353, 0.006473563611507416, 0.051788605749607086, 0.08168339729309082, 0.017380163073539734, 0.006679147016257048, -0.00033682159846648574, -0.04566769301891327, 0.007809553761035204, 0.05952470004558563, -0.12291530519723892, 0.12417684495449066, -0.032999344170093536, 0.034369517117738724, -0.039612870663404465, -0.07558295875787735, -0.08117382973432541, -0.16059361398220062, 0.082692950963974, -0.12206310033798218, 0.003345194971188903, -0.06706244498491287, -0.020685795694589615, 0.04310239106416702, 0.24027761816978455, -0.03345223516225815, -0.07753587514162064, -0.13630732893943787, 0.007145235780626535, 0.1386491060256958, -0.07863517105579376, 0.007814775221049786, -0.011281149461865425, 0.19886399805545807, 0.0012848107144236565, -0.12566307187080383, -0.01860465668141842, -0.060363009572029114, -0.17341473698616028, -0.0024452528450638056, 0.1764567494392395, 0.06034380570054054, 0.030866587534546852, 0.0075175766833126545, -0.006264659576117992, -0.04302336275577545, -0.17310830950737, 0.036067813634872437, 0.15318414568901062, -0.023645762354135513, 0.009715783409774303, 0.05661638453602791, 0.015443707816302776, -0.13363218307495117, 0.014206049032509327, 0.0642462745308876, 0.18457244336605072, -0.06799618899822235, 0.18107125163078308, 0.02699429541826248, -0.09648564457893372, -0.16068299114704132, 0.020011695101857185, 0.027237102389335632, 0.030050382018089294, 0.035613689571619034, -0.19950129091739655, 0.022607536986470222, 0.03085404634475708, 0.0019995616748929024, 0.04262421280145645, -0.3325713872909546, -0.15133774280548096, 0.0009999970206990838, 0.012871062383055687, -0.10972090065479279, -0.035811152309179306, -0.034896157681941986, -0.09012369811534882, -0.2604965269565582, 0.1062806099653244, -0.10395582765340805, 0.06975960731506348, 0.018915826454758644, 0.10781463235616684, 0.0515759140253067, -0.04629352688789368, 0.12945491075515747, -0.039094217121601105, 0.06602703034877777, -0.10367641597986221, -0.04295516014099121, 0.08506056666374207, -0.06882801651954651, 0.10074921697378159, 0.02125057950615883, 0.08511951565742493, -0.09137339144945145, -0.08513060212135315, -0.07216498255729675, 0.003759685903787613, -0.05860481038689613, -0.09166596829891205, -0.09539066255092621, 0.08298838138580322, 0.12567046284675598, -0.05018635466694832, -0.11543156206607819, -0.053575169295072556, -0.01440588291734457, 0.05272983759641647, 0.12203405052423477, 0.07826241105794907, -0.07928872853517532, 0.011749288998544216, 0.01970585249364376, 0.01728094182908535, -0.1755320429801941, 0.047069232910871506, 0.09253747761249542, 0.044277843087911606, 0.09732094407081604, 0.006185369566082954, -0.16770155727863312, 0.0031041183974593878, 0.0544452965259552, -0.16603511571884155, -0.13734082877635956, -0.045477643609046936, 0.0031375905964523554, -0.11091429740190506, -0.07096877694129944, 0.12931951880455017, -0.04160316661000252, -0.035505298525094986, -0.0028088190592825413, 0.04694163426756859, -0.053047969937324524, 0.08887242525815964, -0.008921758271753788, 0.0380350761115551, -0.0642242580652237, 0.11877941340208054, 0.06451766937971115, 0.0022240672260522842, 0.043250322341918945, 0.08215689659118652, -0.08531507104635239, 0.011165921576321125, -0.08080685138702393, 0.0096566341817379, -0.03059668280184269, -0.015339060686528683, 0.024770086631178856, -0.0449448823928833, 0.035173628479242325, 0.08858946710824966, -0.013438429683446884, 0.11751405149698257, -0.034420210868120193, 0.012660733424127102, -0.13333219289779663, 0.06894506514072418, 0.045437704771757126, 0.02064751274883747, -0.1141657754778862, 0.19447782635688782, 0.02666531875729561, 0.09549515694379807, -0.03487726300954819, -0.06151001527905464, -0.0520474836230278, -0.011982277035713196, -0.09079927951097488, -0.04597124457359314, -0.09401115030050278, -0.025973746553063393, -0.0015427584294229746, -0.02729809284210205, -0.023059284314513206, 0.0414145402610302, -0.028135646134614944, -0.06594429910182953, -0.075515978038311, 0.046295735985040665, -0.1341513991355896, 0.036576032638549805, 0.12393811345100403, -0.054601047188043594, 0.12072091549634933, 0.06266722828149796, -0.03681550920009613, 0.02784177102148533, -0.13343912363052368, 0.04307377710938454, -0.008734729140996933, 0.01910327561199665, 0.01885879412293434, -0.16048207879066467, 0.006141484249383211, -0.03926093876361847, -0.06951762735843658, 0.005312259774655104, 0.0008530020713806152, -0.1339600682258606, -0.0006121035548858345, 0.09096869081258774, -0.024988483637571335, -0.06646203249692917, 0.05948767438530922, 0.0608491450548172, 0.029088640585541725, 0.060068387538194656, -0.017233897000551224, 0.08186465501785278, -0.17053884267807007, -0.053956788033246994, 0.008025296963751316, 0.03770941123366356, 0.03950636461377144, -0.015165931545197964, 0.04158629849553108, -0.023223362863063812, 0.19324295222759247, 0.026964111253619194, -0.03132617101073265, 0.04078302159905434, -0.04211756959557533, 0.012006925418972969, 0.044916700571775436, 0.0791434571146965, -0.026485566049814224, -0.0433841235935688, -0.008292057551443577, -0.022436434403061867, -0.09403228014707565, -0.04406425356864929, 0.11321081966161728, 0.030512521043419838, 0.19870762526988983, -0.06040998920798302, 0.07347677648067474, -0.011066819541156292, -0.12146035581827164, -0.019118791446089745, -0.03602977469563484, 0.03978028893470764, -0.07186676561832428, 0.05743178352713585, 0.1822415292263031, -0.16068683564662933, 0.12063729763031006, 0.019322818145155907, -0.05955243855714798, -0.1155376136302948, -0.20643524825572968, -0.022576747462153435, -0.03960028663277626, 0.03191171586513519, -0.13710571825504303, 0.0937487930059433, 0.022137261927127838, 0.031014664098620415, -0.0749519020318985, 0.12533031404018402, -0.08203975111246109, -0.12563882768154144, 0.04285680130124092, 0.02946440316736698, 0.03328888490796089, 0.05317624658346176, 0.08996491134166718, 0.024264773353934288, 0.007460868451744318, 0.06852972507476807, 0.04109188914299011, 0.033454641699790955, 0.03850128501653671, -0.03152471408247948, -0.044544871896505356, 0.028050798922777176, -0.005881189834326506, 0.025409163907170296, 0.09830284863710403, 0.056753430515527725, -0.014649936929345131, -0.02251562476158142, 0.3138521611690521, -0.0327543206512928, -0.04145634174346924, -0.1894107460975647, 0.14481766521930695, 0.0038648652844130993, -0.014839475974440575, 0.03068801946938038, -0.11970806866884232, 0.01300882175564766, 0.11997588723897934, 0.159321129322052, -0.020696936175227165, 0.025687498971819878, -0.033496007323265076, 0.02059050090610981, 0.03619949147105217, 0.10128757357597351, 0.06968974322080612, 0.19961722195148468, -0.04427207261323929, 0.05921916291117668, -0.017627673223614693, -0.020098593086004257, -0.005809927824884653, 0.10767310857772827, -0.03553200140595436, 0.004592147655785084, -0.056491121649742126, 0.09974545985460281, -0.0527707040309906, -0.262197345495224, -0.031217318028211594, -0.029936261475086212, -0.08885008096694946, 0.06580673903226852, -0.0334533229470253, -0.020596761256456375, 0.09070836007595062, 0.034227266907691956, -0.046900585293769836, 0.16222397983074188, 0.04569481685757637, -0.048502933233976364, -0.01056569442152977, 0.10705287754535675, -0.012882277369499207, 0.17454327642917633, -0.025964805856347084, 0.01135434303432703, 0.07288619875907898, 0.020871970802545547, -0.13128405809402466, 0.00852911826223135, 0.04022890701889992, -0.06329554319381714, -0.026789266616106033, 0.19796709716320038, 0.010026420466601849, 0.019099468365311623, 0.07142647355794907, -0.05190526694059372, 0.024284513667225838, -0.049032993614673615, 0.06432124972343445, -0.14178535342216492, 0.06422102451324463, -0.0858987420797348, 0.12440823018550873, 0.18803144991397858, -0.06806767731904984, 0.031291671097278595, -0.05947042256593704, 0.001977126346901059, -0.026259364560246468, 0.07636779546737671, -0.01736164279282093, -0.10965351015329361, 0.006842541042715311, 0.05342280864715576, 0.016782941296696663, -0.163601353764534, -0.07836609333753586, 0.06983580440282822, -0.04331829026341438, 0.02624550461769104, 0.1739993542432785, 0.024563753977417946, 0.05467968434095383, -0.035161808133125305, -0.026138003915548325, -0.010160857811570168, 0.11569952219724655, -0.15518200397491455, -0.08265246450901031 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/73c061dff4e60a751b35fda72ecb6781.881x881x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LOVV66</div> <a href="https://genius.com/artists/lovv66"> <div style="text-align: center; font-size: 14px;">@lovv66</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from LOVV66. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lovv66). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lovv66") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1t6a2fxs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on LOVV66's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1de08pf6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1de08pf6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lovv66') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lovv66") model = AutoModelWithLMHead.from_pretrained("huggingartists/lovv66") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lovv66"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lovv66
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lovv66", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lovv66 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">LOVV66</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lovv66</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from LOVV66. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on LOVV66's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from LOVV66.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on LOVV66's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lovv66 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from LOVV66.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on LOVV66's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lovv66 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from LOVV66.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on LOVV66's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.019344132393598557, 0.1583307683467865, -0.0031059964094311, 0.039148591458797455, 0.09329012781381607, 0.011016360484063625, 0.09168994426727295, 0.10820251703262329, 0.0022769710049033165, 0.07329785823822021, 0.07277331501245499, 0.019278088584542274, 0.0691186860203743, 0.10864301025867462, 0.0798269733786583, -0.25546029210090637, 0.02993905358016491, -0.0915132388472557, 0.0006576713640242815, 0.11405081301927567, 0.09732044488191605, -0.062098968774080276, 0.08692315220832825, 0.038872674107551575, -0.07259297370910645, 0.01868254505097866, -0.0004183845594525337, -0.06629543006420135, 0.09107445180416107, 0.06944222003221512, 0.036799684166908264, 0.025378171354532242, 0.07038971036672592, -0.1913548707962036, 0.029778245836496353, 0.1249985322356224, 0.03406578302383423, 0.07572478801012039, 0.05300254747271538, -0.08151685446500778, 0.16954508423805237, -0.023142624646425247, 0.09210558235645294, 0.04722011834383011, -0.11971677094697952, -0.15073515474796295, -0.12913963198661804, 0.08427339792251587, 0.09341778606176376, 0.08958688378334045, -0.02704429440200329, 0.05040854960680008, -0.024853087961673737, 0.04851864278316498, 0.24149462580680847, -0.2406722903251648, -0.016509629786014557, 0.0972701832652092, 0.03774883970618248, 0.01671053282916546, -0.08045858144760132, 0.019428947940468788, 0.04470708221197128, 0.02010360173881054, 0.048432525247335434, -0.017809484153985977, 0.17551641166210175, 0.02551388368010521, -0.10091782361268997, -0.08403212577104568, 0.12280648201704025, -0.024036727845668793, -0.0698537528514862, -0.1284090131521225, -0.0006287093856371939, -0.019372940063476562, 0.03369038179516792, -0.005463369656354189, -0.0012490812223404646, 0.003889639861881733, -0.03957626596093178, -0.10545527189970016, -0.0899668037891388, -0.03423338383436203, -0.02265884168446064, 0.062450654804706573, 0.029781511053442955, 0.03707537800073624, -0.08177037537097931, 0.23031163215637207, -0.021405581384897232, -0.10057473927736282, -0.05099083483219147, -0.09110088646411896, -0.0919172614812851, -0.058974605053663254, 0.012513522058725357, 0.015110545791685581, -0.049431074410676956, 0.14483021199703217, -0.025807436555624008, 0.030139602720737457, -0.007830345071852207, -0.013239501044154167, 0.146079421043396, 0.1345071792602539, -0.10313089936971664, -0.03214995935559273, 0.05962655693292618, -0.014422306790947914, -0.06473048776388168, -0.05257308483123779, -0.011931629851460457, -0.025533828884363174, 0.04091652110219002, 0.08734676986932755, 0.06314769387245178, 0.062827929854393, 0.013128397986292839, -0.062247272580862045, 0.07984018325805664, -0.136940136551857, 0.016799598932266235, -0.0046471040695905685, -0.04664091393351555, 0.022021710872650146, 0.052038393914699554, 0.013641169294714928, -0.10664193332195282, 0.10826744884252548, -0.060928892344236374, -0.04521211236715317, -0.08559609204530716, -0.0905856043100357, -0.0017700829776003957, -0.01805691421031952, -0.04040446877479553, -0.07130224257707596, -0.17981068789958954, -0.04388229548931122, 0.03386709839105606, -0.05149218440055847, -0.03949914500117302, 0.025371432304382324, -0.025234177708625793, 0.010987094603478909, -0.01441149227321148, -0.02066674642264843, -0.03232884779572487, 0.028907179832458496, -0.05550418049097061, 0.03320254385471344, 0.0797848179936409, 0.0451442115008831, -0.1153966635465622, 0.07158663868904114, -0.1459091305732727, 0.12428128719329834, -0.013206275179982185, 0.018132299184799194, -0.10412931442260742, -0.09178737550973892, -0.025095434859395027, -0.030876288190484047, 0.0007295759278349578, 0.10010414570569992, -0.1840122789144516, -0.03302450850605965, 0.1991187036037445, -0.07590694725513458, -0.08100397139787674, 0.06609198451042175, -0.07605605572462082, 0.03421947732567787, 0.12883161008358002, 0.0625525712966919, 0.1706913560628891, -0.11616522073745728, -0.06349514424800873, -0.039218127727508545, -0.06389590352773666, 0.19260206818580627, 0.046763673424720764, -0.011766402050852776, 0.021401116624474525, 0.007093093357980251, -0.03665005415678024, -0.02287244237959385, -0.024568693712353706, -0.03951726108789444, -0.018131710588932037, 0.010540084913372993, -0.009496479295194149, -0.042605310678482056, -0.06479978561401367, -0.027442198246717453, -0.10216372460126877, 0.04223061725497246, 0.10717714577913284, -0.07149038463830948, 0.008123570121824741, -0.09704012423753738, 0.012524967081844807, -0.03518850356340408, 0.013143588788807392, -0.17407774925231934, -0.057608187198638916, 0.02011903189122677, -0.05797422304749489, 0.07718466967344284, 0.049845919013023376, 0.03965308144688606, 0.05549728870391846, -0.013348473235964775, 0.011707308702170849, -0.04481004178524017, -0.02162315882742405, -0.021772917360067368, -0.15478886663913727, -0.06319141387939453, -0.04847078025341034, 0.07846836000680923, -0.13078896701335907, 0.0030201978515833616, 0.10091577470302582, 0.1263255476951599, 0.022263875231146812, -0.059730805456638336, 0.02298717014491558, -0.040921781212091446, -0.033285681158304214, -0.10976196080446243, -0.04830268770456314, 0.008166195824742317, -0.019006604328751564, 0.152136892080307, -0.16547076404094696, -0.07871901988983154, 0.10886657238006592, 0.11741205304861069, -0.09041232615709305, 0.033271245658397675, -0.07913106679916382, -0.010748473927378654, -0.05033808574080467, -0.037278350442647934, 0.2559102773666382, 0.03722233697772026, 0.08101040124893188, -0.1021697074174881, -0.09893866628408432, -0.00588280288502574, -0.04660244658589363, -0.032330792397260666, 0.02777928113937378, 0.027188502252101898, -0.17037470638751984, 0.037436362355947495, -0.007823883555829525, 0.09930358827114105, 0.20667023956775665, 0.0433952659368515, -0.08534557372331619, -0.06156206876039505, -0.06965211778879166, -0.002977255964651704, 0.05625250190496445, 0.005228973925113678, 0.02517743594944477, 0.044094815850257874, 0.05661648139357567, 0.04037937894463539, -0.1198461577296257, 0.011921093799173832, 0.07343924045562744, -0.04794524982571602, -0.05025103688240051, 0.016289031133055687, 0.01975361630320549, 0.08272140473127365, 0.08684030920267105, 0.133301243185997, -0.06156443431973457, -0.05016891658306122, -0.1431395709514618, 0.13417339324951172, -0.08252593129873276, -0.24035322666168213, -0.13569611310958862, -0.0772150307893753, 0.017713993787765503, 0.011374589055776596, 0.02854413539171219, -0.05480656772851944, -0.04707545414566994, -0.08746102452278137, 0.09544257074594498, -0.052751556038856506, -0.019857132807374, 0.015088342130184174, 0.026454368606209755, -0.023351537063717842, -0.11577283591032028, -0.03196202218532562, 0.036122944205999374, -0.1026839017868042, -0.008136855438351631, 0.03280606120824814, 0.03871871158480644, 0.15608690679073334, -0.011424419470131397, 0.00937734916806221, -0.021900063380599022, 0.28396084904670715, -0.11497806012630463, 0.06756391376256943, 0.17262959480285645, -0.002376384101808071, 0.052887797355651855, 0.07333505153656006, 0.0030784825794398785, -0.0670325830578804, 0.07276679575443268, 0.07530457526445389, -0.07934996485710144, -0.2172093689441681, -0.03479314595460892, -0.01572245918214321, 0.01090960018336773, 0.12047729641199112, 0.04729841649532318, 0.04256446287035942, 0.010254742577672005, -0.10308777540922165, 0.051594410091638565, 0.02685486525297165, 0.10332639515399933, -0.047995880246162415, -0.007183618377894163, 0.046595413237810135, -0.059200070798397064, 0.030966011807322502, 0.12911257147789001, 0.037886571139097214, 0.21301628649234772, -0.07167493551969528, 0.09152725338935852, 0.0777139887213707, 0.1000375971198082, 0.0279564056545496, 0.02007623016834259, -0.01914013735949993, 0.015203293412923813, 0.003448589937761426, -0.093523308634758, -0.0175529345870018, 0.03754136711359024, 0.027191901579499245, -0.018296409398317337, -0.04123561456799507, -0.04948940873146057, 0.042835965752601624, 0.23911955952644348, 0.019969318062067032, -0.1780899167060852, -0.102057546377182, 0.056283436715602875, -0.0646519884467125, -0.06145717203617096, -0.016864333301782608, 0.07146933674812317, -0.21520499885082245, 0.06809378415346146, -0.02600644715130329, 0.11025378108024597, -0.1278756856918335, 0.00017802089860197157, 0.0861285999417305, 0.05029818415641785, -0.06250324100255966, 0.1018228754401207, -0.17330904304981232, 0.07330215722322464, -0.006736684124916792, 0.07752936333417892, -0.07134193927049637, 0.028217554092407227, 0.006806997116655111, 0.05078492686152458, 0.08119463175535202, 0.019061734899878502, 0.021317174658179283, -0.011562527157366276, -0.04045688360929489, 0.005501665640622377, 0.05306253582239151, -0.1119881272315979, 0.12715992331504822, -0.03771151974797249, 0.030751032754778862, -0.03238397464156151, -0.08441229909658432, -0.08605480194091797, -0.15226653218269348, 0.08377035707235336, -0.11640102416276932, 0.006103599909693003, -0.0692940428853035, -0.019473344087600708, 0.03212514519691467, 0.24630342423915863, -0.059215839952230453, -0.07675786316394806, -0.1363155096769333, 0.019519997760653496, 0.13575874269008636, -0.08091548830270767, 0.0028988157864660025, -0.010828887112438679, 0.19547322392463684, 0.004495276138186455, -0.13212300837039948, -0.01361482497304678, -0.0676921159029007, -0.1748499870300293, -0.009020871482789516, 0.1688825786113739, 0.05936563014984131, 0.031109094619750977, 0.0077763269655406475, -0.00300996215082705, -0.04627964645624161, -0.1727496236562729, 0.02718377485871315, 0.15850822627544403, -0.012335659936070442, 0.015564048662781715, 0.045180756598711014, 0.018126055598258972, -0.12053560465574265, 0.017436427995562553, 0.05484412610530853, 0.18112529814243317, -0.07254388928413391, 0.17710846662521362, 0.020397309213876724, -0.09532348066568375, -0.15938834846019745, 0.02628704346716404, 0.019372057169675827, 0.034394897520542145, 0.023636164143681526, -0.19974815845489502, 0.04096255078911781, 0.030153462663292885, -0.0007825546199455857, 0.0514361709356308, -0.33073630928993225, -0.14982201159000397, 0.004615630954504013, 0.01016182079911232, -0.1112380102276802, -0.03372684866189957, -0.03547658026218414, -0.08240377902984619, -0.2646552324295044, 0.10043590515851974, -0.10591427981853485, 0.07678275555372238, 0.0166518185287714, 0.09820404648780823, 0.048186950385570526, -0.05035325884819031, 0.12859855592250824, -0.029494155198335648, 0.0681816041469574, -0.09966012090444565, -0.057232193648815155, 0.08479128777980804, -0.06470420211553574, 0.09988164901733398, 0.03554427623748779, 0.08719899505376816, -0.09992242604494095, -0.0831444188952446, -0.07881922274827957, 0.009574069641530514, -0.060380127280950546, -0.09342430531978607, -0.09229178726673126, 0.08738994598388672, 0.1230073943734169, -0.041631367057561874, -0.08990754187107086, -0.055980805307626724, -0.007630511652678251, 0.05968882888555527, 0.11995787918567657, 0.08133289963006973, -0.07012517750263214, 0.006807859521359205, 0.02256537601351738, 0.019114768132567406, -0.16707277297973633, 0.04657671973109245, 0.08925522118806839, 0.04278205707669258, 0.10495758056640625, 0.009338929317891598, -0.16493186354637146, 0.0025913105346262455, 0.04801278933882713, -0.1688329428434372, -0.11779904365539551, -0.0449470616877079, 0.016726136207580566, -0.10513517260551453, -0.051785167306661606, 0.13568121194839478, -0.03616419434547424, -0.03311305493116379, 0.004245470743626356, 0.04472486302256584, -0.04911215603351593, 0.094905786216259, 0.00665786350145936, 0.04502105712890625, -0.06965337693691254, 0.1101813092827797, 0.0688348188996315, 0.020360887050628662, 0.04027679190039635, 0.06581228226423264, -0.08943410962820053, 0.0048622568137943745, -0.08965449035167694, 0.025975676253437996, -0.03256288543343544, -0.015188922174274921, 0.014927455224096775, -0.04084007069468498, 0.043988920748233795, 0.07913653552532196, -0.011575772427022457, 0.11396805942058563, -0.039714861661195755, 0.007853535935282707, -0.1325896829366684, 0.07012969255447388, 0.03933487460017204, 0.019876623526215553, -0.12507207691669464, 0.1995314210653305, 0.024337580427527428, 0.09926195442676544, -0.03736058622598648, -0.06283096969127655, -0.06505277007818222, -0.005601751152426004, -0.09564240276813507, -0.04158371314406395, -0.097296804189682, -0.02356736734509468, -0.005157844629138708, -0.042169101536273956, -0.03040311299264431, 0.048078473657369614, -0.03527545928955078, -0.05601097270846367, -0.0718686431646347, 0.04750550910830498, -0.13724657893180847, 0.030434500426054, 0.11830490082502365, -0.05569104477763176, 0.1171112060546875, 0.05414789915084839, -0.03216956928372383, 0.027026411145925522, -0.127885103225708, 0.03726888820528984, -0.012383408844470978, 0.017225250601768494, 0.026560485363006592, -0.15880796313285828, 0.009207888506352901, -0.04114452749490738, -0.06199435144662857, 0.004314528778195381, -0.0031287814490497112, -0.13311229646205902, -0.0014723006170243025, 0.07767273485660553, -0.022741777822375298, -0.06997541338205338, 0.07638417184352875, 0.06149914115667343, 0.02234547957777977, 0.0632866770029068, -0.024569129571318626, 0.07606048136949539, -0.17352673411369324, -0.05227448791265488, 0.002868607873097062, 0.03299936279654503, 0.0416155569255352, -0.013716433197259903, 0.040522050112485886, -0.022498182952404022, 0.18638819456100464, 0.022392911836504936, -0.017575200647115707, 0.03574978932738304, -0.06366019695997238, -0.004442385397851467, 0.04494500905275345, 0.07255859673023224, -0.035201024264097214, -0.03345462307333946, 0.004466553218662739, -0.015360210090875626, -0.08617205917835236, -0.03210804611444473, 0.11329322308301926, 0.037010084837675095, 0.1853477954864502, -0.050096362829208374, 0.06644593179225922, -0.027086667716503143, -0.11754705756902695, -0.011296181008219719, -0.047300975769758224, 0.04109411686658859, -0.0658743754029274, 0.05366601049900055, 0.18083405494689941, -0.1647937148809433, 0.11694882065057755, 0.02060936763882637, -0.05945732444524765, -0.116745725274086, -0.20539440214633942, -0.019749125465750694, -0.047407470643520355, 0.032783184200525284, -0.1407802402973175, 0.09410114586353302, 0.0223408043384552, 0.036378372460603714, -0.06971277296543121, 0.12847207486629486, -0.07225942611694336, -0.12244604527950287, 0.03103073127567768, 0.023475557565689087, 0.030520616099238396, 0.03809599578380585, 0.08293148130178452, 0.028091974556446075, 0.010682163760066032, 0.06708163022994995, 0.04230736941099167, 0.03149620443582535, 0.03434097021818161, -0.0250704362988472, -0.046001583337783813, 0.02901158109307289, -0.0024979403242468834, 0.03123030997812748, 0.09287960082292557, 0.0635104775428772, -0.020029418170452118, -0.023044439032673836, 0.31323885917663574, -0.037474408745765686, -0.04398631304502487, -0.18153798580169678, 0.16035176813602448, 0.009264291264116764, -0.005904464051127434, 0.027554519474506378, -0.12000353634357452, 0.007834373041987419, 0.13183355331420898, 0.16653667390346527, -0.01933518797159195, 0.02259903773665428, -0.03609292954206467, 0.017182618379592896, 0.03453059494495392, 0.09421703219413757, 0.06774914264678955, 0.19426722824573517, -0.03832729905843735, 0.04715452715754509, -0.011017238721251488, -0.017478084191679955, 0.0018357977969571948, 0.1004139706492424, -0.034606363624334335, 0.007128433790057898, -0.05451833829283714, 0.09967374801635742, -0.051125667989254, -0.27397891879081726, -0.024320390075445175, -0.030995238572359085, -0.0942699983716011, 0.061913441866636276, -0.030016206204891205, -0.019994497299194336, 0.09118830412626266, 0.02145981602370739, -0.047519195824861526, 0.14461061358451843, 0.04752576723694801, -0.055176105350255966, -0.016594696789979935, 0.10808304697275162, -0.0190083310008049, 0.17468665540218353, -0.03024432435631752, 0.007797044236212969, 0.08472879976034164, 0.014197601936757565, -0.12907648086547852, 0.007280357182025909, 0.041089028120040894, -0.06762946397066116, -0.0227755606174469, 0.19175861775875092, 0.009029824286699295, 0.03446487709879875, 0.07032657414674759, -0.06546784192323685, 0.017801577225327492, -0.04780397191643715, 0.06424058973789215, -0.14766418933868408, 0.06265900284051895, -0.08509500324726105, 0.12890399992465973, 0.19012543559074402, -0.0683789998292923, 0.026008127257227898, -0.06143156439065933, 0.012598205357789993, -0.027784185484051704, 0.07500757277011871, -0.021159635856747627, -0.10877048224210739, 0.010479087010025978, 0.03329616039991379, 0.021091988310217857, -0.17250555753707886, -0.07399351894855499, 0.0666479840874672, -0.0533403679728508, 0.020677924156188965, 0.17644889652729034, 0.02507462166249752, 0.06454715877771378, -0.03789558261632919, -0.01041047926992178, -0.011977134272456169, 0.11765945702791214, -0.16540633141994476, -0.08795169740915298 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/61558b47c4f9ca1823bf796458ea804b.722x722x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lumen</div> <a href="https://genius.com/artists/lumen"> <div style="text-align: center; font-size: 14px;">@lumen</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lumen. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lumen). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lumen") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2fkqbnvl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lumen's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1vhfm4ch) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1vhfm4ch/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lumen') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lumen") model = AutoModelWithLMHead.from_pretrained("huggingartists/lumen") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lumen"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lumen
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lumen", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lumen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lumen</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lumen</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Lumen. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Lumen's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lumen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lumen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lumen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Lumen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lumen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lumen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Lumen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Lumen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.019914275035262108, 0.15138840675354004, -0.0027667449321597815, 0.03540418669581413, 0.08582589775323868, -0.0020289139356464148, 0.08696993440389633, 0.10664045065641403, -0.013876867480576038, 0.06852200627326965, 0.0771775022149086, 0.011521832086145878, 0.0648748055100441, 0.12402936816215515, 0.0914725586771965, -0.2682581841945648, 0.027983734384179115, -0.10515860468149185, 0.017320090904831886, 0.11909228563308716, 0.09125527739524841, -0.053176913410425186, 0.08414938300848007, 0.035190824419260025, -0.06713325530290604, 0.030499232932925224, -0.01522256899625063, -0.06783808022737503, 0.09307702630758286, 0.08463645726442337, 0.031307704746723175, 0.03305299952626228, 0.06761863827705383, -0.19655506312847137, 0.035092465579509735, 0.1223185732960701, 0.0278779249638319, 0.06873815506696701, 0.04104817658662796, -0.08143186569213867, 0.17676059901714325, -0.031213432550430298, 0.09110817313194275, 0.04384620860219002, -0.10476672649383545, -0.16690890491008759, -0.1256583333015442, 0.07894685119390488, 0.09596628695726395, 0.08422114700078964, -0.029040291905403137, 0.04329197481274605, -0.0009913155809044838, 0.047309037297964096, 0.23923373222351074, -0.24158932268619537, -0.014425619505345821, 0.09682752937078476, 0.03887734189629555, 0.041347745805978775, -0.08008382469415665, 0.018200865015387535, 0.051651064306497574, 0.022192178294062614, 0.04356687143445015, -0.017591875046491623, 0.2148595005273819, 0.020930366590619087, -0.09496485441923141, -0.08539432287216187, 0.10587528347969055, -0.028781471773982048, -0.08331301063299179, -0.15419651567935944, 0.0052176048047840595, -0.029881613329052925, 0.037084270268678665, -0.00649503106251359, -0.004453861620277166, -0.0009116127621382475, -0.04070994630455971, -0.10017973184585571, -0.0916619673371315, -0.025296663865447044, -0.02830815128982067, 0.07728172838687897, 0.025883039459586143, 0.03078378178179264, -0.07479969412088394, 0.22977255284786224, 0.007247560191899538, -0.10142318159341812, -0.05729685351252556, -0.09179272502660751, -0.09619379788637161, -0.05781629681587219, 0.007826501503586769, 0.022781217470765114, -0.0574595183134079, 0.16996486485004425, -0.031394973397254944, 0.032620031386613846, 0.0016617494402453303, -0.02477816678583622, 0.14748342335224152, 0.1328141689300537, -0.08798951655626297, -0.032673582434654236, 0.047293320298194885, -0.015518701635301113, -0.06563765555620193, -0.0612226240336895, -0.014863136224448681, -0.02409738302230835, 0.025360189378261566, 0.09660894423723221, 0.0459604375064373, 0.05855970457196236, 0.0344012975692749, -0.05436518415808678, 0.10347402840852737, -0.14642371237277985, 0.00936331506818533, -0.011338651180267334, -0.0322866290807724, 0.02359752357006073, 0.05093282461166382, 0.014246259815990925, -0.09577847272157669, 0.10779794305562973, -0.047805383801460266, -0.052133966237306595, -0.07014131546020508, -0.08323558419942856, -0.004488492384552956, -0.0066277324222028255, -0.04414764419198036, -0.08875549584627151, -0.15809108316898346, -0.033862482756376266, 0.023329908028244972, -0.03713834285736084, -0.03938934579491615, 0.039330754429101944, -0.03613276034593582, 0.0009746369323693216, -0.014449956826865673, -0.015146498568356037, -0.03252230957150459, 0.022023556753993034, -0.05763230100274086, 0.03350053355097771, 0.07627226412296295, 0.03373778983950615, -0.10810130089521408, 0.06818825751543045, -0.15204046666622162, 0.1466212272644043, -0.013190741650760174, 0.020353995263576508, -0.10619839280843735, -0.09562503546476364, -0.02919507585465908, -0.025783473625779152, -0.010019839741289616, 0.09427204728126526, -0.1917080283164978, -0.03905203938484192, 0.19519531726837158, -0.07317263633012772, -0.08161228895187378, 0.066642627120018, -0.08004262298345566, 0.031854789704084396, 0.14077331125736237, 0.05587823688983917, 0.1725180745124817, -0.11759945750236511, -0.07074592262506485, -0.03992978110909462, -0.05689649656414986, 0.22259388864040375, 0.05502549186348915, -0.005507787223905325, 0.01907108537852764, 0.013509057462215424, -0.02233841083943844, -0.0310919638723135, -0.023393884301185608, -0.04506788030266762, -0.009728747420012951, 0.01428974699229002, -0.009804516099393368, -0.05410252511501312, -0.06901129335165024, -0.017676973715424538, -0.1131879985332489, 0.04541054740548134, 0.10874811559915543, -0.07175052911043167, 0.011496852152049541, -0.09383890777826309, -0.008732683025300503, -0.02923470176756382, 0.021858759224414825, -0.19270460307598114, -0.06645414978265762, 0.019250372424721718, -0.06487458944320679, 0.09098956733942032, 0.028422942385077477, 0.037907954305410385, 0.06635527312755585, -0.008735294453799725, 0.023526683449745178, -0.04904717579483986, -0.023538878187537193, -0.0311909019947052, -0.14371095597743988, -0.07210398465394974, -0.05389554426074028, 0.08119949698448181, -0.13526882231235504, 0.006716849282383919, 0.1050742045044899, 0.1162639781832695, 0.023908795788884163, -0.05664953589439392, 0.007595981005579233, -0.03393520787358284, -0.04115814343094826, -0.1131315603852272, -0.059971462935209274, 0.004516107961535454, -0.041845887899398804, 0.15024323761463165, -0.17046894133090973, -0.06716611981391907, 0.1030174195766449, 0.16555948555469513, -0.10504528135061264, 0.012516148388385773, -0.09395328909158707, -0.007433274295181036, -0.05005833879113197, -0.038910578936338425, 0.2733876407146454, 0.03868634253740311, 0.0744321420788765, -0.10922283679246902, -0.09962456673383713, -0.0036160917952656746, -0.036517757922410965, -0.028814159333705902, 0.033564623445272446, 0.01857600174844265, -0.162631556391716, 0.023024708032608032, -0.012401201762259007, 0.1192317008972168, 0.21043062210083008, 0.04983443394303322, -0.09332612156867981, -0.059147950261831284, -0.08446159958839417, 0.004044894594699144, 0.05231710895895958, 0.0326990969479084, 0.027755608782172203, 0.04137717932462692, 0.04972008243203163, 0.038287144154310226, -0.11324182897806168, 0.006598121020942926, 0.07975097745656967, -0.04688682779669762, -0.052628155797719955, 0.017650218680500984, 0.017080068588256836, 0.08338090032339096, 0.07737191766500473, 0.14380574226379395, -0.07246457785367966, -0.048392001539468765, -0.14095120131969452, 0.13700605928897858, -0.07652590423822403, -0.26649215817451477, -0.13837920129299164, -0.07418867200613022, 0.019078386947512627, 0.0037278581876307726, 0.03994283080101013, -0.0627627745270729, -0.037992317229509354, -0.10361848026514053, 0.0902172103524208, -0.04758002236485481, -0.010221772827208042, 0.006342253182083368, 0.022954590618610382, -0.03298955783247948, -0.11128494888544083, -0.029841309413313866, 0.04065233841538429, -0.10668174177408218, -0.016843188554048538, 0.03026239015161991, 0.041620951145887375, 0.15090321004390717, -0.010036853142082691, -0.004565095994621515, -0.03399171307682991, 0.2800936698913574, -0.12005606293678284, 0.06140211597084999, 0.16710472106933594, -0.021732375025749207, 0.05211641266942024, 0.0790761336684227, 0.007107840385288, -0.06961818784475327, 0.07803209871053696, 0.0748959481716156, -0.09342332929372787, -0.21428020298480988, -0.02775006927549839, -0.007725430186837912, 0.026327500119805336, 0.12461493164300919, 0.06048638001084328, 0.05033421143889427, -0.007224993780255318, -0.1055407002568245, 0.04993875324726105, 0.03344232216477394, 0.10762277245521545, -0.06825068593025208, -0.012662608176469803, 0.047157932072877884, -0.06803155690431595, 0.025954104959964752, 0.1417582482099533, 0.03950662910938263, 0.20054759085178375, -0.06268542259931564, 0.09081865102052689, 0.07459395378828049, 0.10181936621665955, 0.0383068211376667, 0.00643146550282836, -0.0014976620441302657, 0.013158400543034077, -0.0006477976567111909, -0.09894480556249619, -0.012597213499248028, 0.049138832837343216, 0.030355483293533325, -0.02499854564666748, -0.03940573334693909, -0.04635956883430481, 0.043699681758880615, 0.2250797003507614, -0.015972238034009933, -0.18052460253238678, -0.11502838879823685, 0.04046305641531944, -0.0821061059832573, -0.046612709760665894, -0.024025047197937965, 0.07092105597257614, -0.21700690686702728, 0.07591705769300461, -0.02829746901988983, 0.10833904892206192, -0.11308636516332626, 0.001861707423813641, 0.08492005616426468, 0.046133268624544144, -0.06443766504526138, 0.09743159264326096, -0.17058460414409637, 0.05670421943068504, -0.012178557924926281, 0.06764400005340576, -0.0737818107008934, 0.02820393443107605, 0.004411367233842611, 0.05188865587115288, 0.0869722068309784, 0.011837489902973175, 0.028806395828723907, -0.002728862687945366, -0.0534384660422802, 0.015415676869452, 0.0601833201944828, -0.1284043788909912, 0.13013118505477905, -0.027421385049819946, 0.033262234181165695, -0.04406440630555153, -0.09701233357191086, -0.092117540538311, -0.1697273701429367, 0.08949771523475647, -0.13505688309669495, 0.004540294874459505, -0.07187212258577347, -0.03230326250195503, 0.034993335604667664, 0.26280638575553894, -0.051652565598487854, -0.07440891116857529, -0.13772983849048615, 0.017890144139528275, 0.1450873762369156, -0.08551359921693802, 0.007539744023233652, -0.0092921806499362, 0.21517831087112427, -0.001859466079622507, -0.13036110997200012, -0.02868952415883541, -0.05714665725827217, -0.16677649319171906, -0.0038523562252521515, 0.1711883544921875, 0.05823921039700508, 0.03015141375362873, 0.009723145514726639, -0.01893998682498932, -0.0388994999229908, -0.175309419631958, 0.019314240664243698, 0.16588257253170013, -0.01645936630666256, -0.00106138049159199, 0.04919274523854256, 0.012256837449967861, -0.1344655305147171, 0.012535910122096539, 0.05064449831843376, 0.17812079191207886, -0.0789426788687706, 0.19296212494373322, 0.023527393117547035, -0.09205669164657593, -0.15330010652542114, 0.009651283733546734, 0.038440000265836716, 0.037230368703603745, 0.0440441370010376, -0.20858578383922577, 0.03959832713007927, 0.034023746848106384, 0.008934552781283855, 0.03893236815929413, -0.3353997468948364, -0.16108441352844238, -0.008734363131225109, 0.008986621163785458, -0.14917735755443573, -0.04387736693024635, -0.03654056414961815, -0.1000625267624855, -0.24353332817554474, 0.10859221965074539, -0.11105679720640182, 0.07465491443872452, 0.03129112347960472, 0.10326368361711502, 0.04648787900805473, -0.041290853172540665, 0.13293035328388214, -0.021073652431368828, 0.06905249506235123, -0.09332913160324097, -0.06274542957544327, 0.0715734213590622, -0.07130063325166702, 0.09157553315162659, 0.030627524480223656, 0.07917210459709167, -0.09133949130773544, -0.09091543406248093, -0.05794566497206688, 0.0011596427066251636, -0.05243401601910591, -0.08806603401899338, -0.09138283878564835, 0.08580094575881958, 0.12146048992872238, -0.04811371490359306, -0.09068033844232559, -0.06952769309282303, -0.005099785048514605, 0.035353343933820724, 0.12703247368335724, 0.08080614358186722, -0.06114494800567627, 0.0022462818305939436, 0.018310071900486946, 0.008719212375581264, -0.18090389668941498, 0.04657812789082527, 0.09663376957178116, 0.0412021167576313, 0.1019878014922142, 0.0037453314289450645, -0.16384278237819672, 0.007040752563625574, 0.052955638617277145, -0.16278977692127228, -0.13006441295146942, -0.04101018235087395, 0.02558203600347042, -0.10002660751342773, -0.04776334762573242, 0.13660651445388794, -0.0386301688849926, -0.03611002862453461, 0.0024524000473320484, 0.035900797694921494, -0.040963396430015564, 0.08388271182775497, -0.00994942244142294, 0.04070313647389412, -0.06765414029359818, 0.11615201085805893, 0.06581131368875504, 0.005355673376470804, 0.036396533250808716, 0.06675345450639725, -0.09126251190900803, 0.01639210246503353, -0.10392284393310547, 0.006571129430085421, -0.033442992717027664, -0.011927206069231033, 0.026977116242051125, -0.035241786390542984, 0.05029428005218506, 0.09940437227487564, -0.01322876662015915, 0.10904386639595032, -0.046151552349328995, 0.025050347670912743, -0.1261318475008011, 0.06816133111715317, 0.03307395800948143, 0.018008388578891754, -0.10973640531301498, 0.20855391025543213, 0.03722682222723961, 0.10417896509170532, -0.03710877150297165, -0.06495574116706848, -0.050728220492601395, -0.012567870318889618, -0.091126449406147, -0.03307316079735756, -0.08701745420694351, -0.018995927646756172, -0.006651864852756262, -0.02956944890320301, -0.03240932896733284, 0.045041561126708984, -0.031464505940675735, -0.061160292476415634, -0.07785096764564514, 0.04669664427638054, -0.14112327992916107, 0.035142362117767334, 0.11791231483221054, -0.05628986656665802, 0.12313558906316757, 0.054684340953826904, -0.034568652510643005, 0.026741817593574524, -0.13180111348628998, 0.050579216331243515, -0.004718370735645294, 0.025655845180153847, 0.01640620268881321, -0.15093882381916046, 0.004211446736007929, -0.03286315128207207, -0.06959708780050278, 0.006962134037166834, -0.01164720207452774, -0.13019271194934845, -0.01251493114978075, 0.08761966228485107, -0.010410754941403866, -0.06477588415145874, 0.07047963887453079, 0.05873386561870575, 0.028810450807213783, 0.05838411673903465, -0.012353342957794666, 0.07175782322883606, -0.17747323215007782, -0.06183542683720589, -0.004169641528278589, 0.03176407143473625, 0.038936883211135864, -0.024593273177742958, 0.037385787814855576, -0.017275525256991386, 0.21276630461215973, 0.022930065169930458, -0.0011831580195575953, 0.0346585251390934, -0.06877262890338898, -0.0038745012134313583, 0.04373917356133461, 0.08331936597824097, -0.013943202793598175, -0.024228766560554504, 0.0061868722550570965, -0.02556387148797512, -0.09343241900205612, -0.027734627947211266, 0.10116642713546753, 0.021068692207336426, 0.21267502009868622, -0.05987850949168205, 0.06659524887800217, -0.01691487990319729, -0.10705709457397461, -0.03241448476910591, -0.04452820494771004, 0.025486618280410767, -0.062144387513399124, 0.05742725729942322, 0.1898367553949356, -0.1559929996728897, 0.11950347572565079, 0.04327896237373352, -0.05678543820977211, -0.11777234077453613, -0.1971225142478943, -0.012531747110188007, -0.033328909426927567, 0.025189444422721863, -0.14063847064971924, 0.09376010298728943, 0.016730595380067825, 0.03901708126068115, -0.05713489651679993, 0.13312093913555145, -0.10045281797647476, -0.13819493353366852, 0.041791800409555435, 0.019125735387206078, 0.029694845899939537, 0.04626008868217468, 0.08879512548446655, 0.037474360316991806, 0.004340161103755236, 0.0681023970246315, 0.0439121276140213, 0.036595407873392105, 0.04104430601000786, -0.03039533831179142, -0.037242040038108826, 0.028156036511063576, -0.008130006492137909, 0.026901016011834145, 0.10036256909370422, 0.0698356106877327, -0.019440043717622757, -0.017015354707837105, 0.31461623311042786, -0.019709870219230652, -0.04099871590733528, -0.18487203121185303, 0.1539822667837143, 0.009720438160002232, 0.0020127063617110252, 0.02017565257847309, -0.11661141365766525, 0.014241290278732777, 0.12413451075553894, 0.1518554389476776, -0.023123010993003845, 0.025493018329143524, -0.025907380506396294, 0.01927175186574459, 0.03913240507245064, 0.10658622533082962, 0.06436725705862045, 0.1973692625761032, -0.025347664952278137, 0.04460078477859497, -0.014934152364730835, -0.018058599904179573, 0.01726018823683262, 0.10588251799345016, -0.04239818453788757, 0.005909893196076155, -0.05329516530036926, 0.1005609929561615, -0.0634780079126358, -0.310252845287323, -0.034593742340803146, -0.01962917111814022, -0.08857155591249466, 0.0780264362692833, -0.027636593207716942, -0.019949885085225105, 0.0784672424197197, 0.03053865022957325, -0.048733342438936234, 0.15737944841384888, 0.052118632942438126, -0.04798133671283722, -0.0033618572633713484, 0.11215277761220932, -0.02726065181195736, 0.15956787765026093, -0.03816905617713928, 0.01677941530942917, 0.07380068302154541, 0.01727624423801899, -0.12497266381978989, 0.003901924006640911, 0.03968484327197075, -0.05829396843910217, -0.022757505998015404, 0.1982281655073166, 0.010910258628427982, 0.034832049161195755, 0.07219019532203674, -0.04944034293293953, 0.021158769726753235, -0.02987290360033512, 0.055756229907274246, -0.1321084350347519, 0.06665360927581787, -0.08200667053461075, 0.11681564897298813, 0.17980213463306427, -0.06590770184993744, 0.04002097621560097, -0.05851880833506584, 0.00721920607611537, -0.031229345127940178, 0.06860210746526718, -0.019043995067477226, -0.11315411329269409, 0.0026822916697710752, 0.029569244012236595, 0.010404597967863083, -0.16809161007404327, -0.08669129014015198, 0.07701713591814041, -0.05083485320210457, 0.02322770655155182, 0.1787722110748291, 0.015242340974509716, 0.05587462708353996, -0.038659945130348206, -0.019299089908599854, -0.0030924882739782333, 0.11561831086874008, -0.17478115856647491, -0.0782725140452385 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/452918252959798bad82762cda0dc2d7.340x340x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ляпис Трубецкой (Lyapis Trubetskoy)</div> <a href="https://genius.com/artists/lyapis-trubetskoy"> <div style="text-align: center; font-size: 14px;">@lyapis-trubetskoy</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ляпис Трубецкой (Lyapis Trubetskoy). Dataset is available [here](https://huggingface.co/datasets/huggingartists/lyapis-trubetskoy). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lyapis-trubetskoy") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1ycs0usm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ляпис Трубецкой (Lyapis Trubetskoy)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/uz1xtq0k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/uz1xtq0k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lyapis-trubetskoy') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lyapis-trubetskoy") model = AutoModelWithLMHead.from_pretrained("huggingartists/lyapis-trubetskoy") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/lyapis-trubetskoy"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/lyapis-trubetskoy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lyapis-trubetskoy", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lyapis-trubetskoy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ляпис Трубецкой (Lyapis Trubetskoy)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@lyapis-trubetskoy</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Ляпис Трубецкой (Lyapis Trubetskoy). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Ляпис Трубецкой (Lyapis Trubetskoy)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ляпис Трубецкой (Lyapis Trubetskoy).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ляпис Трубецкой (Lyapis Trubetskoy)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lyapis-trubetskoy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ляпис Трубецкой (Lyapis Trubetskoy).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ляпис Трубецкой (Lyapis Trubetskoy)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 62, 85, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/lyapis-trubetskoy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Ляпис Трубецкой (Lyapis Trubetskoy).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ляпис Трубецкой (Lyapis Trubetskoy)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04378854110836983, 0.16284367442131042, -0.0058113099075853825, 0.08442997932434082, 0.08567699044942856, -0.014085778966546059, 0.1371580809354782, 0.08579038828611374, 0.03804563358426094, 0.07245286554098129, 0.024338945746421814, 0.06299127638339996, 0.03656068071722984, 0.07980233430862427, 0.007983322255313396, -0.26403483748435974, 0.0030777661595493555, -0.08643541485071182, -0.011693772859871387, 0.11983603984117508, 0.09825985133647919, -0.0634925588965416, 0.0543287992477417, 0.024468205869197845, -0.09542940557003021, 0.011709896847605705, 0.03742102161049843, -0.05284377932548523, 0.03429165855050087, 0.06507266312837601, 0.10092301666736603, 0.03575459495186806, 0.046855587512254715, -0.16069883108139038, 0.02788534015417099, 0.11244162917137146, 0.0162154883146286, 0.07629328221082687, 0.07248782366514206, -0.1148131936788559, 0.11703906953334808, -0.07148286700248718, 0.07137377560138702, 0.03262360766530037, -0.12152668833732605, -0.09508521109819412, -0.12243963032960892, 0.0349709577858448, 0.04303896799683571, 0.07727784663438797, -0.03230266645550728, 0.11581966280937195, -0.03307363763451576, 0.0795164704322815, 0.23470260202884674, -0.18490314483642578, -0.03598371148109436, 0.058222584426403046, 0.028381532058119774, 0.0723666325211525, -0.08274777978658676, 0.014241622760891914, 0.010122566483914852, 0.01630851998925209, 0.09630310535430908, -0.03963588550686836, 0.07308106124401093, 0.001183875254355371, -0.12443472445011139, -0.053763967007398605, 0.03769480437040329, -0.03318391740322113, -0.06937199085950851, -0.10552585124969482, -0.03663192689418793, -0.0744362324476242, 0.029979361221194267, 0.02423858270049095, -0.0027164751663804054, -0.011731752194464207, -0.051813580095767975, -0.11578657478094101, -0.059621430933475494, -0.049813028424978256, -0.05568849667906761, 0.1607300192117691, 0.02050713635981083, 0.038929179310798645, -0.07873110473155975, 0.1780918538570404, 0.07748664170503616, -0.13249436020851135, -0.02730528637766838, -0.08699320256710052, -0.09436596930027008, -0.016792748123407364, -0.03187289088964462, -0.03382302075624466, -0.03643055632710457, 0.1413256973028183, -0.040670473128557205, 0.01890556886792183, -0.04644499719142914, 0.00655446108430624, 0.1136382445693016, 0.14107315242290497, -0.05656828358769417, -0.03748401626944542, 0.07424856722354889, -0.0017106246668845415, -0.02962837927043438, -0.05811247229576111, 0.003280723001807928, -0.04631970822811127, 0.04456140846014023, 0.07923904806375504, 0.05758542940020561, 0.04033775255084038, -0.04307231307029724, -0.060012225061655045, 0.037871353328228, -0.16805724799633026, 0.04433692246675491, 0.009441865608096123, -0.05638378858566284, 0.03897308558225632, 0.04616893455386162, 0.0027348403818905354, -0.09759875386953354, 0.10447023063898087, -0.05475453659892082, 0.02069605141878128, -0.09255053102970123, -0.10127398371696472, 0.008172097615897655, -0.018161224201321602, -0.04372597113251686, -0.06739583611488342, -0.12283486872911453, -0.060021210461854935, 0.04902368411421776, -0.06758605688810349, 0.019447900354862213, 0.022271329537034035, -0.01332416757941246, -0.010690964758396149, -0.010645698755979538, -0.02760494500398636, -0.013484429568052292, 0.051718637347221375, -0.0790495052933693, 0.05248261243104935, 0.058519572019577026, 0.03702763095498085, -0.10846638679504395, 0.030530715361237526, -0.20561115443706512, 0.1746678352355957, -0.06431373953819275, -0.06917709112167358, -0.08206278085708618, -0.06649234145879745, 0.003740780521184206, -0.008379058912396431, 0.04303842410445213, 0.08728545904159546, -0.1853049248456955, -0.02492852509021759, 0.2033345103263855, -0.07869721949100494, -0.008724633604288101, 0.09604738652706146, -0.08326336741447449, 0.04809664189815521, 0.13418714702129364, 0.10017415136098862, 0.17267753183841705, -0.12795886397361755, -0.06196979433298111, -0.05966019257903099, -0.012916583567857742, 0.16472819447517395, 0.047638826072216034, 0.02272087149322033, 0.039818670600652695, 0.00739825377240777, -0.019380267709493637, -0.03602791205048561, -0.018077479675412178, -0.04150146245956421, -0.016546880826354027, 0.004068916197866201, -0.0039390563033521175, -0.036919157952070236, -0.020025378093123436, -0.01910993456840515, -0.09419809281826019, 0.13202956318855286, 0.07440399378538132, -0.06635045260190964, 0.04565132409334183, -0.0848906934261322, 0.0016457578167319298, -0.01555587351322174, -0.0175276268273592, -0.23509584367275238, -0.03121439553797245, 0.007921320386230946, -0.1560201495885849, 0.10598311573266983, -0.024792766198515892, 0.019792351871728897, 0.06411980092525482, -0.015820680186152458, 0.04956056550145149, -0.02758471481502056, -0.013140583410859108, -0.06240714341402054, -0.15687686204910278, -0.023233775049448013, -0.04834649711847305, 0.04590865969657898, -0.08090351521968842, 0.009737029671669006, 0.09888296574354172, 0.12455382198095322, 0.048986125737428665, -0.06466307491064072, 0.02491389401257038, 0.008612132631242275, -0.0083508575335145, -0.057424720376729965, -0.05198923870921135, 0.012442062608897686, -0.029217805713415146, 0.11327286809682846, -0.1482192575931549, -0.07487333565950394, 0.11301381886005402, 0.10331370681524277, -0.06852997094392776, -0.0380479097366333, -0.03529256582260132, -0.008920164778828621, -0.08278895169496536, -0.03443344682455063, 0.17516294121742249, 0.04527347907423973, 0.07530537247657776, -0.10665439814329147, -0.07354306429624557, -0.021519415080547333, -0.05763130635023117, -0.0037503161001950502, 0.08313824981451035, -0.0376652330160141, -0.1791841983795166, 0.0630069375038147, 0.014371867291629314, 0.017889173701405525, 0.22997693717479706, 0.007359777111560106, -0.07559679448604584, -0.09946055710315704, -0.07064788043498993, 0.007941871881484985, 0.05431771278381348, 0.06064300611615181, 0.06232824549078941, 0.039617400616407394, 0.05146929249167442, 0.021546440199017525, -0.12640511989593506, 0.005878780502825975, 0.046310193836688995, -0.040332723408937454, -0.10355224460363388, 0.01004510186612606, 0.03713312745094299, 0.0918421670794487, 0.026282956823706627, 0.10159683972597122, -0.05686356872320175, -0.058454498648643494, -0.08601159602403641, 0.11927810311317444, -0.1203848198056221, -0.16941042244434357, -0.13221053779125214, -0.07995624095201492, -0.023240676149725914, -0.0034922112245112658, 0.039436593651771545, -0.012002852745354176, -0.030502112582325935, -0.08710169792175293, 0.11656304448843002, 0.03463250398635864, -0.04213907569646835, 0.007052983622997999, 0.03798564150929451, -0.032297004014253616, -0.11787840723991394, -0.03416617587208748, 0.0030272570438683033, -0.040114838629961014, 0.01450293231755495, 0.053362663835287094, 0.04117505997419357, 0.12347965687513351, 0.0012474764371290803, -0.009233527816832066, -0.007909330539405346, 0.2812272310256958, -0.107655368745327, 0.0926453173160553, 0.1441705822944641, -0.04274813085794449, 0.08218371123075485, 0.08024352043867111, 0.04248971492052078, -0.05999116227030754, 0.06192152574658394, 0.06058378145098686, -0.07469457387924194, -0.24918468296527863, -0.04514631628990173, -0.03795525059103966, -0.050295960158109665, 0.058806825429201126, 0.006753355264663696, 0.010391522198915482, 0.009115959517657757, -0.07034798711538315, 0.06168859824538231, 0.06450524926185608, 0.07527671009302139, 0.025501733645796776, 0.0197198037058115, 0.0789717584848404, -0.06160574406385422, 0.02915041893720627, 0.10872090607881546, 0.03788788989186287, 0.2142854928970337, -0.06516096740961075, 0.09460625797510147, 0.09153170138597488, 0.0603562593460083, 0.05460676550865173, 0.022728849202394485, -0.019102508202195168, 0.0526663176715374, 0.0006196192698553205, -0.11309890449047089, -0.005712305661290884, -0.00015506515046581626, -0.04887152090668678, -0.02314128912985325, 0.003664621151983738, -0.054943740367889404, 0.059194762259721756, 0.1932992935180664, 0.03556171432137489, -0.13833221793174744, -0.07652632892131805, 0.06254260241985321, -0.025066940113902092, -0.03781180828809738, -0.028014782816171646, 0.072899229824543, -0.15738725662231445, 0.03136761114001274, -0.056681033223867416, 0.12099847197532654, -0.11772805452346802, 0.002890448784455657, 0.027584752067923546, 0.12085073441267014, -0.06722251325845718, 0.039328332990407944, -0.15556180477142334, 0.11216000467538834, 0.02683986909687519, 0.07711450755596161, -0.05605786666274071, 0.008163262158632278, 0.03840307518839836, 0.004768896847963333, 0.05282256752252579, 0.027996839955449104, -0.06980079412460327, -0.1042550802230835, -0.07065288722515106, 0.009548223577439785, 0.10190436989068985, -0.09299477934837341, 0.10685748606920242, -0.016723444685339928, 0.013677317649126053, -0.024091918021440506, -0.12507984042167664, -0.12769508361816406, -0.14402230083942413, 0.04826048016548157, -0.06586503982543945, -0.019985778257250786, -0.026761772111058235, -0.03464101254940033, 0.05374005436897278, 0.09929957240819931, -0.07894212752580643, -0.09873390942811966, -0.11838553845882416, 0.009466269984841347, 0.1503818929195404, -0.10956523567438126, 0.0009013962117023766, -0.004755806643515825, 0.12739057838916779, 0.003441805951297283, -0.13239729404449463, 0.015209135599434376, -0.034510284662246704, -0.17387068271636963, -0.019031019881367683, 0.10837556421756744, 0.10498711466789246, 0.04502462223172188, -0.0022207130677998066, 0.03283274173736572, -0.026967989280819893, -0.14778508245944977, -0.030541514977812767, 0.13179615139961243, 0.022733334451913834, 0.07123488932847977, 0.0020443026442080736, -0.011279117316007614, -0.12867549061775208, 0.016379524022340775, 0.045140646398067474, 0.20436272025108337, -0.061333879828453064, 0.13841025531291962, 0.07912284880876541, -0.09179805964231491, -0.1679023951292038, 0.049187611788511276, 0.03992165997624397, 0.03041720576584339, 0.05124389007687569, -0.18845421075820923, 0.04548078402876854, 0.0846005529165268, -0.004099528305232525, 0.06952986866235733, -0.31526267528533936, -0.14831966161727905, -0.0015653518494218588, 0.0282015148550272, -0.1213877722620964, -0.05553794652223587, -0.05497923865914345, -0.07018199563026428, -0.20840798318386078, 0.16178034245967865, -0.10896870493888855, 0.0939752385020256, 0.02891615405678749, 0.07181844860315323, 0.041172441095113754, -0.02664206176996231, 0.13156838715076447, -0.01633961871266365, 0.08915502578020096, -0.0757627934217453, -0.017717581242322922, 0.0578538179397583, -0.07035362720489502, 0.06266907602548599, -0.007870321162045002, 0.0729905441403389, -0.04707615450024605, -0.07675637304782867, -0.07887666672468185, 0.003650894621387124, -0.07199319452047348, -0.08935829252004623, -0.07487334311008453, 0.0854976624250412, 0.07437331229448318, -0.06904809921979904, -0.025113245472311974, -0.052611302584409714, -0.03632616624236107, 0.12317190319299698, 0.07332924008369446, 0.11232355237007141, -0.08077242970466614, 0.007574486080557108, 0.004170923959463835, 0.06398020684719086, -0.16586391627788544, 0.04613658785820007, 0.08143797516822815, 0.05160313844680786, 0.08552280813455582, -0.0015212338184937835, -0.15461517870426178, 0.02858305349946022, 0.024403879418969154, -0.12973037362098694, -0.08782786130905151, -0.016060082241892815, -0.02390364743769169, -0.05460096523165703, -0.051889318972826004, 0.14945363998413086, -0.026683500036597252, -0.041056953370571136, 0.029455382376909256, 0.03259160742163658, -0.005776329431682825, 0.12949688732624054, 0.05385226383805275, 0.029607143253087997, -0.08188888430595398, 0.09675075858831406, 0.07182832062244415, 0.003435444785282016, 0.020374929532408714, 0.07543772459030151, -0.0753740593791008, -0.011060696095228195, -0.037378180772066116, 0.04175068065524101, -0.0574004203081131, 0.030216937884688377, -0.0052606891840696335, -0.037083450704813004, 0.027712484821677208, 0.1708463579416275, 0.026926619932055473, 0.07153940945863724, -0.05226579308509827, 0.013629727065563202, -0.0923522412776947, 0.10277333110570908, 0.07513381540775299, 0.030886942520737648, -0.07769487053155899, 0.11844930797815323, 0.00764706963673234, 0.04430567845702171, -0.03145937994122505, -0.05446057766675949, -0.10282629728317261, -0.0005468431045301259, -0.16663767397403717, -0.014127262867987156, -0.065626360476017, -0.010838333517313004, -0.027818160131573677, -0.05893111601471901, -0.025661004707217216, 0.04789924994111061, -0.03494536504149437, -0.04644027724862099, -0.055543407797813416, 0.033128924667835236, -0.18015824258327484, -0.014037850312888622, 0.11203184723854065, -0.07899460196495056, 0.08828279376029968, 0.08144040405750275, -0.04443290829658508, 0.035454027354717255, -0.1456737071275711, 0.05204318091273308, -0.024729857221245766, 0.020495541393756866, 0.060472264885902405, -0.09843679517507553, 0.016738668084144592, -0.053945448249578476, 0.03040331043303013, 0.026292771100997925, 0.0629466101527214, -0.1321278065443039, 0.04768247902393341, 0.06322531402111053, -0.019638098776340485, -0.07585238665342331, 0.07993093878030777, 0.08914158493280411, 0.05081469565629959, 0.08061237633228302, -0.017022358253598213, 0.10487668216228485, -0.1792418658733368, -0.03670419752597809, 0.027993693947792053, -0.029755612835288048, 0.018445635214447975, -0.031221013516187668, 0.05981307476758957, -0.03042203187942505, 0.15225060284137726, 0.06216800957918167, -0.006639362312853336, 0.029021114110946655, 0.004480432253330946, -0.047245945781469345, 0.04086891934275627, 0.0020638948772102594, -0.006222879514098167, -0.0278182290494442, -0.00875195860862732, -0.028268516063690186, -0.054339710623025894, -0.0393863320350647, 0.1188926249742508, 0.1176227331161499, 0.149514839053154, -0.030687492340803146, 0.0743730440735817, 0.0401274748146534, -0.1554061770439148, -0.08124183863401413, -0.026687532663345337, 0.02344393916428089, -0.07763298600912094, 0.0440751314163208, 0.07026974111795425, -0.15311354398727417, 0.15073780715465546, 0.010863607749342918, -0.08222567290067673, -0.1283470243215561, -0.2221328169107437, -0.021629752591252327, 0.011603768914937973, -0.0051924362778663635, -0.12830328941345215, 0.09965581446886063, 0.029136372730135918, 0.03157813474535942, -0.020526986569166183, 0.1215200126171112, -0.03494500368833542, -0.09937505424022675, 0.048280518501996994, 0.030157167464494705, 0.0068857744336128235, 0.059681810438632965, 0.05010954290628433, 0.03744998946785927, 0.03949853777885437, 0.053787700831890106, 0.06334486603736877, 0.010941477492451668, -0.01821315661072731, -0.0757230892777443, -0.07957381010055542, 0.012375409714877605, 0.02089647948741913, 0.034554921090602875, 0.1259707510471344, 0.06821532547473907, -0.01523436326533556, -0.028850769624114037, 0.33390215039253235, -0.020745348185300827, -0.06197308003902435, -0.1615970879793167, 0.191851407289505, -0.019825918599963188, 0.016147086396813393, 0.01895628310739994, -0.11359822750091553, -0.015460078604519367, 0.11856064200401306, 0.1735554337501526, -0.05594906583428383, 0.02162473089993, -0.02557944320142269, 0.023832127451896667, 0.0073747336864471436, 0.11201179027557373, 0.0476728156208992, 0.21435900032520294, -0.033034320920705795, 0.107872374355793, -0.024819131940603256, -0.05308591574430466, -0.02087533287703991, 0.08737127482891083, -0.043889231979846954, -0.01657363399863243, -0.0780809298157692, 0.11159292608499527, -0.079583078622818, -0.2408982366323471, -0.0011811208678409457, -0.04963337630033493, -0.12142239511013031, 0.04180091619491577, 0.010473949834704399, -0.014730602502822876, 0.07140517979860306, 0.022297071292996407, -0.02474880963563919, 0.09738986194133759, 0.013171731494367123, 0.0008447854197584093, -0.0159231536090374, 0.10258384048938751, -0.04195743799209595, 0.14751873910427094, 0.009143128991127014, 0.09287740290164948, 0.0896439254283905, 0.035672690719366074, -0.09573867172002792, 0.023892898112535477, 0.04491298645734787, -0.0933927446603775, -0.03621770069003105, 0.1819477528333664, -0.01329552847892046, 0.00161478400696069, 0.0851672813296318, 0.005813173018395901, 0.025534430518746376, -0.07913954555988312, 0.03618759661912918, -0.12729352712631226, 0.017002727836370468, -0.08453451097011566, 0.10054026544094086, 0.19999413192272186, -0.04715001955628395, 0.04792400076985359, -0.03478351980447769, 0.004301560111343861, -0.006330970209091902, 0.0547434464097023, -0.02462727203965187, -0.10415869951248169, 0.0003488609509076923, 0.1420038491487503, 0.041264187544584274, -0.1782453954219818, -0.07652228325605392, 0.04090150445699692, -0.06313484907150269, 0.023826248943805695, 0.13055962324142456, 0.014095129445195198, 0.06304002553224564, -0.006543648429214954, -0.0901176929473877, -0.017584092915058136, 0.0921781063079834, -0.13582761585712433, -0.043001484125852585 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9c2f93bf9d29964df4d9d5f41089a2b5.976x976x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MACAN</div> <a href="https://genius.com/artists/macan"> <div style="text-align: center; font-size: 14px;">@macan</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MACAN. Dataset is available [here](https://huggingface.co/datasets/huggingartists/macan). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/macan") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3u3vx3xp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MACAN's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/23krf2tu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/23krf2tu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/macan') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/macan") model = AutoModelWithLMHead.from_pretrained("huggingartists/macan") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/macan"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/macan
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/macan", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/macan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">MACAN</div> <a href="URL <div style="text-align: center; font-size: 14px;">@macan</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from MACAN. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on MACAN's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MACAN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MACAN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/macan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MACAN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MACAN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/macan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from MACAN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MACAN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02938137948513031, 0.14655274152755737, -0.0024073694366961718, 0.028677204623818398, 0.08708908408880234, -0.008082175627350807, 0.07284421473741531, 0.10350525379180908, -0.029634447768330574, 0.06678222119808197, 0.07766533643007278, 0.028953900560736656, 0.06682778149843216, 0.12954728305339813, 0.08142153173685074, -0.25681498646736145, 0.04117712751030922, -0.10653088241815567, 0.028264261782169342, 0.1181093230843544, 0.0874147042632103, -0.048045381903648376, 0.08434022217988968, 0.04027986526489258, -0.07443224638700485, 0.025734784081578255, -0.015157770365476608, -0.07555598020553589, 0.09343548864126205, 0.083978570997715, 0.02404690533876419, 0.03306509554386139, 0.06533518433570862, -0.18347077071666718, 0.03613417223095894, 0.12929093837738037, 0.03807108476758003, 0.0689239501953125, 0.04780711233615875, -0.0642729327082634, 0.1870141625404358, -0.018771590664982796, 0.09443599730730057, 0.0441020131111145, -0.10357960313558578, -0.17143790423870087, -0.12502515316009521, 0.07963622361421585, 0.10691943019628525, 0.08782758563756943, -0.028244899585843086, 0.04636142775416374, 0.0073125348426401615, 0.04850829020142555, 0.22622336447238922, -0.23224113881587982, -0.011965617537498474, 0.11210620403289795, 0.05129148066043854, 0.048171788454055786, -0.07203046977519989, 0.013211369514465332, 0.04989510402083397, 0.01781429350376129, 0.04253418371081352, -0.01570890285074711, 0.21822671592235565, 0.01948162354528904, -0.09622031450271606, -0.09338677674531937, 0.10430833697319031, -0.03372149541974068, -0.08347693830728531, -0.15441124141216278, 0.009730152785778046, -0.007548863533884287, 0.04781227186322212, -0.010059474036097527, -0.010575778782367706, 0.005086930468678474, -0.041823506355285645, -0.09883564710617065, -0.09080860018730164, -0.02812943421304226, -0.027254030108451843, 0.05293846130371094, 0.02142520807683468, 0.03512817993760109, -0.07058855146169662, 0.2260117083787918, 0.008959409780800343, -0.0988500788807869, -0.05770746245980263, -0.09160474687814713, -0.10035363584756851, -0.06676798313856125, 0.012313800863921642, 0.02024528570473194, -0.06826690584421158, 0.15163211524486542, -0.03616367280483246, 0.02688845992088318, -0.008788458071649075, -0.01925288327038288, 0.14366847276687622, 0.13032257556915283, -0.1074119582772255, -0.030428752303123474, 0.04217762127518654, -0.01879350282251835, -0.07303347438573837, -0.06464383006095886, -0.019360875710844994, -0.015170755796134472, 0.013935077004134655, 0.09369093179702759, 0.045639898627996445, 0.059584613889455795, 0.03166144713759422, -0.06650704890489578, 0.11697226762771606, -0.1381213515996933, 0.00413504196330905, -0.009079139679670334, -0.03235812857747078, 0.020445745438337326, 0.04386216029524803, 0.022792616859078407, -0.10273056477308273, 0.11538529396057129, -0.04947970435023308, -0.05350141227245331, -0.06856779009103775, -0.08573460578918457, -0.0067664156667888165, 0.007451483514159918, -0.04796919226646423, -0.07855155318975449, -0.1694953292608261, -0.031821876764297485, 0.028140032663941383, -0.03364360332489014, -0.04264434054493904, 0.04656577482819557, -0.04002775996923447, -0.0031027670484036207, -0.015731660649180412, 0.0005047190934419632, -0.03607088327407837, 0.02023298852145672, -0.06268596649169922, 0.028808513656258583, 0.07759913057088852, 0.037813980132341385, -0.10540207475423813, 0.06410732865333557, -0.158314049243927, 0.14535969495773315, -0.008197818882763386, 0.03220123425126076, -0.10491839796304703, -0.09140520542860031, -0.018825458362698555, -0.03213648870587349, -0.012924212962388992, 0.07812981307506561, -0.1942630261182785, -0.03093295730650425, 0.1791878342628479, -0.07739429920911789, -0.0866452232003212, 0.07145741581916809, -0.07831645011901855, 0.03961094841361046, 0.13646703958511353, 0.062087416648864746, 0.16262173652648926, -0.11932580918073654, -0.05671052262187004, -0.051004841923713684, -0.062458354979753494, 0.21270044147968292, 0.05821466073393822, -0.014292026869952679, 0.013086843304336071, 0.010655188001692295, -0.034490302205085754, -0.029056137427687645, -0.015040397644042969, -0.046421512961387634, -0.01060115173459053, 0.00623226398602128, -0.022186530753970146, -0.050084520131349564, -0.07527762651443481, -0.019437558948993683, -0.10551631450653076, 0.026230616495013237, 0.10917239636182785, -0.07618096470832825, 0.003891676664352417, -0.09171062707901001, 0.0022324572782963514, -0.04621739313006401, 0.021616332232952118, -0.19194209575653076, -0.0484134815633297, 0.01685178466141224, -0.04982541874051094, 0.08076410740613937, 0.01691904105246067, 0.029851188883185387, 0.07083461433649063, 0.0011204354232177138, 0.02745138108730316, -0.04186837375164032, -0.017521506175398827, -0.0311607476323843, -0.13472221791744232, -0.06768959015607834, -0.054098647087812424, 0.07503188401460648, -0.14514721930027008, 0.0081781642511487, 0.10213842242956161, 0.10053839534521103, 0.02240828424692154, -0.06422203779220581, 0.009661789983510971, -0.03506645932793617, -0.0455031581223011, -0.11836832761764526, -0.057695355266332626, 0.010938331484794617, -0.03656237944960594, 0.15660172700881958, -0.18785156309604645, -0.06327413767576218, 0.09670933336019516, 0.1673630028963089, -0.1008572205901146, 0.01641012914478779, -0.09140636771917343, -0.008897625841200352, -0.05819693207740784, -0.03396180644631386, 0.2800169289112091, 0.03758445382118225, 0.07967152446508408, -0.11791389435529709, -0.09884431958198547, -0.0027857597451657057, -0.021165922284126282, -0.03443220257759094, 0.026661386713385582, 0.02086351066827774, -0.16149576008319855, 0.021257340908050537, -0.0003188569098711014, 0.1289401650428772, 0.21156370639801025, 0.056454870849847794, -0.10442707687616348, -0.05920317396521568, -0.08370905369520187, 0.009464728645980358, 0.058043867349624634, 0.02824365347623825, 0.03364960104227066, 0.041294246912002563, 0.0535898394882679, 0.04014838859438896, -0.11430753022432327, 0.0036799442023038864, 0.08378547430038452, -0.05485205352306366, -0.05885416641831398, 0.009102744981646538, 0.02179364114999771, 0.07877371460199356, 0.0733899399638176, 0.13350358605384827, -0.07113388180732727, -0.05068414285778999, -0.14381279051303864, 0.13796491920948029, -0.07171586155891418, -0.27126947045326233, -0.1423736810684204, -0.07251619547605515, 0.021581923589110374, 0.002978844568133354, 0.03705262765288353, -0.04753018915653229, -0.0434274859726429, -0.11006540060043335, 0.0883614793419838, -0.0565950870513916, -0.018195314332842827, 0.01622709259390831, 0.020225608721375465, -0.03444705903530121, -0.10852611809968948, -0.02389500103890896, 0.04564358666539192, -0.11009075492620468, -0.028327465057373047, 0.025102950632572174, 0.043576598167419434, 0.15825477242469788, -0.018946638330817223, -0.005006202030926943, -0.03841300308704376, 0.2754194438457489, -0.12307073920965195, 0.05780461058020592, 0.16466109454631805, -0.03316347673535347, 0.05038037896156311, 0.08138477802276611, -0.002154225716367364, -0.07219690084457397, 0.07661699503660202, 0.06307579576969147, -0.09653670340776443, -0.21170222759246826, -0.030914396047592163, -0.005580962169915438, 0.03973277285695076, 0.12620390951633453, 0.05628696456551552, 0.05854390561580658, -0.0013159728841856122, -0.10464636236429214, 0.037644270807504654, 0.03431733325123787, 0.11051970720291138, -0.08106959611177444, -0.010969903320074081, 0.05134715512394905, -0.06585734337568283, 0.0394320972263813, 0.1428913027048111, 0.05756736919283867, 0.19899164140224457, -0.061927247792482376, 0.0987868532538414, 0.07481386512517929, 0.10653278976678848, 0.035183537751436234, 0.015775801613926888, -0.011396628804504871, 0.008233750239014626, -0.0027569851372390985, -0.10012814402580261, -0.003257613629102707, 0.04524042084813118, 0.03258151933550835, -0.02080605737864971, -0.04747454449534416, -0.04517272114753723, 0.03506344556808472, 0.22818003594875336, -0.02049967460334301, -0.1859850436449051, -0.11975502222776413, 0.037014853209257126, -0.07456327229738235, -0.04423287883400917, -0.021717937663197517, 0.090289406478405, -0.21343789994716644, 0.06316541135311127, -0.028699805960059166, 0.11366462707519531, -0.11678729206323624, 0.003242664970457554, 0.0812632367014885, 0.03999147191643715, -0.06513582915067673, 0.1001601293683052, -0.16561156511306763, 0.05474039912223816, -0.013669458217918873, 0.07327630370855331, -0.08234235644340515, 0.028374850749969482, 0.005494078621268272, 0.053943585604429245, 0.08770627528429031, 0.006831360515207052, 0.005839604418724775, -0.0038505839183926582, -0.05365133285522461, 0.01156115997582674, 0.04285582900047302, -0.11734529584646225, 0.12041983753442764, -0.029385678470134735, 0.03977316990494728, -0.044081952422857285, -0.08617621660232544, -0.0890180692076683, -0.17816030979156494, 0.09309717267751694, -0.12315922975540161, 0.00019316747784614563, -0.07384706288576126, -0.02703590877354145, 0.040264420211315155, 0.28595438599586487, -0.05498092249035835, -0.06461865454912186, -0.13416171073913574, 0.002924741478636861, 0.1451379805803299, -0.07592258602380753, 0.0042572892270982265, -0.010937315411865711, 0.21730494499206543, -0.0012908891076222062, -0.1303003579378128, -0.023023555055260658, -0.0638456717133522, -0.15994983911514282, -0.0069961510598659515, 0.16006328165531158, 0.051728587597608566, 0.026574870571494102, 0.02393152378499508, -0.01968562975525856, -0.04904759302735329, -0.17265303432941437, 0.009038702584803104, 0.1546018272638321, -0.002999878255650401, -0.0026214912068098783, 0.04755793884396553, -0.005950935184955597, -0.13559503853321075, 0.003868506057187915, 0.04630889371037483, 0.17321740090847015, -0.08166796714067459, 0.18886399269104004, 0.03323123976588249, -0.08950313180685043, -0.13982956111431122, 0.02141655422747135, 0.0248477254062891, 0.04040145501494408, 0.04610339179635048, -0.19205905497074127, 0.03935660049319267, 0.054399874061346054, 0.011149709112942219, 0.03938562050461769, -0.350244402885437, -0.16062848269939423, -0.0035849791020154953, 0.0161716490983963, -0.15517769753932953, -0.04904371127486229, -0.03318551555275917, -0.09679784625768661, -0.23066814243793488, 0.1127617135643959, -0.11516847461462021, 0.07595981657505035, 0.03777623549103737, 0.10035232454538345, 0.04408228397369385, -0.04914139583706856, 0.1330338716506958, -0.016260718926787376, 0.06464102864265442, -0.09695511311292648, -0.04778537154197693, 0.08434504270553589, -0.06981009989976883, 0.09583219140768051, 0.034109100699424744, 0.08560169488191605, -0.09973493963479996, -0.08794292062520981, -0.055875372141599655, -0.007208961993455887, -0.05134158208966255, -0.08599355071783066, -0.09500384330749512, 0.08576355129480362, 0.12033319473266602, -0.04686753824353218, -0.10287369042634964, -0.07136937230825424, 0.010030371136963367, 0.03915992006659508, 0.12140697985887527, 0.05709156021475792, -0.049501627683639526, 0.0025020551402121782, 0.020869409665465355, 0.011956554837524891, -0.17207695543766022, 0.04683287814259529, 0.09777826070785522, 0.03499456122517586, 0.09982309490442276, 0.009296603500843048, -0.1597699075937271, 0.010955199599266052, 0.051416706293821335, -0.1653459370136261, -0.12336236238479614, -0.03591243550181389, 0.035837918519973755, -0.09175768494606018, -0.05198140814900398, 0.12679772078990936, -0.029594311490654945, -0.03368042781949043, 0.0009515754063613713, 0.03322119265794754, -0.03722422197461128, 0.094429612159729, -0.022521376609802246, 0.0416264533996582, -0.07099220156669617, 0.11836915463209152, 0.07579568773508072, -0.009669858030974865, 0.029585445299744606, 0.0630645826458931, -0.08702339977025986, 0.01565994881093502, -0.1016782894730568, -0.0006093892152421176, -0.02753462642431259, -0.01582568883895874, 0.033199768513441086, -0.030727969482541084, 0.05424172803759575, 0.10447332262992859, -0.015440051443874836, 0.1065196767449379, -0.04832948371767998, 0.012807094492018223, -0.13536660373210907, 0.06660964339971542, 0.0223422572016716, 0.01613444648683071, -0.10939493030309677, 0.2171059399843216, 0.03798827528953552, 0.09754153341054916, -0.03275126591324806, -0.0690200924873352, -0.04849209263920784, -0.011518903076648712, -0.08184293657541275, -0.028340481221675873, -0.09213406592607498, -0.019601354375481606, -0.001456419937312603, -0.026721304282546043, -0.02854337729513645, 0.04837220907211304, -0.02665495127439499, -0.06268968433141708, -0.0745375007390976, 0.04637433961033821, -0.14330266416072845, 0.0360916443169117, 0.11210168153047562, -0.05160083249211311, 0.12001242488622665, 0.04338284209370613, -0.03885990381240845, 0.00841252226382494, -0.14896456897258759, 0.04507661983370781, -0.0058022490702569485, 0.020837029442191124, 0.020884528756141663, -0.15080073475837708, 0.009556413628160954, -0.019712334498763084, -0.07077678292989731, 0.010231046937406063, -0.005472360644489527, -0.12893910706043243, -0.022540727630257607, 0.096324622631073, -0.019632847979664803, -0.05685461685061455, 0.06843820959329605, 0.058576684445142746, 0.020655876025557518, 0.06621871143579483, -0.0052040014415979385, 0.06640156358480453, -0.16757456958293915, -0.06441275030374527, -0.0009560791659168899, 0.030852841213345528, 0.053930964320898056, -0.0212018433958292, 0.03217380866408348, -0.015763549134135246, 0.21197140216827393, 0.010942153632640839, 0.01663031242787838, 0.039167556911706924, -0.0655406042933464, 0.009705127216875553, 0.04500701650977135, 0.08892663568258286, -0.017872439697384834, -0.02484838105738163, 0.016685649752616882, -0.018118858337402344, -0.0907304510474205, -0.005830025766044855, 0.09221941232681274, 0.012660074979066849, 0.20503604412078857, -0.060546714812517166, 0.06688542664051056, -0.011569797061383724, -0.11199284344911575, -0.04425141215324402, -0.038293011486530304, 0.028167590498924255, -0.054388273507356644, 0.048990290611982346, 0.20212900638580322, -0.16133475303649902, 0.11939030885696411, 0.04642423987388611, -0.0591428317129612, -0.11561001092195511, -0.1944972723722458, -0.009048051200807095, -0.026305822655558586, 0.0231239665299654, -0.14041173458099365, 0.09414100646972656, 0.030040845274925232, 0.045525383204221725, -0.05928242206573486, 0.131124809384346, -0.09132315963506699, -0.1360144168138504, 0.04147734493017197, 0.014232070185244083, 0.03573049604892731, 0.036267951130867004, 0.09402649849653244, 0.041014354676008224, -0.003398451255634427, 0.07740103453397751, 0.04354779049754143, 0.03512769564986229, 0.040118228644132614, -0.035744573920965195, -0.030704259872436523, 0.030002420768141747, -0.012545573525130749, 0.02245994657278061, 0.10744401067495346, 0.0717981681227684, -0.02293912135064602, -0.008876007981598377, 0.30923473834991455, -0.017988786101341248, -0.03705214336514473, -0.19056357443332672, 0.14475281536579132, 0.003249327652156353, 0.0019013680284842849, 0.021554721519351006, -0.1126369908452034, 0.016431594267487526, 0.13164205849170685, 0.14308933913707733, -0.02963518537580967, 0.020513668656349182, -0.029826989397406578, 0.015635671094059944, 0.03257248178124428, 0.10981128364801407, 0.07207751274108887, 0.2009083777666092, -0.019153960049152374, 0.040381304919719696, -0.012690710835158825, -0.018560806289315224, 0.005509442184120417, 0.09442287683486938, -0.04811856523156166, 0.006582548376172781, -0.04577299952507019, 0.10482323169708252, -0.05834905430674553, -0.28381869196891785, -0.05202172324061394, -0.012221629731357098, -0.091090627014637, 0.07588418573141098, -0.0296038631349802, -0.03624255955219269, 0.07136382907629013, 0.03252021595835686, -0.043832506984472275, 0.13894744217395782, 0.05102771893143654, -0.049729686230421066, -0.010186423547565937, 0.10433435440063477, -0.025110812857747078, 0.17449349164962769, -0.03936656191945076, 0.00501587800681591, 0.0717511922121048, 0.018139496445655823, -0.1332274079322815, 0.004647580441087484, 0.03309888765215874, -0.04698720574378967, -0.01108116190880537, 0.19870765507221222, 0.009125382639467716, 0.04979749023914337, 0.07330619543790817, -0.05269859358668327, 0.026166453957557678, -0.04526647552847862, 0.07230574637651443, -0.12179837375879288, 0.058354634791612625, -0.07536104321479797, 0.12293330579996109, 0.1722990870475769, -0.062050338834524155, 0.05013145133852959, -0.06124284490942955, 0.005504533648490906, -0.03849165514111519, 0.07204785197973251, -0.021394869312644005, -0.11141993850469589, 0.0008293031714856625, 0.014773470349609852, 0.009047427214682102, -0.18273504078388214, -0.08505899459123611, 0.07805899530649185, -0.061627667397260666, 0.0186868105083704, 0.1763511300086975, 0.019711995497345924, 0.052379708737134933, -0.0421939380466938, -0.01205694954842329, -0.0033588081132620573, 0.11538831144571304, -0.17727875709533691, -0.08057111501693726 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/bee1868cba78bf4b170886b3368c4ae8.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Machine Gun Kelly</div> <a href="https://genius.com/artists/machine-gun-kelly"> <div style="text-align: center; font-size: 14px;">@machine-gun-kelly</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Machine Gun Kelly. Dataset is available [here](https://huggingface.co/datasets/huggingartists/machine-gun-kelly). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/machine-gun-kelly") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/33f2ce6m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Machine Gun Kelly's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2bbn6fvb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2bbn6fvb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/machine-gun-kelly') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/machine-gun-kelly") model = AutoModelWithLMHead.from_pretrained("huggingartists/machine-gun-kelly") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/machine-gun-kelly"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/machine-gun-kelly
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/machine-gun-kelly", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/machine-gun-kelly #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Machine Gun Kelly</div> <a href="URL <div style="text-align: center; font-size: 14px;">@machine-gun-kelly</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Machine Gun Kelly. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Machine Gun Kelly's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Machine Gun Kelly.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Machine Gun Kelly's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/machine-gun-kelly #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Machine Gun Kelly.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Machine Gun Kelly's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/machine-gun-kelly #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Machine Gun Kelly.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Machine Gun Kelly's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04400496929883957, 0.16728897392749786, -0.0021909228526055813, 0.03993722051382065, 0.09430843591690063, 0.019084064289927483, 0.10347537696361542, 0.11089733988046646, 0.004339809063822031, 0.0680818110704422, 0.06801658868789673, 0.04581381008028984, 0.07853743433952332, 0.09037617594003677, 0.0645768940448761, -0.20754492282867432, 0.043706029653549194, -0.07832187414169312, 0.01078468095511198, 0.10715385526418686, 0.08637544512748718, -0.06543977558612823, 0.06317432224750519, 0.024104265496134758, -0.05833405628800392, 0.024322088807821274, 0.009269964881241322, -0.060639917850494385, 0.09035871177911758, 0.06519393622875214, 0.032154932618141174, 0.01835009828209877, 0.07377886027097702, -0.17635537683963776, 0.03473690152168274, 0.1235978901386261, 0.02364238351583481, 0.0761798769235611, 0.048928823322057724, -0.08332547545433044, 0.13839803636074066, -0.03643740713596344, 0.08320940285921097, 0.05481187254190445, -0.10291004925966263, -0.15041759610176086, -0.14481955766677856, 0.1071680337190628, 0.07663430273532867, 0.08304041624069214, -0.024893224239349365, 0.07325726747512817, -0.013506635092198849, 0.03948795422911644, 0.2426706999540329, -0.23167450726032257, -0.02270263247191906, 0.08742418885231018, 0.0637257918715477, 0.044330038130283356, -0.08988465368747711, 0.01739582233130932, 0.0456506684422493, 0.03086361475288868, 0.049106862396001816, -0.017788955941796303, 0.18461008369922638, 0.027449171990156174, -0.09674479067325592, -0.08082781732082367, 0.10362034291028976, -0.032402001321315765, -0.07043740898370743, -0.1418510377407074, 0.007972806692123413, -0.024357270449399948, 0.03117511421442032, 0.007123038172721863, -0.012406935915350914, -0.008930547162890434, -0.04452643170952797, -0.11475293338298798, -0.07137187570333481, -0.05692940205335617, -0.00940025132149458, 0.05345066636800766, 0.03520328924059868, 0.044362761080265045, -0.09017140418291092, 0.22083275020122528, -0.012803235091269016, -0.09569456428289413, -0.06116442009806633, -0.09607017040252686, -0.10476083308458328, -0.041343629360198975, -0.006506115198135376, 0.019430819898843765, -0.030825521796941757, 0.1526426076889038, -0.032254528254270554, 0.022714903578162193, -0.018476998433470726, 0.009367167949676514, 0.11871363967657089, 0.1416323184967041, -0.11486247181892395, -0.05580700561404228, 0.05783027783036232, 0.009976014494895935, -0.07780887186527252, -0.05651560425758362, -0.009455736726522446, -0.017640022560954094, 0.0489884652197361, 0.07164216041564941, 0.07143162190914154, 0.046431150287389755, 0.015911171212792397, -0.06554970145225525, 0.07200334221124649, -0.13059896230697632, 0.006752832792699337, -0.005996636115014553, -0.04340072348713875, 0.03402789309620857, 0.05460827052593231, 0.0009805563604459167, -0.09638325870037079, 0.08606266230344772, -0.06494666635990143, -0.0503259114921093, -0.10236575454473495, -0.10357946902513504, -0.009901179000735283, -0.0399179644882679, -0.04663369059562683, -0.07612179219722748, -0.18194371461868286, -0.037576720118522644, 0.026987381279468536, -0.04828682914376259, -0.016881778836250305, 0.027147185057401657, -0.018759828060865402, 0.014687146991491318, -0.007448435295373201, -0.012638725340366364, -0.02904704213142395, 0.032695259898900986, -0.0779535323381424, 0.046485915780067444, 0.0807473286986351, 0.039319414645433426, -0.10227452963590622, 0.06580843776464462, -0.13482294976711273, 0.11758317053318024, -0.024532513692975044, 0.005169611889868975, -0.09864148497581482, -0.07463759928941727, -0.013394824229180813, -0.03888525068759918, 0.009555940516293049, 0.10101061314344406, -0.1725354641675949, -0.02270595356822014, 0.20015493035316467, -0.07364487648010254, -0.06506238877773285, 0.05898309499025345, -0.07946660369634628, 0.029626870527863503, 0.1110670268535614, 0.0650598406791687, 0.16314928233623505, -0.12156160920858383, -0.05899185314774513, -0.031634844839572906, -0.0715756043791771, 0.16576139628887177, 0.04989822581410408, -0.01933261752128601, 0.000029109074603184126, -0.005151983350515366, -0.04301569610834122, -0.015416078269481659, -0.024248210713267326, -0.03172868862748146, -0.01786685921251774, -0.019394585862755775, 0.008134027943015099, -0.043974172323942184, -0.05625027418136597, -0.02793707884848118, -0.10340190678834915, 0.0572507418692112, 0.10728718340396881, -0.060778383165597916, -0.0014802046352997422, -0.09415312856435776, 0.019027194008231163, -0.061554718762636185, 0.014213827438652515, -0.16700062155723572, -0.06960634142160416, 0.015160002745687962, -0.07116733491420746, 0.074363574385643, 0.034242067486047745, 0.051986899226903915, 0.0858684554696083, -0.007578887511044741, -0.005205188877880573, -0.041741061955690384, -0.000605605193413794, -0.0356375053524971, -0.17158156633377075, -0.06152497977018356, -0.04595232382416725, 0.08156615495681763, -0.093697689473629, 0.00905547384172678, 0.07613392174243927, 0.1215338259935379, 0.020603055134415627, -0.06782540678977966, 0.03191673755645752, -0.03481348603963852, -0.032796941697597504, -0.10113850980997086, -0.04030810669064522, 0.011196762323379517, -0.010304814204573631, 0.15052270889282227, -0.1448470652103424, -0.08427166938781738, 0.12063821405172348, 0.12768606841564178, -0.08042898029088974, 0.03351636976003647, -0.06648505479097366, -0.016537047922611237, -0.0542641282081604, -0.060890402644872665, 0.24291442334651947, 0.03998653590679169, 0.091971255838871, -0.09809782356023788, -0.09933079779148102, -0.009826526045799255, -0.026966921985149384, -0.03226397931575775, 0.04072810336947441, 0.020280415192246437, -0.15077385306358337, 0.05307721346616745, -0.0071297273971140385, 0.08192148804664612, 0.2148492932319641, 0.042632196098566055, -0.10341454297304153, -0.06506147235631943, -0.0795847550034523, 0.011289948597550392, 0.0998581051826477, 0.009393538348376751, 0.030729122459888458, 0.04793154448270798, 0.03277234733104706, 0.0325646847486496, -0.12809927761554718, -0.0012989194365218282, 0.06298619508743286, -0.0285197626799345, -0.04884227737784386, 0.0244247168302536, 0.03480682522058487, 0.09774573147296906, 0.07730742543935776, 0.11735499650239944, -0.051122356206178665, -0.06631100922822952, -0.1321633756160736, 0.12941524386405945, -0.08554799109697342, -0.2000909000635147, -0.14243873953819275, -0.05463504418730736, 0.01103286910802126, -0.0007760475855320692, 0.024111513048410416, -0.061633944511413574, -0.02598402090370655, -0.08694170415401459, 0.06121562421321869, -0.03292667865753174, -0.02066873386502266, 0.008596036583185196, 0.023833688348531723, -0.013403588905930519, -0.12531107664108276, -0.04328136518597603, 0.03455566614866257, -0.07686580717563629, 0.004595812875777483, 0.05037659779191017, 0.052625276148319244, 0.1533445119857788, -0.009824034757912159, 0.02339792810380459, -0.0197286456823349, 0.26304641366004944, -0.11017872393131256, 0.059317074716091156, 0.158450186252594, -0.006097154226154089, 0.061072804033756256, 0.048067357391119, 0.007758866995573044, -0.0377662256360054, 0.049087945371866226, 0.06777945160865784, -0.07485032081604004, -0.19927503168582916, -0.02241397090256214, -0.016362110152840614, -0.0017525822622701526, 0.11403506249189377, 0.024608410894870758, 0.06732090562582016, 0.018635600805282593, -0.10111218690872192, 0.05005531385540962, 0.02626371569931507, 0.10236849635839462, -0.09343361854553223, -0.0020654492545872927, 0.0497177317738533, -0.05537353828549385, 0.035712018609046936, 0.1237783208489418, 0.031462088227272034, 0.23298746347427368, -0.05980502814054489, 0.08107171952724457, 0.07763500511646271, 0.11223235726356506, 0.01472488697618246, 0.04606141895055771, -0.025733908638358116, 0.02726806327700615, 0.00724015012383461, -0.10817165672779083, 0.0034892624244093895, 0.055882662534713745, 0.004301255103200674, 0.013531392440199852, -0.048176418989896774, -0.08353223651647568, 0.05160069093108177, 0.2362949401140213, 0.02621450647711754, -0.18358434736728668, -0.10823003202676773, 0.06144502013921738, -0.03580855950713158, -0.04630586504936218, -0.015359475277364254, 0.07044977694749832, -0.21099460124969482, 0.039449866861104965, -0.03212707117199898, 0.10964428633451462, -0.10874994099140167, -0.006341567263007164, 0.0749935731291771, 0.04953208193182945, -0.06484533846378326, 0.08734431862831116, -0.14621448516845703, 0.08064397424459457, -0.004203462041914463, 0.0741339847445488, -0.08089721202850342, 0.013464497402310371, 0.04727363586425781, 0.019205892458558083, 0.09600329399108887, 0.0123195331543684, 0.002429667627438903, -0.05707358196377754, -0.02831963263452053, -0.011150614358484745, 0.04410266503691673, -0.10995155572891235, 0.14203070104122162, -0.03778505697846413, 0.024152066558599472, -0.032781027257442474, -0.08027515560388565, -0.10551769286394119, -0.14857430756092072, 0.06644437462091446, -0.0975709930062294, 0.007079676259309053, -0.07786332070827484, -0.021657591685652733, 0.01786486618220806, 0.22145268321037292, -0.09245216846466064, -0.07696252316236496, -0.12706293165683746, -0.019880346953868866, 0.13498616218566895, -0.07432149350643158, -0.004374811891466379, -0.012031668797135353, 0.19533514976501465, -0.0246341023594141, -0.15482112765312195, -0.020335644483566284, -0.08562968671321869, -0.16686668992042542, -0.027534978464245796, 0.14759497344493866, 0.08347485959529877, 0.04697539657354355, 0.015221481211483479, 0.005422523710876703, -0.04659702628850937, -0.16322734951972961, 0.030899707227945328, 0.14972355961799622, 0.01717822439968586, 0.028712891042232513, 0.02060207538306713, 0.006885254755616188, -0.13724757730960846, 0.015502264723181725, 0.05859573930501938, 0.1753895878791809, -0.09046095609664917, 0.15149915218353271, 0.012533646076917648, -0.09530019760131836, -0.16962803900241852, 0.028161853551864624, -0.00048486512969247997, 0.017586952075362206, 0.027613501995801926, -0.16041100025177002, 0.01875576190650463, 0.020682528614997864, -0.0055415695533156395, 0.0719345286488533, -0.36599814891815186, -0.14334926009178162, 0.03560798987746239, 0.025713710114359856, -0.08676210790872574, -0.0571335144340992, -0.03326098620891571, -0.07949662208557129, -0.22133862972259521, 0.0947738066315651, -0.14221200346946716, 0.07449585199356079, 0.0005163222667761147, 0.07578923553228378, 0.04846300557255745, -0.07422950118780136, 0.13706663250923157, -0.02035542018711567, 0.07763585448265076, -0.10178656876087189, -0.049654990434646606, 0.11191418766975403, -0.06812234222888947, 0.09495250880718231, 0.013390697538852692, 0.08136341720819473, -0.11836809664964676, -0.07516639679670334, -0.08073289692401886, -0.00021943090541753918, -0.047993555665016174, -0.09620006382465363, -0.09121575951576233, 0.10358411073684692, 0.11245618760585785, -0.04125380888581276, -0.11401840299367905, -0.04798188805580139, 0.018001453951001167, 0.07166650891304016, 0.08727041631937027, 0.09576284885406494, -0.11588477343320847, 0.010147321969270706, 0.01580739952623844, 0.03860612213611603, -0.13209384679794312, 0.0274293702095747, 0.08947939425706863, 0.044991087168455124, 0.1132655143737793, 0.00937146320939064, -0.15595294535160065, 0.021404290571808815, 0.04198041558265686, -0.16787664592266083, -0.12029407173395157, -0.04598035663366318, 0.024016935378313065, -0.07770488411188126, -0.05418020486831665, 0.12563590705394745, -0.039808571338653564, -0.029000503942370415, -0.011551208794116974, 0.05253511667251587, -0.05533634126186371, 0.10680905729532242, 0.0177637729793787, 0.06117948889732361, -0.06709423661231995, 0.09904853254556656, 0.05277327448129654, 0.022167878225445747, 0.03826136142015457, 0.06459923833608627, -0.07246214151382446, -0.004620164167135954, -0.06393317878246307, 0.0417817197740078, -0.04787159338593483, -0.013776173815131187, 0.001121051493100822, -0.042716871947050095, 0.04093853384256363, 0.10902708023786545, -0.0018759488593786955, 0.09242802113294601, -0.025933975353837013, -0.013576327823102474, -0.12687377631664276, 0.07616320997476578, 0.042505644261837006, 0.0038594279903918505, -0.09917278587818146, 0.19940824806690216, 0.034833766520023346, 0.09364377707242966, -0.041543226689100266, -0.06618081033229828, -0.07062262296676636, -0.00018052275117952377, -0.15894824266433716, -0.041077204048633575, -0.08900008350610733, -0.02988944947719574, -0.013139711692929268, -0.04091035574674606, -0.012002737261354923, 0.055745188146829605, -0.025529125705361366, -0.05862526595592499, -0.053625330328941345, 0.049804676324129105, -0.1535104215145111, 0.004106799606233835, 0.11221706867218018, -0.055770549923181534, 0.09521546959877014, 0.06193184480071068, -0.03432745486497879, 0.014113943092525005, -0.10694783180952072, 0.03391222283244133, -0.03578168898820877, 0.010577592067420483, 0.028403203934431076, -0.15693247318267822, 0.02148536778986454, -0.0505979061126709, -0.07644496113061905, 0.01778031699359417, 0.0016685461159795523, -0.12261069566011429, -0.0032038509380072355, 0.08000007271766663, -0.0048606679774820805, -0.07495645433664322, 0.06754480302333832, 0.08790897578001022, 0.014793021604418755, 0.06579910963773727, -0.04609783738851547, 0.08673018217086792, -0.18224893510341644, -0.055472008883953094, 0.005646811798214912, 0.014658665284514427, 0.038156457245349884, -0.01891385205090046, 0.04226360470056534, -0.018838325515389442, 0.19362786412239075, -0.0036873845383524895, -0.0049915253184735775, 0.03579059615731239, -0.04957184940576553, -0.014311250299215317, 0.03639516234397888, 0.0675974190235138, -0.033726658672094345, -0.022726019844412804, -0.025228964164853096, -0.0076648760586977005, -0.06822320073843002, -0.03867267444729805, 0.12215875834226608, 0.054883796721696854, 0.18793275952339172, -0.03272421285510063, 0.07067260891199112, -0.021698428317904472, -0.10913076251745224, -0.006754190661013126, -0.021569713950157166, 0.027168123051524162, -0.07389675825834274, 0.08392981439828873, 0.18639303743839264, -0.1674250215291977, 0.1261201947927475, 0.017989574000239372, -0.04657222703099251, -0.09286471456289291, -0.18621575832366943, -0.01786428689956665, -0.02593936026096344, 0.031038973480463028, -0.126387819647789, 0.09047877043485641, 0.032060712575912476, 0.04523208364844322, -0.0669444277882576, 0.13524191081523895, -0.06977926194667816, -0.10525219887495041, 0.031177647411823273, 0.025493783876299858, 0.018063984811306, 0.036434825509786606, 0.07673902064561844, 0.044324181973934174, -0.024733342230319977, 0.06087595969438553, 0.04105456545948982, 0.021859273314476013, 0.034671127796173096, -0.0157440435141325, -0.056848008185625076, 0.027186501771211624, -0.002669424284249544, 0.03657005354762077, 0.11021377146244049, 0.07925324887037277, -0.013298651203513145, -0.03467113897204399, 0.265481561422348, -0.035376448184251785, -0.06747601181268692, -0.162058025598526, 0.171540305018425, 0.010091293603181839, -0.01607161946594715, 0.03026115708053112, -0.12409278005361557, 0.016330638900399208, 0.15755854547023773, 0.18176382780075073, -0.04260570928454399, 0.012461955659091473, -0.048914194107055664, 0.011058528907597065, 0.030992595478892326, 0.08279099315404892, 0.06552539020776749, 0.209612175822258, -0.04439208656549454, 0.058151938021183014, -0.01179877296090126, -0.011538928374648094, -0.0028983978554606438, 0.10113807022571564, -0.028132500126957893, 0.01178534422069788, -0.047286927700042725, 0.09409439563751221, -0.05202941969037056, -0.26947706937789917, 0.007084450218826532, -0.028324885293841362, -0.09089513123035431, 0.05394860357046127, -0.021116280928254128, -0.03349278122186661, 0.08228661864995956, 0.013702336698770523, -0.0328366681933403, 0.14414595067501068, 0.033421870321035385, -0.04600910842418671, -0.04308643937110901, 0.08746590465307236, -0.013846224173903465, 0.18954291939735413, -0.037881039083004, 0.010670131072402, 0.08990823477506638, 0.012196543626487255, -0.12067137658596039, 0.015695426613092422, 0.04348854720592499, -0.08708019554615021, -0.026766831055283546, 0.19294293224811554, 0.0036507558543235064, 0.047463882714509964, 0.06590396910905838, -0.051993854343891144, 0.03200780972838402, -0.08404538035392761, 0.0429699532687664, -0.13310647010803223, 0.057730741798877716, -0.06923750042915344, 0.15045017004013062, 0.17991812527179718, -0.06527087837457657, 0.027950379997491837, -0.05714577063918114, 0.008406003937125206, -0.015231533907353878, 0.05712325870990753, -0.026109931990504265, -0.09102598577737808, 0.02607147768139839, 0.006883374415338039, 0.033214543014764786, -0.21026359498500824, -0.08160991966724396, 0.05078239366412163, -0.053899794816970825, 0.029820606112480164, 0.16404004395008087, 0.0495569184422493, 0.06348953396081924, -0.03237122297286987, -0.010419892147183418, -0.020017238333821297, 0.11218004673719406, -0.15968210995197296, -0.07656469196081161 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/676c1c425eaa8e7600136c56af6dfada.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Madonna</div> <a href="https://genius.com/artists/madonna"> <div style="text-align: center; font-size: 14px;">@madonna</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Madonna. Dataset is available [here](https://huggingface.co/datasets/huggingartists/madonna). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/madonna") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2abhif57/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Madonna's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2eok9fmu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2eok9fmu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/madonna') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/madonna") model = AutoModelWithLMHead.from_pretrained("huggingartists/madonna") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/madonna"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/madonna
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/madonna", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/madonna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Madonna</div> <a href="URL <div style="text-align: center; font-size: 14px;">@madonna</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Madonna. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Madonna's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Madonna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Madonna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/madonna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Madonna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Madonna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 49, 71, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/madonna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Madonna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Madonna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02278473600745201, 0.18625693023204803, -0.0029541386757045984, 0.044755611568689346, 0.10583493858575821, -0.007364226970821619, 0.06786980479955673, 0.10593301802873611, -0.024763958528637886, 0.08010821044445038, 0.06797480583190918, 0.017845530062913895, 0.05692826211452484, 0.1332411915063858, 0.10099148005247116, -0.2634250223636627, 0.02696843631565571, -0.10940167307853699, 0.017287319526076317, 0.12954263389110565, 0.08053174614906311, -0.05316200852394104, 0.08864761888980865, 0.03944074735045433, -0.0710049569606781, 0.02822837606072426, -0.030501220375299454, -0.05775250867009163, 0.06821401417255402, 0.09382316470146179, 0.01891854964196682, 0.061686232686042786, 0.06648769229650497, -0.19415035843849182, 0.03647349029779434, 0.11975488066673279, 0.03219594061374664, 0.05617925524711609, 0.04768257960677147, -0.06910233199596405, 0.17336854338645935, -0.026964521035552025, 0.08336298912763596, 0.0478336475789547, -0.08634896576404572, -0.15706375241279602, -0.12514154613018036, 0.07917898893356323, 0.06838666647672653, 0.08047114312648773, -0.035765357315540314, 0.0551467090845108, 0.007603288162499666, 0.03403232991695404, 0.25861427187919617, -0.24709326028823853, -0.013066421262919903, 0.10719092190265656, 0.04307207465171814, 0.0629010945558548, -0.061804451048374176, 0.048384107649326324, 0.04412642493844032, 0.008940137922763824, 0.019701257348060608, -0.013925385661423206, 0.24507293105125427, 0.004351987969130278, -0.09857062995433807, -0.09562709182500839, 0.11877230554819107, -0.020353125408291817, -0.08534858375787735, -0.1558443158864975, 0.01547466591000557, -0.0006735246861353517, 0.024260379374027252, -0.030008206143975258, -0.0017411538865417242, -0.005823737941682339, -0.06816001236438751, -0.1078253760933876, -0.08003014326095581, -0.02686137519776821, -0.012076669372618198, 0.05344483628869057, 0.01813342049717903, 0.021754710003733635, -0.07189324498176575, 0.21708336472511292, -0.014278586022555828, -0.10159901529550552, -0.05423823744058609, -0.10431648045778275, -0.0665297657251358, -0.06265612691640854, 0.007455770391970873, 0.007602761499583721, -0.050530944019556046, 0.1492592841386795, -0.007043455261737108, 0.035775911062955856, 0.003789051901549101, -0.017729314044117928, 0.16854389011859894, 0.11505342274904251, -0.12654009461402893, -0.02741205506026745, 0.04261923208832741, -0.01270646695047617, -0.058733370155096054, -0.05532516539096832, -0.009502913802862167, -0.042357053607702255, 0.00743864057585597, 0.09731448441743851, 0.05366458743810654, 0.05952603369951248, 0.03368717432022095, -0.059782616794109344, 0.11203096807003021, -0.1381344348192215, 0.020626986399292946, -0.014547626487910748, -0.01142042689025402, 0.03520112857222557, 0.041003648191690445, 0.019232027232646942, -0.08236531168222427, 0.09696269035339355, -0.062359314411878586, -0.06896895915269852, -0.06588849425315857, -0.061050042510032654, -0.005412214435636997, 0.006910540629178286, -0.04890467971563339, -0.08858798444271088, -0.14349453151226044, -0.030763357877731323, 0.01620328053832054, -0.05898577719926834, -0.03876279667019844, 0.04241042956709862, -0.02958151511847973, -0.008484137244522572, -0.010959107428789139, -0.015642348676919937, -0.03164805844426155, 0.025102365761995316, -0.06360764801502228, 0.03123263455927372, 0.11411108076572418, 0.04219755902886391, -0.0973263755440712, 0.06452517956495285, -0.18886902928352356, 0.1565254181623459, -0.0026503182016313076, 0.0075094071216881275, -0.1115838959813118, -0.11832180619239807, -0.05297166854143143, -0.016822833567857742, 0.013880378566682339, 0.11024877429008484, -0.2022157609462738, -0.040740735828876495, 0.17802682518959045, -0.07816092669963837, -0.08123218268156052, 0.05663341283798218, -0.06249791383743286, 0.06505148857831955, 0.12472894787788391, 0.060183145105838776, 0.16058868169784546, -0.08782043308019638, -0.052887748926877975, -0.058064453303813934, -0.05748175084590912, 0.23505207896232605, 0.037650495767593384, -0.023693932220339775, 0.05244266614317894, 0.013482595793902874, -0.05310531705617905, -0.04029887169599533, -0.022167086601257324, -0.05036434903740883, -0.007554095238447189, 0.009026946499943733, -0.019984014332294464, -0.03692669793963432, -0.09484979510307312, 0.0030075088143348694, -0.1123565211892128, 0.01116619911044836, 0.0986562967300415, -0.08568200469017029, 0.01163217518478632, -0.08439958095550537, 0.020104559138417244, -0.01559888944029808, 0.015204334631562233, -0.19783148169517517, -0.045606233179569244, 0.003972288686782122, -0.06651005148887634, 0.08970355242490768, 0.0028164146933704615, 0.04484282061457634, 0.05275895819067955, 0.004932991694658995, 0.032406773418188095, -0.04878231883049011, -0.015512439422309399, -0.012107866816222668, -0.1428188979625702, -0.0708218589425087, -0.04753189906477928, 0.1058528870344162, -0.13961870968341827, -0.00695553794503212, 0.10371189564466476, 0.11298006027936935, 0.026686621829867363, -0.07395172119140625, 0.021884314715862274, -0.027575934305787086, -0.037166669964790344, -0.10267388075590134, -0.04894272983074188, 0.005591830238699913, -0.02482401207089424, 0.13008494675159454, -0.1541762799024582, -0.07916100323200226, 0.08687897026538849, 0.1495712548494339, -0.10742487013339996, 0.03548663109540939, -0.0754799097776413, -0.002640610793605447, -0.04245496168732643, -0.019870173186063766, 0.25159260630607605, 0.037911951541900635, 0.06455569714307785, -0.11621969938278198, -0.06963350623846054, 0.010835738852620125, -0.029845960438251495, -0.05162772908806801, 0.028967199847102165, 0.044041894376277924, -0.14375266432762146, 0.012011172249913216, 0.008726348169147968, 0.11750249564647675, 0.23563018441200256, 0.06018783524632454, -0.09809446334838867, -0.04161443933844566, -0.10814879834651947, -0.007099575363099575, 0.01656060479581356, 0.02591782435774803, 0.030525725334882736, 0.04428621008992195, 0.047642819583415985, 0.019009854644536972, -0.10441332310438156, -0.0025383667089045048, 0.08754037320613861, -0.04585212469100952, -0.07040849328041077, 0.019028425216674805, 0.011670246720314026, 0.06728974729776382, 0.08797626197338104, 0.12876388430595398, -0.0682339072227478, -0.048093393445014954, -0.13985159993171692, 0.11889343708753586, -0.058041032403707504, -0.24597275257110596, -0.1342628449201584, -0.05430454760789871, 0.011196248233318329, 0.0009576056618243456, 0.04722561314702034, -0.05216798186302185, -0.042536281049251556, -0.10672648251056671, 0.09789423644542694, -0.06715480983257294, -0.01170913502573967, -0.00865487102419138, 0.024424634873867035, -0.0327032171189785, -0.10369686037302017, -0.026282601058483124, 0.04207317903637886, -0.11664333194494247, -0.03982552886009216, 0.021412933245301247, 0.06658436357975006, 0.14494000375270844, -0.006600551772862673, 0.0019365919288247824, -0.022303860634565353, 0.2848619520664215, -0.14112037420272827, 0.061071768403053284, 0.18395905196666718, -0.01257204171270132, 0.06056681647896767, 0.09411324560642242, 0.00765606015920639, -0.06122879311442375, 0.06180572509765625, 0.06394802033901215, -0.09323663264513016, -0.1964065581560135, -0.043722230941057205, 0.01098807342350483, 0.009385714307427406, 0.11019063740968704, 0.057322852313518524, 0.0387437678873539, 0.007715771906077862, -0.10484589636325836, 0.005987212061882019, 0.0319768451154232, 0.1098853200674057, -0.06828784942626953, 0.0033771346788853407, 0.05885126814246178, -0.05662667006254196, 0.027323665097355843, 0.1343303769826889, 0.020266074687242508, 0.21175163984298706, -0.06225801631808281, 0.1017339900135994, 0.09249521046876907, 0.09682644158601761, 0.039640605449676514, -0.0005534236552193761, 0.02595147304236889, 0.009276343509554863, -0.005676969885826111, -0.10619308799505234, -0.009213396348059177, 0.02567911706864834, 0.029492489993572235, -0.06220923736691475, -0.05186751112341881, -0.0552523136138916, 0.026385633274912834, 0.21789628267288208, -0.044340189546346664, -0.1595873385667801, -0.09616537392139435, 0.03621179610490799, -0.060522716492414474, -0.04976079985499382, -0.024212177842855453, 0.055246636271476746, -0.22970038652420044, 0.06713641434907913, -0.016820553690195084, 0.1138506680727005, -0.13762716948986053, 0.0023792684078216553, 0.0998411476612091, 0.04065001755952835, -0.05630338937044144, 0.10768532007932663, -0.15024539828300476, 0.0695405974984169, -0.010108372196555138, 0.06023186445236206, -0.06526139378547668, 0.011813456192612648, 0.004146389663219452, 0.06392871588468552, 0.09501761198043823, 0.01146906241774559, 0.028154565021395683, 0.02192600630223751, -0.012289919890463352, 0.009271441027522087, 0.054908234626054764, -0.10900012403726578, 0.12177837640047073, -0.032916974276304245, 0.02787373960018158, -0.06420279294252396, -0.062489382922649384, -0.10734350979328156, -0.17033633589744568, 0.09408358484506607, -0.1393144428730011, 0.007384971249848604, -0.052514974027872086, -0.047519464045763016, 0.025825196877121925, 0.2691197693347931, -0.024826012551784515, -0.07267950475215912, -0.12461723387241364, 0.01781715452671051, 0.14896127581596375, -0.0833575427532196, 0.03482097014784813, -0.010429068468511105, 0.22344575822353363, 0.010633539408445358, -0.1189836710691452, -0.0389636754989624, -0.04779071733355522, -0.16349682211875916, 0.0034528239630162716, 0.14970311522483826, 0.04846593737602234, 0.01160108670592308, 0.02176602929830551, -0.008200766518712044, -0.05269422009587288, -0.16119755804538727, 0.026342423632740974, 0.1785944253206253, -0.014423656277358532, -0.028264464810490608, 0.03724929317831993, 0.008193223737180233, -0.14180219173431396, 0.009108440950512886, 0.044309262186288834, 0.19115585088729858, -0.08388715237379074, 0.16751010715961456, 0.06158456206321716, -0.08382111042737961, -0.1613042652606964, -0.005264715291559696, 0.03859416022896767, 0.027641059830784798, 0.08527906239032745, -0.23203834891319275, 0.019697066396474838, 0.058666955679655075, 0.010966623201966286, 0.02942369133234024, -0.36121341586112976, -0.14388374984264374, -0.016466006636619568, 0.014400948770344257, -0.13779273629188538, -0.03553402051329613, -0.041586946696043015, -0.10079117119312286, -0.2684701383113861, 0.07716377824544907, -0.10453841835260391, 0.07811718434095383, 0.04835304245352745, 0.10822796076536179, 0.04826754331588745, -0.033326927572488785, 0.11789301037788391, -0.009495876729488373, 0.05531200021505356, -0.09722166508436203, -0.051446691155433655, 0.06009947881102562, -0.06826503574848175, 0.0945490151643753, 0.030156118795275688, 0.07289175689220428, -0.07761887460947037, -0.0857718214392662, -0.056953784078359604, -0.023336758837103844, -0.04647590219974518, -0.08093414455652237, -0.09274826943874359, 0.07294882833957672, 0.1113780066370964, -0.046057119965553284, -0.10198550671339035, -0.08709798753261566, -0.03265801817178726, 0.006114368326961994, 0.1287693828344345, 0.0711308941245079, -0.08451594412326813, -0.00875899475067854, 0.013664674945175648, 0.006031644064933062, -0.1835099309682846, 0.06472918391227722, 0.08870113641023636, 0.04268353804945946, 0.08874843269586563, 0.011608925648033619, -0.1581396609544754, -0.005929234903305769, 0.06817550212144852, -0.18194058537483215, -0.1419924944639206, -0.033113107085227966, 0.014796464703977108, -0.09667277336120605, -0.07225705683231354, 0.13420690596103668, -0.007881277240812778, -0.055158380419015884, 0.00334341311827302, 0.04142668843269348, -0.03551076352596283, 0.0866469144821167, -0.006042763125151396, 0.02825109474360943, -0.0693623349070549, 0.1207369714975357, 0.06489373743534088, 0.011533728800714016, 0.03314472362399101, 0.06632044166326523, -0.09657654911279678, 0.006881100125610828, -0.08063607662916183, 0.011552662588655949, -0.046963613480329514, -0.004431092645972967, 0.02963333949446678, -0.006885524373501539, 0.025795303285121918, 0.08442564308643341, -0.016650386154651642, 0.09213865548372269, -0.0394146591424942, 0.004203589633107185, -0.12289952486753464, 0.0791826993227005, 0.03170919790863991, 0.011174426414072514, -0.13579578697681427, 0.18567803502082825, 0.03788483887910843, 0.09976668655872345, -0.03910476714372635, -0.05818977952003479, -0.03749564662575722, -0.0063406904228031635, -0.03894323483109474, -0.04305519163608551, -0.08306402713060379, -0.036096781492233276, -0.009816202335059643, -0.018288886174559593, -0.043553877621889114, 0.04218243062496185, -0.02548859640955925, -0.07990968227386475, -0.07239549607038498, 0.044553373008966446, -0.15406250953674316, 0.04457973688840866, 0.11483395844697952, -0.051507946103811264, 0.1140221580862999, 0.05282207950949669, -0.027803510427474976, 0.002569502452388406, -0.1404353678226471, 0.03697163611650467, -0.013394792564213276, 0.015138419345021248, 0.021052997559309006, -0.12978684902191162, 0.007288419175893068, -0.03746846318244934, -0.0710461363196373, 0.0022512334398925304, -0.012789986096322536, -0.1251215934753418, 0.008569714613258839, 0.10396388918161392, -0.026843484491109848, -0.058468326926231384, 0.07702910900115967, 0.07357676327228546, 0.02932688035070896, 0.06717529147863388, -0.0069497013464570045, 0.047615814954042435, -0.1591150462627411, -0.05929296463727951, -0.0028605510015040636, 0.04015318304300308, 0.05260244384407997, -0.04213639721274376, 0.02913244441151619, -0.019727881997823715, 0.19820672273635864, 0.052404649555683136, 0.00878380611538887, 0.02671888843178749, -0.05173007398843765, 0.017943698912858963, 0.03650917857885361, 0.06950652599334717, -0.015202377922832966, -0.025799419730901718, -0.0008103830623440444, -0.00027138571022078395, -0.11772026121616364, 0.01869816519320011, 0.06838914752006531, 0.009945306926965714, 0.22935615479946136, -0.06862733513116837, 0.068099744617939, -0.0063286698423326015, -0.11547146737575531, -0.042669929563999176, -0.012235892936587334, 0.025874018669128418, -0.07350336760282516, 0.045865170657634735, 0.1832217574119568, -0.1483309417963028, 0.12809692323207855, 0.02409294806420803, -0.05228908732533455, -0.11836216598749161, -0.2074587345123291, -0.023760922253131866, -0.05808250606060028, 0.03171658143401146, -0.13224105536937714, 0.08646105229854584, 0.03291335329413414, 0.0243059191852808, -0.0757361650466919, 0.11388281732797623, -0.094202920794487, -0.15470778942108154, 0.024937015026807785, 0.017160391435027122, 0.04046015068888664, 0.03632352128624916, 0.11017274856567383, 0.05747814476490021, -0.011325450614094734, 0.059027187526226044, 0.05414682999253273, 0.02982194907963276, 0.0391065776348114, -0.04954797774553299, -0.0494735911488533, 0.024307167157530785, -0.007761068642139435, 0.027243509888648987, 0.10079216212034225, 0.06455235928297043, -0.014722413383424282, -0.00968325324356556, 0.3066605031490326, 0.011967440135776997, 0.004625819157809019, -0.176509290933609, 0.16179277002811432, 0.0029973783530294895, 0.018334737047553062, 0.019848069176077843, -0.1300206333398819, 0.01075800135731697, 0.1496310979127884, 0.14065848290920258, -0.03646254539489746, 0.016508901491761208, 0.0028602529782801867, 0.01805119402706623, 0.03805454820394516, 0.08933248370885849, 0.07500632852315903, 0.1866285800933838, -0.026148490607738495, 0.05984438955783844, -0.034950435161590576, -0.017254706472158432, 0.0023855860345065594, 0.09554306417703629, -0.05108024179935455, -0.0030655318405479193, -0.04604828730225563, 0.1237586960196495, -0.049757570028305054, -0.29965099692344666, -0.0257205069065094, -0.022231360897421837, -0.08983339369297028, 0.07200027257204056, -0.044162943959236145, 0.0024955386761575937, 0.08919750899076462, 0.01668776385486126, -0.049904607236385345, 0.15535765886306763, 0.07687537372112274, -0.03754635900259018, -0.027909226715564728, 0.08986186981201172, -0.04278256371617317, 0.17876914143562317, -0.047695405781269073, 0.01147913746535778, 0.06322726607322693, 0.017691021785140038, -0.12172652035951614, -0.0045774239115417, 0.04800345003604889, -0.03625979274511337, -0.02431097812950611, 0.21849876642227173, 0.003317988244816661, 0.019244499504566193, 0.08090626448392868, -0.044519782066345215, 0.020566994324326515, -0.019620360806584358, 0.07378080487251282, -0.11846990883350372, 0.08125535398721695, -0.09404662996530533, 0.10349263995885849, 0.15818347036838531, -0.05453301966190338, 0.04240218177437782, -0.06317521631717682, 0.02103422023355961, -0.027052156627178192, 0.08080768585205078, -0.018040310591459274, -0.1120915412902832, 0.0051439059898257256, 0.03781941905617714, 0.01766151748597622, -0.15139709413051605, -0.07102606445550919, 0.07265087217092514, -0.05019781365990639, 0.023775923997163773, 0.1692763715982437, 0.029352881014347076, 0.034589074552059174, -0.03699123486876488, -0.0020019125659018755, 0.006845750845968723, 0.11507562547922134, -0.19097381830215454, -0.07522957026958466 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/669cf880ceff9d1b5d31537747c26378.495x495x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Marillion</div> <a href="https://genius.com/artists/marillion"> <div style="text-align: center; font-size: 14px;">@marillion</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Marillion. Dataset is available [here](https://huggingface.co/datasets/huggingartists/marillion). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/marillion") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/bajnt52i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Marillion's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/wi2lgudb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/wi2lgudb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/marillion') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/marillion") model = AutoModelWithLMHead.from_pretrained("huggingartists/marillion") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/marillion"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/marillion
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/marillion", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/marillion #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Marillion</div> <a href="URL <div style="text-align: center; font-size: 14px;">@marillion</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Marillion. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Marillion's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Marillion.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Marillion's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/marillion #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Marillion.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Marillion's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/marillion #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Marillion.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Marillion's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.025477146729826927, 0.14548876881599426, -0.0027443033177405596, 0.03418910503387451, 0.09130668640136719, -0.0022428117226809263, 0.08366948366165161, 0.1091490387916565, -0.013769487850368023, 0.07096230238676071, 0.07975510507822037, 0.017678314819931984, 0.06389284133911133, 0.13727837800979614, 0.0882633700966835, -0.2664269208908081, 0.031170444563031197, -0.10531239956617355, 0.021066831424832344, 0.12195184081792831, 0.09046592563390732, -0.05574551597237587, 0.08613934367895126, 0.0336771123111248, -0.07488832622766495, 0.028760084882378578, -0.013298234902322292, -0.0728403776884079, 0.09596217423677444, 0.081139475107193, 0.025878094136714935, 0.03169974684715271, 0.06678217649459839, -0.18806619942188263, 0.0348944254219532, 0.1242963895201683, 0.028394335880875587, 0.07162483781576157, 0.039615754038095474, -0.07828285545110703, 0.17918314039707184, -0.030406475067138672, 0.08866844326257706, 0.047853466123342514, -0.11008746176958084, -0.17701826989650726, -0.12272395938634872, 0.08233305811882019, 0.10163474828004837, 0.08154275268316269, -0.03154757618904114, 0.04847687482833862, 0.0028445597272366285, 0.048136066645383835, 0.24094153940677643, -0.2453388124704361, -0.014932438731193542, 0.10459232330322266, 0.04100833088159561, 0.04090709984302521, -0.07427296787500381, 0.022091001272201538, 0.05268123745918274, 0.02490953542292118, 0.04965647682547569, -0.01759841851890087, 0.22167815268039703, 0.022183218970894814, -0.09488045424222946, -0.08745627850294113, 0.10915853828191757, -0.028569379821419716, -0.08289912343025208, -0.15321440994739532, 0.005227947607636452, -0.030373590067029, 0.03710619732737541, -0.00949536170810461, -0.004487744998186827, -0.00004387848821352236, -0.04402846097946167, -0.09863901138305664, -0.09299134463071823, -0.027695929631590843, -0.02634269744157791, 0.07262351363897324, 0.02537367306649685, 0.03144332394003868, -0.07525575906038284, 0.2292647361755371, -0.0009450710495002568, -0.10222876071929932, -0.05461211875081062, -0.09210541844367981, -0.09836069494485855, -0.05921734496951103, 0.006576059851795435, 0.01979105733335018, -0.06301842629909515, 0.16288445889949799, -0.03362763300538063, 0.033247362822294235, 0.003268115222454071, -0.0235612690448761, 0.15397608280181885, 0.12832504510879517, -0.09866839647293091, -0.030708611011505127, 0.04728357866406441, -0.01487292442470789, -0.0665878877043724, -0.059978652745485306, -0.014373287558555603, -0.019695689901709557, 0.028647348284721375, 0.09632273763418198, 0.04357002303004265, 0.06100328639149666, 0.03291923925280571, -0.056271959096193314, 0.10403759032487869, -0.14542947709560394, 0.007617291063070297, -0.010186538100242615, -0.03228359296917915, 0.019719447940587997, 0.048845112323760986, 0.013253963552415371, -0.09791616350412369, 0.11019673943519592, -0.050009455531835556, -0.05533381924033165, -0.06903853267431259, -0.08643215894699097, -0.00453202472999692, -0.010873199440538883, -0.049146126955747604, -0.08745666593313217, -0.1594967395067215, -0.03333292901515961, 0.02345920540392399, -0.039201099425554276, -0.039297062903642654, 0.04050188884139061, -0.036921869963407516, 0.0012051807716488838, -0.015918191522359848, -0.011556004174053669, -0.030981846153736115, 0.02337688021361828, -0.05734444782137871, 0.03493579104542732, 0.08345016092061996, 0.034250423312187195, -0.10738547891378403, 0.06924974173307419, -0.1528407335281372, 0.1457473784685135, -0.008630066178739071, 0.019156455993652344, -0.11068495362997055, -0.09853416681289673, -0.02743392251431942, -0.025411710143089294, -0.007038874085992575, 0.09649926424026489, -0.19007356464862823, -0.04017706960439682, 0.1977825164794922, -0.07353121787309647, -0.08764910697937012, 0.06985163688659668, -0.07809386402368546, 0.03808895871043205, 0.14026041328907013, 0.05398215726017952, 0.15212155878543854, -0.11398693174123764, -0.0658821314573288, -0.045363713055849075, -0.061870425939559937, 0.21555735170841217, 0.05529842898249626, -0.00676660006865859, 0.017501458525657654, 0.011991605162620544, -0.020456384867429733, -0.031542301177978516, -0.02565174363553524, -0.04404169321060181, -0.01127124298363924, 0.014738652855157852, -0.011834271252155304, -0.0491463840007782, -0.06895100325345993, -0.022275611758232117, -0.1128271296620369, 0.043897613883018494, 0.10570255666971207, -0.07404962927103043, 0.010664801113307476, -0.09334012120962143, -0.004950853995978832, -0.039040446281433105, 0.02444130927324295, -0.19562534987926483, -0.05931883677840233, 0.019321121275424957, -0.06828396767377853, 0.08638209849596024, 0.026078587397933006, 0.03925326466560364, 0.0640033707022667, -0.008459977805614471, 0.024590209126472473, -0.04567098245024681, -0.02113894186913967, -0.03404458239674568, -0.1420338898897171, -0.07421394437551498, -0.0546286404132843, 0.08166762441396713, -0.13673360645771027, 0.008672590367496014, 0.10666802525520325, 0.11039052158594131, 0.022476615384221077, -0.058092404156923294, 0.010867725126445293, -0.03442149981856346, -0.038868989795446396, -0.11365821212530136, -0.05597345903515816, 0.0064647928811609745, -0.041628602892160416, 0.1562100201845169, -0.17915070056915283, -0.06917273998260498, 0.1009523868560791, 0.1616254299879074, -0.10499203205108643, 0.011436534114181995, -0.09342237561941147, -0.00784445833414793, -0.0493929497897625, -0.04139793664216995, 0.26669609546661377, 0.041680097579956055, 0.08011215180158615, -0.11262374371290207, -0.09975438565015793, 0.0021675305906683207, -0.035897526890039444, -0.031230753287672997, 0.03164967522025108, 0.012255638837814331, -0.1725679188966751, 0.024458372965455055, -0.0031848012004047632, 0.12249306589365005, 0.20605862140655518, 0.05105672776699066, -0.0960470661520958, -0.06264989078044891, -0.08684913069009781, 0.004105214029550552, 0.04768436774611473, 0.027902640402317047, 0.02489413321018219, 0.04447149857878685, 0.05388978123664856, 0.03731555864214897, -0.11000745743513107, 0.008816935122013092, 0.08070997148752213, -0.04641539976000786, -0.05523866415023804, 0.021100470796227455, 0.0167436171323061, 0.08314388245344162, 0.07925665378570557, 0.14554555714130402, -0.06944354623556137, -0.04759972169995308, -0.14320868253707886, 0.14196151494979858, -0.07428644597530365, -0.2663284242153168, -0.14003713428974152, -0.0781264528632164, 0.020562542602419853, 0.006105944514274597, 0.0422489158809185, -0.06183754280209541, -0.03994742035865784, -0.1044410690665245, 0.0869295671582222, -0.04849199578166008, -0.013645737431943417, 0.005457161460071802, 0.02163917012512684, -0.03112412989139557, -0.11021704226732254, -0.03000497817993164, 0.039013780653476715, -0.10797253996133804, -0.015168282203376293, 0.028790423646569252, 0.04033670946955681, 0.15626731514930725, -0.011520478874444962, -0.0019846477080136538, -0.03492347523570061, 0.28135597705841064, -0.12028380483388901, 0.06363103538751602, 0.16782426834106445, -0.020241757854819298, 0.05244619771838188, 0.07738175243139267, 0.006578216329216957, -0.07102528214454651, 0.0776202529668808, 0.07218778878450394, -0.09550952911376953, -0.2203119546175003, -0.02772044576704502, -0.006143519189208746, 0.026455065235495567, 0.1266644448041916, 0.05918996408581734, 0.05403919517993927, -0.0036344407126307487, -0.1027420163154602, 0.04324832931160927, 0.02915116585791111, 0.10969666391611099, -0.06436214596033096, -0.010704156011343002, 0.05127860605716705, -0.06584320217370987, 0.03034212626516819, 0.14118677377700806, 0.03981999680399895, 0.20187748968601227, -0.061876799911260605, 0.09657379984855652, 0.07865669578313828, 0.0948382094502449, 0.033982053399086, 0.011052894406020641, -0.0017091067275032401, 0.010781343095004559, -0.002483969321474433, -0.09900796413421631, -0.01108317356556654, 0.047532353550195694, 0.02609393559396267, -0.021560149267315865, -0.04433712363243103, -0.04545288160443306, 0.04594719409942627, 0.23441314697265625, -0.015693245455622673, -0.18325312435626984, -0.11680390685796738, 0.0407782681286335, -0.0753302052617073, -0.04637612774968147, -0.025171680375933647, 0.07811960577964783, -0.21909566223621368, 0.07101840525865555, -0.032100558280944824, 0.10888034105300903, -0.11135581880807877, 0.004549661185592413, 0.084492526948452, 0.04845314845442772, -0.06431472301483154, 0.0987280011177063, -0.16765163838863373, 0.06882582604885101, -0.010250731371343136, 0.06762909889221191, -0.07665882259607315, 0.02729250304400921, 0.0003383581934031099, 0.04937367141246796, 0.09106727689504623, 0.011574956588447094, 0.02111906372010708, -0.006756942719221115, -0.04829089343547821, 0.013274368830025196, 0.058900341391563416, -0.12536440789699554, 0.12485877424478531, -0.02531861700117588, 0.03327484056353569, -0.0445004440844059, -0.0903325155377388, -0.08932072669267654, -0.16639594733715057, 0.09105398505926132, -0.12897956371307373, -0.004049306735396385, -0.07239457219839096, -0.03385203704237938, 0.02918337471783161, 0.2731072008609772, -0.04716077819466591, -0.07307109981775284, -0.13834288716316223, 0.022910939529538155, 0.14450804889202118, -0.08550212532281876, 0.009500927291810513, -0.010342230089008808, 0.21269549429416656, -0.001397034153342247, -0.12665802240371704, -0.018702926114201546, -0.05983171984553337, -0.16632263362407684, -0.003529604524374008, 0.1735924482345581, 0.05839737877249718, 0.026041245087981224, 0.011989413760602474, -0.015134740620851517, -0.03910871967673302, -0.17256216704845428, 0.023554876446723938, 0.16219960153102875, -0.008070213720202446, -0.005076413508504629, 0.045014750212430954, 0.011076737195253372, -0.1341722011566162, 0.012426118366420269, 0.0531589575111866, 0.1872444599866867, -0.07936713844537735, 0.18869735300540924, 0.03666665032505989, -0.09142135828733444, -0.15007959306240082, 0.010286674834787846, 0.03369784727692604, 0.03735676407814026, 0.04621507227420807, -0.2059514969587326, 0.039535436779260635, 0.04232107475399971, 0.007581641431897879, 0.029747961089015007, -0.3405934274196625, -0.15997323393821716, -0.00878684502094984, 0.009599254466593266, -0.1462928205728531, -0.04571214318275452, -0.03642026335000992, -0.09812680631875992, -0.24880795180797577, 0.10204074531793594, -0.11200636625289917, 0.07650702446699142, 0.031492043286561966, 0.09732518345117569, 0.04697232320904732, -0.04522666707634926, 0.1319919377565384, -0.01612050086259842, 0.06888533383607864, -0.09340160340070724, -0.06293883919715881, 0.08124104887247086, -0.0725441575050354, 0.09217492491006851, 0.03158542886376381, 0.08256500214338303, -0.0926111713051796, -0.08950936794281006, -0.06169547140598297, -0.0005818958743475378, -0.05239782854914665, -0.08981233090162277, -0.08717440813779831, 0.08601061254739761, 0.12025962024927139, -0.04868995025753975, -0.09143956750631332, -0.07441223412752151, 0.003177616046741605, 0.04472431540489197, 0.12579773366451263, 0.07009287923574448, -0.05845664069056511, 0.002250095596536994, 0.01549046952277422, 0.007469282951205969, -0.18772484362125397, 0.04853614792227745, 0.09475713223218918, 0.04061119258403778, 0.104390449821949, 0.005254810210317373, -0.16696496307849884, 0.007365338504314423, 0.052994806319475174, -0.16172398626804352, -0.1306695193052292, -0.03799006715416908, 0.03145069256424904, -0.10059145092964172, -0.043939460068941116, 0.13410739600658417, -0.034216441214084625, -0.037951115518808365, 0.0015458865091204643, 0.03459135442972183, -0.039499979466199875, 0.08820092678070068, -0.012487807311117649, 0.04414943978190422, -0.07063128799200058, 0.11991769075393677, 0.06750544905662537, 0.0015313884941861033, 0.04056874290108681, 0.06866348534822464, -0.09377119690179825, 0.015677014365792274, -0.10495096445083618, 0.00045529441558755934, -0.025614170357584953, -0.011069039814174175, 0.0297407116740942, -0.0320301279425621, 0.05043939873576164, 0.09387733787298203, -0.012044680304825306, 0.10566676408052444, -0.048186738044023514, 0.0197881031781435, -0.12912215292453766, 0.06816554069519043, 0.03554951772093773, 0.01896580122411251, -0.10833323001861572, 0.21198512613773346, 0.03585359826683998, 0.10617450624704361, -0.03773247078061104, -0.06733125448226929, -0.049041297286748886, -0.011609229259192944, -0.08047909289598465, -0.03800910338759422, -0.09081397205591202, -0.023996902629733086, -0.006638573948293924, -0.02881096489727497, -0.032450053840875626, 0.04452623799443245, -0.03373894840478897, -0.06149308755993843, -0.07514180988073349, 0.04673144593834877, -0.14227993786334991, 0.03406326100230217, 0.11526241898536682, -0.05610424280166626, 0.12740881741046906, 0.052842382341623306, -0.03723486512899399, 0.02296544797718525, -0.13816343247890472, 0.04847870394587517, -0.002132134512066841, 0.021197954192757607, 0.01938243955373764, -0.15368114411830902, 0.008699790574610233, -0.03318776190280914, -0.06807505339384079, 0.008376738987863064, -0.015092327259480953, -0.13321630656719208, -0.00891626626253128, 0.09031321853399277, -0.011209717951714993, -0.06477468460798264, 0.06936461478471756, 0.05708514526486397, 0.02599838376045227, 0.058550652116537094, -0.011853509582579136, 0.06889637559652328, -0.17760176956653595, -0.06264396011829376, -0.00555562786757946, 0.028107667341828346, 0.04052431136369705, -0.024178465828299522, 0.03707950934767723, -0.01874486729502678, 0.209086611866951, 0.017932696267962456, -0.0011924108257517219, 0.03892407938838005, -0.07133211940526962, -0.0046139913611114025, 0.0416201613843441, 0.0862199068069458, -0.015791013836860657, -0.026090914383530617, 0.008413049392402172, -0.02117243967950344, -0.09471109509468079, -0.017377058044075966, 0.09887763857841492, 0.019368555396795273, 0.20882023870944977, -0.057717639952898026, 0.06492900103330612, -0.016440777108073235, -0.10647208243608475, -0.02927502989768982, -0.0461268275976181, 0.031787555664777756, -0.0613115094602108, 0.05275851488113403, 0.19195230305194855, -0.15408991277217865, 0.1172160729765892, 0.04032091423869133, -0.05677491053938866, -0.1205030307173729, -0.19505582749843597, -0.01457721646875143, -0.030240289866924286, 0.025407681241631508, -0.13986319303512573, 0.09531936794519424, 0.021637698635458946, 0.041864778846502304, -0.05980762839317322, 0.13263194262981415, -0.09614071995019913, -0.133975550532341, 0.04376213625073433, 0.015955554321408272, 0.029611745849251747, 0.046996477991342545, 0.08814121037721634, 0.03741704672574997, 0.0017842537490651011, 0.0705656111240387, 0.044080961495637894, 0.036996420472860336, 0.04045574739575386, -0.03433666005730629, -0.040584128350019455, 0.026260480284690857, -0.005573304835706949, 0.024813735857605934, 0.09684085845947266, 0.06858902424573898, -0.022391488775610924, -0.016516242176294327, 0.3133615255355835, -0.019345317035913467, -0.03490911424160004, -0.18615441024303436, 0.1636771857738495, 0.013571503572165966, 0.00021616400044877082, 0.017908485606312752, -0.11596274375915527, 0.014856765978038311, 0.12424331158399582, 0.1523025780916214, -0.018345581367611885, 0.023629428818821907, -0.02407827228307724, 0.017675498500466347, 0.038674335926771164, 0.10958544164896011, 0.06403634697198868, 0.1844906359910965, -0.025771088898181915, 0.054258380085229874, -0.014733385294675827, -0.021104292944073677, 0.013054602779448032, 0.1063159927725792, -0.041788626462221146, 0.005022439640015364, -0.04839855432510376, 0.10142630338668823, -0.056109413504600525, -0.3007977306842804, -0.04017224535346031, -0.01883203536272049, -0.0902266576886177, 0.07638505101203918, -0.03502313420176506, -0.016592033207416534, 0.0835835337638855, 0.03013729117810726, -0.04708203300833702, 0.15887995064258575, 0.051913436502218246, -0.04644009470939636, -0.008623889647424221, 0.1113106980919838, -0.034450288861989975, 0.16437512636184692, -0.037664834409952164, 0.01107886154204607, 0.07658661901950836, 0.011654987931251526, -0.131042942404747, 0.007293969392776489, 0.038683656603097916, -0.05094863846898079, -0.017471937462687492, 0.19954951107501984, 0.011003472842276096, 0.02761228196322918, 0.0703025683760643, -0.0553646981716156, 0.01936308480799198, -0.03950630873441696, 0.06120094656944275, -0.13290388882160187, 0.06699144095182419, -0.07607375830411911, 0.11748775094747543, 0.17731817066669464, -0.06685379892587662, 0.03749939799308777, -0.060491371899843216, 0.009729620069265366, -0.029362700879573822, 0.06560128927230835, -0.020015466958284378, -0.11551328748464584, 0.006918934639543295, 0.02538931369781494, 0.011829659342765808, -0.17394696176052094, -0.08266410231590271, 0.07731068134307861, -0.051123518496751785, 0.02200581692159176, 0.17912447452545166, 0.013918396085500717, 0.05714358389377594, -0.03872489184141159, -0.014863627962768078, -0.002963162027299404, 0.1192452609539032, -0.1758766770362854, -0.07987836748361588 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6780ce1add3af75c73929a8f6630e099.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maroon 5</div> <a href="https://genius.com/artists/maroon-5"> <div style="text-align: center; font-size: 14px;">@maroon-5</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Maroon 5. Dataset is available [here](https://huggingface.co/datasets/huggingartists/maroon-5). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/maroon-5") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/38629b22/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Maroon 5's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2ylk8pym) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2ylk8pym/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/maroon-5') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/maroon-5") model = AutoModelWithLMHead.from_pretrained("huggingartists/maroon-5") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/maroon-5"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/maroon-5
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/maroon-5", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/maroon-5 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maroon 5</div> <a href="URL <div style="text-align: center; font-size: 14px;">@maroon-5</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Maroon 5. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Maroon 5's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Maroon 5.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Maroon 5's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/maroon-5 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Maroon 5.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Maroon 5's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 50, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/maroon-5 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Maroon 5.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Maroon 5's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01702982373535633, 0.15633200109004974, -0.003140950808301568, 0.03900638967752457, 0.09270335733890533, 0.007611148525029421, 0.08997759968042374, 0.10309641063213348, -0.007814696058630943, 0.07506474107503891, 0.07158590108156204, 0.011289727874100208, 0.07054595649242401, 0.10947630554437637, 0.07667484879493713, -0.25680848956108093, 0.02812691405415535, -0.09823127835988998, -0.001986125251278281, 0.11879663914442062, 0.10242626070976257, -0.05445753037929535, 0.08745454251766205, 0.03499108925461769, -0.0661243423819542, 0.022645071148872375, -0.004831847734749317, -0.06653736531734467, 0.08922658115625381, 0.06957410275936127, 0.029316764324903488, 0.025580639019608498, 0.06680815666913986, -0.1865949034690857, 0.03190891817212105, 0.12349068373441696, 0.03410416096448898, 0.07316002249717712, 0.049490705132484436, -0.08116201311349869, 0.16155505180358887, -0.018501486629247665, 0.0952005460858345, 0.047125544399023056, -0.11966054141521454, -0.15310925245285034, -0.1286911517381668, 0.07840638607740402, 0.10175331681966782, 0.09222016483545303, -0.03338842839002609, 0.046777933835983276, -0.02392727881669998, 0.04244339466094971, 0.24586044251918793, -0.24097813665866852, -0.01954013854265213, 0.0974084660410881, 0.04410926625132561, 0.030802574008703232, -0.07854575663805008, 0.018808359280228615, 0.04602440074086189, 0.022446919232606888, 0.04712611436843872, -0.015980910509824753, 0.20703573524951935, 0.02442057989537716, -0.1000494584441185, -0.08492360264062881, 0.12290183454751968, -0.02279646508395672, -0.07514477521181107, -0.13542863726615906, 0.00331857823766768, -0.01300763338804245, 0.030771972611546516, -0.003264377824962139, -0.0024900923017412424, 0.006554384250193834, -0.04115380346775055, -0.10255234688520432, -0.09234991669654846, -0.02770831249654293, -0.020161857828497887, 0.07174813002347946, 0.03088892623782158, 0.03282727301120758, -0.08228495717048645, 0.2231544703245163, -0.031477976590394974, -0.10124491900205612, -0.04989110678434372, -0.09538315236568451, -0.09343822300434113, -0.058236684650182724, 0.003757742466405034, 0.013492882251739502, -0.05129637569189072, 0.1664433777332306, -0.030647004023194313, 0.041569363325834274, -0.006278770510107279, -0.013966120779514313, 0.13925720751285553, 0.1354174017906189, -0.09827937185764313, -0.03258707374334335, 0.05660140514373779, -0.012957170605659485, -0.06312692165374756, -0.05304626002907753, -0.013861637562513351, -0.015139284543693066, 0.028763432055711746, 0.08696037530899048, 0.05591438338160515, 0.062028273940086365, 0.023261426016688347, -0.0621984601020813, 0.08989899605512619, -0.1397572010755539, 0.01203570980578661, -0.0010923735098913312, -0.04064735397696495, 0.0052680703811347485, 0.045604389160871506, 0.016699330881237984, -0.09955785423517227, 0.11877741664648056, -0.05296337604522705, -0.048749011009931564, -0.07788851112127304, -0.08613234758377075, -0.0015131633263081312, -0.018308328464627266, -0.04584965854883194, -0.07143779844045639, -0.1650979220867157, -0.04296697676181793, 0.03249219059944153, -0.04860257729887962, -0.04914892837405205, 0.03078846074640751, -0.026863867416977882, 0.009396398440003395, -0.01315495278686285, -0.012405918911099434, -0.02950746938586235, 0.026974497362971306, -0.05017653480172157, 0.02797514572739601, 0.07804301381111145, 0.04094632714986801, -0.10533860325813293, 0.07404696941375732, -0.1612529456615448, 0.12939178943634033, -0.012464189901947975, 0.020991263911128044, -0.10652333498001099, -0.09387588500976562, -0.03314408287405968, -0.032340213656425476, -0.001971432939171791, 0.09878657013177872, -0.17880859971046448, -0.03637048602104187, 0.19554179906845093, -0.07202756404876709, -0.08260735869407654, 0.07302538305521011, -0.07563827186822891, 0.027383025735616684, 0.1271153837442398, 0.06297259032726288, 0.15587417781352997, -0.11011039465665817, -0.05383995547890663, -0.04853540286421776, -0.05916386470198631, 0.2080603539943695, 0.054871708154678345, -0.01665494590997696, 0.010960087180137634, 0.00951353833079338, -0.03328007459640503, -0.029116878286004066, -0.019303398206830025, -0.04082565754652023, -0.01510023232549429, 0.011999115347862244, -0.010452170856297016, -0.040891826152801514, -0.06740768998861313, -0.03342530503869057, -0.10762675851583481, 0.027343271300196648, 0.0982063040137291, -0.06762983649969101, 0.009799878112971783, -0.0975942462682724, 0.005289976019412279, -0.03188474476337433, 0.017035720869898796, -0.17948071658611298, -0.05628715455532074, 0.02030264399945736, -0.060934878885746, 0.09176699817180634, 0.02886383794248104, 0.040911853313446045, 0.05380421131849289, -0.019312482327222824, 0.02116665616631508, -0.039292171597480774, -0.023997632786631584, -0.02467428147792816, -0.1488102376461029, -0.06008964031934738, -0.046040475368499756, 0.08959688991308212, -0.13136661052703857, 0.009176772087812424, 0.10009967535734177, 0.11881193518638611, 0.017230425029993057, -0.06199389696121216, 0.016697460785508156, -0.04081033915281296, -0.030235864222049713, -0.10739059746265411, -0.051701709628105164, 0.010718613862991333, -0.02984081581234932, 0.15269312262535095, -0.1781303882598877, -0.08213206380605698, 0.10529646277427673, 0.1336008757352829, -0.097954161465168, 0.03232036530971527, -0.08211468905210495, -0.012952515855431557, -0.05585649609565735, -0.041025541722774506, 0.25779637694358826, 0.03553399816155434, 0.08157860487699509, -0.10955186933279037, -0.10326666384935379, -0.0031894268468022346, -0.042619913816452026, -0.028212780132889748, 0.03223121166229248, 0.027594367042183876, -0.1790226399898529, 0.03110017441213131, -0.000517503300216049, 0.09893767535686493, 0.18941526114940643, 0.04396417737007141, -0.0879165455698967, -0.059916574507951736, -0.07126027345657349, 0.0018820458790287375, 0.056148212403059006, 0.010068382136523724, 0.029532546177506447, 0.04150903970003128, 0.06054266542196274, 0.03877079486846924, -0.11613407731056213, 0.011866990476846695, 0.07613670080900192, -0.04372142255306244, -0.058000024408102036, 0.01807558164000511, 0.024573758244514465, 0.08282079547643661, 0.09117904305458069, 0.1365819126367569, -0.06332097202539444, -0.050478432327508926, -0.14396946132183075, 0.13801907002925873, -0.0765119194984436, -0.25041860342025757, -0.12940113246440887, -0.08592955768108368, 0.017673278227448463, 0.009529177099466324, 0.03746042773127556, -0.05752420052886009, -0.04584198445081711, -0.09304019063711166, 0.0861828476190567, -0.05443438142538071, -0.01718244142830372, 0.012830531224608421, 0.023299237713217735, -0.0185862947255373, -0.10756631940603256, -0.030010761693120003, 0.03657935559749603, -0.10072053223848343, -0.014629144221544266, 0.028237322345376015, 0.03352233022451401, 0.15791615843772888, -0.011269962415099144, 0.008510297164320946, -0.02512465789914131, 0.29041123390197754, -0.11921830475330353, 0.0635041818022728, 0.16548506915569305, -0.015696261078119278, 0.05714121833443642, 0.0812343955039978, 0.0071679349057376385, -0.06579508632421494, 0.07313671708106995, 0.07905840873718262, -0.08476143330335617, -0.22498375177383423, -0.02835407853126526, -0.015114779584109783, 0.013841787353157997, 0.12100648880004883, 0.05415062606334686, 0.044838812202215195, 0.006960227619856596, -0.10496387630701065, 0.03726977854967117, 0.038683317601680756, 0.10555369406938553, -0.05161652714014053, -0.007662890944629908, 0.05002932623028755, -0.06090186536312103, 0.02871096320450306, 0.13295896351337433, 0.03985067084431648, 0.20850256085395813, -0.05861666798591614, 0.09604465216398239, 0.07787320762872696, 0.09695325046777725, 0.026461225003004074, 0.0110038286074996, -0.015756582841277122, 0.01388951763510704, 0.0005306222010403872, -0.09190388768911362, -0.008902483619749546, 0.040077000856399536, 0.03409041091799736, -0.02530430071055889, -0.04166856035590172, -0.05390719324350357, 0.045199133455753326, 0.23290640115737915, 0.004341468680649996, -0.17067326605319977, -0.10125716775655746, 0.05240544304251671, -0.07135587185621262, -0.057444680482149124, -0.016401521861553192, 0.06698160618543625, -0.21225367486476898, 0.07328035682439804, -0.02736964263021946, 0.1136157363653183, -0.11157815903425217, -0.0003135852748528123, 0.09102741628885269, 0.04818398505449295, -0.060725562274456024, 0.09910119324922562, -0.17456232011318207, 0.07140794396400452, -0.007332316134124994, 0.07147643715143204, -0.06986279785633087, 0.030428357422351837, 0.006161803379654884, 0.05145212262868881, 0.08529135584831238, 0.01568683236837387, 0.004857624415308237, 0.0020159047562628984, -0.04683053866028786, 0.007734011393040419, 0.06538216024637222, -0.12245508283376694, 0.12283188849687576, -0.03285350650548935, 0.03071601130068302, -0.03586026281118393, -0.08166427165269852, -0.08926784992218018, -0.16107521951198578, 0.08787854015827179, -0.12221494317054749, -0.0068580228835344315, -0.06954732537269592, -0.020630842074751854, 0.013128531165421009, 0.25903308391571045, -0.045378923416137695, -0.07579383254051208, -0.13514715433120728, 0.008950336836278439, 0.13607731461524963, -0.0777130201458931, 0.005994758568704128, -0.012000259011983871, 0.20229150354862213, 0.0036338395439088345, -0.12597760558128357, -0.01503725629299879, -0.06352777779102325, -0.17244823276996613, -0.0071647451259195805, 0.18253463506698608, 0.06037597358226776, 0.030001269653439522, 0.007988739758729935, -0.00353695685043931, -0.048074934631586075, -0.17318156361579895, 0.026403889060020447, 0.14565196633338928, -0.005185918882489204, 0.009634834714233875, 0.04953393340110779, 0.019541844725608826, -0.12922953069210052, 0.014625944197177887, 0.052627671509981155, 0.1809750497341156, -0.07241912931203842, 0.17896632850170135, 0.021632742136716843, -0.09143520891666412, -0.15216749906539917, 0.021306179463863373, 0.026041623204946518, 0.029112013056874275, 0.030944982543587685, -0.1990237683057785, 0.03376046195626259, 0.029291169717907906, -0.0017417107010260224, 0.04010789096355438, -0.3319437801837921, -0.15338517725467682, 0.0012687367852777243, 0.002144957659766078, -0.11476399004459381, -0.04050532728433609, -0.03911227732896805, -0.08944220095872879, -0.260118693113327, 0.10227692872285843, -0.10541608184576035, 0.07794162631034851, 0.023536790162324905, 0.09512323141098022, 0.04594636335968971, -0.051015932112932205, 0.13185732066631317, -0.027064703404903412, 0.062364935874938965, -0.0972784087061882, -0.05724728852510452, 0.08268620073795319, -0.06881511956453323, 0.09409747272729874, 0.028459880501031876, 0.08398198336362839, -0.09563775360584259, -0.08403206616640091, -0.07245191186666489, 0.002883716020733118, -0.06168552115559578, -0.08224698901176453, -0.09368781745433807, 0.08449273556470871, 0.12118154764175415, -0.04292694479227066, -0.08980606496334076, -0.06354081630706787, 0.001155523001216352, 0.04757823795080185, 0.12801271677017212, 0.07480375468730927, -0.07770254462957382, 0.007464124821126461, 0.018003253266215324, 0.01326664537191391, -0.17935220897197723, 0.050057269632816315, 0.08927338570356369, 0.03838799148797989, 0.10597794502973557, 0.009570508264005184, -0.16388006508350372, 0.00038850685814395547, 0.05159302428364754, -0.16573180258274078, -0.12800507247447968, -0.046049561351537704, 0.03089303895831108, -0.11022328585386276, -0.05281183123588562, 0.12862151861190796, -0.029883936047554016, -0.0401465967297554, 0.007198367267847061, 0.04534827172756195, -0.04435840621590614, 0.08979558944702148, -0.0020978914108127356, 0.04645252227783203, -0.07148400694131851, 0.11659053713083267, 0.07051089406013489, 0.012773318216204643, 0.033631645143032074, 0.07910120487213135, -0.09067399799823761, 0.010267662815749645, -0.09145961701869965, 0.011890589259564877, -0.020149383693933487, -0.014560946263372898, 0.018298976123332977, -0.04507913812994957, 0.047366511076688766, 0.08133921027183533, -0.010490838438272476, 0.10808739811182022, -0.03529522940516472, 0.014333470724523067, -0.12745557725429535, 0.06971991062164307, 0.03915563225746155, 0.022443339228630066, -0.11299154907464981, 0.18528249859809875, 0.029122836887836456, 0.09789007157087326, -0.033818718045949936, -0.05971699208021164, -0.061860088258981705, -0.007087474688887596, -0.08827082812786102, -0.039975181221961975, -0.0906296893954277, -0.023626310750842094, -0.006050794385373592, -0.03667335957288742, -0.028350820764899254, 0.04545953869819641, -0.03786972165107727, -0.06121770665049553, -0.07376763224601746, 0.044815849512815475, -0.13279277086257935, 0.03831223398447037, 0.12082219123840332, -0.059028882533311844, 0.12333089858293533, 0.05689413100481033, -0.038314905017614365, 0.02408992499113083, -0.11924830824136734, 0.03886609524488449, -0.015278136357665062, 0.018599214032292366, 0.01900632306933403, -0.16904014348983765, 0.009397361427545547, -0.039450693875551224, -0.06522516906261444, 0.004989344161003828, -0.00535198487341404, -0.13450072705745697, -0.00019651868205983192, 0.08695881813764572, -0.024768562987446785, -0.06397511810064316, 0.06208377704024315, 0.05193934589624405, 0.02566489763557911, 0.06090683117508888, -0.019043058156967163, 0.07504121959209442, -0.1726672500371933, -0.05100277066230774, 0.004528706893324852, 0.0289983619004488, 0.031160417944192886, -0.013788575306534767, 0.04306874796748161, -0.022723205387592316, 0.19225940108299255, 0.01755443960428238, -0.015973657369613647, 0.04080742597579956, -0.05646970495581627, 0.0013597097713500261, 0.04549973085522652, 0.0706813707947731, -0.03411465883255005, -0.03868912532925606, 0.010702412575483322, -0.023657403886318207, -0.08958306908607483, -0.04124927148222923, 0.12019581347703934, 0.03341070935130119, 0.20403654873371124, -0.05613425001502037, 0.06604049354791641, -0.01912670210003853, -0.12625060975551605, -0.0034382084850221872, -0.04156431928277016, 0.0380084291100502, -0.0641908198595047, 0.052009571343660355, 0.18667559325695038, -0.1588810384273529, 0.12147185951471329, 0.013188877142965794, -0.05789175629615784, -0.12073516100645065, -0.19730880856513977, -0.023197898641228676, -0.04056643322110176, 0.02980145812034607, -0.14037185907363892, 0.09012500941753387, 0.025017110630869865, 0.0380430705845356, -0.06665659695863724, 0.12969443202018738, -0.08495927602052689, -0.12257972359657288, 0.03220297396183014, 0.020778920501470566, 0.03076811507344246, 0.05571061372756958, 0.08447452634572983, 0.029567619785666466, 0.0071257781237363815, 0.07222196459770203, 0.041623253375291824, 0.033871572464704514, 0.034660596400499344, -0.02872144617140293, -0.042302753776311874, 0.0304364413022995, -0.0010588231962174177, 0.03373193368315697, 0.10131236910820007, 0.05510224401950836, -0.017152436077594757, -0.02117018587887287, 0.3122313320636749, -0.03616940975189209, -0.045094553381204605, -0.19011357426643372, 0.166208416223526, 0.00590217811986804, -0.012071083299815655, 0.024065200239419937, -0.1184847354888916, 0.014203820377588272, 0.13787125051021576, 0.15941400825977325, -0.014449094422161579, 0.02318519540131092, -0.023445747792720795, 0.017476163804531097, 0.03895324841141701, 0.09259121119976044, 0.07174842804670334, 0.187554731965065, -0.037005480378866196, 0.04301720857620239, -0.007361438125371933, -0.016208356246352196, -0.0004403503844514489, 0.11188321560621262, -0.03674941509962082, 0.0068657128140330315, -0.05248918756842613, 0.10584309697151184, -0.05044427141547203, -0.2768387794494629, -0.039163101464509964, -0.02960176393389702, -0.09639479219913483, 0.06681373715400696, -0.024340499192476273, -0.02393750287592411, 0.08617916703224182, 0.027660276740789413, -0.05274664983153343, 0.13963709771633148, 0.048495445400476456, -0.04214976727962494, -0.014767824672162533, 0.11116944253444672, -0.02167733758687973, 0.17712806165218353, -0.024431265890598297, 0.007827981375157833, 0.08225830644369125, 0.014042505994439125, -0.1284564882516861, 0.006325986236333847, 0.04104417562484741, -0.06408289074897766, -0.022869164124131203, 0.20338650047779083, 0.00927300751209259, 0.028912484645843506, 0.06792598962783813, -0.056217677891254425, 0.02020370587706566, -0.050580695271492004, 0.06391669809818268, -0.14216271042823792, 0.06861165910959244, -0.08907321095466614, 0.1236688420176506, 0.18553069233894348, -0.06730218976736069, 0.0260436050593853, -0.062454793602228165, 0.008321160450577736, -0.026177551597356796, 0.07133805006742477, -0.022998444736003876, -0.11946378648281097, 0.010097477585077286, 0.03795827925205231, 0.020577426999807358, -0.17487888038158417, -0.07595182955265045, 0.07502011954784393, -0.0478963740170002, 0.02256736345589161, 0.17417404055595398, 0.025611568242311478, 0.059867605566978455, -0.041000302881002426, -0.021137306466698647, -0.009777546860277653, 0.11880157887935638, -0.16948142647743225, -0.08137113600969315 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b780335021ab0e732601f25bd7a3d319.380x380x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Машина Времени (Mashina Vremeni)</div> <a href="https://genius.com/artists/mashina-vremeni"> <div style="text-align: center; font-size: 14px;">@mashina-vremeni</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Машина Времени (Mashina Vremeni). Dataset is available [here](https://huggingface.co/datasets/huggingartists/mashina-vremeni). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mashina-vremeni") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3r1yxrx7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Машина Времени (Mashina Vremeni)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1cgaltpc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1cgaltpc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mashina-vremeni') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mashina-vremeni") model = AutoModelWithLMHead.from_pretrained("huggingartists/mashina-vremeni") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/mashina-vremeni"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/mashina-vremeni
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mashina-vremeni", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mashina-vremeni #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Машина Времени (Mashina Vremeni)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@mashina-vremeni</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Машина Времени (Mashina Vremeni). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Машина Времени (Mashina Vremeni)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Машина Времени (Mashina Vremeni).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Машина Времени (Mashina Vremeni)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mashina-vremeni #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Машина Времени (Mashina Vremeni).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Машина Времени (Mashina Vremeni)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 57, 80, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mashina-vremeni #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Машина Времени (Mashina Vremeni).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Машина Времени (Mashina Vremeni)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.043719932436943054, 0.15292038023471832, -0.0058521186001598835, 0.07973644137382507, 0.07429908961057663, 0.004234185442328453, 0.0690334215760231, 0.1075020432472229, -0.0023817000910639763, 0.059677604585886, 0.07130793482065201, 0.042421113699674606, 0.07171940058469772, 0.11098670214414597, 0.021054623648524284, -0.23728036880493164, 0.020762106403708458, -0.057977382093667984, -0.03758852183818817, 0.09280978888273239, 0.09715232998132706, -0.08052003383636475, 0.06102943792939186, 0.0035222680307924747, -0.05227622389793396, -0.010237094014883041, 0.006986661348491907, -0.05616400018334389, 0.06120353937149048, 0.08677857369184494, 0.05448281019926071, 0.03889685869216919, 0.054835427552461624, -0.1604844033718109, 0.03020034171640873, 0.10766006261110306, 0.032625071704387665, 0.0881907269358635, 0.07422947138547897, -0.05260111391544342, 0.10749319940805435, -0.06345392763614655, 0.09326552599668503, 0.04260575771331787, -0.10665407031774521, -0.09940314292907715, -0.11350447684526443, 0.022628234699368477, 0.04447595402598381, 0.05538929998874664, -0.016913440078496933, 0.08250965178012848, -0.07321053743362427, 0.07550894469022751, 0.2305355966091156, -0.2543388903141022, -0.009300791658461094, 0.026103707030415535, 0.041450582444667816, 0.0390252061188221, -0.07963830232620239, 0.009059940464794636, 0.02629120647907257, 0.044303666800260544, 0.06396124511957169, -0.040145497769117355, 0.11108916252851486, -0.032611675560474396, -0.10745683312416077, -0.07497930526733398, 0.097258061170578, -0.026254724711179733, -0.08457918465137482, -0.10398364067077637, -0.036602772772312164, -0.054703887552022934, 0.02660793624818325, 0.020777061581611633, 0.003127695992588997, -0.004882489331066608, -0.07409113645553589, -0.11375951021909714, -0.05214659497141838, -0.07127384841442108, -0.032398708164691925, 0.0879640281200409, 0.05138558894395828, 0.034659091383218765, -0.05749867111444473, 0.19056515395641327, 0.09360230714082718, -0.11187762767076492, -0.07923983782529831, -0.09966646879911423, -0.10229815542697906, -0.030539631843566895, -0.011482998728752136, 0.006000312976539135, -0.0037450690288096666, 0.14277198910713196, -0.044118884950876236, 0.012513356283307076, -0.05968843400478363, 0.033405061811208725, 0.10026787221431732, 0.1185816079378128, -0.10662870109081268, -0.031860269606113434, 0.10036614537239075, -0.04578908160328865, -0.03393210843205452, -0.05475311726331711, -0.014768547378480434, -0.08050702512264252, 0.05951204523444176, 0.11080273985862732, 0.060335397720336914, 0.055129606276750565, -0.03834710642695427, -0.05789412185549736, 0.013521683402359486, -0.15564705431461334, 0.023980814963579178, 0.01566488854587078, -0.06878726184368134, -0.012248729355633259, 0.07066541910171509, -0.04016299173235893, -0.12867693603038788, 0.06212078407406807, -0.062158312648534775, -0.026352351531386375, -0.09024643152952194, -0.11671984195709229, 0.009803876280784607, -0.032941628247499466, -0.01719166710972786, -0.08899739384651184, -0.16138772666454315, -0.028605559840798378, 0.012761609628796577, -0.07329663634300232, -0.01449610386043787, 0.010106384754180908, -0.019160468131303787, -0.0060081626288592815, -0.012683169916272163, 0.06079569086432457, -0.024000590667128563, 0.0704486146569252, -0.08627013862133026, 0.06865768879652023, 0.06229730695486069, 0.03674055635929108, -0.10613076388835907, 0.07898849993944168, -0.12141426652669907, 0.1752500832080841, -0.031029045581817627, -0.04952048137784004, -0.07839538156986237, -0.10330168902873993, -0.0166754350066185, -0.03613286465406418, 0.04680096358060837, 0.11518596112728119, -0.1669112592935562, -0.006989657413214445, 0.24794769287109375, -0.07101131230592728, -0.047435399144887924, 0.10380839556455612, -0.08186564594507217, 0.05234655737876892, 0.10281390696763992, 0.04661739245057106, 0.12185874581336975, -0.052990157157182693, -0.053852517157793045, -0.023990266025066376, -0.05522032454609871, 0.17043596506118774, 0.053484637290239334, -0.006085950881242752, 0.03998056426644325, -0.0074824681505560875, -0.012002733536064625, 0.00009086431236937642, -0.040147311985492706, -0.043458327651023865, -0.0130892563611269, -0.03350016474723816, 0.03375289589166641, -0.04807012528181076, -0.011371461674571037, -0.016505494713783264, -0.09535131603479385, 0.05864635482430458, 0.11012484133243561, -0.08212276548147202, 0.044915031641721725, -0.1186612993478775, 0.03927063196897507, -0.06033974140882492, 0.020740503445267677, -0.19051793217658997, 0.0014533385401591659, 0.028559722006320953, -0.06232667714357376, 0.054359760135412216, 0.022869005799293518, 0.04801437631249428, 0.08861202746629715, -0.034808363765478134, 0.012547687627375126, -0.04385600984096527, 0.0043345349840819836, -0.04952191561460495, -0.17964017391204834, -0.04595082625746727, -0.048074666410684586, 0.05446914955973625, -0.10800781846046448, -0.010374872013926506, 0.1232716292142868, 0.1442173719406128, 0.047247856855392456, -0.051971882581710815, 0.0375935435295105, -0.003762243315577507, -0.009610571898519993, -0.0994281992316246, -0.035003796219825745, 0.01877852901816368, -0.04798578843474388, 0.13129661977291107, -0.1552002727985382, -0.049388159066438675, 0.11137809604406357, 0.06166830286383629, -0.08938807249069214, 0.033829476684331894, -0.04269801080226898, -0.020165011286735535, -0.055776502937078476, -0.033108554780483246, 0.19842959940433502, 0.037441398948431015, 0.09885083884000778, -0.10738632082939148, -0.05965321883559227, -0.013358931988477707, -0.03332989290356636, 0.021732226014137268, 0.07726424187421799, 0.00747836334630847, -0.2294284552335739, 0.04043646156787872, 0.0009920478332787752, 0.0216788612306118, 0.20717565715312958, 0.011177409440279007, -0.10233046859502792, -0.0735786184668541, -0.028410399332642555, 0.024732114747166634, 0.08067314326763153, -0.027831656858325005, 0.050744593143463135, 0.03767095506191254, 0.0326312780380249, 0.028120025992393494, -0.10655470192432404, 0.026415815576910973, 0.05327068641781807, -0.04759202152490616, -0.035755641758441925, -0.006474657449871302, 0.028017688542604446, 0.09290841966867447, 0.06412983685731888, 0.08077683299779892, -0.02164793759584427, -0.05457961559295654, -0.11317405849695206, 0.13214553892612457, -0.0951400026679039, -0.19979245960712433, -0.11060936748981476, -0.05405488610267639, 0.028982214629650116, 0.022073769941926003, 0.016007205471396446, 0.0037222516257315874, -0.029739588499069214, -0.07937785983085632, 0.03588131442666054, -0.022262124344706535, -0.00819113478064537, -0.0007775656995363533, 0.05806976929306984, 0.007408215664327145, -0.12622053921222687, -0.014987309463322163, 0.021782120689749718, -0.09186413884162903, -0.0014084713766351342, 0.04701351374387741, 0.045033812522888184, 0.1094178557395935, -0.01486546453088522, 0.00858293566852808, -0.021075690165162086, 0.24018658697605133, -0.10790841281414032, 0.03142407909035683, 0.14389382302761078, -0.07079187035560608, 0.04319179058074951, 0.07930666208267212, 0.008893209509551525, -0.0572732575237751, 0.04794465750455856, 0.02477271482348442, -0.06337741017341614, -0.2024359405040741, -0.019483625888824463, -0.04688505828380585, 0.008937415666878223, 0.09840930253267288, 0.04292399808764458, -0.02439098060131073, 0.021042076870799065, -0.08631184697151184, 0.07058010995388031, 0.06520403921604156, 0.08544925600290298, -0.019388917833566666, -0.011298036202788353, 0.06812915205955505, -0.06177171692252159, 0.0289574284106493, 0.09648299217224121, 0.02528402768075466, 0.24950945377349854, -0.10594610124826431, 0.1098342090845108, 0.08450384438037872, 0.07418432831764221, 0.052692171186208725, 0.03723086789250374, -0.023543471470475197, 0.0582168884575367, -0.0026018726639449596, -0.09709492325782776, -0.04632292687892914, 0.028964603319764137, 0.03288715332746506, -0.012489093467593193, -0.019826611503958702, -0.070343978703022, 0.047723930329084396, 0.20756302773952484, 0.07313309609889984, -0.15246358513832092, -0.10008194297552109, 0.0696176066994667, -0.039510466158390045, -0.060412175953388214, -0.023571308702230453, 0.10705077648162842, -0.1984393298625946, -0.010524975135922432, -0.010122217237949371, 0.11978420615196228, -0.19962498545646667, -0.02018679864704609, -0.03193413093686104, 0.06888958811759949, -0.057455576956272125, 0.06834594905376434, -0.24056673049926758, 0.0636574849486351, 0.013589190319180489, 0.11775612086057663, -0.05656292662024498, 0.02378462627530098, 0.05715133249759674, 0.021370958536863327, 0.0893438532948494, 0.016701895743608475, 0.021024921908974648, -0.11051192879676819, -0.06656432151794434, 0.016768038272857666, 0.04663413390517235, -0.045789703726768494, 0.10128118097782135, -0.02987605892121792, 0.018069371581077576, -0.011617746204137802, -0.07428577542304993, -0.1059798076748848, -0.1377803534269333, 0.06061716377735138, -0.13433875143527985, 0.026269273832440376, -0.052234895527362823, -0.02995307184755802, 0.04079664498567581, 0.18892206251621246, -0.11621120572090149, -0.10175066441297531, -0.09729360789060593, 0.03913404792547226, 0.12023316323757172, -0.08776536583900452, 0.04262929782271385, 0.02529037743806839, 0.1391562521457672, 0.009730251505970955, -0.10260661691427231, 0.008508717641234398, -0.045553531497716904, -0.19755248725414276, -0.01787514239549637, 0.08235093206167221, 0.07076741009950638, 0.06736849248409271, 0.022422105073928833, 0.010276119224727154, -0.01586168259382248, -0.14105156064033508, 0.006405870895832777, 0.12405479699373245, 0.029642349109053612, 0.04021536931395531, -0.0033016197849065065, 0.032740913331508636, -0.09942673146724701, 0.00848605390638113, 0.09720442444086075, 0.25669625401496887, -0.07750841230154037, 0.139471173286438, 0.04011159762740135, -0.10282637178897858, -0.18418990075588226, 0.0012745006242766976, 0.013142513111233711, 0.04157811775803566, 0.008354498073458672, -0.2009141445159912, -0.02137233316898346, 0.04249102994799614, -0.0056899855844676495, 0.11975874751806259, -0.3156415522098541, -0.13460882008075714, 0.06760919094085693, 0.04868587478995323, -0.03318999707698822, -0.029420407488942146, -0.05061177909374237, -0.08868420869112015, -0.18438921868801117, 0.12287139892578125, -0.11197982728481293, 0.11274853348731995, 0.023193154484033585, -0.013980756513774395, 0.035855889320373535, -0.04457222297787666, 0.1386677324771881, -0.08746425062417984, 0.05938674509525299, -0.09253428876399994, -0.005757713690400124, 0.06088506430387497, -0.040946997702121735, 0.05358297377824783, 0.030193347483873367, 0.0809558629989624, -0.038029033690690994, -0.07353004813194275, -0.06759132444858551, 0.021271158009767532, -0.05757508426904678, -0.09439080953598022, -0.08264823257923126, 0.10483922064304352, 0.10791269689798355, -0.025731373578310013, -0.12001112848520279, -0.05373866483569145, -0.07053027302026749, 0.10251041501760483, 0.10586721450090408, 0.09320271760225296, -0.05272260680794716, 0.002692287554964423, -0.011995479464530945, 0.06772832572460175, -0.06995117664337158, 0.06603983044624329, 0.07644438743591309, 0.03331742063164711, 0.11431663483381271, 0.02661730907857418, -0.14854176342487335, 0.04552153870463371, 0.02472650073468685, -0.12448998540639877, -0.11987187713384628, -0.00919744186103344, -0.03836822882294655, -0.05877656489610672, -0.07187002152204514, 0.14605052769184113, -0.02492215298116207, -0.034117214381694794, 0.02599049173295498, 0.048893194645643234, -0.03959949314594269, 0.13027893006801605, 0.06268398463726044, 0.038161203265190125, -0.0826013833284378, 0.09312491863965988, 0.07656101137399673, 0.02906934730708599, 0.04723363742232323, 0.061709750443696976, -0.10224784910678864, -0.0006729125743731856, -0.08084369450807571, 0.032504454255104065, 0.008166206069290638, -0.016216743737459183, -0.042661264538764954, -0.05023159831762314, 0.04209919646382332, 0.11983313411474228, 0.008608967997133732, 0.1276179701089859, -0.03098582662642002, 0.01442004181444645, -0.10182078927755356, 0.09598153829574585, 0.05411539971828461, 0.019944466650485992, -0.06123588979244232, 0.18504105508327484, 0.02730933204293251, 0.08193307369947433, -0.04530954733490944, -0.05365988612174988, -0.08144080638885498, 0.008516121655702591, -0.20123089849948883, -0.003256393363699317, -0.0748666301369667, -0.028185095638036728, -0.023539874702692032, -0.02772211655974388, -0.038268864154815674, 0.054538045078516006, -0.03694964572787285, -0.051531121134757996, -0.046160951256752014, 0.02398495562374592, -0.15970709919929504, -0.035505034029483795, 0.10923835635185242, -0.09096897393465042, 0.10988305509090424, 0.058204829692840576, -0.04712763428688049, -0.0069185770116746426, -0.09574490785598755, 0.004918866325169802, -0.030697276815772057, 0.01018590573221445, 0.02727179042994976, -0.14850836992263794, 0.03351673111319542, -0.045621536672115326, -0.03899379074573517, 0.01904883049428463, 0.07957260310649872, -0.11749999970197678, 0.0246544498950243, 0.0375966839492321, 0.007439520675688982, -0.06965352594852448, 0.09279642254114151, 0.03310729190707207, 0.064354807138443, 0.06630182266235352, -0.030034948140382767, 0.09680457413196564, -0.15072079002857208, -0.03513334318995476, 0.02469027042388916, -0.003342896234244108, 0.06420847028493881, -0.007394751533865929, 0.06616748124361038, -0.03306309133768082, 0.189889058470726, -0.011371739208698273, -0.04515405371785164, 0.026983095332980156, -0.029412858188152313, -0.007146225776523352, 0.040475498884916306, 0.09040822833776474, -0.017418477684259415, -0.034823473542928696, -0.029037849977612495, 0.00036937856930308044, -0.034778762608766556, 0.0029928446747362614, 0.11875765770673752, 0.06562992930412292, 0.15720143914222717, -0.02513113245368004, 0.03697275370359421, -0.006079524289816618, -0.09877984970808029, -0.031370896846055984, 0.013415171764791012, 0.030040396377444267, -0.06475038081407547, 0.05934108793735504, 0.14310690760612488, -0.15461742877960205, 0.12355387210845947, 0.021158911287784576, -0.07989661395549774, -0.11889929324388504, -0.19357408583164215, -0.034382302314043045, 0.00985125545412302, 0.021332096308469772, -0.12608206272125244, 0.05728998780250549, 0.06158899888396263, 0.03684917837381363, -0.05607031658291817, 0.10339969396591187, -0.03158753737807274, -0.10693095624446869, 0.020561981946229935, 0.020885664969682693, 0.03712184727191925, 0.03591524064540863, 0.017078189179301262, 0.045387785881757736, 0.04004582762718201, 0.06041956692934036, 0.05201922729611397, 0.025463497266173363, -0.0013418063754215837, -0.007290631998330355, -0.052323829382658005, 0.008593917824327946, 0.022959204390645027, 0.02950221858918667, 0.17483359575271606, 0.07247133553028107, -0.015459228307008743, -0.02609606832265854, 0.29144707322120667, -0.03254203498363495, -0.07883358746767044, -0.1734108030796051, 0.1463584154844284, 0.012408950366079807, 0.0023146530147641897, 0.04739409312605858, -0.12656421959400177, 0.010609513148665428, 0.12888318300247192, 0.17738474905490875, -0.07430654764175415, 0.029033100232481956, 0.007498186081647873, 0.011393079534173012, 0.026660973206162453, 0.0895245224237442, 0.03495865315198898, 0.19320374727249146, -0.05882873386144638, 0.07886607944965363, 0.006154550239443779, -0.011464843526482582, -0.03654693067073822, 0.1245257630944252, -0.027596501633524895, 0.027816293761134148, -0.08676255494356155, 0.05539880692958832, -0.08023538440465927, -0.24477115273475647, 0.0181935615837574, -0.03213902935385704, -0.11392957717180252, 0.041381120681762695, -0.06359897553920746, -0.014108320698142052, 0.06570977717638016, 0.009535491466522217, 0.012014685198664665, 0.09575749933719635, 0.038477737456560135, -0.014763148501515388, -0.023568782955408096, 0.10089749097824097, -0.01557499822229147, 0.19819870591163635, -0.01144529227167368, 0.050182268023490906, 0.09391087293624878, 0.037762366235256195, -0.12105958163738251, 0.015246621333062649, 0.039449360221624374, -0.06155773997306824, 0.005569672677665949, 0.20560848712921143, -0.013738964684307575, 0.01820351555943489, 0.07266540080308914, 0.006802777294069529, 0.036535412073135376, -0.08129248023033142, 0.0189896859228611, -0.11453836411237717, 0.012560490518808365, -0.08034210652112961, 0.10953231155872345, 0.1781664490699768, -0.05790509656071663, 0.030034264549613, -0.05745329335331917, 0.00542109739035368, 0.00878735352307558, 0.0011179550783708692, -0.027779100462794304, -0.0925983339548111, 0.01784505695104599, 0.09995406121015549, 0.0456552654504776, -0.18553778529167175, -0.07858695834875107, 0.03080044873058796, -0.0688481330871582, -0.009058619849383831, 0.13948726654052734, -0.0009531234973110259, 0.06589776277542114, -0.02798161841928959, -0.04646593704819679, -0.022997457534074783, 0.05983302369713783, -0.1396772265434265, -0.07184819877147675 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2a5b556758315c192c7b1e6e86634c7d.600x600x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mating Ritual</div> <a href="https://genius.com/artists/mating-ritual"> <div style="text-align: center; font-size: 14px;">@mating-ritual</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Mating Ritual. Dataset is available [here](https://huggingface.co/datasets/huggingartists/mating-ritual). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mating-ritual") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3cljintu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Mating Ritual's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/dv1g3x3b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/dv1g3x3b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mating-ritual') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mating-ritual") model = AutoModelWithLMHead.from_pretrained("huggingartists/mating-ritual") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/mating-ritual"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/mating-ritual
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mating-ritual", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mating-ritual #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mating Ritual</div> <a href="URL <div style="text-align: center; font-size: 14px;">@mating-ritual</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Mating Ritual. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Mating Ritual's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Mating Ritual.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Mating Ritual's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mating-ritual #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Mating Ritual.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Mating Ritual's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mating-ritual #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Mating Ritual.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Mating Ritual's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04039490967988968, 0.16005264222621918, -0.00310842739418149, 0.051802102476358414, 0.10529633611440659, 0.014301268383860588, 0.07031981647014618, 0.11539246886968613, 0.009479119442403316, 0.07888267934322357, 0.07107607275247574, 0.04642394930124283, 0.06727864593267441, 0.08949436992406845, 0.06456869840621948, -0.22481480240821838, 0.0381607785820961, -0.0829465240240097, 0.011511688120663166, 0.0966159924864769, 0.08785601705312729, -0.06429580599069595, 0.07807159423828125, 0.02317706122994423, -0.0689878910779953, 0.011966883204877377, 0.003954440820962191, -0.05425897613167763, 0.08210474997758865, 0.06564153730869293, 0.03391982242465019, 0.020961713045835495, 0.06310217827558517, -0.1785678267478943, 0.028729328885674477, 0.12534016370773315, 0.0267484113574028, 0.07752899825572968, 0.058159880340099335, -0.08297783136367798, 0.13023331761360168, -0.02296365052461624, 0.08455649018287659, 0.05725335329771042, -0.11193003505468369, -0.11623098701238632, -0.14989042282104492, 0.0932270735502243, 0.09196885675191879, 0.0895388051867485, -0.02869223803281784, 0.08784197270870209, -0.022077370434999466, 0.04547572135925293, 0.2372644543647766, -0.2390766590833664, -0.009389941580593586, 0.07702315598726273, 0.062176551669836044, 0.022890759631991386, -0.09273967146873474, 0.014519313350319862, 0.050328560173511505, 0.03971175104379654, 0.03316125273704529, -0.02638617344200611, 0.1591142863035202, 0.02100253850221634, -0.10799410194158554, -0.07901065051555634, 0.09834638983011246, -0.021229615435004234, -0.08024045825004578, -0.12304563820362091, 0.0002217849250882864, -0.03652654588222504, 0.030110206454992294, 0.025206174701452255, 0.00022157866624183953, -0.0017082017147913575, -0.04033816605806351, -0.11142399162054062, -0.07158213108778, -0.04335842654109001, -0.009775010868906975, 0.05737295746803284, 0.04518450051546097, 0.035063110291957855, -0.08719439804553986, 0.22477710247039795, 0.006261412054300308, -0.09168867766857147, -0.05956714600324631, -0.10260675102472305, -0.088682159781456, -0.0416642501950264, -0.0021574050188064575, -0.0065645514987409115, -0.03355393931269646, 0.1468159705400467, -0.03441987186670303, 0.02707752212882042, -0.029869696125388145, 0.0003874381072819233, 0.13714629411697388, 0.137648344039917, -0.12754356861114502, -0.03667295351624489, 0.07205568999052048, 0.005596747621893883, -0.06438998878002167, -0.04414635896682739, 0.004019813146442175, -0.011503701098263264, 0.04504616931080818, 0.0884348601102829, 0.07532288134098053, 0.0623033232986927, 0.006641274318099022, -0.0607391819357872, 0.06881263852119446, -0.13124527037143707, 0.013680774718523026, -0.012903713621199131, -0.06076718121767044, 0.02242155373096466, 0.06749023497104645, -0.000997072784230113, -0.11255013197660446, 0.09405040740966797, -0.07457853853702545, -0.0456983856856823, -0.08081895858049393, -0.10550705343484879, 0.00020234602561686188, -0.05819810554385185, -0.03330013155937195, -0.07193375378847122, -0.1755291223526001, -0.049513522535562515, 0.01818046346306801, -0.05495572090148926, -0.021164994686841965, 0.02130775898694992, -0.03830084949731827, 0.00890655629336834, -0.013914242386817932, -0.011275425553321838, -0.026408784091472626, 0.0319092832505703, -0.086428202688694, 0.030959390103816986, 0.06874704360961914, 0.04521656408905983, -0.11712367087602615, 0.07717259228229523, -0.12321671098470688, 0.12109028548002243, -0.02726029045879841, 0.007069394923746586, -0.09277605265378952, -0.07417798787355423, -0.018951615318655968, -0.03485595062375069, 0.030661046504974365, 0.11636459827423096, -0.16386382281780243, -0.021856483072042465, 0.21208827197551727, -0.06434161216020584, -0.07101081311702728, 0.06801258027553558, -0.0724608302116394, 0.040241025388240814, 0.11383025348186493, 0.07011006027460098, 0.14360004663467407, -0.10827183723449707, -0.085992731153965, -0.051266320049762726, -0.0755753293633461, 0.16514548659324646, 0.023030932992696762, -0.027347682043910027, 0.03474074974656105, 0.001965153496712446, -0.027705088257789612, 0.00007173929770942777, -0.027166683226823807, -0.03361470624804497, -0.02075151726603508, -0.01548730581998825, -0.0032197642140090466, -0.04190801456570625, -0.04287271574139595, -0.018872354179620743, -0.09186337143182755, 0.07500354200601578, 0.10362401604652405, -0.07116452604532242, 0.02176530659198761, -0.09178583323955536, 0.03766258805990219, -0.06368972361087799, 0.018699267879128456, -0.18050748109817505, -0.041064824908971786, 0.019930901005864143, -0.06778202205896378, 0.06963607668876648, 0.005180325359106064, 0.04728538542985916, 0.06817277520895004, -0.01569807529449463, -0.0075122588314116, -0.04270963743329048, 0.0015562974149361253, -0.056059353053569794, -0.16805675625801086, -0.05162025988101959, -0.04855107516050339, 0.08461444079875946, -0.10854095965623856, 0.004639515653252602, 0.07100418955087662, 0.1449456512928009, 0.025790231302380562, -0.06788080185651779, 0.047029830515384674, -0.031156135722994804, -0.026942234486341476, -0.10786842554807663, -0.04266013205051422, 0.005367552861571312, -0.016688577830791473, 0.15808740258216858, -0.1421651989221573, -0.10718303918838501, 0.12330611050128937, 0.11062249541282654, -0.0832427516579628, 0.05054106563329697, -0.07040579617023468, -0.020214639604091644, -0.04497223347425461, -0.0562271885573864, 0.23738358914852142, 0.03694777935743332, 0.09193294495344162, -0.08818220347166061, -0.08293584734201431, 0.0029111301992088556, -0.040794406086206436, -0.037610724568367004, 0.04621438309550285, 0.023715050891041756, -0.17045266926288605, 0.05066770687699318, -0.012100487016141415, 0.0779917761683464, 0.18961738049983978, 0.028546852990984917, -0.09306946396827698, -0.05256875231862068, -0.06541534513235092, 0.007466713897883892, 0.09288322180509567, 0.00706896185874939, 0.03227723762392998, 0.039389245212078094, 0.04475191608071327, 0.04867936298251152, -0.11274513602256775, 0.011341146193444729, 0.05412489175796509, -0.030016155913472176, -0.05528467148542404, 0.021461360156536102, 0.024823779240250587, 0.09078220278024673, 0.0704122930765152, 0.11059717833995819, -0.052814122289419174, -0.04814557731151581, -0.13698385655879974, 0.13624416291713715, -0.09781870990991592, -0.18587562441825867, -0.1352093666791916, -0.06436547636985779, 0.004218221642076969, 0.003101519076153636, 0.030828626826405525, -0.04976087808609009, -0.03775009140372276, -0.10122478008270264, 0.07589517533779144, -0.03215528652071953, -0.012059243395924568, -0.0074493158608675, 0.01402613427489996, -0.014545137993991375, -0.1215931847691536, -0.0299275740981102, 0.019130688160657883, -0.07006627321243286, 0.0038927632849663496, 0.021879427134990692, 0.056385502219200134, 0.14952120184898376, -0.003234047209843993, 0.009586342610418797, -0.02223031595349312, 0.2646963596343994, -0.10766466706991196, 0.06164344772696495, 0.15816637873649597, -0.0027875197120010853, 0.05871167406439781, 0.05448189750313759, -0.005331784952431917, -0.057269077748060226, 0.056732576340436935, 0.07566411048173904, -0.06967531889677048, -0.2066517323255539, -0.03224363923072815, -0.020340576767921448, 0.014482049271464348, 0.108218714594841, 0.03681303933262825, 0.047508884221315384, 0.007455214858055115, -0.09755357354879379, 0.049702830612659454, 0.01984466053545475, 0.09577551484107971, -0.08014630526304245, -0.005417139735072851, 0.042008671909570694, -0.05769607797265053, 0.04187747836112976, 0.11960424482822418, 0.04539021849632263, 0.24607647955417633, -0.08155021071434021, 0.0686316266655922, 0.09351179748773575, 0.09939578175544739, 0.018079398199915886, 0.03604378178715706, -0.03227652981877327, 0.030447598546743393, 0.012000198476016521, -0.093596912920475, 0.0007469538250006735, 0.03296716511249542, 0.024404242634773254, -0.006772324442863464, -0.06350668519735336, -0.08014234155416489, 0.05570819973945618, 0.2330837845802307, 0.035082630813121796, -0.16430450975894928, -0.09356281906366348, 0.06366943567991257, -0.040161389857530594, -0.053600359708070755, -0.02612774446606636, 0.06263552606105804, -0.20764921605587006, 0.03519325703382492, -0.04476114735007286, 0.10881703346967697, -0.11834409832954407, -0.003574071917682886, 0.051240224391222, 0.0479787141084671, -0.07359050214290619, 0.07138226181268692, -0.15323537588119507, 0.08246438950300217, 0.0014398525236174464, 0.08774466812610626, -0.06238209456205368, 0.01587378978729248, 0.04036154970526695, 0.03340352326631546, 0.0873025506734848, 0.018612442538142204, 0.036520253866910934, -0.06264571100473404, -0.03926170617341995, -0.0006173403817228973, 0.049325499683618546, -0.07624728977680206, 0.1335301250219345, -0.026124274358153343, 0.02972474880516529, -0.025523798540234566, -0.08048131316900253, -0.10123502463102341, -0.14343863725662231, 0.07176196575164795, -0.11276377737522125, -0.013057513162493706, -0.0626276433467865, -0.02192547544836998, 0.01567145437002182, 0.20264363288879395, -0.08962959051132202, -0.07846415042877197, -0.13490650057792664, 0.0011519663967192173, 0.14602231979370117, -0.07927712798118591, 0.00046912048128433526, -0.006973557639867067, 0.14468713104724884, -0.005849528592079878, -0.13880735635757446, -0.006831181235611439, -0.06534353643655777, -0.17441613972187042, -0.025206902995705605, 0.13201583921909332, 0.07282935827970505, 0.03844006359577179, 0.0038173554930835962, 0.004421751014888287, -0.03719446063041687, -0.16570404171943665, 0.03004630282521248, 0.16210561990737915, 0.017755184322595596, 0.028184756636619568, 0.012607039883732796, 0.020264234393835068, -0.1313593089580536, 0.023845726624131203, 0.04695999622344971, 0.19285179674625397, -0.07340747863054276, 0.16215375065803528, 0.014944277703762054, -0.09667501598596573, -0.18015213310718536, 0.03497534990310669, -0.0037028463557362556, 0.03133970499038696, 0.01760721765458584, -0.16668342053890228, 0.020763225853443146, 0.02747933752834797, -0.0036538001149892807, 0.06044133007526398, -0.34930935502052307, -0.14890240132808685, 0.021838998422026634, 0.02877047285437584, -0.08027274161577225, -0.04032066836953163, -0.03467223048210144, -0.06910611689090729, -0.23785489797592163, 0.08293081820011139, -0.13274911046028137, 0.0917285829782486, 0.008977930061519146, 0.06272193044424057, 0.04524103179574013, -0.06536506861448288, 0.13433751463890076, -0.022937120869755745, 0.06885140389204025, -0.07936272025108337, -0.047238316386938095, 0.09185882657766342, -0.06735572963953018, 0.10299262404441833, 0.011387288570404053, 0.08830758929252625, -0.11848144978284836, -0.06332431733608246, -0.08423854410648346, 0.01606607250869274, -0.05272482708096504, -0.09218119084835052, -0.07799439877271652, 0.0972621738910675, 0.12825392186641693, -0.03662695363163948, -0.09402166306972504, -0.04250645637512207, -0.021484119817614555, 0.07624619454145432, 0.09669336676597595, 0.09022590517997742, -0.0882791206240654, 0.010706886649131775, 0.006666145753115416, 0.027348093688488007, -0.15275757014751434, 0.035979121923446655, 0.08517730236053467, 0.038004498928785324, 0.10569201409816742, 0.011461174115538597, -0.16674897074699402, 0.027042154222726822, 0.03612472489476204, -0.1443241387605667, -0.10560779273509979, -0.028099767863750458, -0.013176827691495419, -0.08858509361743927, -0.035642046481370926, 0.14078547060489655, -0.04077158123254776, -0.030889345332980156, -0.004347656387835741, 0.05686625465750694, -0.05424869433045387, 0.12213244289159775, 0.023204410448670387, 0.04211815074086189, -0.07069992274045944, 0.11859460920095444, 0.05705653876066208, 0.018788905814290047, 0.04433126002550125, 0.05404631793498993, -0.08731157332658768, -0.003002007259055972, -0.08023212850093842, 0.02848024107515812, -0.052841346710920334, -0.007750185672193766, -0.009086276404559612, -0.03953323885798454, 0.03203341364860535, 0.1071145310997963, -0.012764301151037216, 0.11098650842905045, -0.036886826157569885, -0.01685141958296299, -0.1393108367919922, 0.07556857913732529, 0.0617453008890152, 0.019523583352565765, -0.10764262825250626, 0.1949046552181244, 0.02513781376183033, 0.09461044520139694, -0.04048873484134674, -0.05548330768942833, -0.0786159336566925, -0.006978579331189394, -0.1539166122674942, -0.04509763419628143, -0.08248259127140045, -0.03728907182812691, -0.019167685881257057, -0.029775790870189667, -0.015420814976096153, 0.05975239723920822, -0.02796127274632454, -0.06968812644481659, -0.054855309426784515, 0.05136268585920334, -0.14795739948749542, 0.0032542836852371693, 0.1086469292640686, -0.06246321275830269, 0.10532259196043015, 0.0639963150024414, -0.03096999228000641, 0.013295683078467846, -0.10227233916521072, 0.022028779610991478, -0.029048006981611252, 0.0064722816459834576, 0.033909447491168976, -0.13769066333770752, 0.007908251136541367, -0.056344129145145416, -0.06330490112304688, 0.016634711995720863, 0.017175184562802315, -0.12076394259929657, 0.0029388314578682184, 0.05900559946894646, 0.010369217954576015, -0.06871055066585541, 0.07324456423521042, 0.0718146339058876, 0.03224878013134003, 0.06393823772668839, -0.03506944701075554, 0.07917638123035431, -0.16730321943759918, -0.047956887632608414, 0.0036489784251898527, 0.007577802985906601, 0.05166156589984894, -0.0004455573798622936, 0.044408053159713745, -0.019196147099137306, 0.18143288791179657, 0.001024666358716786, -0.02261972799897194, 0.03837975859642029, -0.03674912452697754, -0.01556773204356432, 0.04826435074210167, 0.051410771906375885, -0.04267590492963791, -0.030808912590146065, -0.02455189824104309, -0.0010328697971999645, -0.07400213927030563, -0.029575806111097336, 0.1091538742184639, 0.06294876337051392, 0.17746442556381226, -0.02475130930542946, 0.057946208864450455, -0.02846113219857216, -0.11043571680784225, -0.02192819118499756, -0.03160862252116203, 0.04258539900183678, -0.07346740365028381, 0.07437659800052643, 0.1612967848777771, -0.15465550124645233, 0.1129528358578682, 0.022294769063591957, -0.058378688991069794, -0.08920243382453918, -0.16884757578372955, -0.007928624749183655, -0.016666410490870476, 0.032851774245500565, -0.12078732252120972, 0.08247155696153641, 0.028510667383670807, 0.03342389315366745, -0.05851483345031738, 0.1213410496711731, -0.0705033540725708, -0.1063094288110733, 0.03213105350732803, 0.025805870071053505, 0.01722901128232479, 0.0389358326792717, 0.07361884415149689, 0.035339683294296265, -0.006293846294283867, 0.057838644832372665, 0.03849125653505325, 0.03149823099374771, 0.04347575828433037, -0.017675241455435753, -0.05535989999771118, 0.028919750824570656, 0.012970873154699802, 0.037014830857515335, 0.11285309493541718, 0.08160021901130676, -0.02188250422477722, -0.03533269464969635, 0.2858361005783081, -0.03657922148704529, -0.031242331489920616, -0.17304423451423645, 0.17916393280029297, 0.0306612066924572, -0.019114945083856583, 0.027305088937282562, -0.143362894654274, 0.015937145799398422, 0.1503550410270691, 0.177144393324852, -0.05178346112370491, 0.011765989474952221, -0.04207206144928932, 0.010829723440110683, 0.029464267194271088, 0.08590726554393768, 0.06589297205209732, 0.1944974660873413, -0.04641216620802879, 0.06348779052495956, -0.009685298427939415, -0.01964988186955452, -0.00947814155369997, 0.11107651889324188, -0.027638744562864304, 0.0022394151892513037, -0.05556212738156319, 0.08934471756219864, -0.07173661142587662, -0.26759448647499084, -0.007176097948104143, -0.042974695563316345, -0.09139560163021088, 0.049266062676906586, -0.04912552982568741, -0.01622699201107025, 0.0943303033709526, 0.018998583778738976, -0.019423598423600197, 0.14028245210647583, 0.035042744129896164, -0.04205412045121193, -0.025613706558942795, 0.0838816836476326, -0.03207927197217941, 0.19154232740402222, -0.026750264689326286, -0.00627896748483181, 0.09226523339748383, 0.022157253697514534, -0.12605968117713928, 0.006661320570856333, 0.04037885740399361, -0.07502201944589615, -0.016717704012989998, 0.1915351152420044, 0.0077042533084750175, 0.029354702681303024, 0.0486338809132576, -0.03940955549478531, 0.031116783618927002, -0.07405039668083191, 0.04324274882674217, -0.13678689301013947, 0.04911297187209129, -0.07322604209184647, 0.14641237258911133, 0.18802239000797272, -0.07260564714670181, 0.02822623774409294, -0.05294443666934967, -0.009870191104710102, -0.013411273248493671, 0.048324327915906906, -0.02109385095536709, -0.10200594365596771, 0.02879381738603115, 0.017321549355983734, 0.021012920886278152, -0.2005603164434433, -0.0739055722951889, 0.04738502949476242, -0.053663913160562515, 0.018076524138450623, 0.17033261060714722, 0.04342189058661461, 0.06146826967597008, -0.02810615859925747, 0.002046743407845497, -0.018368087708950043, 0.106098972260952, -0.13309308886528015, -0.08764684200286865 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a1486b5b6f28eeec202b55e983e464c5.567x567x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Макс Корж (Max Korzh)</div> <a href="https://genius.com/artists/max-korzh"> <div style="text-align: center; font-size: 14px;">@max-korzh</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Макс Корж (Max Korzh). Dataset is available [here](https://huggingface.co/datasets/huggingartists/max-korzh). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/max-korzh") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2lupo5gy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Макс Корж (Max Korzh)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1pm64gaa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1pm64gaa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/max-korzh') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/max-korzh") model = AutoModelWithLMHead.from_pretrained("huggingartists/max-korzh") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/max-korzh"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/max-korzh
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/max-korzh", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/max-korzh #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Макс Корж (Max Korzh)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@max-korzh</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Макс Корж (Max Korzh). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Макс Корж (Max Korzh)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Макс Корж (Max Korzh).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Макс Корж (Max Korzh)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/max-korzh #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Макс Корж (Max Korzh).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Макс Корж (Max Korzh)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 55, 78, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/max-korzh #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Макс Корж (Max Korzh).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Макс Корж (Max Korzh)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01831717975437641, 0.154673233628273, -0.004542437847703695, 0.06007592752575874, 0.06774634122848511, -0.006513058673590422, 0.08307276666164398, 0.11873799562454224, 0.0012782325502485037, 0.07957406342029572, 0.0658511221408844, 0.032608699053525925, 0.08700462430715561, 0.09241601079702377, 0.030120940878987312, -0.25983312726020813, 0.03126733750104904, -0.060420241206884384, -0.015108420513570309, 0.09244995564222336, 0.08888132870197296, -0.08320105820894241, 0.07603289932012558, 0.02446926012635231, -0.03449871018528938, -0.005612857174128294, 0.014572217129170895, -0.06379804760217667, 0.06865815073251724, 0.0766381099820137, 0.042694028466939926, 0.05437500402331352, 0.06844373792409897, -0.18059973418712616, 0.023992232978343964, 0.11252805590629578, 0.025589510798454285, 0.09093205630779266, 0.07054117321968079, -0.047552816569805145, 0.12259979546070099, -0.05327090620994568, 0.0760965645313263, 0.05023713782429695, -0.10213175415992737, -0.06461978703737259, -0.14210879802703857, 0.07245969772338867, 0.07827576994895935, 0.06319742649793625, -0.016992580145597458, 0.08391405642032623, -0.05689403787255287, 0.05264904722571373, 0.2439756989479065, -0.275538831949234, -0.01996457576751709, 0.036910779774188995, 0.07068616151809692, 0.023894408717751503, -0.09456417709589005, 0.014849254861474037, 0.032018035650253296, 0.03516930341720581, 0.054610125720500946, -0.0419754795730114, 0.15051855146884918, -0.01625259965658188, -0.10252729058265686, -0.07140900939702988, 0.07806751877069473, -0.013703216798603535, -0.07555156201124191, -0.09738939255475998, -0.012667378410696983, -0.028489377349615097, 0.022861743345856667, 0.012135005556046963, -0.0051819197833538055, -0.01474924385547638, -0.10210229456424713, -0.12530532479286194, -0.07783370465040207, -0.042777545750141144, -0.03289384767413139, 0.06418044865131378, 0.0537460595369339, 0.040010057389736176, -0.061120472848415375, 0.19642770290374756, 0.020505612716078758, -0.11154907196760178, -0.07776334136724472, -0.1107737347483635, -0.09052365273237228, -0.03519366309046745, -0.0033388209994882345, 0.013921932317316532, -0.016498493030667305, 0.1523333340883255, -0.0342550203204155, 0.02499775029718876, -0.035975657403469086, 0.017294086515903473, 0.095243901014328, 0.13317660987377167, -0.10303778201341629, -0.05221433565020561, 0.07732260972261429, -0.01541685126721859, -0.050001390278339386, -0.049468908458948135, -0.013124779798090458, -0.05190260708332062, 0.057481903582811356, 0.07959844917058945, 0.07643461972475052, 0.04927670210599899, 0.001761976396664977, -0.052224982529878616, 0.015759732574224472, -0.1402122676372528, 0.03038112260401249, -0.009355127811431885, -0.05699842795729637, 0.004055929370224476, 0.040568795055150986, -0.009915582835674286, -0.11383400857448578, 0.07697145640850067, -0.06840033084154129, -0.023555101826786995, -0.07868634909391403, -0.10113108158111572, 0.018532898277044296, -0.046140771359205246, -0.0273295771330595, -0.08698154240846634, -0.14337192475795746, -0.03204740956425667, 0.024380376562476158, -0.07279952615499496, -0.014901161193847656, 0.03278030455112457, -0.04193989560008049, 0.00956297479569912, -0.020978424698114395, 0.008901884779334068, -0.015366627834737301, 0.0549161359667778, -0.08621090650558472, 0.04545263200998306, 0.06787829846143723, 0.03863028064370155, -0.10673466324806213, 0.08142354339361191, -0.1266898810863495, 0.13865132629871368, -0.032755155116319656, -0.053896840661764145, -0.09681791067123413, -0.11238189786672592, -0.014700569212436676, -0.0494074672460556, 0.04388248175382614, 0.10966524481773376, -0.15878725051879883, -0.009659764356911182, 0.21905870735645294, -0.07308509200811386, -0.0433359332382679, 0.08838598430156708, -0.0696549192070961, 0.025947121903300285, 0.11857716739177704, 0.036988597363233566, 0.15201370418071747, -0.0830451175570488, -0.09135321527719498, -0.028121858835220337, -0.06864450871944427, 0.1724795699119568, 0.03922296687960625, -0.00891427043825388, 0.05543249100446701, -0.0032535686623305082, -0.0033557084389030933, -0.023723380640149117, -0.042946867644786835, -0.03816460818052292, -0.017883162945508957, 0.0010834175627678633, 0.033568620681762695, -0.050149548798799515, -0.016564495861530304, -0.02106846496462822, -0.09790713340044022, 0.06006275489926338, 0.08747362345457077, -0.07053067535161972, 0.036231834441423416, -0.10618259757757187, 0.033391889184713364, -0.07279660552740097, 0.014788283966481686, -0.17256496846675873, -0.011166906915605068, 0.02026163414120674, -0.05955170840024948, 0.06053093820810318, 0.032484471797943115, 0.0585082471370697, 0.07082686573266983, -0.03850321099162102, 0.010811271145939827, -0.05747877433896065, 0.001674941973760724, -0.07021108269691467, -0.14962702989578247, -0.06650839000940323, -0.03724614530801773, 0.043968316167593, -0.10433828085660934, -0.0036289163399487734, 0.09228930622339249, 0.15664584934711456, 0.03428877145051956, -0.04897772893309593, 0.015265844762325287, -0.019499853253364563, -0.02705785445868969, -0.09618479758501053, -0.04507884383201599, 0.01158363651484251, -0.033382877707481384, 0.15968139469623566, -0.14497970044612885, -0.09056223928928375, 0.10906902700662613, 0.09884438663721085, -0.0764203667640686, 0.02581353485584259, -0.059115324169397354, -0.031744252890348434, -0.05600018426775932, -0.05059535428881645, 0.21594452857971191, 0.04474553465843201, 0.08920856565237045, -0.0934363529086113, -0.07316599786281586, -0.004280756693333387, -0.03974529728293419, -0.009008429944515228, 0.054201457649469376, 0.02261407859623432, -0.23130719363689423, 0.053021155297756195, 0.013200685381889343, 0.050857365131378174, 0.16947364807128906, 0.009985246695578098, -0.10264377295970917, -0.0682857558131218, -0.04542604833841324, 0.01745186559855938, 0.08727220445871353, 0.04145696386694908, 0.052576955407857895, 0.039320070296525955, 0.04761844873428345, 0.022335028275847435, -0.12097374349832535, 0.027014203369617462, 0.04614269733428955, -0.041478611528873444, -0.04128553718328476, -0.009339435026049614, 0.0418730154633522, 0.09347513318061829, 0.07789286971092224, 0.08662015944719315, -0.03187025710940361, -0.048039406538009644, -0.10701142251491547, 0.1318996250629425, -0.08486871421337128, -0.18571598827838898, -0.12119798362255096, -0.080490343272686, 0.017441565170884132, 0.011929480358958244, 0.025917230173945427, -0.007127922959625721, -0.030181828886270523, -0.08833234012126923, 0.05537986382842064, -0.043265316635370255, -0.008635608479380608, -0.010767866857349873, 0.05127830430865288, -0.0014498732052743435, -0.11165061593055725, -0.025016918778419495, 0.013476304709911346, -0.08318015933036804, 0.016087574884295464, 0.039929263293743134, 0.030966566875576973, 0.12372032552957535, -0.01789221726357937, -0.0014696127036586404, -0.03438279405236244, 0.23032629489898682, -0.09951519221067429, 0.060604460537433624, 0.15040859580039978, -0.041729636490345, 0.07416191697120667, 0.0803012102842331, -0.003882793942466378, -0.03346488997340202, 0.048476990312337875, 0.049775708466768265, -0.07039826363325119, -0.19885903596878052, -0.006586856208741665, -0.043256841599941254, 0.026217449456453323, 0.12125454097986221, 0.026516340672969818, 0.021493051201105118, 0.02298310026526451, -0.09917112439870834, 0.06888632476329803, 0.08067840337753296, 0.10040661692619324, -0.02700505405664444, 0.0004365516360849142, 0.07507535815238953, -0.04835978522896767, 0.016712961718440056, 0.10114603489637375, 0.03854751214385033, 0.27751800417900085, -0.08510567247867584, 0.07276323437690735, 0.07997095584869385, 0.07449905574321747, 0.035574063658714294, 0.04869798198342323, -0.0166960209608078, 0.046009451150894165, 0.0013094751629978418, -0.09415124356746674, -0.011875241063535213, 0.03892568126320839, 0.04528355225920677, -0.013408971019089222, -0.042399995028972626, -0.06512793898582458, 0.03329511731863022, 0.2066916525363922, 0.0993061438202858, -0.1443854719400406, -0.09294599294662476, 0.07254131138324738, -0.05749078467488289, -0.05688159167766571, -0.019330903887748718, 0.10760614275932312, -0.215448260307312, 0.016529321670532227, -0.042905669659376144, 0.1221393421292305, -0.14773119986057281, -0.019507819786667824, -0.022591477259993553, 0.06847847253084183, -0.060339707881212234, 0.0752132460474968, -0.1806756854057312, 0.08378022909164429, 0.008650937117636204, 0.09296819567680359, -0.06189417466521263, 0.026133503764867783, 0.05407825484871864, 0.005994082894176245, 0.08222579210996628, 0.015801062807440758, -0.011187972500920296, -0.09203927963972092, -0.085406593978405, 0.008465077728033066, 0.07041779905557632, -0.05757969990372658, 0.12331104278564453, -0.036787405610084534, 0.02079109288752079, -0.01882770098745823, -0.05720086023211479, -0.1126776710152626, -0.14777205884456635, 0.07576891034841537, -0.11820908635854721, -0.00033842286211438477, -0.058222509920597076, -0.03587973862886429, 0.045039232820272446, 0.20176482200622559, -0.09526907652616501, -0.08600940555334091, -0.11238858103752136, 0.027574362233281136, 0.16257105767726898, -0.0890514999628067, 0.023576295003294945, 0.01157824881374836, 0.14579062163829803, 0.0054267277009785175, -0.12948966026306152, -0.01988791488111019, -0.048230692744255066, -0.20296934247016907, -0.012998108752071857, 0.1286957561969757, 0.07406878471374512, 0.06213773414492607, 0.026683634147047997, 0.016890689730644226, -0.020171238109469414, -0.1512216478586197, 0.0009543279884383082, 0.10455641150474548, 0.06869754940271378, 0.025070209056138992, 0.013964571058750153, 0.04201977327466011, -0.12451053410768509, 0.034633032977581024, 0.07176245003938675, 0.21146659553050995, -0.07681658864021301, 0.15168273448944092, 0.003960727248340845, -0.07955757528543472, -0.17050029337406158, -0.004862101282924414, 0.014215115457773209, 0.03692105412483215, 0.006466747727245092, -0.15649425983428955, -0.01286077406257391, 0.03554142639040947, -0.014904319308698177, 0.10787266492843628, -0.30445200204849243, -0.13342687487602234, 0.024886028841137886, 0.022789208218455315, -0.04758359119296074, -0.024677099660038948, -0.05985713005065918, -0.07330478727817535, -0.22809088230133057, 0.10358206182718277, -0.10781478136777878, 0.10456840693950653, 0.008148030377924442, 0.00647351611405611, 0.03468431159853935, -0.04978737235069275, 0.14481139183044434, -0.06143409386277199, 0.045466676354408264, -0.09365320950746536, -0.025492120534181595, 0.06554139405488968, -0.06637003272771835, 0.06747841835021973, -0.006888387259095907, 0.06547829508781433, -0.07467933744192123, -0.06230238080024719, -0.08523088693618774, 0.022463791072368622, -0.05988292396068573, -0.08591383695602417, -0.0907818004488945, 0.09795847535133362, 0.11546839028596878, -0.02423015981912613, -0.07084301114082336, -0.03833054006099701, -0.04251222684979439, 0.1060691848397255, 0.10609211027622223, 0.09098375588655472, -0.06218092143535614, 0.0014882306568324566, -0.00010415840370114893, 0.04454578459262848, -0.09905243664979935, 0.05687678977847099, 0.08869115263223648, 0.02828366868197918, 0.11059006303548813, 0.027630209922790527, -0.1575251817703247, 0.039878394454717636, 0.027253856882452965, -0.10613559186458588, -0.1086253896355629, -0.017692608758807182, -0.00009321655670646578, -0.08872774243354797, -0.03921898826956749, 0.15489649772644043, -0.04334968701004982, -0.03871593996882439, 0.006137033458799124, 0.05952928215265274, -0.04306228831410408, 0.12432559579610825, 0.039529621601104736, 0.046468254178762436, -0.07094971090555191, 0.09100372344255447, 0.06519679725170135, 0.03595586493611336, 0.03602415695786476, 0.059282086789608, -0.08742861449718475, -0.003825188847258687, -0.05869107320904732, -0.021159028634428978, -0.0058493055403232574, -0.005578118376433849, -0.007569298148155212, -0.0550946481525898, 0.04376892372965813, 0.12231683731079102, -0.011346336454153061, 0.1089412271976471, -0.02289758063852787, 0.0057897912338376045, -0.11588407307863235, 0.07825887203216553, 0.054997317492961884, 0.02471224218606949, -0.07522308826446533, 0.16712655127048492, 0.022885752841830254, 0.09872797876596451, -0.044458650052547455, -0.05086582154035568, -0.0820213258266449, -0.011631948873400688, -0.17574168741703033, -0.0164157897233963, -0.09888853132724762, -0.0470803901553154, -0.024560008198022842, -0.04306741803884506, -0.0406673438847065, 0.054338324815034866, -0.034988466650247574, -0.07249772548675537, -0.0682528018951416, 0.03812224045395851, -0.15052001178264618, -0.013976885005831718, 0.12520462274551392, -0.09220023453235626, 0.10674846917390823, 0.05470370128750801, -0.031201139092445374, 0.008252110332250595, -0.07131151109933853, 0.003927113022655249, -0.03480638936161995, 0.01422416977584362, 0.02969122864305973, -0.14730270206928253, 0.02368667535483837, -0.05351804196834564, -0.034218836575746536, 0.014857745729386806, 0.011820150539278984, -0.11733541637659073, -0.014620725996792316, 0.018024710938334465, -0.013708128593862057, -0.0685720443725586, 0.0771634429693222, 0.03249412775039673, 0.038936547935009, 0.0756373330950737, -0.03322138264775276, 0.10453829169273376, -0.170256569981575, -0.0351300910115242, 0.01802346296608448, -0.0051014418713748455, 0.10127229243516922, -0.02487846091389656, 0.06124546006321907, -0.01622823439538479, 0.15616735816001892, -0.01934816688299179, -0.029766524210572243, 0.029351087287068367, -0.047003764659166336, -0.0044784145429730415, 0.053563568741083145, 0.08741931617259979, -0.012887690216302872, -0.05378396064043045, -0.027523770928382874, -0.005233068484812975, -0.05280130356550217, -0.07605472952127457, 0.14374230802059174, 0.08283605426549911, 0.1473470777273178, -0.02302827127277851, 0.07111208140850067, -0.010815292596817017, -0.11178753525018692, -0.04506318271160126, -0.017186736688017845, 0.02348126284778118, -0.04847083240747452, 0.06837686151266098, 0.14588260650634766, -0.1633388251066208, 0.11649477481842041, 0.006305035203695297, -0.06356477737426758, -0.10547574609518051, -0.1808013916015625, -0.0407353937625885, -0.009412365034222603, 0.03313697129487991, -0.11630561202764511, 0.06351826339960098, 0.061590030789375305, 0.03460182994604111, -0.05104312673211098, 0.08848806470632553, -0.04650150611996651, -0.11227931827306747, 0.02779202349483967, 0.03750752657651901, 0.04312163591384888, 0.05418191850185394, 0.04272570088505745, 0.032285019755363464, 0.016397738829255104, 0.07183152437210083, 0.03852391988039017, 0.04860347881913185, 0.01550954021513462, -0.009629742242395878, -0.05673688277602196, 0.022109821438789368, 0.019582277163863182, 0.0558793880045414, 0.13309122622013092, 0.06594964116811752, -0.010185685008764267, -0.03834185749292374, 0.2968224585056305, -0.04813994839787483, -0.07093274593353271, -0.17152035236358643, 0.1854184865951538, 0.02865126170217991, -0.01035286020487547, 0.02872791886329651, -0.13704904913902283, 0.005376179702579975, 0.1375952512025833, 0.16302955150604248, -0.05578835308551788, 0.015476695261895657, -0.016564471647143364, 0.0073798829689621925, 0.039292529225349426, 0.07965404540300369, 0.04566897079348564, 0.1960269957780838, -0.06195436418056488, 0.05911770090460777, 0.020595118403434753, -0.005578689277172089, -0.04165785759687424, 0.1261477768421173, -0.04207494482398033, 0.014884723350405693, -0.08046340942382812, 0.06739649176597595, -0.041288360953330994, -0.23571361601352692, 0.009660743176937103, -0.04364172741770744, -0.10070610791444778, 0.06485526263713837, -0.0373995304107666, -0.025058288127183914, 0.07737984508275986, 0.018924076110124588, 0.006581785157322884, 0.09135221689939499, 0.04263690859079361, -0.018431073054671288, 0.0023164465092122555, 0.09801329672336578, -0.014034516178071499, 0.18886572122573853, -0.0121148731559515, 0.03647879511117935, 0.10149502009153366, 0.037569720298051834, -0.11062583327293396, 0.00823088176548481, 0.04855376109480858, -0.07537019997835159, -0.004317956045269966, 0.2018633484840393, 0.0035245646722614765, 0.0025707590393722057, 0.0808737725019455, -0.015906618908047676, 0.02285938151180744, -0.050497740507125854, 0.042787518352270126, -0.12337277084589005, 0.028425289317965508, -0.08162243664264679, 0.12973952293395996, 0.17850878834724426, -0.07037010043859482, 0.029575059190392494, -0.05356547608971596, -0.007419447880238295, -0.008561292663216591, 0.02806188352406025, -0.030170002952218056, -0.08767037093639374, 0.007375101093202829, 0.04480428248643875, 0.03696772828698158, -0.2063060849905014, -0.081782765686512, 0.04979141429066658, -0.06482198089361191, -0.009474958293139935, 0.14661969244480133, 0.011718207038939, 0.0487208366394043, -0.02788926661014557, -0.06509790569543839, -0.029693925753235817, 0.07150066643953323, -0.14915871620178223, -0.06364939361810684 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1d4b4adcdf1f58e1899ee5557375ef7c.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MAYOT</div> <a href="https://genius.com/artists/mayot"> <div style="text-align: center; font-size: 14px;">@mayot</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MAYOT. Dataset is available [here](https://huggingface.co/datasets/huggingartists/mayot). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mayot") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/lf4wcx85/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MAYOT's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1uulibm2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1uulibm2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mayot') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mayot") model = AutoModelWithLMHead.from_pretrained("huggingartists/mayot") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/mayot"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/mayot
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mayot", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mayot #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">MAYOT</div> <a href="URL <div style="text-align: center; font-size: 14px;">@mayot</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from MAYOT. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on MAYOT's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MAYOT.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MAYOT's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mayot #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MAYOT.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MAYOT's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mayot #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from MAYOT.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MAYOT's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.028167789801955223, 0.15643790364265442, -0.002680690959095955, 0.025524551048874855, 0.08878771215677261, -0.0004680680576711893, 0.08109363168478012, 0.11132001876831055, -0.015350443311035633, 0.08376938104629517, 0.07942763715982437, 0.005740179214626551, 0.06699249893426895, 0.12857140600681305, 0.09156223386526108, -0.26315876841545105, 0.03169235214591026, -0.10008087754249573, 0.014459371566772461, 0.12490548938512802, 0.08916173130273819, -0.05874936655163765, 0.08398288488388062, 0.037646494805812836, -0.0649527832865715, 0.04049179330468178, -0.017722608521580696, -0.07204818725585938, 0.09205114841461182, 0.07989060878753662, 0.030781934037804604, 0.03360458090901375, 0.06525492668151855, -0.18589478731155396, 0.03355373814702034, 0.12378326803445816, 0.029171118512749672, 0.07460398226976395, 0.04512790963053703, -0.08405359834432602, 0.16942544281482697, -0.03393704071640968, 0.09271471947431564, 0.045747097581624985, -0.10587982088327408, -0.18175984919071198, -0.11563962697982788, 0.09288548678159714, 0.10779310017824173, 0.09243682026863098, -0.030047215521335602, 0.04254413768649101, 0.0125664621591568, 0.04218021035194397, 0.24449940025806427, -0.2307029813528061, -0.015076722018420696, 0.0908830463886261, 0.04029909893870354, 0.04746980592608452, -0.07744596898555756, 0.012923388741910458, 0.05050784349441528, 0.023969406262040138, 0.04566442593932152, -0.0139599135145545, 0.2116505652666092, 0.018245426937937737, -0.09485939890146255, -0.08971118927001953, 0.11403203010559082, -0.034265343099832535, -0.07438749819993973, -0.14721305668354034, 0.00028337366529740393, -0.027266032993793488, 0.03545597568154335, -0.014358460903167725, -0.002200980670750141, -0.0005826593842357397, -0.040053728967905045, -0.10051783919334412, -0.10166632384061813, -0.01739266887307167, -0.0163709856569767, 0.07485217601060867, 0.02673269249498844, 0.02890295349061489, -0.07347793132066727, 0.2294728010892868, 0.01266496628522873, -0.1013455018401146, -0.05004715919494629, -0.08341652899980545, -0.08997392654418945, -0.05695313215255737, 0.010453425347805023, 0.019716808572411537, -0.0630338117480278, 0.1614958792924881, -0.030999625101685524, 0.04180324450135231, 0.0024547227658331394, -0.02397489733994007, 0.15007872879505157, 0.12618257105350494, -0.09895524382591248, -0.018964923918247223, 0.04108163341879845, -0.01070887316018343, -0.06864842027425766, -0.058341216295957565, -0.003970196004956961, -0.01782943308353424, 0.03125612065196037, 0.09477528184652328, 0.04516049101948738, 0.05128583312034607, 0.033292680978775024, -0.054076533764600754, 0.11445555835962296, -0.1438877135515213, 0.0053548384457826614, -0.0050453669391572475, -0.03418176248669624, 0.01694805733859539, 0.052318472415208817, 0.01361111830919981, -0.09323111921548843, 0.11333510279655457, -0.06189252436161041, -0.04816589877009392, -0.05579230189323425, -0.08140627294778824, -0.003600580617785454, -0.01086862850934267, -0.05445779487490654, -0.08089381456375122, -0.15488499402999878, -0.03795386850833893, 0.021031387150287628, -0.03657485917210579, -0.04089289531111717, 0.04247405752539635, -0.033614009618759155, 0.00415450194850564, -0.01512500923126936, -0.013757706619799137, -0.029582278802990913, 0.02109430730342865, -0.053266480565071106, 0.026993177831172943, 0.08725783973932266, 0.03826860710978508, -0.11504962295293808, 0.07187561690807343, -0.15969175100326538, 0.13945531845092773, -0.015399192459881306, 0.012853479944169521, -0.11382284760475159, -0.0918760895729065, -0.03024270199239254, -0.028305573388934135, -0.012231928296387196, 0.09774739295244217, -0.19303078949451447, -0.04856951907277107, 0.18881945312023163, -0.0790792852640152, -0.07748300582170486, 0.06261924654245377, -0.07864046096801758, 0.03354734182357788, 0.13809695839881897, 0.0649864450097084, 0.15799525380134583, -0.12558531761169434, -0.0729464516043663, -0.03951204940676689, -0.05875501036643982, 0.20852743089199066, 0.05401952937245369, -0.01143318135291338, 0.01582322269678116, 0.01425324659794569, -0.03377734497189522, -0.03186909854412079, -0.024735761806368828, -0.046055492013692856, -0.01880636252462864, 0.018215792253613472, -0.007815094664692879, -0.03951999172568321, -0.06859620660543442, -0.02351617068052292, -0.11161771416664124, 0.04946177080273628, 0.10399383306503296, -0.07442810386419296, 0.0036808119621127844, -0.08222952485084534, -0.006811333820223808, -0.04317598417401314, 0.019104553386569023, -0.1928950548171997, -0.06387095898389816, 0.015496906824409962, -0.07699164003133774, 0.089510478079319, 0.035857465118169785, 0.035331789404153824, 0.06265763193368912, -0.013067291118204594, 0.02188780903816223, -0.04269414767622948, -0.016952550038695335, -0.03729118034243584, -0.14167210459709167, -0.07214116305112839, -0.05285043641924858, 0.08330760151147842, -0.1491348296403885, 0.004473445937037468, 0.10464064031839371, 0.11960950493812561, 0.01965480111539364, -0.05546017363667488, 0.01503188256174326, -0.0381920300424099, -0.03443822264671326, -0.11445590108633041, -0.06080194190144539, 0.004610698204487562, -0.04321045055985451, 0.1568250209093094, -0.18178074061870575, -0.07553166896104813, 0.09790009260177612, 0.1690666526556015, -0.10506680607795715, 0.012851081788539886, -0.09989818930625916, -0.013891899026930332, -0.049713846296072006, -0.041407689452171326, 0.2657105624675751, 0.04465395584702492, 0.08379659801721573, -0.10635554790496826, -0.09007000923156738, -0.002193136839196086, -0.038024116307497025, -0.04265638068318367, 0.03746948391199112, 0.008470394648611546, -0.1717795729637146, 0.025158517062664032, -0.0009974027052521706, 0.12380072474479675, 0.21454612910747528, 0.05147269368171692, -0.10074064135551453, -0.0620604045689106, -0.09374149888753891, -0.0027773503679782152, 0.044286880642175674, 0.03828305006027222, 0.030233701691031456, 0.04163256660103798, 0.051985323429107666, 0.03949439525604248, -0.11389904469251633, 0.011886216700077057, 0.0781463235616684, -0.04506092891097069, -0.048833057284355164, 0.017869550734758377, 0.016083676367998123, 0.07960221916437149, 0.07935963571071625, 0.14552201330661774, -0.06647108495235443, -0.04260575398802757, -0.14398987591266632, 0.13659745454788208, -0.08083998411893845, -0.2844807505607605, -0.1396869570016861, -0.05934479832649231, 0.021640395745635033, 0.0007872616988606751, 0.04242023453116417, -0.05750313401222229, -0.04106299951672554, -0.10468605160713196, 0.08618342876434326, -0.05574945732951164, -0.021261602640151978, -0.0070344205014407635, 0.02103753387928009, -0.02519054152071476, -0.11469469219446182, -0.027387643232941628, 0.04459546506404877, -0.10845690965652466, -0.020428428426384926, 0.023607803508639336, 0.030396461486816406, 0.1584395468235016, -0.005042266566306353, -0.005784880835562944, -0.032533686608076096, 0.27752313017845154, -0.12175082415342331, 0.056472402065992355, 0.16560257971286774, -0.017681464552879333, 0.05296623334288597, 0.07481712102890015, 0.005459365900605917, -0.06759016960859299, 0.07538529485464096, 0.07775217294692993, -0.09420522302389145, -0.20985710620880127, -0.037808310240507126, -0.00738374562934041, 0.020173141732811928, 0.13191457092761993, 0.060394804924726486, 0.06575866043567657, -0.00861133262515068, -0.10779336839914322, 0.03337160125374794, 0.02592516504228115, 0.10936781018972397, -0.05498706176877022, -0.011682044714689255, 0.04435204342007637, -0.06975550204515457, 0.027813203632831573, 0.13676516711711884, 0.04099046438932419, 0.20496253669261932, -0.05236059054732323, 0.09171964973211288, 0.07892700284719467, 0.09850895404815674, 0.028535297140479088, 0.00318181817419827, 0.005376135464757681, 0.013111968524754047, -0.003711414523422718, -0.09978843480348587, -0.005300710443407297, 0.05196036025881767, 0.04016326740384102, -0.027896372601389885, -0.049566205590963364, -0.0533466637134552, 0.03654347360134125, 0.2336972951889038, -0.01801019348204136, -0.17995016276836395, -0.11722886562347412, 0.043675005435943604, -0.0836675688624382, -0.04656579717993736, -0.027108272537589073, 0.07801460474729538, -0.2096511572599411, 0.0680718719959259, -0.030537011101841927, 0.10507341474294662, -0.11403771489858627, 0.004055773839354515, 0.07626061886548996, 0.04993906244635582, -0.057142723351716995, 0.09867385029792786, -0.16191500425338745, 0.075566865503788, -0.00757845351472497, 0.06373981386423111, -0.07759083062410355, 0.019631771370768547, -0.002209859900176525, 0.04463993385434151, 0.08445190638303757, 0.009216167964041233, 0.03901766985654831, 0.005475147161632776, -0.04892447963356972, 0.015462663024663925, 0.05928802862763405, -0.12491504102945328, 0.1178625300526619, -0.021329516544938087, 0.03007509745657444, -0.03871196135878563, -0.09013789147138596, -0.09395887702703476, -0.1673862189054489, 0.10084352642297745, -0.12449127435684204, -0.006139334756880999, -0.07347555458545685, -0.04064580425620079, 0.040541503578424454, 0.25950121879577637, -0.03706749156117439, -0.06895020604133606, -0.14170853793621063, 0.01876700483262539, 0.15927286446094513, -0.0807260200381279, 0.009037517011165619, -0.0076260752975940704, 0.22495229542255402, 0.007052676286548376, -0.12273719906806946, -0.02266923151910305, -0.06460370868444443, -0.17506639659404755, -0.005996973719447851, 0.16688638925552368, 0.06329677253961563, 0.02664187364280224, 0.0076658292673528194, -0.006224737968295813, -0.04146505147218704, -0.1681157350540161, 0.025826597586274147, 0.14971984922885895, -0.010834571905434132, -0.012307646684348583, 0.054402295500040054, 0.010074622929096222, -0.1402665227651596, 0.01920926757156849, 0.0405343733727932, 0.16045716404914856, -0.07962372899055481, 0.19553931057453156, 0.03732013329863548, -0.09268449991941452, -0.1491866409778595, 0.01632721908390522, 0.04133472219109535, 0.0421728752553463, 0.04075910523533821, -0.20869266986846924, 0.05113940313458443, 0.040157269686460495, 0.0024090055376291275, 0.03244003280997276, -0.34542736411094666, -0.15899577736854553, -0.006548154633492231, 0.00707641988992691, -0.1619568020105362, -0.044203173369169235, -0.03856128454208374, -0.09837809205055237, -0.23585665225982666, 0.10905352979898453, -0.11947301775217056, 0.08053667098283768, 0.028584131971001625, 0.09443271905183792, 0.043393369764089584, -0.045226309448480606, 0.13374783098697662, -0.015994273126125336, 0.06802722066640854, -0.086937315762043, -0.06377384811639786, 0.07749972492456436, -0.07050856947898865, 0.09510336071252823, 0.038292791694402695, 0.08508159965276718, -0.09929507970809937, -0.08626215904951096, -0.06768345087766647, 0.009784900583326817, -0.05299414321780205, -0.08390048891305923, -0.0839017927646637, 0.08792287856340408, 0.11861324310302734, -0.04528062045574188, -0.08549690246582031, -0.06829571723937988, 0.002705286955460906, 0.05334830284118652, 0.1258600652217865, 0.07459390163421631, -0.07155900448560715, 0.00011956505477428436, 0.01785675436258316, 0.007407026365399361, -0.18574245274066925, 0.04539759084582329, 0.10280829668045044, 0.04465598985552788, 0.10330917686223984, -0.0006404391024261713, -0.16116617619991302, 0.002877318300306797, 0.05106687918305397, -0.16420012712478638, -0.13592429459095, -0.03596647456288338, 0.041424382477998734, -0.10655870288610458, -0.04944930598139763, 0.13545896112918854, -0.03667651489377022, -0.04018491506576538, 0.0022122005466371775, 0.032710712403059006, -0.040642376989126205, 0.09356977790594101, -0.005385426804423332, 0.04608326032757759, -0.07121945172548294, 0.11850866675376892, 0.06480076164007187, 0.0025518324691802263, 0.045080363750457764, 0.061054348945617676, -0.09249962121248245, 0.01382655929774046, -0.1170671284198761, 0.0075417435728013515, -0.019322892650961876, -0.013401572592556477, 0.03146578371524811, -0.03176739066839218, 0.04731649160385132, 0.09868961572647095, -0.018095122650265694, 0.1043667420744896, -0.05441449210047722, 0.01542294304817915, -0.1314130276441574, 0.06617184728384018, 0.042925238609313965, 0.015867024660110474, -0.10892298817634583, 0.2211989313364029, 0.03707049414515495, 0.10357002168893814, -0.03664674237370491, -0.06667060405015945, -0.04482215642929077, -0.015936175361275673, -0.09429943561553955, -0.041655875742435455, -0.08546983450651169, -0.026753656566143036, -0.0015956303104758263, -0.03365381062030792, -0.03201216831803322, 0.04049447178840637, -0.037948235869407654, -0.060578059405088425, -0.07644111663103104, 0.05578310787677765, -0.1408567875623703, 0.0325968936085701, 0.12498318403959274, -0.0551137812435627, 0.11994890123605728, 0.061215534806251526, -0.03811423480510712, 0.023396767675876617, -0.13060767948627472, 0.0488152951002121, -0.0009875876130536199, 0.02220713533461094, 0.017942605540156364, -0.14929437637329102, 0.005721243564039469, -0.03181183710694313, -0.06349553912878036, 0.004972192458808422, -0.02216922678053379, -0.13270069658756256, -0.01621417887508869, 0.08326558023691177, -0.020241227000951767, -0.0591968409717083, 0.06748887151479721, 0.06532984226942062, 0.019982675090432167, 0.06514839082956314, -0.01932263933122158, 0.07082578539848328, -0.17457075417041779, -0.06068078801035881, -0.009094550274312496, 0.027728835120797157, 0.035931546241045, -0.026984060183167458, 0.03632413595914841, -0.018706167116761208, 0.20304007828235626, 0.016867006197571754, 0.00022376545530278236, 0.043981462717056274, -0.0696842297911644, -0.005202576983720064, 0.043588194996118546, 0.07910501956939697, -0.014077864587306976, -0.028355106711387634, 0.016338376328349113, -0.025452205911278725, -0.09567120671272278, -0.03971157595515251, 0.09676738828420639, 0.025185294449329376, 0.19950801134109497, -0.05580587312579155, 0.07078151404857635, -0.02693115919828415, -0.10594704747200012, -0.03480266034603119, -0.04814763739705086, 0.038174647837877274, -0.05254890024662018, 0.06825166195631027, 0.19028450548648834, -0.14952586591243744, 0.11587812751531601, 0.03427266702055931, -0.05523476377129555, -0.11473111063241959, -0.17858649790287018, -0.012994088232517242, -0.030129821971058846, 0.025641722604632378, -0.13470953702926636, 0.10066872835159302, 0.02384152077138424, 0.04365249350667, -0.058044616132974625, 0.136536106467247, -0.07233788818120956, -0.13708753883838654, 0.04552663490176201, 0.01911487989127636, 0.031154878437519073, 0.029769936576485634, 0.09288821369409561, 0.03228427842259407, 0.006888348609209061, 0.06357144564390182, 0.04160251095890999, 0.041065894067287445, 0.03682100772857666, -0.03324452415108681, -0.04578482732176781, 0.02866654098033905, -0.0074752140790224075, 0.021420637145638466, 0.09855551272630692, 0.06510642170906067, -0.022134125232696533, -0.019342534244060516, 0.30612900853157043, -0.022805608808994293, -0.02605248987674713, -0.17778636515140533, 0.16706164181232452, 0.01115757878869772, -0.0028487241361290216, 0.01678146980702877, -0.11627588421106339, 0.018608493730425835, 0.11615266650915146, 0.14743587374687195, -0.010543830692768097, 0.02300281822681427, -0.025293132290244102, 0.01641387678682804, 0.03512893617153168, 0.09729889780282974, 0.05809734761714935, 0.1949497014284134, -0.033561136573553085, 0.05085920915007591, -0.016439499333500862, -0.01888662576675415, 0.00908286590129137, 0.09396053105592728, -0.04223604127764702, 0.0069348192773759365, -0.048886511474847794, 0.09922311455011368, -0.054742079228162766, -0.3046661615371704, -0.03450959548354149, -0.019230471923947334, -0.088320791721344, 0.07424091547727585, -0.0377882681787014, -0.01634007692337036, 0.08352049440145493, 0.029775304719805717, -0.0487210638821125, 0.16891129314899445, 0.050569966435432434, -0.04704080894589424, -0.007780956570059061, 0.11246741563081741, -0.04175007343292236, 0.1654023677110672, -0.03623371571302414, 0.01014358177781105, 0.07440992444753647, 0.014690342359244823, -0.12973473966121674, 0.003294655354693532, 0.03695305809378624, -0.04853064939379692, -0.021343180909752846, 0.19356465339660645, 0.015619318932294846, 0.023543940857052803, 0.07124385237693787, -0.0642302930355072, 0.019718164578080177, -0.0416443906724453, 0.06600242108106613, -0.13228964805603027, 0.06523516774177551, -0.07298599928617477, 0.11858377605676651, 0.1796419620513916, -0.06923729181289673, 0.032632723450660706, -0.05673525854945183, 0.007944000884890556, -0.026619888842105865, 0.07149810343980789, -0.014932840131223202, -0.12036498636007309, 0.01127044390887022, 0.038998037576675415, 0.006276307161897421, -0.1751575917005539, -0.08806613832712173, 0.08419821411371231, -0.060645777732133865, 0.03409205377101898, 0.17322425544261932, 0.010376546531915665, 0.057299286127090454, -0.036811377853155136, -0.017634449526667595, -0.0029513586778193712, 0.12385562807321548, -0.17333899438381195, -0.07427193969488144 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c33b218009a0389e72c6d6628d3c2105.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MC Ride</div> <a href="https://genius.com/artists/mc-ride"> <div style="text-align: center; font-size: 14px;">@mc-ride</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MC Ride. Dataset is available [here](https://huggingface.co/datasets/huggingartists/mc-ride). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mc-ride") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2ar7kgj5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MC Ride's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/299iw75q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/299iw75q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mc-ride') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mc-ride") model = AutoModelWithLMHead.from_pretrained("huggingartists/mc-ride") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/mc-ride"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/mc-ride
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mc-ride", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mc-ride #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">MC Ride</div> <a href="URL <div style="text-align: center; font-size: 14px;">@mc-ride</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from MC Ride. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on MC Ride's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MC Ride.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MC Ride's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mc-ride #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MC Ride.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MC Ride's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mc-ride #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from MC Ride.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MC Ride's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03052539937198162, 0.1519533097743988, -0.002651466289535165, 0.038562145084142685, 0.09749609231948853, 0.007649978157132864, 0.08308066427707672, 0.10517333447933197, 0.004524573218077421, 0.07950016111135483, 0.07413250207901001, 0.04041939601302147, 0.06470154225826263, 0.09142311662435532, 0.07437615096569061, -0.23240818083286285, 0.03688172996044159, -0.08998089283704758, -0.005231357645243406, 0.10858596861362457, 0.09683851152658463, -0.06322453171014786, 0.07841368019580841, 0.034487202763557434, -0.07800357043743134, 0.011012601666152477, 0.002346566179767251, -0.05995670333504677, 0.09276344627141953, 0.05695239454507828, 0.041602008044719696, 0.029166610911488533, 0.07039520889520645, -0.1879049390554428, 0.03225100040435791, 0.12992945313453674, 0.03623068705201149, 0.07955289632081985, 0.04634406045079231, -0.07382294535636902, 0.13926050066947937, -0.006757230032235384, 0.09937441349029541, 0.05337721109390259, -0.11043141782283783, -0.12429115176200867, -0.14035703241825104, 0.10148046165704727, 0.09217865765094757, 0.07980522513389587, -0.022511115297675133, 0.07196483016014099, -0.027744952589273453, 0.04556121304631233, 0.2380748838186264, -0.23650628328323364, -0.010667815804481506, 0.10515663027763367, 0.06596054136753082, 0.025033021345734596, -0.0898786410689354, 0.014766832813620567, 0.037881411612033844, 0.027324756607413292, 0.05079514905810356, -0.01877625286579132, 0.17142412066459656, 0.03192892298102379, -0.10839627683162689, -0.07962765544652939, 0.1074521541595459, -0.026247378438711166, -0.07224823534488678, -0.13014185428619385, -0.0073674521408975124, -0.026386672630906105, 0.03665949031710625, 0.0006054796394892037, -0.005441903602331877, 0.009208999574184418, -0.05407436937093735, -0.11423137784004211, -0.07757691293954849, -0.04232117906212807, -0.01858839951455593, 0.0638958141207695, 0.035923585295677185, 0.03743702545762062, -0.07975482195615768, 0.21881836652755737, -0.010928385891020298, -0.09379499405622482, -0.04507662355899811, -0.10077294707298279, -0.09321817755699158, -0.05088530108332634, 0.006966329645365477, -0.0012242968659847975, -0.04267650842666626, 0.13995851576328278, -0.03705141320824623, 0.02751714177429676, -0.022507619112730026, 0.004847786854952574, 0.13722707331180573, 0.12496891617774963, -0.12358824908733368, -0.026520177721977234, 0.06420576572418213, -0.0037816392723470926, -0.0722106471657753, -0.0539281889796257, -0.012607569806277752, -0.007716809399425983, 0.037959955632686615, 0.08345521986484528, 0.06585410982370377, 0.05983320251107216, 0.017280448228120804, -0.0669253021478653, 0.08621374517679214, -0.12723973393440247, 0.01532108522951603, -0.0013962478842586279, -0.05223124846816063, 0.006593970116227865, 0.05778946727514267, 0.0169721357524395, -0.10019515454769135, 0.11068415641784668, -0.06872924417257309, -0.048880238085985184, -0.08401712775230408, -0.10278351604938507, -0.0024623859208077192, -0.032617222517728806, -0.04398445039987564, -0.07409899681806564, -0.18199323117733002, -0.040762417018413544, 0.02541480027139187, -0.04603700339794159, -0.029273265972733498, 0.0316055528819561, -0.02863997407257557, 0.015657706186175346, -0.01734715700149536, -0.025220219045877457, -0.029316335916519165, 0.03193138912320137, -0.08043697476387024, 0.03216618299484253, 0.0788709968328476, 0.043425269424915314, -0.10280100256204605, 0.07499556243419647, -0.1369539499282837, 0.1119101271033287, -0.019205894321203232, 0.016413431614637375, -0.09571776539087296, -0.07706288248300552, -0.030410395935177803, -0.033060383051633835, 0.011778471991419792, 0.09714414924383163, -0.1638810634613037, -0.029337193816900253, 0.19592192769050598, -0.06660351157188416, -0.08173657953739166, 0.0628490224480629, -0.07459963858127594, 0.03981715068221092, 0.10994935035705566, 0.06621852517127991, 0.1615784615278244, -0.13006682693958282, -0.05587385594844818, -0.047048378735780716, -0.06995462626218796, 0.16944023966789246, 0.04088311642408371, -0.026474960148334503, 0.022694604471325874, 0.0014371542492881417, -0.017680641263723373, -0.00786390621215105, -0.025111524388194084, -0.03296203538775444, -0.02195366844534874, -0.005824950989335775, -0.0070248073898255825, -0.04216603562235832, -0.05543659254908562, -0.02671845816075802, -0.09520166367292404, 0.05731497332453728, 0.10534707456827164, -0.06538601219654083, 0.014512598514556885, -0.09606856107711792, 0.02019806019961834, -0.05453785881400108, 0.009898182936012745, -0.17196883261203766, -0.04030553624033928, 0.024253657087683678, -0.07017702609300613, 0.07089298218488693, 0.03762197867035866, 0.03920431435108185, 0.06791525334119797, -0.012044163420796394, 0.007519759237766266, -0.032483067363500595, -0.00661473348736763, -0.03910739719867706, -0.16330589354038239, -0.047948941588401794, -0.04495227336883545, 0.07096961885690689, -0.1132386326789856, 0.005949655547738075, 0.09190941601991653, 0.1347571313381195, 0.022307544946670532, -0.06961774826049805, 0.03179169073700905, -0.037991560995578766, -0.03179998695850372, -0.10527793318033218, -0.0399259589612484, 0.012861198745667934, -0.012829643674194813, 0.1656104028224945, -0.17077308893203735, -0.09323541074991226, 0.1159539595246315, 0.10930629819631577, -0.08795440942049026, 0.03653228282928467, -0.07433810085058212, -0.01749737374484539, -0.05584022402763367, -0.05068793147802353, 0.23248891532421112, 0.035139262676239014, 0.0971936509013176, -0.09604604542255402, -0.09510868787765503, -0.0034993502777069807, -0.03713519871234894, -0.03454034402966499, 0.02830437757074833, 0.02847297117114067, -0.15475130081176758, 0.04534050077199936, -0.0010996790369972587, 0.09186004847288132, 0.20112964510917664, 0.04660884290933609, -0.08636114001274109, -0.06387708336114883, -0.07145208865404129, 0.0035480668302625418, 0.08889265358448029, 0.0032789921388030052, 0.02795710787177086, 0.03830854222178459, 0.055875636637210846, 0.04992133006453514, -0.11724251508712769, 0.012205380946397781, 0.06991446763277054, -0.0347043015062809, -0.04375085234642029, 0.01882663182914257, 0.021267233416438103, 0.0874486118555069, 0.08241083472967148, 0.11924204230308533, -0.056692056357860565, -0.055694855749607086, -0.14151960611343384, 0.1305234134197235, -0.0988636240363121, -0.21674439311027527, -0.13343772292137146, -0.07071679085493088, 0.0025375986006110907, 0.014378434978425503, 0.02976379357278347, -0.04940002039074898, -0.04170982539653778, -0.09418843686580658, 0.07723153382539749, -0.04992055520415306, -0.020053962245583534, 0.009107531048357487, 0.023852890357375145, -0.02030119113624096, -0.1189422607421875, -0.026727212592959404, 0.03275877609848976, -0.07853051275014877, -0.006564411334693432, 0.027607498690485954, 0.044379182159900665, 0.1690412014722824, -0.006413384806364775, 0.012619138695299625, -0.01701507717370987, 0.26318642497062683, -0.10567694157361984, 0.06144700199365616, 0.16218741238117218, 0.001475880853831768, 0.05514143407344818, 0.06545902788639069, 0.002376651857048273, -0.052355632185935974, 0.0653061792254448, 0.06832291185855865, -0.07734765857458115, -0.20558148622512817, -0.03835303336381912, -0.013341736979782581, 0.008350658230483532, 0.11496762186288834, 0.042209722101688385, 0.05462577939033508, 0.017628079280257225, -0.10317367315292358, 0.046292223036289215, 0.022253308445215225, 0.10160944610834122, -0.0701642781496048, -0.009607488289475441, 0.04831371456384659, -0.050781525671482086, 0.039131585508584976, 0.12159236520528793, 0.05277048796415329, 0.2072393298149109, -0.06604285538196564, 0.09033142030239105, 0.08212023973464966, 0.10448060929775238, 0.027602337300777435, 0.027171142399311066, -0.025978824123740196, 0.022118186578154564, 0.010774650610983372, -0.09489697962999344, -0.016896547749638557, 0.03857708349823952, 0.03910878300666809, -0.010020031593739986, -0.04779588058590889, -0.0652463287115097, 0.04995167255401611, 0.2355739176273346, 0.024063164368271828, -0.15929296612739563, -0.0972566083073616, 0.05792127549648285, -0.05126364901661873, -0.057264573872089386, -0.010264338925480843, 0.07858636975288391, -0.20802070200443268, 0.036078352481126785, -0.03255085647106171, 0.11399505287408829, -0.11644382774829865, 0.0008047183509916067, 0.07074309140443802, 0.044970300048589706, -0.0699533075094223, 0.08241666853427887, -0.15089666843414307, 0.07673956453800201, 0.0015447387704625726, 0.06949834525585175, -0.07052695006132126, 0.020150303840637207, 0.024354983121156693, 0.048252496868371964, 0.0810079574584961, 0.020970359444618225, 0.013253487646579742, -0.03962435945868492, -0.03847494721412659, -0.009230722673237324, 0.06093611940741539, -0.09955236315727234, 0.1242804229259491, -0.0323786698281765, 0.031146012246608734, -0.024164345115423203, -0.08103419095277786, -0.10128119587898254, -0.1395297646522522, 0.08079755306243896, -0.10349468886852264, -0.008025557734072208, -0.07221957296133041, -0.014028588309884071, 0.017091620713472366, 0.22454556822776794, -0.09200804680585861, -0.06783615052700043, -0.14007405936717987, -0.006328873336315155, 0.13405530154705048, -0.07330974191427231, -0.004569413140416145, -0.016423039138317108, 0.18828673660755157, -0.006186068989336491, -0.12833347916603088, -0.0019800893496721983, -0.07360578328371048, -0.17456576228141785, -0.031154382973909378, 0.1515146940946579, 0.06509802490472794, 0.03391801938414574, 0.0060762376524508, 0.004387660417705774, -0.051852498203516006, -0.17095260322093964, 0.028562361374497414, 0.14019887149333954, 0.009712371975183487, 0.0339241549372673, 0.024121258407831192, 0.03698790445923805, -0.11454029381275177, 0.013691654428839684, 0.05816198140382767, 0.18287788331508636, -0.07806695252656937, 0.17737141251564026, 0.032675936818122864, -0.09338787943124771, -0.17921997606754303, 0.029450787231326103, -0.0011853525647893548, 0.025283433496952057, 0.016522375866770744, -0.17186543345451355, 0.025728002190589905, 0.025815576314926147, -0.011236707679927349, 0.04974972829222679, -0.34896913170814514, -0.15454301238059998, 0.01769508607685566, 0.018492257222533226, -0.10488782823085785, -0.050198592245578766, -0.03699846193194389, -0.08434484899044037, -0.2464158684015274, 0.0960543304681778, -0.13272833824157715, 0.08337083458900452, 0.006677710916846991, 0.08011577278375626, 0.0467100515961647, -0.06555020809173584, 0.12875758111476898, -0.024142464622855186, 0.06396058946847916, -0.09260649979114532, -0.039409372955560684, 0.1060924306511879, -0.06613227725028992, 0.09859104454517365, 0.032670944929122925, 0.09235244989395142, -0.12063438445329666, -0.07021614909172058, -0.07769034802913666, 0.005966076161712408, -0.058770060539245605, -0.09903986752033234, -0.09347429871559143, 0.09178043156862259, 0.1307055652141571, -0.04469038546085358, -0.09174511581659317, -0.05219167470932007, 0.010488229803740978, 0.08297847211360931, 0.10021643340587616, 0.06915006786584854, -0.09243249893188477, 0.016499066725373268, 0.015322329476475716, 0.028057865798473358, -0.16329094767570496, 0.03994697704911232, 0.08099215477705002, 0.03969614580273628, 0.1040501818060875, 0.014180385507643223, -0.1624080091714859, 0.014855384826660156, 0.039954669773578644, -0.16177760064601898, -0.08891163766384125, -0.03625456616282463, 0.03152208775281906, -0.0850895419716835, -0.04903638735413551, 0.13564307987689972, -0.035684868693351746, -0.027197325602173805, -0.0016420840984210372, 0.050115443766117096, -0.04601098597049713, 0.10492682456970215, 0.030178124085068703, 0.05085362493991852, -0.06282682716846466, 0.11081989854574203, 0.06451261788606644, 0.017681999132037163, 0.03317819535732269, 0.05833519250154495, -0.0868556946516037, -0.0008630861411802471, -0.08256824314594269, 0.015972446650266647, -0.0480230376124382, -0.014713709242641926, 0.009755385108292103, -0.040022112429142, 0.03592522442340851, 0.10436593741178513, -0.01599263586103916, 0.10625939071178436, -0.03537280112504959, -0.0037812753580510616, -0.14181332290172577, 0.07535499334335327, 0.02304299734532833, 0.017826169729232788, -0.1139565035700798, 0.1979837715625763, 0.022135471925139427, 0.09678599238395691, -0.04155898466706276, -0.05930471420288086, -0.07766405493021011, -0.0037378130946308374, -0.13832609355449677, -0.051852915436029434, -0.09352941811084747, -0.035421788692474365, -0.009289996698498726, -0.03472120314836502, -0.017043976113200188, 0.05102087929844856, -0.03243229538202286, -0.058427706360816956, -0.06278257071971893, 0.04373876005411148, -0.1411374807357788, 0.021564273163676262, 0.11742252111434937, -0.05753486230969429, 0.10852069407701492, 0.05538042262196541, -0.033885013312101364, 0.013123455457389355, -0.11674311012029648, 0.03156638517975807, -0.037396140396595, 0.014126041904091835, 0.02823718823492527, -0.15219123661518097, 0.009863361716270447, -0.047685686498880386, -0.06688009947538376, 0.011459858156740665, 0.022624587640166283, -0.12262391299009323, -0.007591143250465393, 0.07088331878185272, -0.006043930072337389, -0.07056988775730133, 0.06933050602674484, 0.06323108077049255, 0.02934938669204712, 0.05516644939780235, -0.031953319907188416, 0.07640091329813004, -0.16509000957012177, -0.051401831209659576, 0.010734460316598415, 0.022130774334073067, 0.055090613663196564, 0.0025338432751595974, 0.03829030692577362, -0.017809364944696426, 0.20428062975406647, 0.003372340463101864, -0.013910490088164806, 0.041943371295928955, -0.05311198905110359, -0.004192923661321402, 0.044519685208797455, 0.053947944194078445, -0.03810281306505203, -0.027103370055556297, -0.005756310187280178, -0.009810960851609707, -0.07358737289905548, -0.05289977043867111, 0.10561149567365646, 0.039788536727428436, 0.18495716154575348, -0.04333071410655975, 0.06673717498779297, -0.028675304725766182, -0.10592250525951385, -0.015570331364870071, -0.04628616198897362, 0.038076139986515045, -0.07291863113641739, 0.05115881189703941, 0.17886635661125183, -0.16031022369861603, 0.11503279209136963, 0.014169048517942429, -0.05518592149019241, -0.10542093217372894, -0.1672569066286087, -0.013279895298182964, -0.04059985652565956, 0.03519603982567787, -0.13109929859638214, 0.08382822573184967, 0.027420874685049057, 0.036734577268362045, -0.0556599497795105, 0.11912213265895844, -0.0800451785326004, -0.10650838911533356, 0.022612931206822395, 0.025732412934303284, 0.026684628799557686, 0.03499087318778038, 0.07625887542963028, 0.031056545674800873, -0.0017017362406477332, 0.06670118868350983, 0.04159605875611305, 0.028715290129184723, 0.03501139581203461, -0.018466180190443993, -0.046173498034477234, 0.030238453298807144, 0.0009069889201782644, 0.030028419569134712, 0.09992208331823349, 0.06734275072813034, -0.018121270462870598, -0.031647857278585434, 0.28710097074508667, -0.0368441641330719, -0.044523343443870544, -0.17522761225700378, 0.14875738322734833, 0.023114638403058052, -0.009134913794696331, 0.025049882009625435, -0.12565886974334717, 0.007409386336803436, 0.14577825367450714, 0.18433119356632233, -0.05285614728927612, 0.019044945016503334, -0.03223642334342003, 0.011404312215745449, 0.03419971838593483, 0.0859730988740921, 0.07197542488574982, 0.19572417438030243, -0.0400538370013237, 0.04480418935418129, -0.004721037577837706, -0.021635135635733604, -0.00956335011869669, 0.10172153264284134, -0.035930465906858444, 0.006490344647318125, -0.057775747030973434, 0.09435362368822098, -0.05430837348103523, -0.26873141527175903, -0.012907628901302814, -0.0358758345246315, -0.085763119161129, 0.059080708771944046, -0.029786892235279083, -0.03451109677553177, 0.08016461879014969, 0.021004188805818558, -0.03472491353750229, 0.12480320781469345, 0.036577221006155014, -0.04369085654616356, -0.021451305598020554, 0.094766765832901, -0.020003311336040497, 0.19457203149795532, -0.02942546457052231, 0.002477432833984494, 0.08910953253507614, 0.017205508425831795, -0.12241668254137039, 0.008800189942121506, 0.04559582099318504, -0.08074579387903214, -0.03097274713218212, 0.19973669946193695, 0.008525251410901546, 0.04106919839978218, 0.06100969761610031, -0.05827924981713295, 0.03186666592955589, -0.06775577366352081, 0.05780031159520149, -0.13778351247310638, 0.05327918007969856, -0.0730099231004715, 0.14684291183948517, 0.1779739409685135, -0.07000353187322617, 0.02656962163746357, -0.0591839998960495, -0.00250453082844615, -0.03018096461892128, 0.06906404346227646, -0.021258309483528137, -0.10766265541315079, 0.023510754108428955, 0.016376163810491562, 0.023135410621762276, -0.20619159936904907, -0.08359146863222122, 0.06219197064638138, -0.055857062339782715, 0.023690171539783478, 0.17566974461078644, 0.032757699489593506, 0.06732881814241409, -0.036155086010694504, 0.0007869192049838603, -0.016650520265102386, 0.11205682903528214, -0.15428069233894348, -0.09026733040809631 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/917de5970c2afbbf03a7705f18eb6951.811x811x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Melanie Martinez</div> <a href="https://genius.com/artists/melanie-martinez"> <div style="text-align: center; font-size: 14px;">@melanie-martinez</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Melanie Martinez. Dataset is available [here](https://huggingface.co/datasets/huggingartists/melanie-martinez). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/melanie-martinez") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/lb3ks0y5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Melanie Martinez's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2rvs9wvc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2rvs9wvc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/melanie-martinez') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/melanie-martinez") model = AutoModelWithLMHead.from_pretrained("huggingartists/melanie-martinez") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/melanie-martinez"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/melanie-martinez
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/melanie-martinez", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/melanie-martinez #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Melanie Martinez</div> <a href="URL <div style="text-align: center; font-size: 14px;">@melanie-martinez</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Melanie Martinez. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Melanie Martinez's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Melanie Martinez.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Melanie Martinez's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/melanie-martinez #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Melanie Martinez.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Melanie Martinez's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/melanie-martinez #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Melanie Martinez.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Melanie Martinez's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.053244698792696, 0.17791666090488434, -0.002775562461465597, 0.06423681229352951, 0.12005886435508728, 0.016355231404304504, 0.07722198218107224, 0.11361297965049744, 0.002209871541708708, 0.08091846108436584, 0.07816599309444427, 0.05671939626336098, 0.06283507496118546, 0.08155705034732819, 0.05460179224610329, -0.22501391172409058, 0.02440166287124157, -0.082598477602005, -0.003457073587924242, 0.09982005506753922, 0.08793266117572784, -0.0575973205268383, 0.08287102729082108, 0.021133676171302795, -0.07620778679847717, 0.013233046047389507, 0.008180721662938595, -0.05883249640464783, 0.08236521482467651, 0.07341255247592926, 0.03354918956756592, 0.03567253798246384, 0.06459930539131165, -0.17233125865459442, 0.028864463791251183, 0.11359670758247375, 0.026328884065151215, 0.08104012161493301, 0.05886406823992729, -0.09464315325021744, 0.13952592015266418, -0.03779217228293419, 0.08332543075084686, 0.060619186609983444, -0.11862768977880478, -0.11241824924945831, -0.15305428206920624, 0.06584356725215912, 0.08286961168050766, 0.0823252722620964, -0.025245537981390953, 0.09392373263835907, -0.020914673805236816, 0.04692966863512993, 0.2557556629180908, -0.251756876707077, -0.011745699681341648, 0.08007341623306274, 0.06220623105764389, 0.02087801694869995, -0.07736597955226898, 0.028393996879458427, 0.05647397041320801, 0.030895669013261795, 0.03664135932922363, -0.027414297685027122, 0.16676130890846252, 0.015384452417492867, -0.10475017130374908, -0.07868072390556335, 0.11435115337371826, -0.019454387947916985, -0.0837869942188263, -0.1314394474029541, -0.003571162698790431, -0.03236652538180351, 0.033327240496873856, 0.025730794295668602, 0.0029627864714711905, -0.008029961958527565, -0.03714238852262497, -0.09838178753852844, -0.059578508138656616, -0.048226937651634216, -0.007032354827970266, 0.061747223138809204, 0.04090427607297897, 0.03471289202570915, -0.07653132826089859, 0.21941116452217102, 0.023850873112678528, -0.09895335137844086, -0.05373308062553406, -0.10575952380895615, -0.08108580857515335, -0.0406796894967556, -0.0004960004007443786, -0.014821231365203857, -0.029517970979213715, 0.13803283870220184, -0.026924336329102516, 0.02900361642241478, -0.022630583494901657, -0.00252768537029624, 0.13503490388393402, 0.14253725111484528, -0.12401843070983887, -0.052761729806661606, 0.07210548222064972, -0.008674368262290955, -0.06936429440975189, -0.05082881823182106, -0.003845592960715294, -0.009930793195962906, 0.04505589231848717, 0.09616826474666595, 0.08533590286970139, 0.06405864655971527, -0.0067015159875154495, -0.06575851142406464, 0.057514455169439316, -0.1279958188533783, 0.02189716324210167, -0.00664594117552042, -0.06450502574443817, 0.024243541061878204, 0.06927188485860825, -0.003685050643980503, -0.10863146930932999, 0.08985304087400436, -0.07723595947027206, -0.05152743682265282, -0.08544309437274933, -0.10396280139684677, -0.0008152796654030681, -0.051227737218141556, -0.02731211483478546, -0.0825558602809906, -0.17049802839756012, -0.05828952044248581, 0.019802197813987732, -0.06741486489772797, -0.024812903255224228, 0.014204584993422031, -0.02900196798145771, 0.016480278223752975, -0.019034188240766525, -0.007887594401836395, -0.026149211451411247, 0.03893068805336952, -0.06858154386281967, 0.034175973385572433, 0.07782641053199768, 0.04702642187476158, -0.10078652948141098, 0.0787668451666832, -0.12221725285053253, 0.13066118955612183, -0.030722040683031082, 0.006686259992420673, -0.096134714782238, -0.07748532295227051, -0.009050363674759865, -0.02822043187916279, 0.03317944332957268, 0.13623732328414917, -0.1642065793275833, -0.019954562187194824, 0.19926713407039642, -0.05064144358038902, -0.06590183079242706, 0.06373971700668335, -0.0734199583530426, 0.03907348960638046, 0.11619056761264801, 0.06482022255659103, 0.13183745741844177, -0.1009473130106926, -0.0679110586643219, -0.05742007866501808, -0.06443315744400024, 0.16071276366710663, 0.03155063837766647, -0.031728871166706085, 0.007064772769808769, 0.004101471044123173, -0.046972136944532394, 0.002350451424717903, -0.029413623735308647, -0.029752733185887337, -0.014446058310568333, -0.017925327643752098, 0.009700512513518333, -0.039570678025484085, -0.04276120662689209, -0.021536463871598244, -0.09612438082695007, 0.0694781169295311, 0.09366824477910995, -0.06900393962860107, 0.010836566798388958, -0.09631222486495972, 0.04306836053729057, -0.05984915792942047, 0.007096595596522093, -0.1758068948984146, -0.04352719709277153, 0.01788301020860672, -0.06884182244539261, 0.07045899331569672, 0.011558393947780132, 0.04361564666032791, 0.07878153026103973, -0.013161822222173214, 0.00014951229968573898, -0.03455954045057297, 0.008121647872030735, -0.04091959819197655, -0.16823817789554596, -0.04959585890173912, -0.04452749714255333, 0.09403915703296661, -0.10983138531446457, -0.0012395797530189157, 0.07554323971271515, 0.13377365469932556, 0.025631653144955635, -0.07308517396450043, 0.044627975672483444, -0.02306174486875534, -0.0212143175303936, -0.11290763318538666, -0.03472478315234184, 0.008457153104245663, -0.012371165677905083, 0.14463157951831818, -0.1475108116865158, -0.0989106148481369, 0.12446896731853485, 0.11350663006305695, -0.0842040404677391, 0.05333925411105156, -0.05928695201873779, -0.014089187607169151, -0.04168767109513283, -0.03760865330696106, 0.24274520576000214, 0.03130611404776573, 0.10206787288188934, -0.09174574166536331, -0.07631342858076096, 0.0024654758162796497, -0.03960857912898064, -0.04160090163350105, 0.04474351182579994, 0.043544329702854156, -0.17034868896007538, 0.046729523688554764, -0.024592801928520203, 0.08733198046684265, 0.19294802844524384, 0.03790108859539032, -0.08567541837692261, -0.061197664588689804, -0.07001975178718567, 0.014042239636182785, 0.0902688205242157, -0.0002496370580047369, 0.03253602609038353, 0.04117992892861366, 0.0425855815410614, 0.04532790929079056, -0.1046489030122757, 0.010745360516011715, 0.06422723829746246, -0.025385554879903793, -0.05919530242681503, 0.01856100931763649, 0.022587241604924202, 0.08557919412851334, 0.07749772071838379, 0.10339239984750748, -0.05369465425610542, -0.048359282314777374, -0.13544464111328125, 0.13549748063087463, -0.09743881970643997, -0.19924315810203552, -0.1381925344467163, -0.0659661814570427, 0.0018032277002930641, 0.010319866240024567, 0.03207802772521973, -0.034793633967638016, -0.038637686520814896, -0.0885738953948021, 0.09556098282337189, -0.029312221333384514, -0.015497622080147266, 0.006313295103609562, 0.012326003052294254, -0.011420398950576782, -0.1272253692150116, -0.030940355733036995, 0.026985831558704376, -0.07180676609277725, -0.003072305815294385, 0.013405500911176205, 0.06622743606567383, 0.1382199078798294, 0.0006028577918186784, 0.010682506486773491, -0.020756294950842857, 0.27527543902397156, -0.11111044138669968, 0.05739973485469818, 0.15790511667728424, 0.0020830591674894094, 0.048832107335329056, 0.05268096923828125, -0.001481326762586832, -0.06668738275766373, 0.05030783638358116, 0.06298721581697464, -0.06976809352636337, -0.21069860458374023, -0.04261775314807892, -0.01581394113600254, 0.01937241479754448, 0.11382259428501129, 0.03435838222503662, 0.04352346062660217, 0.01724705845117569, -0.0934942364692688, 0.04170561209321022, 0.02185712568461895, 0.09901269525289536, -0.07679203897714615, -0.005088203586637974, 0.04245220869779587, -0.04964492842555046, 0.04064323753118515, 0.12344946712255478, 0.03360959514975548, 0.22448398172855377, -0.07414551824331284, 0.0865427702665329, 0.09188944846391678, 0.11276350170373917, 0.016389356926083565, 0.04193110764026642, -0.018896007910370827, 0.03485429286956787, 0.006211650557816029, -0.09274862706661224, -0.017562730237841606, 0.023079443722963333, 0.03421774506568909, -0.010695941746234894, -0.07829299569129944, -0.08257263153791428, 0.050336647778749466, 0.22545836865901947, 0.02572263777256012, -0.1736917644739151, -0.08675263822078705, 0.060098398476839066, -0.033008918166160583, -0.0618862546980381, -0.021151402965188026, 0.052351079881191254, -0.22011743485927582, 0.03802262991666794, -0.0439242422580719, 0.11159665882587433, -0.1308613419532776, -0.008693073876202106, 0.05748734250664711, 0.04014129191637039, -0.06697322428226471, 0.07440191507339478, -0.15908320248126984, 0.08365997672080994, 0.0028248135931789875, 0.07973657548427582, -0.06169194355607033, 0.015042071230709553, 0.031674932688474655, 0.03193621709942818, 0.09107491374015808, 0.01634121872484684, 0.042613767087459564, -0.05617862567305565, -0.03422336280345917, -0.006489498075097799, 0.04562431946396828, -0.08567651361227036, 0.13388311862945557, -0.029514029622077942, 0.023708902299404144, -0.03026718832552433, -0.07877740263938904, -0.10109099000692368, -0.15178757905960083, 0.06938087195158005, -0.12218223512172699, -0.001006167964078486, -0.06827281415462494, -0.026670929044485092, 0.007734036073088646, 0.19517232477664948, -0.08929187804460526, -0.07631488889455795, -0.136203795671463, 0.0012543515767902136, 0.14241738617420197, -0.0783485546708107, 0.007643633987754583, -0.0022438124287873507, 0.14351966977119446, -0.004361899569630623, -0.13610391318798065, 0.005815686658024788, -0.06733772158622742, -0.1743016093969345, -0.027853665873408318, 0.13377830386161804, 0.07001578062772751, 0.03562052547931671, 0.01131510641425848, 0.010032651014626026, -0.03539784625172615, -0.1603739857673645, 0.016772426664829254, 0.15012916922569275, 0.024718167260289192, 0.03393140807747841, 0.01795864664018154, 0.01384930219501257, -0.1307968944311142, 0.020822614431381226, 0.048574917018413544, 0.194448783993721, -0.08146945387125015, 0.1622391939163208, 0.010295595973730087, -0.09843582659959793, -0.17324161529541016, 0.0319945402443409, 0.0015935287810862064, 0.029022909700870514, 0.03757215663790703, -0.16631877422332764, 0.00521817896515131, 0.022354213520884514, -0.0004164632991887629, 0.05653650686144829, -0.3704700171947479, -0.14241750538349152, 0.02238164283335209, 0.03453399986028671, -0.06314611434936523, -0.045118629932403564, -0.041388459503650665, -0.0839102566242218, -0.24518103897571564, 0.07820387184619904, -0.11302261054515839, 0.09635563939809799, 0.009931492619216442, 0.05377942696213722, 0.047551173716783524, -0.06260828673839569, 0.14088882505893707, -0.02913198620080948, 0.06575780361890793, -0.08617941290140152, -0.05348481610417366, 0.07443145662546158, -0.0611112006008625, 0.09593667834997177, 0.006813704036176205, 0.09077735245227814, -0.12540322542190552, -0.07212275266647339, -0.07737702876329422, 0.019335629418492317, -0.06029759347438812, -0.08465049415826797, -0.0704956129193306, 0.09207077324390411, 0.12748800218105316, -0.03838566318154335, -0.12221898138523102, -0.04726472496986389, -0.03095477633178234, 0.0817713513970375, 0.09490632265806198, 0.08505640923976898, -0.09579016268253326, 0.011038894765079021, 0.01284762192517519, 0.02526685781776905, -0.14160467684268951, 0.03784940019249916, 0.08525022119283676, 0.03842981904745102, 0.1045246347784996, 0.008020399138331413, -0.15908284485340118, 0.022360622882843018, 0.041440580040216446, -0.14857910573482513, -0.11072659492492676, -0.03933113440871239, -0.019254926592111588, -0.06842175126075745, -0.04859371483325958, 0.1478961706161499, -0.035344839096069336, -0.037622928619384766, -0.007279423531144857, 0.048322711139917374, -0.05146566778421402, 0.11896335333585739, 0.02475801296532154, 0.04293426126241684, -0.07238764315843582, 0.11543291807174683, 0.05990740284323692, 0.026141829788684845, 0.0354313850402832, 0.059665631502866745, -0.08818905800580978, -0.004174484871327877, -0.06378135085105896, 0.04742956906557083, -0.06374379247426987, -0.0036178736481815577, -0.02146117016673088, -0.03963286802172661, 0.025151045992970467, 0.10373248904943466, -0.005164764821529388, 0.11198388040065765, -0.03323209285736084, -0.02106083370745182, -0.13628990948200226, 0.0698254406452179, 0.06439174711704254, 0.016416318714618683, -0.11092640459537506, 0.18904030323028564, 0.022348733618855476, 0.0863771066069603, -0.04104591906070709, -0.049414150416851044, -0.07850108295679092, -0.009511835873126984, -0.15208306908607483, -0.041891902685165405, -0.07970166206359863, -0.03176959604024887, -0.01928168162703514, -0.028028471395373344, -0.013476281426846981, 0.059037189930677414, -0.024441169574856758, -0.0693017989397049, -0.05469232425093651, 0.0519256591796875, -0.1438208818435669, 0.0023511184845119715, 0.10831961780786514, -0.06454335898160934, 0.10031308233737946, 0.057688575237989426, -0.02880413457751274, 0.010563939809799194, -0.10173836350440979, 0.01970420591533184, -0.03896243870258331, 0.0029827773105353117, 0.03900608792901039, -0.16432392597198486, 0.01928490400314331, -0.05346196889877319, -0.05282827094197273, 0.01213144976645708, 0.021298794075846672, -0.1260409951210022, -0.008485523983836174, 0.06642734259366989, 0.0016486606327816844, -0.06783357262611389, 0.06961827725172043, 0.076410211622715, 0.021764056757092476, 0.0678800716996193, -0.036770809441804886, 0.07974714785814285, -0.15569911897182465, -0.04961957782506943, 0.00007871334673836827, 0.01194919552654028, 0.03274830803275108, -0.0057263802736997604, 0.05314438045024872, -0.010463016107678413, 0.1801958978176117, 0.020948952063918114, -0.02675926685333252, 0.03421889245510101, -0.03421827778220177, -0.010584424249827862, 0.04310125857591629, 0.05576568469405174, -0.04794744774699211, -0.020418254658579826, -0.021964481100440025, 0.013833186589181423, -0.07036060094833374, -0.014984000474214554, 0.1050477847456932, 0.0708695501089096, 0.17276328802108765, -0.031016917899250984, 0.058045804500579834, -0.02946728840470314, -0.11435838043689728, -0.02761632576584816, -0.01922575756907463, 0.04583266004920006, -0.07887480407953262, 0.053068824112415314, 0.14577873051166534, -0.16221435368061066, 0.11893248558044434, 0.010916373692452908, -0.062319088727235794, -0.09445525705814362, -0.16790959239006042, -0.015424379147589207, -0.02935606613755226, 0.03360447660088539, -0.12310246378183365, 0.07594554871320724, 0.027058158069849014, 0.027295192703604698, -0.07004711031913757, 0.12219559401273727, -0.08676468580961227, -0.11329701542854309, 0.03262358531355858, 0.02723677270114422, 0.026866035535931587, 0.03367314860224724, 0.08098427951335907, 0.02128838188946247, 0.003087955294176936, 0.05609402433037758, 0.040563732385635376, 0.023131219670176506, 0.0439424067735672, -0.016151824966073036, -0.06230478733778, 0.027746908366680145, 0.014894086867570877, 0.04621988162398338, 0.14278413355350494, 0.07233062386512756, -0.020338421687483788, -0.03000672534108162, 0.2995607554912567, -0.031779393553733826, -0.028887929394841194, -0.17725132405757904, 0.16201424598693848, 0.031152687966823578, -0.008482326753437519, 0.02944054640829563, -0.13712601363658905, 0.0201877411454916, 0.15755023062229156, 0.18660172820091248, -0.054618630558252335, 0.00736171705648303, -0.038160186260938644, 0.01311671081930399, 0.03651440888643265, 0.08761361241340637, 0.07075198739767075, 0.19156453013420105, -0.04363396018743515, 0.06219813600182533, -0.0051708887331187725, -0.01645915023982525, -0.013152212835848331, 0.12022538483142853, -0.03373398259282112, 0.0010358026484027505, -0.05049692466855049, 0.1020551547408104, -0.056465089321136475, -0.2819453179836273, 0.008461042307317257, -0.052130598574876785, -0.09501929581165314, 0.0430658720433712, -0.036998145282268524, -0.008855419233441353, 0.09937947988510132, 0.02000666782259941, -0.02594117633998394, 0.14229817688465118, 0.042768750339746475, -0.05136207491159439, -0.0321422703564167, 0.08343779295682907, -0.034767769277095795, 0.19902290403842926, -0.028621340170502663, -0.003373394487425685, 0.09381449967622757, 0.020874423906207085, -0.1327420175075531, 0.009527415968477726, 0.04310191422700882, -0.08053742349147797, 0.000528481206856668, 0.18547311425209045, 0.00411956338211894, 0.032112784683704376, 0.04453746974468231, -0.04799699783325195, 0.03788743540644646, -0.06533454358577728, 0.046523816883563995, -0.13655805587768555, 0.057739175856113434, -0.08350764214992523, 0.14197823405265808, 0.18312513828277588, -0.07144048064947128, 0.028683766722679138, -0.05285200476646423, 0.0017387759871780872, -0.015152482315897942, 0.056736160069704056, -0.01968543976545334, -0.11165360361337662, 0.019678747281432152, 0.00922564510256052, 0.02763551101088524, -0.20100297033786774, -0.06727231293916702, 0.038358598947525024, -0.06029564142227173, 0.01676400750875473, 0.1749502271413803, 0.035074107348918915, 0.052908919751644135, -0.0339009091258049, -0.006478101015090942, -0.024839721620082855, 0.11139356344938278, -0.1418987214565277, -0.08729786425828934 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b04166fa115f4e8aae2c30f301ae52ba.480x480x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Metallica</div> <a href="https://genius.com/artists/metallica"> <div style="text-align: center; font-size: 14px;">@metallica</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Metallica. Dataset is available [here](https://huggingface.co/datasets/huggingartists/metallica). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/metallica") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/30glu695/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Metallica's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2m1o5q6p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2m1o5q6p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/metallica') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/metallica") model = AutoModelWithLMHead.from_pretrained("huggingartists/metallica") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/metallica"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/metallica
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/metallica", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/metallica #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Metallica</div> <a href="URL <div style="text-align: center; font-size: 14px;">@metallica</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Metallica. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Metallica's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Metallica.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Metallica's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/metallica #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Metallica.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Metallica's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/metallica #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Metallica.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Metallica's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.025044133886694908, 0.13913078606128693, -0.0024689314886927605, 0.03736869990825653, 0.0942639485001564, -0.001939975074492395, 0.07964669913053513, 0.10745114088058472, -0.023719675838947296, 0.07373273372650146, 0.06635332852602005, 0.022278619930148125, 0.0609101839363575, 0.12770284712314606, 0.08612462878227234, -0.26474300026893616, 0.02134256809949875, -0.10847213864326477, 0.014690856449306011, 0.12156210094690323, 0.0910448506474495, -0.056960154324769974, 0.08168474584817886, 0.03265796974301338, -0.07428466528654099, 0.03741194307804108, -0.00805699173361063, -0.07129249721765518, 0.09377843141555786, 0.08165868371725082, 0.02913980931043625, 0.039009589701890945, 0.0665627047419548, -0.17500944435596466, 0.03603392466902733, 0.12432792037725449, 0.02980743534862995, 0.06844017654657364, 0.04902331903576851, -0.07421925663948059, 0.17107568681240082, -0.033292606472969055, 0.08966537564992905, 0.0467761866748333, -0.10236406326293945, -0.16959573328495026, -0.13272197544574738, 0.08497098833322525, 0.0993560329079628, 0.0769297257065773, -0.03077170066535473, 0.05683876946568489, 0.009246121160686016, 0.04364599660038948, 0.2288629561662674, -0.223605215549469, -0.024500789120793343, 0.10065317898988724, 0.0370236337184906, 0.049028266221284866, -0.0717514231801033, 0.03434053063392639, 0.048635032027959824, 0.0287303626537323, 0.05661788582801819, -0.018627023324370384, 0.19955889880657196, 0.024207577109336853, -0.09231758117675781, -0.08322534710168839, 0.11596854776144028, -0.038732536137104034, -0.08472225815057755, -0.15110310912132263, 0.007440601941198111, -0.021352699026465416, 0.039504293352365494, -0.008871320635080338, -0.011332657188177109, -0.001032796804793179, -0.054348450154066086, -0.09845441579818726, -0.09271756559610367, -0.0284479558467865, -0.037059735506772995, 0.08916157484054565, 0.01761772856116295, 0.022393949329853058, -0.06612122803926468, 0.23171043395996094, 0.006599774584174156, -0.10361211746931076, -0.05144217237830162, -0.08617285639047623, -0.0983572006225586, -0.06694850325584412, 0.007428720593452454, 0.003427372546866536, -0.056582868099212646, 0.158528670668602, -0.020232075825333595, 0.032184965908527374, -0.0018252450972795486, -0.02143155038356781, 0.14329153299331665, 0.11614242941141129, -0.09369871765375137, -0.023719891905784607, 0.05232332646846771, -0.010769995860755444, -0.0602957122027874, -0.06241689994931221, -0.01645611971616745, -0.029703274369239807, 0.04905116930603981, 0.09526247531175613, 0.0597635917365551, 0.05729012191295624, 0.03299751877784729, -0.0582910031080246, 0.10212285071611404, -0.14662159979343414, 0.006287619937211275, -0.019164269790053368, -0.024777105078101158, 0.012722700834274292, 0.04394254460930824, 0.0214109867811203, -0.08883865922689438, 0.11341305822134018, -0.05200729891657829, -0.0641285702586174, -0.07099280506372452, -0.07893387228250504, -0.002986869541928172, 0.008151684887707233, -0.048485975712537766, -0.08867844939231873, -0.1641593724489212, -0.03203360363841057, 0.02827560342848301, -0.0424295999109745, -0.048720091581344604, 0.059151262044906616, -0.0281103253364563, 0.012280937284231186, -0.01796325482428074, 0.0029697695281356573, -0.02649363875389099, 0.02758343331515789, -0.05349871143698692, 0.03137904778122902, 0.08789119869470596, 0.03913797438144684, -0.10455790162086487, 0.06632757186889648, -0.1692875176668167, 0.13899433612823486, -0.007324295584112406, 0.029080085456371307, -0.10924717038869858, -0.09318956732749939, -0.03888937830924988, -0.02468651533126831, -0.004173148423433304, 0.09716888517141342, -0.18978840112686157, -0.04780428484082222, 0.17953062057495117, -0.07319504022598267, -0.08807063847780228, 0.06854629516601562, -0.07395943254232407, 0.03894786536693573, 0.13331665098667145, 0.04991637170314789, 0.1635269969701767, -0.1158568263053894, -0.06457673758268356, -0.05031784251332283, -0.05842428281903267, 0.21602481603622437, 0.056276094168424606, -0.01534215360879898, 0.0075223371386528015, 0.014110882766544819, -0.029022609815001488, -0.027755334973335266, -0.024162406101822853, -0.043265070766210556, -0.012828665785491467, 0.016294870525598526, -0.0022165582049638033, -0.04612905904650688, -0.06817970424890518, -0.02057509683072567, -0.1084887757897377, 0.0405040867626667, 0.10236910730600357, -0.07024803012609482, 0.0025163162499666214, -0.07994783669710159, 0.003695080056786537, -0.048085976392030716, 0.017119906842708588, -0.19638872146606445, -0.07083974033594131, 0.01998143084347248, -0.06378135085105896, 0.09509322047233582, 0.01143521349877119, 0.03689492493867874, 0.0618063323199749, -0.011991309933364391, 0.022687619552016258, -0.0418471097946167, -0.020322313532233238, -0.029209574684500694, -0.15195205807685852, -0.07242243736982346, -0.05036161467432976, 0.08317068964242935, -0.12357599288225174, 0.006798009853810072, 0.1191907525062561, 0.11365445703268051, 0.020142536610364914, -0.05743623897433281, 0.013411109335720539, -0.03367142751812935, -0.04109977185726166, -0.1118341013789177, -0.05911938473582268, 0.006046267691999674, -0.043756287544965744, 0.14377443492412567, -0.17877084016799927, -0.05014657974243164, 0.10613968223333359, 0.1655483841896057, -0.10807672888040543, 0.0035082772374153137, -0.08710131794214249, -0.013224954716861248, -0.05723850801587105, -0.03808111324906349, 0.2658298909664154, 0.03600922226905823, 0.07079055160284042, -0.11079621315002441, -0.09341797232627869, -0.000577844912186265, -0.03537473827600479, -0.03927939385175705, 0.018581843003630638, 0.021677812561392784, -0.1826937049627304, 0.03027859330177307, -0.01228866446763277, 0.11783870309591293, 0.21873508393764496, 0.05275680124759674, -0.09153785556554794, -0.05866226553916931, -0.09313266724348068, 0.01361115276813507, 0.05375039577484131, 0.03297409787774086, 0.032398924231529236, 0.04141552373766899, 0.04595279321074486, 0.04347064718604088, -0.11289072781801224, 0.0023294289130717516, 0.07810758054256439, -0.03935244306921959, -0.05294634774327278, 0.024890126660466194, 0.016604579985141754, 0.08066315203905106, 0.08381760120391846, 0.15481996536254883, -0.06790212541818619, -0.04916759207844734, -0.14891356229782104, 0.13750892877578735, -0.07578802853822708, -0.26497671008110046, -0.15294453501701355, -0.06937456130981445, 0.011785994283854961, 0.0021080314181745052, 0.03393683210015297, -0.062294501811265945, -0.04218857362866402, -0.0949222669005394, 0.09959392994642258, -0.056562382727861404, -0.0026903366670012474, 0.006706861313432455, 0.027249453589320183, -0.028991302475333214, -0.10386013984680176, -0.03251570090651512, 0.04658396169543266, -0.10228818655014038, -0.011382922530174255, 0.02900148369371891, 0.05411043390631676, 0.15119248628616333, -0.006975315511226654, 0.00011500390246510506, -0.03549334034323692, 0.2699635326862335, -0.1288554072380066, 0.06611484289169312, 0.16981887817382812, -0.021290123462677002, 0.055615585297346115, 0.08826688677072525, 0.013124649412930012, -0.058401789516210556, 0.07760953158140182, 0.06831556558609009, -0.09700188040733337, -0.2089177817106247, -0.03338635340332985, -0.013536174781620502, 0.004394330084323883, 0.11931150406599045, 0.06039169058203697, 0.07210063934326172, -0.0008802764932624996, -0.10811710357666016, 0.039744507521390915, 0.03419885039329529, 0.10962554067373276, -0.06619956344366074, -0.00013467359531205148, 0.05499841645359993, -0.06266465783119202, 0.027935847640037537, 0.14659373462200165, 0.04821230098605156, 0.20867930352687836, -0.05693971738219261, 0.08147410303354263, 0.07238046079874039, 0.09601950645446777, 0.036973271518945694, 0.0191954355686903, -0.0025549139827489853, 0.009449443779885769, 0.0008128488552756608, -0.10191968083381653, -0.0020759657490998507, 0.04719631001353264, 0.030280688777565956, -0.029266349971294403, -0.043840158730745316, -0.053470153361558914, 0.044345200061798096, 0.23236314952373505, -0.028662869706749916, -0.18480350077152252, -0.11629855632781982, 0.04577602073550224, -0.07179098576307297, -0.042042169719934464, -0.036737896502017975, 0.05711372569203377, -0.2127235382795334, 0.08952558785676956, -0.03986943140625954, 0.10683561116456985, -0.11210411787033081, 0.003026908030733466, 0.09593465179204941, 0.05547512695193291, -0.06861966848373413, 0.09673464298248291, -0.16465796530246735, 0.06861987709999084, -0.006112169940024614, 0.07165490090847015, -0.07591646909713745, 0.030943939462304115, 0.009186754934489727, 0.05638974905014038, 0.08567611128091812, 0.005793001502752304, 0.017389556393027306, -0.00042101353756152093, -0.040190983563661575, 0.014191724359989166, 0.058338720351457596, -0.1244247555732727, 0.1333436667919159, -0.035698551684617996, 0.0364106185734272, -0.03864719346165657, -0.09513125568628311, -0.10014746338129044, -0.16736353933811188, 0.10149285197257996, -0.14454156160354614, -0.011913102120161057, -0.07892430573701859, -0.03938959538936615, 0.028917433694005013, 0.27093884348869324, -0.052080124616622925, -0.07620394974946976, -0.1481865644454956, 0.021454855799674988, 0.15129698812961578, -0.08643555641174316, 0.015440300107002258, -0.013158057816326618, 0.21623067557811737, -0.004297166597098112, -0.13257157802581787, -0.015489027835428715, -0.059823255985975266, -0.1659827083349228, -0.0024289570283144712, 0.15909184515476227, 0.05663108825683594, 0.02676399238407612, 0.011011600494384766, -0.01323272567242384, -0.044000376015901566, -0.16920334100723267, 0.03223852440714836, 0.1542019098997116, -0.011689684353768826, -0.007442013826221228, 0.047429993748664856, -0.0058865915052592754, -0.1299525648355484, -0.00012326503929216415, 0.039148807525634766, 0.17782676219940186, -0.07811843603849411, 0.18383105099201202, 0.03349417820572853, -0.09103980660438538, -0.15988875925540924, 0.016354477033019066, 0.028993384912610054, 0.04046627879142761, 0.05247534438967705, -0.21043996512889862, 0.029207192361354828, 0.03711448982357979, 0.0034052978735417128, 0.0289368387311697, -0.33139708638191223, -0.16255389153957367, -0.015711704269051552, 0.008666358888149261, -0.15677571296691895, -0.04784246161580086, -0.040005117654800415, -0.1019086018204689, -0.23294635117053986, 0.08272547274827957, -0.12339535355567932, 0.0722171887755394, 0.030829526484012604, 0.10142478346824646, 0.047397296875715256, -0.04745025932788849, 0.13549482822418213, -0.03103264607489109, 0.06918434053659439, -0.09085894376039505, -0.0634332224726677, 0.0859600082039833, -0.06658919900655746, 0.08996343612670898, 0.029214004054665565, 0.07561200112104416, -0.07994411885738373, -0.09348708391189575, -0.059272218495607376, 0.0067662266083061695, -0.053952425718307495, -0.09182677417993546, -0.0868585929274559, 0.08421415090560913, 0.10897022485733032, -0.058669086545705795, -0.10650089383125305, -0.07245896011590958, 0.010092523880302906, 0.04444077983498573, 0.13755708932876587, 0.07088806480169296, -0.058414120227098465, 0.013674614019691944, 0.013403751887381077, 0.004617373459041119, -0.16578780114650726, 0.05079426243901253, 0.09317851066589355, 0.04108082130551338, 0.0966663658618927, 0.008764911442995071, -0.16399510204792023, 0.010912913829088211, 0.06568926572799683, -0.163290336728096, -0.13403905928134918, -0.04346295818686485, 0.026914596557617188, -0.10242857784032822, -0.050669196993112564, 0.1295003443956375, -0.030111059546470642, -0.03852533921599388, 0.0027504973113536835, 0.04047584906220436, -0.03823247179389, 0.08736515790224075, -0.0038488793652504683, 0.03967094048857689, -0.06026965007185936, 0.11926861852407455, 0.06811250001192093, -0.0034552179276943207, 0.02818869613111019, 0.06422678381204605, -0.08939387649297714, 0.011824901215732098, -0.08333510905504227, 0.0008595902472734451, -0.044904470443725586, -0.007263258099555969, 0.019025243818759918, -0.03939282149076462, 0.04365133121609688, 0.08855003118515015, -0.011072974652051926, 0.09502184391021729, -0.04931920766830444, 0.025651102885603905, -0.12098046392202377, 0.07193130999803543, 0.03681955486536026, 0.02212030254304409, -0.11967865377664566, 0.2100624293088913, 0.033408600836992264, 0.09202563017606735, -0.04413823410868645, -0.061010707169771194, -0.04316066578030586, -0.012702991254627705, -0.07226640731096268, -0.046916693449020386, -0.0952409878373146, -0.026437515392899513, -0.00720110023394227, -0.031923964619636536, -0.03446412459015846, 0.04264512285590172, -0.030332451686263084, -0.06176963821053505, -0.08032006770372391, 0.040331318974494934, -0.14352643489837646, 0.03274135664105415, 0.12207404524087906, -0.05481685325503349, 0.1280342936515808, 0.04963519796729088, -0.028858713805675507, 0.020009376108646393, -0.13388244807720184, 0.050130266696214676, -0.0010862660128623247, 0.020914947614073753, 0.01367455068975687, -0.15711282193660736, 0.0018703307723626494, -0.03361160308122635, -0.06481935828924179, 0.010399609804153442, -0.0067937481217086315, -0.12468995898962021, -0.008912547491490841, 0.09532773494720459, -0.01628035120666027, -0.06771359592676163, 0.08327917009592056, 0.07406806200742722, 0.029132643714547157, 0.051703233271837234, -0.015731440857052803, 0.06409408897161484, -0.18221557140350342, -0.05833916738629341, -0.007312219124287367, 0.023203590884804726, 0.03690934181213379, -0.025855598971247673, 0.03966943174600601, -0.012457188218832016, 0.21054576337337494, 0.03530070558190346, 0.0029836713802069426, 0.03755751624703407, -0.0595223605632782, 0.011890855617821217, 0.043232262134552, 0.09153405576944351, -0.01810801587998867, -0.022168507799506187, 0.0046715629287064075, -0.023374637588858604, -0.10007068514823914, -0.029190286993980408, 0.10744625329971313, 0.01802780106663704, 0.21344943344593048, -0.06938257813453674, 0.07581222802400589, -0.020696213468909264, -0.12604890763759613, -0.04996262118220329, -0.038967180997133255, 0.02821453846991062, -0.06000317633152008, 0.04463270679116249, 0.1980314999818802, -0.16493795812129974, 0.1192106232047081, 0.035971369594335556, -0.054605018347501755, -0.1165035143494606, -0.19076944887638092, -0.01578306220471859, -0.03602217510342598, 0.02312353067100048, -0.13670121133327484, 0.09384044259786606, 0.010437342338263988, 0.03381379321217537, -0.05675143375992775, 0.13565827906131744, -0.0819777324795723, -0.13733118772506714, 0.042670588940382004, 0.018201302736997604, 0.02349676750600338, 0.04684622958302498, 0.09324252605438232, 0.03022764064371586, 0.0014042844995856285, 0.06766615062952042, 0.03960239514708519, 0.023709723725914955, 0.03938530012965202, -0.030598757788538933, -0.041744157671928406, 0.024980762973427773, -0.01590142212808132, 0.019157784059643745, 0.09270711988210678, 0.06157416105270386, -0.018371155485510826, -0.018834806978702545, 0.30588436126708984, -0.018880516290664673, -0.02825474925339222, -0.18056078255176544, 0.15434755384922028, -0.0015998915769159794, 0.0029530369210988283, 0.028093943372368813, -0.11875886470079422, 0.019513428211212158, 0.12282749265432358, 0.15325111150741577, -0.0181080624461174, 0.026395127177238464, -0.025434201583266258, 0.015605314634740353, 0.03414009138941765, 0.11331339925527573, 0.05919768288731575, 0.197010338306427, -0.027161484584212303, 0.06037849187850952, -0.022736331447958946, -0.02139294706285, 0.016812756657600403, 0.1091199442744255, -0.03730135038495064, 0.00891164317727089, -0.04927409812808037, 0.11277469247579575, -0.04675419256091118, -0.29636892676353455, -0.04019596800208092, -0.01946539804339409, -0.09355661273002625, 0.07666724920272827, -0.022732876241207123, -0.02922111749649048, 0.07482299953699112, 0.024914050474762917, -0.044608015567064285, 0.14702759683132172, 0.06260683387517929, -0.04576197266578674, -0.010547594167292118, 0.11966633796691895, -0.01166742667555809, 0.15499675273895264, -0.046115364879369736, 0.01413555908948183, 0.07632263749837875, 0.011994943022727966, -0.12832514941692352, 0.0008082588319666684, 0.043926745653152466, -0.05290451645851135, -0.009995222091674805, 0.20647448301315308, 0.01164074707776308, 0.025929993018507957, 0.06992415338754654, -0.04273822531104088, 0.024771973490715027, -0.04041997715830803, 0.06067432090640068, -0.12992776930332184, 0.06746204942464828, -0.08467715978622437, 0.11932715028524399, 0.16810725629329681, -0.06416728347539902, 0.04661796987056732, -0.05978420376777649, 0.009252749383449554, -0.023379864171147346, 0.09737084060907364, -0.020359067246317863, -0.12057898193597794, 0.002761098789051175, 0.029339388012886047, 0.011564468033611774, -0.1801086664199829, -0.08900294452905655, 0.07291509956121445, -0.05609319731593132, 0.019488835707306862, 0.18185876309871674, 0.02255234122276306, 0.04738178849220276, -0.038626778870821, -0.004229301121085882, -0.008647165261209011, 0.11252885311841965, -0.18686647713184357, -0.06580612808465958 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/263743633b6e58854e753b25dca6beab.430x430x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MF DOOM</div> <a href="https://genius.com/artists/mf-doom"> <div style="text-align: center; font-size: 14px;">@mf-doom</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MF DOOM. Dataset is available [here](https://huggingface.co/datasets/huggingartists/mf-doom). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mf-doom") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3lhrsfds/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MF DOOM's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/vw48qbeh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/vw48qbeh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mf-doom') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mf-doom") model = AutoModelWithLMHead.from_pretrained("huggingartists/mf-doom") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/mf-doom"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/mf-doom
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mf-doom", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mf-doom #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">MF DOOM</div> <a href="URL <div style="text-align: center; font-size: 14px;">@mf-doom</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from MF DOOM. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on MF DOOM's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MF DOOM.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MF DOOM's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mf-doom #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MF DOOM.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MF DOOM's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mf-doom #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from MF DOOM.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MF DOOM's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03647848963737488, 0.14383450150489807, -0.002754773246124387, 0.040366243571043015, 0.09837990254163742, 0.008544696494936943, 0.07955021411180496, 0.10833065211772919, 0.016101650893688202, 0.07735855877399445, 0.06593434512615204, 0.028552699834108353, 0.06483860313892365, 0.094119593501091, 0.06734507530927658, -0.2342822104692459, 0.0367383249104023, -0.08908654749393463, -0.007909908890724182, 0.10193333029747009, 0.09751539677381516, -0.060514818876981735, 0.0776141807436943, 0.02804265171289444, -0.07628446072340012, 0.012565450742840767, 0.004136757925152779, -0.058837566524744034, 0.09058880060911179, 0.06250958889722824, 0.032927945256233215, 0.02954293228685856, 0.06645510345697403, -0.18146413564682007, 0.030832447111606598, 0.12449285387992859, 0.03312094882130623, 0.07611607015132904, 0.046303924173116684, -0.0723629966378212, 0.14435602724552155, -0.01012143399566412, 0.09030774235725403, 0.06051342189311981, -0.11243739724159241, -0.1433081328868866, -0.13543251156806946, 0.09346994757652283, 0.09084983915090561, 0.09035692363977432, -0.02499406784772873, 0.06671669334173203, -0.02801062911748886, 0.043375562876462936, 0.2268306016921997, -0.23124317824840546, -0.009599365293979645, 0.09795793145895004, 0.05684633553028107, 0.022363608703017235, -0.08662310242652893, 0.016826767474412918, 0.038408808410167694, 0.033369872719049454, 0.046794235706329346, -0.0203280970454216, 0.1837770640850067, 0.022142617031931877, -0.10606139898300171, -0.07652734965085983, 0.11345095187425613, -0.019143661484122276, -0.07703270018100739, -0.1321840137243271, -0.008966089226305485, -0.01651662215590477, 0.03044135309755802, 0.004397563170641661, -0.004636920057237148, 0.008765434846282005, -0.03684321045875549, -0.11497374624013901, -0.07510092854499817, -0.038857851177453995, -0.02265872061252594, 0.06587860733270645, 0.032541751861572266, 0.033407364040613174, -0.08286619186401367, 0.21925899386405945, -0.02544424496591091, -0.10040538012981415, -0.04807620868086815, -0.09957063943147659, -0.09452779591083527, -0.04512311890721321, 0.0010372607503086329, -0.010788710787892342, -0.0380416214466095, 0.1416810303926468, -0.04857903718948364, 0.02952759712934494, -0.02401191182434559, 0.0016323322197422385, 0.13671012222766876, 0.12897159159183502, -0.11995283514261246, -0.033568866550922394, 0.06356868147850037, -0.004245027434080839, -0.07273156940937042, -0.05063726380467415, -0.007062050048261881, -0.014286592602729797, 0.04316488653421402, 0.07721234858036041, 0.06811178475618362, 0.06329859793186188, 0.01786140352487564, -0.06666452437639236, 0.08050081133842468, -0.13382069766521454, 0.011247375048696995, 0.0005878285155631602, -0.05695478245615959, 0.007284885738044977, 0.061222419142723083, 0.015920910984277725, -0.09700492769479752, 0.10732163488864899, -0.06346462666988373, -0.051473356783390045, -0.08077230304479599, -0.10171657800674438, -0.0013041134225204587, -0.044360917061567307, -0.03983675688505173, -0.07667215913534164, -0.17938336730003357, -0.040762197226285934, 0.02786998637020588, -0.048988718539476395, -0.024131495505571365, 0.03470253199338913, -0.03000755049288273, 0.011858483776450157, -0.012462791055440903, -0.019651353359222412, -0.027232397347688675, 0.030642928555607796, -0.0597279816865921, 0.032174285501241684, 0.0642501562833786, 0.04567290097475052, -0.10241963714361191, 0.07742640376091003, -0.15253576636314392, 0.11627557128667831, -0.0238344743847847, 0.01623297668993473, -0.09260158240795135, -0.07584557682275772, -0.029083050787448883, -0.03236677125096321, 0.008847136981785297, 0.10393264144659042, -0.16385813057422638, -0.028272870928049088, 0.19584456086158752, -0.06952410191297531, -0.07946944236755371, 0.06496298313140869, -0.07143630087375641, 0.0335167720913887, 0.10897744446992874, 0.07725223153829575, 0.1658777892589569, -0.12873144447803497, -0.061053190380334854, -0.042272988706827164, -0.06756843626499176, 0.17147065699100494, 0.045293811708688736, -0.02458694390952587, 0.0247451514005661, 0.0068750036880373955, -0.029716158285737038, -0.0063349115662276745, -0.022043095901608467, -0.03484261408448219, -0.024634715169668198, -0.008540823124349117, -0.007240512408316135, -0.03851611912250519, -0.05336392670869827, -0.02611774578690529, -0.09057632088661194, 0.05900543928146362, 0.10133753716945648, -0.061170533299446106, 0.008525023236870766, -0.09722661226987839, 0.0249088816344738, -0.0448341891169548, 0.011302598752081394, -0.17722390592098236, -0.04587884992361069, 0.0237590204924345, -0.06936652213335037, 0.07331341505050659, 0.034639425575733185, 0.04219306632876396, 0.07171761244535446, -0.015439925715327263, 0.0029504059348255396, -0.04123708978295326, -0.005865595303475857, -0.0316450409591198, -0.15706977248191833, -0.05340610817074776, -0.04594569280743599, 0.0871705710887909, -0.10901347547769547, 0.008089856244623661, 0.0868043303489685, 0.1390661597251892, 0.022463031113147736, -0.06701837480068207, 0.03142574056982994, -0.04253032058477402, -0.024422775954008102, -0.10294118523597717, -0.040050435811281204, 0.012281015515327454, -0.01756300963461399, 0.15414585173130035, -0.1633729338645935, -0.08163821697235107, 0.11735539883375168, 0.1158413514494896, -0.08534691482782364, 0.040164586156606674, -0.0792020708322525, -0.016279274597764015, -0.05128341540694237, -0.05607442557811737, 0.24994975328445435, 0.030472228303551674, 0.09688664227724075, -0.09748506546020508, -0.09054920077323914, 0.0019977304618805647, -0.03873865306377411, -0.041477642953395844, 0.029607493430376053, 0.030254269018769264, -0.16520589590072632, 0.042969319969415665, -0.008137046359479427, 0.0955754965543747, 0.20800894498825073, 0.03284391015768051, -0.08374262601137161, -0.06469705700874329, -0.06447477638721466, 0.000922052888199687, 0.08856973797082901, -0.00037400948349386454, 0.03491968661546707, 0.04121117666363716, 0.0561722032725811, 0.05152684077620506, -0.11339011788368225, 0.012404605746269226, 0.0685969665646553, -0.03461070358753204, -0.04579347372055054, 0.02294222265481949, 0.024403216317296028, 0.08816153556108475, 0.08055520057678223, 0.11948845535516739, -0.05754921957850456, -0.056334055960178375, -0.1402927190065384, 0.13117098808288574, -0.09835723042488098, -0.21538525819778442, -0.13151878118515015, -0.06269880384206772, -0.0007883325451985002, 0.01082215178757906, 0.02858820930123329, -0.04803341627120972, -0.03734448552131653, -0.09671609103679657, 0.08390947431325912, -0.049638982862234116, -0.019932767376303673, 0.01632549799978733, 0.024817194789648056, -0.007466308772563934, -0.1190078854560852, -0.03557338938117027, 0.03147180750966072, -0.07462947070598602, -0.0037825494073331356, 0.028493143618106842, 0.045576777309179306, 0.15406452119350433, -0.0066400133073329926, 0.01644604466855526, -0.013774012215435505, 0.27766621112823486, -0.10699049383401871, 0.0668359026312828, 0.1733005791902542, 0.006866130046546459, 0.051762815564870834, 0.07110650092363358, 0.00291784037835896, -0.059494975954294205, 0.06366843730211258, 0.071480393409729, -0.07299188524484634, -0.19879929721355438, -0.04437568783760071, -0.01728854328393936, 0.009414718486368656, 0.10239475965499878, 0.03988843411207199, 0.05533715710043907, 0.00602459954097867, -0.10138571262359619, 0.04536666348576546, 0.020361188799142838, 0.09393995255231857, -0.061419107019901276, -0.006591795478016138, 0.043785467743873596, -0.047941334545612335, 0.03758424147963524, 0.12111759185791016, 0.03831401839852333, 0.2097388207912445, -0.06971903145313263, 0.07502704113721848, 0.08227350562810898, 0.10367286205291748, 0.022012708708643913, 0.024120500311255455, -0.026739703491330147, 0.019225280731916428, 0.007739753928035498, -0.09671563655138016, -0.004995552822947502, 0.03608591482043266, 0.03498060256242752, -0.009416325017809868, -0.06072690710425377, -0.06642089784145355, 0.047436244785785675, 0.2279568612575531, 0.020544400438666344, -0.15989002585411072, -0.1003095731139183, 0.05594424158334732, -0.052990205585956573, -0.055267561227083206, -0.01677076332271099, 0.07520114630460739, -0.2124314159154892, 0.04403534531593323, -0.033139266073703766, 0.11062758415937424, -0.10690201073884964, 0.005637067370116711, 0.07335691899061203, 0.045392416417598724, -0.06235085427761078, 0.07972338050603867, -0.15924355387687683, 0.08026694506406784, 0.002908684080466628, 0.0774901881814003, -0.0673876404762268, 0.024603325873613358, 0.023442819714546204, 0.04735377058386803, 0.0793481320142746, 0.01885046437382698, 0.025788748636841774, -0.043196436017751694, -0.03341289982199669, -0.004924106877297163, 0.06525890529155731, -0.10333378612995148, 0.12600798904895782, -0.028053972870111465, 0.026613304391503334, -0.02223990112543106, -0.06510476768016815, -0.10637062042951584, -0.1378914713859558, 0.07981674373149872, -0.10518144816160202, -0.00640620244666934, -0.07477419823408127, -0.009934092871844769, 0.013184470124542713, 0.22057673335075378, -0.0774620994925499, -0.07342194020748138, -0.14627762138843536, -0.0005260008620098233, 0.1353047490119934, -0.0764535516500473, -0.001988619565963745, -0.015345549210906029, 0.18072089552879333, -0.010941793210804462, -0.1372356414794922, 0.00018268839630763978, -0.07678290456533432, -0.17258775234222412, -0.025951476767659187, 0.15596964955329895, 0.06537694483995438, 0.035707987844944, 0.004677663091570139, 0.00078379618935287, -0.03852657973766327, -0.16861140727996826, 0.03336643427610397, 0.1486334651708603, 0.014215420000255108, 0.026243332773447037, 0.018464481458067894, 0.03270743042230606, -0.11609362065792084, 0.018201952800154686, 0.05554581806063652, 0.18703937530517578, -0.07903271913528442, 0.16988451778888702, 0.023526137694716454, -0.08574860543012619, -0.1746552586555481, 0.03190683573484421, 0.011572643183171749, 0.028383471071720123, 0.016922134906053543, -0.1788281798362732, 0.030631326138973236, 0.023614827543497086, -0.008632148616015911, 0.057057082653045654, -0.3518015742301941, -0.1488950103521347, 0.013679559342563152, 0.01884947158396244, -0.108269602060318, -0.04557657986879349, -0.03747803345322609, -0.07698453217744827, -0.25891736149787903, 0.09167642146348953, -0.13162288069725037, 0.08285879343748093, 0.012238997966051102, 0.07301133126020432, 0.046384312212467194, -0.0646938607096672, 0.1296335756778717, -0.024164775386452675, 0.06579279154539108, -0.09019280225038528, -0.0424204096198082, 0.09284281730651855, -0.06207796931266785, 0.10770672559738159, 0.030357591807842255, 0.09057480841875076, -0.12405073642730713, -0.07213349640369415, -0.0834728553891182, 0.014088086783885956, -0.058942899107933044, -0.10078736394643784, -0.08586802333593369, 0.09707467257976532, 0.12685000896453857, -0.04327796772122383, -0.10586225986480713, -0.054998550564050674, 0.0071273911744356155, 0.09230657666921616, 0.10077162832021713, 0.06980403512716293, -0.09114084392786026, 0.013026141561567783, 0.017479944974184036, 0.02527931146323681, -0.15321564674377441, 0.03999469801783562, 0.08250955492258072, 0.041120417416095734, 0.11037848144769669, 0.010917570441961288, -0.1665009707212448, 0.010003244504332542, 0.03853940963745117, -0.15900446474552155, -0.10739666223526001, -0.04891427606344223, 0.019829096272587776, -0.08344718813896179, -0.04737289249897003, 0.13825950026512146, -0.039824988692998886, -0.02448112890124321, -0.0034509424585849047, 0.04793499410152435, -0.049491241574287415, 0.10413584113121033, 0.02874535694718361, 0.05197666212916374, -0.06496163457632065, 0.11638288199901581, 0.05811161920428276, 0.017489872872829437, 0.03781338408589363, 0.062212683260440826, -0.09291255474090576, -0.002469179918989539, -0.09154010564088821, 0.02380719780921936, -0.04314010217785835, -0.013999170623719692, -0.0006019957363605499, -0.047810014337301254, 0.03650345653295517, 0.10213548690080643, -0.012876123189926147, 0.10015692561864853, -0.03792430832982063, -0.005727891344577074, -0.13555192947387695, 0.0728951022028923, 0.0322081595659256, 0.016234606504440308, -0.11331047117710114, 0.20173178613185883, 0.020011546090245247, 0.0995127260684967, -0.04099956154823303, -0.05894670635461807, -0.07371697574853897, -0.007611908484250307, -0.13786087930202484, -0.05663715675473213, -0.08161860704421997, -0.03634577989578247, -0.012808416038751602, -0.037647414952516556, -0.016347086057066917, 0.051482439041137695, -0.03465920686721802, -0.06216532737016678, -0.0632472038269043, 0.041420236229896545, -0.13940125703811646, 0.01602913625538349, 0.11190452426671982, -0.055431585758924484, 0.1078997254371643, 0.06205887347459793, -0.030361654236912727, 0.014244312420487404, -0.10491053760051727, 0.026403287425637245, -0.03127770498394966, 0.014027208089828491, 0.032471973448991776, -0.14769315719604492, 0.011087731458246708, -0.050159893929958344, -0.06586959213018417, 0.012382110580801964, 0.011590582318603992, -0.12885978817939758, -0.004860341548919678, 0.06982257217168808, 0.0005937987589277327, -0.07607343792915344, 0.06649380177259445, 0.0684245303273201, 0.030448604375123978, 0.05366972088813782, -0.03493669256567955, 0.07845047861337662, -0.17063765227794647, -0.053608138114213943, 0.007838795892894268, 0.023437703028321266, 0.05521206557750702, 0.002076216507703066, 0.04073306918144226, -0.021797753870487213, 0.1913173794746399, 0.0064818765968084335, -0.014712492935359478, 0.04476482421159744, -0.06179898977279663, -0.0001903855154523626, 0.04110527038574219, 0.06501991301774979, -0.03702499717473984, -0.024186057969927788, -0.00036452148924581707, -0.0046432786621153355, -0.07585401833057404, -0.03950180858373642, 0.11050988733768463, 0.05546543374657631, 0.1756267547607422, -0.04245246201753616, 0.07263931632041931, -0.028745675459504128, -0.10901297628879547, -0.01259350124746561, -0.04556158557534218, 0.0417744517326355, -0.07661136239767075, 0.055602096021175385, 0.17394180595874786, -0.16590578854084015, 0.12028016895055771, 0.018736211583018303, -0.05728963389992714, -0.10140969604253769, -0.16869999468326569, -0.012688913382589817, -0.0348830483853817, 0.03376277908682823, -0.12954819202423096, 0.0827195793390274, 0.01753224804997444, 0.03615723177790642, -0.06304202228784561, 0.13146808743476868, -0.08317107707262039, -0.11189517378807068, 0.03523559868335724, 0.02326635830104351, 0.019953427836298943, 0.04250434786081314, 0.07735484093427658, 0.03021245077252388, 0.0011839538346976042, 0.06229046732187271, 0.041747767478227615, 0.01987353153526783, 0.03290722519159317, -0.015622724778950214, -0.05028707534074783, 0.028696320950984955, -0.0024110202211886644, 0.029562339186668396, 0.10174734890460968, 0.06564764678478241, -0.02152227610349655, -0.03349129110574722, 0.2942841649055481, -0.04175342619419098, -0.0460750013589859, -0.17447929084300995, 0.1654587835073471, 0.023784730583429337, -0.010781443677842617, 0.025211745873093605, -0.12990689277648926, 0.0017321462510153651, 0.14894041419029236, 0.18686196208000183, -0.048743780702352524, 0.021247128024697304, -0.03042580559849739, 0.012026187032461166, 0.03318127244710922, 0.08937831968069077, 0.06836315989494324, 0.20368075370788574, -0.03950634226202965, 0.05385240539908409, -0.012532577849924564, -0.02338872104883194, -0.012364774942398071, 0.11640368402004242, -0.02800031006336212, 0.00677587790414691, -0.0525924377143383, 0.09520996361970901, -0.053643301129341125, -0.2729041576385498, -0.022651996463537216, -0.03615280240774155, -0.08895548433065414, 0.050088830292224884, -0.044857583940029144, -0.023937271907925606, 0.08885477483272552, 0.01856619492173195, -0.02857663668692112, 0.13197053968906403, 0.03712828829884529, -0.04584784433245659, -0.018677154555916786, 0.09063786268234253, -0.01747690886259079, 0.18534564971923828, -0.0279981791973114, -0.0014033345505595207, 0.08809084445238113, 0.013281499035656452, -0.11590860784053802, 0.02056789956986904, 0.04871008172631264, -0.08264864236116409, -0.02827322855591774, 0.20375898480415344, 0.009515010751783848, 0.03781181201338768, 0.057643067091703415, -0.06779300421476364, 0.029666146263480186, -0.06450067460536957, 0.04928848147392273, -0.1420523077249527, 0.058936331421136856, -0.07892725616693497, 0.14382243156433105, 0.18741700053215027, -0.0680139809846878, 0.02337888441979885, -0.06136545166373253, 0.006415750365704298, -0.019107816740870476, 0.06573739647865295, -0.024772481992840767, -0.110896036028862, 0.023439105600118637, 0.019918184727430344, 0.019655125215649605, -0.19953784346580505, -0.0807134211063385, 0.06096849590539932, -0.05226602032780647, 0.027300570160150528, 0.17173753678798676, 0.039337851107120514, 0.06279581785202026, -0.03429057449102402, -0.0013228615280240774, -0.016060784459114075, 0.11368612945079803, -0.15575817227363586, -0.08568514138460159 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/713c41590244f597dd6484bb61eacc5a.413x413x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Михаил Горшенев (Mikhail Gorshenev)</div> <a href="https://genius.com/artists/mikhail-gorshenev"> <div style="text-align: center; font-size: 14px;">@mikhail-gorshenev</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Михаил Горшенев (Mikhail Gorshenev). Dataset is available [here](https://huggingface.co/datasets/huggingartists/mikhail-gorshenev). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mikhail-gorshenev") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3h9endcz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Михаил Горшенев (Mikhail Gorshenev)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1kdp29bz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1kdp29bz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mikhail-gorshenev') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mikhail-gorshenev") model = AutoModelWithLMHead.from_pretrained("huggingartists/mikhail-gorshenev") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/mikhail-gorshenev"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/mikhail-gorshenev
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mikhail-gorshenev", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mikhail-gorshenev #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Михаил Горшенев (Mikhail Gorshenev)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@mikhail-gorshenev</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Михаил Горшенев (Mikhail Gorshenev). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Михаил Горшенев (Mikhail Gorshenev)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Михаил Горшенев (Mikhail Gorshenev).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Михаил Горшенев (Mikhail Gorshenev)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mikhail-gorshenev #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Михаил Горшенев (Mikhail Gorshenev).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Михаил Горшенев (Mikhail Gorshenev)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 59, 82, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mikhail-gorshenev #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Михаил Горшенев (Mikhail Gorshenev).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Михаил Горшенев (Mikhail Gorshenev)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.042831599712371826, 0.166982039809227, -0.006165897939354181, 0.07561130076646805, 0.08872423321008682, 0.003984292037785053, 0.12949615716934204, 0.0989847481250763, 0.01095633301883936, 0.04291421175003052, 0.04815823957324028, 0.03836604580283165, 0.034724101424217224, 0.07008372247219086, 0.03908386826515198, -0.2411893755197525, -0.01107056625187397, -0.0651046633720398, -0.07096002250909805, 0.08734186738729477, 0.1022760421037674, -0.07279714941978455, 0.0550985112786293, 0.018324196338653564, -0.056839991360902786, 0.012534609995782375, 0.02245516888797283, -0.06612438708543777, 0.06925363838672638, 0.07431835681200027, 0.07757347077131271, 0.04236606881022453, 0.05469071492552757, -0.14463777840137482, 0.026617566123604774, 0.11477337032556534, 0.020840153098106384, 0.06743630021810532, 0.09512481093406677, -0.11636435985565186, 0.10900373756885529, -0.04396983981132507, 0.06659150868654251, 0.03852586820721626, -0.1190730556845665, -0.12932254374027252, -0.0976986214518547, 0.03842708468437195, 0.02183273248374462, 0.05481668561697006, -0.01841386966407299, 0.05319787561893463, -0.0616772435605526, 0.09265673160552979, 0.23422597348690033, -0.24996793270111084, -0.025233669206500053, 0.0778811052441597, 0.028178751468658447, 0.055013399571180344, -0.09580953419208527, 0.00812210887670517, 0.007842053659260273, 0.027851587161421776, 0.08624833822250366, -0.026241831481456757, 0.0742834284901619, 0.020616985857486725, -0.11960755288600922, -0.05678202956914902, 0.10937786102294922, -0.04766857251524925, -0.05333375930786133, -0.09487759321928024, -0.046631962060928345, -0.060655128210783005, 0.048670146614313126, 0.05012943223118782, -0.007612287998199463, 0.008231020532548428, -0.0923648402094841, -0.12458162009716034, -0.08887452632188797, -0.07015275955200195, -0.03868361562490463, 0.13858768343925476, 0.03246283158659935, 0.030867667868733406, -0.0767260193824768, 0.18809029459953308, 0.07066613435745239, -0.12444517016410828, -0.043942224234342575, -0.10306151956319809, -0.10283544659614563, -0.017656471580266953, -0.048241790384054184, -0.014357008039951324, 0.0046301609836518764, 0.14946983754634857, -0.024270236492156982, 0.02402370795607567, -0.05220568925142288, 0.030180886387825012, 0.10133383423089981, 0.1360568255186081, -0.08897948265075684, -0.020367128774523735, 0.08089758455753326, -0.026157671585679054, -0.06309034675359726, -0.04203774034976959, -0.017763759940862656, -0.061973340809345245, 0.058009084314107895, 0.08099932223558426, 0.034907445311546326, 0.0626031830906868, -0.0263095460832119, -0.05894323065876961, 0.006073209922760725, -0.16218045353889465, 0.009147549979388714, 0.03537418320775032, -0.060816869139671326, -0.010016821324825287, 0.06438526511192322, -0.04523905739188194, -0.10144594311714172, 0.08586126565933228, -0.04195164516568184, -0.005369816906750202, -0.0952177494764328, -0.10997666418552399, -0.00586987379938364, -0.030038950964808464, -0.022549545392394066, -0.0874391570687294, -0.15090465545654297, -0.02636226825416088, 0.04895912855863571, -0.0527755431830883, 0.030672788619995117, 0.007325857877731323, -0.019365504384040833, -0.013035913929343224, -0.009137170389294624, -0.020199129357933998, -0.02777927927672863, 0.069973424077034, -0.07067069411277771, 0.06455037742853165, 0.09685947746038437, 0.03434710204601288, -0.11254948377609253, 0.0554376021027565, -0.13143308460712433, 0.15406714379787445, -0.05804600939154625, -0.05465905740857124, -0.0681978091597557, -0.07708626985549927, -0.020812062546610832, -0.02047957293689251, 0.050331540405750275, 0.07262446731328964, -0.15473206341266632, -0.03400314599275589, 0.22254861891269684, -0.05887328088283539, -0.0291547030210495, 0.09757278859615326, -0.08247241377830505, 0.041098833084106445, 0.09805716574192047, 0.09251447021961212, 0.14487893879413605, -0.07378514111042023, -0.05055840313434601, -0.03777990862727165, -0.04982570931315422, 0.17849020659923553, 0.04377629980444908, 0.0074423616752028465, 0.04399128630757332, 0.013572842814028263, -0.030447324737906456, -0.011627927422523499, -0.03147546947002411, -0.03760673478245735, -0.01752091385424137, -0.021950095891952515, 0.04665600508451462, -0.05491328239440918, -0.00486879562959075, -0.027620231732726097, -0.0941946804523468, 0.08804881572723389, 0.10233640670776367, -0.08920324593782425, 0.027086442336440086, -0.10552167147397995, 0.020248085260391235, -0.05833454430103302, -0.0007296432740986347, -0.19801834225654602, -0.0024407594464719296, 0.025882814079523087, -0.08387652039527893, 0.07566027343273163, 0.04265357181429863, 0.05162252485752106, 0.08536514639854431, -0.03935385122895241, 0.01070558000355959, -0.0637340247631073, -0.011745049618184566, -0.01775815151631832, -0.17428942024707794, -0.035705309361219406, -0.04889828339219093, 0.04977454990148544, -0.08590777963399887, 0.006529335398226976, 0.09655697643756866, 0.1413794308900833, 0.028969794511795044, -0.04553459957242012, 0.01981051079928875, -0.013044080697000027, -0.032409943640232086, -0.0766289159655571, -0.02670937590301037, 0.021106986328959465, -0.047647371888160706, 0.11795378476381302, -0.14425130188465118, -0.07702884078025818, 0.12164306640625, 0.042145974934101105, -0.07475344836711884, 0.006606081034988165, -0.050792619585990906, -0.015293757431209087, -0.04299704730510712, -0.024082109332084656, 0.19947996735572815, 0.031605370342731476, 0.10041424632072449, -0.11039019376039505, -0.0689200609922409, -0.01932258903980255, -0.05129392072558403, 0.015126681886613369, 0.06373070180416107, 0.00561646418645978, -0.20224077999591827, 0.052735257893800735, -0.006865290924906731, -0.009714030660688877, 0.25625208020210266, 0.006743045523762703, -0.091936394572258, -0.0855078175663948, -0.02290983684360981, 0.019303223118185997, 0.10111688077449799, -0.009133793413639069, 0.050451163202524185, 0.03941686078906059, 0.047899279743433, 0.04672646522521973, -0.11746598035097122, 0.027309738099575043, 0.051200419664382935, -0.05009664595127106, -0.060931455343961716, 0.009407229721546173, 0.020570239052176476, 0.07911254465579987, 0.036869630217552185, 0.09965334832668304, -0.04112808033823967, -0.05738174915313721, -0.08471842110157013, 0.11537574976682663, -0.10670419037342072, -0.17597800493240356, -0.13078729808330536, -0.06000473350286484, -0.04037003219127655, 0.03717230260372162, 0.04627792909741402, -0.019835690036416054, -0.020610706880688667, -0.04905836284160614, 0.0826849713921547, -0.006169985048472881, -0.02550320141017437, 0.013822219334542751, 0.06407620012760162, 0.001507100649178028, -0.14425770938396454, -0.021959524601697922, 0.013355099596083164, -0.07945393025875092, 0.027064787223935127, 0.039126262068748474, 0.017710955813527107, 0.09258683770895004, -0.005852748639881611, 0.002503875643014908, -0.01795319840312004, 0.23785993456840515, -0.09021508693695068, 0.05122455209493637, 0.14351488649845123, -0.05213840678334236, 0.055531032383441925, 0.039315320551395416, 0.019819477573037148, -0.06359907984733582, 0.05647546052932739, 0.052299365401268005, -0.061350032687187195, -0.2084880769252777, -0.029753338545560837, -0.0481514111161232, 0.019327430054545403, 0.09183672815561295, 0.022515133023262024, -0.005641072057187557, 0.018113063648343086, -0.09101303666830063, 0.0541251040995121, 0.07874584943056107, 0.08775066584348679, -0.005302038509398699, 0.00436875456944108, 0.07390421628952026, -0.04979375749826431, 0.023887639865279198, 0.08376704901456833, 0.04592478275299072, 0.2451152205467224, -0.08968005329370499, 0.11341902613639832, 0.08124714344739914, 0.07484696060419083, 0.06863532960414886, 0.03750889375805855, -0.03363414853811264, 0.055768419057130814, 0.007752034347504377, -0.11301040649414062, -0.03335981443524361, 0.02141726389527321, -0.009451458230614662, -0.024022966623306274, 0.0016365877818316221, -0.06607364863157272, 0.0737743079662323, 0.21882325410842896, 0.043933380395174026, -0.13649584352970123, -0.10583996772766113, 0.053309690207242966, -0.011911905370652676, -0.04294738918542862, -0.012464696541428566, 0.10275990515947342, -0.16803166270256042, -0.002239166758954525, -0.02574879117310047, 0.1051582470536232, -0.12361584603786469, -0.006841770838946104, -0.003472553798928857, 0.10082859545946121, -0.06621605902910233, 0.07412309944629669, -0.19468320906162262, 0.07659471035003662, 0.01676083542406559, 0.10033169388771057, -0.057781659066677094, 0.022395240142941475, 0.05550661310553551, 0.008613486774265766, 0.04900867119431496, 0.017541401088237762, 0.001976925181224942, -0.09825744479894638, -0.057475313544273376, 0.008482232689857483, 0.09607791155576706, -0.09155481308698654, 0.1244630217552185, -0.03697698563337326, 0.011512688361108303, -0.018343916162848473, -0.10227229446172714, -0.1060323715209961, -0.13833463191986084, 0.05541202425956726, -0.11495334655046463, 0.043250005692243576, -0.05364575982093811, -0.014230060391128063, 0.016177445650100708, 0.1488928496837616, -0.13111035525798798, -0.10397273302078247, -0.09461063891649246, 0.02502228133380413, 0.13950631022453308, -0.08202581107616425, 0.030199814587831497, 0.013071301393210888, 0.13587622344493866, 0.00871766172349453, -0.12322627007961273, 0.004683149047195911, -0.054863955825567245, -0.2051232010126114, -0.016593649983406067, 0.11627508699893951, 0.07350514084100723, 0.0587560199201107, 0.013146542944014072, 0.02290027216076851, -0.03852124884724617, -0.12724536657333374, -0.014762062579393387, 0.11697132885456085, 0.02004578709602356, 0.052628640085458755, -0.04019730165600777, 0.02575663849711418, -0.11438753455877304, 0.0006354856886900961, 0.07367313653230667, 0.2295733243227005, -0.07392513006925583, 0.14844679832458496, 0.08043082058429718, -0.09482844173908234, -0.16449743509292603, 0.004610278178006411, 0.024693815037608147, 0.04865491762757301, 0.01471913792192936, -0.2201523780822754, 0.005795410834252834, 0.055452581495046616, 0.0006725732237100601, 0.08956395834684372, -0.3153354227542877, -0.14686356484889984, 0.0168363768607378, 0.028671376407146454, -0.07700087130069733, -0.03619881346821785, -0.02404898591339588, -0.07323809713125229, -0.1698189675807953, 0.1152716800570488, -0.10467445850372314, 0.12584535777568817, 0.022654324769973755, -0.008410751819610596, 0.04741201177239418, -0.04863733425736427, 0.1331336498260498, -0.06245483458042145, 0.0800003707408905, -0.0768498033285141, 0.0071680573746562, 0.12637479603290558, -0.034842681139707565, 0.05629176273941994, 0.014710517600178719, 0.08743271976709366, -0.029771525412797928, -0.0825924426317215, -0.07326148450374603, 0.020840179175138474, -0.05224457383155823, -0.10823597013950348, -0.06628134101629257, 0.08499639481306076, 0.09908755868673325, -0.04203453287482262, -0.069281667470932, -0.055790819227695465, -0.051048293709754944, 0.10240063816308975, 0.08123193681240082, 0.09955407679080963, -0.0798688530921936, 0.0015470407670363784, 0.0016461998457089067, 0.07875075191259384, -0.11365264654159546, 0.06223180890083313, 0.07521723210811615, 0.03914693742990494, 0.08640333265066147, 0.034531909972429276, -0.14127743244171143, 0.03555512800812721, 0.0413229875266552, -0.15985974669456482, -0.08486461639404297, -0.02164580300450325, -0.03804987296462059, -0.03854744881391525, -0.03713982552289963, 0.15673629939556122, -0.0299398060888052, -0.031685423105955124, 0.03328171372413635, 0.023595966398715973, -0.02672627940773964, 0.12435562908649445, 0.04950249195098877, 0.027846189215779305, -0.07359838485717773, 0.11426224559545517, 0.07080639153718948, 0.027662262320518494, 0.03269953280687332, 0.03851611167192459, -0.1036110371351242, -0.0038859075866639614, -0.07280175387859344, 0.059152744710445404, -0.018868567422032356, 0.005043792072683573, -0.053276944905519485, -0.023921776562929153, 0.020315784960985184, 0.12549948692321777, 0.02471112459897995, 0.10959573090076447, -0.041856180876493454, 0.03955722972750664, -0.11301784217357635, 0.10732987523078918, 0.07472608238458633, 0.028791457414627075, -0.0777210146188736, 0.18299278616905212, 0.006331325508654118, 0.04919041693210602, -0.04047780856490135, -0.06714437901973724, -0.08622513711452484, 0.007021827157586813, -0.17603228986263275, -0.03091561235487461, -0.0704355239868164, -0.021984780207276344, -0.015717830508947372, -0.03892458602786064, -0.018957901746034622, 0.04958605393767357, -0.04047705978155136, -0.04137111455202103, -0.05197256803512573, 0.028264088556170464, -0.1645529717206955, -0.022219747304916382, 0.09916847944259644, -0.10255671292543411, 0.10758692026138306, 0.10441958904266357, -0.03875556215643883, 0.025068653747439384, -0.09236901998519897, 0.012862205505371094, -0.051298245787620544, 0.02582618035376072, 0.015719205141067505, -0.10574314743280411, 0.03429349139332771, -0.06174934655427933, -0.021296557039022446, 0.007391502149403095, 0.06075518950819969, -0.13573823869228363, 0.011847038753330708, 0.05607762560248375, 0.014623349532485008, -0.07908118516206741, 0.06187669560313225, 0.04560771957039833, 0.08792335540056229, 0.07893496006727219, -0.03712979704141617, 0.0869547426700592, -0.14481574296951294, -0.03360610827803612, 0.028228934854269028, -0.03718164190649986, 0.02634442038834095, -0.03182167559862137, 0.06074892356991768, -0.03144419193267822, 0.16809479892253876, 0.013299896381795406, -0.014957967214286327, 0.014019270427525043, -0.041856929659843445, -0.010195744223892689, 0.04227527603507042, 0.07917553186416626, -0.017542658373713493, -0.025167305022478104, -0.04513183981180191, 0.0013720245333388448, -0.04545598849654198, -0.038615912199020386, 0.08604201674461365, 0.0769098773598671, 0.13361160457134247, -0.04455410689115524, 0.05065552517771721, -0.00839537288993597, -0.13159069418907166, -0.045063186436891556, -0.014504102058708668, 0.03535984829068184, -0.08538953214883804, 0.04589947313070297, 0.13904422521591187, -0.15643799304962158, 0.14744585752487183, 0.018984215334057808, -0.06911636143922806, -0.08783543109893799, -0.1915946751832962, -0.020392755046486855, -0.01777646131813526, 0.03037199191749096, -0.13069912791252136, 0.07571051269769669, 0.028512993827462196, 0.04606819525361061, -0.051933616399765015, 0.1227501705288887, -0.012525341473519802, -0.11464674025774002, 0.017214182764291763, 0.0115321921184659, 0.034330908209085464, 0.05781321972608566, 0.007683908566832542, 0.04182184115052223, 0.03058871254324913, 0.04278433695435524, 0.0546344518661499, 0.0377453975379467, -0.021362941712141037, -0.02848443202674389, -0.05522431433200836, 0.01183285005390644, 0.01585577242076397, 0.02162454091012478, 0.13683855533599854, 0.053415447473526, -0.022302471101284027, -0.020264431834220886, 0.3236319422721863, -0.03182900324463844, -0.09700074046850204, -0.16408167779445648, 0.15403741598129272, 0.029383664950728416, 0.01945873722434044, 0.03217756748199463, -0.1260456144809723, -0.0169040746986866, 0.13691921532154083, 0.16647928953170776, -0.04096848890185356, 0.03757576271891594, -0.00033746217377483845, 0.015190532431006432, 0.008237684145569801, 0.07406473904848099, 0.03290561959147453, 0.19887281954288483, -0.03584607318043709, 0.06894147396087646, -0.005169142037630081, -0.007826057262718678, -0.032966118305921555, 0.10558932274580002, -0.03878689929842949, -0.012816510163247585, -0.08075372129678726, 0.0525391586124897, -0.060456279665231705, -0.2469656765460968, -0.006866871379315853, -0.032327622175216675, -0.10576273500919342, 0.030071759596467018, 0.005453526042401791, -0.013056018389761448, 0.07852315157651901, 0.010004979558289051, -0.009332150220870972, 0.10284650325775146, 0.023693548515439034, 0.0005985477473586798, -0.0090098911896348, 0.08809708803892136, -0.013275431469082832, 0.15744468569755554, -0.01585387997329235, 0.06786853820085526, 0.09262416511774063, 0.04014398902654648, -0.09837988764047623, 0.022937441244721413, 0.04655325412750244, -0.09851764887571335, -0.00920108612626791, 0.17954812943935394, -0.018023760989308357, 0.034957945346832275, 0.060529597103595734, -0.01875506155192852, 0.04013291001319885, -0.02296135202050209, 0.03650916367769241, -0.10570824146270752, 0.02284795045852661, -0.07208945602178574, 0.09895677119493484, 0.193170428276062, -0.05837525427341461, 0.018720125779509544, -0.059517160058021545, 0.02542046830058098, 0.022365594282746315, 0.008984941989183426, -0.031019039452075958, -0.10972532629966736, 0.0025881798937916756, 0.10485425591468811, 0.040094539523124695, -0.16663376986980438, -0.0866081640124321, 0.06371790170669556, -0.05992881953716278, 0.012936328537762165, 0.13288161158561707, 0.017163503915071487, 0.0759773775935173, -0.023026900365948677, -0.03077646903693676, -0.02921685017645359, 0.056216172873973846, -0.1593521386384964, -0.08188214153051376 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b6e783ce8d8c51516715e291dbc87535.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Miyagi</div> <a href="https://genius.com/artists/miyagi"> <div style="text-align: center; font-size: 14px;">@miyagi</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Miyagi. Dataset is available [here](https://huggingface.co/datasets/huggingartists/miyagi). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/miyagi") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1c4sny4a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Miyagi's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1v51pw0u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1v51pw0u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/miyagi') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/miyagi") model = AutoModelWithLMHead.from_pretrained("huggingartists/miyagi") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/miyagi"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/miyagi
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/miyagi", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/miyagi #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Miyagi</div> <a href="URL <div style="text-align: center; font-size: 14px;">@miyagi</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Miyagi. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Miyagi's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Miyagi.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Miyagi's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/miyagi #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Miyagi.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Miyagi's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/miyagi #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Miyagi.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Miyagi's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01850062981247902, 0.15443722903728485, -0.002829714445397258, 0.03424018248915672, 0.09650002419948578, 0.008976997807621956, 0.09430727362632751, 0.10362682491540909, -0.004973390139639378, 0.07505791634321213, 0.06845388561487198, 0.010035332292318344, 0.07392245531082153, 0.10921011865139008, 0.08368892222642899, -0.26331183314323425, 0.029307076707482338, -0.09530210494995117, 0.00229707476682961, 0.11548260599374771, 0.10250330716371536, -0.052282702177762985, 0.08501354604959488, 0.04174655303359032, -0.07414878904819489, 0.020190555602312088, -0.0005195236299186945, -0.06966861337423325, 0.08738524466753006, 0.06771662086248398, 0.029227890074253082, 0.01745261438190937, 0.0629795640707016, -0.18256863951683044, 0.030609093606472015, 0.1264239251613617, 0.0343121737241745, 0.07075383514165878, 0.04880125820636749, -0.07521461695432663, 0.18563830852508545, -0.014704417437314987, 0.09129121899604797, 0.04502827301621437, -0.11572445183992386, -0.14614859223365784, -0.12756168842315674, 0.08451353013515472, 0.10006240755319595, 0.09407714754343033, -0.030836550518870354, 0.04594550281763077, -0.018314465880393982, 0.04333313927054405, 0.23743493854999542, -0.2359910011291504, -0.017433341592550278, 0.08923526853322983, 0.036037854850292206, 0.02469693310558796, -0.07387715578079224, 0.018944235518574715, 0.04487687349319458, 0.02409321442246437, 0.04330940917134285, -0.01477891393005848, 0.20831121504306793, 0.023544257506728172, -0.0970146656036377, -0.08553428947925568, 0.12422792613506317, -0.032223913818597794, -0.07380502671003342, -0.14380240440368652, 0.003084822092205286, -0.005038077477365732, 0.03343020752072334, -0.0022533240262418985, -0.007228311616927385, 0.005113633349537849, -0.03225257247686386, -0.10109832137823105, -0.09012655913829803, -0.02894403040409088, -0.02146761864423752, 0.07651323825120926, 0.030142351984977722, 0.03486092388629913, -0.08381751924753189, 0.22329148650169373, -0.02221039868891239, -0.10230745375156403, -0.04957607388496399, -0.0896148607134819, -0.08389180153608322, -0.05732268467545509, 0.002102794824168086, -0.00178906146902591, -0.05893203616142273, 0.14847278594970703, -0.04056527838110924, 0.03144890069961548, 0.005745569244027138, -0.016236307099461555, 0.14997506141662598, 0.12367266416549683, -0.10404499620199203, -0.020209144800901413, 0.0551714226603508, -0.017183812335133553, -0.06328769773244858, -0.05592282488942146, -0.009221664629876614, -0.017441069707274437, 0.027696019038558006, 0.08571279048919678, 0.05871247500181198, 0.055773522704839706, 0.018387604504823685, -0.06342601776123047, 0.0905030220746994, -0.1433355063199997, 0.012629479169845581, -0.010553697124123573, -0.04188266396522522, 0.014879132620990276, 0.040769461542367935, 0.015082759782671928, -0.10740979760885239, 0.1203831359744072, -0.056611303240060806, -0.047336235642433167, -0.08209848403930664, -0.07841115444898605, -0.00019533708109520376, -0.02010033093392849, -0.04477809742093086, -0.06929461658000946, -0.17028182744979858, -0.04107063636183739, 0.035655904561281204, -0.05065982788801193, -0.044256940484046936, 0.03913053497672081, -0.025296444073319435, 0.009064721874892712, -0.013051320798695087, -0.018595146015286446, -0.030713224783539772, 0.025616496801376343, -0.060005441308021545, 0.02867460809648037, 0.08247482031583786, 0.043531402945518494, -0.10605275630950928, 0.07235338538885117, -0.15865379571914673, 0.13052482903003693, -0.00479349959641695, 0.013602049089968204, -0.0961812436580658, -0.08939576148986816, -0.026724057272076607, -0.03031780570745468, -0.002266797935590148, 0.10112845152616501, -0.17766842246055603, -0.039094869047403336, 0.19495399296283722, -0.07717005908489227, -0.07744483649730682, 0.06642824411392212, -0.07170674949884415, 0.032509636133909225, 0.13140077888965607, 0.06566349416971207, 0.1524025946855545, -0.11008341610431671, -0.06353537738323212, -0.046247512102127075, -0.05668274313211441, 0.20519904792308807, 0.0527397021651268, -0.01211667712777853, 0.02039523981511593, 0.01116461493074894, -0.03349808603525162, -0.023924773558974266, -0.018287036567926407, -0.042721521109342575, -0.016717292368412018, 0.008979237638413906, -0.011911565437912941, -0.03742450103163719, -0.06360030174255371, -0.028433088213205338, -0.10016859322786331, 0.034493591636419296, 0.10351356863975525, -0.06915495544672012, 0.0063735018484294415, -0.09401005506515503, 0.009144878946244717, -0.029939062893390656, 0.016315434128046036, -0.18368376791477203, -0.04899076372385025, 0.020879486575722694, -0.06521034985780716, 0.08380374312400818, 0.023420562967658043, 0.036476798355579376, 0.061304621398448944, -0.01800890825688839, 0.021096842363476753, -0.04441356286406517, -0.021953657269477844, -0.02285500429570675, -0.1502414494752884, -0.05834108218550682, -0.044999007135629654, 0.09024312347173691, -0.12801074981689453, 0.005770716816186905, 0.10031847655773163, 0.12812848389148712, 0.021335534751415253, -0.06465597450733185, 0.017613334581255913, -0.03598378226161003, -0.03146595507860184, -0.10828548669815063, -0.05422690138220787, 0.012906494550406933, -0.023977842181921005, 0.15679693222045898, -0.17237739264965057, -0.08605968952178955, 0.10257693380117416, 0.14240321516990662, -0.09664163738489151, 0.03877515345811844, -0.08127371966838837, -0.014938554726541042, -0.05481097474694252, -0.03522014245390892, 0.2591662108898163, 0.03121330589056015, 0.08028887212276459, -0.10863880068063736, -0.10045170783996582, -0.0023855636827647686, -0.04709276556968689, -0.03205575421452522, 0.025411929935216904, 0.02280980907380581, -0.179494708776474, 0.03607312962412834, -0.006541309412568808, 0.10128599405288696, 0.2076800912618637, 0.04381687939167023, -0.09440723806619644, -0.06002363935112953, -0.07592809945344925, 0.00413131108507514, 0.061440609395504, 0.010880107060074806, 0.02931741625070572, 0.04216576740145683, 0.055944740772247314, 0.04182607680559158, -0.11678408086299896, 0.013144878670573235, 0.07674363255500793, -0.04284660518169403, -0.052676621824502945, 0.01674414426088333, 0.01924888789653778, 0.08316999673843384, 0.08695094287395477, 0.14664101600646973, -0.06631750613451004, -0.04894552752375603, -0.14887259900569916, 0.1363820880651474, -0.07924025505781174, -0.2551760971546173, -0.13169726729393005, -0.08112349361181259, 0.014663358218967915, 0.011572369374334812, 0.030174829065799713, -0.05773117393255234, -0.041849732398986816, -0.09408024698495865, 0.08044435828924179, -0.052113015204668045, -0.02002635970711708, 0.010770145803689957, 0.02422741986811161, -0.02277938276529312, -0.10398758947849274, -0.030728697776794434, 0.041392527520656586, -0.09311167895793915, -0.012569602578878403, 0.029959140345454216, 0.036002617329359055, 0.1596013456583023, -0.010693937540054321, 0.004735445138067007, -0.022358614951372147, 0.2900543510913849, -0.12308254837989807, 0.0649101734161377, 0.16969579458236694, -0.012958167120814323, 0.05527229979634285, 0.07728873193264008, 0.0047720144502818584, -0.06385643780231476, 0.07052000612020493, 0.07031098008155823, -0.08499196916818619, -0.21846048533916473, -0.03527318313717842, -0.016423610970377922, 0.008251087740063667, 0.12029018998146057, 0.0542760007083416, 0.05135207250714302, 0.008555295877158642, -0.1086793839931488, 0.044887199997901917, 0.030089309439063072, 0.10230112075805664, -0.06631223857402802, -0.009366210550069809, 0.04503348842263222, -0.05948084592819214, 0.030559049919247627, 0.13645115494728088, 0.03999253362417221, 0.20898260176181793, -0.06887536495923996, 0.09647008031606674, 0.07616960257291794, 0.10038475692272186, 0.02892141416668892, 0.01564578339457512, -0.021718330681324005, 0.013779444620013237, 0.003491566050797701, -0.09432552754878998, -0.01218769233673811, 0.04292076826095581, 0.03011186607182026, -0.025033988058567047, -0.04303331300616264, -0.056207410991191864, 0.0406816266477108, 0.24256014823913574, 0.004809335805475712, -0.17088474333286285, -0.10519055277109146, 0.05188557505607605, -0.0709950178861618, -0.0591668076813221, -0.02188611403107643, 0.0763590931892395, -0.21800868213176727, 0.07457461953163147, -0.02920621819794178, 0.1105232760310173, -0.11594772338867188, -0.005196955054998398, 0.08712458610534668, 0.047357071191072464, -0.05992330610752106, 0.09833608567714691, -0.16980139911174774, 0.06262613832950592, -0.007637634873390198, 0.07977946847677231, -0.07941746711730957, 0.031075304374098778, 0.006282800808548927, 0.05153714492917061, 0.08062591403722763, 0.020001409575343132, 0.009612400084733963, 0.004105223808437586, -0.03938183933496475, 0.0048827300779521465, 0.0623893178999424, -0.11763200163841248, 0.12136077880859375, -0.03176817297935486, 0.03472590073943138, -0.039571911096572876, -0.09465550631284714, -0.08740509301424026, -0.16704080998897552, 0.09237787872552872, -0.11550533771514893, -0.002574200974777341, -0.07053648680448532, -0.02073986828327179, 0.03651011735200882, 0.25454437732696533, -0.041981473565101624, -0.07969114184379578, -0.1366194486618042, 0.006805949844419956, 0.13947173953056335, -0.07917378097772598, 0.004981744568794966, -0.013724573887884617, 0.20500431954860687, 0.004106495529413223, -0.12705181539058685, -0.0213259719312191, -0.06639549136161804, -0.16780930757522583, -0.006973648443818092, 0.17081622779369354, 0.06173991039395332, 0.0296514630317688, 0.007806959096342325, -0.0015172078274190426, -0.049306776374578476, -0.16986994445323944, 0.021616732701659203, 0.15644323825836182, 0.0018689919961616397, 0.01805892027914524, 0.04367399588227272, 0.022831173613667488, -0.13078008592128754, 0.006003023590892553, 0.0492396280169487, 0.17054259777069092, -0.07061884552240372, 0.18288132548332214, 0.030988331884145737, -0.09111165255308151, -0.15719595551490784, 0.015928925946354866, 0.026171131059527397, 0.038162801414728165, 0.03154294937849045, -0.205390065908432, 0.03665423393249512, 0.033747244626283646, -0.0013508262345567346, 0.057118844240903854, -0.33364057540893555, -0.15201114118099213, -0.00996140856295824, 0.009972448460757732, -0.11776233464479446, -0.03990139067173004, -0.03569813445210457, -0.08936137706041336, -0.2514888048171997, 0.09161144495010376, -0.10778035968542099, 0.07842447608709335, 0.02277427352964878, 0.09411933273077011, 0.045231059193611145, -0.05016796290874481, 0.13558337092399597, -0.03265421837568283, 0.05718211829662323, -0.0997280478477478, -0.05100058391690254, 0.08095375448465347, -0.06781309098005295, 0.09670336544513702, 0.02551264502108097, 0.08514296263456345, -0.09976159036159515, -0.0871676504611969, -0.07294563204050064, 0.001016290276311338, -0.0581161305308342, -0.08780180662870407, -0.09458698332309723, 0.08867702633142471, 0.12170767784118652, -0.044529613107442856, -0.10430905967950821, -0.059735722839832306, 0.0018745543202385306, 0.04708078131079674, 0.11907132714986801, 0.060802385210990906, -0.07813789695501328, 0.00467779440805316, 0.022125670686364174, 0.017216147854924202, -0.17383025586605072, 0.04480152577161789, 0.08601994067430496, 0.041800059378147125, 0.10704817622900009, 0.006543081719428301, -0.16735361516475677, 0.0012610664125531912, 0.05442273989319801, -0.1666783094406128, -0.1278388798236847, -0.04834415763616562, 0.030885234475135803, -0.10446300357580185, -0.05456748604774475, 0.12799182534217834, -0.034855060279369354, -0.03706374019384384, 0.004301578737795353, 0.04397301375865936, -0.045934874564409256, 0.09154455363750458, -0.005723861977458, 0.04241979867219925, -0.07340440154075623, 0.11564046889543533, 0.07022013515233994, 0.010152019560337067, 0.038080424070358276, 0.07206226140260696, -0.08997832238674164, 0.010205020196735859, -0.09453050047159195, 0.006867393851280212, -0.022058561444282532, -0.02039925381541252, 0.01925654336810112, -0.04364856705069542, 0.04599447175860405, 0.06944430619478226, -0.012636102735996246, 0.10831515491008759, -0.04090961068868637, 0.009657775051891804, -0.13379395008087158, 0.06632255762815475, 0.04115878418087959, 0.019519826397299767, -0.11622189730405807, 0.19096466898918152, 0.0336407907307148, 0.10171043127775192, -0.035560380667448044, -0.060420598834753036, -0.055532217025756836, -0.006409785710275173, -0.08099932223558426, -0.044286441057920456, -0.10218332707881927, -0.028745008632540703, -0.004194251261651516, -0.034429747611284256, -0.027646854519844055, 0.04860170558094978, -0.03352571278810501, -0.061076875776052475, -0.07902111113071442, 0.04221248999238014, -0.12988783419132233, 0.039813604205846786, 0.117994025349617, -0.05930748209357262, 0.12010511010885239, 0.06052638962864876, -0.038430407643318176, 0.024755561724305153, -0.1169954240322113, 0.038499534130096436, -0.017251241952180862, 0.017958231270313263, 0.019235758110880852, -0.1666749119758606, 0.00910897646099329, -0.03417153283953667, -0.06439497321844101, 0.005531128030270338, -0.013409598730504513, -0.1304180920124054, -0.0010920811910182238, 0.08378075063228607, -0.02345694601535797, -0.07088884711265564, 0.06815732270479202, 0.06079719215631485, 0.020205914974212646, 0.06190808117389679, -0.018421797081828117, 0.07640442252159119, -0.16652818024158478, -0.051652077585458755, 0.0020894906483590603, 0.03337283432483673, 0.03794663026928902, -0.013697443529963493, 0.038606252521276474, -0.02102593518793583, 0.19365055859088898, 0.019474659115076065, -0.022600237280130386, 0.03979771211743355, -0.06282424181699753, 0.00856177881360054, 0.044271815568208694, 0.08004757016897202, -0.029035547748208046, -0.03866787254810333, 0.001329211052507162, -0.019348539412021637, -0.09714894741773605, -0.025174766778945923, 0.11004550009965897, 0.030654679983854294, 0.20391525328159332, -0.05397440493106842, 0.06191921606659889, -0.017776982858777046, -0.12210225313901901, -0.015586888417601585, -0.04721846431493759, 0.03526498004794121, -0.05608615651726723, 0.057306140661239624, 0.19350767135620117, -0.1650485396385193, 0.12339625507593155, 0.020623965188860893, -0.06097430735826492, -0.11521311849355698, -0.19876213371753693, -0.018253328278660774, -0.036912430077791214, 0.029398102313280106, -0.1397704929113388, 0.09426721930503845, 0.030081329867243767, 0.03576556593179703, -0.06895647197961807, 0.13239453732967377, -0.08127512037754059, -0.12569880485534668, 0.036979224532842636, 0.02354477159678936, 0.03257230296730995, 0.05255744606256485, 0.08465346693992615, 0.02540106140077114, 0.0018640902126207948, 0.07406065613031387, 0.04279832914471626, 0.027939895167946815, 0.035006891936063766, -0.02348443493247032, -0.039679598063230515, 0.03408556431531906, -0.00509715685620904, 0.033924348652362823, 0.09782589226961136, 0.058062389492988586, -0.018764659762382507, -0.023152561858296394, 0.30595818161964417, -0.03352639079093933, -0.046177759766578674, -0.19240295886993408, 0.1640550196170807, 0.004789488855749369, -0.015412130393087864, 0.028515197336673737, -0.11962290108203888, 0.007726290263235569, 0.13234692811965942, 0.1584707647562027, -0.017823398113250732, 0.020870471373200417, -0.030189938843250275, 0.018180960789322853, 0.032760873436927795, 0.09933061897754669, 0.0673275738954544, 0.2085663378238678, -0.036555249243974686, 0.0519336499273777, -0.01718832552433014, -0.019341671839356422, -0.010385286994278431, 0.10692668706178665, -0.03614396974444389, 0.002955466276034713, -0.05043717101216316, 0.10414493083953857, -0.04842954874038696, -0.27430102229118347, -0.028695592656731606, -0.02582879550755024, -0.09542831033468246, 0.07100486755371094, -0.032502781599760056, -0.024288058280944824, 0.08697695285081863, 0.025932684540748596, -0.046561531722545624, 0.1379569172859192, 0.05370364338159561, -0.045086074620485306, -0.00936313346028328, 0.11300623416900635, -0.011063532903790474, 0.17055609822273254, -0.029034022241830826, 0.011387216858565807, 0.0783313736319542, 0.016264015808701515, -0.12807780504226685, 0.004218549467623234, 0.04016352817416191, -0.06762770563364029, -0.02056015096604824, 0.2031680941581726, 0.010139787569642067, 0.012931043282151222, 0.0669669359922409, -0.05342191830277443, 0.01959051750600338, -0.044850971549749374, 0.07169084995985031, -0.14082114398479462, 0.06641658395528793, -0.08744794130325317, 0.12798216938972473, 0.18925772607326508, -0.0660596489906311, 0.02591792494058609, -0.05911245942115784, 0.011409927159547806, -0.025406217202544212, 0.07035452127456665, -0.022020483389496803, -0.12022832781076431, 0.0069097657687962055, 0.03273811563849449, 0.019736969843506813, -0.1763320416212082, -0.07473539561033249, 0.07573658972978592, -0.053704630583524704, 0.020570673048496246, 0.17188899219036102, 0.02629639022052288, 0.059543196111917496, -0.03872845321893692, -0.019930385053157806, -0.010155482217669487, 0.11428633332252502, -0.16390226781368256, -0.08209677040576935 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/29ca6a878f02979daf772290e6e71f48.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mnogoznaal</div> <a href="https://genius.com/artists/mnogoznaal"> <div style="text-align: center; font-size: 14px;">@mnogoznaal</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Mnogoznaal. Dataset is available [here](https://huggingface.co/datasets/huggingartists/mnogoznaal). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mnogoznaal") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/21uo4oav/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Mnogoznaal's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/13v4iqfe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/13v4iqfe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mnogoznaal') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mnogoznaal") model = AutoModelWithLMHead.from_pretrained("huggingartists/mnogoznaal") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/mnogoznaal"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/mnogoznaal
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mnogoznaal", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mnogoznaal #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mnogoznaal</div> <a href="URL <div style="text-align: center; font-size: 14px;">@mnogoznaal</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Mnogoznaal. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Mnogoznaal's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Mnogoznaal.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Mnogoznaal's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mnogoznaal #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Mnogoznaal.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Mnogoznaal's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mnogoznaal #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Mnogoznaal.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Mnogoznaal's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03283887356519699, 0.18994241952896118, -0.0034646056592464447, 0.04941179230809212, 0.09905573725700378, 0.006792971398681402, 0.0670711025595665, 0.11075165122747421, 0.002206917619332671, 0.07736904174089432, 0.061025358736515045, 0.05885421857237816, 0.07862016558647156, 0.06734771281480789, 0.059743523597717285, -0.24447092413902283, 0.039899345487356186, -0.06925016641616821, 0.00899088941514492, 0.09474865347146988, 0.08616523444652557, -0.07635737955570221, 0.08206809312105179, 0.04359743371605873, -0.05024455115199089, -0.0013546370901167393, 0.0012362012639641762, -0.061094071716070175, 0.07729210704565048, 0.07600388675928116, 0.029249249026179314, 0.037016671150922775, 0.06368395686149597, -0.16785529255867004, 0.025138448923826218, 0.12188450992107391, 0.031021617352962494, 0.08558759838342667, 0.08386880159378052, -0.0773971676826477, 0.12880702316761017, -0.027638472616672516, 0.08472884446382523, 0.06162957102060318, -0.10327683389186859, -0.09050950407981873, -0.14958974719047546, 0.06450112164020538, 0.08442926406860352, 0.0872461348772049, -0.02631928026676178, 0.09582598507404327, -0.03230919688940048, 0.047781262546777725, 0.2566229999065399, -0.24821172654628754, -0.008491525426506996, 0.07601173222064972, 0.06356541812419891, 0.010277905501425266, -0.092701755464077, 0.021976549178361893, 0.04166393727064133, 0.03097446821630001, 0.04037147015333176, -0.029297322034835815, 0.16031453013420105, 0.010115298442542553, -0.10739917308092117, -0.07284612208604813, 0.08878088742494583, -0.014584308490157127, -0.08034457266330719, -0.13396352529525757, 0.0034692699555307627, -0.021413123235106468, 0.02093125320971012, 0.0159468874335289, -0.0012191369896754622, -0.007909196428954601, -0.057730406522750854, -0.11481404304504395, -0.07050492614507675, -0.0295632965862751, -0.012643219903111458, 0.048116277903318405, 0.04483576864004135, 0.03174371272325516, -0.06878345459699631, 0.20908574759960175, 0.02010444924235344, -0.10160192847251892, -0.06286903470754623, -0.11412263661623001, -0.09115268290042877, -0.042408689856529236, -0.010530046187341213, -0.011033409275114536, -0.021107161417603493, 0.13914532959461212, -0.021507810801267624, 0.028120962902903557, -0.04818112030625343, 0.00793359987437725, 0.12861455976963043, 0.13290874660015106, -0.14071567356586456, -0.05186837911605835, 0.06912343204021454, -0.010500214993953705, -0.06686605513095856, -0.0527721531689167, 0.0024709024000912905, -0.03505634143948555, 0.054963402450084686, 0.07502396404743195, 0.09075918048620224, 0.06845403462648392, 0.006669511552900076, -0.05921998247504234, 0.03889864310622215, -0.13761036098003387, 0.00840784702450037, -0.017149675637483597, -0.06509135663509369, 0.03132408484816551, 0.05454370751976967, 0.010196881368756294, -0.11366474628448486, 0.090780109167099, -0.08651521801948547, -0.046029262244701385, -0.08366484194993973, -0.10490144044160843, 0.0037867410574108362, -0.041773051023483276, -0.02202214114367962, -0.07317233085632324, -0.15642988681793213, -0.036940667778253555, 0.01858181320130825, -0.05978760868310928, -0.020246202126145363, 0.026152586564421654, -0.03810427337884903, 0.005516474600881338, -0.017681648954749107, 0.003786618821322918, -0.018369412049651146, 0.035912055522203445, -0.09439589828252792, 0.03351069986820221, 0.07813597470521927, 0.03790713846683502, -0.11647339165210724, 0.07594338059425354, -0.1433970183134079, 0.12825050950050354, -0.02945118024945259, -0.011328508146107197, -0.09556402266025543, -0.09438510239124298, -0.01720859669148922, -0.03995092585682869, 0.030647559091448784, 0.12787891924381256, -0.15685944259166718, -0.016390440985560417, 0.20382395386695862, -0.06636515259742737, -0.05445239692926407, 0.06933765858411789, -0.072333425283432, 0.023191114887595177, 0.1102895438671112, 0.05476885288953781, 0.14491844177246094, -0.1050395593047142, -0.08819663524627686, -0.04300803318619728, -0.08225420117378235, 0.1843995600938797, 0.027958886697888374, -0.020582757890224457, 0.04022689163684845, 0.010450596921145916, -0.019965117797255516, -0.005616654176265001, -0.038796763867139816, -0.03587394580245018, -0.014033542014658451, -0.006509590428322554, 0.009447230957448483, -0.04709218442440033, -0.03882735222578049, -0.006250827573239803, -0.10001523047685623, 0.04263438656926155, 0.09733393043279648, -0.07280471175909042, 0.017174120992422104, -0.10692695528268814, 0.043431516736745834, -0.05900592356920242, 0.013990138657391071, -0.18544116616249084, -0.04222581535577774, 0.013082907535135746, -0.07779119163751602, 0.06037099286913872, 0.027710212394595146, 0.03873807191848755, 0.07233935594558716, -0.01784997619688511, 0.011089273728430271, -0.03552093729376793, 0.0021633808501064777, -0.04580603912472725, -0.16171762347221375, -0.05761456489562988, -0.0408567376434803, 0.07711794972419739, -0.10840161144733429, 0.0012820324627682567, 0.09210147708654404, 0.15519356727600098, 0.030643686652183533, -0.06548886746168137, 0.0332803912460804, -0.03191446512937546, -0.033340297639369965, -0.10039837658405304, -0.04516208544373512, 0.008751491084694862, -0.028672194108366966, 0.16637223958969116, -0.14324288070201874, -0.10405968129634857, 0.12751014530658722, 0.0882287323474884, -0.0788508802652359, 0.02739534340798855, -0.06628896296024323, -0.023615490645170212, -0.035961076617240906, -0.05726263299584389, 0.2248915284872055, 0.050387170165777206, 0.09123265743255615, -0.09001880139112473, -0.07607899606227875, 0.008169662207365036, -0.03774373605847359, -0.03794754669070244, 0.03423887491226196, 0.02461189590394497, -0.18128173053264618, 0.04570329189300537, -0.01623867079615593, 0.08621128648519516, 0.17963281273841858, 0.030014734715223312, -0.09734329581260681, -0.05839543789625168, -0.07148252427577972, 0.007880722172558308, 0.07708021253347397, 0.014026614837348461, 0.05218954756855965, 0.045095670968294144, 0.04809006303548813, 0.0481257401406765, -0.10181533545255661, 0.012998840771615505, 0.05266852676868439, -0.024837421253323555, -0.045968178659677505, 0.020708370953798294, 0.033017661422491074, 0.08950867503881454, 0.06272606551647186, 0.10211437195539474, -0.04531768709421158, -0.05695930868387222, -0.12818171083927155, 0.13267521560192108, -0.09035191684961319, -0.20513349771499634, -0.13386011123657227, -0.09065505117177963, -0.0016161384992301464, 0.003455961588770151, 0.02840990014374256, -0.030226467177271843, -0.03947687894105911, -0.09417996555566788, 0.06763945519924164, -0.04098173603415489, -0.013616341166198254, 0.000018872075088438578, 0.03227384388446808, -0.013099201954901218, -0.11887237429618835, -0.02351955696940422, 0.026419181376695633, -0.0772513821721077, 0.008022774010896683, 0.03352255001664162, 0.05977967754006386, 0.1298871487379074, -0.0026209622155874968, 0.0032017508056014776, -0.019224869087338448, 0.2715771496295929, -0.1063179299235344, 0.0455908440053463, 0.16283638775348663, -0.019787879660725594, 0.06390980631113052, 0.05057777836918831, -0.0037677239160984755, -0.0518677644431591, 0.04953920841217041, 0.06661122292280197, -0.06590383499860764, -0.20581591129302979, -0.031979262828826904, -0.02487199194729328, 0.0022912013810127974, 0.10744193196296692, 0.027602676302194595, 0.04309110343456268, 0.021469442173838615, -0.09624317288398743, 0.04985401779413223, 0.04442198947072029, 0.099271759390831, -0.05194646120071411, -0.01147337444126606, 0.053525861352682114, -0.04854092746973038, 0.02916630357503891, 0.10614269971847534, 0.03298255428671837, 0.255120187997818, -0.07883261889219284, 0.05801244080066681, 0.08628425002098083, 0.09467735886573792, 0.018745090812444687, 0.04888813570141792, -0.021642452105879784, 0.029381562024354935, 0.003203517524525523, -0.09522119164466858, -0.00598814757540822, 0.032836996018886566, 0.03952764719724655, -0.02031564898788929, -0.06428850442171097, -0.06511683762073517, 0.04238500818610191, 0.22810453176498413, 0.03864534571766853, -0.17424848675727844, -0.07523417472839355, 0.062364596873521805, -0.03821666166186333, -0.05537866801023483, -0.018058771267533302, 0.0674976259469986, -0.21305051445960999, 0.04245048388838768, -0.047310665249824524, 0.11334228515625, -0.13679851591587067, -0.0015157031593844295, 0.027770891785621643, 0.05123509094119072, -0.06484722346067429, 0.0779280886054039, -0.16692888736724854, 0.08044169843196869, 0.010055405087769032, 0.07653749734163284, -0.07613543421030045, 0.019154563546180725, 0.03789419308304787, 0.018005385994911194, 0.10384809225797653, 0.008769088424742222, 0.0026159854605793953, -0.0733867883682251, -0.05501127243041992, -0.0019765880424529314, 0.05840663984417915, -0.06956035643815994, 0.134172722697258, -0.02918645739555359, 0.026910247281193733, -0.02278813347220421, -0.05376117303967476, -0.11764799803495407, -0.16121181845664978, 0.08109775930643082, -0.11255824565887451, -0.0011557051911950111, -0.05835532769560814, -0.02920883148908615, 0.008853072300553322, 0.20795859396457672, -0.09235609322786331, -0.07583197951316833, -0.12666001915931702, 0.019802872091531754, 0.1600412130355835, -0.07507076859474182, 0.013577666133642197, 0.005333476234227419, 0.16155023872852325, 0.002654219977557659, -0.13062702119350433, -0.01716337911784649, -0.06032352149486542, -0.17753224074840546, -0.019828861579298973, 0.12307000905275345, 0.08061916381120682, 0.04076622426509857, 0.020699555054306984, 0.00223547569476068, -0.017241420224308968, -0.16685645282268524, 0.010235166177153587, 0.14698053896427155, 0.04904322698712349, 0.03138262778520584, 0.013416499830782413, 0.014653715305030346, -0.1371716856956482, 0.029817011207342148, 0.06037812680006027, 0.20276300609111786, -0.0758834183216095, 0.14931301772594452, 0.00880398042500019, -0.09357065707445145, -0.17033687233924866, 0.02762448415160179, 0.006024940405040979, 0.02783171832561493, 0.0432475320994854, -0.16174648702144623, 0.005534093827009201, 0.03608466684818268, -0.005318998824805021, 0.06489020586013794, -0.3345704674720764, -0.13802607357501984, 0.025151843205094337, 0.022190742194652557, -0.07548311352729797, -0.03426460176706314, -0.03792055696249008, -0.07567273080348969, -0.2595047950744629, 0.0887005627155304, -0.10148561745882034, 0.08576557040214539, 0.018281158059835434, 0.051084473729133606, 0.05419562757015228, -0.06726360321044922, 0.13761775195598602, -0.03031131811439991, 0.06641490012407303, -0.09049852192401886, -0.025546468794345856, 0.09760724753141403, -0.052192941308021545, 0.08127404749393463, 0.025711651891469955, 0.07658670842647552, -0.08862236887216568, -0.0634627416729927, -0.07874278724193573, 0.018594389781355858, -0.05845339223742485, -0.09090055525302887, -0.08154194056987762, 0.10269037634134293, 0.1330612450838089, -0.0320110060274601, -0.09682311862707138, -0.053813233971595764, -0.03149019554257393, 0.08599081635475159, 0.10624170303344727, 0.08556198328733444, -0.07454485446214676, 0.009888112545013428, 0.010830826126039028, 0.024385014548897743, -0.1125921979546547, 0.04520874470472336, 0.0896838903427124, 0.027454424649477005, 0.09380142390727997, 0.02067696489393711, -0.16873174905776978, 0.034178391098976135, 0.03526676446199417, -0.14489859342575073, -0.0998462587594986, -0.032834507524967194, -0.0029011962469667196, -0.08156423270702362, -0.04613395035266876, 0.14520421624183655, -0.028454605489969254, -0.03214900940656662, -0.0015835945960134268, 0.05914618819952011, -0.044410500675439835, 0.11413516104221344, 0.0184852946549654, 0.04661552608013153, -0.06979954242706299, 0.10571715235710144, 0.06751631945371628, 0.009405967779457569, 0.029122810810804367, 0.036462511867284775, -0.08400466293096542, -0.001665515941567719, -0.09557173401117325, 0.006949630565941334, -0.045364540070295334, -0.004904072266072035, -0.001583113451488316, -0.03720693662762642, 0.02674650400876999, 0.08917540311813354, -0.010505026206374168, 0.11995059996843338, -0.020648539066314697, -0.016273727640509605, -0.13741186261177063, 0.06822580099105835, 0.0579698421061039, 0.01290589477866888, -0.10267484188079834, 0.17775584757328033, 0.024078352376818657, 0.09198251366615295, -0.04474195837974548, -0.05085238069295883, -0.07550068199634552, -0.008389277383685112, -0.14291079342365265, -0.03702602535486221, -0.10334348678588867, -0.0434771291911602, -0.024297993630170822, -0.03299727290868759, -0.030378520488739014, 0.05090117081999779, -0.026837635785341263, -0.06927674263715744, -0.057824548333883286, 0.053145647048950195, -0.1400453746318817, 0.003872077213600278, 0.12141533195972443, -0.0723971426486969, 0.10867343842983246, 0.04568910598754883, -0.041515860706567764, 0.015600387938320637, -0.0851028710603714, 0.015370609238743782, -0.03217879682779312, 0.01121735293418169, 0.029906459152698517, -0.13903865218162537, 0.013018346391618252, -0.05144311487674713, -0.05482309311628342, 0.010175583884119987, 0.006076089572161436, -0.12608306109905243, -0.014912504702806473, 0.06034848093986511, 0.006106705404818058, -0.07176820188760757, 0.07110124826431274, 0.07577023655176163, 0.027073277160525322, 0.07164754718542099, -0.021766694262623787, 0.08974380791187286, -0.16889698803424835, -0.041832417249679565, 0.00567238312214613, 0.011193530634045601, 0.09997144341468811, -0.005733659956604242, 0.05310676246881485, -0.025424879044294357, 0.20075426995754242, -0.0030122725293040276, -0.01971721276640892, 0.03755145147442818, -0.029940715059638023, -0.0059603918343782425, 0.05148729309439659, 0.06756909936666489, -0.029594823718070984, -0.03384216129779816, -0.017208915203809738, 0.003988315816968679, -0.07287531346082687, -0.03732060641050339, 0.11173593997955322, 0.06734931468963623, 0.1667814403772354, -0.0303645096719265, 0.0649275854229927, -0.024451928213238716, -0.10927451401948929, -0.014031813479959965, -0.015309132635593414, 0.03950800374150276, -0.06419660896062851, 0.06799155473709106, 0.165488600730896, -0.15457579493522644, 0.11903608590364456, 0.01671995222568512, -0.056982845067977905, -0.10389254987239838, -0.1961003988981247, -0.021653085947036743, -0.012653476558625698, 0.04149540886282921, -0.12522514164447784, 0.0861067846417427, 0.04331478476524353, 0.029259243980050087, -0.06412373483181, 0.0977540835738182, -0.0651051253080368, -0.12183230370283127, 0.0266692116856575, 0.02962695248425007, 0.01810641400516033, 0.03320210054516792, 0.062394723296165466, 0.031357768923044205, 0.020346080884337425, 0.061670467257499695, 0.0313224159181118, 0.03753877431154251, 0.04268309846520424, -0.023499857634305954, -0.05495543032884598, 0.020519427955150604, 0.0036590052768588066, 0.04780198633670807, 0.10697444528341293, 0.0653705820441246, -0.01567569561302662, -0.04456626996397972, 0.29583606123924255, -0.03385484218597412, -0.02880420722067356, -0.16909371316432953, 0.15914878249168396, 0.03782116621732712, -0.008915599435567856, 0.028082225471735, -0.14157068729400635, 0.020044293254613876, 0.15494298934936523, 0.17612706124782562, -0.06065254658460617, 0.007875096052885056, -0.03627637401223183, 0.008656967431306839, 0.03091629222035408, 0.08209257572889328, 0.05977680906653404, 0.19609388709068298, -0.04913976415991783, 0.0644761323928833, -0.012154900468885899, -0.004810329992324114, -0.019363202154636383, 0.1224362701177597, -0.034745924174785614, 0.006842428352683783, -0.061240240931510925, 0.09109560400247574, -0.07310114800930023, -0.24937951564788818, -0.017469529062509537, -0.03590680658817291, -0.09499095380306244, 0.057285960763692856, -0.05679398775100708, -0.015808887779712677, 0.09068185091018677, 0.01594388671219349, -0.02045062929391861, 0.12401638180017471, 0.0380205400288105, -0.02481250837445259, -0.017700044438242912, 0.0820162445306778, -0.004120613913983107, 0.20263195037841797, -0.018191324546933174, 0.013083645142614841, 0.09321680665016174, 0.03354939445853233, -0.1233685165643692, -0.0058068763464689255, 0.04107365012168884, -0.07622092962265015, -0.004897593054920435, 0.19400811195373535, 0.010629766620695591, 0.021594639867544174, 0.05757775530219078, -0.0393073596060276, 0.04021343216300011, -0.08385580778121948, 0.050757020711898804, -0.12013784050941467, 0.0453728623688221, -0.07930129766464233, 0.14033859968185425, 0.17027203738689423, -0.0699358806014061, 0.02932383492588997, -0.04908231645822525, -0.010751577094197273, -0.023278838023543358, 0.05152186378836632, -0.027494510635733604, -0.10895298421382904, 0.02238842472434044, 0.023112738505005836, 0.010282627306878567, -0.18330414593219757, -0.07280927896499634, 0.05224202573299408, -0.06524543464183807, 0.011152615770697594, 0.15694794058799744, 0.0319170244038105, 0.044597309082746506, -0.03439140319824219, -0.014827337116003036, -0.02302226424217224, 0.09908121824264526, -0.1502785086631775, -0.08421900123357773 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/cdfb190640789439daae426c799e5e32.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MORGENSHTERN</div> <a href="https://genius.com/artists/morgenshtern"> <div style="text-align: center; font-size: 14px;">@morgenshtern</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MORGENSHTERN. Dataset is available [here](https://huggingface.co/datasets/huggingartists/morgenshtern). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/morgenshtern") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/lmrnk6sz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MORGENSHTERN's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1m2jynlh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1m2jynlh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/morgenshtern') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/morgenshtern") model = AutoModelWithLMHead.from_pretrained("huggingartists/morgenshtern") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/morgenshtern"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/morgenshtern
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/morgenshtern", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/morgenshtern #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">MORGENSHTERN</div> <a href="URL <div style="text-align: center; font-size: 14px;">@morgenshtern</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from MORGENSHTERN. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on MORGENSHTERN's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MORGENSHTERN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MORGENSHTERN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/morgenshtern #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from MORGENSHTERN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MORGENSHTERN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/morgenshtern #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from MORGENSHTERN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on MORGENSHTERN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04277535155415535, 0.1694362461566925, -0.0029542248230427504, 0.05339216813445091, 0.09993582963943481, 0.015621555037796497, 0.07987264543771744, 0.11238546669483185, 0.015348486602306366, 0.08026998490095139, 0.07721760869026184, 0.04487762600183487, 0.06913530081510544, 0.08901026099920273, 0.06222681328654289, -0.2306479960680008, 0.04203871637582779, -0.0835329219698906, 0.001482394291087985, 0.09314049780368805, 0.09159345924854279, -0.06539005041122437, 0.0785648450255394, 0.024169480428099632, -0.06852559000253677, 0.010012239217758179, 0.006503516808152199, -0.05999918654561043, 0.08481248468160629, 0.06200198084115982, 0.040239617228507996, 0.023433739319443703, 0.0654514729976654, -0.17748506367206573, 0.028469007462263107, 0.123992919921875, 0.029913967475295067, 0.08196818828582764, 0.06092733144760132, -0.08846238255500793, 0.12441135942935944, -0.02570332959294319, 0.08617911487817764, 0.05579885467886925, -0.11169692873954773, -0.11552220582962036, -0.14992135763168335, 0.08787599951028824, 0.08937602490186691, 0.08740593492984772, -0.028893673792481422, 0.08965487033128738, -0.02538841776549816, 0.050270069390535355, 0.24625788629055023, -0.2444601207971573, -0.011542871594429016, 0.08040372282266617, 0.057929929345846176, 0.02311718463897705, -0.09307284653186798, 0.019587306305766106, 0.051851142197847366, 0.0387091338634491, 0.0319691002368927, -0.027119560167193413, 0.1528770625591278, 0.022062450647354126, -0.1084042489528656, -0.07208698987960815, 0.10413796454668045, -0.02076870948076248, -0.07801702618598938, -0.12584730982780457, 0.0005984239396639168, -0.03398002311587334, 0.03459850326180458, 0.02315273880958557, 0.0014266258804127574, -0.002889064373448491, -0.04348832368850708, -0.1123841404914856, -0.07188163697719574, -0.041058994829654694, -0.009702101349830627, 0.052675582468509674, 0.042563918977975845, 0.037765126675367355, -0.08035624772310257, 0.2215428501367569, 0.003016249043866992, -0.09799659997224808, -0.05874113738536835, -0.10837109386920929, -0.08991988748311996, -0.04634368419647217, -0.001200309139676392, -0.0018892178777605295, -0.024842513725161552, 0.15145233273506165, -0.041142724454402924, 0.029878798872232437, -0.0326346680521965, 0.00265367329120636, 0.1370265632867813, 0.14148619771003723, -0.12779726088047028, -0.0444599948823452, 0.07002619653940201, -0.002525028306990862, -0.0687747672200203, -0.04365324601531029, 0.0018573673442006111, -0.010133611038327217, 0.05126595497131348, 0.08556471019983292, 0.0784238800406456, 0.0619569756090641, 0.00043978256871923804, -0.060505274683237076, 0.05575428530573845, -0.13210372626781464, 0.01598730869591236, -0.010501827113330364, -0.06084180995821953, 0.03237093240022659, 0.06502147763967514, 0.005017902702093124, -0.10964956134557724, 0.09487702697515488, -0.07783114165067673, -0.0481603741645813, -0.08116543292999268, -0.10720493644475937, 0.0018195188604295254, -0.051465243101119995, -0.031663600355386734, -0.07290162891149521, -0.17633281648159027, -0.049331046640872955, 0.024291859939694405, -0.05888288468122482, -0.021161073818802834, 0.020118918269872665, -0.0378405787050724, 0.015634993091225624, -0.01771201565861702, -0.011993182823061943, -0.026756390929222107, 0.029040031135082245, -0.08563515543937683, 0.032866962254047394, 0.06976503878831863, 0.043232765048742294, -0.11594363301992416, 0.07656954973936081, -0.1340402513742447, 0.1136113852262497, -0.0357898510992527, 0.011440950445830822, -0.09402654320001602, -0.0781664028763771, -0.013108565472066402, -0.03542381525039673, 0.026274580508470535, 0.11916466802358627, -0.15901006758213043, -0.020092559978365898, 0.20497414469718933, -0.06314235180616379, -0.07408309727907181, 0.06776221096515656, -0.07119779288768768, 0.03699725493788719, 0.114578977227211, 0.06851934641599655, 0.14583955705165863, -0.11743433028459549, -0.08627849817276001, -0.04497132822871208, -0.07015145570039749, 0.1693609654903412, 0.02821492590010166, -0.029169688001275063, 0.027681170031428337, 0.0006300969980657101, -0.030330242589116096, 0.0002576481783762574, -0.030374344438314438, -0.031648844480514526, -0.019082864746451378, -0.01812143810093403, 0.0003665540716610849, -0.04298776015639305, -0.041750676929950714, -0.030255749821662903, -0.09515564888715744, 0.07537344843149185, 0.10044105350971222, -0.07180552929639816, 0.017684731632471085, -0.09366828203201294, 0.0314578153192997, -0.05910348519682884, 0.013300539925694466, -0.17556427419185638, -0.057782720774412155, 0.021557239815592766, -0.06853055208921432, 0.061372410506010056, 0.015589137561619282, 0.04822516068816185, 0.07409518957138062, -0.018512774258852005, -0.007219916209578514, -0.040964026004076004, 0.004798961337655783, -0.047561127692461014, -0.17169077694416046, -0.0487411767244339, -0.04847186431288719, 0.08054310083389282, -0.11238166689872742, 0.0019484575605019927, 0.08345470577478409, 0.15386982262134552, 0.024322818964719772, -0.06775631755590439, 0.042087212204933167, -0.0345795713365078, -0.028267236426472664, -0.10945127159357071, -0.044111501425504684, 0.0078016240149736404, -0.017382845282554626, 0.1520392894744873, -0.14497241377830505, -0.10762815922498703, 0.1254233419895172, 0.10278373211622238, -0.08574613928794861, 0.046300869435071945, -0.07184868305921555, -0.022361377254128456, -0.04642879217863083, -0.0628899410367012, 0.23107750713825226, 0.03592346981167793, 0.09155948460102081, -0.088594950735569, -0.08442296087741852, -0.00065083202207461, -0.04099680110812187, -0.04417813569307327, 0.04561657831072807, 0.020526666194200516, -0.16572175920009613, 0.05517290160059929, -0.012304913252592087, 0.08046191930770874, 0.19232431054115295, 0.027334725484251976, -0.09058329463005066, -0.05527251958847046, -0.06619662046432495, 0.006478919181972742, 0.09415095299482346, 0.010413512587547302, 0.03336889296770096, 0.0414414256811142, 0.049529679119586945, 0.0461641401052475, -0.11071547120809555, 0.012568624690175056, 0.05109056085348129, -0.030322838574647903, -0.047748126089572906, 0.021351687610149384, 0.026294566690921783, 0.09194867312908173, 0.06965754926204681, 0.1097400039434433, -0.053209636360406876, -0.049131546169519424, -0.13570529222488403, 0.13606898486614227, -0.10203450173139572, -0.19267261028289795, -0.13579876720905304, -0.07504922896623611, 0.006377131678164005, 0.00612172344699502, 0.028288444504141808, -0.05025112256407738, -0.04314881190657616, -0.09394300729036331, 0.07908519357442856, -0.030523652210831642, -0.009904501959681511, 0.0087189432233572, 0.012881780974566936, -0.012718050740659237, -0.12582485377788544, -0.034240830689668655, 0.025064371526241302, -0.06760629266500473, 0.002406409243121743, 0.024829698726534843, 0.0537017285823822, 0.1429297924041748, 0.0021122016478329897, 0.0126500828191638, -0.021616661921143532, 0.2813793420791626, -0.10565128922462463, 0.06545013934373856, 0.15709564089775085, -0.0035972476471215487, 0.05636031925678253, 0.0586698092520237, -0.0020119878463447094, -0.059757817536592484, 0.058414526283741, 0.07098829001188278, -0.06625621765851974, -0.21032597124576569, -0.03533722460269928, -0.021375922486186028, 0.01833846978843212, 0.1127784326672554, 0.03427091985940933, 0.05130733177065849, 0.010497515089809895, -0.0976305902004242, 0.05190693587064743, 0.023747643455863, 0.09887103736400604, -0.07525195926427841, -0.0032477574422955513, 0.04352088272571564, -0.053574081510305405, 0.04299728199839592, 0.1223149523139, 0.03886450082063675, 0.23881499469280243, -0.07515870034694672, 0.07441263645887375, 0.09265010058879852, 0.09673874080181122, 0.017041325569152832, 0.039559878408908844, -0.029388906434178352, 0.027663808315992355, 0.014792225323617458, -0.09704918414354324, 0.004874166566878557, 0.03750283271074295, 0.023681718856096268, -0.0055108582600951195, -0.06044132262468338, -0.07535471022129059, 0.05436185374855995, 0.2280958890914917, 0.04387050122022629, -0.17075443267822266, -0.09345386922359467, 0.06860634684562683, -0.040666647255420685, -0.05326563119888306, -0.021528519690036774, 0.06624244153499603, -0.21045443415641785, 0.038724981248378754, -0.04139222577214241, 0.10951164364814758, -0.12111431360244751, -0.00216881581582129, 0.05449191480875015, 0.04895339906215668, -0.07280843704938889, 0.0713629275560379, -0.16076000034809113, 0.08339215815067291, 0.0036233209539204836, 0.08784426003694534, -0.06414562463760376, 0.02018984593451023, 0.03592758998274803, 0.025641174986958504, 0.08882533013820648, 0.018268950283527374, 0.0231880322098732, -0.055790599435567856, -0.04072006791830063, -0.005936183035373688, 0.05711199715733528, -0.07937319576740265, 0.13347667455673218, -0.02882935106754303, 0.02603496052324772, -0.021550988778471947, -0.08899036794900894, -0.11058444529771805, -0.1432841271162033, 0.07154088467359543, -0.10495176911354065, -0.0010190277826040983, -0.06431077420711517, -0.02259468287229538, 0.0029856401961296797, 0.20714561641216278, -0.09951113909482956, -0.08177564293146133, -0.13704335689544678, 0.010109628550708294, 0.14723031222820282, -0.07696451991796494, 0.004069705028086901, -0.0072160037234425545, 0.15017817914485931, -0.001323119504377246, -0.13677820563316345, -0.005999404937028885, -0.07276599109172821, -0.1795235425233841, -0.02845275215804577, 0.13311022520065308, 0.07427290827035904, 0.04032880812883377, 0.004482414107769728, 0.010101868771016598, -0.03842824697494507, -0.16914628446102142, 0.027659738436341286, 0.1519133746623993, 0.0296727754175663, 0.02951587364077568, 0.01303123403340578, 0.027662424370646477, -0.1264340728521347, 0.02205383963882923, 0.04888365790247917, 0.19964507222175598, -0.07518112659454346, 0.1594981700181961, 0.01590581052005291, -0.0933476909995079, -0.17473015189170837, 0.03709190711379051, 0.0006183934747241437, 0.029069986194372177, 0.014490100555121899, -0.16975164413452148, 0.029598785564303398, 0.02860851399600506, -0.002946430118754506, 0.0602572001516819, -0.3449726998806, -0.14915430545806885, 0.02695617265999317, 0.024114232510328293, -0.07933200895786285, -0.039847925305366516, -0.037383586168289185, -0.07358591258525848, -0.24247294664382935, 0.08865787833929062, -0.12926793098449707, 0.08484745025634766, 0.013915813528001308, 0.06531468778848648, 0.042371880263090134, -0.06871150434017181, 0.1388980597257614, -0.022611381486058235, 0.06715617328882217, -0.08311427384614944, -0.039902374148368835, 0.08951013535261154, -0.06416688859462738, 0.10482235997915268, 0.020123468711972237, 0.08739832788705826, -0.11161478608846664, -0.06308998912572861, -0.08410744369029999, 0.01932951994240284, -0.05618089437484741, -0.09609760344028473, -0.07825912535190582, 0.10082689672708511, 0.12316535413265228, -0.039375223219394684, -0.09463099390268326, -0.03893914818763733, -0.018302546814084053, 0.07374992221593857, 0.09470595419406891, 0.09208600968122482, -0.08709008246660233, 0.01150271762162447, 0.004673153627663851, 0.027437448501586914, -0.13927491009235382, 0.036120396107435226, 0.08647909760475159, 0.03521093726158142, 0.109537273645401, 0.012470118701457977, -0.1659032255411148, 0.0219110157340765, 0.037077970802783966, -0.1560862809419632, -0.10211675614118576, -0.0313882939517498, -0.011746732518076897, -0.0845499038696289, -0.04011077433824539, 0.1458907127380371, -0.03680349513888359, -0.028970148414373398, -0.0018794471397995949, 0.055402010679244995, -0.05083945766091347, 0.1228364109992981, 0.03052065707743168, 0.04471666365861893, -0.07235804945230484, 0.1186758428812027, 0.05855080857872963, 0.022484190762043, 0.04254107549786568, 0.05626033619046211, -0.08817150443792343, 0.0004299478023312986, -0.08071443438529968, 0.028964536264538765, -0.053948406130075455, -0.010054024867713451, -0.013383482582867146, -0.03771991282701492, 0.031682491302490234, 0.10540194064378738, -0.007627030368894339, 0.11373280733823776, -0.03133225068449974, -0.013615179806947708, -0.13550029695034027, 0.07673727720975876, 0.05860142409801483, 0.02068617194890976, -0.1111753061413765, 0.18806512653827667, 0.0211261585354805, 0.09191756695508957, -0.04134632274508476, -0.05361640825867653, -0.08991777896881104, -0.010950400494039059, -0.15517230331897736, -0.044728297740221024, -0.08223913609981537, -0.03817771002650261, -0.016130493953824043, -0.041100699454545975, -0.01916036382317543, 0.05892804265022278, -0.028165658935904503, -0.0653654932975769, -0.05288904905319214, 0.05627995729446411, -0.1489984095096588, 0.001604755176231265, 0.11418813467025757, -0.06321874260902405, 0.1038149893283844, 0.05997423082590103, -0.03067794255912304, 0.017267655581235886, -0.10254126787185669, 0.02215862274169922, -0.03273610398173332, 0.00722087686881423, 0.038550931960344315, -0.1440209448337555, 0.00605675159022212, -0.05482592061161995, -0.05364036187529564, 0.016367042437195778, 0.010525798425078392, -0.12037134170532227, 0.0012819987023249269, 0.06026766076683998, 0.004221937619149685, -0.07017406821250916, 0.0694253221154213, 0.07792593538761139, 0.02588563784956932, 0.06970012187957764, -0.03633132949471474, 0.07820712774991989, -0.16499938070774078, -0.04489372670650482, 0.006043290253728628, 0.009112062864005566, 0.06103471294045448, 0.0023016000632196665, 0.04763114079833031, -0.020327039062976837, 0.18437787890434265, -0.004716209135949612, -0.02224019169807434, 0.04430628567934036, -0.03769165650010109, -0.017651807516813278, 0.05202376842498779, 0.05836859345436096, -0.04067387804389, -0.029185917228460312, -0.030093997716903687, 0.0016459214966744184, -0.06285011023283005, -0.03165605291724205, 0.11460159718990326, 0.06406398117542267, 0.1706218719482422, -0.02692350372672081, 0.05703681334853172, -0.031738925725221634, -0.11504416912794113, -0.023444099351763725, -0.03135393187403679, 0.04534848779439926, -0.07453174889087677, 0.07383991777896881, 0.16120335459709167, -0.1581408828496933, 0.1102450042963028, 0.019211752340197563, -0.06184246763586998, -0.09609174728393555, -0.17163850367069244, -0.012678348459303379, -0.019871359691023827, 0.03484339639544487, -0.1259312778711319, 0.08387526124715805, 0.034242767840623856, 0.04043975844979286, -0.05971413105726242, 0.12273126095533371, -0.0737021341919899, -0.10488412529230118, 0.030523573979735374, 0.02627527341246605, 0.02155260555446148, 0.03776388242840767, 0.06827530264854431, 0.02630787342786789, 0.006427471991628408, 0.05733327195048332, 0.03693398833274841, 0.02742817811667919, 0.035784222185611725, -0.01300807949155569, -0.05854657292366028, 0.02856440469622612, 0.010343190282583237, 0.027106530964374542, 0.1098681166768074, 0.07750164717435837, -0.017697419971227646, -0.03506455197930336, 0.2926727533340454, -0.04294247552752495, -0.037965092808008194, -0.17909185588359833, 0.16418679058551788, 0.024264240637421608, -0.011394710280001163, 0.027285641059279442, -0.14463120698928833, 0.010128410533070564, 0.1526660919189453, 0.17778217792510986, -0.051177334040403366, 0.011451413854956627, -0.043630700558423996, 0.011457262560725212, 0.027715492993593216, 0.08816985040903091, 0.06757859140634537, 0.19114355742931366, -0.045222241431474686, 0.06221738085150719, -0.0074193538166582584, -0.019425256177783012, -0.020056571811437607, 0.11256588995456696, -0.02807728387415409, 0.004200878087431192, -0.05908512324094772, 0.09375065565109253, -0.06695050746202469, -0.2625594139099121, -0.012025195173919201, -0.03902929276227951, -0.09679719060659409, 0.05059849098324776, -0.038746368139982224, -0.020091256126761436, 0.0928649976849556, 0.01733151078224182, -0.024397647008299828, 0.13757893443107605, 0.033396970480680466, -0.04180087521672249, -0.027180654928088188, 0.08778665959835052, -0.02276390790939331, 0.19869939982891083, -0.02569463662803173, -0.0012080820742994547, 0.09570275247097015, 0.014697350561618805, -0.12423204630613327, 0.0009581835474818945, 0.04870681092143059, -0.08833254128694534, -0.01520634163171053, 0.18976710736751556, 0.005678231827914715, 0.03247683122754097, 0.05073155090212822, -0.047971609979867935, 0.024744229391217232, -0.06834672391414642, 0.040983013808727264, -0.1369035392999649, 0.046323616057634354, -0.0752570703625679, 0.1474888026714325, 0.18412895500659943, -0.07475700974464417, 0.02822677418589592, -0.05153438821434975, -0.003278582589700818, -0.013981394469738007, 0.048495735973119736, -0.021081870421767235, -0.11137071251869202, 0.02688843570649624, 0.025532769039273262, 0.02262149564921856, -0.1928149163722992, -0.07555490732192993, 0.04717530682682991, -0.04985383525490761, 0.013118906877934933, 0.17042936384677887, 0.03979600965976715, 0.05931976065039635, -0.02920539118349552, 0.008284801617264748, -0.02130846679210663, 0.10228266566991806, -0.13570500910282135, -0.09101567417383194 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/27619189a016b6b378a2143b01cd5522.500x500x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Мумий Тролль (Mumiy Troll)</div> <a href="https://genius.com/artists/mumiy-troll"> <div style="text-align: center; font-size: 14px;">@mumiy-troll</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Мумий Тролль (Mumiy Troll). Dataset is available [here](https://huggingface.co/datasets/huggingartists/mumiy-troll). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mumiy-troll") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/8o66pyeu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Мумий Тролль (Mumiy Troll)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/32hmbbel) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/32hmbbel/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mumiy-troll') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mumiy-troll") model = AutoModelWithLMHead.from_pretrained("huggingartists/mumiy-troll") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/mumiy-troll"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/mumiy-troll
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mumiy-troll", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mumiy-troll #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Мумий Тролль (Mumiy Troll)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@mumiy-troll</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Мумий Тролль (Mumiy Troll). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Мумий Тролль (Mumiy Troll)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Мумий Тролль (Mumiy Troll).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Мумий Тролль (Mumiy Troll)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mumiy-troll #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Мумий Тролль (Mumiy Troll).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Мумий Тролль (Mumiy Troll)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 59, 82, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/mumiy-troll #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Мумий Тролль (Mumiy Troll).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Мумий Тролль (Mumiy Troll)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02165791019797325, 0.17312641441822052, -0.005937966052442789, 0.0801413506269455, 0.08212310075759888, -0.002837811131030321, 0.10618556290864944, 0.10292162001132965, -0.029237575829029083, 0.040666963905096054, 0.039695125073194504, 0.050154391676187515, 0.04879886656999588, 0.06368808448314667, 0.017714139074087143, -0.24886129796504974, -0.006767198443412781, -0.06295418739318848, -0.08012803643941879, 0.09348876029253006, 0.10327691584825516, -0.0625728890299797, 0.06176203489303589, 0.020684920251369476, -0.05791860446333885, 0.02071760594844818, 0.01190310250967741, -0.05475657805800438, 0.06558291614055634, 0.08003298938274384, 0.08589888364076614, 0.04298181086778641, 0.05708570405840874, -0.16335496306419373, 0.028988029807806015, 0.1199420690536499, 0.02605481632053852, 0.06926937401294708, 0.08748814463615417, -0.09754373878240585, 0.09257254004478455, -0.025819553062319756, 0.08773843944072723, 0.048299141228199005, -0.12076204270124435, -0.1250138133764267, -0.0928281620144844, 0.03943504020571709, 0.018591685220599174, 0.037835583090782166, -0.01571420207619667, 0.06161360815167427, -0.06927847862243652, 0.09142876416444778, 0.23199188709259033, -0.24598167836666107, -0.025461511686444283, 0.07226915657520294, 0.06212642788887024, 0.04731152579188347, -0.09800289571285248, -0.0024824906140565872, 0.005324293859302998, 0.04881802573800087, 0.06204301491379738, -0.031142164021730423, 0.08205033093690872, 0.008681584149599075, -0.1039009764790535, -0.05687916651368141, 0.10644131153821945, -0.046193551272153854, -0.060709740966558456, -0.08988193422555923, -0.05320078879594803, -0.06375356018543243, 0.0315590538084507, 0.039448391646146774, 0.01238840539008379, 0.017646942287683487, -0.0897289514541626, -0.10210336744785309, -0.07481899857521057, -0.06158562749624252, -0.046246111392974854, 0.12022475153207779, 0.040200989693403244, 0.025948863476514816, -0.09299731999635696, 0.18313556909561157, 0.10141519457101822, -0.12164057046175003, -0.05554956570267677, -0.09512188285589218, -0.10143836587667465, -0.024328669533133507, -0.040679771453142166, -0.01673782989382744, 0.0011462382972240448, 0.1718892753124237, -0.03760647401213646, 0.027023226022720337, -0.07975883036851883, 0.03615955263376236, 0.10607078671455383, 0.1373717039823532, -0.09253879636526108, -0.009873735718429089, 0.09830963611602783, -0.019777759909629822, -0.06123502925038338, -0.04607598856091499, -0.024481559172272682, -0.05179669335484505, 0.05596550181508064, 0.08473708480596542, 0.04762184992432594, 0.05986605957150459, -0.04701214283704758, -0.06741256266832352, 0.02210780791938305, -0.1638508290052414, 0.020884621888399124, 0.0375603586435318, -0.053331129252910614, -0.006916429381817579, 0.07514220476150513, -0.032065462321043015, -0.10330258309841156, 0.0720994621515274, -0.05093870311975479, -0.010539451614022255, -0.09187063574790955, -0.11933436989784241, 0.004480067174881697, -0.027869198471307755, -0.026253163814544678, -0.08615121990442276, -0.16861718893051147, -0.026262598112225533, 0.045479148626327515, -0.055198945105075836, 0.010247351601719856, 0.0008835308253765106, -0.022153379395604134, -0.007489710580557585, 0.006145808380097151, -0.0026214998215436935, -0.025620760396122932, 0.06848137825727463, -0.06666100025177002, 0.058201953768730164, 0.07676148414611816, 0.04021979868412018, -0.11295822262763977, 0.07628698647022247, -0.11917559802532196, 0.17351174354553223, -0.03890098258852959, -0.044565968215465546, -0.05783529207110405, -0.09062410891056061, -0.03964947536587715, -0.021945565938949585, 0.03859822079539299, 0.06967650353908539, -0.1684948354959488, -0.02977045439183712, 0.2398226112127304, -0.06200075522065163, -0.043584540486335754, 0.11195440590381622, -0.08567971736192703, 0.04203543812036514, 0.09064007550477982, 0.0774027481675148, 0.12803706526756287, -0.059794336557388306, -0.041422292590141296, -0.0332065224647522, -0.055611442774534225, 0.18793565034866333, 0.048084456473588943, 0.0040713464841246605, 0.05091352388262749, -0.001760590705089271, -0.00433498015627265, -0.007754249032586813, -0.02978229708969593, -0.034827958792448044, -0.023995500057935715, -0.01787298172712326, 0.04643647372722626, -0.04248134419322014, -0.020617006346583366, -0.029146231710910797, -0.09846914559602737, 0.11428041756153107, 0.09837298840284348, -0.09358794242143631, 0.030686894431710243, -0.1140967532992363, 0.019084619358181953, -0.06202511861920357, -0.0015454257372766733, -0.1951116919517517, -0.0110984081402421, 0.02599858120083809, -0.07270707190036774, 0.07856341451406479, 0.06252077221870422, 0.04931773990392685, 0.07932322472333908, -0.039354708045721054, 0.01132726576179266, -0.06031741946935654, -0.009373867884278297, -0.03117848001420498, -0.16680477559566498, -0.046843819320201874, -0.04585328698158264, 0.04443773627281189, -0.09371498972177505, 0.009339571930468082, 0.09608355909585953, 0.14103898406028748, 0.03412269055843353, -0.04843699559569359, 0.030643124133348465, -0.01436590775847435, -0.030136730521917343, -0.0855490192770958, -0.03594517335295677, 0.02370850369334221, -0.04294776916503906, 0.13566277921199799, -0.16205142438411713, -0.04400750249624252, 0.11370132118463516, 0.05312269926071167, -0.0698409229516983, 0.03485872596502304, -0.057380735874176025, -0.026127049699425697, -0.06252425909042358, -0.03528120368719101, 0.21979793906211853, 0.03146142512559891, 0.110916867852211, -0.1284501999616623, -0.08472758531570435, -0.031703393906354904, -0.04472214728593826, 0.02509002946317196, 0.0647834837436676, 0.0014171685324981809, -0.22465330362319946, 0.05382861942052841, -0.00038857999606989324, -0.002869972260668874, 0.22698895633220673, 0.009083330631256104, -0.08343552052974701, -0.0777287557721138, -0.021894551813602448, 0.028019320219755173, 0.07979688793420792, -0.0011574928648769855, 0.06486325711011887, 0.032643020153045654, 0.048862166702747345, 0.046573884785175323, -0.11730464547872543, 0.02956472337245941, 0.06518480181694031, -0.04781343415379524, -0.06746149063110352, 0.0004291068180464208, 0.0368073545396328, 0.08302930742502213, 0.051307570189237595, 0.0872521921992302, -0.0388355553150177, -0.056688789278268814, -0.09110645949840546, 0.12039601802825928, -0.1077771708369255, -0.20553214848041534, -0.1312628835439682, -0.06327531486749649, -0.020641984418034554, 0.033400315791368484, 0.02990536205470562, 0.0028706812299788, -0.031091924756765366, -0.06552775949239731, 0.05725311115384102, -0.01998911425471306, -0.03262793645262718, 0.008835098706185818, 0.06867560744285583, 0.014016546308994293, -0.15491218864917755, -0.017714593559503555, 0.027487488463521004, -0.0850723534822464, 0.005615477915853262, 0.034460633993148804, 0.02188832499086857, 0.11643199622631073, -0.02326027676463127, -0.0014808042906224728, -0.009433054365217686, 0.22910930216312408, -0.08282173424959183, 0.06088414043188095, 0.14237715303897858, -0.06986103951931, 0.06159302219748497, 0.055724918842315674, 0.024456404149532318, -0.06677989661693573, 0.05737576633691788, 0.052420277148485184, -0.05833548679947853, -0.20528756082057953, -0.013375462964177132, -0.04402758553624153, 0.02650552988052368, 0.10153467208147049, 0.03862912952899933, -0.020511049777269363, 0.008321689441800117, -0.08743182569742203, 0.07779345661401749, 0.08053148537874222, 0.08308036625385284, -0.01260889321565628, 0.005869162268936634, 0.07762652635574341, -0.05642050877213478, 0.01684831641614437, 0.0799156129360199, 0.0659220814704895, 0.2029172033071518, -0.09629680216312408, 0.12306856364011765, 0.07816429436206818, 0.06283076107501984, 0.08394179493188858, 0.040075819939374924, -0.04678679257631302, 0.04781406372785568, 0.004547571763396263, -0.09874062240123749, -0.050448980182409286, 0.017758484929800034, 0.019660163670778275, -0.0054079764522612095, 0.01553020067512989, -0.07513770461082458, 0.06754914671182632, 0.2141098827123642, 0.06371413916349411, -0.14243289828300476, -0.09555207937955856, 0.062450699508190155, -0.03429371863603592, -0.04789837822318077, -0.005130844656378031, 0.11201678961515427, -0.17070631682872772, -0.011617813259363174, -0.026399744674563408, 0.11957830935716629, -0.14134463667869568, -0.015045016072690487, 0.0002493587089702487, 0.10372550785541534, -0.06604847311973572, 0.061205048114061356, -0.19253449141979218, 0.04244937002658844, 0.01595945470035076, 0.10334885865449905, -0.04644189029932022, 0.03346571326255798, 0.06615537405014038, 0.03030400164425373, 0.039859894663095474, 0.016667431220412254, 0.02395668625831604, -0.09463123232126236, -0.06987801194190979, 0.017047984525561333, 0.07559710741043091, -0.08253592997789383, 0.11508818715810776, -0.04563668370246887, 0.00882176123559475, -0.010280415415763855, -0.09790720045566559, -0.08645690977573395, -0.13969120383262634, 0.04927194491028786, -0.12805770337581635, 0.04436429589986801, -0.061415109783411026, -0.013755622319877148, 0.005813499912619591, 0.19402970373630524, -0.11663228273391724, -0.10801337659358978, -0.09617798030376434, 0.02747194841504097, 0.12366409599781036, -0.06867830455303192, 0.02582346461713314, 0.008019821718335152, 0.13798336684703827, 0.012557553127408028, -0.1300019919872284, 0.012210089713335037, -0.05259435996413231, -0.19700896739959717, -0.022695142775774002, 0.1078886091709137, 0.06223844364285469, 0.0687507912516594, 0.018661437556147575, 0.021700618788599968, -0.04233432561159134, -0.1253824532032013, -0.024812383577227592, 0.10657741874456406, 0.023276356980204582, 0.0705069825053215, -0.0412466786801815, 0.05686153843998909, -0.09433458745479584, 0.018074940890073776, 0.0754048228263855, 0.22667382657527924, -0.06976072490215302, 0.1368200033903122, 0.0641135424375534, -0.09893760085105896, -0.18210019171237946, -0.000820849381852895, 0.015982432290911674, 0.04482312500476837, 0.020057756453752518, -0.2006862759590149, 0.003804402658715844, 0.06689340621232986, 0.0020181217696517706, 0.10794103890657425, -0.35437366366386414, -0.13861142098903656, 0.021349024027585983, 0.03576502203941345, -0.091834157705307, -0.0437493622303009, -0.030034368857741356, -0.07593811303377151, -0.19052331149578094, 0.11601004004478455, -0.1079525277018547, 0.11957309395074844, 0.017520058900117874, -0.028345339000225067, 0.037617992609739304, -0.04648779705166817, 0.12566152215003967, -0.0683998167514801, 0.08355021476745605, -0.07358819991350174, 0.017910555005073547, 0.11662162840366364, -0.03244728222489357, 0.06642905622720718, 0.0025483157951384783, 0.09124546498060226, -0.03141278028488159, -0.07617443799972534, -0.07130327820777893, 0.016827361658215523, -0.05518170818686485, -0.09664662182331085, -0.07133793830871582, 0.07395032793283463, 0.10659715533256531, -0.03061407245695591, -0.08195189386606216, -0.059524405747652054, -0.03232371807098389, 0.11547739058732986, 0.1084255799651146, 0.08432495594024658, -0.08149749040603638, -0.00988178513944149, 0.0006754515925422311, 0.06814174354076385, -0.08064813166856766, 0.072763592004776, 0.07848057150840759, 0.03410938009619713, 0.10679227858781815, 0.04604700580239296, -0.12431493401527405, 0.034433506429195404, 0.032922983169555664, -0.12944959104061127, -0.11639241129159927, -0.02524995058774948, -0.025358784943819046, -0.06959471851587296, -0.05872759968042374, 0.14406584203243256, -0.023065956309437752, -0.034434009343385696, 0.04258960857987404, 0.034712810069322586, -0.028126301243901253, 0.11717888712882996, 0.057149115949869156, 0.03282487019896507, -0.08276784420013428, 0.10655186325311661, 0.0730380192399025, 0.02615118958055973, 0.03713976964354515, 0.0607122965157032, -0.09267262369394302, 0.0030296018812805414, -0.0617312453687191, 0.05718861147761345, 0.00019642927509266883, 0.0030928088817745447, -0.05833865702152252, -0.035109177231788635, 0.03088557906448841, 0.13385313749313354, 0.014419889077544212, 0.1396568864583969, -0.046500079333782196, 0.0282448660582304, -0.11985530704259872, 0.10777775198221207, 0.05346483364701271, 0.046148836612701416, -0.07397780567407608, 0.18372592329978943, 0.0183709729462862, 0.05463022366166115, -0.03885895386338234, -0.06302963942289352, -0.08580190688371658, 0.0026443391107022762, -0.1924481838941574, -0.019755110144615173, -0.05904976651072502, -0.017758684232831, -0.012605671770870686, -0.02917359210550785, -0.022622132673859596, 0.04848283529281616, -0.045239031314849854, -0.049635522067546844, -0.04232141003012657, 0.015220475383102894, -0.16650733351707458, -0.023998819291591644, 0.1134471520781517, -0.1065293550491333, 0.10632482171058655, 0.08174379169940948, -0.05262813717126846, 0.0018946470227092505, -0.1005057841539383, -0.0018246982945129275, -0.0425245426595211, 0.02307119034230709, 0.014714524149894714, -0.1265641152858734, 0.04338705167174339, -0.05103117972612381, -0.042055293917655945, 0.013929038308560848, 0.07151754945516586, -0.13363434374332428, 0.026568567380309105, 0.04345787689089775, 0.010285422205924988, -0.07735028862953186, 0.05295548215508461, 0.02899034693837166, 0.07886897772550583, 0.07407759130001068, -0.040346886962652206, 0.08428115397691727, -0.1559552252292633, -0.035221319645643234, 0.03547919914126396, -0.025056026875972748, 0.027147771790623665, -0.02327297069132328, 0.05093781277537346, -0.028184793889522552, 0.17271065711975098, -0.0006842269795015454, -0.028217893093824387, 0.017438039183616638, -0.030218394473195076, -0.012863594107329845, 0.04573831707239151, 0.07288260757923126, -0.021439027041196823, -0.03989921137690544, -0.02849693037569523, -0.01318017952144146, -0.043519340455532074, -0.06965695321559906, 0.10579303652048111, 0.06636970490217209, 0.12238869816064835, -0.0415678434073925, 0.06174091249704361, 0.0077980090864002705, -0.13590356707572937, -0.018282538279891014, -0.016841594129800797, 0.03158734366297722, -0.07239531725645065, 0.04667053744196892, 0.13160572946071625, -0.15336523950099945, 0.14468391239643097, 0.012597093358635902, -0.06815459579229355, -0.10415250808000565, -0.18071064352989197, -0.02661924622952938, -0.012865929864346981, 0.0204591304063797, -0.13933829963207245, 0.0725271999835968, 0.03872881084680557, 0.04445929452776909, -0.048967111855745316, 0.10759896039962769, -0.041563164442777634, -0.10854652523994446, 0.0020067868754267693, 0.007616653107106686, 0.04325525462627411, 0.0642886608839035, 0.009408813901245594, 0.05014362186193466, 0.04105611518025398, 0.05979226529598236, 0.05588778108358383, 0.04592514410614967, -0.01843719370663166, -0.032211389392614365, -0.05000072345137596, 0.02034718729555607, 0.014088436961174011, 0.006389169488102198, 0.1240694522857666, 0.06697013229131699, -0.018163196742534637, -0.012741031125187874, 0.2950112223625183, -0.03280525654554367, -0.10762970894575119, -0.18244114518165588, 0.15090259909629822, 0.01947859860956669, 0.010403934866189957, 0.03956341743469238, -0.12609589099884033, -0.012953952886164188, 0.12100625783205032, 0.15849266946315765, -0.0644957646727562, 0.04283961281180382, 0.00957926269620657, 0.011477569118142128, 0.014276117086410522, 0.06565292924642563, 0.04373670369386673, 0.19602541625499725, -0.0493122823536396, 0.04443782940506935, 0.010389821603894234, -0.011683306656777859, -0.031193803995847702, 0.09291666746139526, -0.04301489144563675, 0.004126765299588442, -0.08182638138532639, 0.0464082732796669, -0.06932885199785233, -0.22231078147888184, -0.0009979252936318517, -0.03459051996469498, -0.10946203023195267, 0.02409341186285019, -0.01622561737895012, -0.03380361571907997, 0.0676790326833725, 0.014111720956861973, -0.011258285492658615, 0.1022530198097229, 0.014226687140762806, -0.005512338597327471, 0.0011592351365834475, 0.09186504781246185, -0.015710143372416496, 0.14866213500499725, -0.012807129882276058, 0.029307154938578606, 0.09598217904567719, 0.043928761035203934, -0.09693104773759842, 0.022656667977571487, 0.03677710145711899, -0.0740835890173912, -0.010257186368107796, 0.1946812868118286, -0.000926384178455919, 0.031365424394607544, 0.05407896265387535, -0.00505219167098403, 0.04007674753665924, -0.060461945831775665, 0.03734057769179344, -0.10737092792987823, 0.00801822543144226, -0.06445024162530899, 0.10592237859964371, 0.19585318863391876, -0.04675762727856636, 0.027122464030981064, -0.06099209561944008, 0.01179142389446497, 0.02391730062663555, 0.00283384439535439, -0.030569691210985184, -0.10474425554275513, 0.0013228956377133727, 0.08984054625034332, 0.038223929703235626, -0.18954220414161682, -0.08574783802032471, 0.059273868799209595, -0.06383971869945526, 0.0019062063656747341, 0.13774028420448303, 0.017435602843761444, 0.08826140314340591, -0.023875221610069275, -0.028550978749990463, -0.02701268345117569, 0.06539691239595413, -0.14913837611675262, -0.06989249587059021 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/26f575585ec649d88d09a1e402bb936b.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Muse</div> <a href="https://genius.com/artists/muse"> <div style="text-align: center; font-size: 14px;">@muse</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Muse. Dataset is available [here](https://huggingface.co/datasets/huggingartists/muse). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/muse") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3w58rwod/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Muse's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3j03atcr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3j03atcr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/muse') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/muse") model = AutoModelWithLMHead.from_pretrained("huggingartists/muse") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/muse"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/muse
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/muse", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/muse #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Muse</div> <a href="URL <div style="text-align: center; font-size: 14px;">@muse</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Muse. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Muse's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Muse.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Muse's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/muse #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Muse.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Muse's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 81, 21, 49, 71, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/muse #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Muse.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Muse's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.045700833201408386, 0.18932679295539856, -0.0023727286607027054, 0.031910594552755356, 0.1033841148018837, -0.008405189029872417, 0.08981140702962875, 0.11214757710695267, 0.0039026939775794744, 0.07470609247684479, 0.08672649413347244, 0.03602196276187897, 0.07286892831325531, 0.1590975522994995, 0.10973108559846878, -0.26718613505363464, 0.03781075030565262, -0.11928302049636841, 0.03738988935947418, 0.1217452734708786, 0.06404787302017212, -0.05785569176077843, 0.07511097937822342, 0.016074182465672493, -0.06106629967689514, 0.02952732890844345, -0.031861986964941025, -0.0662928968667984, 0.09818290919065475, 0.08960715681314468, -0.009939618408679962, 0.044505152851343155, 0.05822403356432915, -0.17536573112010956, 0.04515472799539566, 0.11434903740882874, 0.03574373945593834, 0.07385382801294327, 0.030780913308262825, -0.0488557405769825, 0.1982276737689972, -0.01631242036819458, 0.06102282926440239, 0.041570987552404404, -0.08742029219865799, -0.1830095648765564, -0.12221561372280121, 0.10457949340343475, 0.08963566273450851, 0.08365597575902939, -0.027430109679698944, 0.04958752542734146, 0.0401877835392952, 0.03585334122180939, 0.23406139016151428, -0.2229604572057724, -0.0021834825165569782, 0.10869055986404419, 0.035388726741075516, 0.06210190802812576, -0.07223709672689438, 0.03144041448831558, 0.03599054366350174, 0.020767057314515114, 0.03304287791252136, -0.03155321255326271, 0.20337845385074615, 0.0019145499682053924, -0.08412446826696396, -0.10174791514873505, 0.12415951490402222, -0.02312341332435608, -0.09715893864631653, -0.16166847944259644, 0.00952990259975195, -0.01342371292412281, 0.02652554027736187, -0.015312585048377514, -0.003582682926207781, -0.006396639160811901, -0.026340845972299576, -0.11871527880430222, -0.09277905523777008, -0.02827157825231552, 0.0007255004020407796, 0.08641268312931061, 0.02206537127494812, 0.03545499965548515, -0.0799042284488678, 0.22420567274093628, -0.02437586337327957, -0.09986604005098343, -0.07680924236774445, -0.11164590716362, -0.06400801986455917, -0.037891194224357605, 0.016555286943912506, 0.009610187262296677, -0.04486894607543945, 0.1512271761894226, -0.03720797225832939, 0.030715426430106163, 0.025093385949730873, -0.009382356889545918, 0.1747494637966156, 0.12375707179307938, -0.1186206042766571, -0.015288268215954304, 0.06769661605358124, -0.01045604981482029, -0.05577888339757919, -0.08217145502567291, -0.012437984347343445, -0.03214719146490097, -0.0038472749292850494, 0.10686827450990677, 0.06501737236976624, 0.04974771663546562, 0.04853156954050064, -0.06392163783311844, 0.12288287281990051, -0.13401520252227783, -0.004434860311448574, -0.014307171106338501, -0.03215102478861809, 0.0312776193022728, 0.05561889708042145, -0.0017136047827079892, -0.09839421510696411, 0.10380225628614426, -0.04661596193909645, -0.07380997389554977, -0.05441397428512573, -0.08078506588935852, -0.01586727425456047, 0.00001614081338630058, -0.027437543496489525, -0.0982491597533226, -0.16035135090351105, -0.04184752330183983, 0.014456234872341156, -0.02155112661421299, -0.05667076259851456, 0.06392331421375275, -0.04656190052628517, -0.01688375324010849, -0.03083452768623829, -0.03998501971364021, -0.04243731498718262, 0.010704921558499336, -0.07621564716100693, 0.029655080288648605, 0.048644840717315674, 0.026494136080145836, -0.11118395626544952, 0.0743914470076561, -0.1630001962184906, 0.13323315978050232, -0.0181544441729784, 0.014305053278803825, -0.10662060976028442, -0.08926715701818466, -0.02687104605138302, -0.028019296005368233, 0.008499627001583576, 0.11304255574941635, -0.18560926616191864, -0.049019984900951385, 0.20432986319065094, -0.0766460970044136, -0.09753813594579697, 0.04803025722503662, -0.057312171906232834, 0.057341933250427246, 0.13465875387191772, 0.061742670834064484, 0.1797599494457245, -0.11090296506881714, -0.09306864440441132, -0.04156218469142914, -0.04723259061574936, 0.198038250207901, 0.05370247736573219, -0.011675987392663956, 0.03135406970977783, 0.029677392914891243, -0.03435962647199631, -0.027453962713479996, -0.02131297066807747, -0.04424494504928589, -0.01693190261721611, 0.003350880229845643, -0.020667528733611107, -0.04759169742465019, -0.07595223188400269, 0.01603548228740692, -0.09968622028827667, 0.017024746164679527, 0.117725670337677, -0.08390682190656662, 0.014666757546365261, -0.07144526392221451, 0.02947283908724785, -0.03453307971358299, 0.048904258757829666, -0.20618286728858948, -0.04525138437747955, 0.018202824518084526, -0.06904713809490204, 0.08858873695135117, 0.02702094055712223, 0.03581656143069267, 0.08358458429574966, 0.024929087609052658, 0.015715455636382103, -0.07004250586032867, -0.020965343341231346, -0.02771376632153988, -0.14463326334953308, -0.08303911238908768, -0.05811954662203789, 0.0973295271396637, -0.1232714131474495, 0.00782171729952097, 0.06974909454584122, 0.08005528897047043, 0.0154331736266613, -0.0654124990105629, 0.025789771229028702, -0.030569076538085938, -0.04540645703673363, -0.10630219429731369, -0.054848719388246536, -0.000612740230280906, -0.03706904873251915, 0.14637747406959534, -0.16972953081130981, -0.08082315325737, 0.08515557646751404, 0.20260240137577057, -0.08505178242921829, 0.007156551815569401, -0.09172340482473373, -0.009108897298574448, -0.018965836614370346, -0.036975715309381485, 0.2726345658302307, 0.061036426573991776, 0.07263556122779846, -0.09888071566820145, -0.05673869699239731, 0.014229148626327515, -0.032658711075782776, -0.011308184824883938, 0.03396682068705559, 0.04323854669928551, -0.09676191210746765, 0.010606843046844006, 0.012405996210873127, 0.1350705474615097, 0.2141350507736206, 0.06307017803192139, -0.11440035700798035, -0.046726007014513016, -0.11664298921823502, -0.002030781004577875, 0.05182793736457825, 0.02840321697294712, 0.02536565437912941, 0.05166574567556381, 0.04646046832203865, 0.029146108776330948, -0.09284757822751999, -0.0020054213237017393, 0.07451538741588593, -0.03552984073758125, -0.05616821348667145, 0.02604813501238823, 0.008150746114552021, 0.07525376975536346, 0.07115098088979721, 0.12804993987083435, -0.08877788484096527, -0.04756825417280197, -0.13425254821777344, 0.15061156451702118, -0.058221485465765, -0.28196486830711365, -0.14887338876724243, -0.06697574257850647, -0.017839454114437103, -0.0054823714308440685, 0.05880271643400192, -0.03479209542274475, -0.03143346309661865, -0.11649812757968903, 0.1141246110200882, -0.04453081265091896, -0.026170950382947922, -0.014469674788415432, 0.00784967839717865, -0.0504264198243618, -0.11582094430923462, -0.02523810788989067, 0.04468527436256409, -0.10200035572052002, -0.01678692363202572, 0.05574166774749756, 0.054109107702970505, 0.1481987088918686, -0.012338030152022839, -0.011793598532676697, -0.0271861981600523, 0.3004160523414612, -0.11443201452493668, 0.057436905801296234, 0.20652714371681213, -0.021604247391223907, 0.057139020413160324, 0.08661748468875885, 0.015617160126566887, -0.0659879669547081, 0.06125764176249504, 0.047655895352363586, -0.09730472415685654, -0.20205532014369965, -0.02936839871108532, -0.008701884187757969, 0.05358806625008583, 0.12258969247341156, 0.0687304362654686, 0.04404723271727562, 0.005239827558398247, -0.09841650724411011, 0.019017642363905907, 0.00208582216873765, 0.11555832624435425, -0.07956507056951523, -0.029980482533574104, 0.03899458423256874, -0.05800303444266319, 0.044217854738235474, 0.13944295048713684, 0.04529684782028198, 0.20056119561195374, -0.0568038709461689, 0.11179602891206741, 0.08830680698156357, 0.09721432626247406, 0.03079882450401783, 0.006303215399384499, 0.036435943096876144, 0.004402492195367813, 0.003050771541893482, -0.11078765243291855, -0.026821637526154518, 0.04705725982785225, 0.01419077254831791, -0.017485851421952248, -0.05272648483514786, -0.033410511910915375, 0.022845067083835602, 0.2378135472536087, -0.037146441638469696, -0.16841603815555573, -0.1274104118347168, 0.025983517989516258, -0.05743807554244995, -0.055813588201999664, -0.03191550076007843, 0.06729991734027863, -0.23141612112522125, 0.03404885530471802, -0.03182491287589073, 0.1205134242773056, -0.13276107609272003, 0.007765924092382193, 0.04193596541881561, 0.0460369698703289, -0.05489572137594223, 0.09923998266458511, -0.12176749855279922, 0.04871843010187149, -0.01476521510630846, 0.06331029534339905, -0.08333911746740341, 0.02702326513826847, 0.0032282995525747538, 0.0667719766497612, 0.09943774342536926, 0.006738642696291208, 0.017226282507181168, -0.020399218425154686, -0.0738062784075737, 0.030357133597135544, 0.03494390472769737, -0.13315774500370026, 0.12018971890211105, -0.017604602500796318, 0.03635596111416817, -0.07958325743675232, -0.06096719577908516, -0.10440142452716827, -0.17534182965755463, 0.10367926955223083, -0.11728757619857788, 0.019984770566225052, -0.06387108564376831, -0.03523368388414383, 0.04727763682603836, 0.28170543909072876, -0.035267580300569534, -0.07105576246976852, -0.12715815007686615, 0.01243190560489893, 0.14756612479686737, -0.09351082891225815, 0.002135287504643202, -0.022272691130638123, 0.2265307456254959, -0.01156373880803585, -0.13798017799854279, -0.03774963691830635, -0.06744993478059769, -0.1507786065340042, -0.000830688513815403, 0.14376889169216156, 0.04628855735063553, 0.017196442931890488, 0.009288646280765533, -0.0277206189930439, -0.046896785497665405, -0.1774420589208603, 0.017755797132849693, 0.1799171417951584, -0.014029514975845814, -0.026417747139930725, 0.048372067511081696, 0.018406709656119347, -0.1415504366159439, 0.016755808144807816, 0.06010929495096207, 0.19822511076927185, -0.08072677999734879, 0.20028471946716309, 0.074243925511837, -0.08965422958135605, -0.17519798874855042, -0.014826949685811996, 0.032944466918706894, 0.03945397213101387, 0.08615146577358246, -0.2272689938545227, 0.04796672612428665, 0.05487259849905968, 0.008136739023029804, 0.04906606674194336, -0.3751078248023987, -0.15622557699680328, 0.005722579080611467, 0.037231363356113434, -0.15668341517448425, -0.05838142707943916, -0.029253225773572922, -0.09843739122152328, -0.23877161741256714, 0.07916780561208725, -0.10739494115114212, 0.0822320356965065, 0.016897249966859818, 0.10850825160741806, 0.05029037594795227, -0.04385268688201904, 0.14910103380680084, -0.04077731445431709, 0.05729898437857628, -0.08290189504623413, -0.036497633904218674, 0.08241000771522522, -0.08307667076587677, 0.09856808185577393, 0.026630867272615433, 0.09097644686698914, -0.08424287289381027, -0.0778796598315239, -0.054112955927848816, 0.0036341582890599966, -0.036966562271118164, -0.09077150374650955, -0.0761384516954422, 0.07586261630058289, 0.09624727815389633, -0.02876748889684677, -0.08352071791887283, -0.0839056596159935, 0.0027738502249121666, 0.0446355864405632, 0.10443214327096939, 0.05338430032134056, -0.0837506353855133, 0.0013842651387676597, 0.010406008921563625, 0.008938868530094624, -0.1912759244441986, 0.03420574590563774, 0.10104701668024063, 0.04643665999174118, 0.08399639278650284, -0.005845175124704838, -0.16041907668113708, 0.012697446160018444, 0.050302859395742416, -0.18506039679050446, -0.14782609045505524, -0.030445929616689682, 0.06343349069356918, -0.09928224235773087, -0.035767585039138794, 0.13700388371944427, -0.05008314922451973, -0.041843902319669724, 0.0009803315624594688, 0.020243627950549126, -0.033751461654901505, 0.08565754443407059, -0.022380027920007706, 0.04078780487179756, -0.07477545738220215, 0.1260073035955429, 0.06177085265517235, 0.012474704533815384, 0.04071938619017601, 0.055122435092926025, -0.08822669833898544, 0.015121256932616234, -0.13215534389019012, -0.010932805016636848, -0.015453120693564415, -0.025992989540100098, 0.04392953962087631, -0.004249016288667917, 0.024149063974618912, 0.06139053404331207, -0.03503561019897461, 0.08886046707630157, -0.053262434899806976, 0.00037550809793174267, -0.13789130747318268, 0.06431680172681808, 0.01115625724196434, 0.01674543134868145, -0.10919463634490967, 0.17244978249073029, 0.03532465919852257, 0.135647252202034, -0.036561351269483566, -0.08993840962648392, -0.0315241776406765, -0.01323062926530838, -0.07734320312738419, -0.03541450947523117, -0.09839875251054764, -0.03551018610596657, -0.00888216681778431, -0.008861282840371132, -0.03153102472424507, 0.04080941528081894, -0.031307756900787354, -0.07024849951267242, -0.07538585364818573, 0.055973052978515625, -0.15055042505264282, 0.04750945791602135, 0.10667862743139267, -0.04796024039387703, 0.12907211482524872, 0.06593769788742065, -0.03435773774981499, 0.024282246828079224, -0.14097552001476288, 0.061677828431129456, -0.0010328307980671525, 0.027388514950871468, 0.014020035974681377, -0.12416976690292358, -0.005900741089135408, -0.03556232526898384, -0.09425881505012512, -0.008378149010241032, -0.03811904042959213, -0.1407448649406433, -0.01925218105316162, 0.10110155493021011, 0.008788151666522026, -0.05758107826113701, 0.07309593260288239, 0.053606417030096054, 0.03460172563791275, 0.04683736339211464, -0.0010200970573350787, 0.07180873304605484, -0.16704770922660828, -0.07072713971138, -0.009741581976413727, 0.03171094134449959, 0.048897650092840195, -0.050116926431655884, 0.02892160788178444, -0.011086721904575825, 0.2150382250547409, 0.020296994596719742, 0.01823456585407257, 0.022283468395471573, -0.0699281096458435, 0.0059586516581475735, 0.025554081425070763, 0.08360816538333893, -0.0026271361857652664, -0.008635015226900578, 0.006376058794558048, 0.005014033056795597, -0.10323196649551392, 0.023712828755378723, 0.08491988480091095, -0.018206605687737465, 0.2281429022550583, -0.05584180727601051, 0.05837325006723404, 0.003514109645038843, -0.09098444133996964, -0.047274548560380936, -0.01643175631761551, 0.03971031680703163, -0.06744643300771713, 0.058411404490470886, 0.19766327738761902, -0.1247892826795578, 0.12222663313150406, 0.04961468279361725, -0.04792103171348572, -0.11905714869499207, -0.19719818234443665, 0.0032959720119833946, -0.03257973492145538, 0.01750541292130947, -0.13685014843940735, 0.09076379984617233, 0.034726936370134354, 0.03236301243305206, -0.07201272249221802, 0.12180761992931366, -0.06104852259159088, -0.1469828337430954, 0.03854690492153168, -0.002003968693315983, 0.026498941704630852, 0.009576463140547276, 0.09080268442630768, 0.05453547462821007, -0.01320852991193533, 0.07354791462421417, 0.059413325041532516, 0.03655330464243889, 0.044150128960609436, -0.046620599925518036, -0.05526598170399666, 0.016258569434285164, -0.0015630620764568448, 0.018833806738257408, 0.12142802029848099, 0.0759572833776474, -0.03307909145951271, -0.017184076830744743, 0.31596964597702026, -0.0026583108119666576, 0.0021995389834046364, -0.1601938009262085, 0.167622908949852, 0.005032516084611416, 0.00028836147976107895, 0.02072594314813614, -0.12943844497203827, 0.0010589228477329016, 0.11847800761461258, 0.143446147441864, -0.029181087389588356, 0.02722293883562088, -0.0198199525475502, 0.019754240289330482, 0.00859770830720663, 0.12315087020397186, 0.05893610045313835, 0.19548308849334717, -0.028800813481211662, 0.07237270474433899, -0.029767895117402077, -0.017573334276676178, 0.0010231970809400082, 0.10085136443376541, -0.04880237206816673, -0.009174060076475143, -0.04490327835083008, 0.10360810905694962, -0.10290201008319855, -0.3247334659099579, -0.04323771223425865, -0.017515558749437332, -0.0894855186343193, 0.05947321280837059, -0.044390223920345306, 0.007279399316757917, 0.08984537422657013, 0.007149668876081705, -0.043355777859687805, 0.18018871545791626, 0.04102277383208275, -0.03239525109529495, -0.02118721418082714, 0.10648860782384872, -0.04899473115801811, 0.16777317225933075, -0.04967396333813667, 0.015060950070619583, 0.05983768031001091, 0.012110057286918163, -0.14323903620243073, -0.012210042215883732, 0.0444706529378891, -0.06053732708096504, -0.023336214944720268, 0.20008914172649384, 0.010270512662827969, 0.041044529527425766, 0.062378134578466415, -0.04032754898071289, 0.009995594620704651, -0.011615854687988758, 0.08012835681438446, -0.10551586002111435, 0.07152695208787918, -0.06978728622198105, 0.11779831349849701, 0.1361515372991562, -0.06437552720308304, 0.02382209338247776, -0.06989242136478424, 0.020220346748828888, -0.021997908130288124, 0.03931337967514992, -0.023096680641174316, -0.11497107148170471, 0.00559853482991457, 0.04028689116239548, 0.01331968605518341, -0.18292616307735443, -0.07278168201446533, 0.08184590190649033, -0.039453983306884766, 0.036631278693675995, 0.17016008496284485, 0.007168507669121027, 0.043217748403549194, -0.03908909857273102, -0.011254562065005302, -0.0021588795352727175, 0.11788415908813477, -0.18362583220005035, -0.09119730442762375 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/690c7ea858696b779e94dc99b204f034.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Нервы (Nervy)</div> <a href="https://genius.com/artists/nervy"> <div style="text-align: center; font-size: 14px;">@nervy</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Нервы (Nervy). Dataset is available [here](https://huggingface.co/datasets/huggingartists/nervy). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/nervy") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/34zj7k43/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Нервы (Nervy)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2pd7k5jf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2pd7k5jf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/nervy') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/nervy") model = AutoModelWithLMHead.from_pretrained("huggingartists/nervy") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/nervy"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/nervy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/nervy", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/nervy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Нервы (Nervy)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@nervy</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Нервы (Nervy). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Нервы (Nervy)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Нервы (Nervy).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Нервы (Nervy)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/nervy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Нервы (Nervy).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Нервы (Nervy)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 55, 78, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/nervy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Нервы (Nervy).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Нервы (Nervy)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.018523231148719788, 0.1948285698890686, -0.004143209662288427, 0.062392666935920715, 0.08667484670877457, -0.005863551050424576, 0.06287775933742523, 0.11078023165464401, -0.02117016725242138, 0.09085837006568909, 0.07402393221855164, 0.04438042640686035, 0.08488620817661285, 0.060535117983818054, 0.04779065400362015, -0.24572817981243134, 0.03621454909443855, -0.06397337466478348, 0.002301668282598257, 0.10015469044446945, 0.08008973300457001, -0.08284273743629456, 0.0815662145614624, 0.03990423306822777, -0.04750354588031769, -0.0035449774004518986, 0.007927468977868557, -0.05053642392158508, 0.0719902291893959, 0.07942566275596619, 0.04564522206783295, 0.037053097039461136, 0.06278450787067413, -0.18104368448257446, 0.02242397330701351, 0.12029071897268295, 0.023628229275345802, 0.09337358921766281, 0.07439891248941422, -0.06621551513671875, 0.13267219066619873, -0.03689885139465332, 0.08479844033718109, 0.059579942375421524, -0.11150763183832169, -0.07998989522457123, -0.14271478354930878, 0.07233954966068268, 0.07399088144302368, 0.08296983689069748, -0.025840964168310165, 0.09638461470603943, -0.0466039665043354, 0.054635997861623764, 0.2623765468597412, -0.25558122992515564, -0.016874385997653008, 0.037772711366415024, 0.057574789971113205, 0.013763141818344593, -0.09300251305103302, 0.014444527216255665, 0.03878554701805115, 0.03440548852086067, 0.0563197024166584, -0.028839068487286568, 0.1312406361103058, 0.0029383907094597816, -0.11235357075929642, -0.07180075347423553, 0.06986816227436066, -0.0043753269128501415, -0.07234130799770355, -0.10563874244689941, -0.00011525463196448982, -0.04274054244160652, 0.019326094537973404, 0.008065642789006233, -0.000014339632798510138, -0.02145029790699482, -0.06791609525680542, -0.11780379712581635, -0.06744397431612015, -0.03609951585531235, -0.024273812770843506, 0.046124961227178574, 0.05098283663392067, 0.0347597599029541, -0.0637262836098671, 0.1930718868970871, 0.024996470659971237, -0.10389116406440735, -0.06919609010219574, -0.10896608233451843, -0.09115172922611237, -0.040290895849466324, -0.00042797272908501327, 0.012007111683487892, -0.021700751036405563, 0.14707450568675995, -0.03297921642661095, 0.03211508318781853, -0.0501859076321125, 0.011217240244150162, 0.1044478714466095, 0.13093428313732147, -0.12581460177898407, -0.055146098136901855, 0.0687345564365387, -0.014967070892453194, -0.057669129222631454, -0.04974841699004173, -0.004012232646346092, -0.03524947538971901, 0.05668017268180847, 0.07465985417366028, 0.08790986239910126, 0.06043282896280289, 0.0016609650338068604, -0.04771019145846367, 0.02439049258828163, -0.1375402957201004, 0.02373417653143406, -0.00891932100057602, -0.06560683995485306, 0.015942489728331566, 0.04704291373491287, -0.0029666151385754347, -0.12037808448076248, 0.0805632472038269, -0.08876825869083405, -0.03654005751013756, -0.08525501936674118, -0.11214402318000793, 0.015062269754707813, -0.04693097993731499, -0.02789408527314663, -0.07970283925533295, -0.15421688556671143, -0.03606288880109787, 0.01987445168197155, -0.07203680276870728, -0.01733350194990635, 0.020027367398142815, -0.04490178823471069, 0.005328399129211903, -0.019251951947808266, -0.005300421733409166, -0.011695249006152153, 0.04214705899357796, -0.08927688002586365, 0.04326263442635536, 0.07428944110870361, 0.03764474019408226, -0.11921349912881851, 0.0772937759757042, -0.1333572268486023, 0.13344454765319824, -0.039463259279727936, -0.03146246820688248, -0.1003233790397644, -0.10816039144992828, -0.023215768858790398, -0.04967021569609642, 0.04094301536679268, 0.12639665603637695, -0.16027164459228516, -0.018607670441269875, 0.21026897430419922, -0.07266754657030106, -0.04996700584888458, 0.08332563936710358, -0.07081758230924606, 0.01329832710325718, 0.11665237694978714, 0.05795721709728241, 0.1371321827173233, -0.09112867712974548, -0.10342860221862793, -0.03540730103850365, -0.08600084483623505, 0.18388302624225616, 0.02045941725373268, -0.011276690289378166, 0.045385487377643585, -0.0005225172499194741, -0.014227000065147877, -0.008599042892456055, -0.042088042944669724, -0.039327122271060944, -0.010258984751999378, -0.005627134349197149, 0.021733639761805534, -0.04175323247909546, -0.03013540431857109, -0.012118487618863583, -0.10126616805791855, 0.05597151815891266, 0.08155937492847443, -0.07884453237056732, 0.02787073887884617, -0.10845626890659332, 0.04346848651766777, -0.06283403933048248, 0.013148958794772625, -0.18241021037101746, -0.03847949951887131, 0.009742951951920986, -0.0828678086400032, 0.06733213365077972, 0.019282527267932892, 0.04978983476758003, 0.06950897723436356, -0.024577436968684196, 0.01518572773784399, -0.046490006148815155, 0.007855881005525589, -0.0501067191362381, -0.16930989921092987, -0.053185783326625824, -0.037004612386226654, 0.061434805393218994, -0.11643726378679276, -0.00031867684447206557, 0.09212639927864075, 0.15922437608242035, 0.03291277959942818, -0.06067463383078575, 0.020868299528956413, -0.019690530374646187, -0.0314374640583992, -0.09703337401151657, -0.04809403419494629, 0.0066863070242106915, -0.038208477199077606, 0.15776194632053375, -0.14158934354782104, -0.10373230278491974, 0.12111061066389084, 0.07362894713878632, -0.08694519847631454, 0.028201092034578323, -0.06237805634737015, -0.030426962301135063, -0.03799312934279442, -0.051491767168045044, 0.2290150672197342, 0.05046689137816429, 0.08946198970079422, -0.08960623294115067, -0.07777824252843857, 0.00840836763381958, -0.036844126880168915, -0.02541215717792511, 0.055516548454761505, 0.0393713004887104, -0.20881013572216034, 0.05972054973244667, -0.007067419588565826, 0.06049486994743347, 0.15690840780735016, 0.022917520254850388, -0.09675683826208115, -0.059261370450258255, -0.0629722997546196, 0.016401447355747223, 0.07229024916887283, 0.027261042967438698, 0.0545843206346035, 0.0379934199154377, 0.04638391360640526, 0.03552067279815674, -0.1084384098649025, 0.020434532314538956, 0.04981580376625061, -0.03200623020529747, -0.04782649502158165, -0.0032658292911946774, 0.03195912390947342, 0.08966992795467377, 0.072304368019104, 0.09095678478479385, -0.037767186760902405, -0.04749662056565285, -0.1234293282032013, 0.13446208834648132, -0.09379584342241287, -0.20804035663604736, -0.12578138709068298, -0.09395574033260345, 0.016222495585680008, 0.009048976935446262, 0.022034350782632828, -0.02538715861737728, -0.03596801683306694, -0.09151731431484222, 0.05908660590648651, -0.04732462391257286, -0.011825998313724995, -0.009127615951001644, 0.039385903626680374, -0.0021463055163621902, -0.10785713791847229, -0.017658589407801628, 0.019207242876291275, -0.07444080710411072, 0.0027250966522842646, 0.04170871153473854, 0.059939656406641006, 0.12822064757347107, -0.011763231828808784, 0.00035783430212177336, -0.027104591950774193, 0.2692921459674835, -0.10977163165807724, 0.05098322033882141, 0.14598670601844788, -0.044418249279260635, 0.06933800131082535, 0.06619696319103241, 0.0027084730099886656, -0.042303603142499924, 0.04647662863135338, 0.061703603714704514, -0.06464572250843048, -0.20647579431533813, -0.018427874892950058, -0.03664475679397583, 0.008156204596161842, 0.11481613665819168, 0.028060132637619972, 0.0435081422328949, 0.015008666552603245, -0.0891193225979805, 0.059416089206933975, 0.055664848536252975, 0.10596494376659393, -0.01783820055425167, -0.007551661692559719, 0.06409421563148499, -0.04872685298323631, 0.01598249562084675, 0.09825875610113144, 0.027165936306118965, 0.2731406092643738, -0.07706567645072937, 0.07587701082229614, 0.08557213842868805, 0.08401700109243393, 0.027377864345908165, 0.042965006083250046, -0.022927865386009216, 0.03003029152750969, 0.0036671061534434557, -0.09188481420278549, -0.004941153340041637, 0.033738765865564346, 0.03442700207233429, -0.01911170780658722, -0.041778791695833206, -0.06947048753499985, 0.039591360837221146, 0.201254740357399, 0.06331442296504974, -0.17123588919639587, -0.07973646372556686, 0.06529693305492401, -0.044807299971580505, -0.050701431930065155, -0.018492190167307854, 0.08347805589437485, -0.20431753993034363, 0.033814724534749985, -0.0413060300052166, 0.1221499890089035, -0.15000493824481964, -0.004321573302149773, 0.005107205826789141, 0.06396371126174927, -0.061173420399427414, 0.07721459120512009, -0.17961660027503967, 0.08521567285060883, 0.012151633389294147, 0.08195394277572632, -0.05914273485541344, 0.017221616581082344, 0.03394940122961998, 0.015878826379776, 0.1030222624540329, 0.011774059385061264, -0.008911794982850552, -0.075533427298069, -0.06573782861232758, 0.0031375407706946135, 0.06420927494764328, -0.050581563264131546, 0.12509600818157196, -0.029065312817692757, 0.024685190990567207, -0.017812013626098633, -0.06409750133752823, -0.11330414563417435, -0.16441109776496887, 0.07377775013446808, -0.11729805916547775, -0.0034847240895032883, -0.04900793358683586, -0.033242352306842804, 0.018383895978331566, 0.21032968163490295, -0.12251637130975723, -0.07492788136005402, -0.11927034705877304, 0.044747959822416306, 0.15738219022750854, -0.0832948163151741, 0.023124977946281433, 0.011074949987232685, 0.14474408328533173, 0.009914908558130264, -0.124823197722435, -0.01795612834393978, -0.052041009068489075, -0.18406502902507782, -0.02085501328110695, 0.10889270901679993, 0.09133967757225037, 0.0548873208463192, 0.014535515569150448, 0.01340952143073082, -0.020445499569177628, -0.16238024830818176, 0.009214377030730247, 0.13190805912017822, 0.053864460438489914, 0.02367447502911091, 0.02375357411801815, 0.030898965895175934, -0.13313154876232147, 0.04045746847987175, 0.07093106210231781, 0.19375376403331757, -0.0835035964846611, 0.14732235670089722, 0.018612036481499672, -0.08633244782686234, -0.1699899286031723, 0.02461542747914791, 0.016033003106713295, 0.028583740815520287, 0.02973952144384384, -0.1604791134595871, 0.002819419838488102, 0.03920399025082588, -0.00727715203538537, 0.08048513531684875, -0.2933225929737091, -0.12769393622875214, 0.02066838927567005, 0.029734056442975998, -0.07663655281066895, -0.02316845767199993, -0.04941444471478462, -0.06621906161308289, -0.24816465377807617, 0.09721888601779938, -0.09924186021089554, 0.08251996338367462, 0.016276735812425613, 0.03418930992484093, 0.044304002076387405, -0.059725046157836914, 0.13000160455703735, -0.04626400023698807, 0.05335718393325806, -0.0915084183216095, -0.021701086312532425, 0.07609684765338898, -0.04957630857825279, 0.0717509463429451, 0.009308752603828907, 0.07030238211154938, -0.05808042734861374, -0.06454646587371826, -0.08457187563180923, 0.021032243967056274, -0.06144078075885773, -0.08261071890592575, -0.08531375974416733, 0.1044788733124733, 0.12813037633895874, -0.02279660850763321, -0.08404026925563812, -0.05466205254197121, -0.03586609661579132, 0.09109295904636383, 0.11319612711668015, 0.10263524949550629, -0.07289279997348785, 0.012177085503935814, 0.0056101419031620026, 0.03553685173392296, -0.11214503645896912, 0.04882919788360596, 0.09641425311565399, 0.024419760331511497, 0.10911548137664795, 0.02675401233136654, -0.16634784638881683, 0.027060579508543015, 0.03092200867831707, -0.12590986490249634, -0.10473441332578659, -0.01976788602769375, -0.025835413485765457, -0.09402898699045181, -0.04233251139521599, 0.14339745044708252, -0.04204542934894562, -0.030440444126725197, 0.005500054452568293, 0.061255354434251785, -0.03911299258470535, 0.11228800565004349, 0.03913564234972, 0.047531794756650925, -0.07382382452487946, 0.08709432184696198, 0.07454311847686768, 0.010371078737080097, 0.037551477551460266, 0.05551861971616745, -0.08556634187698364, -0.0032910865265876055, -0.08123042434453964, 0.009157315827906132, -0.020235275849699974, -0.010411153547465801, -0.0028843143954873085, -0.043607864528894424, 0.043865762650966644, 0.10678162425756454, -0.017928965389728546, 0.1135149821639061, -0.02547183632850647, -0.003391937119886279, -0.13219140470027924, 0.07970601320266724, 0.04331797733902931, 0.022568782791495323, -0.09073598682880402, 0.15709803998470306, 0.030468987300992012, 0.09245146065950394, -0.042568501085042953, -0.03989359736442566, -0.08353332430124283, -0.009359695017337799, -0.14105120301246643, -0.027691472321748734, -0.09314201772212982, -0.039973702281713486, -0.020184192806482315, -0.03863341733813286, -0.041564177721738815, 0.0543576143682003, -0.025802165269851685, -0.06845579296350479, -0.05094939097762108, 0.042289718985557556, -0.15074053406715393, -0.0007904760423116386, 0.13039326667785645, -0.07698864489793777, 0.1055523082613945, 0.04172125831246376, -0.03446649760007858, 0.016022302210330963, -0.08200731128454208, 0.01968355104327202, -0.03391551598906517, 0.017584167420864105, 0.0363289974629879, -0.1307467669248581, 0.015746816992759705, -0.05603225901722908, -0.046902742236852646, 0.009884235449135303, 0.0000634253810858354, -0.11687450110912323, -0.001590440864674747, 0.04205211251974106, -0.004168200306594372, -0.07396251708269119, 0.07604609429836273, 0.050236839801073074, 0.028012651950120926, 0.07454778999090195, -0.019251219928264618, 0.10054648667573929, -0.16654732823371887, -0.03898534178733826, 0.016194742172956467, 0.0019649805035442114, 0.09914547204971313, -0.01907416433095932, 0.059850215911865234, -0.025549717247486115, 0.17990529537200928, -0.0013636223739013076, -0.026235107332468033, 0.035736333578825, -0.03946269676089287, -0.017892243340611458, 0.04913732782006264, 0.058465633541345596, -0.018569454550743103, -0.05538266897201538, -0.022834820672869682, -0.0047494699247181416, -0.07269186526536942, -0.061176598072052, 0.1291155219078064, 0.07958156615495682, 0.1451810747385025, -0.0353226400911808, 0.07344742119312286, -0.021232636645436287, -0.11192899197340012, -0.012488892301917076, -0.019097954034805298, 0.03363898769021034, -0.048897918313741684, 0.08952158689498901, 0.1589229851961136, -0.14535385370254517, 0.11879036575555801, 0.01647389493882656, -0.06504257768392563, -0.11008681356906891, -0.19545531272888184, -0.032286882400512695, -0.01291066873818636, 0.037251390516757965, -0.12539604306221008, 0.07412177324295044, 0.04291680082678795, 0.032055363059043884, -0.05802302807569504, 0.09353999048471451, -0.03331877291202545, -0.11259688436985016, 0.01924523152410984, 0.03396228328347206, 0.027651209384202957, 0.035882432013750076, 0.06180538237094879, 0.03021148033440113, 0.021358376368880272, 0.0720801129937172, 0.03158385306596756, 0.04268081113696098, 0.030311312526464462, -0.018366049975156784, -0.058796364814043045, 0.022465037181973457, 0.014495410956442356, 0.044519536197185516, 0.12820269167423248, 0.0607701800763607, -0.012767046689987183, -0.044311925768852234, 0.28721174597740173, -0.04071787744760513, -0.03537869453430176, -0.16644445061683655, 0.17620185017585754, 0.032418735325336456, -0.003736528567969799, 0.01951940357685089, -0.13937526941299438, 0.014805171638727188, 0.16086362302303314, 0.17111258208751678, -0.058013156056404114, 0.008275028318166733, -0.026743805035948753, 0.009815282188355923, 0.03469167277216911, 0.0752444714307785, 0.060782622545957565, 0.2023274153470993, -0.05475432053208351, 0.058368779718875885, -0.00746311666443944, -0.003568786894902587, -0.02829250693321228, 0.11024479568004608, -0.029233001172542572, 0.014029239304363728, -0.07677191495895386, 0.08094344288110733, -0.0705047994852066, -0.2513221502304077, 0.0017449402948841453, -0.03895353153347969, -0.09783592075109482, 0.06519947946071625, -0.04322880506515503, -0.018994910642504692, 0.07737548649311066, 0.02217840775847435, -0.015200742520391941, 0.10818174481391907, 0.038265712559223175, -0.025451984256505966, -0.007357364520430565, 0.08647777885198593, -0.013975905254483223, 0.1967376172542572, -0.01806577667593956, 0.023700062185525894, 0.1018596962094307, 0.03552141413092613, -0.1188020333647728, -0.00037627009442076087, 0.04121798649430275, -0.07497581839561462, -0.006243045441806316, 0.19911766052246094, 0.01377793774008751, 0.011606428772211075, 0.07163803279399872, -0.033755067735910416, 0.028000010177493095, -0.08550098538398743, 0.040005434304475784, -0.11732087284326553, 0.04013797268271446, -0.07232971489429474, 0.1351367086172104, 0.17938417196273804, -0.06697198748588562, 0.02863697148859501, -0.05355289205908775, -0.020421426743268967, -0.019054383039474487, 0.056857164949178696, -0.019942302256822586, -0.09977836161851883, 0.017914846539497375, 0.045436106622219086, 0.02155536226928234, -0.19124923646450043, -0.07456930726766586, 0.054004598408937454, -0.06390425562858582, 0.004072331357747316, 0.14491134881973267, 0.029918907210230827, 0.04851792752742767, -0.03565046191215515, -0.04090304672718048, -0.023487286642193794, 0.08662617206573486, -0.1409003734588623, -0.07248297333717346 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4c1373962cfc3a668a3e30da9a76a34c.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nirvana</div> <a href="https://genius.com/artists/nirvana"> <div style="text-align: center; font-size: 14px;">@nirvana</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Nirvana. Dataset is available [here](https://huggingface.co/datasets/huggingartists/nirvana). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/nirvana") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1bj9eav1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Nirvana's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3vzztlsq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3vzztlsq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/nirvana') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/nirvana") model = AutoModelWithLMHead.from_pretrained("huggingartists/nirvana") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/nirvana"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/nirvana
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/nirvana", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/nirvana #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nirvana</div> <a href="URL <div style="text-align: center; font-size: 14px;">@nirvana</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Nirvana. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Nirvana's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Nirvana.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Nirvana's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/nirvana #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Nirvana.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Nirvana's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/nirvana #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Nirvana.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Nirvana's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.010704103857278824, 0.16906173527240753, -0.0027111482340842485, 0.043084174394607544, 0.09296520799398422, 0.006542265880852938, 0.07426583021879196, 0.09945350885391235, -0.00876251608133316, 0.0751800686120987, 0.0760105773806572, 0.009266432374715805, 0.06745027750730515, 0.1062401682138443, 0.08788447827100754, -0.26283708214759827, 0.028963658958673477, -0.09694095700979233, 0.0029036335181444883, 0.11578426510095596, 0.09921933710575104, -0.052296724170446396, 0.08267130702733994, 0.036934804171323776, -0.06806144118309021, 0.01852712780237198, -0.007903038524091244, -0.05808018520474434, 0.08917633444070816, 0.061738405376672745, 0.026386557146906853, 0.02345915697515011, 0.05854922533035278, -0.18629081547260284, 0.030611135065555573, 0.12428164482116699, 0.032947298139333725, 0.0677155926823616, 0.046439047902822495, -0.07550084590911865, 0.16482017934322357, -0.013634185306727886, 0.09503331780433655, 0.04564397409558296, -0.11052167415618896, -0.15365378558635712, -0.12813813984394073, 0.08471451699733734, 0.09800820052623749, 0.08972521871328354, -0.03142137452960014, 0.04156055673956871, -0.01586284302175045, 0.03959210589528084, 0.22829169034957886, -0.2312401682138443, -0.016176274046301842, 0.08834532648324966, 0.030863113701343536, 0.033542901277542114, -0.08040326088666916, 0.02162877842783928, 0.046533308923244476, 0.023569976910948753, 0.05070660635828972, -0.019787274301052094, 0.18694184720516205, 0.01934749074280262, -0.09675906598567963, -0.08117493242025375, 0.11771189421415329, -0.025688650086522102, -0.07171282917261124, -0.13493399322032928, 0.0004571280151139945, -0.021772466599941254, 0.03601692244410515, -0.00843153428286314, -0.0038761193864047527, 0.007450791075825691, -0.03162401542067528, -0.10892371833324432, -0.0888817310333252, -0.026689231395721436, -0.009362032637000084, 0.06075378879904747, 0.030191617086529732, 0.033087439835071564, -0.07771438360214233, 0.22678115963935852, -0.040228355675935745, -0.09769352525472641, -0.06004619225859642, -0.09408297389745712, -0.09205222129821777, -0.05055912211537361, 0.0020130586344748735, 0.013517409563064575, -0.054109107702970505, 0.1673649549484253, -0.023907575756311417, 0.0341842919588089, -0.0017199444118887186, -0.014281529001891613, 0.14661461114883423, 0.12637485563755035, -0.09760768711566925, -0.033690594136714935, 0.06062731146812439, -0.01494378037750721, -0.0612625889480114, -0.055499117821455, -0.00918816402554512, -0.02348075620830059, 0.041080888360738754, 0.08371856063604355, 0.05578503757715225, 0.05729907378554344, 0.025351673364639282, -0.06039584428071976, 0.08437950164079666, -0.1364244818687439, 0.011410566978156567, -0.014086944051086903, -0.03181019052863121, 0.015568056143820286, 0.044764675199985504, 0.012965098954737186, -0.09923801571130753, 0.11703582108020782, -0.056223299354314804, -0.05339010804891586, -0.08298658579587936, -0.07289087772369385, -0.004888136405497789, -0.03478199243545532, -0.04181722551584244, -0.07071834802627563, -0.1760505884885788, -0.04118200019001961, 0.038331884890794754, -0.04627752676606178, -0.05174894630908966, 0.03225189819931984, -0.026048842817544937, 0.01324184238910675, -0.01925601437687874, -0.019586261361837387, -0.02639494463801384, 0.02223215252161026, -0.06443338841199875, 0.030142124742269516, 0.07144061475992203, 0.043318405747413635, -0.11027060449123383, 0.07396478950977325, -0.15601834654808044, 0.12995947897434235, -0.011384941637516022, 0.013433929532766342, -0.09696372598409653, -0.09167719632387161, -0.03457856923341751, -0.03411344438791275, -0.00016983386012725532, 0.09461912512779236, -0.1872185617685318, -0.03216534107923508, 0.18619737029075623, -0.07623019069433212, -0.07567942142486572, 0.07105030119419098, -0.07204560935497284, 0.03334399312734604, 0.12321850657463074, 0.06987716257572174, 0.16907115280628204, -0.09563355892896652, -0.05850110203027725, -0.04557081684470177, -0.06370939314365387, 0.20893661677837372, 0.0441562682390213, -0.01651834137737751, 0.01904931291937828, 0.014228812418878078, -0.033992405980825424, -0.03178520128130913, -0.013057004660367966, -0.043746255338191986, -0.021437427029013634, 0.006333398167043924, -0.010230794548988342, -0.04074370488524437, -0.0675727128982544, -0.026096783578395844, -0.10239624232053757, 0.0374494232237339, 0.10034412145614624, -0.06944378465414047, 0.011910717934370041, -0.08483247458934784, 0.007603496313095093, -0.02825377695262432, 0.01663975603878498, -0.18059314787387848, -0.05125793442130089, 0.023828089237213135, -0.061621423810720444, 0.09113192558288574, 0.036153364926576614, 0.03745448216795921, 0.05309930071234703, -0.017996059730648994, 0.017310190945863724, -0.0503414086997509, -0.019655779004096985, -0.016941489651799202, -0.14000751078128815, -0.05470461770892143, -0.046064041554927826, 0.09277816116809845, -0.13008743524551392, -0.0007239921251311898, 0.1000741571187973, 0.11776634305715561, 0.02003864385187626, -0.06530186533927917, 0.019149351865053177, -0.04221636429429054, -0.03319400176405907, -0.10823801159858704, -0.053283464163541794, 0.009245410561561584, -0.02800976298749447, 0.15095053613185883, -0.16052542626857758, -0.08680595457553864, 0.0983450710773468, 0.1391504555940628, -0.10037887841463089, 0.04645376279950142, -0.08116470277309418, -0.017613030970096588, -0.05285158380866051, -0.03755762055516243, 0.2637058198451996, 0.029978713020682335, 0.0715896412730217, -0.10470212250947952, -0.09523791819810867, -0.004035523626953363, -0.04132561758160591, -0.026556575670838356, 0.02623373083770275, 0.022893302142620087, -0.17811191082000732, 0.034814540296792984, -0.003948661964386702, 0.09254886209964752, 0.1986825168132782, 0.04414597898721695, -0.08662824332714081, -0.05573758855462074, -0.07631528377532959, 0.0008003702387213707, 0.05933646857738495, 0.01279883086681366, 0.03322715312242508, 0.042435918003320694, 0.06130766496062279, 0.03780924528837204, -0.11851561069488525, 0.01083320565521717, 0.07347750663757324, -0.04000452905893326, -0.04381977766752243, 0.023060033097863197, 0.01800774596631527, 0.07482977956533432, 0.08688220381736755, 0.13982543349266052, -0.06317774951457977, -0.048395782709121704, -0.1464126855134964, 0.13634581863880157, -0.08485390990972519, -0.25752314925193787, -0.1305595338344574, -0.06663966923952103, 0.014843273907899857, 0.007853294722735882, 0.033877596259117126, -0.05290941521525383, -0.04598334804177284, -0.0933365523815155, 0.07576308399438858, -0.05581158027052879, -0.014510787092149258, -0.00018527563952375203, 0.020879851654171944, -0.02272939868271351, -0.10328014940023422, -0.02826325222849846, 0.042396772652864456, -0.10164275020360947, -0.01547614298760891, 0.0357622392475605, 0.0321042537689209, 0.15899641811847687, -0.009773594327270985, 0.004614109639078379, -0.01961408369243145, 0.28445231914520264, -0.11879634112119675, 0.06932372599840164, 0.16009297966957092, -0.017962487414479256, 0.05906716734170914, 0.0783943310379982, 0.00315890833735466, -0.06494481861591339, 0.07467041909694672, 0.07744394242763519, -0.0883953794836998, -0.20813006162643433, -0.02777745947241783, -0.016300778836011887, 0.006626385264098644, 0.12454529106616974, 0.056954700499773026, 0.05296304076910019, 0.009611690416932106, -0.10228618234395981, 0.039493005722761154, 0.027882704511284828, 0.10227648168802261, -0.06319399178028107, -0.01087409257888794, 0.04408341646194458, -0.05676620453596115, 0.03660586476325989, 0.12959805130958557, 0.04350750148296356, 0.2144416719675064, -0.06719192117452621, 0.08846476674079895, 0.08079107105731964, 0.10062693059444427, 0.028905240818858147, 0.012433929368853569, -0.02671179547905922, 0.014623777940869331, 0.0005020255921408534, -0.09329486638307571, -0.008972576819360256, 0.04606129974126816, 0.0311150923371315, -0.02161172777414322, -0.038658276200294495, -0.0611569806933403, 0.03738172724843025, 0.2389712929725647, 0.006401075050234795, -0.16197846829891205, -0.10375165939331055, 0.054793935269117355, -0.06809164583683014, -0.060301873832941055, -0.013260588981211185, 0.0675818920135498, -0.21516072750091553, 0.07411076128482819, -0.02962479554116726, 0.10910855233669281, -0.11659955233335495, -0.00398446386680007, 0.08761358261108398, 0.04393523558974266, -0.054606225341558456, 0.09877625107765198, -0.16282963752746582, 0.06177873909473419, -0.010028963908553123, 0.0737813338637352, -0.06754697114229202, 0.027592508122324944, 0.00644319411367178, 0.05733055621385574, 0.08417128771543503, 0.021657900884747505, 0.00871418509632349, 0.02471979707479477, -0.035997405648231506, 0.007340230979025364, 0.06080570071935654, -0.12095681577920914, 0.11554915457963943, -0.037046775221824646, 0.031676311045885086, -0.03698668256402016, -0.0842164009809494, -0.08759026229381561, -0.16783316433429718, 0.0902935266494751, -0.1176135241985321, -0.00162470992654562, -0.06742613762617111, -0.020870042964816093, 0.03548693284392357, 0.26134905219078064, -0.05608464777469635, -0.07713623344898224, -0.13336388766765594, 0.003165043657645583, 0.1422668844461441, -0.07680591940879822, 0.018554165959358215, -0.01514239888638258, 0.19958718121051788, 0.004177447408437729, -0.1248251274228096, -0.0237075574696064, -0.0614720918238163, -0.17042046785354614, -0.007142229471355677, 0.1680823564529419, 0.060791585594415665, 0.027866408228874207, 0.006624581292271614, 0.0036679774057120085, -0.04814848303794861, -0.173015758395195, 0.021886583417654037, 0.15930868685245514, -0.017253531143069267, 0.006967567373067141, 0.05244307592511177, 0.02671993337571621, -0.12416964024305344, 0.009368670172989368, 0.05308547616004944, 0.17186741530895233, -0.07778667658567429, 0.18994049727916718, 0.03159181401133537, -0.08998076617717743, -0.16261541843414307, 0.01975342072546482, 0.025450455024838448, 0.03012780472636223, 0.03026556596159935, -0.19939252734184265, 0.03719642758369446, 0.03087933175265789, -0.004269252065569162, 0.059874244034290314, -0.31806397438049316, -0.15623275935649872, -0.004905842710286379, 0.009040378034114838, -0.10765617340803146, -0.03464197367429733, -0.03540346771478653, -0.08738061040639877, -0.25010764598846436, 0.10840146988630295, -0.09447690099477768, 0.07596275955438614, 0.020492222160100937, 0.10424887388944626, 0.04665469750761986, -0.05058373510837555, 0.1311313509941101, -0.031775616109371185, 0.05775219574570656, -0.09758096188306808, -0.04425211250782013, 0.07573723047971725, -0.06975337117910385, 0.0967591404914856, 0.024951623752713203, 0.08468084037303925, -0.09181845933198929, -0.08492899686098099, -0.07079871743917465, 0.0044415961019694805, -0.05777610093355179, -0.09321078658103943, -0.10010253638029099, 0.09065576642751694, 0.12450933456420898, -0.0431574247777462, -0.09686873108148575, -0.057401806116104126, -0.008428996428847313, 0.04682571068406105, 0.11610327661037445, 0.0684690997004509, -0.08147294819355011, 0.005651218816637993, 0.018561173230409622, 0.017908591777086258, -0.17417748272418976, 0.04664928466081619, 0.08760359138250351, 0.04518074542284012, 0.10134052485227585, 0.006414255127310753, -0.16449348628520966, 0.00006910830416018143, 0.05112256482243538, -0.17052356898784637, -0.13661837577819824, -0.04218681529164314, 0.016967501491308212, -0.10117567330598831, -0.05741199105978012, 0.12778763473033905, -0.03861590474843979, -0.037306178361177444, 0.007769173476845026, 0.04964409023523331, -0.045014407485723495, 0.08275241404771805, 0.002830310259014368, 0.04578014090657234, -0.06692752242088318, 0.12004951387643814, 0.06715917587280273, 0.007259204518049955, 0.03721781075000763, 0.07285723090171814, -0.0923701748251915, 0.011930961161851883, -0.09044275432825089, -0.009308711625635624, -0.02311905473470688, -0.016925795003771782, 0.030266525223851204, -0.03402656689286232, 0.041745033115148544, 0.07747049629688263, -0.014120208099484444, 0.10905832052230835, -0.039539095014333725, 0.00974302738904953, -0.12824280560016632, 0.06768856942653656, 0.027821896597743034, 0.022794170305132866, -0.11773422360420227, 0.17218512296676636, 0.035579875111579895, 0.10270103067159653, -0.035807620733976364, -0.06261637806892395, -0.055771224200725555, -0.010001609101891518, -0.07640793919563293, -0.04333289712667465, -0.09163831919431686, -0.026594076305627823, -0.005142746958881617, -0.03550069034099579, -0.02839283086359501, 0.04814865440130234, -0.03368518501520157, -0.06252989172935486, -0.07408908754587173, 0.04160900413990021, -0.13087916374206543, 0.036748748272657394, 0.1224813312292099, -0.05410041660070419, 0.12351056933403015, 0.05566766485571861, -0.037092916667461395, 0.03066563419997692, -0.12102032452821732, 0.04239993542432785, -0.016999565064907074, 0.019972607493400574, 0.022888874635100365, -0.16296888887882233, 0.0018563162302598357, -0.04289684072136879, -0.0632343515753746, 0.0015637818723917007, -0.005455246195197105, -0.13031189143657684, -0.005245824344456196, 0.08402501046657562, -0.02333337441086769, -0.06823600083589554, 0.06153799965977669, 0.0549304336309433, 0.026876864954829216, 0.060431379824876785, -0.01906404085457325, 0.07680725306272507, -0.16452336311340332, -0.05331074073910713, 0.0031853043474256992, 0.03201250731945038, 0.037304192781448364, -0.013582578860223293, 0.03208064287900925, -0.02340536378324032, 0.19259394705295563, 0.011291964910924435, -0.01981802098453045, 0.03647930920124054, -0.06834133714437485, 0.0004446897655725479, 0.0434347465634346, 0.074744813144207, -0.029699424281716347, -0.04019548371434212, -0.003849487751722336, -0.021559467539191246, -0.09536268562078476, -0.03031548485159874, 0.11572697758674622, 0.02915038913488388, 0.19797757267951965, -0.054287541657686234, 0.06421560049057007, -0.015482140704989433, -0.12474427372217178, -0.01187029480934143, -0.03760145232081413, 0.03928177431225777, -0.0597248375415802, 0.0645570307970047, 0.18911339342594147, -0.16111402213573456, 0.12309261411428452, 0.017678186297416687, -0.05908430367708206, -0.11503177881240845, -0.20810724794864655, -0.021060118451714516, -0.03921985253691673, 0.03125908225774765, -0.13647343218326569, 0.0932299867272377, 0.017481576651334763, 0.03635387867689133, -0.07141146063804626, 0.13204717636108398, -0.08022544533014297, -0.12042998522520065, 0.034787748008966446, 0.026129288598895073, 0.02551586739718914, 0.054415661841630936, 0.08388794958591461, 0.024311918765306473, 0.002217396628111601, 0.0669974610209465, 0.03739361837506294, 0.03253740444779396, 0.030246440321207047, -0.021117808297276497, -0.036928847432136536, 0.03180377930402756, -0.002294592559337616, 0.032701436430215836, 0.08998635411262512, 0.06139431521296501, -0.022908732295036316, -0.023530257865786552, 0.3053290843963623, -0.029240936040878296, -0.04095686599612236, -0.18372982740402222, 0.16807645559310913, 0.0017418484203517437, -0.011387014761567116, 0.033025626093149185, -0.12036202102899551, 0.008922536857426167, 0.13239063322544098, 0.15555676817893982, -0.016502955928444862, 0.02322549559175968, -0.030708391219377518, 0.01786983385682106, 0.029204200953245163, 0.10127691179513931, 0.06689556688070297, 0.20297035574913025, -0.03304566442966461, 0.04716147854924202, -0.01727987267076969, -0.017327824607491493, -0.007385473698377609, 0.10364923626184464, -0.03619920462369919, 0.008306480944156647, -0.052813246846199036, 0.10331828147172928, -0.059920284897089005, -0.27826181054115295, -0.028276126831769943, -0.03137083351612091, -0.10116913914680481, 0.0654328390955925, -0.03320349380373955, -0.033570531755685806, 0.08375179767608643, 0.024835972115397453, -0.046834252774715424, 0.1383947879076004, 0.05270691588521004, -0.03822548687458038, -0.012748070992529392, 0.10823845863342285, -0.008780430071055889, 0.1767709106206894, -0.028079532086849213, 0.0019262232817709446, 0.0787520706653595, 0.02184756100177765, -0.13093635439872742, 0.001461187843233347, 0.04332549497485161, -0.06456441432237625, -0.027472270652651787, 0.21033672988414764, 0.009090893901884556, 0.02226874977350235, 0.06726580113172531, -0.049408961087465286, 0.019625013694167137, -0.04176831990480423, 0.06897129863500595, -0.14114540815353394, 0.06747236847877502, -0.08995906263589859, 0.12705771625041962, 0.18046779930591583, -0.06628084927797318, 0.022508788853883743, -0.06226406618952751, 0.009688064455986023, -0.02933465875685215, 0.07729284465312958, -0.017944101244211197, -0.11153095960617065, 0.010304197669029236, 0.045282911509275436, 0.015484500676393509, -0.17412510514259338, -0.07869015634059906, 0.07416916638612747, -0.0461447536945343, 0.02703149802982807, 0.17393644154071808, 0.017642658203840256, 0.05748622864484787, -0.03715807572007179, -0.022445108741521835, -0.013946514576673508, 0.10972833633422852, -0.1693512350320816, -0.08494208008050919 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4411ffc50a3cd07d303d09a5db3b7cf5.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">OBLADAET</div> <a href="https://genius.com/artists/obladaet"> <div style="text-align: center; font-size: 14px;">@obladaet</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from OBLADAET. Dataset is available [here](https://huggingface.co/datasets/huggingartists/obladaet). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/obladaet") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1mtsuuwr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on OBLADAET's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s9epb35) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s9epb35/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/obladaet') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/obladaet") model = AutoModelWithLMHead.from_pretrained("huggingartists/obladaet") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/obladaet"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/obladaet
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/obladaet", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/obladaet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">OBLADAET</div> <a href="URL <div style="text-align: center; font-size: 14px;">@obladaet</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from OBLADAET. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on OBLADAET's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from OBLADAET.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on OBLADAET's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/obladaet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from OBLADAET.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on OBLADAET's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/obladaet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from OBLADAET.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on OBLADAET's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.031205322593450546, 0.1493016481399536, -0.00270745437592268, 0.04016128554940224, 0.10412181913852692, 0.0091250566765666, 0.08802182227373123, 0.1144227385520935, 0.012431151233613491, 0.08095256984233856, 0.07060609012842178, 0.028968503698706627, 0.07016002386808395, 0.09816352277994156, 0.0696001797914505, -0.23291145265102386, 0.03486880287528038, -0.08047034591436386, 0.0017166932811960578, 0.10443112254142761, 0.09484336525201797, -0.058949537575244904, 0.08070672303438187, 0.02939697355031967, -0.07294672727584839, 0.016284044831991196, 0.003201010636985302, -0.06339837610721588, 0.09254121780395508, 0.06470643728971481, 0.032087359577417374, 0.02530546672642231, 0.06546498835086823, -0.18747948110103607, 0.028893044218420982, 0.12680983543395996, 0.027861719951033592, 0.07841687649488449, 0.039548348635435104, -0.08133908361196518, 0.14046026766300201, -0.025002991780638695, 0.0879417136311531, 0.0581229142844677, -0.1195862665772438, -0.13417430222034454, -0.13304346799850464, 0.10310323536396027, 0.09598280489444733, 0.08753961324691772, -0.028918800875544548, 0.07357434928417206, -0.02016836404800415, 0.044177960604429245, 0.23035793006420135, -0.23734953999519348, -0.010941223241388798, 0.088996522128582, 0.06295851618051529, 0.024075493216514587, -0.08462993055582047, 0.015011058188974857, 0.0473855696618557, 0.030505722388625145, 0.03771119564771652, -0.025165222585201263, 0.16992412507534027, 0.02486896701157093, -0.10024130344390869, -0.07575273513793945, 0.11826824396848679, -0.017290037125349045, -0.08167938888072968, -0.1291864514350891, -0.005135685671120882, -0.029354337602853775, 0.036641061305999756, 0.007477316539734602, 0.002110318746417761, 0.007195621263235807, -0.035977285355329514, -0.1172763779759407, -0.08191125094890594, -0.03343998268246651, -0.012428970076143742, 0.06247579678893089, 0.03830813989043236, 0.03266575187444687, -0.08229631930589676, 0.22409477829933167, -0.029273025691509247, -0.0954015776515007, -0.05341973155736923, -0.09633499383926392, -0.08768274635076523, -0.04282331094145775, 0.002310581039637327, -0.0050004832446575165, -0.04068991541862488, 0.1606285721063614, -0.0371062234044075, 0.02148664928972721, -0.021515948697924614, 0.004626445472240448, 0.14295636117458344, 0.13460120558738708, -0.11111094057559967, -0.04375326260924339, 0.0694519430398941, -0.00017666326311882585, -0.06841997057199478, -0.04981743544340134, -0.009971491061151028, -0.015573805198073387, 0.04109629616141319, 0.07635179162025452, 0.07754052430391312, 0.06090046465396881, 0.006537765730172396, -0.06227198615670204, 0.06810621172189713, -0.12822067737579346, 0.014784459955990314, -0.010660084895789623, -0.05335349217057228, 0.011631431058049202, 0.07287559658288956, 0.015226867981255054, -0.10565725713968277, 0.10658788681030273, -0.06715895235538483, -0.05188683420419693, -0.07766072452068329, -0.09513083845376968, -0.009445230476558208, -0.05347074940800667, -0.03453399986028671, -0.07713878154754639, -0.18246664106845856, -0.04617564380168915, 0.025204908102750778, -0.047327566891908646, -0.033149704337120056, 0.025533270090818405, -0.02930157072842121, 0.008992493152618408, -0.020785434171557426, -0.040547847747802734, -0.02697654440999031, 0.03230133280158043, -0.06000634655356407, 0.026654977351427078, 0.05128784105181694, 0.04623090475797653, -0.1181669682264328, 0.07380464673042297, -0.13019579648971558, 0.11169082671403885, -0.01335147861391306, 0.017463287338614464, -0.09912009537220001, -0.08007154613733292, -0.02579500339925289, -0.022570207715034485, 0.017645884305238724, 0.10353346914052963, -0.16100969910621643, -0.03161019831895828, 0.1984701305627823, -0.06425520032644272, -0.08338318020105362, 0.06442956626415253, -0.06748508661985397, 0.045238640159368515, 0.1143864318728447, 0.07724170386791229, 0.1477314978837967, -0.11228948831558228, -0.07335998862981796, -0.05360773578286171, -0.06495369970798492, 0.17396831512451172, 0.03738056868314743, -0.025389762595295906, 0.035492148250341415, 0.004100551828742027, -0.028668683022260666, -0.011385900899767876, -0.023645130917429924, -0.03598212078213692, -0.025755472481250763, -0.007710930425673723, -0.010312831960618496, -0.03810341656208038, -0.057369623333215714, -0.02632596530020237, -0.10440968722105026, 0.07053080946207047, 0.1048116534948349, -0.062499385327100754, 0.01610576920211315, -0.09524159878492355, 0.029104355722665787, -0.04804301634430885, 0.011513764038681984, -0.1711110770702362, -0.041438743472099304, 0.018553398549556732, -0.060819003731012344, 0.080697201192379, 0.0374152846634388, 0.04004045948386192, 0.06902474910020828, -0.012515543960034847, -0.006768859922885895, -0.04348430410027504, -0.009472059085965157, -0.03486643359065056, -0.16023863852024078, -0.05146921053528786, -0.04533810913562775, 0.08454584330320358, -0.11503082513809204, 0.009041435085237026, 0.07446813583374023, 0.13357530534267426, 0.022029750049114227, -0.06689685583114624, 0.02805418334901333, -0.03570501133799553, -0.0357554629445076, -0.1057760939002037, -0.04191243648529053, 0.009898939169943333, -0.021775154396891594, 0.1505291610956192, -0.16042904555797577, -0.08968986570835114, 0.11579550802707672, 0.11717846989631653, -0.08910387754440308, 0.04830208793282509, -0.08001769334077835, -0.020879607647657394, -0.03940274193882942, -0.05155838280916214, 0.2594861388206482, 0.02846723236143589, 0.09483619034290314, -0.09056497365236282, -0.08308397233486176, -0.00098153087310493, -0.044841233640909195, -0.03356097266077995, 0.03042401187121868, 0.026046380400657654, -0.16126510500907898, 0.04996549338102341, -0.008377947844564915, 0.0942547544836998, 0.20211586356163025, 0.041276030242443085, -0.08579301089048386, -0.05871298164129257, -0.06692899018526077, 0.0008421903476119041, 0.08581166714429855, -0.0006367394234985113, 0.027514642104506493, 0.03828449547290802, 0.05136336013674736, 0.04369979724287987, -0.1105962023139, 0.015398751012980938, 0.0670408383011818, -0.028406785801053047, -0.044382333755493164, 0.017564039677381516, 0.020714573562145233, 0.08539320528507233, 0.08099581301212311, 0.12101081013679504, -0.05515090376138687, -0.04888894036412239, -0.13528071343898773, 0.13389524817466736, -0.09281773120164871, -0.2177501767873764, -0.13595978915691376, -0.06499404460191727, 0.004242095164954662, 0.015125871635973454, 0.04302060976624489, -0.045839715749025345, -0.03938790038228035, -0.0938732698559761, 0.09419701248407364, -0.039228666573762894, -0.017913445830345154, 0.0038326887879520655, 0.0202521663159132, -0.010424083098769188, -0.12123607844114304, -0.035290684551000595, 0.029541056603193283, -0.0911305844783783, -0.004931529518216848, 0.029100431129336357, 0.042377769947052, 0.15030798316001892, -0.006154550705105066, 0.006865411531180143, -0.018064092844724655, 0.2635401487350464, -0.10883194208145142, 0.06466658413410187, 0.1672956347465515, -0.00004028722469229251, 0.05244999751448631, 0.06718466430902481, -0.002133276080712676, -0.06095072627067566, 0.0624232292175293, 0.0756000205874443, -0.06911546736955643, -0.20945727825164795, -0.03944927081465721, -0.013276384212076664, 0.020150892436504364, 0.1164189800620079, 0.04268815368413925, 0.06528760492801666, 0.012060166336596012, -0.10199733823537827, 0.06053405627608299, 0.014673137106001377, 0.10495807230472565, -0.07274776697158813, -0.009285965003073215, 0.04772840440273285, -0.04668983444571495, 0.035694338381290436, 0.12385128438472748, 0.04115518927574158, 0.21134571731090546, -0.07068774849176407, 0.07674540579319, 0.08284138143062592, 0.10020751506090164, 0.01651698164641857, 0.01927793025970459, -0.026983069255948067, 0.020647333934903145, 0.005935195833444595, -0.09189717471599579, -0.011462298221886158, 0.04586903378367424, 0.03315477818250656, 0.00030167106888256967, -0.059420645236968994, -0.07007814943790436, 0.050303857773542404, 0.23344218730926514, 0.026791652664542198, -0.16703927516937256, -0.10328271985054016, 0.05876830592751503, -0.0525163896381855, -0.06736128777265549, -0.013118945993483067, 0.06891552358865738, -0.21292102336883545, 0.03835633024573326, -0.034064311534166336, 0.11320613324642181, -0.10996782779693604, 0.0056698499247431755, 0.06880797445774078, 0.04053964838385582, -0.06818317621946335, 0.08085273206233978, -0.15826423466205597, 0.07623525708913803, -0.0030420313123613596, 0.0791044533252716, -0.06428609043359756, 0.023300478234887123, 0.019100738689303398, 0.04081631824374199, 0.08708105236291885, 0.019077744334936142, 0.032390303909778595, -0.03834448382258415, -0.039906829595565796, -0.003088307799771428, 0.058108072727918625, -0.10509394854307175, 0.12624508142471313, -0.034969985485076904, 0.031432729214429855, -0.027762608602643013, -0.07756052911281586, -0.09435399621725082, -0.13528043031692505, 0.0782141461968422, -0.10097263753414154, 0.005676249507814646, -0.07129578292369843, -0.013170906342566013, 0.027937375009059906, 0.2378641963005066, -0.0847792699933052, -0.07330476492643356, -0.13685087859630585, 0.009810219518840313, 0.1385512799024582, -0.07630597054958344, 0.0031798467971384525, -0.009818973019719124, 0.16471058130264282, -0.0057556722313165665, -0.13339833915233612, 0.0008409599540755153, -0.06870455294847488, -0.171640083193779, -0.028593014925718307, 0.154544860124588, 0.06162601336836815, 0.03214435651898384, 0.0017997068352997303, 0.004583741072565317, -0.05025278776884079, -0.1626635044813156, 0.031044717878103256, 0.14944858849048615, 0.019167596474289894, 0.03330088406801224, 0.025170402601361275, 0.0174043420702219, -0.120158351957798, 0.014849068596959114, 0.050594061613082886, 0.197049081325531, -0.07344982773065567, 0.17449092864990234, 0.017823997884988785, -0.09404357522726059, -0.16906093060970306, 0.031971871852874756, 0.006349449045956135, 0.03220552206039429, 0.020186152309179306, -0.17533031105995178, 0.03271152451634407, 0.020701302215456963, -0.005984087940305471, 0.06014928221702576, -0.34483349323272705, -0.15140941739082336, 0.02197210304439068, 0.013659423217177391, -0.08920688927173615, -0.05123224854469299, -0.034929078072309494, -0.07680592685937881, -0.25624462962150574, 0.08812038600444794, -0.12007541954517365, 0.08603311330080032, 0.0025907529052346945, 0.07672739773988724, 0.05158768594264984, -0.060398612171411514, 0.12901270389556885, -0.02720881812274456, 0.060883231461048126, -0.09822244942188263, -0.050464726984500885, 0.09291955083608627, -0.06511136144399643, 0.10486243665218353, 0.019378257915377617, 0.0914507508277893, -0.1263706535100937, -0.07085524499416351, -0.07951639592647552, 0.017167391255497932, -0.058783773332834244, -0.10206960886716843, -0.08326945453882217, 0.09435800462961197, 0.12071436643600464, -0.033398523926734924, -0.08358781039714813, -0.051331259310245514, 0.005807116162031889, 0.06768584251403809, 0.09396234899759293, 0.08688797801733017, -0.09479120373725891, 0.011724247597157955, 0.013588113710284233, 0.02506592497229576, -0.16649331152439117, 0.03485285863280296, 0.08856245130300522, 0.04100605472922325, 0.11182379722595215, 0.011974843218922615, -0.16439715027809143, 0.01600911095738411, 0.04346645995974541, -0.16626113653182983, -0.09780281782150269, -0.044234659522771835, 0.015180937945842743, -0.08789559453725815, -0.03922340273857117, 0.14458125829696655, -0.045289378613233566, -0.0328746996819973, -0.00000802609520178521, 0.052164237946271896, -0.060385167598724365, 0.09514100104570389, 0.017786627635359764, 0.04659396782517433, -0.06080998107790947, 0.11492941528558731, 0.06211859732866287, 0.021555054932832718, 0.04624636098742485, 0.06187882646918297, -0.08193272352218628, -0.0012029811041429639, -0.0857049971818924, 0.01831497997045517, -0.05074518546462059, -0.013153338804841042, 0.0005069411708973348, -0.03902876004576683, 0.03265975043177605, 0.09235063195228577, -0.017412494868040085, 0.10065789520740509, -0.036577869206666946, -0.005963747855275869, -0.141679584980011, 0.06563092768192291, 0.03851651772856712, 0.022002583369612694, -0.10940343886613846, 0.19534623622894287, 0.023266801610589027, 0.09971228241920471, -0.0369393564760685, -0.0587087981402874, -0.0814787968993187, -0.007218221202492714, -0.13761693239212036, -0.05255705490708351, -0.08099033683538437, -0.036143578588962555, -0.009835496544837952, -0.043497953563928604, -0.015764616429805756, 0.05173293501138687, -0.029643606394529343, -0.06397794187068939, -0.057074353098869324, 0.047903526574373245, -0.14374150335788727, 0.017376746982336044, 0.11453024297952652, -0.05577443912625313, 0.1117338240146637, 0.06068471819162369, -0.032211169600486755, 0.015817604959011078, -0.11063355952501297, 0.035264741629362106, -0.02963998168706894, 0.0061448742635548115, 0.028064899146556854, -0.14279164373874664, 0.008381894789636135, -0.04981425777077675, -0.06288973987102509, 0.006025025155395269, 0.00842240545898676, -0.1274389624595642, -0.004799017682671547, 0.06735964119434357, -0.005507659632712603, -0.07298008352518082, 0.0660892054438591, 0.05578579008579254, 0.032911237329244614, 0.05286062881350517, -0.03418469801545143, 0.07966921478509903, -0.16921287775039673, -0.0510113462805748, 0.005558955483138561, 0.020436355844140053, 0.05244708061218262, -0.009422465227544308, 0.03626994416117668, -0.01866634376347065, 0.18382646143436432, 0.0019685463048517704, -0.011415550485253334, 0.03834306076169014, -0.06433282047510147, -0.009588791988790035, 0.04264122620224953, 0.0676836222410202, -0.04217434674501419, -0.027376757934689522, -0.019137218594551086, -0.0065544829703867435, -0.07618039846420288, -0.03607816994190216, 0.10237902402877808, 0.05120336636900902, 0.17868836224079132, -0.034267425537109375, 0.06017313897609711, -0.03186511620879173, -0.11705823987722397, -0.017805911600589752, -0.03686010092496872, 0.04144749790430069, -0.07193642109632492, 0.06805190443992615, 0.17059208452701569, -0.15844866633415222, 0.11317024379968643, 0.015239119529724121, -0.055646490305662155, -0.09769962728023529, -0.16359585523605347, -0.01113029383122921, -0.03639878332614899, 0.03645532205700874, -0.13217677175998688, 0.08705935627222061, 0.017370929941534996, 0.03184886649250984, -0.06468705087900162, 0.1307714283466339, -0.07151856273412704, -0.1110898107290268, 0.029484804719686508, 0.023504124954342842, 0.024057799950242043, 0.031509045511484146, 0.07432134449481964, 0.024269791319966316, 0.005524691194295883, 0.06231565773487091, 0.04276891052722931, 0.027310743927955627, 0.04022298753261566, -0.01831451617181301, -0.051051825284957886, 0.027513131499290466, 0.004483471158891916, 0.029144378378987312, 0.0990733653306961, 0.07027091830968857, -0.022810690104961395, -0.030877459794282913, 0.30589359998703003, -0.03719788417220116, -0.04536491259932518, -0.17040081322193146, 0.16950233280658722, 0.027843480929732323, -0.02122420072555542, 0.023709893226623535, -0.1339518129825592, 0.011393270455300808, 0.1437959522008896, 0.17762069404125214, -0.036951422691345215, 0.017385419458150864, -0.03509793058037758, 0.012838033959269524, 0.03268161416053772, 0.08355638384819031, 0.06735242903232574, 0.20197945833206177, -0.042883776128292084, 0.05319175124168396, -0.001414666185155511, -0.013649716041982174, -0.0066504813730716705, 0.10900519043207169, -0.03456037864089012, 0.00410451740026474, -0.053654756397008896, 0.08838869631290436, -0.059657372534275055, -0.27787458896636963, -0.006681662984192371, -0.052080754190683365, -0.09382479637861252, 0.048613741993904114, -0.0282585509121418, -0.021801576018333435, 0.09293198585510254, 0.018144726753234863, -0.03711840137839317, 0.13675618171691895, 0.03442424163222313, -0.046090416610240936, -0.019271984696388245, 0.08663233369588852, -0.029818132519721985, 0.19458983838558197, -0.029743975028395653, -0.005641716532409191, 0.08644602447748184, 0.019793551415205002, -0.1193670928478241, 0.004815114662051201, 0.037288691848516464, -0.07703041285276413, -0.022814610973000526, 0.1968977451324463, 0.004795643035322428, 0.040186453610658646, 0.060294363647699356, -0.06495914608240128, 0.024738607928156853, -0.05410528928041458, 0.0517151802778244, -0.1396353542804718, 0.05561688542366028, -0.07953885942697525, 0.14587794244289398, 0.17935125529766083, -0.07330185174942017, 0.017969222739338875, -0.062348004430532455, 0.007189979311078787, -0.016737064346671104, 0.07357614487409592, -0.019433125853538513, -0.10581523180007935, 0.0255886223167181, 0.023957135155797005, 0.02194604091346264, -0.2094329595565796, -0.07780199497938156, 0.056421294808387756, -0.05068915709853172, 0.01344120129942894, 0.17501014471054077, 0.04153485596179962, 0.06162530183792114, -0.0347667820751667, -0.0019392078975215554, -0.01455747801810503, 0.11698472499847412, -0.14892548322677612, -0.09176766127347946 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/73f7f7eaff5043a332d13cfae5282bc5.668x668x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">OG Buda</div> <a href="https://genius.com/artists/og-buda"> <div style="text-align: center; font-size: 14px;">@og-buda</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from OG Buda. Dataset is available [here](https://huggingface.co/datasets/huggingartists/og-buda). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/og-buda") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2ic775kv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on OG Buda's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1g4193mx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1g4193mx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/og-buda') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/og-buda") model = AutoModelWithLMHead.from_pretrained("huggingartists/og-buda") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/og-buda"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/og-buda
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/og-buda", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/og-buda #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">OG Buda</div> <a href="URL <div style="text-align: center; font-size: 14px;">@og-buda</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from OG Buda. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on OG Buda's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from OG Buda.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on OG Buda's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/og-buda #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from OG Buda.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on OG Buda's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/og-buda #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from OG Buda.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on OG Buda's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.015129409730434418, 0.14513209462165833, -0.0030470089986920357, 0.034415651112794876, 0.08706707507371902, 0.004866153001785278, 0.09295397251844406, 0.10076803714036942, -0.006518353242427111, 0.07673528045415878, 0.07493678480386734, -0.005295431707054377, 0.06961667537689209, 0.11786875873804092, 0.0794903039932251, -0.25948384404182434, 0.029589325189590454, -0.08722636103630066, 0.006987275090068579, 0.11530130356550217, 0.1023256853222847, -0.05221640318632126, 0.08816143125295639, 0.04272260144352913, -0.08155816048383713, 0.028191393241286278, -0.006370368879288435, -0.07261733710765839, 0.08835465461015701, 0.07303342968225479, 0.03723965212702751, 0.017502496019005775, 0.060274023562669754, -0.18063955008983612, 0.031235724687576294, 0.12279564142227173, 0.02913515269756317, 0.07429644465446472, 0.042421430349349976, -0.07815289497375488, 0.1697881817817688, -0.02071990631520748, 0.09332402795553207, 0.04338255897164345, -0.11907220631837845, -0.16058936715126038, -0.11699195951223373, 0.08455415070056915, 0.09969126433134079, 0.08951772004365921, -0.035700827836990356, 0.03597420081496239, -0.01939338631927967, 0.04067721962928772, 0.2344629317522049, -0.24062873423099518, -0.020393116399645805, 0.08680164813995361, 0.02599472552537918, 0.037386976182460785, -0.07951545715332031, 0.014151852577924728, 0.04724927619099617, 0.02433799020946026, 0.04868211969733238, -0.0196293443441391, 0.2044895589351654, 0.02873215079307556, -0.09650581330060959, -0.07841073721647263, 0.11606280505657196, -0.03066270984709263, -0.0791022852063179, -0.14850075542926788, -0.00043260541860945523, -0.021156514063477516, 0.035776618868112564, -0.006752067245543003, -0.003988928627222776, 0.009687094017863274, -0.033338047564029694, -0.10164184123277664, -0.0945284441113472, -0.029864681884646416, -0.025535009801387787, 0.07916128635406494, 0.028035400435328484, 0.03397700935602188, -0.08512625098228455, 0.23382778465747833, -0.02725997567176819, -0.1051974892616272, -0.053665995597839355, -0.0921446830034256, -0.09041913598775864, -0.04955832287669182, 0.0020302298944443464, 0.006500107701867819, -0.057978060096502304, 0.17312361299991608, -0.03130798414349556, 0.0375903844833374, -0.0038356054574251175, -0.015401491895318031, 0.14483574032783508, 0.1446879655122757, -0.08997085690498352, -0.03285016492009163, 0.05829709395766258, -0.021158777177333832, -0.06466493755578995, -0.05556352064013481, -0.013428897596895695, -0.028647303581237793, 0.02222958579659462, 0.07848548889160156, 0.049475353211164474, 0.057921454310417175, 0.020415864884853363, -0.06112678349018097, 0.09620671719312668, -0.1396246999502182, 0.010604399256408215, -0.006311746314167976, -0.036423053592443466, 0.014913124032318592, 0.043158743530511856, 0.017057668417692184, -0.10338378697633743, 0.12573368847370148, -0.054137058556079865, -0.05408777669072151, -0.07739373296499252, -0.07434715330600739, -0.006874247454106808, -0.02126150205731392, -0.037743762135505676, -0.08045666664838791, -0.16760186851024628, -0.040170393884181976, 0.032092493027448654, -0.051740359514951706, -0.04354964569211006, 0.03771299496293068, -0.020164407789707184, 0.007940285839140415, -0.01727474480867386, -0.017542148008942604, -0.02926056832075119, 0.024800805374979973, -0.046453773975372314, 0.026678625494241714, 0.06452981382608414, 0.041698165237903595, -0.11615389585494995, 0.06912855803966522, -0.15606482326984406, 0.13528169691562653, -0.0048124962486326694, 0.02112194150686264, -0.09990943223237991, -0.08666668087244034, -0.03540853410959244, -0.02864990383386612, -0.0037391064688563347, 0.09100651741027832, -0.16568176448345184, -0.041588857769966125, 0.2005101591348648, -0.0759841725230217, -0.0820891261100769, 0.07225647568702698, -0.07626084983348846, 0.02975478023290634, 0.13436566293239594, 0.08065959811210632, 0.16887909173965454, -0.11417298763990402, -0.05718179792165756, -0.04451904073357582, -0.049054086208343506, 0.20608121156692505, 0.05383652448654175, -0.008218896575272083, 0.013855979777872562, 0.016076181083917618, -0.04606228694319725, -0.01385152991861105, -0.0076384032145142555, -0.04136013984680176, -0.01470547541975975, 0.015615474432706833, -0.023342743515968323, -0.046629514545202255, -0.059420619159936905, -0.023547571152448654, -0.10892339050769806, 0.020963847637176514, 0.10159377008676529, -0.07284310460090637, 0.00731556536629796, -0.09703311324119568, 0.011993229389190674, -0.034647759050130844, 0.019034605473279953, -0.1777658611536026, -0.042811110615730286, 0.02074676938354969, -0.07065115123987198, 0.08906449377536774, 0.0365496426820755, 0.03872644901275635, 0.05541995167732239, -0.017517762258648872, 0.0152156762778759, -0.04089504852890968, -0.03028007037937641, -0.02305568940937519, -0.14011627435684204, -0.05226137861609459, -0.051174040883779526, 0.08015582710504532, -0.1266365796327591, 0.009041160345077515, 0.10699961334466934, 0.11966758966445923, 0.024608250707387924, -0.06308110058307648, 0.006102012936025858, -0.04039941728115082, -0.03034132346510887, -0.11040499061346054, -0.059111107140779495, 0.012385452166199684, -0.03479870408773422, 0.14923472702503204, -0.16774730384349823, -0.0686580017209053, 0.10185399651527405, 0.14841873943805695, -0.0940091609954834, 0.02660978212952614, -0.08846531063318253, -0.011705541051924229, -0.050104882568120956, -0.040790773928165436, 0.28787580132484436, 0.033810216933488846, 0.08128749579191208, -0.10763464868068695, -0.10340918600559235, -0.006578384432941675, -0.04416847229003906, -0.026909826323390007, 0.02215629629790783, 0.009414175525307655, -0.1678575873374939, 0.03280288353562355, -0.005480831954628229, 0.09636605530977249, 0.21181929111480713, 0.04216212034225464, -0.08987797051668167, -0.0585591197013855, -0.07406080514192581, -0.002694375580176711, 0.059306081384420395, 0.015300595201551914, 0.023722302168607712, 0.042109113186597824, 0.053501177579164505, 0.0448380708694458, -0.11274276673793793, 0.01027916930615902, 0.0751994326710701, -0.03966581076383591, -0.046177808195352554, 0.01909695193171501, 0.014114661142230034, 0.08107566833496094, 0.09141718596220016, 0.14303122460842133, -0.06468531489372253, -0.04640696942806244, -0.14070911705493927, 0.13707029819488525, -0.07379668951034546, -0.25949352979660034, -0.13738426566123962, -0.07756329327821732, 0.01900208182632923, 0.01251478772610426, 0.03748585283756256, -0.06144166737794876, -0.046647172421216965, -0.09023723751306534, 0.09844762831926346, -0.04802030697464943, -0.015028252266347408, 0.0103883296251297, 0.020872343331575394, -0.015849867835640907, -0.10772580653429031, -0.03241497650742531, 0.041836824268102646, -0.09414324909448624, -0.01258157566189766, 0.029102127999067307, 0.03311041370034218, 0.14964282512664795, -0.005577786825597286, 0.006894747260957956, -0.02168187126517296, 0.2874656319618225, -0.12640699744224548, 0.06196132302284241, 0.15919502079486847, -0.016437368467450142, 0.048432186245918274, 0.07965648174285889, 0.006146973464637995, -0.06421902775764465, 0.07185173779726028, 0.07586780935525894, -0.0837458148598671, -0.2147274911403656, -0.02817145735025406, -0.01375390961766243, 0.01017032004892826, 0.13076965510845184, 0.059739768505096436, 0.05343390628695488, 0.014842819422483444, -0.10499021410942078, 0.05900098383426666, 0.03267939016222954, 0.10526012629270554, -0.06037784367799759, -0.010230367071926594, 0.04802091047167778, -0.05748768150806427, 0.017057141289114952, 0.1358061134815216, 0.0368817076086998, 0.2020224928855896, -0.07042932510375977, 0.08936300128698349, 0.06933193653821945, 0.09557225555181503, 0.0332971028983593, 0.010929081588983536, -0.02029457315802574, 0.009734902530908585, -0.003691852791234851, -0.09162667393684387, -0.013310578651726246, 0.05024133250117302, 0.02433934062719345, -0.027552984654903412, -0.03287975862622261, -0.07106190174818039, 0.04406693950295448, 0.23301246762275696, 0.0016578917857259512, -0.17799493670463562, -0.10609342902898788, 0.05475880205631256, -0.0737309604883194, -0.0666462779045105, -0.013059261254966259, 0.0771629810333252, -0.20807023346424103, 0.07185648381710052, -0.03321586921811104, 0.11267347633838654, -0.1106666624546051, 0.0023858032654970884, 0.08646734803915024, 0.045325737446546555, -0.06040642410516739, 0.101217120885849, -0.1860220730304718, 0.05040694400668144, -0.011112199164927006, 0.07812445610761642, -0.07173988223075867, 0.036452338099479675, -0.0016390638193115592, 0.049543559551239014, 0.0793749988079071, 0.015572686679661274, 0.024100545793771744, 0.0071230786852538586, -0.045392248779535294, 0.017789805307984352, 0.05169137194752693, -0.12908919155597687, 0.1213311105966568, -0.03179846704006195, 0.03863422945141792, -0.03808287903666496, -0.08753138780593872, -0.07876744866371155, -0.16537779569625854, 0.08898890018463135, -0.11276876926422119, 0.010821853764355183, -0.07268841564655304, -0.012684094719588757, 0.0433804951608181, 0.250081330537796, -0.04973267763853073, -0.07861071079969406, -0.13652971386909485, 0.016110921278595924, 0.13816386461257935, -0.08097989857196808, 0.000047527522838208824, -0.011958695016801357, 0.20302677154541016, 0.0026590258348733187, -0.13379062712192535, -0.0200746301561594, -0.05950287729501724, -0.16953818500041962, -0.005824059247970581, 0.16863173246383667, 0.06572417169809341, 0.027253415435552597, 0.005006782710552216, -0.008891803212463856, -0.05817314609885216, -0.17719170451164246, 0.02624492160975933, 0.14725662767887115, -0.013192414306104183, 0.0056810700334608555, 0.05538471043109894, 0.018127121031284332, -0.1262197345495224, 0.017239293083548546, 0.040975067764520645, 0.1693657785654068, -0.06969553977251053, 0.18604658544063568, 0.028347164392471313, -0.08920226991176605, -0.14794668555259705, 0.015972575172781944, 0.030873119831085205, 0.04381825774908066, 0.021831832826137543, -0.20435000956058502, 0.04651905223727226, 0.02899167500436306, -0.0026399707421660423, 0.05072462558746338, -0.316155344247818, -0.15314942598342896, 0.016511090099811554, -0.000979307689704001, -0.10521547496318817, -0.042732130736112595, -0.036043956875801086, -0.08737942576408386, -0.25056853890419006, 0.10181280970573425, -0.11423807591199875, 0.07522298395633698, 0.017992131412029266, 0.10695052146911621, 0.050549473613500595, -0.047795381397008896, 0.13632473349571228, -0.031037533655762672, 0.06510011851787567, -0.09700586646795273, -0.05599171668291092, 0.0745801106095314, -0.06676344573497772, 0.097550168633461, 0.017834022641181946, 0.08306902647018433, -0.09495700895786285, -0.08877794444561005, -0.07032116502523422, 0.011197460815310478, -0.053655628114938736, -0.09233548492193222, -0.10002722591161728, 0.08333434164524078, 0.11773299425840378, -0.040133036673069, -0.07761690765619278, -0.06075011193752289, -0.00564104039222002, 0.03790914639830589, 0.10770582407712936, 0.07135403901338577, -0.06974264979362488, 0.003449762938544154, 0.023447247222065926, 0.025329504162073135, -0.18869176506996155, 0.04527239128947258, 0.09114661067724228, 0.03299527242779732, 0.10783150792121887, 0.007628623861819506, -0.16695302724838257, 0.0015980008756741881, 0.05620330199599266, -0.17609666287899017, -0.10746614634990692, -0.052942533046007156, 0.015720684081315994, -0.10189364850521088, -0.052615635097026825, 0.13454219698905945, -0.03795842081308365, -0.037672270089387894, 0.009119846858084202, 0.04444604739546776, -0.05505705252289772, 0.09305951744318008, -0.0015677111223340034, 0.03877852112054825, -0.07044228911399841, 0.1060425192117691, 0.06992990523576736, 0.012775504030287266, 0.039182115346193314, 0.05912390351295471, -0.08743049949407578, 0.011391367763280869, -0.09912978857755661, 0.01110826525837183, -0.018585683777928352, -0.017120540142059326, 0.02133154310286045, -0.045074980705976486, 0.04242454469203949, 0.06054488942027092, -0.014426741749048233, 0.11655398458242416, -0.048411447554826736, 0.017671432346105576, -0.1288326382637024, 0.06411954015493393, 0.03547690808773041, 0.025953499600291252, -0.11753279715776443, 0.1946938931941986, 0.02920699492096901, 0.09424576908349991, -0.03933962062001228, -0.05577092990279198, -0.06398347020149231, -0.008485388942062855, -0.10472504049539566, -0.04084223881363869, -0.09213442355394363, -0.02030462771654129, -0.004840667825192213, -0.04059335216879845, -0.03042648918926716, 0.043937090784311295, -0.03449040651321411, -0.05344830080866814, -0.07389991730451584, 0.03982944041490555, -0.13006402552127838, 0.039103634655475616, 0.11941981315612793, -0.05880846083164215, 0.12373342365026474, 0.06287041306495667, -0.03817785158753395, 0.02381504699587822, -0.1320146918296814, 0.04932557791471481, -0.008288349956274033, 0.015466435812413692, 0.01351784635335207, -0.1567963808774948, 0.009219721890985966, -0.03459736332297325, -0.06940650939941406, 0.004856449086219072, -0.0017529757460579276, -0.13439080119132996, -0.0010203839046880603, 0.08507930487394333, -0.02237498015165329, -0.07308878749608994, 0.06665269285440445, 0.05203069746494293, 0.033905502408742905, 0.05104814097285271, -0.021383382380008698, 0.07325223088264465, -0.16734598577022552, -0.05259798839688301, 0.008460297249257565, 0.03515714034438133, 0.04640384390950203, -0.023957761004567146, 0.03572073578834534, -0.021988434717059135, 0.21281710267066956, 0.017811167985200882, -0.026080694049596786, 0.0353294275701046, -0.062001075595617294, 0.013902419246733189, 0.04488721489906311, 0.0791870653629303, -0.030226707458496094, -0.04053102433681488, -0.0010216532973572612, -0.02690206840634346, -0.09118755161762238, -0.028851062059402466, 0.09241735935211182, 0.032200075685977936, 0.18893863260746002, -0.0559484139084816, 0.05771440267562866, -0.019579317420721054, -0.11199995875358582, -0.009172746911644936, -0.0476524755358696, 0.03156116604804993, -0.059069208800792694, 0.06675224006175995, 0.18414190411567688, -0.1591246873140335, 0.11501968652009964, 0.028467953205108643, -0.06002169847488403, -0.11194535344839096, -0.1944991946220398, -0.017487388104200363, -0.04118137061595917, 0.030870113521814346, -0.14215828478336334, 0.08652693033218384, 0.012966892682015896, 0.03354937955737114, -0.07269132882356644, 0.14650872349739075, -0.07214897125959396, -0.1361834555864334, 0.04598245024681091, 0.027872147038578987, 0.03037533164024353, 0.050280869007110596, 0.09089988470077515, 0.026460610330104828, 0.014048010110855103, 0.06949165463447571, 0.04041612520813942, 0.03411460667848587, 0.03201456367969513, -0.025834158062934875, -0.034535862505435944, 0.02803652733564377, -0.0017965605948120356, 0.0275481715798378, 0.08793452382087708, 0.05418044701218605, -0.020911362022161484, -0.022939294576644897, 0.31467142701148987, -0.03161725029349327, -0.03545958176255226, -0.19097010791301727, 0.13620974123477936, 0.00392509438097477, -0.010395045392215252, 0.022185005247592926, -0.11603637039661407, 0.010114644654095173, 0.13473008573055267, 0.15956871211528778, -0.01570267044007778, 0.022329479455947876, -0.023819830268621445, 0.01951063796877861, 0.036985598504543304, 0.09537732601165771, 0.06192343682050705, 0.22310395538806915, -0.03361409530043602, 0.04959525540471077, -0.004917183890938759, -0.018630342558026314, 0.005423019174486399, 0.11442741751670837, -0.039978597313165665, 0.00246963812969625, -0.05893680453300476, 0.0949593111872673, -0.05172441527247429, -0.28049999475479126, -0.02387385256588459, -0.026775138452649117, -0.09322747588157654, 0.06935570389032364, -0.033432431519031525, -0.028341200202703476, 0.08742853254079819, 0.025272376835346222, -0.05223430320620537, 0.1470099836587906, 0.04735567793250084, -0.0424480140209198, -0.00300807342864573, 0.10911776125431061, -0.023854468017816544, 0.16911812126636505, -0.027083925902843475, 0.011277502402663231, 0.0773344486951828, 0.01756792701780796, -0.1232575923204422, 0.003993053454905748, 0.03348099812865257, -0.0694277361035347, -0.0250291395932436, 0.1962616741657257, 0.010824969038367271, 0.02579260617494583, 0.07687628269195557, -0.04859789088368416, 0.019204193726181984, -0.039093468338251114, 0.06762364506721497, -0.14687317609786987, 0.059644535183906555, -0.09079636633396149, 0.12415111809968948, 0.1842021495103836, -0.06612618267536163, 0.025994684547185898, -0.06084280088543892, 0.02010476216673851, -0.021729519590735435, 0.08097979426383972, -0.014666338451206684, -0.11248794198036194, 0.006244025658816099, 0.05700534209609032, 0.015166043303906918, -0.18856120109558105, -0.07245160639286041, 0.07079372555017471, -0.0474698469042778, 0.02349117211997509, 0.17600075900554657, 0.01922585442662239, 0.06142663210630417, -0.03947869688272476, -0.022960184141993523, -0.009165303781628609, 0.1125800758600235, -0.16423186659812927, -0.08342774212360382 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5b2286f88533601eda462ce44dd2ee56.776x776x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">O.T (RUS)</div> <a href="https://genius.com/artists/ot-rus"> <div style="text-align: center; font-size: 14px;">@ot-rus</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from O.T (RUS). Dataset is available [here](https://huggingface.co/datasets/huggingartists/ot-rus). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ot-rus") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/35byet4r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on O.T (RUS)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2p2tawej) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2p2tawej/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ot-rus') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ot-rus") model = AutoModelWithLMHead.from_pretrained("huggingartists/ot-rus") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/ot-rus"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/ot-rus
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ot-rus", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ot-rus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">O.T (RUS)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@ot-rus</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from O.T (RUS). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on O.T (RUS)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from O.T (RUS).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on O.T (RUS)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ot-rus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from O.T (RUS).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on O.T (RUS)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 53, 76, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ot-rus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from O.T (RUS).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on O.T (RUS)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.0396442748606205, 0.15766842663288116, -0.0031609085854142904, 0.04938269779086113, 0.10700627416372299, 0.007657343056052923, 0.07329081743955612, 0.10883490741252899, -0.001657217158935964, 0.07383013516664505, 0.06785523146390915, 0.045192163437604904, 0.08372217416763306, 0.08641252666711807, 0.05531048774719238, -0.23836944997310638, 0.043697696179151535, -0.08068900555372238, -0.00047515318146906793, 0.09334476292133331, 0.0855751559138298, -0.0667215958237648, 0.07864013314247131, 0.03289889916777611, -0.05775577202439308, 0.006100671831518412, 0.013688313774764538, -0.0649658590555191, 0.07183387130498886, 0.07847528159618378, 0.04216413572430611, 0.033134184777736664, 0.06026763841509819, -0.1717275083065033, 0.025685470551252365, 0.1234426274895668, 0.029592908918857574, 0.07943597435951233, 0.07436437159776688, -0.07742119580507278, 0.1427464485168457, -0.02318890392780304, 0.08390730619430542, 0.05703534558415413, -0.11036636680364609, -0.10030416399240494, -0.14142753183841705, 0.0771554708480835, 0.08617811650037766, 0.09675125032663345, -0.03407759219408035, 0.10060740262269974, -0.036502961069345474, 0.05775337293744087, 0.2512807250022888, -0.23893621563911438, -0.007529696449637413, 0.07021015882492065, 0.05966778099536896, 0.023005787283182144, -0.08569250255823135, 0.01282869279384613, 0.03896158188581467, 0.03376103192567825, 0.029813267290592194, -0.03181178867816925, 0.14695070683956146, 0.017178351059556007, -0.11391341686248779, -0.07250824570655823, 0.10714492201805115, -0.0111313471570611, -0.08122748881578445, -0.11592310667037964, 0.003795839147642255, -0.05259545147418976, 0.029475489631295204, 0.020840946584939957, 0.005349652376025915, -0.007990177720785141, -0.04248451068997383, -0.1040264219045639, -0.07923956960439682, -0.03272906690835953, -0.024550780653953552, 0.0634697824716568, 0.04515638202428818, 0.04054463654756546, -0.080010786652565, 0.21778924763202667, 0.021475717425346375, -0.09835506230592728, -0.06684650480747223, -0.11012309789657593, -0.0883016362786293, -0.04751887172460556, -0.009328886866569519, 0.002822648733854294, -0.02168641798198223, 0.13330066204071045, -0.03770589455962181, 0.024940267205238342, -0.03853154182434082, 0.007482337299734354, 0.13996900618076324, 0.14381097257137299, -0.13426609337329865, -0.029924824833869934, 0.07332789152860641, -0.008863488212227821, -0.07563981413841248, -0.04707317426800728, 0.0039023496210575104, -0.014098688028752804, 0.0519745834171772, 0.07723238319158554, 0.0821913331747055, 0.06926492601633072, -0.003122087335214019, -0.060726098716259, 0.03580639138817787, -0.14059945940971375, 0.009666688740253448, -0.011374879628419876, -0.0693744570016861, 0.039505988359451294, 0.05792506784200668, 0.010166210122406483, -0.1259995996952057, 0.08532676100730896, -0.08472982048988342, -0.04224969819188118, -0.08269189298152924, -0.1138102263212204, -0.010077185928821564, -0.057802531868219376, -0.019244970753788948, -0.08208462595939636, -0.16062328219413757, -0.05494452640414238, 0.020676452666521072, -0.058551937341690063, -0.02419537492096424, 0.02055855467915535, -0.047159407287836075, 0.007453496567904949, -0.015643995255231857, -0.007372280117124319, -0.028147293254733086, 0.03597745671868324, -0.0953173041343689, 0.028946606442332268, 0.07550367712974548, 0.04393567517399788, -0.13251616060733795, 0.06701933592557907, -0.13545456528663635, 0.1255120187997818, -0.02723858878016472, 0.009802155196666718, -0.08649876713752747, -0.08604072779417038, -0.012311026453971863, -0.03271864354610443, 0.0239412784576416, 0.12924960255622864, -0.15274319052696228, -0.015566020272672176, 0.20231316983699799, -0.06692204624414444, -0.060282040387392044, 0.06608597934246063, -0.06531107425689697, 0.02464439906179905, 0.11232983320951462, 0.06180752441287041, 0.14627380669116974, -0.10806961357593536, -0.09036341309547424, -0.0459991917014122, -0.07953812927007675, 0.17551499605178833, 0.035772863775491714, -0.016030197963118553, 0.02528863586485386, 0.0025141078513115644, -0.03547210246324539, -0.0070424689911305904, -0.03486752510070801, -0.03335852921009064, -0.01509706862270832, -0.009758624248206615, -0.014135953038930893, -0.04050625115633011, -0.03482763096690178, -0.017300628125667572, -0.09763581305742264, 0.045756518840789795, 0.10409621149301529, -0.07332797348499298, 0.0149770462885499, -0.10663799196481705, 0.052507318556308746, -0.05927901715040207, 0.014909617602825165, -0.1879100799560547, -0.04500773176550865, 0.016774890944361687, -0.0624229870736599, 0.06225137412548065, 0.037131424993276596, 0.041279781609773636, 0.07391200959682465, -0.007481666747480631, -0.0029123853892087936, -0.03943970799446106, 0.0007646328886039555, -0.04347667843103409, -0.17126192152500153, -0.04380638152360916, -0.048181913793087006, 0.07756161689758301, -0.11862374097108841, -0.0007042457582429051, 0.09773091971874237, 0.14724087715148926, 0.02907390519976616, -0.060068972408771515, 0.035774003714323044, -0.028879763558506966, -0.034368712455034256, -0.10872206091880798, -0.045647427439689636, 0.011998801492154598, -0.02140546776354313, 0.15832486748695374, -0.14489756524562836, -0.09368501603603363, 0.13187499344348907, 0.10358483344316483, -0.08838669955730438, 0.038848016411066055, -0.07789765298366547, -0.016787387430667877, -0.03864250332117081, -0.05002278834581375, 0.24554213881492615, 0.03960544615983963, 0.08300364017486572, -0.08886099606752396, -0.07444201409816742, 0.007976558990776539, -0.044053949415683746, -0.04244459047913551, 0.04598996043205261, 0.024633711203932762, -0.18663261830806732, 0.05369269475340843, -0.02819640003144741, 0.08494854718446732, 0.19375063478946686, 0.02453465200960636, -0.09628991037607193, -0.05287397280335426, -0.07249430567026138, 0.003405111376196146, 0.08027447760105133, 0.01695498451590538, 0.04132194444537163, 0.04082997143268585, 0.04535028710961342, 0.04651360958814621, -0.10652939230203629, 0.013772444799542427, 0.05514100566506386, -0.026445532217621803, -0.06784681230783463, 0.013819106854498386, 0.02843293361365795, 0.09437054395675659, 0.06236298382282257, 0.10007629543542862, -0.04682086035609245, -0.050997573882341385, -0.13229402899742126, 0.13808995485305786, -0.09338858723640442, -0.20287932455539703, -0.13321469724178314, -0.07537857443094254, 0.006604802794754505, 0.010520027950406075, 0.028516294434666634, -0.036717481911182404, -0.04560793563723564, -0.09709465503692627, 0.0899433046579361, -0.03263168781995773, -0.005808153189718723, -0.0027741871308535337, 0.0298762246966362, -0.015610293485224247, -0.11300650238990784, -0.033732157200574875, 0.025289442390203476, -0.08038792014122009, 0.012572474777698517, 0.027219440788030624, 0.05877116695046425, 0.13327611982822418, -0.000020322522686910816, 0.006753164809197187, -0.019613701850175858, 0.26474130153656006, -0.1152254045009613, 0.05029885470867157, 0.15471947193145752, -0.013264085166156292, 0.052469730377197266, 0.05965377390384674, -0.009298929944634438, -0.054248202592134476, 0.05911366268992424, 0.0669284462928772, -0.06225833669304848, -0.21633772552013397, -0.025235002860426903, -0.02189016155898571, 0.008667255751788616, 0.10553397238254547, 0.033619049936532974, 0.042382754385471344, 0.018739130347967148, -0.09320373088121414, 0.05651118978857994, 0.029811358079314232, 0.0927361473441124, -0.0743369534611702, -0.0036835239734500647, 0.04850214719772339, -0.047310128808021545, 0.03576476126909256, 0.11984532326459885, 0.020780419930815697, 0.2588844895362854, -0.08117514848709106, 0.0471193753182888, 0.08887840062379837, 0.09406770765781403, 0.019453443586826324, 0.043708112090826035, -0.014090904965996742, 0.028937842696905136, 0.01086987555027008, -0.09068148583173752, 0.0005111049395054579, 0.03847455978393555, 0.04043920338153839, -0.020002292469143867, -0.06442687660455704, -0.06432824581861496, 0.04420077055692673, 0.23818588256835938, 0.039964623749256134, -0.18103712797164917, -0.083470419049263, 0.06315106898546219, -0.042612843215465546, -0.05780506134033203, -0.011733354069292545, 0.06692732125520706, -0.20773638784885406, 0.03821764141321182, -0.03845592215657234, 0.10952556133270264, -0.13390056788921356, -0.0008915825746953487, 0.054120998829603195, 0.056548722088336945, -0.07165254652500153, 0.07711959630250931, -0.18017607927322388, 0.08926906436681747, -0.0007571675232611597, 0.08532815426588058, -0.07277946174144745, 0.01705976016819477, 0.03538176417350769, 0.026681171730160713, 0.09894591569900513, 0.013983439654111862, 0.017202332615852356, -0.07601913064718246, -0.04809751361608505, 0.00005816896373289637, 0.05319102481007576, -0.08432287722826004, 0.13682393729686737, -0.03604038432240486, 0.03161107376217842, -0.02994438260793686, -0.08089077472686768, -0.1105494275689125, -0.14203092455863953, 0.07229036837816238, -0.1162932738661766, 0.009066338650882244, -0.05869753658771515, -0.024122493341565132, 0.01624302752315998, 0.20038147270679474, -0.09270215779542923, -0.08260011672973633, -0.1349240243434906, 0.02725718729197979, 0.14624136686325073, -0.07987011969089508, -0.0004465624806471169, 0.006639149039983749, 0.15333473682403564, 0.013724485412240028, -0.1426134705543518, -0.004438845906406641, -0.06831800937652588, -0.17949333786964417, -0.015012161806225777, 0.12117944657802582, 0.08372722566127777, 0.044525474309921265, 0.003831269685178995, 0.007538654841482639, -0.03019966371357441, -0.16718749701976776, 0.020357118919491768, 0.15091392397880554, 0.04083133861422539, 0.0435275137424469, 0.016960563138127327, 0.01249733380973339, -0.1461046189069748, 0.023243673145771027, 0.05051495134830475, 0.19170698523521423, -0.07199902087450027, 0.14974430203437805, 0.006265455391258001, -0.09217716008424759, -0.1693776398897171, 0.03271854668855667, 0.010035068728029728, 0.04305024445056915, 0.03477681428194046, -0.16383910179138184, 0.015804985538125038, 0.028298920020461082, 0.002714655129238963, 0.06634996086359024, -0.32209512591362, -0.14111851155757904, 0.043242327868938446, 0.03056214563548565, -0.06459799408912659, -0.039687566459178925, -0.02814810536801815, -0.06638478487730026, -0.2363332211971283, 0.09275645762681961, -0.12099415063858032, 0.08775465935468674, 0.018359508365392685, 0.05774625390768051, 0.053478825837373734, -0.06334210187196732, 0.1309468150138855, -0.030733022838830948, 0.0670977309346199, -0.09904734790325165, -0.03713462874293327, 0.09612902998924255, -0.04958583414554596, 0.09037762880325317, 0.0367756262421608, 0.08843494951725006, -0.0935380682349205, -0.07065042853355408, -0.08061258494853973, 0.013256948441267014, -0.05478570982813835, -0.09189438074827194, -0.07969864457845688, 0.10812731832265854, 0.12747174501419067, -0.04106423631310463, -0.09283892810344696, -0.046990491449832916, -0.03416965529322624, 0.06434044241905212, 0.1000959724187851, 0.10083663463592529, -0.07615048438310623, 0.010669421404600143, 0.014488519169390202, 0.024778619408607483, -0.11727391183376312, 0.03192709758877754, 0.09303556382656097, 0.023185238242149353, 0.10427490621805191, 0.02025650255382061, -0.16572465002536774, 0.024325862526893616, 0.0382876843214035, -0.1558772325515747, -0.09850825369358063, -0.040544480085372925, -0.02491985261440277, -0.08233268558979034, -0.053304243832826614, 0.14744745194911957, -0.041070856153964996, -0.027954570949077606, -0.0011215585982427, 0.06648945808410645, -0.05565595626831055, 0.12205718457698822, 0.021131714805960655, 0.04469798132777214, -0.0685114935040474, 0.10770890861749649, 0.06729435920715332, 0.014318792149424553, 0.03859701752662659, 0.03794696554541588, -0.08970385789871216, -0.0011500170221552253, -0.07729211449623108, 0.01954570971429348, -0.04586015269160271, -0.018586046993732452, -0.017710452899336815, -0.04675916209816933, 0.0346236489713192, 0.0865364745259285, -0.012730077840387821, 0.12144070863723755, -0.033084966242313385, -0.02089531533420086, -0.13323958218097687, 0.0693049505352974, 0.06020568311214447, 0.009809952229261398, -0.12346201390028, 0.18540827929973602, 0.020187444984912872, 0.09622150659561157, -0.04362613335251808, -0.04985925182700157, -0.08953392505645752, -0.009952642023563385, -0.12551236152648926, -0.03615942224860191, -0.08194980770349503, -0.03536400571465492, -0.016834063455462456, -0.048852384090423584, -0.03128710389137268, 0.055218104273080826, -0.0286573339253664, -0.06202705577015877, -0.05304504558444023, 0.051505379378795624, -0.13277290761470795, -0.00035288685467094183, 0.11341680586338043, -0.06863819062709808, 0.10317396372556686, 0.06451579183340073, -0.03842807188630104, 0.012361330911517143, -0.09058322757482529, 0.030619081109762192, -0.030292335897684097, 0.012404872104525566, 0.03269609063863754, -0.14531102776527405, 0.009821081534028053, -0.046278052031993866, -0.06267674267292023, 0.011208545416593552, 0.008464093320071697, -0.12382102757692337, -0.0073745232075452805, 0.05856725573539734, 0.005975320469588041, -0.07442176342010498, 0.07034860551357269, 0.07813802361488342, 0.03304252028465271, 0.0810561254620552, -0.026266751810908318, 0.087650828063488, -0.16345751285552979, -0.04538004845380783, 0.010746700689196587, 0.010946149937808514, 0.08624624460935593, -0.00877039972692728, 0.0561521090567112, -0.02129993960261345, 0.19181811809539795, 0.01446952298283577, -0.009041719138622284, 0.03985566273331642, -0.024916362017393112, -0.004714658483862877, 0.05308963358402252, 0.04919066280126572, -0.03404799848794937, -0.035726215690374374, -0.02305881306529045, -0.004615455400198698, -0.06740386039018631, -0.0402541346848011, 0.13168734312057495, 0.048554595559835434, 0.16829782724380493, -0.0262739434838295, 0.06106984242796898, -0.02877523936331272, -0.1138313040137291, -0.02992720529437065, -0.03295869752764702, 0.04159507155418396, -0.0730166807770729, 0.07475828379392624, 0.16751621663570404, -0.15297171473503113, 0.11285819113254547, 0.016132203862071037, -0.06630630791187286, -0.1061534658074379, -0.18881969153881073, -0.01668478362262249, -0.02044355683028698, 0.03525508567690849, -0.12845973670482635, 0.08721058070659637, 0.03839714825153351, 0.03565714880824089, -0.06234782934188843, 0.1184501126408577, -0.0717262327671051, -0.11815042048692703, 0.03438398614525795, 0.01912936195731163, 0.01821153797209263, 0.030035315081477165, 0.058469995856285095, 0.026938090100884438, 0.0076803420670330524, 0.05624081566929817, 0.03182893991470337, 0.026035472750663757, 0.04710657149553299, -0.026553042232990265, -0.05457006022334099, 0.021991398185491562, 0.005857308395206928, 0.03840111568570137, 0.1048988327383995, 0.07658353447914124, -0.013617977499961853, -0.03356623277068138, 0.30646809935569763, -0.03488172963261604, -0.02918887883424759, -0.1806698888540268, 0.14719684422016144, 0.034071117639541626, -0.014666141010820866, 0.03278680145740509, -0.14878271520137787, 0.010880129411816597, 0.1595335453748703, 0.1750965267419815, -0.048045381903648376, 0.008676808327436447, -0.043778806924819946, 0.010912971571087837, 0.026196561753749847, 0.09038584679365158, 0.06148500740528107, 0.19881469011306763, -0.046362437307834625, 0.05772457271814346, -0.010137693956494331, -0.005625898949801922, -0.00923429150134325, 0.11098308861255646, -0.023678448051214218, 0.00877580139786005, -0.056731682270765305, 0.08836613595485687, -0.07937251031398773, -0.2599771022796631, -0.016774756833910942, -0.029095172882080078, -0.09254331141710281, 0.045852772891521454, -0.043888650834560394, -0.012769175693392754, 0.09506042301654816, 0.01551426388323307, -0.03041515126824379, 0.13072536885738373, 0.03974226862192154, -0.03591969981789589, -0.02154221385717392, 0.0918102040886879, -0.012545960023999214, 0.18511900305747986, -0.026340581476688385, 0.013095675967633724, 0.09039055556058884, 0.028399506583809853, -0.1238514855504036, -0.0015653937589377165, 0.03565828129649162, -0.08520692586898804, -0.004952711518853903, 0.18841750919818878, 0.006596569437533617, 0.013443144969642162, 0.05644216760993004, -0.04646829515695572, 0.03283551335334778, -0.09433390200138092, 0.05233880877494812, -0.12334107607603073, 0.05138251185417175, -0.0841890424489975, 0.14375343918800354, 0.18759281933307648, -0.07024171948432922, 0.02939392626285553, -0.052528224885463715, -0.00010344599286327139, -0.024603206664323807, 0.04514253884553909, -0.01365987490862608, -0.10546499490737915, 0.01931081712245941, 0.02732885628938675, 0.016695883125066757, -0.18069392442703247, -0.06706514954566956, 0.05099302902817726, -0.062316641211509705, 0.00328021845780313, 0.16000619530677795, 0.035932622849941254, 0.05388251692056656, -0.03973325714468956, 0.008367933332920074, -0.018062790855765343, 0.10244002938270569, -0.14861668646335602, -0.0885782539844513 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/03627944481dcdb782595e9d3e351853.959x959x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Our Last Night</div> <a href="https://genius.com/artists/our-last-night"> <div style="text-align: center; font-size: 14px;">@our-last-night</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Our Last Night. Dataset is available [here](https://huggingface.co/datasets/huggingartists/our-last-night). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/our-last-night") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/37o66f2j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Our Last Night's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1hifralf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1hifralf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/our-last-night') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/our-last-night") model = AutoModelWithLMHead.from_pretrained("huggingartists/our-last-night") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/our-last-night"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/our-last-night
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/our-last-night", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/our-last-night #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Our Last Night</div> <a href="URL <div style="text-align: center; font-size: 14px;">@our-last-night</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Our Last Night. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Our Last Night's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Our Last Night.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Our Last Night's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/our-last-night #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Our Last Night.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Our Last Night's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/our-last-night #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Our Last Night.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Our Last Night's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.024670889601111412, 0.13914570212364197, -0.0026057458017021418, 0.029472757130861282, 0.08712578564882278, 0.011646062135696411, 0.08236865699291229, 0.11824774742126465, -0.003163418034091592, 0.07775481790304184, 0.06332799792289734, 0.0031786698382347822, 0.07634536176919937, 0.08261404186487198, 0.0936012789607048, -0.22141170501708984, 0.0379665344953537, -0.08963700383901596, 0.01618543267250061, 0.11154746264219284, 0.088984914124012, -0.07482701539993286, 0.07626879960298538, 0.025967003777623177, -0.07134682685136795, 0.013924509286880493, -0.011510095559060574, -0.06410852074623108, 0.1001196801662445, 0.054075878113508224, 0.028595127165317535, 0.028043458238244057, 0.06362421065568924, -0.18399456143379211, 0.02984863519668579, 0.1263871043920517, 0.03440361097455025, 0.07725171744823456, 0.04312443733215332, -0.06758442521095276, 0.14801080524921417, -0.012682967819273472, 0.0869099348783493, 0.050776198506355286, -0.1319366693496704, -0.15270917117595673, -0.12970919907093048, 0.1080956906080246, 0.07488665729761124, 0.08618923276662827, -0.03111525997519493, 0.0697186216711998, -0.03401844576001167, 0.031861625611782074, 0.2301337569952011, -0.23900732398033142, -0.0050500985234975815, 0.087854765355587, 0.07279784232378006, 0.007776190992444754, -0.0823877602815628, 0.006827457807958126, 0.04480266943573952, 0.026560932397842407, 0.04807353392243385, -0.009992037899792194, 0.1633593738079071, 0.01728336699306965, -0.10444151610136032, -0.08407406508922577, 0.10997532308101654, -0.024826064705848694, -0.0757567435503006, -0.12325700372457504, -0.004436380695551634, -0.036752115935087204, 0.031006548553705215, 0.0173491258174181, -0.0020592783112078905, 0.005430820398032665, -0.03298311308026314, -0.1059209555387497, -0.08804807811975479, -0.031891461461782455, -0.02233073115348816, 0.08167379349470139, 0.039948977530002594, 0.03591426834464073, -0.08841486275196075, 0.2244081050157547, -0.032066598534584045, -0.10110758244991302, -0.05818607658147812, -0.10205891728401184, -0.09209173172712326, -0.053717855364084244, 0.013368652202188969, 0.008763773366808891, -0.03127988055348396, 0.17329399287700653, -0.028135119006037712, 0.02123405598104, -0.01432865671813488, 0.007778279948979616, 0.1370234489440918, 0.15290983021259308, -0.1029077023267746, -0.04256924241781235, 0.060566067695617676, -0.018442215397953987, -0.060808151960372925, -0.04211290553212166, -0.005418627988547087, -0.015149741433560848, 0.032137803733348846, 0.08373301476240158, 0.08887292444705963, 0.06324334442615509, 0.015639619901776314, -0.06311604380607605, 0.09025447070598602, -0.12675434350967407, 0.017470909282565117, 0.004841419868171215, -0.055083442479372025, 0.0005670626414939761, 0.06146490201354027, 0.010780133306980133, -0.09754019230604172, 0.09736534208059311, -0.060643378645181656, -0.0538996122777462, -0.08489333093166351, -0.09790746867656708, 0.011220382526516914, -0.03748328238725662, -0.0426647812128067, -0.07024344056844711, -0.17308248579502106, -0.041042014956474304, 0.02778717875480652, -0.05036712437868118, -0.019881974905729294, 0.02025838941335678, -0.029076088219881058, 0.007518810220062733, -0.02548673190176487, -0.030197925865650177, -0.030351893976330757, 0.03570917621254921, -0.0528329499065876, 0.03487400338053703, 0.05282944440841675, 0.04904690757393837, -0.12012409418821335, 0.06552388519048691, -0.1306125819683075, 0.10257140547037125, -0.0004571824974846095, 0.023606477305293083, -0.08826714009046555, -0.07542645186185837, -0.024506600573658943, -0.031109796836972237, 0.004368167370557785, 0.11189503222703934, -0.17816387116909027, -0.03249621018767357, 0.21563461422920227, -0.07321210950613022, -0.08816167712211609, 0.0697917565703392, -0.061445239931344986, 0.03855973109602928, 0.11915362626314163, 0.07114826887845993, 0.14569474756717682, -0.10299766808748245, -0.06625967472791672, -0.055660080164670944, -0.08574873954057693, 0.1644943654537201, 0.0388546958565712, -0.020403096452355385, 0.03761136159300804, 0.004455823916941881, -0.020893381908535957, -0.010339915752410889, -0.030285602435469627, -0.039272431284189224, -0.019969088956713676, 0.0023588596377521753, 0.004327510483562946, -0.03318389877676964, -0.0679444670677185, -0.03618403524160385, -0.09708858281373978, 0.04343806579709053, 0.10328203439712524, -0.04883139207959175, 0.023659830912947655, -0.1096283569931984, 0.02985425665974617, -0.040781207382678986, 0.013275206089019775, -0.16243566572666168, -0.029097922146320343, 0.01986829750239849, -0.03249143436551094, 0.0823468416929245, 0.01877107284963131, 0.046319060027599335, 0.0640125423669815, -0.011658960022032261, -0.010110374540090561, -0.034624259918928146, -0.010915586724877357, -0.025122009217739105, -0.16894786059856415, -0.04730188846588135, -0.04815792664885521, 0.07134570181369781, -0.10991697758436203, -0.002272485988214612, 0.0909183993935585, 0.13483227789402008, 0.02365857921540737, -0.0703931450843811, 0.020986877381801605, -0.04330004006624222, -0.03447045385837555, -0.09710335731506348, -0.0473286435008049, 0.003822274971753359, -0.031584735959768295, 0.15014345943927765, -0.15223118662834167, -0.09408947825431824, 0.11777713894844055, 0.1180911436676979, -0.08732228726148605, 0.060368798673152924, -0.08606524020433426, -0.013485033065080643, -0.03857056424021721, -0.04880301654338837, 0.2512400448322296, 0.030388809740543365, 0.07629603147506714, -0.08298849314451218, -0.09356579929590225, 0.002060855505988002, -0.04889964312314987, -0.038969505578279495, 0.035004131495952606, 0.013390844687819481, -0.1395329236984253, 0.04630233347415924, -0.0075576030649244785, 0.105899378657341, 0.20008178055286407, 0.029229776933789253, -0.08408097922801971, -0.05740192160010338, -0.06482145190238953, 0.0021473709493875504, 0.103000707924366, -0.005465168040245771, 0.022883614525198936, 0.03816426545381546, 0.04835718497633934, 0.04360494762659073, -0.11768136918544769, 0.011839417740702629, 0.06585410982370377, -0.029438862577080727, -0.05224446579813957, 0.0051863244734704494, 0.02576359733939171, 0.0855112373828888, 0.09500416368246078, 0.11510169506072998, -0.05340402573347092, -0.055096060037612915, -0.13616757094860077, 0.12775292992591858, -0.09798047691583633, -0.24215169250965118, -0.13765880465507507, -0.057940155267715454, 0.00796914380043745, 0.015760045498609543, 0.049298133701086044, -0.06487338989973068, -0.04284737631678581, -0.08460188657045364, 0.10230791568756104, -0.03292027488350868, -0.004317867569625378, -0.004702704958617687, 0.029513312503695488, -0.010187888517975807, -0.10666945576667786, -0.03600165992975235, 0.02912002056837082, -0.08406100422143936, 0.00021233105508144945, 0.02797936275601387, 0.041211508214473724, 0.15887165069580078, -0.009224713779985905, 0.008112367242574692, -0.009902087040245533, 0.25650137662887573, -0.11708402633666992, 0.060715436935424805, 0.16624432802200317, 0.009742929600179195, 0.05216943845152855, 0.06697066873311996, 0.002933027921244502, -0.047191787511110306, 0.06274145096540451, 0.06869249790906906, -0.07304175198078156, -0.19553855061531067, -0.04434748366475105, -0.006938666570931673, 0.011435842141509056, 0.10299064964056015, 0.047970324754714966, 0.04651017114520073, 0.004225124139338732, -0.11511846631765366, 0.01746523194015026, 0.020509077236056328, 0.10721058398485184, -0.0744849443435669, -0.014532363973557949, 0.02611624449491501, -0.05610287934541702, 0.03005014732480049, 0.12885163724422455, 0.03996599465608597, 0.18327999114990234, -0.05670172721147537, 0.06601876020431519, 0.08909554779529572, 0.1063961312174797, 0.013900617137551308, 0.01754637621343136, -0.032492075115442276, 0.014546666294336319, 0.010666516609489918, -0.09465666115283966, -0.00968489795923233, 0.04137766361236572, 0.04304904863238335, -0.009876180440187454, -0.046884965151548386, -0.07380466163158417, 0.05856254696846008, 0.24764801561832428, 0.036276765167713165, -0.17172062397003174, -0.09759931266307831, 0.05788207799196243, -0.04952509328722954, -0.06849859654903412, -0.020746953785419464, 0.05846480652689934, -0.20938889682292938, 0.04576839879155159, -0.029488852247595787, 0.10269002616405487, -0.11433954536914825, -0.00010068327537737787, 0.0503225140273571, 0.03275187686085701, -0.06327323615550995, 0.09183937311172485, -0.17142587900161743, 0.06976454704999924, -0.004208117723464966, 0.0916726291179657, -0.07150643318891525, 0.020167211070656776, 0.010256582871079445, 0.039967652410268784, 0.0849715992808342, 0.019487792626023293, 0.04804932698607445, -0.03304799273610115, -0.055324941873550415, -0.0027174032293260098, 0.05379349738359451, -0.10436999797821045, 0.13483640551567078, -0.027075711637735367, 0.02626933716237545, -0.02996634878218174, -0.08436135947704315, -0.07500547915697098, -0.124608114361763, 0.07472532242536545, -0.10744733363389969, 0.0017778901383280754, -0.06968317925930023, -0.013095933943986893, 0.016026126220822334, 0.2358393371105194, -0.10950984805822372, -0.08015494793653488, -0.13423515856266022, -0.02627458982169628, 0.14519011974334717, -0.06810598075389862, 0.0028457494918257, -0.012147726491093636, 0.19068846106529236, -0.010105236433446407, -0.13158710300922394, -0.00010187460429733619, -0.0758964791893959, -0.18491479754447937, -0.03205285593867302, 0.16658000648021698, 0.07086590677499771, 0.03667428717017174, 0.00298803742043674, 0.008919420652091503, -0.055077794939279556, -0.1587793380022049, 0.024899553507566452, 0.14934787154197693, 0.0008842472452670336, 0.015802109614014626, 0.04173056036233902, 0.027522314339876175, -0.1170303001999855, 0.019558800384402275, 0.04445192217826843, 0.18210069835186005, -0.07338402420282364, 0.19371145963668823, 0.023550473153591156, -0.08822949230670929, -0.17976905405521393, 0.02023528888821602, -0.009285061620175838, 0.020913925021886826, 0.008666932582855225, -0.18240642547607422, 0.025105103850364685, 0.019782422110438347, -0.008961880579590797, 0.05789491534233093, -0.34538912773132324, -0.14208868145942688, 0.01850053109228611, -0.0003011806693393737, -0.10235506296157837, -0.04071395471692085, -0.042670898139476776, -0.07358681410551071, -0.24011151492595673, 0.07017269730567932, -0.11332158744335175, 0.0873548835515976, 0.0024230412673205137, 0.08136198669672012, 0.054282721132040024, -0.06012965738773346, 0.12326201051473618, -0.02300143614411354, 0.0545303039252758, -0.09960620850324631, -0.04680989682674408, 0.11131113767623901, -0.07322423905134201, 0.10998010635375977, 0.03167988732457161, 0.0789213553071022, -0.12191992253065109, -0.06576450169086456, -0.08302422612905502, 0.008146756328642368, -0.05995273217558861, -0.0889868289232254, -0.08731073141098022, 0.09987366944551468, 0.127073273062706, -0.03911735117435455, -0.07393639534711838, -0.04364518076181412, -0.0017234410624951124, 0.07211983948945999, 0.10427877306938171, 0.07957325875759125, -0.08944624662399292, 0.021788179874420166, 0.014886109158396721, 0.02877005934715271, -0.15110287070274353, 0.04791969805955887, 0.09055069833993912, 0.03810020908713341, 0.10840994864702225, 0.009873781353235245, -0.18367604911327362, 0.007919255644083023, 0.06901650130748749, -0.17304624617099762, -0.12111425399780273, -0.0350881926715374, -0.007791707757860422, -0.09709479659795761, -0.028617020696401596, 0.12478356063365936, -0.03848043829202652, -0.03595202788710594, 0.0012243783567100763, 0.07087885588407516, -0.05669068545103073, 0.09443840384483337, 0.010146713815629482, 0.050586964935064316, -0.07726845145225525, 0.12952788174152374, 0.06314607709646225, 0.022445712238550186, 0.03287922963500023, 0.07294005155563354, -0.07567733526229858, 0.0009013433591462672, -0.06518565118312836, -0.004836260341107845, -0.05820111185312271, -0.019347328692674637, -0.01085334736853838, -0.0508015900850296, 0.03766702115535736, 0.1049334928393364, -0.016989458352327347, 0.12103469669818878, -0.01975274085998535, 0.007899511605501175, -0.13806270062923431, 0.07340728491544724, 0.04285585507750511, 0.026451848447322845, -0.09748416393995285, 0.21084757149219513, 0.01826534979045391, 0.09153958410024643, -0.03797079622745514, -0.06684774160385132, -0.07642406225204468, -0.001475752331316471, -0.14047686755657196, -0.05727074667811394, -0.08166665583848953, -0.0386398620903492, -0.008029594086110592, -0.02160506322979927, -0.0112815722823143, 0.052610132843256, -0.030400533229112625, -0.060094136744737625, -0.061690326780080795, 0.04758493974804878, -0.15735746920108795, 0.018510736525058746, 0.11184345185756683, -0.05847602337598801, 0.11096030473709106, 0.05764954537153244, -0.022202245891094208, 0.008490593172609806, -0.09928350150585175, 0.016859326511621475, -0.03032003343105316, 0.007759395986795425, 0.032271143049001694, -0.14560161530971527, -0.0004175806534476578, -0.0498775877058506, -0.06881552934646606, 0.01053813099861145, 0.0021218224428594112, -0.12390570342540741, 0.000861307664308697, 0.07263072580099106, -0.005411644000560045, -0.06418553739786148, 0.05772172287106514, 0.05173514038324356, 0.02235191874206066, 0.05579984560608864, -0.04451506584882736, 0.07248293608427048, -0.15634208917617798, -0.045167937874794006, -0.0021231756545603275, 0.026063529774546623, 0.048748694360256195, 0.005041217431426048, 0.03991694003343582, -0.0137764448300004, 0.17970895767211914, 0.012604438699781895, -0.016149625182151794, 0.03872464597225189, -0.07283440232276917, -0.021060092374682426, 0.04574836045503616, 0.06351955980062485, -0.04577629268169403, -0.03975561261177063, -0.007906684651970863, -0.003025932004675269, -0.08027096092700958, -0.0405307337641716, 0.10427723079919815, 0.0540337860584259, 0.19323024153709412, -0.038170136511325836, 0.07622615993022919, -0.02192266471683979, -0.11464934051036835, -0.03804244473576546, -0.05040640011429787, 0.0401502326130867, -0.06985612213611603, 0.07415279000997543, 0.16381625831127167, -0.15440627932548523, 0.11024345457553864, 0.005578699521720409, -0.050479233264923096, -0.08143924921751022, -0.17144955694675446, -0.01431372482329607, -0.031789589673280716, 0.03694652020931244, -0.13440191745758057, 0.08766282349824905, 0.015518514439463615, 0.030924586579203606, -0.07183051109313965, 0.13740798830986023, -0.059556763619184494, -0.11324072629213333, 0.03107495978474617, 0.027361923828721046, 0.02699708379805088, 0.043826717883348465, 0.0831376165151596, 0.03516082838177681, 0.0021070525981485844, 0.07101120054721832, 0.053980231285095215, 0.03256254643201828, 0.03868087753653526, -0.004793908912688494, -0.06048762798309326, 0.030720030888915062, -0.007156305946409702, 0.04965216666460037, 0.10950615257024765, 0.07293987274169922, -0.01733441650867462, -0.028814883902668953, 0.2972583770751953, -0.054650597274303436, -0.04086225852370262, -0.1677095890045166, 0.19860462844371796, 0.02282441221177578, -0.014787050895392895, 0.019231274724006653, -0.13487286865711212, -0.0018764230189844966, 0.14433534443378448, 0.1686006337404251, -0.010265186429023743, 0.013832364231348038, -0.045538388192653656, 0.012978492304682732, 0.026149464771151543, 0.0765114277601242, 0.0601407028734684, 0.19408199191093445, -0.043669722974300385, 0.04629134759306908, -0.004112526308745146, -0.010777570307254791, -0.005924319848418236, 0.10359545052051544, -0.0340137742459774, 0.0060722376219928265, -0.062540702521801, 0.0941976010799408, -0.06724662333726883, -0.2820185422897339, 0.005961311049759388, -0.04545748606324196, -0.09657774120569229, 0.05370766669511795, -0.03399214148521423, -0.018742362037301064, 0.10478048026561737, 0.02453889325261116, -0.040629394352436066, 0.12244749069213867, 0.03723566234111786, -0.05406210944056511, -0.025898870080709457, 0.09419621527194977, -0.039597440510988235, 0.23666568100452423, -0.025943320244550705, -0.010211030952632427, 0.08008827269077301, 0.01304901298135519, -0.13798195123672485, 0.006567885167896748, 0.02984035201370716, -0.09507132321596146, -0.026679154485464096, 0.1994873434305191, 0.016339587047696114, 0.04053519293665886, 0.07153394818305969, -0.054360710084438324, 0.021124273538589478, -0.04037725552916527, 0.06854043155908585, -0.13807693123817444, 0.05035436525940895, -0.07586494088172913, 0.14167900383472443, 0.1772177368402481, -0.07175739109516144, 0.017529873177409172, -0.06060203164815903, -0.0004032375290989876, -0.00820098351687193, 0.0809444710612297, -0.01825712062418461, -0.11228809505701065, 0.0194482933729887, 0.025130117312073708, 0.02037240006029606, -0.21019138395786285, -0.08252765983343124, 0.06553084403276443, -0.04383121058344841, 0.027047330513596535, 0.17457996308803558, 0.04963725805282593, 0.07010086625814438, -0.03501802682876587, 0.0043483213521540165, -0.011143549345433712, 0.11294928938150406, -0.16014054417610168, -0.09274391084909439 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/57ecbbdaf70c671be2d8b7bd39112db0.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Oxxxymiron</div> <a href="https://genius.com/artists/oxxxymiron"> <div style="text-align: center; font-size: 14px;">@oxxxymiron</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Oxxxymiron. Dataset is available [here](https://huggingface.co/datasets/huggingartists/oxxxymiron). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/oxxxymiron") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/e254c9iz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Oxxxymiron's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1ggk9c4z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1ggk9c4z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/oxxxymiron') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/oxxxymiron") model = AutoModelWithLMHead.from_pretrained("huggingartists/oxxxymiron") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/oxxxymiron"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/oxxxymiron
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/oxxxymiron", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/oxxxymiron #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Oxxxymiron</div> <a href="URL <div style="text-align: center; font-size: 14px;">@oxxxymiron</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Oxxxymiron. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Oxxxymiron's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Oxxxymiron.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Oxxxymiron's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/oxxxymiron #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Oxxxymiron.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Oxxxymiron's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/oxxxymiron #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Oxxxymiron.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Oxxxymiron's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04492128640413284, 0.16568461060523987, -0.00255560502409935, 0.049689654260873795, 0.10837161540985107, 0.012525778263807297, 0.08910827338695526, 0.11784937977790833, 0.019279183819890022, 0.0815214216709137, 0.07322389632463455, 0.048198290169239044, 0.07276620715856552, 0.09553012996912003, 0.05626868084073067, -0.22091053426265717, 0.03677050769329071, -0.0738944262266159, 0.009073564782738686, 0.09769273549318314, 0.09176301211118698, -0.06144433096051216, 0.07807785272598267, 0.027969179674983025, -0.074200339615345, 0.010958969593048096, 0.01024575810879469, -0.06364120543003082, 0.08640376478433609, 0.06841741502285004, 0.03755488246679306, 0.026379959657788277, 0.05876307934522629, -0.17244356870651245, 0.03016509674489498, 0.12600119411945343, 0.025197872892022133, 0.08221989870071411, 0.05102434381842613, -0.08585191518068314, 0.13420869410037994, -0.028146257624030113, 0.0846153125166893, 0.05633356794714928, -0.1211462914943695, -0.12655125558376312, -0.14053046703338623, 0.1044991984963417, 0.0896637961268425, 0.09367676824331284, -0.02965853549540043, 0.08943286538124084, -0.023051217198371887, 0.050959762185811996, 0.23777900636196136, -0.230453222990036, -0.010458583012223244, 0.0770270973443985, 0.06086849793791771, 0.01929081231355667, -0.08642617613077164, 0.010471981950104237, 0.043744273483753204, 0.03236612305045128, 0.029786985367536545, -0.029562722891569138, 0.15720510482788086, 0.02048732526600361, -0.10490600019693375, -0.07373306900262833, 0.10583365708589554, -0.016123957931995392, -0.0812116488814354, -0.1294260323047638, -0.002653755247592926, -0.04026564583182335, 0.029249457642436028, 0.017927659675478935, 0.0013220349792391062, 0.0018501883605495095, -0.03457733988761902, -0.11120862513780594, -0.0773087814450264, -0.03115321509540081, -0.013234364800155163, 0.0670744851231575, 0.03913415968418121, 0.037026453763246536, -0.09076734632253647, 0.21949869394302368, -0.010711451061069965, -0.0967199057340622, -0.05844884365797043, -0.10084643214941025, -0.0862138494849205, -0.041112951934337616, -0.00039370404556393623, -0.0050814333371818066, -0.032006245106458664, 0.14307017624378204, -0.04824575409293175, 0.022266989573836327, -0.02447839081287384, 0.007191321346908808, 0.13809876143932343, 0.1361258178949356, -0.11774007230997086, -0.03639202192425728, 0.07417923212051392, 0.005116327200084925, -0.06637120991945267, -0.049814146012067795, -0.0042159161530435085, -0.009327584877610207, 0.04151806980371475, 0.07869181036949158, 0.08469659090042114, 0.059544093906879425, -0.002227064687758684, -0.06266969442367554, 0.06755184382200241, -0.1283055990934372, 0.01776175945997238, -0.008717785589396954, -0.05948881432414055, 0.027922248467803, 0.07089332491159439, 0.006868510507047176, -0.11407940834760666, 0.10025276988744736, -0.07514519989490509, -0.044379014521837234, -0.0826486125588417, -0.10014750808477402, -0.006269420497119427, -0.05878640338778496, -0.03044951520860195, -0.07727395743131638, -0.17914550006389618, -0.05199937894940376, 0.01933945156633854, -0.050046175718307495, -0.02777835726737976, 0.024532515555620193, -0.03730647638440132, 0.01151816826313734, -0.019762855023145676, -0.027854029089212418, -0.028929680585861206, 0.03376384451985359, -0.07318072021007538, 0.026770785450935364, 0.05162089318037033, 0.043366074562072754, -0.1233823150396347, 0.0732794925570488, -0.11207645386457443, 0.11667495220899582, -0.011795292608439922, 0.007719348184764385, -0.09250036627054214, -0.07847960293292999, -0.02004978246986866, -0.022913219407200813, 0.025565920397639275, 0.11895456910133362, -0.16045191884040833, -0.027023471891880035, 0.20706307888031006, -0.06613738089799881, -0.07825473695993423, 0.06371177732944489, -0.06812463700771332, 0.03984001278877258, 0.11592962592840195, 0.07426858693361282, 0.1397629827260971, -0.11556489765644073, -0.08948440849781036, -0.05497864633798599, -0.06890836358070374, 0.1611960232257843, 0.03316861018538475, -0.01956886798143387, 0.04143188148736954, 0.0026783044449985027, -0.031370896846055984, -0.0016151352319866419, -0.027197152376174927, -0.035205356776714325, -0.023322854191064835, -0.0121600441634655, -0.01408650353550911, -0.03199722617864609, -0.04971657693386078, -0.02383963018655777, -0.09854986518621445, 0.06792426109313965, 0.1064089834690094, -0.07036019116640091, 0.01376727782189846, -0.0982457771897316, 0.037340544164180756, -0.054583050310611725, 0.013612110167741776, -0.17977365851402283, -0.040087416768074036, 0.01540918368846178, -0.0641167089343071, 0.06718432903289795, 0.02805490791797638, 0.04370739683508873, 0.07148696482181549, -0.010408247821033001, -0.01133781112730503, -0.03647049516439438, -0.004177487920969725, -0.044809166342020035, -0.1682972013950348, -0.04647642374038696, -0.04802447557449341, 0.09110888838768005, -0.12263967841863632, 0.007668078877031803, 0.07610437273979187, 0.1367417424917221, 0.025622697547078133, -0.07108012586832047, 0.03817581385374069, -0.0253419391810894, -0.03293496370315552, -0.1085689514875412, -0.03798879310488701, 0.012764601036906242, -0.022519351914525032, 0.15539051592350006, -0.1576332449913025, -0.092790387570858, 0.1270497590303421, 0.11076229810714722, -0.08929318189620972, 0.048031996935606, -0.07510188966989517, -0.019544217735528946, -0.04267778992652893, -0.04842238873243332, 0.25115182995796204, 0.030712265521287918, 0.09341971576213837, -0.08689198642969131, -0.07678964734077454, 0.0013412553817033768, -0.045302920043468475, -0.03437819704413414, 0.043682295829057693, 0.023480204865336418, -0.16931545734405518, 0.05626440420746803, -0.01447094976902008, 0.08321346342563629, 0.19482646882534027, 0.03520017862319946, -0.09074392169713974, -0.05773241072893143, -0.07086315751075745, 0.005581794772297144, 0.0900627002120018, 0.0014574503293260932, 0.03332336246967316, 0.040714651346206665, 0.04443948343396187, 0.041537441313266754, -0.1123289167881012, 0.009665091522037983, 0.06154404580593109, -0.025921806693077087, -0.055350884795188904, 0.01897875964641571, 0.024932123720645905, 0.09169826656579971, 0.0680319294333458, 0.11201151460409164, -0.05251579359173775, -0.048291727900505066, -0.1360381841659546, 0.14008136093616486, -0.08897439390420914, -0.2152806967496872, -0.12981031835079193, -0.07032569497823715, 0.0034831163939088583, 0.008827939629554749, 0.0402681827545166, -0.04472344368696213, -0.04065954312682152, -0.09590090066194534, 0.07698208838701248, -0.030181752517819405, -0.011142918840050697, -0.0038925681728869677, 0.015266183763742447, -0.010742190293967724, -0.12102189660072327, -0.03773530572652817, 0.02112225443124771, -0.0745624378323555, 0.003785205539315939, 0.0299496091902256, 0.0499030239880085, 0.1479623019695282, -0.0008368191192857921, 0.008685356937348843, -0.017501281574368477, 0.26644569635391235, -0.11182428151369095, 0.055464278906583786, 0.17352338135242462, 0.0011861245147883892, 0.053461506962776184, 0.05712086707353592, -0.0026442825328558683, -0.05964416638016701, 0.053280092775821686, 0.07027457654476166, -0.06843630224466324, -0.21115218102931976, -0.03139948844909668, -0.019774187356233597, 0.010495748370885849, 0.11689183115959167, 0.03890190273523331, 0.06547142565250397, 0.014707186259329319, -0.09892567247152328, 0.05496532842516899, 0.012097432278096676, 0.10074715316295624, -0.0801624283194542, -0.0015595745062455535, 0.05035720765590668, -0.050463251769542694, 0.041634611785411835, 0.12246581166982651, 0.03753974288702011, 0.22817111015319824, -0.07814537733793259, 0.07882889360189438, 0.08465616405010223, 0.09763918817043304, 0.013706532306969166, 0.029885591939091682, -0.02394406497478485, 0.022863030433654785, 0.011182104237377644, -0.09409710764884949, -0.0070134112611413, 0.03892025724053383, 0.02992904931306839, -0.00325237144716084, -0.06643617153167725, -0.07417000830173492, 0.05263597518205643, 0.23088423907756805, 0.028067294508218765, -0.1756843626499176, -0.09897485375404358, 0.056354083120822906, -0.03877881541848183, -0.059511877596378326, -0.021688202396035194, 0.06595982611179352, -0.20634952187538147, 0.03472984582185745, -0.03703683614730835, 0.11261548101902008, -0.1223549097776413, -0.00005502548083313741, 0.05597473680973053, 0.043062981218099594, -0.06628385931253433, 0.07077711820602417, -0.1602052003145218, 0.08535157889127731, -9.483251801611914e-7, 0.08900647610425949, -0.06469022482633591, 0.01772032119333744, 0.03163472190499306, 0.03321665897965431, 0.09218991547822952, 0.017677512019872665, 0.03264075145125389, -0.057409197092056274, -0.038811035454273224, -0.006503337528556585, 0.046464331448078156, -0.08900179713964462, 0.13023705780506134, -0.029816215857863426, 0.028444064781069756, -0.0248000118881464, -0.09050588309764862, -0.09405708312988281, -0.13937871158123016, 0.07609429955482483, -0.09415189921855927, -0.0019975316245108843, -0.06486120820045471, -0.018964342772960663, 0.021023733541369438, 0.21777451038360596, -0.08946434408426285, -0.07620630413293839, -0.13878120481967926, 0.015475891530513763, 0.1412137746810913, -0.07805496454238892, -0.0030966433696448803, -0.007162223104387522, 0.15604054927825928, -0.0010471998248249292, -0.1365448236465454, -0.002792431740090251, -0.06992147862911224, -0.1732242852449417, -0.027242857962846756, 0.139370396733284, 0.0672714114189148, 0.03400353342294693, 0.00406435364857316, 0.007385376375168562, -0.04923968017101288, -0.1649441123008728, 0.033918581902980804, 0.14980918169021606, 0.035068634897470474, 0.03280318155884743, 0.02721242606639862, 0.014394848607480526, -0.12936684489250183, 0.017414385452866554, 0.051148511469364166, 0.20126813650131226, -0.07139536738395691, 0.15743285417556763, 0.005520331673324108, -0.09752089530229568, -0.16864845156669617, 0.034910898655653, 0.0037262127734720707, 0.03248272463679314, 0.020130019634962082, -0.16620641946792603, 0.024587467312812805, 0.027707945555448532, -0.001817709649913013, 0.06742469221353531, -0.35156676173210144, -0.14784270524978638, 0.024249928072094917, 0.029103858396410942, -0.07217375189065933, -0.05563550442457199, -0.03069164790213108, -0.06925992667675018, -0.2418268769979477, 0.0967540368437767, -0.12449980527162552, 0.08963130414485931, 0.004399656783789396, 0.06317266076803207, 0.05199766904115677, -0.06839081645011902, 0.133656844496727, -0.031109066680073738, 0.06623681634664536, -0.0885152667760849, -0.053877655416727066, 0.09163928031921387, -0.0634252205491066, 0.10018054395914078, 0.020663606002926826, 0.0883760005235672, -0.11897378414869308, -0.06792204082012177, -0.08363017439842224, 0.017558904364705086, -0.054279595613479614, -0.09217031300067902, -0.07489247620105743, 0.09938183426856995, 0.12163903564214706, -0.03149903193116188, -0.08494774997234344, -0.05273086205124855, -0.008153792470693588, 0.06706111878156662, 0.09090641885995865, 0.09217561781406403, -0.10401059687137604, 0.009946311824023724, 0.009834946133196354, 0.02394280955195427, -0.15665872395038605, 0.029673082754015923, 0.08596401661634445, 0.03897778317332268, 0.11404972523450851, 0.015050704590976238, -0.15791769325733185, 0.023324662819504738, 0.03768470138311386, -0.16074039041996002, -0.0958792045712471, -0.039293259382247925, 0.005685192532837391, -0.08614909648895264, -0.04216041415929794, 0.1443226933479309, -0.04149552434682846, -0.030173668637871742, -0.0024942229501903057, 0.056218601763248444, -0.0586724616587162, 0.10398737341165543, 0.01953793130815029, 0.04663540795445442, -0.06860654056072235, 0.1062743067741394, 0.06453801691532135, 0.017078693956136703, 0.044895581901073456, 0.057730533182621, -0.07895716279745102, -0.0029227109625935555, -0.08101248741149902, 0.031715959310531616, -0.05324621871113777, -0.01844417303800583, -0.013353977352380753, -0.03760189563035965, 0.03124670311808586, 0.09937085211277008, -0.015245934948325157, 0.10588013380765915, -0.034233707934617996, -0.018685240298509598, -0.14406391978263855, 0.06296844780445099, 0.04602959007024765, 0.017320940271019936, -0.11349935084581375, 0.19680334627628326, 0.02540774457156658, 0.09430336952209473, -0.03696602210402489, -0.055599145591259, -0.08834879845380783, -0.007493951823562384, -0.1377110779285431, -0.04296938702464104, -0.08395326882600784, -0.03731929883360863, -0.014469917863607407, -0.042839426547288895, -0.015018884092569351, 0.054966267198324203, -0.028911689296364784, -0.06531687080860138, -0.04890848696231842, 0.04903140291571617, -0.14650730788707733, 0.0052404399029910564, 0.10545925050973892, -0.059301938861608505, 0.10467779636383057, 0.07066703587770462, -0.03674831986427307, 0.009354396723210812, -0.10937121510505676, 0.03328787907958031, -0.030265653505921364, 0.006853672210127115, 0.030161326751112938, -0.1440267264842987, 0.010821760632097721, -0.04638328030705452, -0.06457071751356125, 0.012457197532057762, 0.00797206535935402, -0.12467043101787567, -0.00436606677249074, 0.06755544245243073, 0.0001780503080226481, -0.07232332229614258, 0.07077310979366302, 0.0732279047369957, 0.03546306863427162, 0.06433597207069397, -0.034497201442718506, 0.08159574121236801, -0.171713724732399, -0.048686433583498, 0.005991244222968817, 0.011573068797588348, 0.05595599487423897, -0.008593005128204823, 0.044802963733673096, -0.016513682901859283, 0.18105582892894745, 0.002733829664066434, -0.010637860745191574, 0.03893859684467316, -0.05565210431814194, -0.009960750117897987, 0.045415330678224564, 0.061043594032526016, -0.04299337789416313, -0.02698911540210247, -0.01773129217326641, -0.0008171234512701631, -0.0701342448592186, -0.019218942150473595, 0.11352651566267014, 0.05482287332415581, 0.18177694082260132, -0.026874028146266937, 0.04943370819091797, -0.02903035655617714, -0.11542830616235733, -0.024672571569681168, -0.040823906660079956, 0.03865184634923935, -0.07600583881139755, 0.07134018838405609, 0.1628890037536621, -0.15200398862361908, 0.11334819346666336, 0.014637556858360767, -0.05821891501545906, -0.0930509939789772, -0.1642407327890396, -0.011185631155967712, -0.022620925679802895, 0.03165699541568756, -0.1277841180562973, 0.08731797337532043, 0.02279789187014103, 0.033827442675828934, -0.06465316563844681, 0.12374132871627808, -0.0616610161960125, -0.1033998504281044, 0.027928173542022705, 0.020452067255973816, 0.020802171900868416, 0.025069212540984154, 0.07084815949201584, 0.025288425385951996, 0.0005514200893230736, 0.063279889523983, 0.042062073945999146, 0.028927719220519066, 0.04524986445903778, -0.018815822899341583, -0.058724310249090195, 0.027618100866675377, 0.010201121680438519, 0.03855794295668602, 0.11292342841625214, 0.07625333219766617, -0.01628538779914379, -0.03220244497060776, 0.2992801368236542, -0.03478478640317917, -0.03689391911029816, -0.17671573162078857, 0.16783148050308228, 0.02737521566450596, -0.02994970604777336, 0.024957852438092232, -0.13708454370498657, 0.016290580853819847, 0.1527290642261505, 0.17307937145233154, -0.04605324938893318, 0.014307288452982903, -0.04085264354944229, 0.01029620785266161, 0.02766592614352703, 0.08458690345287323, 0.0672064870595932, 0.20276868343353271, -0.04827252775430679, 0.05777958035469055, -0.004745510406792164, -0.012013141997158527, -0.01254192367196083, 0.11041928082704544, -0.03143768385052681, 0.004895458463579416, -0.05376793444156647, 0.08917057514190674, -0.06910134106874466, -0.26702362298965454, -0.0004645964945666492, -0.056638386100530624, -0.0959438905119896, 0.04611890763044357, -0.03620705381035805, -0.01991962268948555, 0.09523806720972061, 0.014850804582238197, -0.03082290291786194, 0.13173045217990875, 0.03228595480322838, -0.041732970625162125, -0.02212103269994259, 0.08338965475559235, -0.025052513927221298, 0.18954938650131226, -0.029057620093226433, 0.0009454931714572012, 0.09184440970420837, 0.022446220740675926, -0.12247125804424286, 0.0009400214767083526, 0.03480503708124161, -0.08382156491279602, -0.014962849207222462, 0.18825307488441467, 0.0026015082839876413, 0.028151752427220345, 0.052527666091918945, -0.05513894557952881, 0.027402391657233238, -0.06990533322095871, 0.05013487488031387, -0.13400699198246002, 0.049602288752794266, -0.07470405101776123, 0.148953378200531, 0.1816244274377823, -0.07250050455331802, 0.01793934591114521, -0.05630743131041527, 0.0042023733258247375, -0.015534494072198868, 0.055708881467580795, -0.025169653818011284, -0.107522152364254, 0.03158647194504738, 0.02764853648841381, 0.0266630370169878, -0.19952471554279327, -0.07179342210292816, 0.051198627799749374, -0.059304751455783844, 0.007262617349624634, 0.16347052156925201, 0.041111383587121964, 0.06002338230609894, -0.03475948050618172, 0.007733290083706379, -0.014413852244615555, 0.11244743317365646, -0.13796170055866241, -0.09251948446035385 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/02fe78bca7c47dc6869673e7552c7978.500x338x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Peter, Paul and Mary</div> <a href="https://genius.com/artists/peter-paul-and-mary"> <div style="text-align: center; font-size: 14px;">@peter-paul-and-mary</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Peter, Paul and Mary. Dataset is available [here](https://huggingface.co/datasets/huggingartists/peter-paul-and-mary). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/peter-paul-and-mary") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/svwa6bev/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Peter, Paul and Mary's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s4mkr9x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s4mkr9x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/peter-paul-and-mary') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/peter-paul-and-mary") model = AutoModelWithLMHead.from_pretrained("huggingartists/peter-paul-and-mary") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/peter-paul-and-mary"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/peter-paul-and-mary
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/peter-paul-and-mary", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/peter-paul-and-mary #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Peter, Paul and Mary</div> <a href="URL <div style="text-align: center; font-size: 14px;">@peter-paul-and-mary</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Peter, Paul and Mary. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Peter, Paul and Mary's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Peter, Paul and Mary.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Peter, Paul and Mary's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/peter-paul-and-mary #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Peter, Paul and Mary.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Peter, Paul and Mary's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 90, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/peter-paul-and-mary #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Peter, Paul and Mary.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Peter, Paul and Mary's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03275632485747337, 0.19198545813560486, -0.0059190732426941395, 0.07762846350669861, 0.08186058700084686, -0.00006042667882866226, 0.062098998576402664, 0.11270134150981903, -0.031466852873563766, 0.08066017925739288, 0.06907559186220169, 0.036396194249391556, 0.0666126161813736, 0.06625748425722122, 0.025992801412940025, -0.2557532489299774, 0.014818505384027958, -0.054092321544885635, -0.046758804470300674, 0.09373397380113602, 0.0825444683432579, -0.07400606572628021, 0.08152813464403152, -0.007558874785900116, -0.0033825489226728678, 0.006890393793582916, 0.004914542194455862, -0.05330377444624901, 0.05467512086033821, 0.07774275541305542, 0.025866134092211723, 0.05859837308526039, 0.052335720509290695, -0.16237878799438477, 0.025919513776898384, 0.115935780107975, 0.03369370102882385, 0.08069302141666412, 0.06755528599023819, -0.041346851736307144, 0.11086427420377731, -0.055849578231573105, 0.09216663241386414, 0.047600116580724716, -0.10703873634338379, -0.07898592203855515, -0.13058170676231384, 0.04431062564253807, 0.05359216779470444, 0.057722292840480804, -0.022399690002202988, 0.08374526351690292, -0.04806528985500336, 0.060929074883461, 0.26740702986717224, -0.2839094400405884, -0.01769326440989971, 0.04210462421178818, 0.06001564487814903, 0.04890940710902214, -0.059819627553224564, 0.021587712690234184, 0.024135809391736984, 0.05438423156738281, 0.04848884046077728, -0.04583163186907768, 0.13651619851589203, -0.012578417547047138, -0.11730942875146866, -0.08047782629728317, 0.11022543162107468, -0.03019644320011139, -0.07807046920061111, -0.10784958302974701, -0.019482167437672615, 0.029199078679084778, 0.01698942668735981, 0.003682308364659548, 0.010349291376769543, -0.0051697916351258755, -0.11092668771743774, -0.14672116935253143, -0.0736982673406601, -0.04823873192071915, -0.016786135733127594, 0.033008452504873276, 0.0650043860077858, 0.036465249955654144, -0.05465244501829147, 0.19109465181827545, -0.008302007801830769, -0.10136952251195908, -0.09288379549980164, -0.11971175670623779, -0.056462205946445465, -0.041579470038414, -0.013375586830079556, -0.019293880090117455, -0.003937774337828159, 0.15068799257278442, -0.02403508871793747, 0.028002997860312462, -0.05255141481757164, 0.025690888985991478, 0.10249096900224686, 0.13409432768821716, -0.09979081898927689, -0.04177473857998848, 0.09168336540460587, -0.026918593794107437, -0.04059594124555588, -0.0301966555416584, -0.0020171792712062597, -0.055925771594047546, 0.04334516078233719, 0.08991130441427231, 0.07457728683948517, 0.0601135678589344, 0.0001124053742387332, -0.055822890251874924, 0.01937231793999672, -0.13405612111091614, 0.03146790340542793, 0.0018258397467434406, -0.03138317912817001, -0.0016041329363361, 0.05927395075559616, -0.028695113956928253, -0.13031379878520966, 0.06353947520256042, -0.05205709859728813, -0.03305106982588768, -0.07331777364015579, -0.10692692548036575, 0.01620011031627655, -0.02777058631181717, -0.029411833733320236, -0.08824314922094345, -0.14753267168998718, -0.029956985265016556, 0.01908513903617859, -0.07131224870681763, -0.020316649228334427, 0.018878504633903503, -0.027530023828148842, -0.014932995662093163, -0.0030661423224955797, 0.03295959159731865, -0.01382976584136486, 0.06797861307859421, -0.08337126672267914, 0.05405079573392868, 0.07903262972831726, 0.03671800345182419, -0.10728206485509872, 0.06698998063802719, -0.1729998141527176, 0.14832988381385803, -0.03427963703870773, -0.053163811564445496, -0.09454680234193802, -0.11965181678533554, -0.023452358320355415, -0.03395584598183632, 0.05879298970103264, 0.12840890884399414, -0.14267870783805847, -0.015535098500549793, 0.23418594896793365, -0.07636513561010361, -0.033710453659296036, 0.09303079545497894, -0.05987938866019249, 0.05013496056199074, 0.11171267926692963, 0.034589413553476334, 0.12877199053764343, -0.06626453250646591, -0.05697810649871826, -0.02559729479253292, -0.06947334110736847, 0.16373811662197113, 0.032657191157341, -0.03425304964184761, 0.041942618787288666, -0.00334686366841197, -0.007907064631581306, -0.050628382712602615, -0.0312853567302227, -0.024922821670770645, -0.012589890509843826, -0.019808629527688026, 0.010824776254594326, -0.04986753314733505, -0.02729259990155697, -0.022721290588378906, -0.09629105031490326, 0.040464989840984344, 0.07738903909921646, -0.08549478650093079, 0.04542340710759163, -0.09172993898391724, 0.06655758619308472, -0.06741861253976822, 0.024465296417474747, -0.17445406317710876, -0.005068289581686258, 0.020843779668211937, -0.043398305773735046, 0.08315428346395493, 0.008213255554437637, 0.06939668953418732, 0.08086501061916351, -0.042998846620321274, 0.015598435886204243, -0.03903961554169655, -0.0017888270085677505, -0.06919841468334198, -0.13396726548671722, -0.0478961281478405, -0.03256811574101448, 0.03191649541258812, -0.11964903771877289, 0.0005335661699064076, 0.11043193191289902, 0.13832272589206696, 0.04189951345324516, -0.06385789066553116, 0.03483879566192627, -0.014772972092032433, -0.0003617275506258011, -0.10280480980873108, -0.03308376297354698, 0.023143762722611427, -0.022496825084090233, 0.15530191361904144, -0.13262097537517548, -0.07682637125253677, 0.10737406462430954, 0.0574386790394783, -0.07792939245700836, 0.05703764408826828, -0.04912469536066055, -0.0183112770318985, -0.06109365075826645, -0.04375132918357849, 0.21284793317317963, 0.05125529691576958, 0.10222438722848892, -0.10042677819728851, -0.07152874022722244, 0.005310308188199997, -0.03261856734752655, -0.0036223395727574825, 0.06664702296257019, 0.047700267285108566, -0.23274514079093933, 0.039073746651411057, 0.02577166073024273, 0.041196104139089584, 0.13904297351837158, 0.012502581812441349, -0.11501797288656235, -0.04940090328454971, -0.038796570152044296, 0.01980504021048546, 0.0674208328127861, 0.024538222700357437, 0.05364685505628586, 0.036018140614032745, 0.0531785674393177, 0.022666404023766518, -0.11633606255054474, 0.030211055651307106, 0.06109880656003952, -0.02905387431383133, -0.06156829372048378, 0.004134834744036198, 0.038151517510414124, 0.08430854976177216, 0.06942781060934067, 0.10866439342498779, -0.02662542276084423, -0.040140341967344284, -0.11136901378631592, 0.13461537659168243, -0.07874235510826111, -0.19356495141983032, -0.12467708438634872, -0.06258899718523026, 0.03641106188297272, 0.011770582757890224, 0.047072429209947586, -0.001709089265204966, -0.04451236128807068, -0.09622453898191452, 0.042001474648714066, -0.057152699679136276, -0.01998269557952881, -0.04102333262562752, 0.04683966189622879, 0.014070197008550167, -0.11030666530132294, -0.022409942001104355, 0.01977558434009552, -0.11180127412080765, 0.008917502127587795, 0.027525151148438454, 0.02043626271188259, 0.08963418751955032, -0.004397396929562092, 0.01840035244822502, -0.031914059072732925, 0.24556288123130798, -0.09251115471124649, 0.0429510697722435, 0.15714459121227264, -0.04619695246219635, 0.07701827585697174, 0.0549403615295887, -0.0024491811636835337, -0.046315863728523254, 0.029917823150753975, 0.048713646829128265, -0.06496100127696991, -0.21035268902778625, 0.0027475387323647738, -0.03354695439338684, 0.027960199862718582, 0.12049806118011475, 0.03591719642281532, -0.028886474668979645, 0.029878443107008934, -0.08332889527082443, 0.06469890475273132, 0.0890846848487854, 0.10430583357810974, 0.012798415496945381, -0.018296055495738983, 0.06653719395399094, -0.057516396045684814, 0.02260134555399418, 0.1159796416759491, 0.007766359020024538, 0.27002090215682983, -0.09029389172792435, 0.057668138295412064, 0.08541586250066757, 0.058233316987752914, 0.0254793930798769, 0.042269282042980194, -0.01929308846592903, 0.06521492451429367, -0.01305051427334547, -0.09899329394102097, 0.0017197473207488656, 0.02169802226126194, 0.04006320238113403, -0.05232347920536995, -0.04741782695055008, -0.07475980371236801, 0.02968677505850792, 0.20846658945083618, 0.10116740316152573, -0.13417625427246094, -0.08390071243047714, 0.060723088681697845, -0.05449044704437256, -0.06360601633787155, 0.003924586344510317, 0.095448799431324, -0.20954488217830658, 0.004040448926389217, -0.019113710150122643, 0.12959550321102142, -0.17245939373970032, -0.019926205277442932, -0.008680671453475952, 0.055653609335422516, -0.057539962232112885, 0.07160384953022003, -0.18433897197246552, 0.07234693318605423, 0.016216963529586792, 0.09028079360723495, -0.048780519515275955, 0.0206246729940176, 0.053578782826662064, 0.03009028360247612, 0.09194495528936386, 0.01991654373705387, 0.00006129753455752507, -0.07680490612983704, -0.07929989695549011, 0.016874775290489197, 0.06171974912285805, -0.05018056556582451, 0.11021721363067627, -0.03957667574286461, 0.017142849043011665, -0.032867010682821274, -0.05283918231725693, -0.11818457394838333, -0.14754542708396912, 0.06500935554504395, -0.122073695063591, 0.008570446632802486, -0.05272594839334488, -0.0381644181907177, 0.029517140239477158, 0.20725317299365997, -0.06810419261455536, -0.09608085453510284, -0.10194414108991623, 0.03045998141169548, 0.1436527520418167, -0.0775986835360527, 0.029605787247419357, 0.02456199936568737, 0.12259570509195328, 0.018597396090626717, -0.11928301304578781, -0.01040621381253004, -0.04737289622426033, -0.19190993905067444, -0.0032885593827813864, 0.13838164508342743, 0.056751832365989685, 0.04894594848155975, 0.01882259175181389, 0.035263869911432266, -0.02031354047358036, -0.13121406733989716, 0.014427164569497108, 0.11084948480129242, 0.09297183901071548, 0.03758625686168671, 0.013238116167485714, 0.05579211935400963, -0.11727099120616913, 0.03243395686149597, 0.09000445902347565, 0.2196984738111496, -0.06957215815782547, 0.13791126012802124, 0.01556074433028698, -0.0950004830956459, -0.1860910803079605, -0.017834732308983803, -0.003873746609315276, 0.023185446858406067, 0.03024497628211975, -0.18195515871047974, -0.015450702980160713, 0.024246927350759506, -0.0067878044210374355, 0.10519861429929733, -0.2945188581943512, -0.13313743472099304, 0.038046661764383316, 0.03916402533650398, -0.005014791153371334, -0.02423200197517872, -0.05453969165682793, -0.056228157132864, -0.225784033536911, 0.07540229707956314, -0.11451536417007446, 0.10802244395017624, 0.022247038781642914, 0.03286716714501381, 0.04185090586543083, -0.05383241921663284, 0.12140193581581116, -0.094236820936203, 0.02501313015818596, -0.09317103028297424, -0.013636589050292969, 0.0721268504858017, -0.05459410697221756, 0.054947782307863235, -0.0028858445584774017, 0.07960616052150726, -0.04048508405685425, -0.0676812008023262, -0.0618513785302639, 0.0029325515497475863, -0.059329867362976074, -0.07251488417387009, -0.07545500248670578, 0.07956553995609283, 0.11041344702243805, -0.021986035630106926, -0.11324304342269897, -0.054398536682128906, -0.07277674973011017, 0.07427294552326202, 0.12221651524305344, 0.09001537412405014, -0.09305331110954285, -0.005661352071911097, -0.019539909437298775, 0.05550260469317436, -0.10620284825563431, 0.07346998900175095, 0.0788741335272789, 0.0222084391862154, 0.09675894677639008, 0.033514268696308136, -0.14739806950092316, 0.030043860897421837, 0.022011421620845795, -0.13417205214500427, -0.13233447074890137, -0.03117043524980545, -0.0447106771171093, -0.08101372420787811, -0.04184696078300476, 0.16578103601932526, -0.03070169873535633, -0.05176748335361481, 0.012495872564613819, 0.06057369336485863, -0.04518940672278404, 0.1211518719792366, 0.02623293548822403, 0.02974536269903183, -0.0667371153831482, 0.08043348789215088, 0.067001111805439, 0.03249984607100487, 0.03804013133049011, 0.07591111212968826, -0.0882689580321312, -0.01807841658592224, -0.047415103763341904, -0.010805923491716385, 0.030054770410060883, -0.0015140819596126676, -0.016478469595313072, -0.022099286317825317, 0.04868754744529724, 0.11506827175617218, -0.006882921326905489, 0.10349488258361816, -0.035399843007326126, 0.009101620875298977, -0.10137531161308289, 0.0801999643445015, 0.061627794057130814, 0.020586347207427025, -0.08100608736276627, 0.14729610085487366, 0.02170110121369362, 0.07979264855384827, -0.038781147450208664, -0.05042789503931999, -0.07983287423849106, -0.010315252467989922, -0.1633412390947342, -0.016186269000172615, -0.06696304678916931, -0.04370049759745598, -0.023401355370879173, -0.03497818857431412, -0.03196578845381737, 0.06341490894556046, -0.02817726694047451, -0.0625375509262085, -0.06148810684680939, 0.04786544665694237, -0.15909500420093536, -0.01046262588351965, 0.11837076395750046, -0.09150287508964539, 0.11064719408750534, 0.04213211312890053, -0.05337589606642723, 0.003626445075497031, -0.03420264646410942, -0.015260878950357437, -0.035645581781864166, 0.01878494769334793, 0.01914329081773758, -0.13071757555007935, 0.02776053175330162, -0.04789420962333679, -0.03893953189253807, 0.015157814137637615, 0.054484717547893524, -0.10314684361219406, 0.019155144691467285, 0.040200069546699524, -0.015252361074090004, -0.06095961853861809, 0.05990146845579147, 0.013510897755622864, 0.06203671917319298, 0.07138224691152573, -0.04689875990152359, 0.09716488420963287, -0.1553167998790741, -0.03299634903669357, 0.03210242837667465, -0.010058175772428513, 0.07542915642261505, -0.02162076160311699, 0.07445904612541199, -0.02262844331562519, 0.17012108862400055, -0.008962559513747692, -0.03606027364730835, 0.03259206563234329, -0.006742623634636402, 0.0019999248906970024, 0.03909486159682274, 0.05746998265385628, -0.021192753687500954, -0.05656677857041359, -0.04439197853207588, 0.0023113475181162357, -0.04502612724900246, -0.04738320782780647, 0.13682544231414795, 0.07680153101682663, 0.15768253803253174, -0.04025446996092796, 0.045247483998537064, 0.020739784464240074, -0.12276274710893631, -0.043025579303503036, 0.021248048171401024, 0.042379964143037796, -0.067512147128582, 0.0975692868232727, 0.13420669734477997, -0.14391061663627625, 0.1184137612581253, -0.012709246948361397, -0.05797993391752243, -0.1292838603258133, -0.2096945196390152, -0.050090666860342026, -0.008184361271560192, 0.0320015512406826, -0.11538812518119812, 0.06695825606584549, 0.04123620688915253, 0.033538706600666046, -0.05409960448741913, 0.07450142502784729, -0.03736858814954758, -0.10529100894927979, 0.01483956165611744, 0.016055423766374588, 0.047334037721157074, 0.05979228392243385, 0.04295752942562103, 0.03187229484319687, 0.02937755547463894, 0.06665018200874329, 0.04552830755710602, 0.041259847581386566, 0.00885299313813448, -0.03370780125260353, -0.053381480276584625, -0.0024812945630401373, 0.03926306217908859, 0.039721302688121796, 0.1330057680606842, 0.06507230550050735, -0.01898735575377941, -0.026434889063239098, 0.29944735765457153, -0.044254522770643234, -0.0940198078751564, -0.16564936935901642, 0.20412112772464752, 0.021637441590428352, -0.011854046955704689, 0.045547004789114, -0.13689568638801575, 0.017377277836203575, 0.1706540882587433, 0.18791210651397705, -0.059091899544000626, 0.01642274297773838, 0.01556577067822218, 0.009360188618302345, 0.053170181810855865, 0.06933822482824326, 0.05028616264462471, 0.21081681549549103, -0.06143897771835327, 0.04845806956291199, 0.011865750886499882, 0.0002911264600697905, -0.06606180965900421, 0.12727193534374237, -0.04117167741060257, 0.009287035092711449, -0.05865533649921417, 0.08036644011735916, -0.03392788767814636, -0.23740987479686737, -0.00872133206576109, -0.04398641735315323, -0.09720249474048615, 0.046780817210674286, -0.048747364431619644, -0.02068532072007656, 0.07010269910097122, 0.010350115597248077, 0.0015605605440214276, 0.09911122173070908, 0.03711314499378204, -0.01757918670773506, -0.0032354616560041904, 0.09466245770454407, -0.05436159297823906, 0.20471133291721344, 0.0034358687698841095, 0.043991345912218094, 0.08745952695608139, 0.039435576647520065, -0.11447130143642426, -0.01092817448079586, 0.03945491462945938, -0.09135748445987701, -0.01358071994036436, 0.18781302869319916, -0.02033163420855999, -0.0016998100327327847, 0.067759670317173, -0.021578293293714523, 0.020937198773026466, -0.0429142601788044, 0.023444877937436104, -0.10027362406253815, 0.023360567167401314, -0.09384724497795105, 0.10818956792354584, 0.16664069890975952, -0.05284101888537407, 0.0375404879450798, -0.061828259378671646, -0.007860814221203327, 0.00007958747301017866, 0.004692182410508394, -0.019069839268922806, -0.07633326947689056, -0.00230951770208776, 0.0422871932387352, 0.037545010447502136, -0.21088208258152008, -0.06948401778936386, 0.05434523522853851, -0.037361033260822296, -0.021337812766432762, 0.15074026584625244, 0.030482778325676918, 0.03225791081786156, -0.029123550280928612, -0.047845687717199326, -0.033146150410175323, 0.07764317095279694, -0.14567559957504272, -0.06016524136066437 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3bb9817ec1fbf2b9f944e9da3662bee6.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PHARAOH</div> <a href="https://genius.com/artists/pharaoh"> <div style="text-align: center; font-size: 14px;">@pharaoh</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from PHARAOH. Dataset is available [here](https://huggingface.co/datasets/huggingartists/pharaoh). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/pharaoh") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/jefxst5w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on PHARAOH's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1fqlqxjo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1fqlqxjo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/pharaoh') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/pharaoh") model = AutoModelWithLMHead.from_pretrained("huggingartists/pharaoh") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/pharaoh"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/pharaoh
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/pharaoh", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pharaoh #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">PHARAOH</div> <a href="URL <div style="text-align: center; font-size: 14px;">@pharaoh</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from PHARAOH. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on PHARAOH's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from PHARAOH.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on PHARAOH's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pharaoh #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from PHARAOH.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on PHARAOH's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pharaoh #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from PHARAOH.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on PHARAOH's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02065291441977024, 0.15854573249816895, -0.0030523480381816626, 0.036553755402565, 0.09535623341798782, 0.007747947238385677, 0.08591699600219727, 0.10536956042051315, -0.002750162035226822, 0.07480970770120621, 0.06809729337692261, 0.012869617901742458, 0.07435537129640579, 0.10963277518749237, 0.08096257597208023, -0.26033005118370056, 0.03341700881719589, -0.09366116672754288, 0.0007720940629951656, 0.11764255911111832, 0.09927111864089966, -0.0613301582634449, 0.08663361519575119, 0.038697924464941025, -0.06996504962444305, 0.016467927023768425, -0.002626538509503007, -0.06713861227035522, 0.08830976486206055, 0.06429144740104675, 0.037885457277297974, 0.023455731570720673, 0.06404349207878113, -0.18607734143733978, 0.03079519420862198, 0.12343563139438629, 0.03491896763443947, 0.07367203384637833, 0.049687258899211884, -0.0805782750248909, 0.16688813269138336, -0.01594272069633007, 0.09235985577106476, 0.0486711785197258, -0.12057436257600784, -0.14863765239715576, -0.12551544606685638, 0.09431102871894836, 0.09607755392789841, 0.09115461260080338, -0.032044667750597, 0.053939517587423325, -0.02681923098862171, 0.044296324253082275, 0.2340255230665207, -0.2337983250617981, -0.01685164123773575, 0.09040292352437973, 0.04185750335454941, 0.022806214168667793, -0.08167803287506104, 0.012541358359158039, 0.0445055216550827, 0.020641278475522995, 0.04516831412911415, -0.019480831921100616, 0.1957859992980957, 0.02228028140962124, -0.10281076282262802, -0.0829157754778862, 0.11960415542125702, -0.023194443434476852, -0.07269641757011414, -0.1345173418521881, -0.001528663677163422, -0.016710450872778893, 0.03644125908613205, -0.0036149758379906416, -0.004831523168832064, 0.004446736071258783, -0.03518032282590866, -0.10202895849943161, -0.09096140414476395, -0.028081301599740982, -0.024578003212809563, 0.0679062083363533, 0.03156374767422676, 0.03370716795325279, -0.07803074270486832, 0.22792549431324005, -0.019699865952134132, -0.1020415648818016, -0.05061119422316551, -0.0936896950006485, -0.09132122993469238, -0.05817946046590805, 0.010174515657126904, 0.011663642711937428, -0.047940321266651154, 0.15140479803085327, -0.034938909113407135, 0.033357035368680954, -0.005130629520863295, -0.013126949779689312, 0.1534348726272583, 0.1369546502828598, -0.10470551252365112, -0.03360496088862419, 0.05703803896903992, -0.00971770565956831, -0.06673731654882431, -0.052005618810653687, -0.0070630707778036594, -0.016546232625842094, 0.04350613057613373, 0.08449044078588486, 0.06240573525428772, 0.06276878714561462, 0.015271065756678581, -0.06592052429914474, 0.08802603930234909, -0.1401551067829132, 0.012408747337758541, 0.00008364302630070597, -0.0434320829808712, 0.020612576976418495, 0.04917854070663452, 0.015887709334492683, -0.1076134592294693, 0.11117590963840485, -0.06043437495827675, -0.046619705855846405, -0.08284134417772293, -0.08579808473587036, -0.003120012115687132, -0.018185965716838837, -0.043927151709795, -0.07217135280370712, -0.17266853153705597, -0.04476556554436684, 0.03418752923607826, -0.0497547909617424, -0.04350139945745468, 0.029869379475712776, -0.022528063505887985, 0.009832339361310005, -0.01698715053498745, -0.027782203629612923, -0.030074967071413994, 0.031331297010183334, -0.05579439178109169, 0.026922019198536873, 0.0790712833404541, 0.04778114706277847, -0.11370640993118286, 0.07253443449735641, -0.16725517809391022, 0.12461920082569122, -0.013332679867744446, 0.021926436573266983, -0.10275281220674515, -0.09407012909650803, -0.023183640092611313, -0.029294699430465698, -0.003119551809504628, 0.10034605860710144, -0.17027270793914795, -0.03661976754665375, 0.1984536349773407, -0.07821720093488693, -0.0861748456954956, 0.07045479863882065, -0.07668207585811615, 0.039619505405426025, 0.12541207671165466, 0.0680200383067131, 0.15782307088375092, -0.11382631957530975, -0.0612909197807312, -0.045336198061704636, -0.062137436121702194, 0.19724240899085999, 0.05261186510324478, -0.019604772329330444, 0.020521510392427444, 0.005378717556595802, -0.03693337365984917, -0.02252025716006756, -0.02023613452911377, -0.04006437957286835, -0.011095528490841389, 0.01003069058060646, -0.013851628638803959, -0.03717772290110588, -0.064938984811306, -0.027503034099936485, -0.10517925024032593, 0.04807966575026512, 0.10382883250713348, -0.07121207565069199, 0.0067975400015711784, -0.09407280385494232, 0.011994022876024246, -0.031004417687654495, 0.010275852866470814, -0.1732783317565918, -0.05376538261771202, 0.019640062004327774, -0.06711234152317047, 0.08205239474773407, 0.037755075842142105, 0.03697548061609268, 0.058251190930604935, -0.013199875131249428, 0.010685767978429794, -0.04218578711152077, -0.018759865313768387, -0.021500594913959503, -0.1491110771894455, -0.05677984282374382, -0.04680926725268364, 0.09529495239257812, -0.126611590385437, 0.007172699552029371, 0.09592635929584503, 0.12646523118019104, 0.01935560815036297, -0.06136136129498482, 0.02288484200835228, -0.041591573506593704, -0.031817153096199036, -0.1063726469874382, -0.047475963830947876, 0.01139436848461628, -0.02132354862987995, 0.15073952078819275, -0.17384706437587738, -0.07668524980545044, 0.10824474692344666, 0.1194952130317688, -0.09464740008115768, 0.031518496572971344, -0.08200009167194366, -0.015054565854370594, -0.04731764271855354, -0.03826264664530754, 0.2603292465209961, 0.0359075590968132, 0.08425170928239822, -0.10450982302427292, -0.09711100161075592, -0.005857191048562527, -0.046789079904556274, -0.02849922887980938, 0.027643730863928795, 0.027812909334897995, -0.17737175524234772, 0.03836904466152191, -0.00504637323319912, 0.09940291941165924, 0.20704644918441772, 0.040303394198417664, -0.08696360141038895, -0.06116274744272232, -0.06833410263061523, -0.002153911394998431, 0.05916709825396538, 0.004864382091909647, 0.02705461159348488, 0.04503113031387329, 0.0588952898979187, 0.04306163266301155, -0.11478418111801147, 0.014517941512167454, 0.07155341655015945, -0.03955577313899994, -0.05022678151726723, 0.014584696851670742, 0.023285970091819763, 0.07991210371255875, 0.08844226598739624, 0.13477367162704468, -0.061949223279953, -0.048024967312812805, -0.1443500518798828, 0.14004521071910858, -0.08051083981990814, -0.24944114685058594, -0.13295778632164001, -0.07621797919273376, 0.016358820721507072, 0.008993865922093391, 0.03262269124388695, -0.04953731223940849, -0.04394648224115372, -0.08905920386314392, 0.0908329114317894, -0.05164226144552231, -0.02282273769378662, 0.009751779958605766, 0.021972982212901115, -0.022365855053067207, -0.11182287335395813, -0.03339134529232979, 0.03758930414915085, -0.10174700617790222, -0.00728111295029521, 0.029573164880275726, 0.03589153662323952, 0.16190747916698456, -0.009854048490524292, 0.008861500769853592, -0.022792669013142586, 0.2813148498535156, -0.1207713857293129, 0.06974923610687256, 0.1657552421092987, -0.010479332879185677, 0.0565432570874691, 0.0766243189573288, 0.0017307406524196267, -0.06216030567884445, 0.07309781759977341, 0.07425867766141891, -0.07674496620893478, -0.21662376821041107, -0.03412117436528206, -0.014275725930929184, 0.01490029226988554, 0.11677832901477814, 0.048822611570358276, 0.04957035928964615, 0.010204101912677288, -0.10254275798797607, 0.03786899894475937, 0.02515454590320587, 0.10457376390695572, -0.0588114969432354, -0.007203287445008755, 0.047791749238967896, -0.05803019553422928, 0.02854026108980179, 0.13089430332183838, 0.03459266573190689, 0.20711778104305267, -0.07034057378768921, 0.09041716903448105, 0.07983193546533585, 0.09959237277507782, 0.027727609500288963, 0.015666350722312927, -0.020619424059987068, 0.016824163496494293, -0.0001754181575961411, -0.09211476892232895, -0.01680760085582733, 0.04120329022407532, 0.03657308593392372, -0.017924560233950615, -0.044704653322696686, -0.054473333060741425, 0.044697925448417664, 0.23674732446670532, 0.01469853613525629, -0.17178501188755035, -0.10446994751691818, 0.05407014489173889, -0.06879731267690659, -0.06029629707336426, -0.014294578693807125, 0.06389383226633072, -0.22119532525539398, 0.06842931360006332, -0.02917628362774849, 0.10987463593482971, -0.12382684648036957, -0.000784867734182626, 0.08523353189229965, 0.04239705950021744, -0.06313997507095337, 0.09882084280252457, -0.16806861758232117, 0.0717153325676918, -0.010071924887597561, 0.0757562667131424, -0.07007794827222824, 0.028424374759197235, 0.009124848060309887, 0.04881725087761879, 0.07941292226314545, 0.020613962784409523, 0.02076459489762783, -0.0037111188285052776, -0.04314108565449715, 0.006201738957315683, 0.056894443929195404, -0.11620522290468216, 0.1246105432510376, -0.034597139805555344, 0.03341474011540413, -0.03870871290564537, -0.08145581185817719, -0.08587409555912018, -0.14938542246818542, 0.08600280433893204, -0.12665480375289917, 0.004031511023640633, -0.06976879388093948, -0.01972268521785736, 0.02411220408976078, 0.24981938302516937, -0.05784516781568527, -0.08125373721122742, -0.1361556500196457, 0.007394809275865555, 0.1323925107717514, -0.08363442867994308, 0.005724379792809486, -0.014251671731472015, 0.1875022053718567, 0.005140549037605524, -0.12605001032352448, -0.00898949708789587, -0.0658460482954979, -0.17269779741764069, -0.009251714684069157, 0.16991889476776123, 0.06502280384302139, 0.03185643255710602, 0.0058412207290530205, -0.0019164342666044831, -0.04933259263634682, -0.172417551279068, 0.024450218304991722, 0.15130305290222168, -0.002271756064146757, 0.021261824294924736, 0.04925091192126274, 0.015701889991760254, -0.12560445070266724, 0.01640174724161625, 0.055403340607881546, 0.1782110184431076, -0.06871720403432846, 0.1767408847808838, 0.03385460004210472, -0.0895380824804306, -0.15960459411144257, 0.019920051097869873, 0.020842626690864563, 0.03149230405688286, 0.020592400804162025, -0.19860444962978363, 0.04412469267845154, 0.03181293234229088, -0.00293536065146327, 0.04776126146316528, -0.3236020803451538, -0.149571493268013, 0.009870791807770729, 0.007356651127338409, -0.1136828288435936, -0.04253321513533592, -0.035934701561927795, -0.0782875195145607, -0.27203112840652466, 0.09518349170684814, -0.11231113225221634, 0.0763094425201416, 0.017766401171684265, 0.09547936171293259, 0.04405636340379715, -0.055126920342445374, 0.1302199363708496, -0.024413937702775, 0.05891694128513336, -0.10155513882637024, -0.05960006266832352, 0.08163474500179291, -0.06488024443387985, 0.10132114589214325, 0.0365401916205883, 0.08586248755455017, -0.10849111527204514, -0.08278774470090866, -0.0817289799451828, 0.008327298797667027, -0.06135168671607971, -0.09550397843122482, -0.09397025406360626, 0.09365717321634293, 0.12363192439079285, -0.03913959115743637, -0.09373677521944046, -0.059469692409038544, -0.0010490097338333726, 0.06373462080955505, 0.1168971061706543, 0.07669887691736221, -0.08068671077489853, -0.00005985784810036421, 0.018969671800732613, 0.018950646743178368, -0.1662178486585617, 0.04506770521402359, 0.09009198844432831, 0.040846340358257294, 0.1103791818022728, 0.008481577970087528, -0.16829295456409454, 0.003585090395063162, 0.05041564628481865, -0.16826017200946808, -0.12067849189043045, -0.04450197145342827, 0.017235536128282547, -0.10640598088502884, -0.04991452023386955, 0.13366150856018066, -0.03249473124742508, -0.036529939621686935, 0.004728543572127819, 0.044278599321842194, -0.048513662070035934, 0.09063355624675751, 0.007872521877288818, 0.04748683422803879, -0.06849484890699387, 0.11412058025598526, 0.06955865770578384, 0.014485888183116913, 0.03820870444178581, 0.07412322610616684, -0.09122356027364731, 0.00687900697812438, -0.09274499118328094, 0.022179238498210907, -0.0352957621216774, -0.01653379015624523, 0.013146549463272095, -0.041409868746995926, 0.04303744435310364, 0.07535173743963242, -0.010967670008540154, 0.10690633952617645, -0.03714190423488617, 0.011853785254061222, -0.12893633544445038, 0.06988357752561569, 0.043450068682432175, 0.018756965175271034, -0.1157904714345932, 0.19719386100769043, 0.028496108949184418, 0.10142809897661209, -0.03617575019598007, -0.06533239036798477, -0.06484806537628174, -0.0073348889127373695, -0.09618017822504044, -0.04549087584018707, -0.09744693338871002, -0.02646210417151451, -0.004756018053740263, -0.041824765503406525, -0.02699621394276619, 0.0449361689388752, -0.03577474504709244, -0.056867096573114395, -0.06939920783042908, 0.04640801623463631, -0.13533082604408264, 0.03369961678981781, 0.12212344259023666, -0.05689789354801178, 0.12034346908330917, 0.05663478001952171, -0.036509919911623, 0.023911092430353165, -0.11108370125293732, 0.036308810114860535, -0.020825274288654327, 0.014263852499425411, 0.026289917528629303, -0.16105768084526062, 0.009013954550027847, -0.041564762592315674, -0.06228615343570709, 0.006377933081239462, -0.002040269784629345, -0.13232861459255219, 0.002805507741868496, 0.08022124320268631, -0.023098602890968323, -0.0735163539648056, 0.0687897652387619, 0.05102794989943504, 0.023539572954177856, 0.06065138801932335, -0.0252938624471426, 0.07988110184669495, -0.1702755242586136, -0.05412863567471504, 0.0039380257949233055, 0.03318239003419876, 0.047106459736824036, -0.013706685043871403, 0.03837510943412781, -0.021237395703792572, 0.18876932561397552, 0.01718936115503311, -0.02223086729645729, 0.03811406344175339, -0.06471161544322968, 0.0001514618779765442, 0.04379015043377876, 0.07528121769428253, -0.03597239777445793, -0.03715793043375015, 0.0042646792717278, -0.01878405548632145, -0.09167934209108353, -0.03601375222206116, 0.11884554475545883, 0.04434160888195038, 0.1924595981836319, -0.050879962742328644, 0.06139245629310608, -0.01862584426999092, -0.12182480096817017, -0.014830059371888638, -0.04477830231189728, 0.03852364793419838, -0.06211566552519798, 0.05513433367013931, 0.18691839277744293, -0.16137933731079102, 0.11823201924562454, 0.015712950378656387, -0.06098184362053871, -0.11190865188837051, -0.1935441792011261, -0.01887780800461769, -0.039743877947330475, 0.031337909400463104, -0.13785268366336823, 0.08889500051736832, 0.028177862986922264, 0.03815442696213722, -0.0703096017241478, 0.13538114726543427, -0.07258907705545425, -0.12313568592071533, 0.03464147448539734, 0.023171495646238327, 0.03231125324964523, 0.04515303298830986, 0.0823136493563652, 0.02325401082634926, 0.013448823243379593, 0.0719110369682312, 0.041267476975917816, 0.026089010760188103, 0.0358324833214283, -0.025302665308117867, -0.04770459234714508, 0.03018615022301674, -0.0015110158128663898, 0.029583292081952095, 0.09867742657661438, 0.060712046921253204, -0.016722576692700386, -0.02258172817528248, 0.3032025992870331, -0.03644413501024246, -0.050099290907382965, -0.18417584896087646, 0.16979162395000458, 0.009282990358769894, -0.010734042152762413, 0.029878972098231316, -0.12262360006570816, 0.007452798541635275, 0.13512805104255676, 0.1677982360124588, -0.024078961461782455, 0.02046624943614006, -0.028963156044483185, 0.01860097609460354, 0.035184040665626526, 0.09537792205810547, 0.06844205409288406, 0.19811418652534485, -0.03862709179520607, 0.04892939701676369, -0.012784194201231003, -0.02126823365688324, -0.005016899202018976, 0.098597951233387, -0.02749776653945446, 0.00883646123111248, -0.055090662091970444, 0.10255824774503708, -0.0540488138794899, -0.2792552411556244, -0.033205706626176834, -0.02959761582314968, -0.09746713191270828, 0.060505010187625885, -0.029555028304457664, -0.017472868785262108, 0.0894232839345932, 0.026798637583851814, -0.045983653515577316, 0.14653176069259644, 0.04977155849337578, -0.04788970947265625, -0.008963181637227535, 0.11105003952980042, -0.021555917337536812, 0.17899493873119354, -0.02924703061580658, 0.006923128385096788, 0.0872887521982193, 0.014101393520832062, -0.1229756772518158, 0.006190726533532143, 0.04265623912215233, -0.06474126130342484, -0.02466997504234314, 0.19633933901786804, 0.012424060143530369, 0.022756123915314674, 0.06877870112657547, -0.06494464725255966, 0.018914910033345222, -0.05415097996592522, 0.06131063401699066, -0.14983651041984558, 0.06657253950834274, -0.08426839858293533, 0.13056489825248718, 0.18758437037467957, -0.06753157824277878, 0.025850586593151093, -0.06231284141540527, 0.011247619986534119, -0.025993676856160164, 0.07377426326274872, -0.022416291758418083, -0.11051416397094727, 0.009902359917759895, 0.024789253249764442, 0.023887747898697853, -0.18131506443023682, -0.06980657577514648, 0.06869849562644958, -0.04834260791540146, 0.01926662027835846, 0.17804847657680511, 0.016475588083267212, 0.06422950327396393, -0.03722622990608215, -0.008065816015005112, -0.017797622829675674, 0.11729619652032852, -0.16534779965877533, -0.08421019464731216 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/df85b83684e95f87794aa09580ee0463.919x919x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Phish</div> <a href="https://genius.com/artists/phish"> <div style="text-align: center; font-size: 14px;">@phish</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Phish. Dataset is available [here](https://huggingface.co/datasets/huggingartists/phish). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/phish") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/22sghxz4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Phish's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/340yi6e5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/340yi6e5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/phish') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/phish") model = AutoModelWithLMHead.from_pretrained("huggingartists/phish") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/phish"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/phish
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/phish", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/phish #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Phish</div> <a href="URL <div style="text-align: center; font-size: 14px;">@phish</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Phish. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Phish's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Phish.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Phish's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/phish #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Phish.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Phish's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/phish #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Phish.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Phish's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02409009449183941, 0.14502070844173431, -0.002861881395801902, 0.03201999142765999, 0.08677385002374649, -0.0055363657884299755, 0.08213722705841064, 0.10853936523199081, -0.007581351790577173, 0.07224161177873611, 0.07582800835371017, 0.015991216525435448, 0.06437689065933228, 0.13357771933078766, 0.09190183877944946, -0.2694566249847412, 0.03183075785636902, -0.10581999272108078, 0.026292242109775543, 0.12220662832260132, 0.08822967857122421, -0.053891342133283615, 0.08565863966941833, 0.03682870790362358, -0.06438092142343521, 0.028171822428703308, -0.014550774358212948, -0.07029122114181519, 0.09527092427015305, 0.07963734120130539, 0.027950717136263847, 0.02847323566675186, 0.06419651955366135, -0.19290012121200562, 0.03503897786140442, 0.12748458981513977, 0.029398446902632713, 0.0715169906616211, 0.04401535913348198, -0.07844888418912888, 0.1744869351387024, -0.029743516817688942, 0.08913544565439224, 0.04238910973072052, -0.1068643108010292, -0.18319952487945557, -0.12162699550390244, 0.09000471979379654, 0.10195637494325638, 0.0829232856631279, -0.032521847635507584, 0.04944199323654175, 0.004642596933990717, 0.046534162014722824, 0.23623235523700714, -0.24223440885543823, -0.014892254024744034, 0.08470815420150757, 0.03791093826293945, 0.046489059925079346, -0.07339505106210709, 0.015963077545166016, 0.0484747588634491, 0.024577802047133446, 0.04794127121567726, -0.015331648290157318, 0.22007428109645844, 0.02049790881574154, -0.09662216156721115, -0.08677653223276138, 0.09810196608304977, -0.029880208894610405, -0.0830187276005745, -0.15659944713115692, 0.0018144581699743867, -0.030928127467632294, 0.03866662085056305, -0.010697607882320881, -0.004913719370961189, 0.0012032618978992105, -0.042235806584358215, -0.10014745593070984, -0.09356679767370224, -0.0251473281532526, -0.026587925851345062, 0.07224395126104355, 0.02888578735291958, 0.030759787186980247, -0.07155235856771469, 0.23387663066387177, 0.005309091880917549, -0.0998699963092804, -0.05462019145488739, -0.0924617350101471, -0.09627851843833923, -0.058206330984830856, 0.010222709737718105, 0.02354656718671322, -0.06339480727910995, 0.1648464947938919, -0.035022225230932236, 0.030632605776190758, 0.000011324572369630914, -0.023952610790729523, 0.15508179366588593, 0.12602035701274872, -0.09762904793024063, -0.02068728767335415, 0.04607527330517769, -0.012778024189174175, -0.06653532385826111, -0.05657002329826355, -0.00900410395115614, -0.018784429877996445, 0.03711484745144844, 0.09418370574712753, 0.04561808705329895, 0.05758083984255791, 0.035346463322639465, -0.05792829021811485, 0.11065343767404556, -0.14491647481918335, 0.007828517816960812, -0.010497532784938812, -0.0301994476467371, 0.021766507998108864, 0.050691813230514526, 0.014555868692696095, -0.1020922064781189, 0.11452875286340714, -0.04974652826786041, -0.053329985588788986, -0.06761220097541809, -0.08275893330574036, -0.006828742101788521, -0.006357364356517792, -0.047512758523225784, -0.08733179420232773, -0.15964145958423615, -0.03330226242542267, 0.02289769984781742, -0.04028615355491638, -0.040470998734235764, 0.047042131423950195, -0.03261154890060425, -0.0029859330970793962, -0.01810055784881115, -0.013844606466591358, -0.03254641219973564, 0.02369312010705471, -0.06222367286682129, 0.031819023191928864, 0.08195028454065323, 0.03599363565444946, -0.10917425155639648, 0.06842692941427231, -0.16354097425937653, 0.1449790596961975, -0.010968978516757488, 0.013484369963407516, -0.11190000921487808, -0.10019410401582718, -0.029867148026823997, -0.026193661615252495, -0.008191079832613468, 0.09155075997114182, -0.18279880285263062, -0.040602825582027435, 0.20081400871276855, -0.07492033392190933, -0.08385837823152542, 0.07214885205030441, -0.0783979520201683, 0.03625903278589249, 0.13860774040222168, 0.060467809438705444, 0.15847700834274292, -0.12339458614587784, -0.06962510943412781, -0.04197576642036438, -0.058993011713027954, 0.21965987980365753, 0.053820665925741196, -0.009288922883570194, 0.021664271131157875, 0.013118204660713673, -0.025350326672196388, -0.029062991961836815, -0.022133851423859596, -0.04311276599764824, -0.009924185462296009, 0.0152794374153018, -0.015708087012171745, -0.05032894387841225, -0.06568162888288498, -0.014375798404216766, -0.11361927539110184, 0.04865004122257233, 0.10561782121658325, -0.07368874549865723, 0.010451779700815678, -0.09138856083154678, -0.0013717325637117028, -0.032597556710243225, 0.02106291614472866, -0.1954905241727829, -0.05465678498148918, 0.020904505625367165, -0.06732737272977829, 0.08786199241876602, 0.0222636666148901, 0.03810529410839081, 0.06485170871019363, -0.0072265504859387875, 0.023249754682183266, -0.04823175445199013, -0.022173387929797173, -0.035584475845098495, -0.1401374489068985, -0.07314857840538025, -0.050800491124391556, 0.08927197009325027, -0.13533373177051544, 0.007335279136896133, 0.09891340881586075, 0.1156555712223053, 0.022793469950556755, -0.05716457590460777, 0.007399324327707291, -0.03454894945025444, -0.03677868843078613, -0.11216577142477036, -0.059159647673368454, 0.008815453387796879, -0.03414590656757355, 0.1540445238351822, -0.17561696469783783, -0.06672129780054092, 0.09934481233358383, 0.16357122361660004, -0.10435221344232559, 0.008140887133777142, -0.09588102251291275, -0.009715959429740906, -0.05074920132756233, -0.0398683063685894, 0.27543383836746216, 0.043641597032547, 0.07984241843223572, -0.11196959763765335, -0.09849739074707031, -0.00061899604042992, -0.038299307227134705, -0.02545017935335636, 0.028059527277946472, 0.013760511763393879, -0.1687183976173401, 0.023001613095402718, -0.008109105750918388, 0.12264195829629898, 0.20574039220809937, 0.04888319969177246, -0.09990984946489334, -0.05910085514187813, -0.08469662070274353, 0.0016340777510777116, 0.047920018434524536, 0.03609292581677437, 0.0281346645206213, 0.04546213150024414, 0.04982767626643181, 0.040739890187978745, -0.11126843839883804, 0.011065192520618439, 0.07918906956911087, -0.04365965351462364, -0.05500634387135506, 0.017914501950144768, 0.019359109923243523, 0.08051767945289612, 0.07964479923248291, 0.14576630294322968, -0.07470080256462097, -0.04563778638839722, -0.14374621212482452, 0.1392616480588913, -0.07396816462278366, -0.26503416895866394, -0.14287793636322021, -0.07190648466348648, 0.025085603818297386, 0.0035054238978773355, 0.040452081710100174, -0.059929877519607544, -0.038783177733421326, -0.10428202152252197, 0.09060519933700562, -0.04806220531463623, -0.016001053154468536, -0.0008971281349658966, 0.020993998274207115, -0.03151660040020943, -0.10637902468442917, -0.029953857883810997, 0.03723129257559776, -0.10544120520353317, -0.015497758984565735, 0.029264071956276894, 0.03236274793744087, 0.15269990265369415, -0.00980706512928009, -0.00443386472761631, -0.03442754969000816, 0.28246209025382996, -0.12154224514961243, 0.06590462476015091, 0.16772747039794922, -0.024497970938682556, 0.05502546206116676, 0.07379528880119324, 0.0049599334597587585, -0.06657985597848892, 0.07813338190317154, 0.07556305080652237, -0.09136804193258286, -0.2171035259962082, -0.029093904420733452, -0.0049273124895989895, 0.025381112471222878, 0.12770815193653107, 0.05892908200621605, 0.06340215355157852, -0.002810543403029442, -0.10516012459993362, 0.046134501695632935, 0.02403186820447445, 0.10963350534439087, -0.06631017476320267, -0.01203015074133873, 0.05063149705529213, -0.06570231914520264, 0.02703779935836792, 0.1417904496192932, 0.043274059891700745, 0.2054339051246643, -0.06537266820669174, 0.0891021117568016, 0.07974467426538467, 0.10041618347167969, 0.03791523352265358, 0.008689084090292454, -0.0025209730956703424, 0.013430089689791203, -0.003393242135643959, -0.09912311285734177, -0.010748982429504395, 0.04975384101271629, 0.027044102549552917, -0.027223965153098106, -0.03961574658751488, -0.04449545219540596, 0.04040655493736267, 0.24164564907550812, -0.01721901260316372, -0.17810706794261932, -0.11757156997919083, 0.037904106080532074, -0.08212762326002121, -0.047909706830978394, -0.02628861926496029, 0.07078077644109726, -0.22072100639343262, 0.06762721389532089, -0.03304693102836609, 0.10801128298044205, -0.1194048523902893, 0.004755418282002211, 0.08645708113908768, 0.04409962520003319, -0.06312210112810135, 0.09608357399702072, -0.15656942129135132, 0.06455523520708084, -0.011925934813916683, 0.06888431310653687, -0.0772392749786377, 0.02912142314016819, -0.0007093983585946262, 0.04635237157344818, 0.08801871538162231, 0.012852652929723263, 0.02689826674759388, -0.0018723850371316075, -0.053590476512908936, 0.013356491923332214, 0.05616968870162964, -0.12360755354166031, 0.12522107362747192, -0.026313098147511482, 0.03527111932635307, -0.04676102101802826, -0.09634479135274887, -0.08779210597276688, -0.16689908504486084, 0.08903869241476059, -0.1373569816350937, -0.0003173562290612608, -0.07195717096328735, -0.03212977945804596, 0.0308575127273798, 0.2653481066226959, -0.048544395714998245, -0.0762745663523674, -0.13559605181217194, 0.018890665844082832, 0.1444535255432129, -0.08593969792127609, 0.008943267166614532, -0.010549413971602917, 0.209321990609169, 0.00038797222077846527, -0.12696515023708344, -0.02104889415204525, -0.05961901322007179, -0.16588780283927917, -0.0023944510612636805, 0.17144717276096344, 0.06191806122660637, 0.025902489200234413, 0.009176461957395077, -0.016030404716730118, -0.045101944357156754, -0.1716029793024063, 0.02328924834728241, 0.16017800569534302, -0.009594540111720562, -0.004127472173422575, 0.043673325330019, 0.017532918602228165, -0.13692215085029602, 0.013277865946292877, 0.049007341265678406, 0.17669163644313812, -0.07760357856750488, 0.18778349459171295, 0.03638696298003197, -0.0890759602189064, -0.1475817710161209, 0.006154730916023254, 0.03869668021798134, 0.03577455133199692, 0.04276956617832184, -0.2159057855606079, 0.04434962198138237, 0.046312760561704636, 0.007758127059787512, 0.032734889537096024, -0.33016058802604675, -0.16183578968048096, -0.0013358633732423186, 0.0063843741081655025, -0.15646423399448395, -0.04463103786110878, -0.034408897161483765, -0.09260805696249008, -0.24261637032032013, 0.10148492455482483, -0.12171664088964462, 0.0727793350815773, 0.030339976772665977, 0.1011451855301857, 0.045910220593214035, -0.04388625919818878, 0.1308874785900116, -0.01843309961259365, 0.06775209307670593, -0.09088722616434097, -0.057947415858507156, 0.07173650711774826, -0.071063332259655, 0.09080097079277039, 0.03869059681892395, 0.0816931203007698, -0.09664478152990341, -0.08978430181741714, -0.06334949284791946, -0.0062087825499475, -0.050175976008176804, -0.09080979973077774, -0.08819074183702469, 0.08596860617399216, 0.11959028989076614, -0.04790300130844116, -0.09415654093027115, -0.07261710613965988, 0.0029037173371762037, 0.04465217515826225, 0.12373405694961548, 0.08003146201372147, -0.0667523667216301, 0.0004650444316212088, 0.016154659911990166, 0.009166067466139793, -0.17971153557300568, 0.04651104286313057, 0.0942152738571167, 0.04063142463564873, 0.1034582331776619, 0.002871435135602951, -0.16827549040317535, 0.0053437878377735615, 0.05080875754356384, -0.16360421478748322, -0.13665340840816498, -0.037037644535303116, 0.02984575368463993, -0.10065723210573196, -0.047498542815446854, 0.1352631002664566, -0.03438643738627434, -0.04004136100411415, 0.0018646888202056289, 0.03554556146264076, -0.04074626788496971, 0.08554410189390182, -0.009919993579387665, 0.04230335354804993, -0.06838963180780411, 0.11683499813079834, 0.0691184252500534, 0.004023787099868059, 0.03943387046456337, 0.062208142131567, -0.09246935695409775, 0.017321353778243065, -0.10788235813379288, -0.0011526942253112793, -0.02446785569190979, -0.014797533862292767, 0.028690895065665245, -0.030689219012856483, 0.050920549780130386, 0.08997056633234024, -0.01575811766088009, 0.10246029496192932, -0.048870112746953964, 0.022259695455431938, -0.1269349604845047, 0.06896916031837463, 0.034280166029930115, 0.019292889162898064, -0.10797577351331711, 0.2099088579416275, 0.03494774177670479, 0.10546883940696716, -0.03766518458724022, -0.06678103655576706, -0.04851613938808441, -0.012551344931125641, -0.08597389608621597, -0.03735463321208954, -0.08974006772041321, -0.025998512282967567, -0.004744966514408588, -0.028201663866639137, -0.031354501843452454, 0.0451904833316803, -0.031670764088630676, -0.06120777130126953, -0.07382518798112869, 0.046603839844465256, -0.14403702318668365, 0.03769288584589958, 0.11633920669555664, -0.05668805539608002, 0.12575292587280273, 0.058134544640779495, -0.034024666994810104, 0.02252775989472866, -0.12353218346834183, 0.05012568458914757, -0.00151987059507519, 0.02378668077290058, 0.016241686418652534, -0.15170703828334808, 0.006269145291298628, -0.03472267836332321, -0.06797439604997635, 0.007488378789275885, -0.011887998320162296, -0.1320941299200058, -0.005231241229921579, 0.09462946653366089, -0.0073027536273002625, -0.066960908472538, 0.0705643817782402, 0.05227041244506836, 0.028047410771250725, 0.05434473231434822, -0.013027199544012547, 0.0688280537724495, -0.17788736522197723, -0.061672259122133255, -0.00512389512732625, 0.03501853719353676, 0.05095382407307625, -0.02567126601934433, 0.034354399889707565, -0.015452895313501358, 0.21476280689239502, 0.02057856135070324, -0.004296749830245972, 0.03815659135580063, -0.06971628218889236, -0.0051637389697134495, 0.042530808597803116, 0.08041922003030777, -0.016462013125419617, -0.02734343148767948, 0.004133779089897871, -0.02646040916442871, -0.09927333146333694, -0.01353341992944479, 0.10018470138311386, 0.027004564180970192, 0.21118585765361786, -0.06253457814455032, 0.0637776330113411, -0.016660528257489204, -0.10672757774591446, -0.03790577873587608, -0.046978916972875595, 0.03086399845778942, -0.06112542748451233, 0.057397108525037766, 0.18708033859729767, -0.15280325710773468, 0.11901575326919556, 0.04475564882159233, -0.05639638379216194, -0.12037742882966995, -0.1869439333677292, -0.010925166308879852, -0.031762029975652695, 0.022906837984919548, -0.1369774490594864, 0.09428729861974716, 0.01968061737716198, 0.04115442559123039, -0.05920436978340149, 0.13544349372386932, -0.0917724072933197, -0.13834691047668457, 0.04451392590999603, 0.018588662147521973, 0.029951630160212517, 0.04183318093419075, 0.09001202136278152, 0.038020383566617966, 0.00410782266408205, 0.07268639653921127, 0.039960723370313644, 0.035093922168016434, 0.04059538245201111, -0.03227359056472778, -0.038128823041915894, 0.027370616793632507, -0.008063479326665401, 0.01995745114982128, 0.10212992876768112, 0.0685555711388588, -0.021260762587189674, -0.018020493909716606, 0.31249991059303284, -0.02018549293279648, -0.03643316030502319, -0.18781258165836334, 0.16929809749126434, 0.00904402881860733, -0.001259649288840592, 0.022430798038840294, -0.1162618026137352, 0.014404223300516605, 0.12070741504430771, 0.15018723905086517, -0.02092304825782776, 0.024582942947745323, -0.02090870402753353, 0.018688926473259926, 0.03617339953780174, 0.11135803908109665, 0.06649899482727051, 0.1947803944349289, -0.02749563567340374, 0.05342480167746544, -0.014080315828323364, -0.023288080468773842, 0.00996324885636568, 0.1016397699713707, -0.040252234786748886, 0.005491419229656458, -0.04910387098789215, 0.10142313688993454, -0.06217970326542854, -0.30285975337028503, -0.04569743946194649, -0.012961897999048233, -0.09277620166540146, 0.07641477137804031, -0.03771418333053589, -0.019410589709877968, 0.08052556216716766, 0.03256595507264137, -0.046373069286346436, 0.16726230084896088, 0.053165048360824585, -0.04418088495731354, -0.0015772428596392274, 0.1150411069393158, -0.03417511284351349, 0.15744759142398834, -0.03783842548727989, 0.014418910257518291, 0.0740959644317627, 0.01146585214883089, -0.12561975419521332, 0.0030593082774430513, 0.03773646429181099, -0.05632619932293892, -0.02138098143041134, 0.19904114305973053, 0.014944419264793396, 0.018030865117907524, 0.07171396166086197, -0.053771983832120895, 0.01776902563869953, -0.04256856441497803, 0.056736696511507034, -0.13483993709087372, 0.06626316905021667, -0.0786820650100708, 0.1160951629281044, 0.17850033938884735, -0.06699372082948685, 0.03926330432295799, -0.05930719152092934, 0.005660406779497862, -0.027435384690761566, 0.06908593326807022, -0.01731432043015957, -0.11243706941604614, 0.005255394149571657, 0.026861995458602905, 0.0140307592228055, -0.17886249721050262, -0.08008205145597458, 0.07945818454027176, -0.05258375033736229, 0.021987980231642723, 0.17771416902542114, 0.009130003862082958, 0.05796704813838005, -0.036758456379175186, -0.012659265659749508, -0.006190938409417868, 0.11377733200788498, -0.17170332372188568, -0.07545864582061768 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6b5c50912d99c3cf0eabfec5f427c452.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pink Floyd</div> <a href="https://genius.com/artists/pink-floyd"> <div style="text-align: center; font-size: 14px;">@pink-floyd</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Pink Floyd. Dataset is available [here](https://huggingface.co/datasets/huggingartists/pink-floyd). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/pink-floyd") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3j9osgks/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Pink Floyd's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1wlqpngf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1wlqpngf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/pink-floyd') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/pink-floyd") model = AutoModelWithLMHead.from_pretrained("huggingartists/pink-floyd") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/pink-floyd"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/pink-floyd
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/pink-floyd", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pink-floyd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pink Floyd</div> <a href="URL <div style="text-align: center; font-size: 14px;">@pink-floyd</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Pink Floyd. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Pink Floyd's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Pink Floyd.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Pink Floyd's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pink-floyd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Pink Floyd.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Pink Floyd's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pink-floyd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Pink Floyd.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Pink Floyd's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.025088755413889885, 0.18220019340515137, -0.002794160507619381, 0.04818805307149887, 0.08362779766321182, -0.01425599679350853, 0.09671856462955475, 0.09376564621925354, 0.0014182301238179207, 0.07443072646856308, 0.062056321650743484, 0.009435185231268406, 0.057957544922828674, 0.11141477525234222, 0.06512261927127838, -0.23907470703125, 0.02487059496343136, -0.08388770371675491, -0.04845742508769035, 0.12210536748170853, 0.09565237164497375, -0.07822705805301666, 0.08398935943841934, 0.0355108343064785, -0.06230376660823822, 0.02149108052253723, -0.00975791271775961, -0.06458776444196701, 0.08267562836408615, 0.0662907138466835, 0.04787077754735947, 0.034674689173698425, 0.050968095660209656, -0.19412779808044434, 0.0294692013412714, 0.13213826715946198, 0.04703707993030548, 0.07320915907621384, 0.06224557012319565, -0.06890210509300232, 0.12476174533367157, -0.03645038977265358, 0.10406707227230072, 0.045972976833581924, -0.10889560729265213, -0.1269957274198532, -0.1366017460823059, 0.11335817724466324, 0.09921026229858398, 0.08142078667879105, -0.031107407063245773, 0.06521724909543991, -0.009018049575388432, 0.03538042679429054, 0.24664591252803802, -0.20142997801303864, -0.022646989673376083, 0.07424603402614594, 0.05011029541492462, 0.015783213078975677, -0.08719689399003983, 0.024699769914150238, 0.03206056356430054, 0.018399065360426903, 0.02440924569964409, -0.022121157497167587, 0.18350575864315033, 0.030881645157933235, -0.10928560793399811, -0.06769096851348877, 0.10211093723773956, -0.028537927195429802, -0.08608606457710266, -0.13190858066082, -0.002762480638921261, -0.012048491276800632, 0.02364302985370159, -0.02088484726846218, -0.009587454609572887, 0.003397413296625018, -0.05368423089385033, -0.11387689411640167, -0.08617694675922394, -0.034852296113967896, -0.021853864192962646, 0.08075585216283798, 0.033654406666755676, 0.03493745997548103, -0.08406565338373184, 0.20733369886875153, 0.019454350695014, -0.09234689176082611, -0.03295890614390373, -0.09745978564023972, -0.08183945715427399, -0.05129382759332657, 0.002269660821184516, -0.02709709107875824, -0.05590219423174858, 0.13756141066551208, -0.04529920965433121, 0.0355786457657814, -0.030851928517222404, -0.003781278384849429, 0.14939799904823303, 0.12752747535705566, -0.11314928531646729, -0.010656972415745258, 0.06352371722459793, -0.005822816397994757, -0.06263076514005661, -0.05731290951371193, -0.010169791989028454, -0.011723758652806282, 0.05006261169910431, 0.0651155486702919, 0.0769440159201622, 0.05013031139969826, 0.005662120878696442, -0.0907575711607933, 0.11749060451984406, -0.11707849055528641, 0.027788162231445312, -0.0023820437490940094, -0.031248338520526886, -0.004687224980443716, 0.018130430951714516, 0.033915240317583084, -0.09725745022296906, 0.11419226974248886, -0.058919016271829605, -0.059321872889995575, -0.08452459424734116, -0.08797183632850647, -0.0031824405305087566, -0.000003274712980783079, -0.048193980008363724, -0.06348516792058945, -0.17857472598552704, -0.03013702481985092, 0.037360768765211105, -0.043708041310310364, -0.05854693055152893, 0.04556130990386009, -0.018571380525827408, 0.02852907031774521, -0.0028894799761474133, -0.036415740847587585, -0.012079507112503052, 0.021456358954310417, -0.0552663691341877, 0.02258499339222908, 0.08737180382013321, 0.04232793673872948, -0.1035371720790863, 0.06283700466156006, -0.18462353944778442, 0.1265428066253662, -0.02070021629333496, 0.0026437314227223396, -0.1079971119761467, -0.09818002581596375, -0.010267402045428753, -0.04268007352948189, 0.011330860666930676, 0.11127086728811264, -0.19284223020076752, -0.03310580179095268, 0.15899260342121124, -0.07386264204978943, -0.06632684916257858, 0.07847104221582413, -0.08152304589748383, 0.0012231642613187432, 0.10067733377218246, 0.05940796434879303, 0.14562925696372986, -0.1216728612780571, -0.06705120205879211, -0.05715584009885788, -0.04805481433868408, 0.19694140553474426, 0.053831588476896286, -0.010783222503960133, 0.0038858470506966114, -0.0029551610350608826, -0.04343969374895096, -0.03572607785463333, -0.01054175104945898, -0.036350399255752563, -0.009606092236936092, -0.004359902814030647, 0.03613100200891495, -0.03252430632710457, -0.06589353084564209, -0.025854088366031647, -0.10953758656978607, 0.03213031217455864, 0.08542191237211227, -0.06437446177005768, 0.00916182529181242, -0.10509315878152847, 0.008607162162661552, -0.029709678143262863, -0.002517561661079526, -0.17196080088615417, -0.06479699164628983, 0.0396052747964859, -0.06347236037254333, 0.0820852741599083, 0.022365761920809746, 0.022871391847729683, 0.058653347194194794, -0.020515698939561844, 0.01658291555941105, -0.059462666511535645, -0.02028755471110344, -0.013085627928376198, -0.1417868435382843, -0.04693625122308731, -0.03970329836010933, 0.08373526483774185, -0.13402657210826874, 0.0043524461798369884, 0.14456824958324432, 0.10500327497720718, 0.029229331761598587, -0.06784524023532867, 0.03443567454814911, -0.029025530442595482, -0.0272566769272089, -0.09932596236467361, -0.041729383170604706, 0.021204736083745956, 0.006539318710565567, 0.14113332331180573, -0.12469273805618286, -0.08158813416957855, 0.10763546079397202, 0.1447843462228775, -0.09361115097999573, 0.03401903808116913, -0.07953234016895294, -0.014380737207829952, -0.06591638922691345, -0.011544513516128063, 0.2822955548763275, 0.05185402184724808, 0.07045679539442062, -0.11171039938926697, -0.09700841456651688, 0.0017430856823921204, -0.03629833087325096, -0.037219833582639694, 0.007242356892675161, 0.04248692840337753, -0.17401240766048431, 0.03367650881409645, -0.029832743108272552, 0.10247965157032013, 0.1876271516084671, 0.04509367048740387, -0.06362128257751465, -0.057911377400159836, -0.09052802622318268, 0.010468562133610249, 0.07436422258615494, 0.021346746012568474, 0.04100830480456352, 0.03292650356888771, 0.04811903461813927, 0.03915903717279434, -0.12766997516155243, 0.006405101623386145, 0.07276153564453125, -0.029985949397087097, -0.07286933809518814, 0.019012777134776115, 0.029946576803922653, 0.06632030755281448, 0.08791708201169968, 0.13477088510990143, -0.06456736475229263, -0.0514223650097847, -0.1381966918706894, 0.13369812071323395, -0.0918475091457367, -0.28038647770881653, -0.12848827242851257, -0.08764541149139404, -0.0026895806659013033, 0.01077356655150652, 0.0160356592386961, -0.048617418855428696, -0.03977488353848457, -0.0876195952296257, 0.10701414942741394, -0.059746164828538895, -0.009874033741652966, 0.008514110930263996, 0.0354655422270298, -0.027094325050711632, -0.09866265207529068, -0.03222274035215378, 0.044517580419778824, -0.08621291816234589, -0.014497737400233746, 0.04897810146212578, 0.04384282976388931, 0.16147154569625854, -0.013050469569861889, 0.00011494963837321848, -0.027688413858413696, 0.2783694863319397, -0.1264766901731491, 0.0824272409081459, 0.1579793244600296, -0.014287822879850864, 0.05803819000720978, 0.0924718901515007, 0.006611954420804977, -0.0597471259534359, 0.08949892222881317, 0.07849866151809692, -0.06957137584686279, -0.21402445435523987, -0.0443200059235096, -0.007807102054357529, 0.015127728693187237, 0.11032399535179138, 0.050981272011995316, 0.046603865921497345, 0.013047328218817711, -0.08410201221704483, 0.03820488601922989, 0.0009629359701648355, 0.10515163093805313, -0.032086677849292755, -0.0025974323507398367, 0.056383997201919556, -0.05059137940406799, 0.017079439014196396, 0.13182784616947174, 0.04234357923269272, 0.19048035144805908, -0.07796933501958847, 0.07075442373752594, 0.07517486810684204, 0.09387792646884918, 0.04767230525612831, 0.02772236429154873, -0.015389759093523026, 0.011997673660516739, 0.0005791022558696568, -0.08151007443666458, 0.0012369288597255945, 0.028271498158574104, 0.03607989847660065, -0.027200881391763687, -0.04288917034864426, -0.0709879994392395, 0.023593077436089516, 0.24814775586128235, 0.015130575746297836, -0.1437772661447525, -0.09362377226352692, 0.05194723606109619, -0.06370130926370621, -0.05813433974981308, -0.005713409278541803, 0.06559639424085617, -0.21934102475643158, 0.06812967360019684, -0.03517620638012886, 0.10163453221321106, -0.1348453164100647, -0.007955580949783325, 0.11043243855237961, 0.017121372744441032, -0.06353578716516495, 0.09635584056377411, -0.16260509192943573, 0.06213708221912384, -0.00659578712657094, 0.0684678703546524, -0.054096419364213943, 0.020886622369289398, -0.0027187892701476812, 0.06031584367156029, 0.07466039061546326, 0.01752367429435253, 0.020571859553456306, -0.0056565264239907265, -0.04443187266588211, 0.0014152622316032648, 0.0600925013422966, -0.10788726806640625, 0.12797681987285614, -0.040014803409576416, 0.030156122520565987, -0.027971968054771423, -0.04829385131597519, -0.10585454851388931, -0.1685444414615631, 0.08599109947681427, -0.13182449340820312, -0.024136072024703026, -0.08473343402147293, -0.027673158794641495, 0.0579809695482254, 0.2398538887500763, -0.051683470606803894, -0.06273309141397476, -0.129489466547966, -0.01646319031715393, 0.13815586268901825, -0.07716049998998642, 0.014741512946784496, -0.007727754767984152, 0.21338318288326263, -0.0026840073987841606, -0.11756537109613419, -0.015261413529515266, -0.07685204595327377, -0.1841711401939392, -0.01959962211549282, 0.14318639039993286, 0.07674781233072281, 0.03304029256105423, 0.014270325191318989, 0.011121168732643127, -0.05572855845093727, -0.16261287033557892, 0.027548715472221375, 0.12542274594306946, -0.0009562535560689867, -0.011470600962638855, 0.059621550142765045, 0.05481638014316559, -0.129526287317276, 0.0023843608796596527, 0.0695219412446022, 0.17483866214752197, -0.07173874974250793, 0.17611296474933624, 0.039917368441820145, -0.09079483151435852, -0.1752110719680786, 0.030962172895669937, 0.04254435375332832, 0.020550508052110672, -0.002589163836091757, -0.22283858060836792, 0.0480484813451767, 0.001995762111619115, -0.006722757592797279, 0.033847346901893616, -0.312060683965683, -0.15503108501434326, 0.02188219502568245, 0.0050875418819487095, -0.11512350291013718, -0.046605173498392105, -0.029095876961946487, -0.08426755666732788, -0.2438381165266037, 0.14780843257904053, -0.07848328351974487, 0.06832423806190491, 0.020881973206996918, 0.09550986438989639, 0.04612036049365997, -0.05045061185956001, 0.11400105804204941, -0.03329497203230858, 0.05623234808444977, -0.08023187518119812, -0.07939177751541138, 0.09133387356996536, -0.053795237094163895, 0.07269849628210068, 0.04925064370036125, 0.08441369980573654, -0.08821579068899155, -0.08954067528247833, -0.07400171458721161, 0.004464468918740749, -0.056620966643095016, -0.09969951957464218, -0.1116289421916008, 0.0978413000702858, 0.1125996932387352, -0.05219871178269386, -0.10780632495880127, -0.032199956476688385, -0.018431100994348526, 0.07695481181144714, 0.12110406160354614, 0.07567889988422394, -0.09064377099275589, 0.029410749673843384, 0.009198193438351154, 0.0121701555326581, -0.1251162588596344, 0.036538973450660706, 0.0799836814403534, 0.04849562048912048, 0.09214725345373154, 0.010648434981703758, -0.16340388357639313, -0.00895973015576601, 0.05161890760064125, -0.17862609028816223, -0.14205576479434967, -0.05515342950820923, 0.06930211186408997, -0.1089453473687172, -0.07639449089765549, 0.12343078851699829, -0.03327386453747749, -0.05257545784115791, 0.0010020396439358592, 0.04609696567058563, -0.032023340463638306, 0.09555251151323318, 0.028049685060977936, 0.052141886204481125, -0.05712469294667244, 0.11511310189962387, 0.08149033039808273, 0.00525544211268425, 0.035202283412218094, 0.06518623977899551, -0.08094316720962524, 0.01468980498611927, -0.05352070555090904, 0.0027003127615898848, -0.01847097836434841, -0.012116779573261738, 0.009827426634728909, -0.034883495420217514, 0.03958798572421074, 0.09741561114788055, -0.004679132252931595, 0.10101454704999924, -0.058654382824897766, 0.000014040532732906286, -0.13003505766391754, 0.08209913223981857, 0.030613843351602554, 0.022629812359809875, -0.1279982328414917, 0.16234473884105682, 0.024837305769324303, 0.08955582231283188, -0.03582995757460594, -0.05681177228689194, -0.06813137233257294, -0.015978384763002396, -0.05658164620399475, -0.04030919075012207, -0.056426145136356354, -0.03605439513921738, -0.018021367490291595, -0.04077659919857979, -0.026296496391296387, 0.040568217635154724, -0.02866171859204769, -0.054728880524635315, -0.06705492734909058, 0.03375190496444702, -0.15500323474407196, 0.0338674895465374, 0.1422441452741623, -0.04334317147731781, 0.1103241965174675, 0.033445943146944046, -0.03213561698794365, 0.0113046420738101, -0.11492134630680084, 0.03217402845621109, -0.025389602407813072, 0.02328195422887802, 0.02419561892747879, -0.19179658591747284, 0.011297470889985561, -0.04494839906692505, -0.06379370391368866, 0.005368111189454794, 0.03033655509352684, -0.11325591802597046, -0.010630900971591473, 0.08568767458200455, -0.03624098002910614, -0.06773059815168381, 0.06894122064113617, 0.05999896302819252, 0.05147700011730194, 0.06153038516640663, -0.019919510930776596, 0.0662880390882492, -0.14224335551261902, -0.05256924033164978, 0.006620756816118956, 0.026070192456245422, 0.04651324823498726, -0.006529752630740404, 0.03657742589712143, -0.008295824751257896, 0.19014960527420044, 0.04047155752778053, -0.044507503509521484, 0.03301375359296799, -0.06904827058315277, -0.013488381169736385, 0.04429237172007561, 0.06482360512018204, -0.04191407933831215, -0.04413200169801712, 0.01781485229730606, -0.017321016639471054, -0.0872630849480629, 0.002595422090962529, 0.13404116034507751, 0.040050555020570755, 0.19160710275173187, -0.06975286453962326, 0.058199189603328705, -0.01400330476462841, -0.13041962683200836, -0.01361874770373106, -0.05177062004804611, 0.041264042258262634, -0.08529987186193466, 0.11049727350473404, 0.14915554225444794, -0.18110314011573792, 0.13252422213554382, 0.018639449030160904, -0.06829654425382614, -0.12819303572177887, -0.17128464579582214, -0.022166350856423378, -0.04965837299823761, 0.030360998585820198, -0.14165489375591278, 0.07543637603521347, 0.0008275998407043517, 0.026647115126252174, -0.06639960408210754, 0.12311462312936783, -0.06163705885410309, -0.10557877272367477, 0.050740934908390045, 0.027229664847254753, 0.009528670459985733, 0.06155291199684143, 0.1048973947763443, 0.005067321006208658, 0.008269691839814186, 0.08411248028278351, 0.039557404816150665, -0.001493726740591228, 0.0485510528087616, -0.017269164323806763, -0.0390205942094326, 0.02706308849155903, -0.017624670639634132, 0.043057918548583984, 0.10522457212209702, 0.05922706425189972, -0.0023497361689805984, -0.025753438472747803, 0.3204452395439148, -0.02371530793607235, -0.03980068117380142, -0.1671605110168457, 0.14914415776729584, 0.0040943375788629055, 0.0036826778668910265, 0.03787530958652496, -0.12256326526403427, -0.012869728729128838, 0.1247987374663353, 0.15719953179359436, -0.033634305000305176, 0.025591064244508743, -0.01345094945281744, 0.01754559949040413, 0.03123554028570652, 0.10501673072576523, 0.08488943427801132, 0.2267146110534668, -0.04550941661000252, 0.02638530731201172, -0.01995628885924816, -0.030327120795845985, -0.003948339726775885, 0.11228493601083755, -0.015665359795093536, 0.015616114251315594, -0.06591757386922836, 0.10292506963014603, -0.04965539276599884, -0.26027584075927734, -0.07008150219917297, -0.043009668588638306, -0.09511782974004745, 0.07126176357269287, -0.046879928559064865, -0.0533740259706974, 0.09245291352272034, 0.028888627886772156, -0.03500642254948616, 0.1295822709798813, 0.057473476976156235, -0.02553912252187729, 0.015523235313594341, 0.11962366104125977, -0.03380446881055832, 0.18859925866127014, -0.038261231034994125, 0.005398632492870092, 0.08761395514011383, 0.008150609210133553, -0.1332080066204071, -0.002032588003203273, 0.0357346348464489, -0.05186593532562256, -0.02744360826909542, 0.21786920726299286, 0.013455130159854889, 0.02466403879225254, 0.07378446310758591, -0.023936692625284195, 0.04509362578392029, -0.10231854021549225, 0.07894984632730484, -0.16188301146030426, 0.08082068711519241, -0.11358442157506943, 0.12460962682962418, 0.16829602420330048, -0.07027482241392136, 0.03823386877775192, -0.05971846356987953, -0.002332486445084214, -0.04055134207010269, 0.09976409375667572, -0.007206977345049381, -0.100128173828125, 0.012306072749197483, 0.04029499366879463, 0.03697885945439339, -0.2047930210828781, -0.06829677522182465, 0.06780160963535309, -0.05223984271287918, 0.02150729112327099, 0.17317956686019897, 0.009658039547502995, 0.04340609535574913, -0.04254937916994095, 0.021671149879693985, -0.03798314183950424, 0.10246197879314423, -0.16008725762367249, -0.07640281319618225 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c7e467de49cab7cdcc1d52c9c95ccd47.931x931x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Placebo</div> <a href="https://genius.com/artists/placebo"> <div style="text-align: center; font-size: 14px;">@placebo</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Placebo. Dataset is available [here](https://huggingface.co/datasets/huggingartists/placebo). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/placebo") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3jfcdfc1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Placebo's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/jx3r5x9o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/jx3r5x9o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/placebo') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/placebo") model = AutoModelWithLMHead.from_pretrained("huggingartists/placebo") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/placebo"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/placebo
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/placebo", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/placebo #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Placebo</div> <a href="URL <div style="text-align: center; font-size: 14px;">@placebo</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Placebo. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Placebo's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Placebo.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Placebo's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/placebo #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Placebo.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Placebo's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/placebo #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Placebo.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Placebo's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.018561331555247307, 0.1553305834531784, -0.002706686034798622, 0.029374239966273308, 0.09360847622156143, -0.0010030795820057392, 0.08947808295488358, 0.10812783986330032, -0.015346623957157135, 0.0671296939253807, 0.07643505930900574, 0.008332164026796818, 0.07023420929908752, 0.1256115883588791, 0.1010461151599884, -0.27256619930267334, 0.03225585073232651, -0.10256502032279968, 0.02662852220237255, 0.12426014989614487, 0.088593028485775, -0.05447639897465706, 0.08694545179605484, 0.04012826457619667, -0.07416859269142151, 0.02756330370903015, -0.013142398558557034, -0.07349768280982971, 0.09750831872224808, 0.07619140297174454, 0.03119797073304653, 0.030661344528198242, 0.06316531449556351, -0.18574769794940948, 0.033158671110868454, 0.131172776222229, 0.024898702278733253, 0.07355427742004395, 0.041656494140625, -0.0727323368191719, 0.17302872240543365, -0.02655421756207943, 0.089385986328125, 0.043089479207992554, -0.11102046817541122, -0.1781706064939499, -0.11984193325042725, 0.0839066207408905, 0.09613402932882309, 0.08530142158269882, -0.033660173416137695, 0.04392141103744507, -0.0012304746778681874, 0.04674927517771721, 0.24119000136852264, -0.2424437254667282, -0.014946475625038147, 0.09900721907615662, 0.049787748605012894, 0.05098411440849304, -0.07237155735492706, 0.01367902010679245, 0.045921940356492996, 0.024901287630200386, 0.04595647752285004, -0.018322227522730827, 0.2078242152929306, 0.01983158104121685, -0.09177059680223465, -0.08515319973230362, 0.11198025196790695, -0.028071129694581032, -0.08249848335981369, -0.1513185352087021, 0.0032274844124913216, -0.021823488175868988, 0.04171067476272583, -0.013235028833150864, -0.0029023701790720224, -0.0011912606423720717, -0.04399219527840614, -0.0987728014588356, -0.09607750922441483, -0.02521243505179882, -0.024566538631916046, 0.07427635788917542, 0.022317880764603615, 0.03400793299078941, -0.08190398663282394, 0.23484016954898834, -0.002357268938794732, -0.10381024330854416, -0.057132165879011154, -0.0883341133594513, -0.1015646681189537, -0.05856253579258919, 0.004057120997458696, 0.02582804299890995, -0.061921972781419754, 0.15867851674556732, -0.034043487161397934, 0.033271923661231995, -0.001728953793644905, -0.020931236445903778, 0.1559687852859497, 0.1403757631778717, -0.10256559401750565, -0.033348649740219116, 0.04334035515785217, -0.02337235026061535, -0.06611337512731552, -0.057674188166856766, -0.02126062475144863, -0.026504801586270332, 0.029915034770965576, 0.09141593426465988, 0.041338901966810226, 0.058333832770586014, 0.031313344836235046, -0.0575999952852726, 0.10527243465185165, -0.1405913531780243, 0.007896861992776394, -0.0127510204911232, -0.03287050873041153, 0.022273054346442223, 0.052192121744155884, 0.006804130971431732, -0.10663056373596191, 0.11103511601686478, -0.05084532871842384, -0.050860416144132614, -0.06939388811588287, -0.0847475603222847, -0.00487210787832737, -0.009667739272117615, -0.046941086649894714, -0.0865582749247551, -0.1662050038576126, -0.03494112938642502, 0.022824279963970184, -0.03979809209704399, -0.03958077356219292, 0.04089374840259552, -0.0334431454539299, 0.0020437065977603197, -0.019060302525758743, -0.018566183745861053, -0.03122691623866558, 0.02650224231183529, -0.06663111597299576, 0.033767614513635635, 0.08350425958633423, 0.03704844415187836, -0.10655680298805237, 0.06341614574193954, -0.1641692966222763, 0.14230062067508698, -0.0058784037828445435, 0.014048964716494083, -0.11045285314321518, -0.0997859314084053, -0.03056172840297222, -0.02262427844107151, -0.00836984347552061, 0.09157092124223709, -0.18643635511398315, -0.04381433129310608, 0.20511706173419952, -0.07057427614927292, -0.08094803243875504, 0.07019025832414627, -0.0807557925581932, 0.043059319257736206, 0.14233744144439697, 0.052288759499788284, 0.16424693167209625, -0.11254251003265381, -0.06204131245613098, -0.03620647266507149, -0.07057870924472809, 0.2073807269334793, 0.05064432695508003, -0.002185994992032647, 0.01771479658782482, 0.01585991680622101, -0.023500116541981697, -0.028514927253127098, -0.02246890217065811, -0.03924886882305145, -0.007177204359322786, 0.01917848363518715, -0.009944715537130833, -0.05548341944813728, -0.0685858502984047, -0.018052322790026665, -0.11447741836309433, 0.04476821422576904, 0.1074054017663002, -0.06492457538843155, 0.008690777234733105, -0.08881046622991562, -0.0003897175192832947, -0.03265279158949852, 0.021021783351898193, -0.1972394436597824, -0.048775557428598404, 0.02032366208732128, -0.04968475177884102, 0.08663041144609451, 0.029620207846164703, 0.03783052787184715, 0.05471964180469513, -0.008046056143939495, 0.024167900905013084, -0.048487693071365356, -0.02764042653143406, -0.032523442059755325, -0.130801722407341, -0.06357288360595703, -0.05427981913089752, 0.08388736099004745, -0.12151927500963211, 0.006472395267337561, 0.1036047637462616, 0.11285680532455444, 0.027137011289596558, -0.05861992761492729, 0.007577990647405386, -0.03458540141582489, -0.03971479833126068, -0.11348668485879898, -0.0655091181397438, 0.010832704603672028, -0.04251652583479881, 0.1523992419242859, -0.1704012006521225, -0.06461304426193237, 0.10119438171386719, 0.16527611017227173, -0.11211404949426651, 0.008484166115522385, -0.09050095826387405, -0.0014964652946218848, -0.051933739334344864, -0.04189549759030342, 0.2758237421512604, 0.041125159710645676, 0.07928105443716049, -0.11134359240531921, -0.103386789560318, -0.0012336383806541562, -0.03143765777349472, -0.03134007751941681, 0.02398255281150341, 0.020670747384428978, -0.1707233190536499, 0.023162856698036194, -0.007465111557394266, 0.11742740124464035, 0.20985043048858643, 0.04783032462000847, -0.09222310036420822, -0.06420595198869705, -0.08634225279092789, -0.00024288023996632546, 0.052537184208631516, 0.024730434641242027, 0.02609352208673954, 0.04315662384033203, 0.049328625202178955, 0.0328795351088047, -0.11043310165405273, 0.01210427563637495, 0.0810982957482338, -0.043606605380773544, -0.05554894730448723, 0.009721611626446247, 0.020233657211065292, 0.08576715737581253, 0.08020231872797012, 0.14229875802993774, -0.07145652920007706, -0.047742653638124466, -0.1430695652961731, 0.14841626584529877, -0.07890934497117996, -0.2744763195514679, -0.1401904672384262, -0.06729403138160706, 0.02790985442698002, 0.0048453593626618385, 0.04144608974456787, -0.061066437512636185, -0.03447669371962547, -0.09658811241388321, 0.08655453473329544, -0.04669240117073059, -0.014370123855769634, 0.0030585266649723053, 0.019221290946006775, -0.031220322474837303, -0.11015474796295166, -0.02783944271504879, 0.037674013525247574, -0.10425516963005066, -0.010808472521603107, 0.031130796298384666, 0.03036644496023655, 0.15295995771884918, -0.008592480793595314, -0.006136264186352491, -0.03620726987719536, 0.28226423263549805, -0.12905138731002808, 0.06792021542787552, 0.16233791410923004, -0.019986962899565697, 0.05480324104428291, 0.06707961112260818, 0.0043031275272369385, -0.06527891010046005, 0.07512188702821732, 0.06994574517011642, -0.09073501825332642, -0.2118932455778122, -0.02545253001153469, -0.0049720099195837975, 0.021768560633063316, 0.12583553791046143, 0.0557033009827137, 0.05420883372426033, 0.0009237222839146852, -0.10484921932220459, 0.048282939940690994, 0.03206637501716614, 0.10673806816339493, -0.0800245925784111, -0.017315799370408058, 0.04795294627547264, -0.06394514441490173, 0.022630058228969574, 0.14018158614635468, 0.04151294007897377, 0.20027685165405273, -0.061504900455474854, 0.08915581554174423, 0.07407643646001816, 0.09230231493711472, 0.03462370112538338, 0.015117679722607136, -0.005512619856745005, 0.010937310755252838, -0.007522812578827143, -0.0951228141784668, -0.007855068892240524, 0.04735495522618294, 0.03476102277636528, -0.02842734567821026, -0.043932944536209106, -0.05513923242688179, 0.043148647993803024, 0.22711221873760223, -0.016460413113236427, -0.18647825717926025, -0.11191130429506302, 0.03805672377347946, -0.07744485139846802, -0.054665327072143555, -0.023467788472771645, 0.08327791839838028, -0.21755816042423248, 0.07183510810136795, -0.029442697763442993, 0.10720285773277283, -0.11253076046705246, 0.0033658018801361322, 0.08196297287940979, 0.042818304151296616, -0.06733093410730362, 0.09890059381723404, -0.1611921638250351, 0.059380367398262024, -0.010486605577170849, 0.06436210870742798, -0.08113688230514526, 0.028975605964660645, 0.0013963583623990417, 0.046316251158714294, 0.0898069515824318, 0.012784973718225956, 0.01664704829454422, -0.0001929428690345958, -0.040314365178346634, 0.011078760027885437, 0.05628744885325432, -0.12339063733816147, 0.12521404027938843, -0.022723237052559853, 0.03571401163935661, -0.04323960468173027, -0.10158940404653549, -0.08362793922424316, -0.16518183052539825, 0.08582228422164917, -0.12656287848949432, 0.0022877913434058428, -0.07151008397340775, -0.028922295197844505, 0.03720983490347862, 0.2610859274864197, -0.0577123761177063, -0.07227586954832077, -0.13782554864883423, 0.017888352274894714, 0.14262741804122925, -0.08824273943901062, 0.007412046194076538, -0.004073346499353647, 0.21543993055820465, -0.003050832077860832, -0.13145586848258972, -0.021428033709526062, -0.05662645399570465, -0.1604418307542801, -0.009355469606816769, 0.16869325935840607, 0.06394337862730026, 0.02490759827196598, 0.007834981195628643, -0.024549292400479317, -0.040819767862558365, -0.16704010963439941, 0.02490142732858658, 0.1666058897972107, -0.010529647581279278, 0.002774010179564357, 0.045548003166913986, 0.01900002360343933, -0.1314789205789566, 0.01962760090827942, 0.05024963617324829, 0.16578447818756104, -0.08294514566659927, 0.19042201340198517, 0.04079076275229454, -0.09041979908943176, -0.15536700189113617, 0.0141674829646945, 0.0403950996696949, 0.04207871854305267, 0.04535287246108055, -0.21489351987838745, 0.04145793989300728, 0.039616458117961884, 0.007202265318483114, 0.03644545376300812, -0.32976868748664856, -0.15770895779132843, 0.0011422006646171212, 0.004628422670066357, -0.1434813141822815, -0.03540492057800293, -0.03291221335530281, -0.0971202477812767, -0.2369840294122696, 0.10406494140625, -0.11541491746902466, 0.07732231169939041, 0.030457215383648872, 0.10444547981023788, 0.04565012454986572, -0.043742354959249496, 0.13027401268482208, -0.01762298494577408, 0.07090894132852554, -0.09664205461740494, -0.0657857283949852, 0.0819140374660492, -0.07374528795480728, 0.09053158760070801, 0.04139797389507294, 0.08015287667512894, -0.0935199186205864, -0.0869205966591835, -0.067331962287426, -0.0028064530342817307, -0.050518203526735306, -0.08835860341787338, -0.09352842718362808, 0.0895448848605156, 0.11338212341070175, -0.05486353859305382, -0.10015251487493515, -0.06645900011062622, -0.003390130354091525, 0.0461532287299633, 0.12263417989015579, 0.07289350032806396, -0.060189139097929, 0.0008542842115275562, 0.018130891025066376, 0.015980040654540062, -0.1747749298810959, 0.044382188469171524, 0.09216805547475815, 0.036954086273908615, 0.10894633084535599, 0.005380903836339712, -0.17013590037822723, 0.003977362532168627, 0.055052220821380615, -0.1587182879447937, -0.12919606268405914, -0.04823693260550499, 0.023350073024630547, -0.10751951485872269, -0.04991011694073677, 0.13655227422714233, -0.03146011009812355, -0.04048715904355049, 0.002816244261339307, 0.03767063096165657, -0.04121236875653267, 0.08965180069208145, -0.013921387493610382, 0.043438658118247986, -0.06942792981863022, 0.11891529709100723, 0.06855622678995132, 0.007851977832615376, 0.038201529532670975, 0.058723609894514084, -0.09325466305017471, 0.01877537928521633, -0.0983787477016449, 0.010435361415147781, -0.030192449688911438, -0.011758058331906796, 0.02661835215985775, -0.042273905128240585, 0.052126843482255936, 0.09148804098367691, -0.013312816619873047, 0.10669461637735367, -0.04614048823714256, 0.02245292253792286, -0.125646710395813, 0.0673537477850914, 0.03775032237172127, 0.019387580454349518, -0.10910389572381973, 0.21226388216018677, 0.034028735011816025, 0.10739535093307495, -0.03742142766714096, -0.07141830772161484, -0.05624544620513916, -0.01010455284267664, -0.08140800148248672, -0.03829058259725571, -0.08658715337514877, -0.02472967468202114, -0.0017121868440881371, -0.023379594087600708, -0.027053631842136383, 0.04188009724020958, -0.03413718566298485, -0.05728766322135925, -0.07682602852582932, 0.04865965247154236, -0.13845612108707428, 0.03277282789349556, 0.11534566432237625, -0.05406017228960991, 0.12986429035663605, 0.05599142983555794, -0.0371745340526104, 0.02336159348487854, -0.13286636769771576, 0.047054339200258255, -0.002980081597343087, 0.022806167602539062, 0.017063481733202934, -0.14841504395008087, 0.014345630072057247, -0.03921600058674812, -0.06930314749479294, 0.0047631640918552876, -0.027815038338303566, -0.130189910531044, -0.009370916523039341, 0.08500996977090836, -0.012037971056997776, -0.0702153667807579, 0.07394862920045853, 0.058871790766716, 0.02150699682533741, 0.058265626430511475, -0.012919926084578037, 0.06917988508939743, -0.1791686862707138, -0.06075122579932213, -0.0029938314110040665, 0.02682967483997345, 0.044676464051008224, -0.03181478753685951, 0.0367850698530674, -0.01417533028870821, 0.20429706573486328, 0.023687206208705902, -0.010612152516841888, 0.0349695198237896, -0.07183398306369781, -0.007047122810035944, 0.040415700525045395, 0.07252877950668335, -0.018737176433205605, -0.03265370801091194, -0.0022424228955060244, -0.02251848392188549, -0.09078314900398254, -0.019191782921552658, 0.10195239633321762, 0.01828223653137684, 0.2113257199525833, -0.05695311352610588, 0.06574150919914246, -0.012612804770469666, -0.1045045331120491, -0.03886138275265694, -0.050760019570589066, 0.028796957805752754, -0.05571925640106201, 0.042257774621248245, 0.18387703597545624, -0.15146459639072418, 0.12032099813222885, 0.04132275655865669, -0.054529715329408646, -0.11504826694726944, -0.19658410549163818, -0.011831824667751789, -0.03574511036276817, 0.021857410669326782, -0.14202408492565155, 0.08979695290327072, 0.023415466770529747, 0.04066997766494751, -0.062472183257341385, 0.1316811591386795, -0.09106039255857468, -0.14194639027118683, 0.0509018748998642, 0.022223317995667458, 0.03131776675581932, 0.04281911626458168, 0.0836910605430603, 0.03720460459589958, 0.009293673560023308, 0.07216649502515793, 0.04017825797200203, 0.03680334612727165, 0.04021299257874489, -0.031801775097846985, -0.037143509835004807, 0.03060108982026577, -0.008830088190734386, 0.019228285178542137, 0.09546271711587906, 0.0647592842578888, -0.019870368763804436, -0.01621111109852791, 0.31164371967315674, -0.0228497963398695, -0.033431291580200195, -0.18577635288238525, 0.17564700543880463, 0.015821751207113266, -0.0045868693850934505, 0.021239256486296654, -0.11652755737304688, 0.013945162296295166, 0.1260206252336502, 0.1495383232831955, -0.016994280740618706, 0.02245204709470272, -0.02242416888475418, 0.017424404621124268, 0.04180888459086418, 0.11260932683944702, 0.06296074390411377, 0.19734390079975128, -0.02346344292163849, 0.06037189066410065, -0.010287019424140453, -0.018695836886763573, 0.017615357413887978, 0.1014707088470459, -0.04016108810901642, 0.005318509414792061, -0.05383388325572014, 0.09916386008262634, -0.06038929149508476, -0.30146288871765137, -0.03279317542910576, -0.014018184505403042, -0.09214788675308228, 0.07401615381240845, -0.03413622826337814, -0.017102587968111038, 0.08254113048315048, 0.03142281994223595, -0.04919464886188507, 0.16685153543949127, 0.053193509578704834, -0.04913449287414551, -0.013363126665353775, 0.11025587469339371, -0.03659971430897713, 0.16614823043346405, -0.03739137575030327, 0.003273489885032177, 0.0748518705368042, 0.01712026633322239, -0.12471828609704971, 0.0022105553653091192, 0.032849427312612534, -0.05204083397984505, -0.020906547084450722, 0.19513000547885895, 0.012033902108669281, 0.024466613307595253, 0.06950332969427109, -0.05875521898269653, 0.0198823194950819, -0.03750988468527794, 0.06313685327768326, -0.13747553527355194, 0.0678275004029274, -0.07581283897161484, 0.11806461960077286, 0.17918872833251953, -0.0642470046877861, 0.037698403000831604, -0.06044718250632286, 0.005263446364551783, -0.02679542265832424, 0.06900836527347565, -0.016327986493706703, -0.10595468431711197, 0.003282946301624179, 0.028404375538229942, 0.011863288469612598, -0.17428945004940033, -0.08185161650180817, 0.08346354216337204, -0.05399857833981514, 0.023609891533851624, 0.17823441326618195, 0.0100630484521389, 0.060409437865018845, -0.03705911710858345, -0.01164912711828947, -0.005641109775751829, 0.11838620901107788, -0.1757667064666748, -0.07759493589401245 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b12dc90e6f405684ef6b74c9de92fdcd.853x853x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Платина (Platina)</div> <a href="https://genius.com/artists/platina"> <div style="text-align: center; font-size: 14px;">@platina</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Платина (Platina). Dataset is available [here](https://huggingface.co/datasets/huggingartists/platina). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/platina") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2ih365j7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Платина (Platina)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1quasiz0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1quasiz0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/platina') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/platina") model = AutoModelWithLMHead.from_pretrained("huggingartists/platina") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/platina"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/platina
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/platina", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/platina #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Платина (Platina)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@platina</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Платина (Platina). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Платина (Platina)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Платина (Platina).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Платина (Platina)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/platina #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Платина (Platina).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Платина (Platina)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 53, 76, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/platina #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Платина (Platina).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Платина (Platina)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.043701380491256714, 0.1588076502084732, -0.0028871132526546717, 0.054518282413482666, 0.10623010993003845, 0.011858300305902958, 0.07847021520137787, 0.11643043160438538, 0.011306407861411572, 0.07942865788936615, 0.0747726708650589, 0.051445163786411285, 0.07138320058584213, 0.09493804723024368, 0.06464414298534393, -0.2324950248003006, 0.03647351264953613, -0.0709419995546341, 0.012351582758128643, 0.09918022900819778, 0.08902636170387268, -0.06924396008253098, 0.07608534395694733, 0.024476541206240654, -0.06983109563589096, 0.00506644556298852, 0.012120156548917294, -0.06138605624437332, 0.08643674105405807, 0.06701068580150604, 0.03547170013189316, 0.02707456797361374, 0.0636793002486229, -0.1750834435224533, 0.027979156002402306, 0.12330801039934158, 0.03319712355732918, 0.0813044086098671, 0.055345188826322556, -0.081844262778759, 0.12033955007791519, -0.023493461310863495, 0.08748619258403778, 0.05486755818128586, -0.1128041073679924, -0.11662718653678894, -0.1488426923751831, 0.09790082275867462, 0.08851832151412964, 0.08558061718940735, -0.02485738694667816, 0.09786784648895264, -0.022885490208864212, 0.052138667553663254, 0.2346070259809494, -0.25050443410873413, -0.012071057222783566, 0.07257464528083801, 0.06122263893485069, 0.026747647672891617, -0.0879015401005745, 0.0223236083984375, 0.048431433737277985, 0.037094924598932266, 0.03323584422469139, -0.02986733242869377, 0.14543099701404572, 0.016635971143841743, -0.10954714566469193, -0.07687258720397949, 0.10377457737922668, -0.019187595695257187, -0.08510750532150269, -0.12642614543437958, 0.004003991838544607, -0.04790875315666199, 0.030916977673768997, 0.022281711921095848, 0.0008037093211896718, -0.006813277490437031, -0.04533005878329277, -0.11358127743005753, -0.06980057805776596, -0.04485803097486496, -0.0034866228234022856, 0.0596223808825016, 0.04542861133813858, 0.03737971559166908, -0.08220870792865753, 0.22585931420326233, 0.009353098459541798, -0.09558544307947159, -0.06179137900471687, -0.104929618537426, -0.07824812084436417, -0.04555384814739227, 0.00041466113179922104, -0.006620117463171482, -0.029203683137893677, 0.15785172581672668, -0.0366528257727623, 0.02672378532588482, -0.03393374755978584, 0.0057858568616211414, 0.13545654714107513, 0.14779338240623474, -0.12204433977603912, -0.03732669726014137, 0.07726005464792252, 0.0024520528968423605, -0.06766592711210251, -0.04912593960762024, -0.0018565081991255283, -0.011385418474674225, 0.05253839120268822, 0.08801845461130142, 0.07529062777757645, 0.06543732434511185, 0.00521681597456336, -0.05925397947430611, 0.04977906867861748, -0.13015303015708923, 0.01377745158970356, -0.014265340752899647, -0.05732392519712448, 0.036231305450201035, 0.06579219549894333, 0.0010655989171937108, -0.1129806786775589, 0.09234132617712021, -0.07821232825517654, -0.047849297523498535, -0.08085370063781738, -0.10035102814435959, -0.005050871521234512, -0.054168689996004105, -0.027903469279408455, -0.07710389047861099, -0.18161264061927795, -0.047849513590335846, 0.021357543766498566, -0.059031836688518524, -0.024819854646921158, 0.028249245136976242, -0.032440122216939926, 0.009387202560901642, -0.023821784183382988, -0.017484713345766068, -0.027566177770495415, 0.036260057240724564, -0.08051111549139023, 0.02990471012890339, 0.0618908666074276, 0.0441213995218277, -0.11581499129533768, 0.07568580657243729, -0.1420619636774063, 0.11396801471710205, -0.02934621460735798, 0.005340878386050463, -0.09076737612485886, -0.08056791126728058, -0.004906381946057081, -0.032603174448013306, 0.029261333867907524, 0.11474108695983887, -0.15815863013267517, -0.01791171170771122, 0.21080255508422852, -0.06580539792776108, -0.07676254957914352, 0.06558633595705032, -0.0674654170870781, 0.04402748495340347, 0.11435065418481827, 0.07418563961982727, 0.14527608454227448, -0.10562250763177872, -0.08293362706899643, -0.04657004401087761, -0.06719933450222015, 0.16392716765403748, 0.025172604247927666, -0.02335328795015812, 0.021938404068350792, 0.004666018299758434, -0.03363809362053871, -0.0019491590792313218, -0.03299432620406151, -0.03217663988471031, -0.021773191168904305, -0.017498156055808067, -0.005464341025799513, -0.04201525077223778, -0.042211104184389114, -0.018732473254203796, -0.09649808704853058, 0.07504049688577652, 0.09992266446352005, -0.07562604546546936, 0.020012205466628075, -0.09424525499343872, 0.04910735785961151, -0.05639379471540451, 0.008655846118927002, -0.17874328792095184, -0.041879113763570786, 0.018811309710144997, -0.06459815800189972, 0.0669035091996193, 0.008163251914083958, 0.04058219864964485, 0.0718139186501503, -0.01169198751449585, -0.004564154893159866, -0.04326175898313522, 0.004661085549741983, -0.04824647307395935, -0.17055216431617737, -0.049898963421583176, -0.0464710034430027, 0.08562815934419632, -0.10756068676710129, -0.0017939070239663124, 0.07583478093147278, 0.14758798480033875, 0.021494580432772636, -0.06508549302816391, 0.04136590287089348, -0.028705298900604248, -0.03083035908639431, -0.10666047036647797, -0.04043980687856674, 0.008531332947313786, -0.0161571241915226, 0.1480538249015808, -0.13733096420764923, -0.10223101824522018, 0.12401680648326874, 0.10700877755880356, -0.09075494855642319, 0.037162896245718, -0.07018817216157913, -0.02013474516570568, -0.04118984192609787, -0.05479264259338379, 0.241221085190773, 0.03433939814567566, 0.09586421400308609, -0.08901934325695038, -0.07819122821092606, 0.0015315636992454529, -0.039161600172519684, -0.032229479402303696, 0.04042567312717438, 0.033887725323438644, -0.16087430715560913, 0.05111165717244148, -0.018298227339982986, 0.08151175081729889, 0.19226296246051788, 0.02516264095902443, -0.08979935944080353, -0.05489466339349747, -0.06834132224321365, 0.005838272161781788, 0.09825484454631805, 0.0004186654696241021, 0.03226812556385994, 0.04176287725567818, 0.042550522834062576, 0.04376969859004021, -0.10968706011772156, 0.011922904290258884, 0.052947998046875, -0.03196214511990547, -0.05052178353071213, 0.014382174238562584, 0.02380084991455078, 0.09196408838033676, 0.07176563888788223, 0.10699772834777832, -0.04922472685575485, -0.04353109002113342, -0.1312096118927002, 0.1378808617591858, -0.09314150363206863, -0.19992835819721222, -0.13477173447608948, -0.06990540027618408, 0.004412046633660793, 0.0030143214389681816, 0.028749924153089523, -0.04026250168681145, -0.03987788408994675, -0.09344179928302765, 0.08025187253952026, -0.0319087877869606, -0.006065088789910078, -0.00457551097497344, 0.013004095293581486, -0.013976543210446835, -0.1233694925904274, -0.03221038728952408, 0.020991118624806404, -0.06792806833982468, 0.008312293328344822, 0.030138907954096794, 0.050597772002220154, 0.14677800238132477, -0.004727365914732218, 0.012653034180402756, -0.02237812615931034, 0.2712728977203369, -0.10991548001766205, 0.062482625246047974, 0.16385197639465332, -0.008777868002653122, 0.051065750420093536, 0.05535373464226723, -0.000040307222661795095, -0.05900971218943596, 0.053286075592041016, 0.06648596376180649, -0.06694639474153519, -0.20892742276191711, -0.031802963465452194, -0.016970517113804817, 0.01837942935526371, 0.1085461974143982, 0.032256435602903366, 0.05477309226989746, 0.01437138020992279, -0.09501661360263824, 0.0554775707423687, 0.010556783527135849, 0.09752990305423737, -0.06767381727695465, -0.010038435459136963, 0.04696555808186531, -0.049625203013420105, 0.040136050432920456, 0.11906836926937103, 0.03515324369072914, 0.23628084361553192, -0.07538843154907227, 0.059607405215501785, 0.0901096761226654, 0.09932607412338257, 0.021248834207654, 0.04274611175060272, -0.02950669266283512, 0.025229748338460922, 0.01220141164958477, -0.09416823834180832, -0.0037855857517570257, 0.03035297617316246, 0.02146395482122898, -0.006569980178028345, -0.06315997242927551, -0.0851387083530426, 0.04817177355289459, 0.2267955243587494, 0.040757548063993454, -0.16663971543312073, -0.09216397255659103, 0.0600113719701767, -0.035839349031448364, -0.062176454812288284, -0.016713207587599754, 0.055920589715242386, -0.21080850064754486, 0.033392567187547684, -0.044886261224746704, 0.10795199871063232, -0.13403008878231049, -0.0014891016762703657, 0.05499729514122009, 0.04355714097619057, -0.0694587230682373, 0.07058107107877731, -0.16325853765010834, 0.07990173250436783, 0.0035874024033546448, 0.0869690552353859, -0.06430231034755707, 0.019200358539819717, 0.030324574559926987, 0.03176494687795639, 0.08809172362089157, 0.016285177320241928, 0.03637218102812767, -0.06634260714054108, -0.04514298960566521, -0.0017982483841478825, 0.05344638228416443, -0.07499448955059052, 0.13278064131736755, -0.030502524226903915, 0.02979947440326214, -0.0247948057949543, -0.09272421896457672, -0.11313143372535706, -0.14078091084957123, 0.07381556183099747, -0.1106017678976059, 0.0034033465199172497, -0.061728157103061676, -0.02449943497776985, 0.014398165047168732, 0.2066429853439331, -0.09033626317977905, -0.08360914885997772, -0.13531744480133057, 0.01434451062232256, 0.1447182297706604, -0.07452677190303802, 0.010063830763101578, -0.005109948571771383, 0.1430257111787796, 0.002622138475999236, -0.13232474029064178, -0.005909524392336607, -0.06379620730876923, -0.17912720143795013, -0.028582189232110977, 0.12853418290615082, 0.0660971999168396, 0.03732053190469742, 0.008046564646065235, 0.007404637057334185, -0.037520378828048706, -0.17018908262252808, 0.024409744888544083, 0.1479921042919159, 0.029146667569875717, 0.025413338094949722, 0.01153079979121685, 0.03870503231883049, -0.1296006292104721, 0.018129214644432068, 0.05511657893657684, 0.19457654654979706, -0.07623142004013062, 0.15765994787216187, 0.006936142686754465, -0.09242071956396103, -0.1758396476507187, 0.0352405346930027, 0.0007899479824118316, 0.02950424514710903, 0.01622076891362667, -0.166824072599411, 0.026992104947566986, 0.023338347673416138, -0.0021767932921648026, 0.0683944821357727, -0.34281349182128906, -0.1472235918045044, 0.028560234233736992, 0.03003823198378086, -0.0750100389122963, -0.042667780071496964, -0.03847939893603325, -0.06428318470716476, -0.23734751343727112, 0.08863500505685806, -0.1297360062599182, 0.09278193861246109, 0.006805059965699911, 0.06065443903207779, 0.04653898999094963, -0.06584791094064713, 0.13000847399234772, -0.031170647591352463, 0.06376645714044571, -0.08174522966146469, -0.04205535352230072, 0.08390870690345764, -0.06191471219062805, 0.10267604142427444, 0.019917236641049385, 0.09288397431373596, -0.12136910855770111, -0.06756472587585449, -0.08255181461572647, 0.017696240916848183, -0.05920277535915375, -0.09561159461736679, -0.07630441337823868, 0.09871351718902588, 0.11284751445055008, -0.03816058114171028, -0.09580201655626297, -0.04577299952507019, -0.01960468292236328, 0.08219707012176514, 0.0884079784154892, 0.08396218717098236, -0.09658186137676239, 0.01385303121060133, 0.005468072835355997, 0.0281809251755476, -0.14266161620616913, 0.032465461641550064, 0.0861268863081932, 0.038721755146980286, 0.10579193383455276, 0.015174397267401218, -0.16416943073272705, 0.02037382684648037, 0.03657972440123558, -0.15867051482200623, -0.1000530794262886, -0.030968420207500458, -0.014546042308211327, -0.08065567165613174, -0.041949111968278885, 0.14756320416927338, -0.04230983182787895, -0.0313308909535408, -0.003539152443408966, 0.048900097608566284, -0.05289905518293381, 0.116586834192276, 0.03407406061887741, 0.04330179840326309, -0.07007158547639847, 0.10939501971006393, 0.061905521899461746, 0.01813274621963501, 0.03951164335012436, 0.050686147063970566, -0.08821095526218414, -0.003621612675487995, -0.07919678837060928, 0.029492221772670746, -0.05729047954082489, -0.009592936374247074, -0.019105253741145134, -0.04663747921586037, 0.030648667365312576, 0.10795628279447556, -0.014020645059645176, 0.10915613919496536, -0.03554578125476837, -0.013657222501933575, -0.13786208629608154, 0.07479752600193024, 0.05416286364197731, 0.024635175243020058, -0.11124296486377716, 0.1995317041873932, 0.02556959167122841, 0.0988217294216156, -0.04202645644545555, -0.05266739800572395, -0.0888725146651268, -0.008526566438376904, -0.15444763004779816, -0.044850628823041916, -0.07104392349720001, -0.03785290569067001, -0.015414969995617867, -0.0361204631626606, -0.017206136137247086, 0.05642553046345711, -0.025654353201389313, -0.06461087614297867, -0.050710223615169525, 0.049497757107019424, -0.14535503089427948, 0.0026290949899703264, 0.10874156653881073, -0.06466898322105408, 0.107759028673172, 0.05950043722987175, -0.031003812327980995, 0.01338681299239397, -0.09076253324747086, 0.030451493337750435, -0.035565804690122604, 0.008004766888916492, 0.034427471458911896, -0.13646088540554047, 0.010341640561819077, -0.057101063430309296, -0.0554320327937603, 0.01702897809445858, 0.01726885512471199, -0.12430020421743393, -0.0006263100658543408, 0.06391310691833496, 0.00793315190821886, -0.06725896894931793, 0.07189128547906876, 0.06767024844884872, 0.030653730034828186, 0.061840273439884186, -0.03716110438108444, 0.07938313484191895, -0.16948442161083221, -0.046554986387491226, 0.0051048919558525085, 0.008369548246264458, 0.05976339057087898, -0.005419051740318537, 0.04446101188659668, -0.018400395289063454, 0.19191382825374603, 0.00984923355281353, -0.0181514173746109, 0.03996460884809494, -0.04063897579908371, -0.010091490112245083, 0.04575398191809654, 0.05853649973869324, -0.04245202988386154, -0.026062648743391037, -0.02883981168270111, 0.004653088748455048, -0.0683816596865654, -0.026134127750992775, 0.11346890032291412, 0.05535847321152687, 0.16512973606586456, -0.02867371402680874, 0.054352402687072754, -0.02571682631969452, -0.11292581260204315, -0.03223349526524544, -0.02664066106081009, 0.0474802628159523, -0.07413382083177567, 0.07760424166917801, 0.15703432261943817, -0.15317678451538086, 0.11069785058498383, 0.01706656813621521, -0.0668143555521965, -0.09248995780944824, -0.16201499104499817, -0.010827658697962761, -0.02502705156803131, 0.03362627327442169, -0.1260790079832077, 0.08491671085357666, 0.03345172107219696, 0.03588907793164253, -0.06227745860815048, 0.11983507871627808, -0.05946756899356842, -0.10508730262517929, 0.034325625747442245, 0.02958684228360653, 0.022114554420113564, 0.02399943210184574, 0.07468566298484802, 0.022366901859641075, -0.0006102393381297588, 0.05574513599276543, 0.03960428759455681, 0.027427805587649345, 0.03888273611664772, -0.008880775421857834, -0.05693087354302406, 0.029171224683523178, 0.006535151973366737, 0.03908916935324669, 0.11636549979448318, 0.07277169078588486, -0.01858132891356945, -0.0362633652985096, 0.29414328932762146, -0.03546816110610962, -0.033776041120290756, -0.16920629143714905, 0.17879775166511536, 0.025926297530531883, -0.015790699049830437, 0.026204723864793777, -0.1407104879617691, 0.014710118994116783, 0.1655787080526352, 0.17084185779094696, -0.051961202174425125, 0.010260451585054398, -0.03954529017210007, 0.010753324255347252, 0.029806986451148987, 0.0928284227848053, 0.07055975496768951, 0.1913166046142578, -0.044357478618621826, 0.06103678420186043, -0.009650127030909061, -0.016488777473568916, -0.018809150904417038, 0.11490806937217712, -0.0240772757679224, 0.0033075865358114243, -0.06024302542209625, 0.08844520896673203, -0.07185433059930801, -0.2537442147731781, -0.004520118236541748, -0.04970044642686844, -0.09875901788473129, 0.04591384157538414, -0.04169587045907974, -0.020586520433425903, 0.09049136191606522, 0.015526051633059978, -0.022920051589608192, 0.14037753641605377, 0.03375888615846634, -0.039397623389959335, -0.026417512446641922, 0.08976387232542038, -0.02736489102244377, 0.1999817043542862, -0.02603142149746418, 0.0070819249376654625, 0.09185921400785446, 0.021198634058237076, -0.12175387889146805, -0.00016313136438839138, 0.04213600605726242, -0.08450080454349518, -0.011942286975681782, 0.18590843677520752, 0.008483076468110085, 0.026920966804027557, 0.04772287607192993, -0.04371900483965874, 0.029272833839058876, -0.0649443194270134, 0.04000290110707283, -0.13697126507759094, 0.04802508279681206, -0.075395368039608, 0.15217576920986176, 0.18348102271556854, -0.07777369022369385, 0.026038726791739464, -0.05517369508743286, -0.0044707381166517735, -0.01429060474038124, 0.050980813801288605, -0.02000856213271618, -0.10952506214380264, 0.02596348337829113, 0.02661793865263462, 0.021638939157128334, -0.20335257053375244, -0.069876529276371, 0.047908227890729904, -0.05241773650050163, 0.0088780103251338, 0.17166756093502045, 0.03903227671980858, 0.06098455563187599, -0.031685344874858856, 0.011701701208949089, -0.020021595060825348, 0.10562952607870102, -0.13973397016525269, -0.09030847996473312 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1010194fa644be099aa2d1329de0b230.448x448x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Post Malone</div> <a href="https://genius.com/artists/post-malone"> <div style="text-align: center; font-size: 14px;">@post-malone</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Post Malone. Dataset is available [here](https://huggingface.co/datasets/huggingartists/post-malone). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/post-malone") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/5ig21wpy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Post Malone's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2ih9ntzv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2ih9ntzv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/post-malone') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/post-malone") model = AutoModelWithLMHead.from_pretrained("huggingartists/post-malone") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/post-malone"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/post-malone
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/post-malone", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/post-malone #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Post Malone</div> <a href="URL <div style="text-align: center; font-size: 14px;">@post-malone</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Post Malone. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Post Malone's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Post Malone.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Post Malone's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/post-malone #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Post Malone.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Post Malone's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/post-malone #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Post Malone.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Post Malone's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01866791397333145, 0.1777891218662262, -0.0029252073727548122, 0.042007386684417725, 0.09665214270353317, 0.009229463525116444, 0.09092840552330017, 0.10767893493175507, -0.0028602569364011288, 0.07143150269985199, 0.07001390308141708, 0.02051403932273388, 0.06638896465301514, 0.09871227294206619, 0.07582059502601624, -0.24263641238212585, 0.025533150881528854, -0.09593267738819122, -0.005214737728238106, 0.11218052357435226, 0.0968526303768158, -0.06002356484532356, 0.08073247224092484, 0.039067547768354416, -0.07261467725038528, 0.025917252525687218, 0.009429888799786568, -0.053283218294382095, 0.08424606174230576, 0.049573253840208054, 0.04087258502840996, 0.021950192749500275, 0.0650748535990715, -0.1814834326505661, 0.028773799538612366, 0.12651586532592773, 0.03920507803559303, 0.0760558694601059, 0.05885302275419235, -0.07735505700111389, 0.1436888426542282, -0.019544392824172974, 0.09790611267089844, 0.05208072438836098, -0.11834217607975006, -0.15027427673339844, -0.13361845910549164, 0.08442428708076477, 0.09075865149497986, 0.0900789350271225, -0.030373483896255493, 0.056837018579244614, -0.02228466421365738, 0.039309822022914886, 0.23607678711414337, -0.25028255581855774, -0.01463218592107296, 0.08721025288105011, 0.05069923400878906, 0.03562472388148308, -0.07727604359388351, 0.010389734990894794, 0.037749357521533966, 0.021331561729311943, 0.04108560085296631, -0.016901539638638496, 0.19293533265590668, 0.03071175329387188, -0.1070268377661705, -0.07975458353757858, 0.1255897432565689, -0.02451682835817337, -0.07217337191104889, -0.134169802069664, -0.006443351041525602, -0.010435223579406738, 0.04322449117898941, 0.0020564019214361906, -0.0016621854156255722, 0.008400773629546165, -0.037641990929841995, -0.10831042379140854, -0.08156761527061462, -0.036927271634340286, -0.019163191318511963, 0.0499156191945076, 0.03755895793437958, 0.03891323506832123, -0.07721508294343948, 0.2318134754896164, -0.0051378486678004265, -0.09626945108175278, -0.03917815163731575, -0.0961959958076477, -0.08693470805883408, -0.04875781387090683, 0.006347843445837498, -0.016630323603749275, -0.05088135600090027, 0.15865686535835266, -0.021427515894174576, 0.028499554842710495, -0.017425643280148506, -0.0124459657818079, 0.14318864047527313, 0.14206360280513763, -0.10869059711694717, -0.03305396810173988, 0.059440139681100845, -0.01245690044015646, -0.07012797147035599, -0.05062134191393852, -0.009555147029459476, -0.007983170449733734, 0.03438965231180191, 0.0853717252612114, 0.0679408609867096, 0.06004409119486809, 0.012430636212229729, -0.07089836150407791, 0.08599831908941269, -0.13541486859321594, 0.016039835289120674, -0.003258991986513138, -0.04631474241614342, 0.021094484254717827, 0.048018839210271835, 0.01625814102590084, -0.10442039370536804, 0.11048401147127151, -0.06436965614557266, -0.047715894877910614, -0.08517676591873169, -0.0956118106842041, -0.00602314155548811, -0.02578110620379448, -0.04740059748291969, -0.07309915125370026, -0.17629821598529816, -0.0453169010579586, 0.028613222762942314, -0.0475495383143425, -0.03661405295133591, 0.031783461570739746, -0.01216885820031166, 0.008596135303378105, -0.01750805787742138, -0.039997052401304245, -0.028518691658973694, 0.0260016992688179, -0.06545761972665787, 0.02321568690240383, 0.07986130565404892, 0.04499884322285652, -0.10913052409887314, 0.06873728334903717, -0.15338945388793945, 0.11612976342439651, -0.02092442475259304, 0.021513236686587334, -0.09515935182571411, -0.07989241182804108, -0.015492599457502365, -0.0409712977707386, -0.005019115284085274, 0.09356594830751419, -0.1621103137731552, -0.03322900831699371, 0.19456662237644196, -0.06639041006565094, -0.07178481668233871, 0.06668440252542496, -0.07592989504337311, 0.03194818273186684, 0.12103865295648575, 0.08839324861764908, 0.1570359319448471, -0.1297954022884369, -0.054171789437532425, -0.047337621450424194, -0.06752121448516846, 0.1808253973722458, 0.05184426158666611, -0.02488004043698311, 0.012467694468796253, 0.007345872465521097, -0.042135197669267654, -0.016346141695976257, -0.017126191407442093, -0.035945698618888855, -0.01627158187329769, 0.0030542793683707714, -0.012911791913211346, -0.04122510552406311, -0.05568978190422058, -0.030094357207417488, -0.10315334796905518, 0.05647658184170723, 0.0987601950764656, -0.06328745186328888, 0.013009408488869667, -0.09354756772518158, 0.012428922578692436, -0.04456648975610733, 0.001961363712325692, -0.1682310402393341, -0.0517013818025589, 0.026198646053671837, -0.07744022458791733, 0.08618378639221191, 0.04757151007652283, 0.03793296217918396, 0.06013376638293266, -0.015671251341700554, 0.007581849582493305, -0.03730621561408043, -0.011321144178509712, -0.025668669492006302, -0.15519461035728455, -0.051430828869342804, -0.043985288590192795, 0.09134849160909653, -0.1016634926199913, 0.009163315407931805, 0.08758307993412018, 0.12914606928825378, 0.020919177681207657, -0.0739065408706665, 0.02310924232006073, -0.04300454631447792, -0.02171751856803894, -0.1075671911239624, -0.04557593911886215, 0.016599809750914574, -0.007925424724817276, 0.14572888612747192, -0.16881561279296875, -0.07491198927164078, 0.11126434057950974, 0.12162713706493378, -0.08170580863952637, 0.048017438501119614, -0.08130490779876709, -0.014566349796950817, -0.04275442287325859, -0.045970916748046875, 0.26264703273773193, 0.030213454738259315, 0.08736726641654968, -0.10202604532241821, -0.10508091747760773, -0.016514640301465988, -0.04328038543462753, -0.029536880552768707, 0.02795681357383728, 0.024226602166891098, -0.16156893968582153, 0.0389694906771183, -0.0035074003972113132, 0.09240507334470749, 0.20194873213768005, 0.03858695924282074, -0.08370183408260345, -0.06495669484138489, -0.07353995740413666, 0.001589084742590785, 0.07163362205028534, 0.011077020317316055, 0.03476232290267944, 0.044670816510915756, 0.059820692986249924, 0.04874856770038605, -0.11138192564249039, 0.008618541993200779, 0.06854334473609924, -0.03713921830058098, -0.05635993182659149, 0.012905710376799107, 0.027860518544912338, 0.08121336251497269, 0.09035762399435043, 0.1401757448911667, -0.06265997141599655, -0.05493907257914543, -0.1374487727880478, 0.12477343529462814, -0.09541844576597214, -0.23349349200725555, -0.1392502337694168, -0.07006196677684784, 0.012521404772996902, 0.012081523425877094, 0.0325838178396225, -0.05296788364648819, -0.04657531902194023, -0.0937848910689354, 0.09657534211874008, -0.054422084242105484, -0.027256373316049576, 0.012981667183339596, 0.019672241061925888, -0.008906195871531963, -0.11880629509687424, -0.03196962922811508, 0.033024076372385025, -0.09383691847324371, -0.01548229530453682, 0.03192053362727165, 0.04221580922603607, 0.16323645412921906, -0.010846133343875408, 0.014150786213576794, -0.02130257710814476, 0.2696223258972168, -0.11024508625268936, 0.06943479925394058, 0.168583944439888, -0.0038863285444676876, 0.05858207121491432, 0.06580978631973267, 0.0024502903688699007, -0.04975280538201332, 0.06805471330881119, 0.077314093708992, -0.06817299872636795, -0.22079350054264069, -0.03622177243232727, -0.01011684164404869, 0.02097994089126587, 0.11289526522159576, 0.04304137080907822, 0.05260373651981354, 0.0035764379426836967, -0.1016891747713089, 0.027485793456435204, 0.026853255927562714, 0.10527791827917099, -0.053528446704149246, -0.011238528415560722, 0.048625390976667404, -0.05317211523652077, 0.0316191129386425, 0.13203269243240356, 0.03908667713403702, 0.19072435796260834, -0.06456789374351501, 0.09621937572956085, 0.07634255290031433, 0.10561525076627731, 0.022724226117134094, 0.017144856974482536, -0.01752534508705139, 0.02807355672121048, 0.001711570075713098, -0.093517005443573, -0.003351773601025343, 0.03565613925457001, 0.03933079540729523, -0.017409672960639, -0.04489562287926674, -0.07240164279937744, 0.049315668642520905, 0.2205895483493805, 0.019519826397299767, -0.15801791846752167, -0.09162475913763046, 0.056751348078250885, -0.0687151849269867, -0.05726202577352524, -0.010394134558737278, 0.05839677155017853, -0.21526679396629333, 0.052768923342227936, -0.03709546849131584, 0.11126068979501724, -0.11709146201610565, -0.0002034544595517218, 0.091688372194767, 0.04007507488131523, -0.06455455720424652, 0.09339902549982071, -0.15296338498592377, 0.05757105350494385, -0.006009129341691732, 0.07168565690517426, -0.0593251995742321, 0.029657073318958282, 0.013232147321105003, 0.03714577853679657, 0.0781792402267456, 0.018357785418629646, 0.0169456098228693, -0.012940775603055954, -0.04545947536826134, 0.0012622261419892311, 0.05640214681625366, -0.125464528799057, 0.12020255625247955, -0.03977842256426811, 0.03538341447710991, -0.026628239080309868, -0.09391000866889954, -0.0957438051700592, -0.15338821709156036, 0.08270592242479324, -0.12179216742515564, -0.005584742408245802, -0.07225168496370316, -0.01679353602230549, 0.008401940576732159, 0.24005742371082306, -0.07315230369567871, -0.07909057289361954, -0.13967633247375488, -0.0036131073720753193, 0.13200810551643372, -0.07943332940340042, 0.0007788627990521491, -0.017654037103056908, 0.17533805966377258, -0.00011515893856994808, -0.13811498880386353, -0.005585258360952139, -0.062235742807388306, -0.1693892776966095, -0.022108929231762886, 0.1674502044916153, 0.0678706243634224, 0.032213401049375534, -0.001155590289272368, 0.004735629539936781, -0.058765362948179245, -0.16506466269493103, 0.024981709197163582, 0.14246396720409393, 0.015534266829490662, 0.02389172837138176, 0.03924769535660744, 0.042418867349624634, -0.12492722272872925, 0.020830072462558746, 0.04769592732191086, 0.17280793190002441, -0.07784820348024368, 0.17943565547466278, 0.016296062618494034, -0.09198671579360962, -0.16448207199573517, 0.02631053887307644, 0.0073230452835559845, 0.018552370369434357, 0.024116255342960358, -0.1860630065202713, 0.04604120925068855, 0.03242001682519913, -0.008603858761489391, 0.039227187633514404, -0.336859792470932, -0.14926166832447052, 0.008897766470909119, 0.008787199854850769, -0.10206377506256104, -0.03915419429540634, -0.03388940170407295, -0.07168679684400558, -0.26556313037872314, 0.08304814249277115, -0.11332064867019653, 0.0768934115767479, 0.01080795656889677, 0.08116645365953445, 0.04149680957198143, -0.060881901532411575, 0.12803617119789124, -0.01656974107027054, 0.06390681862831116, -0.09603343158960342, -0.05310199037194252, 0.09164469689130783, -0.06668490171432495, 0.10324139147996902, 0.02548004500567913, 0.09391602128744125, -0.11935222148895264, -0.07977756857872009, -0.07782895117998123, 0.010903655551373959, -0.057858098298311234, -0.0983310267329216, -0.09918173402547836, 0.08764535188674927, 0.12262260913848877, -0.04412843659520149, -0.090719074010849, -0.053618110716342926, -0.0023950047325342894, 0.06493654102087021, 0.10346005856990814, 0.07370300590991974, -0.093357153236866, 0.009393969550728798, 0.01711919717490673, 0.020299093797802925, -0.1508226990699768, 0.04574812203645706, 0.09382708370685577, 0.03663170710206032, 0.10512106120586395, 0.00797448679804802, -0.16511958837509155, 0.000981195829808712, 0.04260198771953583, -0.17656676471233368, -0.11210586130619049, -0.049465760588645935, 0.010955090634524822, -0.09576954692602158, -0.05143485218286514, 0.13803446292877197, -0.023950571194291115, -0.03764529898762703, 0.005560871213674545, 0.04686754196882248, -0.04341445118188858, 0.09647378325462341, 0.018228791654109955, 0.04293875768780708, -0.06519101560115814, 0.1154196709394455, 0.07204444706439972, 0.017120059579610825, 0.030338158831000328, 0.06510047614574432, -0.0856781080365181, 0.007540987338870764, -0.07312694936990738, 0.04043477773666382, -0.03268039971590042, -0.006655716337263584, 0.0009321902762167156, -0.044331252574920654, 0.039652664214372635, 0.08085781335830688, -0.009596582502126694, 0.11321008950471878, -0.042516693472862244, 0.0064486246556043625, -0.13049724698066711, 0.08346837759017944, 0.04729129374027252, 0.021605731919407845, -0.12007482349872589, 0.1996987760066986, 0.021231312304735184, 0.08867903798818588, -0.03605978935956955, -0.0576804094016552, -0.06428082287311554, -0.012906234711408615, -0.1061113104224205, -0.05258972942829132, -0.08631272614002228, -0.02757306955754757, -0.009173650294542313, -0.037864819169044495, -0.01823633536696434, 0.05139881372451782, -0.030138187110424042, -0.061796531081199646, -0.06548313051462173, 0.041935134679079056, -0.14138172566890717, 0.02920406311750412, 0.11683978885412216, -0.05541506037116051, 0.11563845723867416, 0.062232084572315216, -0.029902564361691475, 0.015877963975071907, -0.09546630084514618, 0.03361492604017258, -0.03306742385029793, 0.01871809922158718, 0.02096695452928543, -0.1551971286535263, 0.009410536848008633, -0.04428143799304962, -0.06545871496200562, 0.00974755734205246, 0.0026549033354967833, -0.12927542626857758, 0.008298071101307869, 0.07989972084760666, -0.0187639519572258, -0.07408259809017181, 0.058572918176651, 0.062085092067718506, 0.02768176794052124, 0.057658251374959946, -0.029602229595184326, 0.07851117104291916, -0.17321336269378662, -0.050262246280908585, 0.012563174590468407, 0.02704247273504734, 0.03561698645353317, -0.007601058576256037, 0.0378468781709671, -0.017363885417580605, 0.19871310889720917, 0.022044412791728973, -0.03526127710938454, 0.04199648275971413, -0.055542755872011185, 0.013274699449539185, 0.04115286096930504, 0.061664484441280365, -0.04683230072259903, -0.037955086678266525, 0.003078900743275881, -0.02643490396440029, -0.08687174320220947, -0.048629023134708405, 0.11997852474451065, 0.05577200651168823, 0.19239069521427155, -0.05671652406454086, 0.06197119131684303, -0.01623677648603916, -0.13466280698776245, -0.006369401700794697, -0.04343650862574577, 0.03677220642566681, -0.06817260384559631, 0.05565165355801582, 0.173310786485672, -0.16574500501155853, 0.11827904731035233, 0.021318476647138596, -0.056564319878816605, -0.10884933173656464, -0.18079033493995667, -0.015087982639670372, -0.047655168920755386, 0.03197895735502243, -0.13431596755981445, 0.08598148822784424, 0.030698545277118683, 0.03279079869389534, -0.06959637999534607, 0.13448679447174072, -0.08177704364061356, -0.11429570615291595, 0.02926420234143734, 0.024212276563048363, 0.02528565190732479, 0.04933178424835205, 0.08571919798851013, 0.025456473231315613, 0.012600411660969257, 0.06700461357831955, 0.03803398087620735, 0.02906697988510132, 0.02693806402385235, -0.0241243913769722, -0.05016518011689186, 0.027713004499673843, 0.006627876777201891, 0.03099152445793152, 0.11010637134313583, 0.05812587961554527, -0.01606224663555622, -0.028866615146398544, 0.29607462882995605, -0.03897154703736305, -0.04095779359340668, -0.17913299798965454, 0.17350398004055023, 0.011885903775691986, -0.010433011688292027, 0.030548755079507828, -0.12590256333351135, 0.006851423531770706, 0.1341676414012909, 0.181171715259552, -0.03203399479389191, 0.014593502506613731, -0.03005709871649742, 0.01455769594758749, 0.03637335076928139, 0.0866723284125328, 0.06614973396062851, 0.19181504845619202, -0.036276306957006454, 0.04260297492146492, -0.0048261284828186035, -0.015408108942210674, -0.009903877973556519, 0.10440760850906372, -0.030886070802807808, 0.004680723417550325, -0.05419030040502548, 0.0982021763920784, -0.03745250403881073, -0.27259042859077454, -0.027477692812681198, -0.028360627591609955, -0.08895434439182281, 0.06586883217096329, -0.011950293555855751, -0.03925742208957672, 0.08570156246423721, 0.022765642032027245, -0.04385765269398689, 0.1460200846195221, 0.04417940974235535, -0.04732213541865349, -0.01731913536787033, 0.1071094498038292, -0.041090745478868484, 0.1899479329586029, -0.02446609176695347, 0.0009863340528681874, 0.08511697500944138, 0.00970897264778614, -0.12137813866138458, 0.006011872086673975, 0.041111912578344345, -0.07349707186222076, -0.03061801940202713, 0.19664457440376282, 0.012660594657063484, 0.04716199263930321, 0.06250160187482834, -0.06264772266149521, 0.024075133726000786, -0.0646178126335144, 0.05215628072619438, -0.14919064939022064, 0.06088054180145264, -0.08748660236597061, 0.1353456974029541, 0.18216060101985931, -0.06575300544500351, 0.032789550721645355, -0.05763215944170952, -0.003015504451468587, -0.023204293102025986, 0.08044860512018204, -0.012666014954447746, -0.09759068489074707, 0.01042388379573822, 0.016146352514624596, 0.025041723623871803, -0.19260139763355255, -0.07833932340145111, 0.060568127781152725, -0.052091579884290695, 0.02309226244688034, 0.17858882248401642, 0.020714981481432915, 0.05916377529501915, -0.030519703403115273, -0.0011033237678930163, -0.016844552010297775, 0.11551617085933685, -0.15881384909152985, -0.07641300559043884 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e701c222dfb8725065dd99c8a43988da.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">​​pyrokinesis</div> <a href="https://genius.com/artists/pyrokinesis"> <div style="text-align: center; font-size: 14px;">@pyrokinesis</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ​​pyrokinesis. Dataset is available [here](https://huggingface.co/datasets/huggingartists/pyrokinesis). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/pyrokinesis") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1s8696f3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ​​pyrokinesis's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/22hm2utc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/22hm2utc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/pyrokinesis') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/pyrokinesis") model = AutoModelWithLMHead.from_pretrained("huggingartists/pyrokinesis") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/pyrokinesis"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/pyrokinesis
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/pyrokinesis", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pyrokinesis #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">​​pyrokinesis</div> <a href="URL <div style="text-align: center; font-size: 14px;">@pyrokinesis</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ​​pyrokinesis. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ​​pyrokinesis's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​​pyrokinesis.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​​pyrokinesis's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pyrokinesis #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​​pyrokinesis.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​​pyrokinesis's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/pyrokinesis #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ​​pyrokinesis.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​​pyrokinesis's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04330717399716377, 0.16383853554725647, -0.002833856036886573, 0.05188870429992676, 0.11082036793231964, 0.010210986249148846, 0.08306755870580673, 0.11798170953989029, 0.019113047048449516, 0.0739661157131195, 0.07128811627626419, 0.05180848389863968, 0.07058031111955643, 0.08452330529689789, 0.06530678272247314, -0.229173481464386, 0.03741523623466492, -0.07121532410383224, 0.0284543689340353, 0.10850866883993149, 0.09368614852428436, -0.06481904536485672, 0.07412298023700714, 0.0279869195073843, -0.07168963551521301, 0.008164896629750729, 0.007022264879196882, -0.06348400563001633, 0.09481627494096756, 0.05447906255722046, 0.04473783075809479, 0.025855183601379395, 0.0615013912320137, -0.17273633182048798, 0.029346372932195663, 0.1276567578315735, 0.03165972977876663, 0.08561386913061142, 0.05486956238746643, -0.08359430730342865, 0.1327216476202011, -0.02391023375093937, 0.08794591575860977, 0.04941665008664131, -0.11724483966827393, -0.13750089704990387, -0.14328089356422424, 0.11183205991983414, 0.0872306227684021, 0.09526048600673676, -0.029213611036539078, 0.09223981201648712, -0.03329833969473839, 0.04971293359994888, 0.2411503791809082, -0.23476602137088776, -0.008213422261178493, 0.07716212421655655, 0.047730185091495514, 0.0122069688513875, -0.08386649191379547, 0.005212428048253059, 0.03812563791871071, 0.03659093379974365, 0.039122603833675385, -0.023929329589009285, 0.1398703157901764, 0.018159935250878334, -0.10670585930347443, -0.08587615191936493, 0.09950657188892365, -0.026983261108398438, -0.07894977182149887, -0.1360914707183838, -0.003287107450887561, -0.033312536776065826, 0.03376677259802818, 0.016566868871450424, -0.006158101372420788, -0.0031335917301476, -0.03334857523441315, -0.11069557815790176, -0.07899556308984756, -0.033422112464904785, -0.008733470924198627, 0.05841236561536789, 0.04776301234960556, 0.039537254720926285, -0.08292733877897263, 0.23153255879878998, -0.0068007889203727245, -0.0988258570432663, -0.048195164650678635, -0.1056237742304802, -0.07986437529325485, -0.03844848647713661, 0.0008784996462054551, 0.003384637413546443, -0.039331503212451935, 0.14249728620052338, -0.05934823676943779, 0.013757702894508839, -0.016187863424420357, 0.007820464670658112, 0.13399626314640045, 0.13648265600204468, -0.12196633964776993, -0.02319694496691227, 0.07281416654586792, 0.004928106442093849, -0.06564071029424667, -0.04717247933149338, -0.0022227647714316845, -0.018241267651319504, 0.05343620106577873, 0.08232617378234863, 0.078923799097538, 0.060606811195611954, 0.0054402644746005535, -0.06396137923002243, 0.07882209867238998, -0.12762363255023956, 0.0062188091687858105, -0.010253235697746277, -0.06177861988544464, 0.03109728917479515, 0.07162351161241531, 0.00024676750763319433, -0.11960995197296143, 0.11180505901575089, -0.06860420107841492, -0.04644930735230446, -0.08845047652721405, -0.10221252590417862, -0.002291434910148382, -0.06300037354230881, -0.035269662737846375, -0.0740671381354332, -0.18914206326007843, -0.04477022960782051, 0.013596104457974434, -0.050644077360630035, -0.033183321356773376, 0.032367974519729614, -0.0342247374355793, 0.004240005277097225, -0.023708505555987358, -0.030224008485674858, -0.027579981833696365, 0.04022146016359329, -0.07705532759428024, 0.029975587502121925, 0.06393350660800934, 0.0448264479637146, -0.12302402406930923, 0.0670107901096344, -0.12597690522670746, 0.11663902550935745, -0.013509485870599747, -0.001119665801525116, -0.09066495299339294, -0.08881062269210815, -0.014600688591599464, -0.03188033401966095, 0.025019029155373573, 0.12193192541599274, -0.16036047041416168, -0.026244336739182472, 0.20915035903453827, -0.07266426086425781, -0.07091647386550903, 0.06740899384021759, -0.0678151547908783, 0.032921575009822845, 0.11950027197599411, 0.08110250532627106, 0.14371255040168762, -0.10730379819869995, -0.08533883094787598, -0.046843402087688446, -0.06564230471849442, 0.15613366663455963, 0.0318281352519989, -0.021187670528888702, 0.04006429761648178, 0.006572284270077944, -0.03347015008330345, 0.0006879635620862246, -0.03417455404996872, -0.03512801229953766, -0.024538157507777214, -0.014046547003090382, -0.002137622330337763, -0.026790078729391098, -0.04696572944521904, -0.020978309214115143, -0.100126713514328, 0.06532591581344604, 0.10403259843587875, -0.06974814087152481, 0.016284164041280746, -0.09304077923297882, 0.0419471338391304, -0.04292091354727745, 0.011456525884568691, -0.18425606191158295, -0.04467163234949112, 0.01894538849592209, -0.06672929972410202, 0.0628407672047615, 0.014439145103096962, 0.03922668471932411, 0.07070194184780121, -0.016551712527871132, -0.0077054984867572784, -0.04468129575252533, -0.008031468838453293, -0.042260799556970596, -0.16437460482120514, -0.05210725963115692, -0.04214801266789436, 0.08396033197641373, -0.1107289120554924, 0.007276630960404873, 0.07207170873880386, 0.14310483634471893, 0.018979590386152267, -0.06926687806844711, 0.03844735026359558, -0.023458106443285942, -0.02510695531964302, -0.10183821618556976, -0.03339467570185661, 0.008303155191242695, -0.012232870794832706, 0.156556636095047, -0.14263370633125305, -0.09452660381793976, 0.12300391495227814, 0.10773807764053345, -0.09120981395244598, 0.049593422561883926, -0.07544238865375519, -0.01992800459265709, -0.0492112934589386, -0.04754018038511276, 0.24885320663452148, 0.03687216341495514, 0.09779417514801025, -0.09086136519908905, -0.08024944365024567, -0.0010273013031110168, -0.03973719850182533, -0.02577272616326809, 0.046775687485933304, 0.023326797410845757, -0.1500464379787445, 0.05582293123006821, -0.01867757923901081, 0.08001259714365005, 0.1949695497751236, 0.031055666506290436, -0.09400161355733871, -0.05038129910826683, -0.07075335085391998, 0.00005114170198794454, 0.09452764689922333, -0.00099022570066154, 0.03468935936689377, 0.04751381650567055, 0.04297870770096779, 0.043161068111658096, -0.11769901216030121, 0.006573345512151718, 0.05568793788552284, -0.029668353497982025, -0.05582437664270401, 0.024023227393627167, 0.0339973047375679, 0.09401863068342209, 0.0688759833574295, 0.11323803663253784, -0.05738072097301483, -0.05083221569657326, -0.13478286564350128, 0.14158542454242706, -0.08448779582977295, -0.22052177786827087, -0.12874750792980194, -0.06264418363571167, 0.003733646823093295, 0.004404664505273104, 0.03956683352589607, -0.049654338508844376, -0.03447489067912102, -0.0918092280626297, 0.078485868871212, -0.02308575063943863, -0.016206521540880203, -0.013377790339291096, 0.011775274761021137, -0.013656046241521835, -0.12183135747909546, -0.03305079787969589, 0.013764958828687668, -0.0769551619887352, 0.009606639854609966, 0.03207116201519966, 0.04055463522672653, 0.15593507885932922, -0.004008815623819828, 0.009345106780529022, -0.022800518199801445, 0.2742113471031189, -0.11027944833040237, 0.05637134611606598, 0.18372556567192078, 0.0002913468924816698, 0.05567824840545654, 0.05601608008146286, 0.0015109018422663212, -0.052759986370801926, 0.05288754031062126, 0.06742679327726364, -0.0707651898264885, -0.21501758694648743, -0.042922478169202805, -0.015074030496180058, 0.01152029074728489, 0.11271575838327408, 0.0334196612238884, 0.05826122686266899, 0.01612549088895321, -0.10372690111398697, 0.04335055127739906, 0.01002294011414051, 0.09916342794895172, -0.06441446393728256, -0.009082566946744919, 0.0537196509540081, -0.052659422159194946, 0.03587440773844719, 0.11925927549600601, 0.0369693748652935, 0.23015238344669342, -0.08942495286464691, 0.06468351185321808, 0.08809095621109009, 0.11854962259531021, 0.01862458698451519, 0.03574748709797859, -0.03035161644220352, 0.02806353010237217, 0.01131492294371128, -0.09580202400684357, -0.010059005580842495, 0.027293642982840538, 0.02268066443502903, -0.005414273124188185, -0.06706269830465317, -0.0877067968249321, 0.05227341130375862, 0.24508784711360931, 0.03216315433382988, -0.17050251364707947, -0.10628064721822739, 0.05031493306159973, -0.039345111697912216, -0.05516533926129341, -0.022489015012979507, 0.06371023505926132, -0.21864207088947296, 0.030057094991207123, -0.03632952645421028, 0.11135133355855942, -0.13140057027339935, 0.0018849094631150365, 0.056206267327070236, 0.040975987911224365, -0.06142231449484825, 0.0757342055439949, -0.14995776116847992, 0.0902186781167984, -0.0022003939375281334, 0.08097575604915619, -0.06876695156097412, 0.015986500307917595, 0.028841698542237282, 0.03414576128125191, 0.09222054481506348, 0.018821733072400093, 0.05135037377476692, -0.05356062948703766, -0.0421316921710968, -0.006519008427858353, 0.0466836653649807, -0.08455681800842285, 0.12461748719215393, -0.025973254814743996, 0.03167681396007538, -0.02589082531630993, -0.0883975699543953, -0.09330051392316818, -0.13730168342590332, 0.0759938433766365, -0.10015566647052765, -0.007633646950125694, -0.06551612168550491, -0.030275171622633934, 0.016092682257294655, 0.2144225835800171, -0.08429320156574249, -0.08716513961553574, -0.13296842575073242, 0.0033874830696731806, 0.14623640477657318, -0.08000002056360245, 0.0012250312138348818, -0.011934831738471985, 0.1562938541173935, -0.003266335232183337, -0.13312754034996033, -0.009944255463778973, -0.07136954367160797, -0.1770516037940979, -0.021909814327955246, 0.15060269832611084, 0.07062657922506332, 0.03305099159479141, 0.003969962242990732, 0.0028423608746379614, -0.05182349309325218, -0.16853055357933044, 0.025331737473607063, 0.14789387583732605, 0.03471571207046509, 0.038155995309352875, 0.01972450688481331, 0.018765194341540337, -0.1343545764684677, 0.01926826499402523, 0.05804375931620598, 0.1873505860567093, -0.07817944139242172, 0.16496102511882782, 0.013075361959636211, -0.08835963904857635, -0.17924395203590393, 0.02748831920325756, 0.008953090757131577, 0.02525509148836136, 0.01599966175854206, -0.17261168360710144, 0.023878013715147972, 0.02937350794672966, -0.005021929275244474, 0.05860131233930588, -0.35421887040138245, -0.14862856268882751, 0.029464848339557648, 0.02570628933608532, -0.08338674902915955, -0.045011673122644424, -0.02875862456858158, -0.061269838362932205, -0.24018029868602753, 0.10158278793096542, -0.12357455492019653, 0.0880342349410057, -0.001893877168186009, 0.07586442679166794, 0.05171937867999077, -0.06817752122879028, 0.12734684348106384, -0.026916706934571266, 0.060598332434892654, -0.08348529785871506, -0.0437106192111969, 0.08435283601284027, -0.06154242902994156, 0.10487363487482071, 0.03399982303380966, 0.09318315237760544, -0.12559416890144348, -0.06633167713880539, -0.096763476729393, 0.017194030806422234, -0.05406903102993965, -0.09609178453683853, -0.0765901729464531, 0.10030615329742432, 0.12014498561620712, -0.03250093385577202, -0.0940990149974823, -0.04873935878276825, 0.002646799199283123, 0.07891477644443512, 0.08998227119445801, 0.09003192186355591, -0.10698708891868591, 0.010806876234710217, 0.009210271760821342, 0.024913374334573746, -0.15561150014400482, 0.0264545027166605, 0.08696462959051132, 0.042307354509830475, 0.10420258343219757, 0.013084693811833858, -0.16309131681919098, 0.01321191992610693, 0.03751038759946823, -0.17102445662021637, -0.09580286592245102, -0.037781234830617905, 0.0030847012531012297, -0.08279094099998474, -0.042767684906721115, 0.1382344514131546, -0.04639201983809471, -0.03554081171751022, -0.003790641436353326, 0.052222803235054016, -0.04824402555823326, 0.10680387169122696, 0.0253932885825634, 0.051166798919439316, -0.07331682741641998, 0.11436990648508072, 0.0642772987484932, 0.012471519410610199, 0.03662090748548508, 0.06358001381158829, -0.08728863298892975, -0.004916782025247812, -0.09131232649087906, 0.013042625971138477, -0.05714421346783638, -0.01700499653816223, -0.007620752789080143, -0.04169672355055809, 0.03174009919166565, 0.09858974814414978, -0.00785286258906126, 0.10379188507795334, -0.03494013845920563, -0.01868564635515213, -0.14513452351093292, 0.06749957799911499, 0.051231466233730316, 0.011436032131314278, -0.10580799728631973, 0.20130814611911774, 0.03308539465069771, 0.10439810901880264, -0.03773105889558792, -0.05422298610210419, -0.08308009803295135, -0.0018816246883943677, -0.13621681928634644, -0.05006595328450203, -0.0832987055182457, -0.03861306980252266, -0.01821627840399742, -0.03867433965206146, -0.009848816320300102, 0.056101392954587936, -0.030402643606066704, -0.06075600907206535, -0.049568772315979004, 0.05043433606624603, -0.1506062000989914, 0.009113174863159657, 0.10702704638242722, -0.058586373925209045, 0.11132850497961044, 0.0701325312256813, -0.037766844034194946, 0.01964421197772026, -0.10172178596258163, 0.030064716935157776, -0.03218543529510498, 0.009836315177381039, 0.027814224362373352, -0.14458754658699036, 0.01464893389493227, -0.050721194595098495, -0.06467606127262115, 0.014502258971333504, 0.012901443988084793, -0.1275874674320221, 0.0018212003633379936, 0.08063870668411255, 0.00416530529037118, -0.0738837867975235, 0.07183707505464554, 0.06822986900806427, 0.03750501945614815, 0.06130429729819298, -0.03825799375772476, 0.08752316236495972, -0.17181916534900665, -0.05007540434598923, 0.0007654423825442791, 0.010691415518522263, 0.050559695810079575, -0.003944456577301025, 0.04334546998143196, -0.015588548965752125, 0.18856531381607056, 0.00551978312432766, -0.0063064368441700935, 0.03931830823421478, -0.04943094402551651, -0.013663917779922485, 0.040151018649339676, 0.051340896636247635, -0.04755624756217003, -0.028311556205153465, -0.014429225586354733, -0.0035545462742447853, -0.07985799759626389, -0.01897680014371872, 0.11188676953315735, 0.06021042913198471, 0.18615460395812988, -0.038221005350351334, 0.05617903545498848, -0.02507365122437477, -0.11453390121459961, -0.041840195655822754, -0.03044929727911949, 0.037625059485435486, -0.0765463188290596, 0.08103718608617783, 0.15744048357009888, -0.15241236984729767, 0.12269367277622223, 0.01556122861802578, -0.0584566667675972, -0.09389861673116684, -0.16028261184692383, -0.004390852991491556, -0.022833364084362984, 0.03307883068919182, -0.12878091633319855, 0.08114200830459595, 0.039805084466934204, 0.0336315780878067, -0.07162165641784668, 0.12077237665653229, -0.058300528675317764, -0.10620123893022537, 0.033922068774700165, 0.03028937801718712, 0.02376447804272175, 0.027110863476991653, 0.0773477703332901, 0.022104263305664062, 0.005295655690133572, 0.062435396015644073, 0.04122764244675636, 0.02407260797917843, 0.0377328023314476, -0.012971565127372742, -0.05680418759584427, 0.030914634466171265, 0.009654686786234379, 0.04512888938188553, 0.12171520292758942, 0.07086724042892456, -0.0171519722789526, -0.03801935538649559, 0.3039434850215912, -0.03671663627028465, -0.045715831220149994, -0.168948695063591, 0.19396089017391205, 0.027742229402065277, -0.03224124759435654, 0.033523015677928925, -0.13290473818778992, 0.007855373434722424, 0.1594642698764801, 0.18353036046028137, -0.04232269152998924, 0.015791261568665504, -0.04123072326183319, 0.012147909961640835, 0.03163807466626167, 0.08866523206233978, 0.07779046893119812, 0.2093801647424698, -0.05207706242799759, 0.06414715945720673, -0.012024191208183765, -0.01160306204110384, -0.016974154859781265, 0.11352082341909409, -0.029687825590372086, -0.0020357875619083643, -0.0617201030254364, 0.09184201806783676, -0.07848495244979858, -0.26490387320518494, -0.0042788125574588776, -0.06055200845003128, -0.09910548478364944, 0.04806152358651161, -0.04156477004289627, -0.022406114265322685, 0.0939285159111023, 0.013984574005007744, -0.024637212976813316, 0.13444125652313232, 0.035459037870168686, -0.04142042621970177, -0.024286389350891113, 0.0900176391005516, -0.020572945475578308, 0.19314977526664734, -0.02688085101544857, 0.010198120959103107, 0.08776145428419113, 0.020762912929058075, -0.12117069214582443, 0.0025922805070877075, 0.03850412741303444, -0.08497526496648788, -0.023929249495267868, 0.193038672208786, 0.008765810169279575, 0.01975584216415882, 0.04836834594607353, -0.06428654491901398, 0.02704775333404541, -0.06266894936561584, 0.0519314706325531, -0.13478101789951324, 0.051665760576725006, -0.07111906260251999, 0.1438349336385727, 0.18811316788196564, -0.07192311435937881, 0.01953135058283806, -0.06283535808324814, -0.0050764866173267365, -0.016028722748160362, 0.04946011304855347, -0.02479158341884613, -0.10284049063920975, 0.032051097601652145, 0.02717810869216919, 0.02371261455118656, -0.19996698200702667, -0.07050422579050064, 0.05698667839169502, -0.06111370027065277, 0.006523960269987583, 0.16787950694561005, 0.02437783218920231, 0.0631575956940651, -0.026089061051607132, 0.014829495921730995, -0.01856856793165207, 0.10950891673564911, -0.14470532536506653, -0.09447228908538818 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/97bcb5755cb9780d76b37726a0ce4bef.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Queen</div> <a href="https://genius.com/artists/queen"> <div style="text-align: center; font-size: 14px;">@queen</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Queen. Dataset is available [here](https://huggingface.co/datasets/huggingartists/queen). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/queen") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1jdprwq2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Queen's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2lvkoamo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2lvkoamo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/queen') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/queen") model = AutoModelWithLMHead.from_pretrained("huggingartists/queen") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/queen"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/queen
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/queen", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/queen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Queen</div> <a href="URL <div style="text-align: center; font-size: 14px;">@queen</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Queen. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Queen's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Queen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Queen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/queen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Queen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Queen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 49, 71, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/queen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Queen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Queen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03730224817991257, 0.15453512966632843, -0.002410509390756488, 0.03722614422440529, 0.09331510215997696, -0.008319322019815445, 0.07115426659584045, 0.1104438528418541, 0.0038185880985111, 0.0790514200925827, 0.08841110020875931, 0.021187935024499893, 0.06821589171886444, 0.14355994760990143, 0.10867094993591309, -0.2683299779891968, 0.0349326990544796, -0.11210635304450989, 0.037207093089818954, 0.12597006559371948, 0.07454892992973328, -0.06181767210364342, 0.08436496555805206, 0.03001382388174534, -0.05780167505145073, 0.02645925246179104, -0.034249197691679, -0.06729976832866669, 0.10040785372257233, 0.08075440675020218, 0.007762584835290909, 0.041050199419260025, 0.06500145047903061, -0.18405015766620636, 0.03934268653392792, 0.12142778933048248, 0.03899315372109413, 0.0738738477230072, 0.036031417548656464, -0.05978070944547653, 0.17699679732322693, -0.029391244053840637, 0.07388155907392502, 0.044617727398872375, -0.09336172044277191, -0.19019153714179993, -0.11608584970235825, 0.08325526863336563, 0.10890819132328033, 0.07345109432935715, -0.03168024867773056, 0.058465734124183655, 0.016717106103897095, 0.04153329133987427, 0.24447812139987946, -0.2490795999765396, -0.00542112160474062, 0.10138919204473495, 0.03460618481040001, 0.05793323367834091, -0.07418297231197357, 0.025942757725715637, 0.04051435738801956, 0.023113001137971878, 0.04549136757850647, -0.026779159903526306, 0.21670696139335632, 0.014829455874860287, -0.09841121733188629, -0.09670199453830719, 0.09798343479633331, -0.026255866512656212, -0.08943965286016464, -0.15942029654979706, -0.0010297084227204323, -0.0257062129676342, 0.0330464243888855, -0.018294010311365128, 0.0005206522764638066, -0.006631686817854643, -0.035901907831430435, -0.10963986068964005, -0.08764560520648956, -0.035936374217271805, -0.013601400889456272, 0.07298647612333298, 0.024582326412200928, 0.029753459617495537, -0.0666227713227272, 0.23719827830791473, 0.00019005518697667867, -0.10115230828523636, -0.06861012428998947, -0.1070920005440712, -0.08522211760282516, -0.044245410710573196, 0.028809914365410805, 0.01116859633475542, -0.060370948165655136, 0.1407967209815979, -0.027084900066256523, 0.04507724568247795, 0.0066384365782141685, -0.018027957528829575, 0.17067894339561462, 0.12964920699596405, -0.10789886862039566, -0.016807081177830696, 0.04927811771631241, -0.008078336715698242, -0.05232222378253937, -0.07070132344961166, -0.007114874664694071, -0.027916017919778824, 0.020526252686977386, 0.10641725361347198, 0.045086055994033813, 0.05918928608298302, 0.04051390662789345, -0.05377286672592163, 0.13809765875339508, -0.1389615833759308, 0.0014621032169088721, -0.00547387171536684, -0.03165752440690994, 0.008344338275492191, 0.04973285645246506, 0.009371941909193993, -0.09471755474805832, 0.10516779124736786, -0.04687776789069176, -0.06865327805280685, -0.05710238218307495, -0.08408244699239731, -0.01070406287908554, -0.01194815244525671, -0.04757414758205414, -0.09459427744150162, -0.15648385882377625, -0.03415042906999588, 0.007306134328246117, -0.02787386253476143, -0.04224085062742233, 0.04799747094511986, -0.034844622015953064, -0.014970019459724426, -0.023569226264953613, -0.02309228479862213, -0.037559833377599716, 0.017232995480298996, -0.06912888586521149, 0.03467287868261337, 0.08487357199192047, 0.030192267149686813, -0.1139960065484047, 0.07525826245546341, -0.16946375370025635, 0.13877910375595093, -0.013845719397068024, 0.008366132155060768, -0.10932677984237671, -0.10401291400194168, -0.02474626526236534, -0.025865929201245308, -0.0007154856575652957, 0.09581716358661652, -0.18979643285274506, -0.04383820295333862, 0.19725242257118225, -0.07146118581295013, -0.0915444940328598, 0.0539371520280838, -0.06080549582839012, 0.037289977073669434, 0.14000876247882843, 0.054991044104099274, 0.16434940695762634, -0.11470990628004074, -0.07419025152921677, -0.03918782249093056, -0.0590660497546196, 0.2129063457250595, 0.05496340990066528, -0.0153062604367733, 0.023867929354310036, 0.029690437018871307, -0.036355242133140564, -0.03277621045708656, -0.01866729184985161, -0.04212756082415581, -0.005953947082161903, 0.010132670402526855, -0.024048905819654465, -0.04661671817302704, -0.07514247298240662, 0.0008085917797870934, -0.10268569737672806, 0.015542003326117992, 0.10993363708257675, -0.08080800622701645, 0.013556542806327343, -0.07774020731449127, 0.020297246053814888, -0.036498308181762695, 0.0337538979947567, -0.20315344631671906, -0.04877008497714996, 0.021237557753920555, -0.07905153930187225, 0.08109414577484131, 0.03409769758582115, 0.03325918689370155, 0.07656823098659515, 0.0148475281894207, 0.022573355585336685, -0.04159574210643768, -0.022562356665730476, -0.03102055937051773, -0.1449560970067978, -0.08264048397541046, -0.051439546048641205, 0.08752377331256866, -0.11972621083259583, 0.002300581429153681, 0.09623198956251144, 0.09392967075109482, 0.01816096529364586, -0.06376676261425018, 0.025628602132201195, -0.02419331856071949, -0.03962570056319237, -0.11172237992286682, -0.05242513120174408, -0.0016706590540707111, -0.038393113762140274, 0.14780117571353912, -0.17760780453681946, -0.09175869077444077, 0.08498323708772659, 0.1813587099313736, -0.09035143256187439, 0.015949008986353874, -0.09597694128751755, -0.007716076448559761, -0.03961840644478798, -0.035123731940984726, 0.28185299038887024, 0.059612613171339035, 0.08098921179771423, -0.10627129673957825, -0.08423517644405365, 0.008661412633955479, -0.032299600541591644, -0.02093564160168171, 0.03470851108431816, 0.02799757942557335, -0.13626548647880554, 0.009547429159283638, 0.011387839913368225, 0.13738985359668732, 0.2131192684173584, 0.06502193212509155, -0.10223027318716049, -0.05090576782822609, -0.10074619203805923, -0.006336699705570936, 0.04457023739814758, 0.03683008998632431, 0.017921846359968185, 0.046003371477127075, 0.05022822692990303, 0.02718833088874817, -0.10099868476390839, 0.009951700456440449, 0.07863836735486984, -0.0458344966173172, -0.06350966542959213, 0.022664325311779976, 0.012493233196437359, 0.07364299148321152, 0.07967071235179901, 0.13327576220035553, -0.08551321178674698, -0.053611546754837036, -0.13577114045619965, 0.14260758459568024, -0.0717952623963356, -0.2748010456562042, -0.13950450718402863, -0.06626766920089722, -0.0026229394134134054, 0.00020778155885636806, 0.04806746169924736, -0.05137968808412552, -0.03865683823823929, -0.11480650305747986, 0.1025613322854042, -0.050706103444099426, -0.021247217431664467, -0.01630563847720623, 0.015548789873719215, -0.037882499396800995, -0.11944204568862915, -0.028753800317645073, 0.03881528973579407, -0.10874058306217194, -0.017205171287059784, 0.04880618676543236, 0.04194548726081848, 0.14924050867557526, -0.0018538900185376406, -0.013071229681372643, -0.03779781609773636, 0.2878510653972626, -0.11637359112501144, 0.059276364743709564, 0.17147955298423767, -0.028946824371814728, 0.058317575603723526, 0.08348765224218369, 0.011221966706216335, -0.06728504598140717, 0.06814533472061157, 0.058900222182273865, -0.09893505275249481, -0.20453672111034393, -0.030138954520225525, -0.0037991348654031754, 0.039662204682826996, 0.12291776388883591, 0.06831785291433334, 0.033664993941783905, -0.0026930735912173986, -0.099425308406353, 0.032283179461956024, 0.003983288537710905, 0.11091795563697815, -0.06160914897918701, -0.02708311565220356, 0.043776437640190125, -0.06287652999162674, 0.026456166058778763, 0.13684868812561035, 0.04290952906012535, 0.19789311289787292, -0.0723436176776886, 0.11514076590538025, 0.08636105805635452, 0.10821031779050827, 0.03635035455226898, 0.011438076384365559, 0.019263582304120064, 0.017217494547367096, -0.0057573476806283, -0.10416136682033539, -0.026501847431063652, 0.04108147323131561, 0.03305839002132416, -0.02696743980050087, -0.04201675206422806, -0.04001779109239578, 0.030264750123023987, 0.24342985451221466, -0.03733297437429428, -0.1660337746143341, -0.10626406222581863, 0.03812377154827118, -0.06722913682460785, -0.0595056489109993, -0.02612108550965786, 0.06189623847603798, -0.23498433828353882, 0.05778270587325096, -0.033300284296274185, 0.11496922373771667, -0.13612434267997742, 0.011281251907348633, 0.06233060732483864, 0.04470018669962883, -0.057054199278354645, 0.10521125048398972, -0.1382739096879959, 0.06342503428459167, -0.009004696272313595, 0.05548501014709473, -0.08622822910547256, 0.028075583279132843, -0.000781135109718889, 0.04621399939060211, 0.09540199488401413, 0.007976016029715538, 0.024204643443226814, -0.021303484216332436, -0.0626329556107521, 0.026770420372486115, 0.04472365230321884, -0.12595929205417633, 0.11947459727525711, -0.014899716712534428, 0.0312681682407856, -0.07003080099821091, -0.10455111414194107, -0.09522217512130737, -0.1609104573726654, 0.09644902497529984, -0.1329229772090912, 0.0007438022876158357, -0.06490612030029297, -0.03648267686367035, 0.030431348830461502, 0.26527613401412964, -0.06081407517194748, -0.07433395087718964, -0.13053546845912933, 0.017399001866579056, 0.1509888917207718, -0.09329165518283844, 0.007367442362010479, -0.02019175887107849, 0.23164907097816467, -0.0015539971645921469, -0.12222445011138916, -0.030075373128056526, -0.061146222054958344, -0.16917388141155243, 0.0030228025279939175, 0.15682633221149445, 0.05677640810608864, 0.01925411820411682, 0.00686277262866497, -0.01982196234166622, -0.04844304174184799, -0.17464207112789154, 0.025877397507429123, 0.17840242385864258, -0.026820192113518715, -0.02235034666955471, 0.05710344761610031, 0.031246932223439217, -0.13845813274383545, 0.02132650464773178, 0.061091408133506775, 0.1916099339723587, -0.07723122090101242, 0.20147112011909485, 0.06889914721250534, -0.08871913701295853, -0.16109059751033783, -0.007803676649928093, 0.03917470574378967, 0.04518827795982361, 0.07747837901115417, -0.22314918041229248, 0.038718122988939285, 0.053459327667951584, 0.004464298486709595, 0.039354532957077026, -0.3410751521587372, -0.1547318994998932, 0.01106822770088911, 0.018031636252999306, -0.1729372888803482, -0.04006106033921242, -0.032114479690790176, -0.09635239094495773, -0.24161361157894135, 0.06635268777608871, -0.10548117011785507, 0.07933995127677917, 0.021898513659834862, 0.09163948148488998, 0.05045200139284134, -0.0435345396399498, 0.13398928940296173, -0.024346577003598213, 0.06199488043785095, -0.08674800395965576, -0.04744268208742142, 0.07364804297685623, -0.08137280493974686, 0.09421274811029434, 0.024886606261134148, 0.08235740661621094, -0.08684572577476501, -0.07942360639572144, -0.05317557230591774, -0.0016629883321002126, -0.04138382896780968, -0.08508593589067459, -0.08790518343448639, 0.07115449756383896, 0.10881449282169342, -0.04330802708864212, -0.0846477597951889, -0.07411373406648636, -0.009597478434443474, 0.03697310760617256, 0.11822647601366043, 0.05826941132545471, -0.07155244797468185, 0.004635045770555735, 0.014874865300953388, 0.0038874500896781683, -0.18771880865097046, 0.04345472529530525, 0.09674731642007828, 0.04284732788801193, 0.08689935505390167, 0.00019456406880635768, -0.170755073428154, 0.009004665538668633, 0.05308758467435837, -0.1757495105266571, -0.13100671768188477, -0.031025562435388565, 0.03518297150731087, -0.09403242915868759, -0.057295240461826324, 0.13372129201889038, -0.03369881212711334, -0.03967892751097679, 0.0005258671008050442, 0.028756573796272278, -0.02923407219350338, 0.08781128376722336, -0.011793469078838825, 0.04452786222100258, -0.0752628818154335, 0.125759556889534, 0.0649009644985199, 0.012891854159533978, 0.04479992389678955, 0.047017402946949005, -0.09569733589887619, 0.015308612026274204, -0.11139848828315735, 0.01084747351706028, -0.005401708651334047, -0.018858324736356735, 0.029924994334578514, -0.01527436450123787, 0.031115178018808365, 0.07974554598331451, -0.02227151393890381, 0.10401441901922226, -0.05232261121273041, 0.01560429111123085, -0.12974201142787933, 0.07238296419382095, 0.016074953600764275, 0.021542729809880257, -0.1180485263466835, 0.18974347412586212, 0.04220755770802498, 0.12997527420520782, -0.03712591156363487, -0.07746849954128265, -0.032248612493276596, -0.007948375307023525, -0.06798521429300308, -0.04176147282123566, -0.09508519619703293, -0.032980650663375854, -0.006634475663304329, -0.01278482936322689, -0.03421681001782417, 0.04372268542647362, -0.03251724690198898, -0.06753776222467422, -0.07183847576379776, 0.05191298574209213, -0.15327446162700653, 0.03963088616728783, 0.11652357131242752, -0.049748703837394714, 0.12620744109153748, 0.049070633947849274, -0.030267342925071716, 0.02577960677444935, -0.13651986420154572, 0.05475808307528496, 0.0066051846370100975, 0.031435899436473846, 0.01872420124709606, -0.13605709373950958, -0.001955888234078884, -0.036672089248895645, -0.08266281336545944, -0.001754622207954526, -0.026020364835858345, -0.136213019490242, -0.005054673179984093, 0.10490407794713974, 0.0006874325918033719, -0.05937856808304787, 0.07054049521684647, 0.05447999760508537, 0.036074165254831314, 0.053864698857069016, -0.0010040237102657557, 0.06568122655153275, -0.16891221702098846, -0.06724615395069122, -0.008457946591079235, 0.03114989958703518, 0.04467179626226425, -0.041508518159389496, 0.03453774005174637, -0.018235530704259872, 0.2257237434387207, 0.030446406453847885, 0.01362055353820324, 0.02663169987499714, -0.06454002112150192, -0.00018070459191221744, 0.03123503550887108, 0.06851959973573685, -0.008565143682062626, -0.02189609594643116, 0.01465124636888504, -0.015394244343042374, -0.11071889102458954, -0.005959503352642059, 0.07798280566930771, -0.008561177179217339, 0.2313365638256073, -0.0657481849193573, 0.06790470331907272, -0.009060734882950783, -0.1029653325676918, -0.053492430597543716, -0.03350859880447388, 0.03685620054602623, -0.06601780652999878, 0.051705945283174515, 0.17675301432609558, -0.1368131935596466, 0.11617743223905563, 0.04898131266236305, -0.05393310263752937, -0.12883926928043365, -0.17855747044086456, -0.003910586703568697, -0.03336049243807793, 0.02694047801196575, -0.1304951012134552, 0.09061591327190399, 0.03216448426246643, 0.03323502466082573, -0.05980205163359642, 0.13706527650356293, -0.08587229996919632, -0.1428346335887909, 0.04127209261059761, 0.011255296878516674, 0.025506796315312386, 0.028230691328644753, 0.10096853226423264, 0.0510508269071579, -0.005755354650318623, 0.06986954808235168, 0.049586664885282516, 0.028769461438059807, 0.04433424025774002, -0.04280395805835724, -0.04875750467181206, 0.020577069371938705, -0.0032914173789322376, 0.017290106043219566, 0.1048433780670166, 0.07431916147470474, -0.02844138629734516, -0.02010907605290413, 0.3081263303756714, -0.004485921934247017, -0.005178646184504032, -0.16300976276397705, 0.16800318658351898, 0.015595338307321072, -0.0030551417730748653, 0.019475461915135384, -0.12454263865947723, 0.012111078016459942, 0.12588439881801605, 0.15175318717956543, -0.023620273917913437, 0.026424236595630646, -0.02411685138940811, 0.019813604652881622, 0.029028892517089844, 0.12315109372138977, 0.05914347618818283, 0.19443120062351227, -0.03238755092024803, 0.056254155933856964, -0.029521053656935692, -0.025069301947951317, 0.007918719202280045, 0.09775926917791367, -0.038326531648635864, -0.004679716657847166, -0.05244727060198784, 0.10068579763174057, -0.07864012569189072, -0.31104645133018494, -0.0538938082754612, -0.01102896872907877, -0.08649621158838272, 0.0763455256819725, -0.034883927553892136, 0.006377850659191608, 0.08161142468452454, 0.019090931862592697, -0.043823566287755966, 0.18582864105701447, 0.046463992446660995, -0.041053351014852524, -0.01793193444609642, 0.10500914603471756, -0.04707146808505058, 0.16912230849266052, -0.04435689002275467, 0.018729347735643387, 0.06454256922006607, 0.007028831634670496, -0.13692745566368103, 0.001625718898139894, 0.03980579599738121, -0.050123315304517746, -0.022375619038939476, 0.2079751342535019, 0.016691071912646294, 0.027342496439814568, 0.06865919381380081, -0.033351849764585495, 0.02109036222100258, -0.02000243403017521, 0.07484561949968338, -0.12108292430639267, 0.07010161131620407, -0.07023205608129501, 0.11496526747941971, 0.1556239277124405, -0.06020321696996689, 0.03501465544104576, -0.07015073299407959, 0.010127776302397251, -0.035621073096990585, 0.06345649063587189, -0.017026294022798538, -0.11468062549829483, 0.008818776346743107, 0.03898610174655914, 0.004140101373195648, -0.1764218807220459, -0.08478159457445145, 0.07592285424470901, -0.05324573442339897, 0.03564180061221123, 0.16869813203811646, -0.005831982474774122, 0.04886015132069588, -0.03593207150697708, 0.009202906861901283, -0.004170319996774197, 0.11244574189186096, -0.18870636820793152, -0.08314795047044754 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/593c69b2e4bb8eb47801ce1952c5d30b.600x600x184.gif&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Radiohead</div> <a href="https://genius.com/artists/radiohead"> <div style="text-align: center; font-size: 14px;">@radiohead</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Radiohead. Dataset is available [here](https://huggingface.co/datasets/huggingartists/radiohead). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/radiohead") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/35vxvq9n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Radiohead's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2bulf32i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2bulf32i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/radiohead') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/radiohead") model = AutoModelWithLMHead.from_pretrained("huggingartists/radiohead") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/radiohead"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/radiohead
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/radiohead", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/radiohead #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Radiohead</div> <a href="URL <div style="text-align: center; font-size: 14px;">@radiohead</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Radiohead. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Radiohead's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Radiohead.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Radiohead's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/radiohead #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Radiohead.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Radiohead's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/radiohead #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Radiohead.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Radiohead's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.021037397906184196, 0.1514856070280075, -0.002496113069355488, 0.016165798529982567, 0.08806350082159042, 0.00017722354095894843, 0.0856635794043541, 0.10581745952367783, -0.02209756337106228, 0.07221018522977829, 0.07111632823944092, 0.007512768264859915, 0.058228448033332825, 0.12310335040092468, 0.08677959442138672, -0.26594972610473633, 0.028536366298794746, -0.10698989778757095, 0.013936297036707401, 0.12323413044214249, 0.08851132541894913, -0.04922864958643913, 0.07777565717697144, 0.030630366876721382, -0.06870351731777191, 0.03686221316456795, -0.010549768805503845, -0.07324772328138351, 0.09666556864976883, 0.07815753668546677, 0.026891237124800682, 0.03872048482298851, 0.06477560102939606, -0.18816111981868744, 0.03524632751941681, 0.13330551981925964, 0.023610971868038177, 0.07413841038942337, 0.03511807322502136, -0.07938922196626663, 0.18496756255626678, -0.033589910715818405, 0.08092823624610901, 0.04814142361283302, -0.10659748315811157, -0.17931270599365234, -0.12699083983898163, 0.09343918412923813, 0.10311993211507797, 0.08500399440526962, -0.03165442869067192, 0.05025256797671318, 0.0027274582535028458, 0.04260490834712982, 0.2419303059577942, -0.2344214916229248, -0.01617399789392948, 0.09883484989404678, 0.036249592900276184, 0.057997554540634155, -0.07097599655389786, 0.033687181770801544, 0.05519762635231018, 0.0221366286277771, 0.04013817384839058, -0.017493823543190956, 0.21047081053256989, 0.020174289122223854, -0.09358683973550797, -0.09056570380926132, 0.10349440574645996, -0.03476347401738167, -0.08338544517755508, -0.1497458815574646, -0.0009126694058068097, -0.03060971200466156, 0.03908851370215416, -0.015448290854692459, -0.009032361209392548, 0.002308579394593835, -0.04674288257956505, -0.10121702402830124, -0.09276469796895981, -0.03732335567474365, -0.03347604349255562, 0.08396556228399277, 0.02126302756369114, 0.029811449348926544, -0.0698961541056633, 0.23525451123714447, -0.0009060930460691452, -0.10050412267446518, -0.05026264861226082, -0.08884353190660477, -0.10135207325220108, -0.05453208088874817, 0.00848560780286789, 0.023336609825491905, -0.060882002115249634, 0.16493184864521027, -0.04291343688964844, 0.030573783442378044, 0.005506237503141165, -0.02087000571191311, 0.1527777910232544, 0.10855120420455933, -0.10021673887968063, -0.044866371899843216, 0.040717970579862595, -0.014028474688529968, -0.06550731509923935, -0.06558926403522491, -0.011358012445271015, -0.018700286746025085, 0.03737920895218849, 0.0908893346786499, 0.048907551914453506, 0.049260109663009644, 0.03777607902884483, -0.05333971977233887, 0.12170335650444031, -0.13990984857082367, 0.005931315943598747, -0.003997971769422293, -0.019789427518844604, 0.01834242232143879, 0.04668080434203148, 0.02160670794546604, -0.08964882045984268, 0.10849840193986893, -0.04660393297672272, -0.06628378480672836, -0.06354133039712906, -0.08263436704874039, -0.01190196257084608, -0.024463236331939697, -0.05241469666361809, -0.08437076210975647, -0.14426855742931366, -0.03749625012278557, 0.027952879667282104, -0.04309070110321045, -0.03934864699840546, 0.04418401047587395, -0.04020650312304497, 0.011486977338790894, -0.01820089854300022, -0.006583500187844038, -0.02940775640308857, 0.022635245695710182, -0.05950744077563286, 0.03834547474980354, 0.08007630705833435, 0.0394599474966526, -0.10260983556509018, 0.07514583319425583, -0.1540013998746872, 0.1481190323829651, -0.015461971051990986, 0.005803654436022043, -0.1116398349404335, -0.09774094820022583, -0.03357921913266182, -0.02284899353981018, -0.005455878097563982, 0.08518125861883163, -0.19638323783874512, -0.043550122529268265, 0.19065652787685394, -0.07347214221954346, -0.07768770307302475, 0.06617746502161026, -0.07724538445472717, 0.0454271100461483, 0.13411945104599, 0.04856954887509346, 0.17813552916049957, -0.11630628257989883, -0.07313484698534012, -0.04195590317249298, -0.060015399008989334, 0.22068549692630768, 0.054332900792360306, -0.0068210638128221035, 0.01593186892569065, 0.0000046988329813757446, -0.025491947308182716, -0.032449498772621155, -0.022199824452400208, -0.03881772607564926, -0.008494584821164608, 0.01274822372943163, -0.00500248558819294, -0.05103394761681557, -0.07121958583593369, -0.020093517377972603, -0.11753704398870468, 0.03620274364948273, 0.10952188819646835, -0.06747371703386307, 0.007138113956898451, -0.08586534857749939, -0.007527409587055445, -0.048692137002944946, 0.018008878454566002, -0.20215211808681488, -0.05359559878706932, 0.017473537474870682, -0.05134384706616402, 0.09410104900598526, 0.03828651085495949, 0.034965965896844864, 0.0617385096848011, -0.0013115531764924526, 0.017761610448360443, -0.038763392716646194, -0.01803211309015751, -0.0293279942125082, -0.13982583582401276, -0.07413098216056824, -0.0562436617910862, 0.08232247829437256, -0.1322108656167984, 0.007561194244772196, 0.10726767033338547, 0.11450529098510742, 0.023588085547089577, -0.05133020505309105, 0.007436197716742754, -0.03788859769701958, -0.04142237454652786, -0.10652966052293777, -0.05840190127491951, 0.004325025249272585, -0.035606976598501205, 0.15378504991531372, -0.17354802787303925, -0.07556263357400894, 0.08928424119949341, 0.1648380607366562, -0.10421434044837952, 0.019636230543255806, -0.09299258142709732, -0.010342682711780071, -0.05221128463745117, -0.045696258544921875, 0.2812131941318512, 0.0436968058347702, 0.0747147873044014, -0.11159016937017441, -0.09730472415685654, 0.0009474889375269413, -0.03377227112650871, -0.02966402657330036, 0.023951396346092224, 0.008513201028108597, -0.17799408733844757, 0.026059528812766075, -0.007549669593572617, 0.12267136573791504, 0.21348662674427032, 0.055030178278684616, -0.09830956906080246, -0.057122256606817245, -0.09910892695188522, 0.00030950098880566657, 0.039761584252119064, 0.04376371577382088, 0.029915617778897285, 0.04503331705927849, 0.05737483128905296, 0.040583059191703796, -0.11114829033613205, 0.009876473806798458, 0.07975780218839645, -0.044756826013326645, -0.07252231240272522, 0.02250833623111248, 0.015655003488063812, 0.08155181258916855, 0.07556501775979996, 0.13896693289279938, -0.07014486938714981, -0.0515931062400341, -0.1401422768831253, 0.13184694945812225, -0.06926372647285461, -0.2594270706176758, -0.15415190160274506, -0.07404454797506332, 0.02453562058508396, 0.003812246024608612, 0.04148830100893974, -0.06289783120155334, -0.031550418585538864, -0.10186407715082169, 0.0764308050274849, -0.04172898456454277, -0.013303021900355816, 0.003012348897755146, 0.01912756823003292, -0.03056345134973526, -0.11604305356740952, -0.026498183608055115, 0.036872003227472305, -0.09692894667387009, -0.01542741060256958, 0.03896856680512428, 0.03521077334880829, 0.15942281484603882, -0.011479617096483707, -0.006000417750328779, -0.028440317139029503, 0.2847804129123688, -0.12826968729496002, 0.07346559315919876, 0.160390242934227, -0.026560617610812187, 0.05707162246108055, 0.0857190489768982, 0.013402548618614674, -0.06333205848932266, 0.07542715966701508, 0.07685521990060806, -0.09341936558485031, -0.22310493886470795, -0.02853802591562271, -0.004779287148267031, 0.007912208326160908, 0.1143045425415039, 0.0555562824010849, 0.07064971327781677, -0.0008647915092296898, -0.10666895657777786, 0.042373936623334885, 0.023319624364376068, 0.09916699677705765, -0.07539977878332138, -0.012311168015003204, 0.050489675253629684, -0.06817851215600967, 0.025817960500717163, 0.13996025919914246, 0.044330090284347534, 0.20874321460723877, -0.058044493198394775, 0.09621619433164597, 0.08157641440629959, 0.08509072661399841, 0.04326990246772766, 0.012272226624190807, -0.01358193438500166, 0.010892645455896854, 0.0010575194610282779, -0.09955956786870956, -0.002870280994102359, 0.04646693170070648, 0.02860678732395172, -0.023256972432136536, -0.032156430184841156, -0.05093466117978096, 0.028897466138005257, 0.22997228801250458, -0.014689217321574688, -0.17572563886642456, -0.11254376918077469, 0.04199015721678734, -0.08294280618429184, -0.04793963208794594, -0.02528303861618042, 0.0817316547036171, -0.20657648146152496, 0.07021256536245346, -0.02599181979894638, 0.10904354602098465, -0.10526154190301895, -0.0000258544459939003, 0.09295904636383057, 0.04779995605349541, -0.068074531853199, 0.10488167405128479, -0.1497635394334793, 0.06698126345872879, -0.012092548422515392, 0.06280653178691864, -0.07715648412704468, 0.028259381651878357, 0.0008692893316037953, 0.05277980491518974, 0.08440613746643066, 0.012116308324038982, 0.011263447813689709, 0.006577357649803162, -0.05637239292263985, 0.00743586802855134, 0.06439647823572159, -0.13561703264713287, 0.12881900370121002, -0.029808418825268745, 0.027157681062817574, -0.03903025761246681, -0.10411927103996277, -0.09282878041267395, -0.16575191915035248, 0.08782029151916504, -0.11787164211273193, 0.0027204465586692095, -0.07638287544250488, -0.034601762890815735, 0.028964266180992126, 0.2543083429336548, -0.05220780894160271, -0.07219558954238892, -0.1319124847650528, 0.007369054481387138, 0.15431785583496094, -0.08042629808187485, 0.005949842277914286, -0.004302008543163538, 0.21332578361034393, 0.0006747583975084126, -0.12993784248828888, -0.020621713250875473, -0.06673688441514969, -0.17689307034015656, -0.008148175664246082, 0.1853402704000473, 0.07385627925395966, 0.032038766890764236, 0.008309224620461464, -0.00985685270279646, -0.04110608249902725, -0.1694348305463791, 0.028663834556937218, 0.15179908275604248, -0.01597994565963745, -0.0008658911101520061, 0.05191759765148163, -0.004845344927161932, -0.1324269324541092, 0.01472234446555376, 0.053869057446718216, 0.17890822887420654, -0.08092042058706284, 0.20319946110248566, 0.04150240495800972, -0.0874459445476532, -0.14906902611255646, 0.005930232349783182, 0.04641612991690636, 0.036160316318273544, 0.044837672263383865, -0.21692882478237152, 0.03902382776141167, 0.030209628865122795, 0.005962408613413572, 0.03630920872092247, -0.3336488902568817, -0.15063950419425964, 0.0008335180464200675, -0.0044936309568583965, -0.14278076589107513, -0.04386766627430916, -0.04199251905083656, -0.09800150245428085, -0.24893991649150848, 0.11800459772348404, -0.12638482451438904, 0.0746058002114296, 0.03002902679145336, 0.10009941458702087, 0.04460826516151428, -0.04334864020347595, 0.1304236799478531, -0.014692130498588085, 0.06575985997915268, -0.09004014730453491, -0.06748168915510178, 0.08991573005914688, -0.06661579757928848, 0.08047836273908615, 0.030405491590499878, 0.0771113708615303, -0.09586373716592789, -0.08633758872747421, -0.06429815292358398, -0.009811378084123135, -0.05433344468474388, -0.08989407867193222, -0.08966346830129623, 0.08227017521858215, 0.12072017043828964, -0.05012859031558037, -0.08914843946695328, -0.07230208069086075, 0.007793880999088287, 0.04962550103664398, 0.13127101957798004, 0.07289441674947739, -0.06636040657758713, 0.004374615382403135, 0.014941410161554813, 0.015720602124929428, -0.17948205769062042, 0.0501273013651371, 0.09096734970808029, 0.04579896852374077, 0.09953991323709488, 0.0040887752547860146, -0.17262651026248932, 0.010817304253578186, 0.05395594239234924, -0.15789049863815308, -0.1297825425863266, -0.04306672886013985, 0.028949132189154625, -0.10367220640182495, -0.0434025339782238, 0.1345810443162918, -0.03445366397500038, -0.03806409612298012, 0.005857454147189856, 0.029743453487753868, -0.04800322279334068, 0.08974171429872513, -0.0037377558182924986, 0.04914570972323418, -0.062463488429784775, 0.11674880236387253, 0.07241097837686539, 0.002741476520895958, 0.03888971731066704, 0.05993102490901947, -0.0898117646574974, 0.014684752561151981, -0.10638175159692764, 0.001344233751296997, -0.02885931171476841, -0.017246371135115623, 0.03630242124199867, -0.030090317130088806, 0.05384378507733345, 0.08966834098100662, -0.017485789954662323, 0.09696348756551743, -0.06247560679912567, 0.024536818265914917, -0.1257118135690689, 0.0694032832980156, 0.0341208316385746, 0.0275415126234293, -0.11027377098798752, 0.19956304132938385, 0.03368009626865387, 0.10394259542226791, -0.04371154308319092, -0.07225916534662247, -0.03775830566883087, -0.01014306303113699, -0.0859544649720192, -0.039325788617134094, -0.08325544744729996, -0.025645839050412178, -0.007851650007069111, -0.026559585705399513, -0.03622130677103996, 0.04223528504371643, -0.03115282952785492, -0.05589987710118294, -0.07351864129304886, 0.04363358020782471, -0.14291894435882568, 0.039892759174108505, 0.11961996555328369, -0.05411123111844063, 0.12299835681915283, 0.04930582642555237, -0.0325460322201252, 0.014774452894926071, -0.14132492244243622, 0.04199706390500069, -0.004221299663186073, 0.018542995676398277, 0.01910698600113392, -0.16540496051311493, 0.010121536441147327, -0.037614285945892334, -0.07001561671495438, 0.006100745406001806, -0.023267051205039024, -0.12095914036035538, 0.0019651877228170633, 0.08866243809461594, -0.005727837327867746, -0.06928788870573044, 0.06788548082113266, 0.06666121631860733, 0.023362979292869568, 0.06162850558757782, -0.00926936138421297, 0.06420722603797913, -0.17571328580379486, -0.05940677598118782, -0.006776642519980669, 0.0268417838960886, 0.052968140691518784, -0.028158346191048622, 0.033233191817998886, -0.0202180128544569, 0.20960664749145508, 0.01116377767175436, -0.017326289787888527, 0.031399961560964584, -0.06337317824363708, -0.00998674426227808, 0.041954655200242996, 0.09462832659482956, -0.0044152215123176575, -0.028517097234725952, -0.007316195871680975, -0.025419829413294792, -0.09463807195425034, -0.01724795252084732, 0.10118257999420166, 0.01830236054956913, 0.21149195730686188, -0.0646386593580246, 0.06845412403345108, -0.028872882947325706, -0.11195007711648941, -0.021259814500808716, -0.04670778289437294, 0.02574584074318409, -0.0578860342502594, 0.05882415175437927, 0.19635899364948273, -0.15891705453395844, 0.11899129301309586, 0.04362362250685692, -0.04832815006375313, -0.11804800480604172, -0.19050435721874237, -0.007678990717977285, -0.04180542007088661, 0.021553436294198036, -0.13366271555423737, 0.10024642944335938, 0.024254225194454193, 0.037806786596775055, -0.050415489822626114, 0.1387915462255478, -0.1054450049996376, -0.13695845007896423, 0.04198509082198143, 0.014088002033531666, 0.02979082614183426, 0.052525196224451065, 0.0921982154250145, 0.05394260585308075, -0.0020624345634132624, 0.0737733468413353, 0.03858670964837074, 0.041009705513715744, 0.044773783534765244, -0.033070698380470276, -0.043556708842515945, 0.02384292148053646, -0.010409645736217499, 0.02331664226949215, 0.09925741702318192, 0.07196096330881119, -0.010947305709123611, -0.014100552536547184, 0.30627763271331787, -0.023648127913475037, -0.04071750119328499, -0.18275879323482513, 0.15474480390548706, 0.006124692037701607, 0.004444309044629335, 0.01999964378774166, -0.1236375942826271, 0.008985921740531921, 0.11202788352966309, 0.16123349964618683, -0.015615683980286121, 0.02494557946920395, -0.01834069937467575, 0.019419223070144653, 0.03953583166003227, 0.11094243079423904, 0.07309877127408981, 0.20145283639431, -0.025562593713402748, 0.04392118752002716, -0.016334934160113335, -0.022756176069378853, 0.021357538178563118, 0.11895468086004257, -0.042206525802612305, -0.0005047505837865174, -0.0390046201646328, 0.10537505149841309, -0.0633305013179779, -0.3158092498779297, -0.045475494116544724, -0.015325588174164295, -0.09279976040124893, 0.07260366529226303, -0.02461015246808529, -0.018095700070261955, 0.07163165509700775, 0.03102845884859562, -0.05299144983291626, 0.1724587082862854, 0.0494338683784008, -0.040731534361839294, -0.0010879180626943707, 0.10730338841676712, -0.05003267526626587, 0.1553274542093277, -0.04220905527472496, 0.01962299644947052, 0.07664104551076889, 0.010692994110286236, -0.12067160755395889, 0.013884391635656357, 0.04121542349457741, -0.06243768706917763, -0.018254928290843964, 0.21166716516017914, 0.014946798793971539, 0.02907923422753811, 0.07478266209363937, -0.05850742384791374, 0.01943550817668438, -0.03170711174607277, 0.056734126061201096, -0.14010383188724518, 0.06052567437291145, -0.07677126675844193, 0.12052533775568008, 0.16169822216033936, -0.06408964842557907, 0.04571697115898132, -0.060972485691308975, 0.006069879978895187, -0.02603101171553135, 0.08097764849662781, -0.01638973318040371, -0.120974600315094, 0.007303246762603521, 0.03075590170919895, 0.021640246734023094, -0.18669553101062775, -0.07608135789632797, 0.07273325324058533, -0.05357563495635986, 0.029458142817020416, 0.16871100664138794, 0.015390903688967228, 0.06065033748745918, -0.037121497094631195, -0.015107321552932262, -0.00949119683355093, 0.11820415407419205, -0.184559166431427, -0.06778690963983536 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/0debcd46861577e3776b41aa3e3d7164.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ramil’</div> <a href="https://genius.com/artists/ramil"> <div style="text-align: center; font-size: 14px;">@ramil</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ramil’. Dataset is available [here](https://huggingface.co/datasets/huggingartists/ramil). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ramil") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1l1axl7k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ramil’'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28boyxm8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28boyxm8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ramil') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ramil") model = AutoModelWithLMHead.from_pretrained("huggingartists/ramil") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/ramil"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/ramil
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ramil", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ramil #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ramil’</div> <a href="URL <div style="text-align: center; font-size: 14px;">@ramil</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Ramil’. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Ramil’'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ramil’.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ramil’'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ramil #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ramil’.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ramil’'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ramil #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Ramil’.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ramil’'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.017550230026245117, 0.1563539057970047, -0.0029612809885293245, 0.04123114421963692, 0.09448536485433578, 0.00772765651345253, 0.09000350534915924, 0.10190118104219437, -0.010291394777595997, 0.07235673069953918, 0.07487333565950394, 0.004233316518366337, 0.06937733292579651, 0.10057219862937927, 0.08332498371601105, -0.2589997351169586, 0.0275372676551342, -0.09527473896741867, -0.0011134675005450845, 0.11685347557067871, 0.1012842059135437, -0.05409347638487816, 0.08649754524230957, 0.03812914341688156, -0.07195866852998734, 0.02268727496266365, 0.0007837272714823484, -0.06418129056692123, 0.0913984552025795, 0.06939660012722015, 0.03710167482495308, 0.023090923205018044, 0.06355626881122589, -0.18399369716644287, 0.03204314038157463, 0.12685054540634155, 0.03449801355600357, 0.07252417504787445, 0.04354267567396164, -0.07578185945749283, 0.17490005493164062, -0.0109065817669034, 0.09597521275281906, 0.04489276185631752, -0.11711089313030243, -0.15163029730319977, -0.12562385201454163, 0.08560425043106079, 0.09722887724637985, 0.09022926539182663, -0.02872493676841259, 0.040510695427656174, -0.019657354801893234, 0.04468598589301109, 0.23856784403324127, -0.24045628309249878, -0.01758352853357792, 0.0904185026884079, 0.03362524136900902, 0.034397758543491364, -0.07307343930006027, 0.013874205760657787, 0.04454747959971428, 0.025374071672558784, 0.04231949895620346, -0.018186967819929123, 0.19077269732952118, 0.026455789804458618, -0.09732827544212341, -0.08555911481380463, 0.12423460930585861, -0.031316597014665604, -0.07279863208532333, -0.13298586010932922, -0.0023681612219661474, -0.019071239978075027, 0.035336945205926895, -0.006455730181187391, -0.0057899667881429195, 0.006978723686188459, -0.03678165376186371, -0.10173619538545609, -0.0913776308298111, -0.031408216804265976, -0.02162933349609375, 0.06137584522366524, 0.030552485957741737, 0.03786785155534744, -0.0864507183432579, 0.2292240709066391, -0.021833717823028564, -0.10086595267057419, -0.05139409750699997, -0.09391160309314728, -0.08751082420349121, -0.054686836898326874, 0.0037194888573139906, 0.004498746246099472, -0.053674500435590744, 0.15796035528182983, -0.03853903338313103, 0.03819182515144348, -0.002379746874794364, -0.012800878845155239, 0.14344337582588196, 0.12911537289619446, -0.10115931183099747, -0.02780185267329216, 0.05804017558693886, -0.015265650115907192, -0.06617026031017303, -0.056065574288368225, -0.00916630495339632, -0.017899202182888985, 0.030997131019830704, 0.08430047333240509, 0.05439992621541023, 0.0597274973988533, 0.021323569118976593, -0.05981520563364029, 0.08454573154449463, -0.1423625499010086, 0.010179335251450539, -0.007635536137968302, -0.04119217395782471, 0.013683231547474861, 0.04922644793987274, 0.01453524548560381, -0.10428456962108612, 0.11837492883205414, -0.05695994943380356, -0.04912043362855911, -0.08140698075294495, -0.08152303099632263, -0.004122618120163679, -0.01407330296933651, -0.04449918866157532, -0.07195781916379929, -0.17325766384601593, -0.040002599358558655, 0.03598843142390251, -0.045667074620723724, -0.04509303346276283, 0.0345633439719677, -0.02421569637954235, 0.009581057354807854, -0.014385121874511242, -0.021725604310631752, -0.030247466638684273, 0.02602497674524784, -0.055791910737752914, 0.02813374623656273, 0.07272588461637497, 0.041492875665426254, -0.10978390276432037, 0.07469764351844788, -0.16603341698646545, 0.13395074009895325, -0.009312605485320091, 0.013776502572000027, -0.10041672736406326, -0.09198828041553497, -0.037896778434515, -0.031828779727220535, -0.001902578747831285, 0.09704854339361191, -0.18744534254074097, -0.03650190308690071, 0.20162880420684814, -0.07775549590587616, -0.08270302414894104, 0.0688723623752594, -0.07799827307462692, 0.031431011855602264, 0.13171105086803436, 0.06310245394706726, 0.16450682282447815, -0.10699138790369034, -0.06122979521751404, -0.040011003613471985, -0.05953441932797432, 0.20639334619045258, 0.04906712844967842, -0.014798001386225224, 0.01384375337511301, 0.011331900022923946, -0.0323474258184433, -0.02521171048283577, -0.015828417614102364, -0.041821569204330444, -0.016767706722021103, 0.012004476971924305, -0.01013438031077385, -0.04373452067375183, -0.06603899598121643, -0.024852683767676353, -0.10497280210256577, 0.035199541598558426, 0.0998762845993042, -0.06969237327575684, 0.008727729320526123, -0.09347058087587357, 0.00801105983555317, -0.027437476441264153, 0.01574210450053215, -0.1851332038640976, -0.058010417968034744, 0.019467618316411972, -0.05792717635631561, 0.0887424498796463, 0.03367597609758377, 0.038279544562101364, 0.05752953886985779, -0.016156408935785294, 0.02230510301887989, -0.045605555176734924, -0.022770648822188377, -0.02189665660262108, -0.14339061081409454, -0.05537549778819084, -0.0445912703871727, 0.09123092889785767, -0.12893955409526825, 0.005820574704557657, 0.10493580251932144, 0.12033573538064957, 0.021128753200173378, -0.06419836729764938, 0.011198857799172401, -0.03934897109866142, -0.03280702605843544, -0.1098514050245285, -0.0545114129781723, 0.012620499357581139, -0.024966061115264893, 0.15142503380775452, -0.17117440700531006, -0.0789455845952034, 0.10188627243041992, 0.13600710034370422, -0.0994415357708931, 0.03510664775967598, -0.08230966329574585, -0.014554866589605808, -0.049092378467321396, -0.040008608251810074, 0.2724737524986267, 0.03461545705795288, 0.08063888549804688, -0.1073768213391304, -0.09686778485774994, -0.0042905365116894245, -0.04522726312279701, -0.019883934408426285, 0.023935070261359215, 0.029067518189549446, -0.17400206625461578, 0.0327005572617054, -0.007536550983786583, 0.09424826502799988, 0.1980597972869873, 0.04146561771631241, -0.08607577532529831, -0.05914871767163277, -0.07014264166355133, 0.0005615733680315316, 0.05829014629125595, 0.01526116207242012, 0.029591979458928108, 0.0416509211063385, 0.05698848515748978, 0.041917845606803894, -0.11928563565015793, 0.016089871525764465, 0.07579518109560013, -0.04216133803129196, -0.05079134926199913, 0.014618685469031334, 0.019334066659212112, 0.08361289650201797, 0.08447129279375076, 0.1383361965417862, -0.06226011738181114, -0.04831266775727272, -0.14694781601428986, 0.13862019777297974, -0.08034007251262665, -0.25040245056152344, -0.13438089191913605, -0.07458218932151794, 0.017713399603962898, 0.011359968222677708, 0.030983544886112213, -0.05294804647564888, -0.04220808669924736, -0.09214867651462555, 0.08048905432224274, -0.053364384919404984, -0.021367179229855537, 0.007114495616406202, 0.02228647656738758, -0.01892281509935856, -0.10898066312074661, -0.03150281310081482, 0.04274946451187134, -0.10068270564079285, -0.013194682076573372, 0.033337123692035675, 0.03178868442773819, 0.16327182948589325, -0.014577103778719902, 0.004008155316114426, -0.023029079660773277, 0.28562769293785095, -0.11702095717191696, 0.0664796531200409, 0.16503039002418518, -0.019054682925343513, 0.060036033391952515, 0.07757531106472015, 0.005283399019390345, -0.06365945190191269, 0.07419717311859131, 0.07373989373445511, -0.08776289224624634, -0.2161712646484375, -0.02882077731192112, -0.01582181081175804, 0.012885479256510735, 0.12204544991254807, 0.054643552750349045, 0.04359545558691025, 0.011035125702619553, -0.10295466333627701, 0.05058369040489197, 0.03093716688454151, 0.10123228281736374, -0.05732952430844307, -0.012755686417222023, 0.04836646839976311, -0.060315750539302826, 0.027218960225582123, 0.1319204568862915, 0.039769429713487625, 0.20898988842964172, -0.06954264640808105, 0.0928957611322403, 0.07631435990333557, 0.10252972692251205, 0.03157418221235275, 0.01571505516767502, -0.019736744463443756, 0.01579318940639496, 0.0008514618966728449, -0.09392372518777847, -0.01893721893429756, 0.04170994460582733, 0.027035366743803024, -0.023143911734223366, -0.03821726143360138, -0.04613414779305458, 0.03780168667435646, 0.23518799245357513, 0.003071433864533901, -0.17518934607505798, -0.10189951956272125, 0.049566660076379776, -0.0698992908000946, -0.06051723286509514, -0.013157587498426437, 0.07346651703119278, -0.21543872356414795, 0.06755022704601288, -0.030385827645659447, 0.11055974662303925, -0.11823863536119461, 0.000013715939530811738, 0.08691830933094025, 0.04273248463869095, -0.06020110100507736, 0.09874164313077927, -0.170924574136734, 0.05865311622619629, -0.009573549032211304, 0.06936589628458023, -0.07152995467185974, 0.034002769738435745, 0.005774181801825762, 0.050318267196416855, 0.0787978395819664, 0.0183712225407362, 0.0039055412635207176, 0.010393752716481686, -0.03973567485809326, 0.009151861071586609, 0.061585310846567154, -0.11853290349245071, 0.12131009995937347, -0.03433898463845253, 0.038243040442466736, -0.03495224937796593, -0.08547577261924744, -0.0862252339720726, -0.16771015524864197, 0.08700983226299286, -0.12168775498867035, -0.006452637724578381, -0.07216361910104752, -0.01664535328745842, 0.03486846387386322, 0.24883916974067688, -0.056731387972831726, -0.08101869374513626, -0.13390953838825226, 0.00930795818567276, 0.1362200677394867, -0.0804884135723114, 0.005377879831939936, -0.014670162461698055, 0.19660979509353638, 0.005059476941823959, -0.1284678727388382, -0.018387310206890106, -0.062487829476594925, -0.16504105925559998, -0.010759353637695312, 0.1718212366104126, 0.05993727967143059, 0.02925420179963112, 0.00422354880720377, -0.002379797399044037, -0.049578070640563965, -0.17392592132091522, 0.016543885692954063, 0.14776980876922607, -0.007030954584479332, 0.014051474630832672, 0.04747631028294563, 0.03273698687553406, -0.12402774393558502, 0.01901182346045971, 0.053892891854047775, 0.16136236488819122, -0.07375150918960571, 0.1825224906206131, 0.024650227278470993, -0.09105410426855087, -0.16326776146888733, 0.016264300793409348, 0.029766106978058815, 0.03194960579276085, 0.03496761620044708, -0.20395180583000183, 0.04266727343201637, 0.030158724635839462, -0.0024076367262750864, 0.054095618426799774, -0.32654109597206116, -0.1531313955783844, 0.001141727319918573, 0.004916436038911343, -0.11538338661193848, -0.03828319162130356, -0.03449995815753937, -0.08741971105337143, -0.2560567855834961, 0.09736070781946182, -0.10918568074703217, 0.07429008930921555, 0.022401265799999237, 0.10098958015441895, 0.045809075236320496, -0.0514242984354496, 0.1300567239522934, -0.030532175675034523, 0.061344340443611145, -0.10203557461500168, -0.05439143255352974, 0.08202923089265823, -0.06817317008972168, 0.09543054550886154, 0.023415373638272285, 0.08901150524616241, -0.10171793401241302, -0.08462750911712646, -0.067886583507061, 0.002509917365387082, -0.058703139424324036, -0.08819539844989777, -0.09741585701704025, 0.08255729079246521, 0.12079817801713943, -0.04282199218869209, -0.09677048772573471, -0.05810563638806343, -0.00016745663015171885, 0.056890614330768585, 0.11841098964214325, 0.06973051279783249, -0.08360229432582855, 0.005312777124345303, 0.02388777583837509, 0.018600959330797195, -0.17896653711795807, 0.049807433038949966, 0.08963971585035324, 0.0405043289065361, 0.10578860342502594, 0.009698052890598774, -0.1633327305316925, 0.0015317059587687254, 0.05287143588066101, -0.16900578141212463, -0.12624740600585938, -0.0475996695458889, 0.025028763338923454, -0.10897748172283173, -0.05780639499425888, 0.13241282105445862, -0.036503180861473083, -0.03408746421337128, 0.005091432016342878, 0.04444143921136856, -0.04933340474963188, 0.09242114424705505, -0.001043724245391786, 0.04457038268446922, -0.07102345675230026, 0.11468087136745453, 0.07280588895082474, 0.015390039421617985, 0.038234077394008636, 0.06602669507265091, -0.09214869886636734, 0.011575035750865936, -0.10029654204845428, 0.015097293071448803, -0.02397121861577034, -0.018523093312978745, 0.017572427168488503, -0.04275280982255936, 0.04233240336179733, 0.07139424234628677, -0.015323584899306297, 0.11499763280153275, -0.04219549149274826, 0.010879484936594963, -0.1266058087348938, 0.06942037492990494, 0.03828227147459984, 0.023367246612906456, -0.11407379806041718, 0.18845070898532867, 0.031704120337963104, 0.10157888382673264, -0.034772567451000214, -0.059257082641124725, -0.057661015540361404, -0.007723452523350716, -0.09422029554843903, -0.03955741226673126, -0.08577965199947357, -0.024615727365016937, 0.0002749035775195807, -0.031037453562021255, -0.026508761569857597, 0.047753967344760895, -0.03374513238668442, -0.05870440602302551, -0.0751405730843544, 0.04567613825201988, -0.13200919330120087, 0.04038647562265396, 0.12265214323997498, -0.05522896349430084, 0.12129366397857666, 0.05919184163212776, -0.03863196447491646, 0.029858423396945, -0.11361415684223175, 0.04076836258172989, -0.016953734681010246, 0.023181485012173653, 0.017855824902653694, -0.15694552659988403, 0.010383685119450092, -0.039819590747356415, -0.06524749845266342, 0.0032640923745930195, -0.013432124629616737, -0.1330660730600357, 0.0020765713416039944, 0.08182066679000854, -0.020401693880558014, -0.07005204260349274, 0.0641728937625885, 0.05281880870461464, 0.030295614153146744, 0.06169995293021202, -0.020124526694417, 0.07470215857028961, -0.1721142828464508, -0.05419566109776497, 0.007514839991927147, 0.03579633682966232, 0.04160093516111374, -0.018713736906647682, 0.03817848488688469, -0.02285810559988022, 0.19652314484119415, 0.01976517029106617, -0.021132711321115494, 0.037480928003787994, -0.06005523353815079, 0.004994617309421301, 0.043536726385354996, 0.07158475369215012, -0.02950897626578808, -0.03872273117303848, -0.0021319889929145575, -0.021834973245859146, -0.0934736505150795, -0.03598413243889809, 0.11774057149887085, 0.028291909024119377, 0.18933625519275665, -0.05717581883072853, 0.062326934188604355, -0.013585438020527363, -0.11101701855659485, -0.007806288544088602, -0.04198193922638893, 0.033037543296813965, -0.06154702603816986, 0.056439146399497986, 0.19164590537548065, -0.1584656685590744, 0.12107330560684204, 0.018483467400074005, -0.06129039078950882, -0.1200675368309021, -0.1947866976261139, -0.017984116449952126, -0.04183805733919144, 0.030389461666345596, -0.14074279367923737, 0.08828756958246231, 0.03192881494760513, 0.03557650372385979, -0.06812972575426102, 0.1370943933725357, -0.08410122990608215, -0.12464804202318192, 0.030893845483660698, 0.024940235540270805, 0.03331463411450386, 0.05412983149290085, 0.08307232707738876, 0.028641261160373688, 0.008221871219575405, 0.07182636857032776, 0.0410124808549881, 0.03354920819401741, 0.031231004744768143, -0.02321968972682953, -0.035838253796100616, 0.029266199097037315, -0.0028747969772666693, 0.02768835239112377, 0.09715782850980759, 0.0590042807161808, -0.017269812524318695, -0.024108486250042915, 0.3052237629890442, -0.03517404943704605, -0.04803933575749397, -0.18830187618732452, 0.1638248860836029, 0.004990934859961271, -0.009097397327423096, 0.02707003988325596, -0.11872533708810806, 0.008903606794774532, 0.12783183157444, 0.16285181045532227, -0.024052303284406662, 0.021129457280039787, -0.02950930781662464, 0.019899442791938782, 0.033920180052518845, 0.10133150219917297, 0.06792664527893066, 0.2044006884098053, -0.03364776074886322, 0.045395687222480774, -0.012598186731338501, -0.014835923910140991, -0.00626270892098546, 0.10435578972101212, -0.03780476003885269, 0.009426320903003216, -0.053391363471746445, 0.1014624759554863, -0.05328516289591789, -0.2879315912723541, -0.0343979112803936, -0.026559285819530487, -0.0919279158115387, 0.06857328116893768, -0.02753748930990696, -0.0286824032664299, 0.08515210449695587, 0.02357066422700882, -0.050764646381139755, 0.14154338836669922, 0.049154188483953476, -0.04763193428516388, -0.0057658241130411625, 0.10990721732378006, -0.018928060308098793, 0.16946622729301453, -0.0286068394780159, 0.012518452480435371, 0.079598568379879, 0.01818544790148735, -0.1224808469414711, 0.004295806400477886, 0.03938795626163483, -0.06418290734291077, -0.027806086465716362, 0.19669856131076813, 0.011187614873051643, 0.018595939502120018, 0.06865891069173813, -0.05294607952237129, 0.018133245408535004, -0.04029387980699539, 0.06854484975337982, -0.14653033018112183, 0.06421735882759094, -0.08531343191862106, 0.1285392791032791, 0.18695521354675293, -0.06500875949859619, 0.031279727816581726, -0.06246853247284889, 0.007256665267050266, -0.026775464415550232, 0.07308308780193329, -0.019114132970571518, -0.11199213564395905, 0.007557753939181566, 0.03481044992804527, 0.015101954340934753, -0.17864413559436798, -0.07233285158872604, 0.07857318967580795, -0.04822630062699318, 0.02464951202273369, 0.17606469988822937, 0.022928154096007347, 0.06329479813575745, -0.038220394402742386, -0.01615108549594879, -0.014061842113733292, 0.1153557151556015, -0.16416750848293304, -0.08422205597162247 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/29cedf8dd30a7458f4fca47d1c0f0eab.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rammstein</div> <a href="https://genius.com/artists/rammstein"> <div style="text-align: center; font-size: 14px;">@rammstein</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Rammstein. Dataset is available [here](https://huggingface.co/datasets/huggingartists/rammstein). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/rammstein") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/qt3qa1x1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Rammstein's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2yyigjzv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2yyigjzv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/rammstein') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/rammstein") model = AutoModelWithLMHead.from_pretrained("huggingartists/rammstein") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/rammstein"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/rammstein
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/rammstein", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rammstein #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rammstein</div> <a href="URL <div style="text-align: center; font-size: 14px;">@rammstein</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Rammstein. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Rammstein's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Rammstein.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rammstein's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rammstein #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Rammstein.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rammstein's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rammstein #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Rammstein.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rammstein's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.019562210887670517, 0.16193000972270966, -0.0030368163716048002, 0.042973581701517105, 0.09277332574129105, 0.007392247673124075, 0.09355520457029343, 0.10113929212093353, 0.00020464477711357176, 0.06977822631597519, 0.06865233182907104, 0.008329515345394611, 0.0686781033873558, 0.10046149790287018, 0.07969530671834946, -0.25942227244377136, 0.029142137616872787, -0.09760276228189468, -0.007464056368917227, 0.11461114883422852, 0.1015104353427887, -0.06216137856245041, 0.08977624028921127, 0.03944993019104004, -0.07555849850177765, 0.019149888306856155, 0.003672234248369932, -0.06506723165512085, 0.09204364567995071, 0.06540846824645996, 0.04260434955358505, 0.027362650260329247, 0.06372617930173874, -0.18105827271938324, 0.03156982734799385, 0.12407691031694412, 0.03901755064725876, 0.07574694603681564, 0.05086864158511162, -0.08005886524915695, 0.1614447683095932, -0.01682860776782036, 0.09426290541887283, 0.04711175709962845, -0.11793676018714905, -0.14007531106472015, -0.126915842294693, 0.09075084328651428, 0.09071362018585205, 0.0853426530957222, -0.027947481721639633, 0.04190196469426155, -0.023845037445425987, 0.044534940272569656, 0.2398906797170639, -0.24003742635250092, -0.01858483999967575, 0.09496216475963593, 0.033764831721782684, 0.029770124703645706, -0.07933951914310455, 0.0167104322463274, 0.040964171290397644, 0.01981068216264248, 0.04871620610356331, -0.019721535965800285, 0.18622228503227234, 0.02798079513013363, -0.10260701924562454, -0.08102302253246307, 0.11945230513811111, -0.02693684957921505, -0.07160308957099915, -0.131449893116951, -0.004407211672514677, -0.015278546139597893, 0.03897508606314659, -0.00678379088640213, -0.002392024267464876, 0.0049648890271782875, -0.03935433179140091, -0.10313375294208527, -0.08844491839408875, -0.029940947890281677, -0.025367362424731255, 0.0618429109454155, 0.030289391055703163, 0.03958800062537193, -0.07658568769693375, 0.22837787866592407, -0.01844264380633831, -0.1013626679778099, -0.04663897678256035, -0.09887279570102692, -0.09212341159582138, -0.056082822382450104, 0.005574417300522327, 0.0018608194077387452, -0.05256853252649307, 0.14947450160980225, -0.03374691307544708, 0.03433013707399368, -0.0044365390203893185, -0.012810980901122093, 0.14657531678676605, 0.13279035687446594, -0.10130287706851959, -0.038861751556396484, 0.057745665311813354, -0.015188252553343773, -0.06793761998414993, -0.05188038572669029, -0.01143354456871748, -0.01750742830336094, 0.0395691841840744, 0.08202434331178665, 0.05309772863984108, 0.06434522569179535, 0.015813913196325302, -0.06728397309780121, 0.08915426582098007, -0.13811278343200684, 0.01319916546344757, -0.003587460843846202, -0.049068186432123184, 0.01698744297027588, 0.0461452379822731, 0.015322573482990265, -0.10143261402845383, 0.11376272886991501, -0.06118089333176613, -0.04702746123075485, -0.08599749952554703, -0.09174957871437073, -0.003097818698734045, -0.018207387998700142, -0.042824726551771164, -0.07579287886619568, -0.1763404756784439, -0.039252474904060364, 0.04016261547803879, -0.04691680893301964, -0.040000125765800476, 0.03122914768755436, -0.022307828068733215, 0.010755074210464954, -0.01620376482605934, -0.02780838869512081, -0.02830495685338974, 0.021808015182614326, -0.058278393000364304, 0.02969052828848362, 0.08121487498283386, 0.043815337121486664, -0.11289408057928085, 0.07328034192323685, -0.16610021889209747, 0.1300594061613083, -0.017207439988851547, 0.016688548028469086, -0.09997576475143433, -0.08821804076433182, -0.023237047716975212, -0.034114476293325424, -0.0033658724278211594, 0.09824035316705704, -0.1824597269296646, -0.03625652566552162, 0.19633910059928894, -0.0774003341794014, -0.08221427351236343, 0.06866077333688736, -0.08328915387392044, 0.03280990570783615, 0.12933698296546936, 0.0652448832988739, 0.16127969324588776, -0.11201396584510803, -0.061858780682086945, -0.04700286313891411, -0.05916428938508034, 0.20028868317604065, 0.05123872682452202, -0.010669996961951256, 0.01643693447113037, 0.007128936238586903, -0.03565158322453499, -0.01977716200053692, -0.019787771627306938, -0.03993447497487068, -0.013705357909202576, 0.008398185484111309, -0.001411515288054943, -0.0446314737200737, -0.05960588529706001, -0.027196617797017097, -0.10364145040512085, 0.04943704232573509, 0.09931042790412903, -0.06872919201850891, 0.004505435936152935, -0.09349138289690018, 0.004183522425591946, -0.037105705589056015, 0.009714974090456963, -0.17443273961544037, -0.058299120515584946, 0.024222204461693764, -0.06261593103408813, 0.08482254296541214, 0.04719258472323418, 0.0402066707611084, 0.05864771828055382, -0.017740832641720772, 0.017347684130072594, -0.04242771491408348, -0.018508201465010643, -0.018028708174824715, -0.1471928209066391, -0.057406309992074966, -0.0467476025223732, 0.09052947163581848, -0.12446527928113937, 0.006405872758477926, 0.09918777644634247, 0.12413305044174194, 0.024267882108688354, -0.06502209603786469, 0.01576879993081093, -0.04637402296066284, -0.03294845297932625, -0.10848908126354218, -0.049422670155763626, 0.011210246942937374, -0.015767501667141914, 0.15166538953781128, -0.1665314882993698, -0.07671702653169632, 0.10524710267782211, 0.12428805232048035, -0.09451229870319366, 0.03228098899126053, -0.08246598392724991, -0.014502322301268578, -0.0451684407889843, -0.03834019973874092, 0.2680089473724365, 0.035327449440956116, 0.08101149648427963, -0.10480095446109772, -0.09444936364889145, -0.008057043887674809, -0.044147931039333344, -0.025171766057610512, 0.022829003632068634, 0.02701358124613762, -0.17231853306293488, 0.03578564524650574, -0.005281934980303049, 0.09420721232891083, 0.2014300525188446, 0.04282841086387634, -0.08026763051748276, -0.05980279669165611, -0.07315102219581604, -0.0021227244287729263, 0.058553267270326614, 0.014443531632423401, 0.02601241134107113, 0.044130634516477585, 0.061095964163541794, 0.0421692319214344, -0.11624156683683395, 0.01620219647884369, 0.07321634888648987, -0.04108011722564697, -0.04602190852165222, 0.012226589024066925, 0.018958544358611107, 0.08035323768854141, 0.08695409446954727, 0.13366104662418365, -0.05919617787003517, -0.048353634774684906, -0.1407756209373474, 0.1343327760696411, -0.08454440534114838, -0.246760293841362, -0.13421408832073212, -0.0798545554280281, 0.008605635724961758, 0.014270716346800327, 0.025934509932994843, -0.047444093972444534, -0.04406440630555153, -0.08900899440050125, 0.10085171461105347, -0.0502270832657814, -0.022004935890436172, 0.01398091483861208, 0.02019621804356575, -0.022152213379740715, -0.113755002617836, -0.03285173326730728, 0.03961746394634247, -0.0982847586274147, -0.01094872783869505, 0.03301452845335007, 0.03779445216059685, 0.16302189230918884, -0.016314450651407242, 0.00492836395278573, -0.022237654775381088, 0.2827579379081726, -0.11273914575576782, 0.07710329443216324, 0.16567246615886688, -0.013590159825980663, 0.05450396239757538, 0.07887889444828033, 0.00498183723539114, -0.059670597314834595, 0.07427627593278885, 0.07505343109369278, -0.08081790804862976, -0.21772301197052002, -0.0319952666759491, -0.013995341025292873, 0.013905108906328678, 0.11934634298086166, 0.04933951050043106, 0.04620951786637306, 0.014314410276710987, -0.09865108132362366, 0.04379511624574661, 0.030804893001914024, 0.10185004770755768, -0.05240238830447197, -0.007785731926560402, 0.05155414342880249, -0.056116946041584015, 0.029116198420524597, 0.1304018646478653, 0.0432463176548481, 0.20653937757015228, -0.06987873464822769, 0.09441491216421127, 0.07794690132141113, 0.09477896988391876, 0.03235110267996788, 0.018086789175868034, -0.017172714695334435, 0.0160340778529644, -0.0024015100207179785, -0.09254440665245056, -0.020378554239869118, 0.042387161403894424, 0.02451843023300171, -0.014409644529223442, -0.03835432603955269, -0.048555418848991394, 0.044212598353624344, 0.23527061939239502, 0.013295008800923824, -0.1751978099346161, -0.10740604251623154, 0.0541544035077095, -0.06952352076768875, -0.05776090919971466, -0.011137492023408413, 0.06870844215154648, -0.21613618731498718, 0.06435225903987885, -0.03406910225749016, 0.10993897169828415, -0.1247221902012825, -0.0009471689118072391, 0.08531748503446579, 0.048872560262680054, -0.061781615018844604, 0.09783847630023956, -0.16941887140274048, 0.06000617519021034, -0.00823628157377243, 0.07144075632095337, -0.0718371793627739, 0.03145480528473854, 0.010254635475575924, 0.050382524728775024, 0.07570790499448776, 0.01947382465004921, 0.008798626251518726, 0.0027364222332835197, -0.03814667835831642, 0.004264778457581997, 0.058205388486385345, -0.11499081552028656, 0.12265484035015106, -0.03654608502984047, 0.03340446949005127, -0.032664649188518524, -0.07607927918434143, -0.09191229939460754, -0.1561202108860016, 0.08266056329011917, -0.11904329806566238, -0.0012054098770022392, -0.07106424868106842, -0.019559387117624283, 0.022708548232913017, 0.2517628073692322, -0.056281331926584244, -0.08055379241704941, -0.136207714676857, 0.004625874105840921, 0.13450588285923004, -0.08136719465255737, 0.006071140989661217, -0.016214903444051743, 0.19609814882278442, 0.00181783817242831, -0.13151368498802185, -0.010319830849766731, -0.06885408610105515, -0.17021648585796356, -0.013002583757042885, 0.16927587985992432, 0.06357678771018982, 0.03238331899046898, 0.0029270064551383257, 0.0020145499147474766, -0.04746127128601074, -0.17228449881076813, 0.021305495873093605, 0.1518365442752838, -0.00922221876680851, 0.01501578651368618, 0.04306747764348984, 0.028917962685227394, -0.12093538790941238, 0.022723069414496422, 0.05555634945631027, 0.17118039727210999, -0.07491330057382584, 0.18042537569999695, 0.024325307458639145, -0.0906578004360199, -0.16376294195652008, 0.02866431698203087, 0.024499250575900078, 0.030954614281654358, 0.027475593611598015, -0.20006127655506134, 0.045340120792388916, 0.02879139967262745, -0.004094769712537527, 0.05402626469731331, -0.31991422176361084, -0.14981435239315033, 0.002127183135598898, 0.011052986606955528, -0.11131740361452103, -0.03743632510304451, -0.034646302461624146, -0.08121204376220703, -0.26819032430648804, 0.10072744637727737, -0.10407067835330963, 0.07352599501609802, 0.021592332050204277, 0.09886816143989563, 0.04354854300618172, -0.05464233458042145, 0.12723198533058167, -0.022264879196882248, 0.06312361359596252, -0.10100148618221283, -0.056949857622385025, 0.09001363068819046, -0.06552521884441376, 0.09859319031238556, 0.0333171971142292, 0.08929374068975449, -0.09965002536773682, -0.08423831313848495, -0.07712402194738388, 0.006061372347176075, -0.0575203113257885, -0.0981697142124176, -0.09674850106239319, 0.09108340740203857, 0.12430258095264435, -0.04084455966949463, -0.08741960674524307, -0.05682743713259697, -0.0070227826945483685, 0.07365096360445023, 0.1115100085735321, 0.0698741152882576, -0.07317502051591873, 0.005424115806818008, 0.021220998838543892, 0.018984157592058182, -0.17023463547229767, 0.05127484351396561, 0.09115948528051376, 0.037138789892196655, 0.10977642238140106, 0.008659769780933857, -0.164578378200531, 0.0021028537303209305, 0.046967875212430954, -0.1723148673772812, -0.11752845346927643, -0.048304539173841476, 0.0183329489082098, -0.10487666726112366, -0.05013043433427811, 0.13673298060894012, -0.03711673244833946, -0.03440215811133385, 0.005761899519711733, 0.04392940178513527, -0.046612031757831573, 0.09337437897920609, 0.0074517251923680305, 0.04522749409079552, -0.06862661987543106, 0.11912215501070023, 0.07228092849254608, 0.01259760744869709, 0.03458784148097038, 0.06460472196340561, -0.09390576183795929, 0.009701001457870007, -0.09745083004236221, 0.02274172753095627, -0.0341343879699707, -0.0156682301312685, 0.009298735298216343, -0.04162108153104782, 0.04041286185383797, 0.06803368031978607, -0.010931500233709812, 0.11065001785755157, -0.04412015154957771, 0.011432313360273838, -0.12774497270584106, 0.07445542514324188, 0.040777772665023804, 0.024170950055122375, -0.11772579699754715, 0.18994846940040588, 0.023183781653642654, 0.09720432013273239, -0.03865957632660866, -0.05972995236515999, -0.05989580228924751, -0.011535905301570892, -0.10491333156824112, -0.043215129524469376, -0.08872011303901672, -0.024801239371299744, -0.004221775569021702, -0.038863036781549454, -0.028484437614679337, 0.047338664531707764, -0.03597636520862579, -0.053532060235738754, -0.07280918210744858, 0.04553654417395592, -0.13441447913646698, 0.03250265493988991, 0.12056791037321091, -0.05304515361785889, 0.11962972581386566, 0.05356847122311592, -0.03543839603662491, 0.026263592764735222, -0.11210113018751144, 0.0361408032476902, -0.01784740388393402, 0.016561495140194893, 0.02306719869375229, -0.15822453796863556, 0.008870481513440609, -0.04037170112133026, -0.06480652838945389, 0.001596276182681322, -0.011351258493959904, -0.12860706448554993, 0.0016343137249350548, 0.08042867481708527, -0.01941787637770176, -0.0720653310418129, 0.06722483038902283, 0.05634472519159317, 0.026934226974844933, 0.061280231922864914, -0.02223002351820469, 0.0754837617278099, -0.16859351098537445, -0.05389957129955292, 0.008000283502042294, 0.03184241056442261, 0.04299713671207428, -0.015768706798553467, 0.03659606724977493, -0.022681016474962234, 0.1995278298854828, 0.02176443673670292, -0.0243124607950449, 0.03817015141248703, -0.05908586084842682, 0.0009559254394844174, 0.04548156261444092, 0.07275664806365967, -0.03669280931353569, -0.038146644830703735, 0.0004729528445750475, -0.016652869060635567, -0.08806438744068146, -0.03749587759375572, 0.12246157974004745, 0.042184390127658844, 0.18089787662029266, -0.05444260686635971, 0.0632464736700058, -0.012918854132294655, -0.11499307304620743, -0.00716843456029892, -0.04239032417535782, 0.03757720813155174, -0.0654376894235611, 0.059380609542131424, 0.1811838299036026, -0.1636241376399994, 0.11945852637290955, 0.018131865188479424, -0.059276703745126724, -0.11187588423490524, -0.19477306306362152, -0.01993604376912117, -0.045845188200473785, 0.0304894857108593, -0.138983815908432, 0.08551407605409622, 0.029520615935325623, 0.03726011887192726, -0.07010983675718307, 0.13750877976417542, -0.08206873387098312, -0.12187661230564117, 0.03418824449181557, 0.02402770146727562, 0.030239997431635857, 0.05098051205277443, 0.07838711887598038, 0.026138368993997574, 0.014120175503194332, 0.06947048008441925, 0.03719684109091759, 0.031835783272981644, 0.028345167636871338, -0.019558820873498917, -0.04446379095315933, 0.027535904198884964, -0.00038945963024161756, 0.028373055160045624, 0.09243147820234299, 0.057663943618535995, -0.015006187371909618, -0.023461196571588516, 0.3046567142009735, -0.0372173897922039, -0.04486489295959473, -0.18292491137981415, 0.1607852280139923, 0.00618978263810277, -0.0024138307198882103, 0.030345642939209938, -0.121433325111866, 0.002992123831063509, 0.12408081442117691, 0.17735321819782257, -0.031668614596128464, 0.017503513023257256, -0.03141762316226959, 0.019307764247059822, 0.03362655267119408, 0.09750188887119293, 0.061873503029346466, 0.1928918957710266, -0.03383016586303711, 0.047329131513834, -0.00814024731516838, -0.01825307309627533, -0.0013383091427385807, 0.10456035286188126, -0.03393344581127167, 0.010607692413032055, -0.056074414402246475, 0.09754090011119843, -0.05131034925580025, -0.2883518934249878, -0.03578644245862961, -0.03148795664310455, -0.09423555433750153, 0.0633612871170044, -0.02753099612891674, -0.02382584474980831, 0.08852881193161011, 0.02546720765531063, -0.045743636786937714, 0.14470845460891724, 0.04909249395132065, -0.04810202494263649, -0.007665627170354128, 0.11160355061292648, -0.01903240755200386, 0.17092008888721466, -0.03010091558098793, 0.008434394374489784, 0.08583813905715942, 0.013550721108913422, -0.12285837531089783, 0.004644220694899559, 0.043849069625139236, -0.06852693855762482, -0.028693364933133125, 0.1962638646364212, 0.012235027737915516, 0.03145658224821091, 0.07087437063455582, -0.06203391030430794, 0.018062537536025047, -0.05235582962632179, 0.06026317924261093, -0.15135011076927185, 0.0646756961941719, -0.08411215245723724, 0.13080650568008423, 0.1874283403158188, -0.0641213059425354, 0.030643118545413017, -0.06192313879728317, 0.010986518114805222, -0.02432439476251602, 0.07640648633241653, -0.020894860848784447, -0.10727334022521973, 0.007452165242284536, 0.031204301863908768, 0.02248808927834034, -0.1824231743812561, -0.07300824671983719, 0.06589112430810928, -0.049145787954330444, 0.02208789996802807, 0.1767686903476715, 0.022066308185458183, 0.06486428529024124, -0.036521609872579575, -0.01417470071464777, -0.015687597915530205, 0.11362000554800034, -0.1648518592119217, -0.08413753658533096 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2879181f9522394ad29c16478421aa77.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Red Hot Chili Peppers</div> <a href="https://genius.com/artists/red-hot-chili-peppers"> <div style="text-align: center; font-size: 14px;">@red-hot-chili-peppers</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Red Hot Chili Peppers. Dataset is available [here](https://huggingface.co/datasets/huggingartists/red-hot-chili-peppers). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/red-hot-chili-peppers") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2spp06qm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Red Hot Chili Peppers's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/opiwx19q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/opiwx19q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/red-hot-chili-peppers') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/red-hot-chili-peppers") model = AutoModelWithLMHead.from_pretrained("huggingartists/red-hot-chili-peppers") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/red-hot-chili-peppers"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/red-hot-chili-peppers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/red-hot-chili-peppers", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/red-hot-chili-peppers #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Red Hot Chili Peppers</div> <a href="URL <div style="text-align: center; font-size: 14px;">@red-hot-chili-peppers</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Red Hot Chili Peppers. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Red Hot Chili Peppers's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Red Hot Chili Peppers.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Red Hot Chili Peppers's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/red-hot-chili-peppers #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Red Hot Chili Peppers.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Red Hot Chili Peppers's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 90, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/red-hot-chili-peppers #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Red Hot Chili Peppers.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Red Hot Chili Peppers's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03665889427065849, 0.19540901482105255, -0.004732378758490086, 0.07556777447462082, 0.07445147633552551, 0.0022494420409202576, 0.056388452649116516, 0.12787221372127533, 0.000015166536286415067, 0.07557106763124466, 0.03919821232557297, 0.07725287228822708, 0.0765850618481636, 0.0722448080778122, 0.022486593574285507, -0.22454766929149628, 0.01549017895013094, -0.05624338984489441, -0.05137705057859421, 0.09952211380004883, 0.07900280505418777, -0.06989793479442596, 0.08021172881126404, 0.00391721073538065, -0.05459234490990639, -0.00022931673447601497, 0.015028445981442928, -0.06763659417629242, 0.06856649369001389, 0.0770009309053421, 0.03592503070831299, 0.0478343591094017, 0.053756240755319595, -0.17374730110168457, 0.030556069687008858, 0.12355544418096542, 0.01611076481640339, 0.08788758516311646, 0.08871666342020035, -0.050420623272657394, 0.09695293754339218, -0.054720357060432434, 0.08303018659353256, 0.06378716230392456, -0.1142425537109375, -0.056411512196063995, -0.1459902822971344, 0.04840445891022682, 0.05495378002524376, 0.06030281260609627, -0.012102407403290272, 0.06474733352661133, -0.06291154026985168, 0.04767657443881035, 0.26387518644332886, -0.26011377573013306, -0.01801266521215439, 0.01679842174053192, 0.05655214935541153, 0.022264087572693825, -0.08063611388206482, 0.022752871736884117, 0.03090684488415718, 0.031710051000118256, 0.028773559257388115, -0.04149756580591202, 0.10770232230424881, -0.027642641216516495, -0.09540362656116486, -0.07627108693122864, 0.08178088068962097, -0.029009640216827393, -0.08692938089370728, -0.09548681229352951, -0.032068632543087006, -0.016340909525752068, 0.01438536960631609, -0.0029893936589360237, 0.013168302364647388, 0.014846394769847393, -0.0854874923825264, -0.12225276976823807, -0.07436421513557434, -0.056526362895965576, -0.025400415062904358, 0.08002149313688278, 0.061609067022800446, 0.020354120060801506, -0.05267694219946861, 0.1875276416540146, 0.05596659332513809, -0.09516602009534836, -0.07950297743082047, -0.10278294235467911, -0.08721024543046951, -0.026382967829704285, -0.021936187520623207, 0.010478990152478218, 0.012254908680915833, 0.15057842433452606, -0.04083246365189552, 0.0235187578946352, -0.05485454946756363, 0.017474869266152382, 0.08405698835849762, 0.1094069555401802, -0.09257440268993378, -0.03133395314216614, 0.09840158373117447, -0.05197329446673393, -0.037651367485523224, -0.03279867023229599, -0.0043786875903606415, -0.058291900902986526, 0.05336076766252518, 0.09339629113674164, 0.08615975081920624, 0.041166651993989944, -0.027029553428292274, -0.0541706457734108, 0.026880880817770958, -0.13628391921520233, 0.025788908824324608, 0.0012281009694561362, -0.04263279214501381, 0.0007847652304917574, 0.05277388170361519, -0.016655396670103073, -0.11005866527557373, 0.04694044962525368, -0.06816215068101883, -0.02382228523492813, -0.08487814664840698, -0.0873064324259758, 0.02440161444246769, -0.04538698494434357, -0.03128540515899658, -0.08089803904294968, -0.13005439937114716, -0.038910575211048126, 0.0216841921210289, -0.07980567216873169, -0.02701892890036106, 0.03113260678946972, -0.028688348829746246, 0.00282082287594676, -0.0008469299064017832, 0.023829184472560883, -0.014286414720118046, 0.06633736193180084, -0.07689479738473892, 0.06288552284240723, 0.08111611753702164, 0.04397457465529442, -0.09982825815677643, 0.07474872469902039, -0.15592588484287262, 0.15806786715984344, -0.0271481741219759, -0.048396047204732895, -0.0971742495894432, -0.10024397820234299, -0.03041813150048256, -0.043769337236881256, 0.03182106465101242, 0.1526259034872055, -0.18824875354766846, -0.012039060704410076, 0.2421816736459732, -0.07735547423362732, -0.044792257249355316, 0.09370144456624985, -0.0602681040763855, 0.03755234554409981, 0.11695229262113571, 0.038549453020095825, 0.13693566620349884, -0.08257941901683807, -0.07119185477495193, -0.02073087729513645, -0.06760723143815994, 0.17116793990135193, 0.0340910442173481, -0.03238889202475548, 0.046949975192546844, -0.008234987035393715, -0.009464194066822529, -0.03589482605457306, -0.029086772352457047, -0.03108843043446541, -0.025938455015420914, -0.015498993918299675, 0.020847618579864502, -0.053835682570934296, -0.02290165051817894, -0.007901188917458057, -0.09078887850046158, 0.01474836841225624, 0.08088432252407074, -0.06044192612171173, 0.04649661108851433, -0.09920719265937805, 0.03682766854763031, -0.044876355677843094, 0.011106771416962147, -0.18756844103336334, -0.010635443963110447, 0.021549904718995094, -0.06634559482336044, 0.0792289599776268, 0.023022277280688286, 0.043171126395463943, 0.05672712251543999, -0.03137139976024628, 0.006890192627906799, -0.05198612064123154, 0.0020708476658910513, -0.0656597837805748, -0.14595648646354675, -0.05402534455060959, -0.03089386783540249, 0.07820430397987366, -0.09336487203836441, -0.004126010928303003, 0.10610403120517731, 0.15036961436271667, 0.0366443507373333, -0.05941460654139519, 0.030715007334947586, -0.02999860607087612, -0.007091686129570007, -0.10445638000965118, -0.037410128861665726, 0.027003638446331024, -0.025173518806695938, 0.13092397153377533, -0.10374029725790024, -0.07033839076757431, 0.11235465854406357, 0.0751548781991005, -0.0857289731502533, 0.029616910964250565, -0.04603070765733719, -0.02044990286231041, -0.07353076338768005, -0.03542449697852135, 0.22065052390098572, 0.044284552335739136, 0.08093239367008209, -0.09645383805036545, -0.06580688059329987, -0.009615345858037472, -0.03876464068889618, 0.009621595963835716, 0.044523853808641434, 0.03668370097875595, -0.2345815747976303, 0.05181870982050896, 0.007392420899122953, 0.06099230423569679, 0.12216878682374954, 0.02061241865158081, -0.08984281867742538, -0.05389697477221489, -0.02706831507384777, 0.02761594019830227, 0.05790871009230614, 0.0261297058314085, 0.0659819096326828, 0.027241338044404984, 0.03823455795645714, 0.025760626420378685, -0.1270669549703598, 0.029546309262514114, 0.04110785946249962, -0.03961892053484917, -0.04837481677532196, -0.007745462469756603, 0.03623483330011368, 0.08972664177417755, 0.07601319253444672, 0.10175229609012604, -0.01777220331132412, -0.04900870844721794, -0.11040618270635605, 0.13403697311878204, -0.10594502836465836, -0.2193858027458191, -0.09358338266611099, -0.056314971297979355, 0.030247310176491737, 0.02704162709414959, 0.03859937936067581, -0.02976643294095993, -0.025175947695970535, -0.06221041828393936, 0.050321727991104126, -0.04420001059770584, -0.001389907207340002, -0.030058400705456734, 0.066619373857975, 0.0048046838492155075, -0.10890911519527435, -0.015650838613510132, 0.013488860800862312, -0.10318277776241302, -0.003460356965661049, 0.0350714735686779, 0.031115302816033363, 0.10770931094884872, 0.013928178697824478, 0.004376887809485197, -0.022063881158828735, 0.21906429529190063, -0.10339426249265671, 0.050258614122867584, 0.15402567386627197, -0.02904043160378933, 0.06953848898410797, 0.06450198590755463, 0.002744796685874462, -0.05543047934770584, 0.041717175394296646, 0.04692397639155388, -0.05955343693494797, -0.21624530851840973, -0.010994132608175278, -0.04479537531733513, -0.005001207813620567, 0.11793935298919678, 0.04054800793528557, -0.01079005841165781, 0.03845653682947159, -0.09567264467477798, 0.06786610186100006, 0.07462405413389206, 0.07892850786447525, -0.00981078203767538, -0.007127048447728157, 0.05287018045783043, -0.055975716561079025, 0.023050503805279732, 0.10882559418678284, 0.050281085073947906, 0.26595383882522583, -0.0814630538225174, 0.07435140013694763, 0.09070607274770737, 0.08479516208171844, 0.029917046427726746, 0.05024677515029907, -0.013214758597314358, 0.058276209980249405, -0.005235857330262661, -0.08204954862594604, -0.041906267404556274, 0.027775613591074944, 0.03782697021961212, -0.038794804364442825, -0.032119739800691605, -0.05152716115117073, 0.03580643609166145, 0.2153828740119934, 0.0724228098988533, -0.1260635107755661, -0.07589764893054962, 0.06661305576562881, -0.049970805644989014, -0.05866335332393646, -0.0017439820803701878, 0.07170289754867554, -0.2126220315694809, 0.009631918743252754, -0.03371240571141243, 0.12091230601072311, -0.17204774916172028, -0.026435190811753273, -0.0010814247652888298, 0.06546331942081451, -0.044547487050294876, 0.0740576982498169, -0.19701819121837616, 0.060360413044691086, 0.010328413918614388, 0.09145642071962357, -0.060005657374858856, 0.03561330586671829, 0.05132318660616875, 0.009567546658217907, 0.10430958122015, 0.01324413064867258, 0.004899143241345882, -0.06294827163219452, -0.08090315759181976, 0.008002758026123047, 0.07170883566141129, -0.06025955453515053, 0.1217886209487915, -0.041615068912506104, 0.01527506485581398, -0.01618949882686138, -0.0400393083691597, -0.12919937074184418, -0.16886280477046967, 0.07014056295156479, -0.14272674918174744, 0.018464718014001846, -0.06371279805898666, -0.026763614267110825, 0.04215468093752861, 0.20494045317173004, -0.09814973920583725, -0.09715250134468079, -0.1140647754073143, 0.017937203869223595, 0.14589494466781616, -0.07743366807699203, 0.04844896122813225, 0.018333034589886665, 0.13752605020999908, 0.011097786948084831, -0.1201343834400177, 0.006466265302151442, -0.07073679566383362, -0.18846125900745392, -0.018478194251656532, 0.12047915905714035, 0.0708833709359169, 0.06157311424612999, 0.04431193694472313, 0.024234797805547714, -0.018991578370332718, -0.14289365708827972, -0.01061342190951109, 0.09808740764856339, 0.05722574144601822, 0.0518343448638916, -0.024067483842372894, 0.02885839156806469, -0.1092546135187149, 0.018540941178798676, 0.08611594140529633, 0.19631069898605347, -0.07529844343662262, 0.1670413315296173, -0.00995805487036705, -0.10110677778720856, -0.1645411252975464, -0.021853532642126083, 0.010391811840236187, 0.011256297118961811, 0.01974000222980976, -0.20520581305027008, 0.002445839112624526, 0.042934350669384, -0.010598637163639069, 0.11564786732196808, -0.31646597385406494, -0.11774939298629761, 0.031639549881219864, 0.02978149987757206, -0.02444511651992798, -0.040171071887016296, -0.07245010882616043, -0.08408021926879883, -0.21179969608783722, 0.11181245744228363, -0.12968462705612183, 0.10471189022064209, 0.017703544348478317, -0.0031152719166129827, 0.03727806359529495, -0.04412122815847397, 0.12262926995754242, -0.0498427152633667, 0.03074629232287407, -0.08471980690956116, -0.025007830932736397, 0.04235047847032547, -0.04133651778101921, 0.0380689837038517, 0.016643088310956955, 0.07040630280971527, -0.05800731107592583, -0.05652257055044174, -0.0692087933421135, 0.01731017604470253, -0.07111401110887527, -0.06957253813743591, -0.07822263240814209, 0.0922175943851471, 0.12735159695148468, -0.02615361288189888, -0.10497593879699707, -0.03284812718629837, -0.023804226890206337, 0.09576308727264404, 0.11593526601791382, 0.10063885152339935, -0.09172121435403824, -0.006339139770716429, -0.0033879615366458893, 0.03768738731741905, -0.06434597820043564, 0.06776688247919083, 0.07034546136856079, 0.03856140375137329, 0.09288525581359863, 0.03264366090297699, -0.13508228957653046, 0.05242714285850525, 0.029874088242650032, -0.10995091497898102, -0.10623057931661606, -0.01043359749019146, -0.013647099025547504, -0.08240203559398651, -0.046352434903383255, 0.15249651670455933, -0.01588534191250801, -0.06037036329507828, 0.010710816830396652, 0.07817886769771576, -0.03484368324279785, 0.12831154465675354, 0.047125060111284256, 0.025682223960757256, -0.08482100069522858, 0.10629680007696152, 0.06380277872085571, 0.015133998356759548, 0.014528900384902954, 0.06943334639072418, -0.1029471606016159, -0.009037802927196026, -0.03513260558247566, -0.02475910075008869, -0.024893445894122124, -0.0006060342420823872, -0.02699991874396801, -0.05142848193645477, 0.0455516055226326, 0.09592173248529434, 0.0011387483682483435, 0.12114495784044266, -0.025756729766726494, 0.0051977490074932575, -0.09261704236268997, 0.06669222563505173, 0.0644683986902237, 0.021046647801995277, -0.07713424414396286, 0.14189541339874268, 0.028048088774085045, 0.07470083236694336, -0.03834768012166023, -0.03709045425057411, -0.08605483919382095, -0.007673907093703747, -0.16207441687583923, 0.005820676684379578, -0.08116351068019867, -0.038853708654642105, -0.02733149379491806, -0.026395779103040695, -0.029140740633010864, 0.05844315141439438, -0.03865792602300644, -0.07436755299568176, -0.075240857899189, 0.04864735156297684, -0.16330952942371368, -0.006914847996085882, 0.12466146796941757, -0.09416410326957703, 0.10719358921051025, 0.06556011736392975, -0.04049983620643616, -0.0007974398322403431, -0.07537422329187393, -0.022439101710915565, -0.024425087496638298, 0.015313697047531605, 0.02587909810245037, -0.1720435619354248, 0.03215493634343147, -0.04854409396648407, -0.04527457803487778, 0.0028810983058065176, 0.05584920570254326, -0.11642185598611832, -0.0044441670179367065, 0.01825898326933384, 0.0033699574414640665, -0.07182392477989197, 0.06506545096635818, 0.06814178079366684, 0.04388868808746338, 0.07084230333566666, -0.03680328279733658, 0.0994032472372055, -0.15574590861797333, -0.03382774442434311, 0.014950316399335861, 0.0019941776990890503, 0.06933527439832687, -0.014018528163433075, 0.07436184585094452, 0.01484350673854351, 0.17676977813243866, -0.017261570319533348, -0.011312615126371384, 0.026552123948931694, -0.01446126215159893, -0.013601552695035934, 0.03770793601870537, 0.08805269002914429, -0.01323726586997509, -0.03768376260995865, -0.01657656580209732, -0.004147818312048912, -0.05186231806874275, -0.07879146188497543, 0.1436634212732315, 0.08722195774316788, 0.14462022483348846, -0.025069227442145348, 0.05131831765174866, -0.005014918744564056, -0.10755718499422073, -0.01699461229145527, -0.008151899091899395, 0.017509646713733673, -0.05339878425002098, 0.05620153248310089, 0.11884211748838425, -0.1636984944343567, 0.12180577218532562, 0.004322954919189215, -0.054114773869514465, -0.10970954596996307, -0.15768297016620636, -0.03835614025592804, -0.02785671129822731, 0.021207056939601898, -0.1266186237335205, 0.07277511060237885, 0.05014053359627724, 0.01845422014594078, -0.04503278806805611, 0.10287564992904663, -0.04471873864531517, -0.1372085064649582, 0.013044856488704681, 0.03131676837801933, 0.03678089752793312, 0.050913844257593155, 0.030213825404644012, 0.021618904545903206, 0.038241662085056305, 0.06984590739011765, 0.043307382613420486, 0.045366719365119934, 0.0207104180008173, -0.021283842623233795, -0.04305484890937805, 0.006259237881749868, 0.014244962483644485, 0.04798717424273491, 0.15604013204574585, 0.06799253076314926, -0.011843630112707615, -0.0234523918479681, 0.3013508915901184, -0.05342899635434151, -0.07000529021024704, -0.1688840538263321, 0.1713695079088211, 0.024161923676729202, -0.014303827658295631, 0.04455982893705368, -0.1370989978313446, 0.016207236796617508, 0.15175670385360718, 0.15642023086547852, -0.07649022340774536, 0.02215803787112236, 0.001499613281339407, 0.010740314610302448, 0.05251333490014076, 0.06839515268802643, 0.06902766227722168, 0.20982787013053894, -0.07627426832914352, 0.050453003495931625, 0.025664515793323517, -0.006073064636439085, -0.06885278224945068, 0.12373051047325134, -0.059690505266189575, 0.018013767898082733, -0.06338928639888763, 0.09836356341838837, -0.04439514875411987, -0.28844448924064636, 0.006029932759702206, -0.03297816216945648, -0.10086394101381302, 0.03535871207714081, -0.04638465493917465, -0.011988447979092598, 0.08530879020690918, 0.026614442467689514, -0.00544369500130415, 0.1324281394481659, 0.051958635449409485, -0.03346762806177139, -0.014208959415555, 0.09604892879724503, -0.037632375955581665, 0.19450531899929047, -0.005701462738215923, 0.03524389863014221, 0.09077007323503494, 0.038440439850091934, -0.12857890129089355, -0.0069525050930678844, 0.03965843468904495, -0.09692256152629852, 0.0059356954880058765, 0.17314335703849792, -0.0060736676678061485, -0.01802681013941765, 0.07070530951023102, -0.006119652651250362, 0.04083134979009628, -0.019134018570184708, 0.040026746690273285, -0.12396866828203201, 0.03343156725168228, -0.11044593155384064, 0.12917080521583557, 0.1564490795135498, -0.06969987601041794, 0.03457506000995636, -0.051222871989011765, -0.001259685610421002, 0.005428151227533817, 0.01853029616177082, -0.025316406041383743, -0.10181590914726257, 0.005855516996234655, 0.05358497425913811, 0.03684070333838463, -0.17184622585773468, -0.07912049442529678, 0.043602343648672104, -0.06150277331471443, -0.030393941327929497, 0.13705380260944366, 0.00918200146406889, 0.04818890616297722, -0.025998221710324287, -0.05566297844052315, -0.034814536571502686, 0.08424495160579681, -0.1413959562778473, -0.06440333276987076 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/348ad82a8d34eaff777b6743ca0f2d70.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rex Orange County</div> <a href="https://genius.com/artists/rex-orange-county"> <div style="text-align: center; font-size: 14px;">@rex-orange-county</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Rex Orange County. Dataset is available [here](https://huggingface.co/datasets/huggingartists/rex-orange-county). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/rex-orange-county") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3by3xc64/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Rex Orange County's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1bwctmad) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1bwctmad/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/rex-orange-county') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/rex-orange-county") model = AutoModelWithLMHead.from_pretrained("huggingartists/rex-orange-county") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/rex-orange-county"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/rex-orange-county
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/rex-orange-county", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rex-orange-county #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rex Orange County</div> <a href="URL <div style="text-align: center; font-size: 14px;">@rex-orange-county</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Rex Orange County. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Rex Orange County's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Rex Orange County.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rex Orange County's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rex-orange-county #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Rex Orange County.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rex Orange County's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rex-orange-county #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Rex Orange County.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rex Orange County's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04049580916762352, 0.1926504373550415, -0.002819392364472151, 0.0542488694190979, 0.09479624778032303, -0.0024512303061783314, 0.05922313779592514, 0.10651201009750366, 0.003510919865220785, 0.06448408216238022, 0.05881977081298828, 0.05038774386048317, 0.08368337154388428, 0.04139690473675728, 0.01716507226228714, -0.24108950793743134, 0.020757364109158516, -0.0724601000547409, -0.003980116453021765, 0.09757702797651291, 0.09124095737934113, -0.06331191956996918, 0.07985111325979233, 0.034254953265190125, -0.09620249271392822, 0.02218780480325222, -0.013334299437701702, -0.07178029417991638, 0.07952717691659927, 0.0706436038017273, 0.04637179896235466, 0.03799884766340256, 0.058632850646972656, -0.1649000197649002, 0.029193764552474022, 0.12047820538282394, 0.027555791661143303, 0.08236332982778549, 0.07875601947307587, -0.060342393815517426, 0.135475754737854, -0.019908402115106583, 0.09039556980133057, 0.055507831275463104, -0.12076597660779953, -0.08979994803667068, -0.14132162928581238, 0.07155165821313858, 0.09376964718103409, 0.08934240788221359, -0.028077231720089912, 0.09654685109853745, -0.02643432840704918, 0.058377042412757874, 0.24072889983654022, -0.19583933055400848, -0.0016042906790971756, 0.06725446879863739, 0.07731398940086365, 0.032546088099479675, -0.0936417281627655, -0.006037192884832621, 0.037281591445207596, 0.034912314265966415, 0.024473905563354492, -0.02114754356443882, 0.13814517855644226, 0.02680194564163685, -0.11405158787965775, -0.07258801907300949, 0.10636136680841446, -0.0185687355697155, -0.0678517296910286, -0.11600326746702194, -0.0038260172586888075, -0.005523679777979851, 0.04507031664252281, 0.008804711513221264, 0.0024329922161996365, 0.009541514329612255, -0.047704730182886124, -0.10193328559398651, -0.08788279443979263, -0.029426338151097298, -0.04577045142650604, 0.07374142110347748, 0.038648419082164764, 0.022798076272010803, -0.0856437161564827, 0.2099565714597702, 0.03721190616488457, -0.11272449791431427, -0.049596961587667465, -0.09719813615083694, -0.08052285015583038, -0.05352549999952316, -0.00595918670296669, -0.026603328064084053, -0.015935556963086128, 0.11639861762523651, -0.01851520501077175, 0.011023459024727345, -0.07113375514745712, 0.010224849916994572, 0.14154089987277985, 0.14333106577396393, -0.11641320586204529, -0.027353566139936447, 0.06893222033977509, -0.02610362321138382, -0.07011974602937698, -0.03896798565983772, -0.00429958151653409, -0.01895413175225258, 0.0466160923242569, 0.09067703783512115, 0.11347570270299911, 0.046169087290763855, -0.008534844033420086, -0.06558911502361298, 0.07769303768873215, -0.12477199733257294, 0.016630869358778, -0.01508425734937191, -0.05568615347146988, 0.019074782729148865, 0.05877160653471947, 0.024623451754450798, -0.12004982680082321, 0.08748340606689453, -0.08270242065191269, -0.04078403860330582, -0.060963552445173264, -0.10114872455596924, 0.00022638574591837823, -0.049047697335481644, -0.022756589576601982, -0.08748915791511536, -0.163423553109169, -0.053083404898643494, -0.007278301753103733, -0.05663112550973892, -0.02670840360224247, 0.02760021574795246, -0.05417248606681824, -0.003858801443129778, -0.0059461141936481, -0.02187795378267765, -0.011954866349697113, 0.04363279789686203, -0.08767988532781601, 0.012011246755719185, 0.07485838979482651, 0.049777157604694366, -0.11631316691637039, 0.06501249223947525, -0.1202121153473854, 0.12751367688179016, -0.013878175057470798, 0.05177026242017746, -0.09250608831644058, -0.07397229969501495, 0.009791484102606773, -0.043160226196050644, 0.01609686203300953, 0.12662093341350555, -0.15855062007904053, -0.017130747437477112, 0.17478835582733154, -0.0626557245850563, -0.0580962710082531, 0.07431715726852417, -0.058752886950969696, 0.022632107138633728, 0.1127578392624855, 0.05071296542882919, 0.1457238644361496, -0.1150185614824295, -0.06767367571592331, -0.05858367681503296, -0.0887434110045433, 0.1448937952518463, 0.0338834784924984, -0.03137693926692009, 0.025500042364001274, 0.0005499288672581315, -0.026850437745451927, 0.0044037471525371075, -0.027364715933799744, -0.01841445453464985, -0.027331089600920677, -0.01145249605178833, -0.03593624755740166, -0.0435829795897007, -0.0496470183134079, -0.008434029296040535, -0.08647459745407104, 0.02107781358063221, 0.0924823135137558, -0.07228019833564758, 0.01592150703072548, -0.1212858259677887, 0.04858221486210823, -0.06065194308757782, 0.00582759827375412, -0.1857723444700241, -0.038607120513916016, 0.028644703328609467, -0.04029836878180504, 0.0414997898042202, 0.034304846078157425, 0.030687402933835983, 0.06978578120470047, -0.005486736539751291, -0.0029491325840353966, -0.015199250541627407, -0.001927519217133522, -0.05092690885066986, -0.15019521117210388, -0.03812155872583389, -0.0400923527777195, 0.05954977124929428, -0.10752459615468979, 0.009387180209159851, 0.10591480880975723, 0.13548937439918518, 0.021312357857823372, -0.06170835718512535, 0.02439170889556408, -0.03714390844106674, -0.04481540992856026, -0.12041621655225754, -0.05406765639781952, 0.030043218284845352, -0.010328753851354122, 0.14239495992660522, -0.13141708076000214, -0.08931992948055267, 0.10513338446617126, 0.12040162831544876, -0.0699886679649353, 0.032950907945632935, -0.07656975835561752, -0.013661118224263191, -0.06233251467347145, -0.04839671403169632, 0.25330498814582825, 0.05375109985470772, 0.09903430193662643, -0.09150098264217377, -0.08355800807476044, 0.0035409738775342703, -0.03267514333128929, -0.04148535430431366, 0.030607329681515694, 0.031371403485536575, -0.1976129710674286, 0.0425138846039772, -0.030198166146874428, 0.10088840872049332, 0.14790324866771698, 0.035181839019060135, -0.08664707094430923, -0.06509622186422348, -0.07961877435445786, 0.01925007440149784, 0.053695183247327805, 0.02746826969087124, 0.04907149821519852, 0.032913535833358765, 0.029497485607862473, 0.04510768502950668, -0.10605345666408539, 0.007277687080204487, 0.059174876660108566, -0.022026345133781433, -0.06257501989603043, 0.0116456663236022, 0.03600890934467316, 0.07568494975566864, 0.050073109567165375, 0.08862216025590897, -0.0387846864759922, -0.053332291543483734, -0.11848556995391846, 0.14003576338291168, -0.09261984378099442, -0.22259114682674408, -0.14453135430812836, -0.05754922330379486, 0.024507954716682434, 0.015375206246972084, 0.036627866327762604, -0.031656887382268906, -0.0575500912964344, -0.1050572395324707, 0.08460107445716858, -0.033989764750003815, -0.004152876324951649, 0.004820960108190775, 0.03851216658949852, -0.013582969084382057, -0.11895821988582611, -0.031778234988451004, 0.03275120630860329, -0.08330773562192917, 0.016335805878043175, 0.019426748156547546, 0.06588057428598404, 0.14189067482948303, 0.018544906750321388, 0.006867667660117149, -0.013142946176230907, 0.23208028078079224, -0.10375956445932388, 0.049475252628326416, 0.15905876457691193, -0.02962815947830677, 0.06476929783821106, 0.0437450036406517, -0.01689598150551319, -0.05454431101679802, 0.06419586390256882, 0.05721253901720047, -0.048275452107191086, -0.22530269622802734, -0.027782851830124855, -0.005562629085034132, 0.008606063202023506, 0.11944349110126495, 0.05266154557466507, 0.0443660244345665, 0.02170012705028057, -0.07557369023561478, 0.043871644884347916, 0.02676301635801792, 0.10244734585285187, -0.05719122663140297, -0.014640947803854942, 0.0410529300570488, -0.04985055327415466, 0.030489342287182808, 0.12136323004961014, 0.009995125234127045, 0.24384617805480957, -0.07087136059999466, 0.09642449021339417, 0.0813324898481369, 0.11232578754425049, 0.03474981337785721, 0.032922111451625824, -0.0043010707013309, 0.026150425896048546, 0.01375238411128521, -0.07538449019193649, 0.0011969883926212788, 0.021891294047236443, 0.06663495302200317, -0.01830439269542694, -0.05503734201192856, -0.08020865172147751, 0.03362010046839714, 0.25189822912216187, 0.007688224781304598, -0.18695983290672302, -0.06497479230165482, 0.0658801943063736, -0.06889860332012177, -0.07779203355312347, -0.02089882455766201, 0.07807760685682297, -0.199616938829422, 0.02070743218064308, -0.03879520669579506, 0.11416643857955933, -0.1509733349084854, -0.007938817143440247, 0.05175940692424774, 0.04357380419969559, -0.07354721426963806, 0.077114038169384, -0.14869797229766846, 0.0647037923336029, 0.0005619645235128701, 0.06454748660326004, -0.07614763081073761, 0.019720984622836113, 0.026190167292952538, 0.0558680035173893, 0.09477459639310837, 0.010701527819037437, 0.08732236921787262, -0.07885903120040894, -0.07081726938486099, -0.005895506590604782, 0.038289640098810196, -0.11410018056631088, 0.13044193387031555, -0.03488202020525932, 0.03352709859609604, -0.018338367342948914, -0.10220921039581299, -0.08937826752662659, -0.1465643346309662, 0.07561476528644562, -0.12216978520154953, 0.035874925553798676, -0.07684342563152313, -0.029556483030319214, 0.018064439296722412, 0.19330908358097076, -0.09667297452688217, -0.07520855963230133, -0.14283910393714905, 0.023506393656134605, 0.14921635389328003, -0.07649096101522446, -0.0069265589118003845, 0.008138403296470642, 0.194623202085495, 0.004408571403473616, -0.11635665595531464, -0.015333008021116257, -0.08619270473718643, -0.18697458505630493, -0.02431674860417843, 0.12228772044181824, 0.10546287149190903, 0.020485544577240944, 0.023217778652906418, 0.005929579492658377, -0.042459677904844284, -0.15499936044216156, 0.008261844515800476, 0.15107563138008118, 0.06414837390184402, 0.04460030049085617, 0.051809005439281464, 0.033911317586898804, -0.13064086437225342, 0.010515626519918442, 0.051828887313604355, 0.17506416141986847, -0.05245630070567131, 0.13145433366298676, 0.006458093877881765, -0.1054079458117485, -0.14151158928871155, 0.032325390726327896, 0.004429612308740616, 0.034203995019197464, 0.056322962045669556, -0.1546107828617096, 0.01611120067536831, 0.03673212602734566, 0.0017931321635842323, 0.04369279369711876, -0.3258844316005707, -0.12403470277786255, 0.06523685902357101, 0.013786803930997849, -0.09354451298713684, -0.06600714474916458, -0.03987019881606102, -0.08409413695335388, -0.2297438085079193, 0.09738854318857193, -0.09339793026447296, 0.07640198618173599, 0.0004314683610573411, 0.05029948055744171, 0.060039665549993515, -0.0678500235080719, 0.13337674736976624, -0.01770629733800888, 0.06899543851613998, -0.11307162046432495, -0.05303158238530159, 0.1058492437005043, -0.053229253739118576, 0.06801589578390121, 0.05234906077384949, 0.0911220908164978, -0.10504856705665588, -0.07606419175863266, -0.07311642169952393, 0.019101765006780624, -0.058532603085041046, -0.07968995720148087, -0.07324189692735672, 0.08592536300420761, 0.13998153805732727, -0.04967925325036049, -0.08558377623558044, -0.03161834180355072, -0.03456534072756767, 0.06840354204177856, 0.10032624006271362, 0.09346012026071548, -0.08739646524190903, -0.001762973377481103, 0.01594993844628334, 0.001163387205451727, -0.10516407340765, 0.034991323947906494, 0.08638785034418106, 0.026993323117494583, 0.11610481888055801, 0.02129857800900936, -0.16005000472068787, 0.02516941726207733, 0.0340503565967083, -0.1397840827703476, -0.07573030143976212, -0.057934410870075226, 0.007209921255707741, -0.08859087526798248, -0.059986356645822525, 0.1284562200307846, -0.024823762476444244, -0.028260881081223488, 0.007327667903155088, 0.06590493768453598, -0.028995562344789505, 0.09805281460285187, 0.030110834166407585, 0.029774703085422516, -0.07540800422430038, 0.10579743981361389, 0.07856964319944382, 0.031002379953861237, 0.017397308722138405, 0.0369056761264801, -0.07138882577419281, 0.0021936199627816677, -0.0489988848567009, 0.045121077448129654, -0.06666363030672073, -0.01375171821564436, -0.022160816937685013, -0.04778464883565903, 0.0408867783844471, 0.09620119631290436, -0.015808843076229095, 0.12570881843566895, -0.050557300448417664, -0.01909138448536396, -0.15735962986946106, 0.061198748648166656, 0.05270657315850258, 0.005772074684500694, -0.11711017787456512, 0.18330118060112, 0.015765102580189705, 0.07139644771814346, -0.02897392399609089, -0.066993348300457, -0.06010686978697777, -0.004860003013163805, -0.14173159003257751, -0.01834758184850216, -0.08546597510576248, -0.02863261103630066, -0.01225519459694624, -0.04528617486357689, -0.012098224833607674, 0.05508998781442642, -0.024922622367739677, -0.0683101937174797, -0.03990695998072624, 0.056128863245248795, -0.13800044357776642, -0.0056310370564460754, 0.11795320361852646, -0.07183888554573059, 0.11143717169761658, 0.03552186116576195, -0.0417167954146862, 0.0013037327444180846, -0.0933016687631607, 0.018267113715410233, -0.0108113968744874, 0.0028252480551600456, 0.036359257996082306, -0.15593326091766357, 0.0076809837482869625, -0.02978307567536831, -0.09465054422616959, 0.010431022383272648, 0.007480412255972624, -0.1192837655544281, -0.020088741555809975, 0.077175073325634, -0.005540899932384491, -0.08317197859287262, 0.05154600366950035, 0.07007554918527603, 0.04114033281803131, 0.07925473898649216, -0.010380209423601627, 0.0892348513007164, -0.1536301076412201, -0.048423465341329575, 0.011863097548484802, 0.011506401002407074, 0.10531038045883179, -0.0070122117176651955, 0.056876447051763535, 0.0019496545428410172, 0.17223452031612396, 0.01353728398680687, -0.01070175040513277, 0.033100638538599014, -0.003136585233733058, -0.008826718665659428, 0.042345426976680756, 0.057228799909353256, -0.04108285531401634, -0.022195767611265182, 0.0039084795862436295, -0.012840899638831615, -0.05636245384812355, -0.07081527262926102, 0.11389388144016266, 0.013061671517789364, 0.16672642529010773, -0.04079968109726906, 0.0735635980963707, -0.02619360387325287, -0.09485038369894028, -0.03673526644706726, -0.04391813278198242, 0.033441875129938126, -0.06111970171332359, 0.03891619294881821, 0.13550642132759094, -0.16121557354927063, 0.09956581890583038, 0.025870775803923607, -0.06669305264949799, -0.09550611674785614, -0.16273106634616852, -0.017552001401782036, -0.014126226305961609, 0.03990190476179123, -0.13170288503170013, 0.09990129619836807, 0.027852997183799744, 0.019922791048884392, -0.07489829510450363, 0.09018668532371521, -0.03615892678499222, -0.12618154287338257, 0.037923187017440796, 0.00912129320204258, 0.023914217948913574, 0.009421058930456638, 0.072380930185318, 0.02111709862947464, 0.04454668611288071, 0.05876213684678078, 0.040071118623018265, 0.036067523062229156, 0.046509917825460434, -0.05041858181357384, -0.06298920512199402, 0.022715305909514427, -0.0011458491208031774, 0.028552580624818802, 0.10207924246788025, 0.07883256673812866, -0.003118752734735608, -0.01605580374598503, 0.30135229229927063, -0.02847098372876644, -0.04518645629286766, -0.16183723509311676, 0.10569800436496735, 0.03996735066175461, -0.031074095517396927, 0.0446077398955822, -0.1402076780796051, 0.026158610358834267, 0.1255887746810913, 0.1255004107952118, -0.036157041788101196, 0.023430028930306435, -0.03983131796121597, 0.0031697647646069527, 0.036965977400541306, 0.07892424613237381, 0.06414049118757248, 0.1934526264667511, -0.05265346169471741, 0.05341038480401039, 0.007014757487922907, -0.012190223671495914, -0.004888210445642471, 0.10118920356035233, -0.0421733595430851, 0.013833637349307537, -0.04863067716360092, 0.10728961229324341, -0.0574306845664978, -0.26051944494247437, 0.0005387457204051316, -0.021203937008976936, -0.08545725047588348, 0.04478253051638603, -0.017346328124403954, -0.029183045029640198, 0.08162871748209, 0.026056231930851936, -0.026968693360686302, 0.14534206688404083, 0.028543345630168915, -0.03758791834115982, -0.00965289119631052, 0.09521408379077911, -0.046814169734716415, 0.17038467526435852, -0.02482580579817295, 0.011610496789216995, 0.08906596153974533, 0.029461795464158058, -0.14017927646636963, 0.009602129459381104, 0.018457477912306786, -0.07915845513343811, 0.012555460445582867, 0.1777823567390442, 0.017294341698288918, 0.014557018876075745, 0.0529552586376667, -0.030961323529481888, 0.042173970490694046, -0.10983406007289886, 0.0694761648774147, -0.14121396839618683, 0.03427562490105629, -0.07612670212984085, 0.14602530002593994, 0.1531285047531128, -0.07594696432352066, 0.03284972533583641, -0.0472426563501358, -0.010439864359796047, -0.027923880144953728, 0.06948535144329071, -0.00467004906386137, -0.11437448859214783, 0.019107813015580177, 0.04064172878861427, 0.033252131193876266, -0.17511394619941711, -0.07615163922309875, 0.044917330145835876, -0.0897255539894104, -0.006889695301651955, 0.15759630501270294, 0.031410764902830124, 0.05700559541583061, -0.033363983035087585, 0.049164995551109314, -0.02610216848552227, 0.10405053198337555, -0.15924783051013947, -0.07317215949296951 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f83548d76e427d0a4fdcafdf2f62b647.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rihanna</div> <a href="https://genius.com/artists/rihanna"> <div style="text-align: center; font-size: 14px;">@rihanna</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Rihanna. Dataset is available [here](https://huggingface.co/datasets/huggingartists/rihanna). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/rihanna") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ee6eogks/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Rihanna's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1mvns7x8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1mvns7x8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/rihanna') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/rihanna") model = AutoModelWithLMHead.from_pretrained("huggingartists/rihanna") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/rihanna"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/rihanna
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/rihanna", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rihanna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rihanna</div> <a href="URL <div style="text-align: center; font-size: 14px;">@rihanna</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Rihanna. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Rihanna's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Rihanna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rihanna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rihanna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Rihanna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rihanna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 49, 71, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rihanna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Rihanna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Rihanna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.021631088107824326, 0.19324086606502533, -0.0026728601660579443, 0.039721403270959854, 0.11316008120775223, -0.018371297046542168, 0.06093449518084526, 0.10456769168376923, -0.022671127691864967, 0.0941539853811264, 0.07071724534034729, 0.019910627976059914, 0.07248134166002274, 0.14792880415916443, 0.11235873401165009, -0.26930177211761475, 0.02553466707468033, -0.11288337409496307, 0.05670946463942528, 0.13439500331878662, 0.07683838158845901, -0.05921424925327301, 0.0857456773519516, 0.031188473105430603, -0.08968950808048248, 0.03558870777487755, -0.05874137580394745, -0.0610172301530838, 0.07589106261730194, 0.08159010112285614, 0.009897394105792046, 0.07577009499073029, 0.07492189109325409, -0.21967114508152008, 0.03892761841416359, 0.1154983714222908, 0.02549917995929718, 0.06306102126836777, 0.0625557154417038, -0.08850570023059845, 0.19063620269298553, 0.004666551016271114, 0.05892227217555046, 0.06065753102302551, -0.08388792723417282, -0.18315595388412476, -0.12478212267160416, 0.07593123614788055, 0.0752202495932579, 0.06600100547075272, -0.03618380054831505, 0.057136375457048416, 0.005273716524243355, 0.02825678326189518, 0.24706971645355225, -0.25167208909988403, -0.005390491336584091, 0.09748350828886032, 0.05013103410601616, 0.042766399681568146, -0.06635446101427078, 0.037426553666591644, 0.04688744619488716, 0.01861753687262535, 0.03866899386048317, -0.006734250579029322, 0.2109643816947937, -0.0074563827365636826, -0.08996950834989548, -0.09024940431118011, 0.1051173061132431, -0.0073182713240385056, -0.1009296327829361, -0.15883640944957733, 0.012347081676125526, -0.031377341598272324, 0.026685943827033043, -0.03234522417187691, -0.0034077174495905638, -0.0050340634770691395, -0.06413169950246811, -0.09337672591209412, -0.07391898334026337, -0.027357026934623718, -0.004776631481945515, 0.06367375701665878, 0.025259826332330704, 0.015285524539649487, -0.05506688728928566, 0.22418038547039032, 0.016633134335279465, -0.10797137022018433, -0.049790944904088974, -0.11579062044620514, -0.07603036612272263, -0.03814329206943512, 0.02958417497575283, 0.012546664103865623, -0.04627091810107231, 0.12510083615779877, -0.008646451868116856, 0.03589855879545212, 0.016215257346630096, -0.016918454319238663, 0.17703862488269806, 0.09210103005170822, -0.11056940257549286, -0.03151525557041168, 0.04790237173438072, -0.029862675815820694, -0.04856330156326294, -0.058908861130476, -0.00962369330227375, -0.03539975732564926, 0.011159950867295265, 0.10370779037475586, 0.052572429180145264, 0.036849237978458405, 0.03175059333443642, -0.055044110864400864, 0.13456037640571594, -0.12751267850399017, 0.013570267707109451, -0.002830676967278123, -0.029578279703855515, -0.002550087170675397, 0.039560265839099884, 0.02589288167655468, -0.0739511176943779, 0.09713970869779587, -0.06163936108350754, -0.0752081498503685, -0.06808251887559891, -0.05734167993068695, -0.005754231009632349, -0.03475504741072655, -0.03410783410072327, -0.1027446985244751, -0.1673784852027893, -0.031939420849084854, 0.008608071133494377, -0.07774682343006134, -0.050732214003801346, 0.049203094094991684, -0.02784891240298748, -0.018375182524323463, -0.03511611744761467, -0.03525262698531151, -0.02760336920619011, 0.033429406583309174, -0.0477752685546875, 0.036440521478652954, 0.11049959808588028, 0.048228394240140915, -0.09964434802532196, 0.07364236563444138, -0.14999045431613922, 0.15125872194766998, 0.00032412807922810316, -0.004816675093024969, -0.12751878798007965, -0.12540440261363983, -0.07157813012599945, -0.0236146729439497, 0.018821382895112038, 0.09792935103178024, -0.189287930727005, -0.047159843146800995, 0.1875758320093155, -0.07304263859987259, -0.0738925114274025, 0.04009367153048515, -0.0554063506424427, 0.05929449200630188, 0.12125633656978607, 0.07611247897148132, 0.14428891241550446, -0.07254596799612045, -0.07279285043478012, -0.061412472277879715, -0.056803230196237564, 0.21705690026283264, 0.04160661622881889, -0.01573154330253601, 0.07265112549066544, 0.019778123125433922, 0.018412558361887932, -0.023186631500720978, -0.027521682903170586, -0.050259120762348175, -0.012052612379193306, 0.006035166326910257, -0.04025724530220032, -0.011762816458940506, -0.09961884468793869, 0.012219997122883797, -0.11815214157104492, 0.0036566031631082296, 0.10860292613506317, -0.08300036936998367, 0.0030807112343609333, -0.09850914776325226, 0.02018672600388527, -0.011699649505317211, 0.0021196778398007154, -0.2047978788614273, -0.022595582529902458, 0.01552536804229021, -0.07951812446117401, 0.07867971807718277, 0.0031918513122946024, 0.02041366882622242, 0.06358759105205536, 0.017790736630558968, 0.030716706067323685, -0.03496014326810837, -0.011025216430425644, 0.000294886325718835, -0.13849543035030365, -0.0891525074839592, -0.05017244070768356, 0.10935474187135696, -0.15870128571987152, -0.013768668286502361, 0.10101072490215302, 0.11880563199520111, 0.026096398010849953, -0.07620059698820114, 0.0360165573656559, -0.007325788959860802, -0.040540121495723724, -0.10689947754144669, -0.0448899082839489, 0.0015063491882756352, -0.0009403759031556547, 0.12400706857442856, -0.14679260551929474, -0.09024303406476974, 0.07248009741306305, 0.20147809386253357, -0.10653974115848541, 0.03698761388659477, -0.08184527605772018, -0.012069416232407093, -0.01749136485159397, 0.013623773120343685, 0.22301654517650604, 0.050549328327178955, 0.08687976747751236, -0.1067497506737709, -0.06149236485362053, 0.022501735016703606, -0.034145060926675797, -0.025769837200641632, 0.02811110019683838, 0.03407102823257446, -0.15564456582069397, 0.01110142096877098, -0.00542982155457139, 0.13236208260059357, 0.245414599776268, 0.06448674201965332, -0.10486123710870743, -0.053547050803899765, -0.11667500436306, -0.011741151101887226, 0.02038983814418316, 0.039627108722925186, 0.030125873163342476, 0.039610132575035095, 0.04131575673818588, 0.02477489784359932, -0.09502676874399185, 0.005245429463684559, 0.08254869282245636, -0.0319075807929039, -0.07861660420894623, 0.028709102421998978, 0.011440247297286987, 0.05344850569963455, 0.07948648929595947, 0.09015744179487228, -0.07886721938848495, -0.04593975841999054, -0.13868489861488342, 0.1272815614938736, -0.05800521746277809, -0.23623614013195038, -0.11767857521772385, -0.08873748779296875, 0.019019871950149536, -0.0011027028085663915, 0.05379226803779602, -0.033482473343610764, -0.029725370928645134, -0.10808683186769485, 0.10614282637834549, -0.06356929242610931, -0.0394742488861084, -0.02575886994600296, 0.025867067277431488, -0.052025265991687775, -0.10345924645662308, -0.017598729580640793, 0.05138133093714714, -0.1149776503443718, -0.02656107023358345, 0.011132544837892056, 0.05280561000108719, 0.15994003415107727, -0.0034389172215014696, -0.009703658521175385, -0.018559422343969345, 0.2775976359844208, -0.14114367961883545, 0.05291271582245827, 0.1914050132036209, 0.00276631279848516, 0.04666385427117348, 0.09305138140916824, 0.015045530162751675, -0.06420190632343292, 0.06256134808063507, 0.047746848315000534, -0.09354676306247711, -0.21894201636314392, -0.05777430534362793, 0.01802455261349678, 0.023197107017040253, 0.08494288474321365, 0.06487496197223663, 0.04346446692943573, 0.01815333403646946, -0.08963798731565475, -0.014801102690398693, -0.0022515561431646347, 0.11186893284320831, -0.0715346559882164, -0.008563626557588577, 0.04703838378190994, -0.06029915809631348, 0.026683812960982323, 0.13410739600658417, 0.02444930374622345, 0.22842039167881012, -0.05002305284142494, 0.11178809404373169, 0.10529489070177078, 0.12503299117088318, 0.0302529688924551, -0.0017809958662837744, 0.04604106396436691, 0.012514962814748287, -0.006006036885082722, -0.09129468351602554, -0.01509020570665598, 0.015120928175747395, 0.03890048339962959, -0.04858121648430824, -0.04516306146979332, -0.05596393719315529, 0.009432612918317318, 0.24337972700595856, -0.04508771002292633, -0.17558903992176056, -0.09579391032457352, 0.04020943492650986, -0.07302196323871613, -0.07036526501178741, -0.012856732122600079, 0.05647902935743332, -0.24762055277824402, 0.05021978169679642, -0.025098923593759537, 0.1082446277141571, -0.13572941720485687, -0.00993360485881567, 0.09125540405511856, 0.05010232329368591, -0.04385699704289436, 0.11420499533414841, -0.10341503471136093, 0.07471775263547897, -0.000750737264752388, 0.057343192398548126, -0.059043969959020615, 0.01563321426510811, -0.028948716819286346, 0.05369208753108978, 0.10983963310718536, -0.008435646072030067, 0.02667493000626564, 0.0074336533434689045, -0.022809388116002083, 0.01431053876876831, 0.07036522030830383, -0.11037295311689377, 0.13407427072525024, -0.013545524328947067, 0.035630639642477036, -0.07741449773311615, -0.06559695303440094, -0.12256648391485214, -0.1691572517156601, 0.07902483642101288, -0.14155443012714386, 0.03095729649066925, -0.060021426528692245, -0.04084096848964691, 0.042417265474796295, 0.2602226436138153, -0.03430866822600365, -0.05954398959875107, -0.11060518771409988, 0.00623522000387311, 0.15361464023590088, -0.07574079185724258, 0.037029944360256195, -0.009906211867928505, 0.21486595273017883, 0.010784074664115906, -0.10947392135858536, -0.024339299649000168, -0.05361616984009743, -0.16149939596652985, -0.009744115173816681, 0.14347940683364868, 0.06586480140686035, 0.012466688640415668, 0.03535998612642288, -0.006641480140388012, -0.060095932334661484, -0.1508627086877823, 0.023097967728972435, 0.1425829380750656, -0.020261229947209358, -0.026577340438961983, 0.05556632950901985, 0.0012422881554812193, -0.1263619214296341, -0.006148981396108866, 0.06580496579408646, 0.17867954075336456, -0.09045945107936859, 0.19215427339076996, 0.09376053512096405, -0.08627872914075851, -0.15552707016468048, -0.03316466137766838, 0.05486282706260681, 0.04055524617433548, 0.10726001113653183, -0.25963789224624634, 0.013393454253673553, 0.060306090861558914, 0.0024463802110403776, 0.03846565634012222, -0.36340340971946716, -0.12636211514472961, 0.013858429156243801, 0.0028514000587165356, -0.1677112877368927, -0.03927924856543541, -0.04351956397294998, -0.1211470440030098, -0.29543912410736084, 0.07260873913764954, -0.10592842847108841, 0.09767654538154602, 0.026154346764087677, 0.07836254686117172, 0.04944867268204689, -0.024011095985770226, 0.11941307783126831, -0.0075294445268809795, 0.061150941997766495, -0.09235068410634995, -0.04929545894265175, 0.05455869808793068, -0.05605814978480339, 0.07789713144302368, 0.04111405462026596, 0.07266636937856674, -0.0976569801568985, -0.09602437168359756, -0.05799812451004982, -0.018652789294719696, -0.037469081580638885, -0.07296691834926605, -0.08850232511758804, 0.08997837454080582, 0.1110883355140686, -0.044519130140542984, -0.09262364357709885, -0.09427237510681152, -0.02380676381289959, 0.07442420721054077, 0.1275971233844757, 0.09544312953948975, -0.07139056921005249, -0.005813013296574354, 0.010432837530970573, -0.007346279453486204, -0.19324927031993866, 0.04509089142084122, 0.08091752976179123, 0.056649692356586456, 0.07146309316158295, -0.008242583833634853, -0.18623001873493195, 0.0149683253839612, 0.07805175334215164, -0.16204722225666046, -0.15995953977108002, -0.024845847859978676, 0.03186589479446411, -0.08090667426586151, -0.07024630904197693, 0.11343427747488022, -0.02323964796960354, -0.06848771870136261, 0.011615196242928505, 0.03634554520249367, -0.03746994212269783, 0.08542211353778839, -0.0009386414894834161, 0.0406067818403244, -0.06929168105125427, 0.14381903409957886, 0.07371316850185394, 0.040122438222169876, 0.02706923894584179, 0.05090651661157608, -0.10511192679405212, 0.019252821803092957, -0.11907879263162613, -0.020268622785806656, -0.022868238389492035, -0.020585177466273308, 0.03792699798941612, -0.00682793790474534, 0.007337596267461777, 0.08262041211128235, -0.02354367822408676, 0.09746097028255463, -0.040756069123744965, -0.002677614800632, -0.13352562487125397, 0.07766160368919373, 0.03196531906723976, 0.010262473486363888, -0.1409129947423935, 0.17009389400482178, 0.033416103571653366, 0.11823008954524994, -0.04201066121459007, -0.06700600683689117, -0.0172980185598135, -0.001332595362327993, -0.06050765886902809, -0.052513692528009415, -0.09412907063961029, -0.05134205147624016, -0.009819860570132732, -0.004903629422187805, -0.052224863320589066, 0.0313674658536911, -0.03144478797912598, -0.07208635658025742, -0.06748128682374954, 0.0742872953414917, -0.14079470932483673, 0.04844756796956062, 0.10563236474990845, -0.04004886373877525, 0.11773060262203217, 0.06359044462442398, -0.015302658081054688, 0.0070051467046141624, -0.14785435795783997, 0.03886893764138222, -0.005202792584896088, 0.01130000688135624, 0.021208923310041428, -0.1627340018749237, 0.0076464456506073475, -0.04250815883278847, -0.08501656353473663, -0.016572652384638786, -0.027597103267908096, -0.14499717950820923, -0.01869405433535576, 0.08170849829912186, -0.005022261291742325, -0.06399482488632202, 0.07944881170988083, 0.05657844990491867, 0.028016304597258568, 0.07315991073846817, -0.001850226311944425, 0.05267052724957466, -0.16381847858428955, -0.0592196099460125, -0.025474913418293, 0.050940606743097305, 0.023278487846255302, -0.031214868649840355, 0.02782566100358963, -0.003965191077440977, 0.20890197157859802, 0.05098605901002884, -0.011599068529903889, 0.01621743105351925, -0.0738641545176506, -0.019668394699692726, 0.02353486977517605, 0.07855712622404099, -0.0004379312158562243, -0.01110558770596981, 0.013690702617168427, -0.014647366479039192, -0.1436205506324768, 0.03067871741950512, 0.038599878549575806, 0.025372328236699104, 0.2286350578069687, -0.06820487231016159, 0.07387243956327438, -0.025123925879597664, -0.08399148285388947, -0.013902434147894382, -0.006654796656221151, 0.0325290784239769, -0.07340333610773087, 0.0415160097181797, 0.18409225344657898, -0.12632174789905548, 0.12640880048274994, 0.01795146055519581, -0.053385958075523376, -0.13723376393318176, -0.20057038962841034, -0.01980409026145935, -0.059423238039016724, 0.04323601722717285, -0.12707625329494476, 0.09909456223249435, 0.06637396663427353, 0.012130864895880222, -0.08470287919044495, 0.10491723567247391, -0.08556447178125381, -0.15894068777561188, 0.02857353538274765, 0.014332137070596218, 0.033414117991924286, 0.020289670675992966, 0.11965280026197433, 0.051152098923921585, -0.009184073656797409, 0.07667569816112518, 0.057812534272670746, 0.024071231484413147, 0.05474524945020676, -0.05178306624293327, -0.05225801840424538, 0.03168526664376259, 0.008596067316830158, 0.03795810043811798, 0.1275167167186737, 0.05889653414487839, -0.0185869038105011, -0.008050411008298397, 0.32440775632858276, 0.011731283739209175, 0.027260730043053627, -0.15247637033462524, 0.18806609511375427, 0.02491542510688305, 0.015522667206823826, 0.03741994872689247, -0.130663201212883, 0.010326656512916088, 0.11979561299085617, 0.13299722969532013, -0.02540811337530613, 0.014026246964931488, 0.012461877427995205, 0.015436157584190369, 0.014644667506217957, 0.08110348880290985, 0.07522235810756683, 0.1906387209892273, -0.042067188769578934, 0.08138849586248398, -0.04216887801885605, -0.022022753953933716, -0.003625123994424939, 0.09410934895277023, -0.05206305906176567, -0.010426677763462067, -0.04869289696216583, 0.13172955811023712, -0.08372607827186584, -0.32185307145118713, -0.019601600244641304, -0.005010212305933237, -0.0938570499420166, 0.05699747055768967, -0.061417873948812485, 0.01995512843132019, 0.08822200447320938, -0.0008059219107963145, -0.04762394726276398, 0.1764044165611267, 0.06640195846557617, -0.04403168335556984, -0.00448725838214159, 0.09237517416477203, -0.07554368674755096, 0.17781095206737518, -0.06785701960325241, 0.03201550617814064, 0.0532396025955677, 0.011886733584105968, -0.1374824047088623, 0.013837145641446114, 0.048101671040058136, -0.03842146694660187, -0.00985313206911087, 0.23027823865413666, 0.009792041964828968, 0.015739882364869118, 0.07668119668960571, -0.023181982338428497, 0.03004564344882965, -0.0029683299362659454, 0.07133496552705765, -0.11858656257390976, 0.08610968291759491, -0.07722759991884232, 0.10111594945192337, 0.13682131469249725, -0.07356268167495728, 0.02250278741121292, -0.06782720237970352, 0.02530641481280327, -0.023002050817012787, 0.09060006588697433, -0.008336386643350124, -0.10470108687877655, 0.01660514436662197, 0.046357035636901855, 0.019459040835499763, -0.1738276183605194, -0.05882635712623596, 0.07242196798324585, -0.06191768869757652, 0.02390993759036064, 0.18311141431331635, 0.02057778835296631, 0.04348624125123024, -0.04467933252453804, -0.012304283678531647, -0.007421134039759636, 0.10501997172832489, -0.19352641701698303, -0.09696720540523529 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/0fb709925134799103886db5e722ef73.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ROCKET</div> <a href="https://genius.com/artists/rocket"> <div style="text-align: center; font-size: 14px;">@rocket</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ROCKET. Dataset is available [here](https://huggingface.co/datasets/huggingartists/rocket). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/rocket") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3ceqmb05/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ROCKET's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/37kckftd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/37kckftd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/rocket') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/rocket") model = AutoModelWithLMHead.from_pretrained("huggingartists/rocket") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/rocket"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/rocket
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/rocket", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rocket #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">ROCKET</div> <a href="URL <div style="text-align: center; font-size: 14px;">@rocket</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ROCKET. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ROCKET's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ROCKET.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ROCKET's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rocket #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ROCKET.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ROCKET's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/rocket #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ROCKET.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ROCKET's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.025722160935401917, 0.15225158631801605, -0.0028033640701323748, 0.03991393372416496, 0.08708041906356812, -0.0010939199710264802, 0.07735985517501831, 0.10884737223386765, 0.001408310024999082, 0.07405068725347519, 0.07611255347728729, 0.008841571398079395, 0.060541193932294846, 0.13800841569900513, 0.09546166658401489, -0.2700389623641968, 0.029236366972327232, -0.10775148868560791, 0.01696663908660412, 0.1243002787232399, 0.09137481451034546, -0.05809837579727173, 0.08369914442300797, 0.031468089669942856, -0.06983206421136856, 0.025884849950671196, -0.014650405384600163, -0.06902074068784714, 0.09638658165931702, 0.08142200857400894, 0.03511461615562439, 0.03602982684969902, 0.07028587907552719, -0.19006220996379852, 0.03690208122134209, 0.1274939328432083, 0.02488306164741516, 0.06934184581041336, 0.041599202901124954, -0.08440619707107544, 0.17038409411907196, -0.029572293162345886, 0.09178199619054794, 0.04566663131117821, -0.10636201500892639, -0.18602631986141205, -0.12173422425985336, 0.0852600559592247, 0.10096738487482071, 0.07842109352350235, -0.03037864901125431, 0.04747150465846062, -0.0029222227167338133, 0.045866310596466064, 0.24254269897937775, -0.23524047434329987, -0.01869835890829563, 0.10224950313568115, 0.04374626278877258, 0.0563918799161911, -0.08081517368555069, 0.019954489544034004, 0.04760771989822388, 0.024030571803450584, 0.04870279133319855, -0.01600445806980133, 0.20960529148578644, 0.022342180833220482, -0.09709936380386353, -0.08314575254917145, 0.09293267130851746, -0.029828166589140892, -0.08312954753637314, -0.15374892950057983, -0.00048755123862065375, -0.029548026621341705, 0.03634745255112648, -0.013929805718362331, -0.00363018992356956, 0.002017827006056905, -0.04153582081198692, -0.09982892125844955, -0.09231993556022644, -0.030780455097556114, -0.023512572050094604, 0.07753730565309525, 0.022331805899739265, 0.032588373869657516, -0.06838179379701614, 0.2342485636472702, 0.005596403032541275, -0.10215714573860168, -0.05602043867111206, -0.09527472406625748, -0.09634950011968613, -0.057751309126615524, 0.008691062219440937, 0.02992509864270687, -0.05626474693417549, 0.17160122096538544, -0.02700175903737545, 0.034850116819143295, 0.004469998646527529, -0.023400450125336647, 0.15118427574634552, 0.1268891841173172, -0.08845683932304382, -0.03867765888571739, 0.04733337089419365, -0.00883196946233511, -0.06764937192201614, -0.060017287731170654, -0.014898453839123249, -0.026085177436470985, 0.0376240499317646, 0.095792256295681, 0.052893590182065964, 0.05414069816470146, 0.03390912339091301, -0.05759227275848389, 0.11874810606241226, -0.14306700229644775, 0.007103973533958197, -0.011586149223148823, -0.028507336974143982, 0.013910370878875256, 0.0514666847884655, 0.018184049054980278, -0.08977612853050232, 0.10684531182050705, -0.052279114723205566, -0.0544455461204052, -0.06316427886486053, -0.07898076623678207, -0.00600607180967927, -0.013925500214099884, -0.048386286944150925, -0.08840643614530563, -0.15111209452152252, -0.032758038491010666, 0.026945611461997032, -0.039241496473550797, -0.04412860795855522, 0.04589742794632912, -0.0291121955960989, 0.005440454464405775, -0.01520828902721405, -0.01572318561375141, -0.03142063692212105, 0.0243397057056427, -0.0577593632042408, 0.036831051111221313, 0.08470677584409714, 0.03226473554968834, -0.10874157398939133, 0.06712129712104797, -0.1826385259628296, 0.141557976603508, -0.017087431624531746, 0.01781727559864521, -0.11494458466768265, -0.09804970026016235, -0.02591545134782791, -0.02812257409095764, -0.010195445269346237, 0.0944872498512268, -0.18691390752792358, -0.03984472528100014, 0.19846133887767792, -0.07180222868919373, -0.08542678505182266, 0.07519753277301788, -0.07927124202251434, 0.033397216349840164, 0.13483349978923798, 0.048208922147750854, 0.16430296003818512, -0.11915773153305054, -0.06826009601354599, -0.04206228256225586, -0.05722368136048317, 0.21755675971508026, 0.056353431195020676, -0.013315203599631786, 0.027553481981158257, 0.011790960095822811, -0.02473672665655613, -0.030949950218200684, -0.022494802251458168, -0.04228963330388069, -0.012082806788384914, 0.015856994315981865, -0.006438815500587225, -0.048870086669921875, -0.07327798753976822, -0.019193151965737343, -0.12089677900075912, 0.02753636986017227, 0.10398087650537491, -0.07037701457738876, 0.013096612878143787, -0.0938408151268959, -0.0028691415209323168, -0.04146692529320717, 0.019678492099046707, -0.19568245112895966, -0.06909474730491638, 0.024050220847129822, -0.05856094881892204, 0.08352595567703247, 0.022819137200713158, 0.036514345556497574, 0.06049441173672676, -0.010663271881639957, 0.02238973043859005, -0.04557277634739876, -0.02394385077059269, -0.036484673619270325, -0.14219297468662262, -0.07290538400411606, -0.0541609562933445, 0.07920239865779877, -0.1419983059167862, 0.0036936739925295115, 0.10921327024698257, 0.11155399680137634, 0.022560730576515198, -0.058450669050216675, 0.0033129260409623384, -0.04027295485138893, -0.04270404577255249, -0.1156032383441925, -0.05908048152923584, 0.005591098219156265, -0.03829232603311539, 0.1480618566274643, -0.16903768479824066, -0.07037337869405746, 0.0996520146727562, 0.16858987510204315, -0.10550761967897415, 0.011883646249771118, -0.09401712566614151, -0.01156448945403099, -0.04729181528091431, -0.031133944168686867, 0.26761913299560547, 0.04142964258790016, 0.0752701684832573, -0.11290492862462997, -0.09307688474655151, 0.0025441430043429136, -0.034619733691215515, -0.027205869555473328, 0.02472819946706295, 0.012001964263617992, -0.1666225790977478, 0.024184631183743477, -0.006355620920658112, 0.1217963919043541, 0.20692004263401031, 0.05101659521460533, -0.0940728411078453, -0.06028742715716362, -0.0902145504951477, 0.0026399928610771894, 0.052035246044397354, 0.04098832607269287, 0.027154451236128807, 0.04389223828911781, 0.052306320518255234, 0.037103261798620224, -0.1097942590713501, 0.007685682270675898, 0.07957348227500916, -0.046326279640197754, -0.05647161602973938, 0.020494816824793816, 0.013536971993744373, 0.08178910613059998, 0.07909861952066422, 0.13540631532669067, -0.073508620262146, -0.04782263562083244, -0.140175923705101, 0.13776303827762604, -0.07384511828422546, -0.2577817142009735, -0.13851118087768555, -0.08500688523054123, 0.023629644885659218, 0.004803548101335764, 0.03727209195494652, -0.05985622480511665, -0.03693064674735069, -0.10225093364715576, 0.08951167017221451, -0.05132468417286873, -0.012051115743815899, 0.003535957308486104, 0.021597018465399742, -0.034477993845939636, -0.10696309059858322, -0.03134757652878761, 0.04012315347790718, -0.10744776576757431, -0.010539163835346699, 0.02786376141011715, 0.040058720856904984, 0.15597021579742432, -0.006207878235727549, -0.006416207645088434, -0.03285592794418335, 0.2821265161037445, -0.12435000389814377, 0.07691320031881332, 0.1631796509027481, -0.02256583236157894, 0.05748559907078743, 0.07727840542793274, 0.006654941942542791, -0.07070650905370712, 0.08021605759859085, 0.07177356630563736, -0.09566124528646469, -0.21775603294372559, -0.029483027756214142, -0.007325320038944483, 0.01653657853603363, 0.1230255663394928, 0.05986184999346733, 0.06276769191026688, -0.0038849979173392057, -0.10223820060491562, 0.042295102030038834, 0.027384154498577118, 0.10657545179128647, -0.0774250403046608, -0.007104083430022001, 0.05293327197432518, -0.06482154130935669, 0.03294478729367256, 0.14322666823863983, 0.037758197635412216, 0.20936794579029083, -0.06046810746192932, 0.0993916392326355, 0.07367589324712753, 0.10601095110177994, 0.03724901005625725, 0.009003340266644955, 0.0010881648631766438, 0.00976859126240015, -0.002325525740161538, -0.09556028246879578, -0.009451252408325672, 0.04888753220438957, 0.03478395938873291, -0.02558480203151703, -0.037163715809583664, -0.04350907728075981, 0.0379471592605114, 0.24452327191829681, -0.02154558151960373, -0.18216252326965332, -0.11442960053682327, 0.04233844205737114, -0.07773619890213013, -0.05148463323712349, -0.024938179180026054, 0.06876418739557266, -0.21894527971744537, 0.06889770179986954, -0.03459804877638817, 0.10634929686784744, -0.10754454135894775, -0.0009058497962541878, 0.087374247610569, 0.046976473182439804, -0.06840351969003677, 0.09731943160295486, -0.16091881692409515, 0.06140326336026192, -0.013183082453906536, 0.06555468589067459, -0.07367929071187973, 0.030804866924881935, -0.00021615158766508102, 0.05961761251091957, 0.09802687913179398, 0.012088368646800518, 0.025418410077691078, 0.0007785302586853504, -0.05193177983164787, 0.014675294049084187, 0.06547670811414719, -0.13327662646770477, 0.13000792264938354, -0.029677359387278557, 0.031460847705602646, -0.04059325531125069, -0.09120828658342361, -0.08737719804048538, -0.16703307628631592, 0.08560886234045029, -0.14002864062786102, -0.004822402261197567, -0.07356064021587372, -0.0325959213078022, 0.03638030216097832, 0.2630230188369751, -0.052133310586214066, -0.07379121333360672, -0.13882063329219818, 0.004829442594200373, 0.1514984369277954, -0.08821278810501099, 0.015488449484109879, -0.011865026317536831, 0.21455596387386322, -0.0013515657046809793, -0.127332866191864, -0.014216038398444653, -0.06740188598632812, -0.1738690733909607, -0.008657864294946194, 0.17042255401611328, 0.06569387763738632, 0.026141926646232605, 0.009295903146266937, -0.011662430129945278, -0.046345412731170654, -0.16935421526432037, 0.02454429119825363, 0.1597496122121811, -0.009969755075871944, -0.010283030569553375, 0.05146241560578346, 0.018277019262313843, -0.13376186788082123, 0.01235999446362257, 0.05068520829081535, 0.185798779129982, -0.08233688026666641, 0.1920977085828781, 0.03813136741518974, -0.0891960859298706, -0.15031388401985168, 0.006989155430346727, 0.03667712211608887, 0.03355158492922783, 0.041860658675432205, -0.21352852880954742, 0.03988835588097572, 0.037035953253507614, 0.00559929758310318, 0.04058907926082611, -0.3234870731830597, -0.15874207019805908, -0.004331064876168966, -0.0027004845906049013, -0.1468079686164856, -0.04482675716280937, -0.033096250146627426, -0.09907335788011551, -0.2420576810836792, 0.1045491024851799, -0.09740600734949112, 0.06950849294662476, 0.028282560408115387, 0.09312603622674942, 0.04589357599616051, -0.043483834713697433, 0.13344533741474152, -0.01859051175415516, 0.06590492278337479, -0.09156900644302368, -0.06479474157094955, 0.07701920717954636, -0.07313961535692215, 0.08311951160430908, 0.03852393850684166, 0.07765301316976547, -0.09744971245527267, -0.09086998552083969, -0.06566550582647324, -0.005413960665464401, -0.05088898539543152, -0.0926356241106987, -0.09046673029661179, 0.08880812674760818, 0.12004109472036362, -0.05173709988594055, -0.08659223467111588, -0.06937013566493988, 0.0023142641875892878, 0.04551735147833824, 0.12593011558055878, 0.07680220156908035, -0.06789162755012512, 0.004866213072091341, 0.016480162739753723, 0.007800314575433731, -0.18734246492385864, 0.0511840395629406, 0.09334953874349594, 0.04086343199014664, 0.09830579906702042, 0.00510520301759243, -0.16797955334186554, 0.003087615594267845, 0.053185317665338516, -0.16390018165111542, -0.13832324743270874, -0.03684929385781288, 0.01938362419605255, -0.10750041157007217, -0.05132271721959114, 0.12652789056301117, -0.03344335779547691, -0.04303852841258049, 0.0005426920833997428, 0.03955220803618431, -0.037300046533346176, 0.0814511850476265, -0.000059337977290851995, 0.042112063616514206, -0.06689132004976273, 0.12228526920080185, 0.07094588130712509, 0.005269113462418318, 0.031495146453380585, 0.05970070883631706, -0.09274566173553467, 0.01721814274787903, -0.0944659635424614, -0.00823714304715395, -0.02538478560745716, -0.009585549123585224, 0.027349993586540222, -0.024364126846194267, 0.04714360460639, 0.09583336859941483, -0.00850257370620966, 0.10007651895284653, -0.045274779200553894, 0.023859580978751183, -0.12690894305706024, 0.06982970237731934, 0.03151833638548851, 0.02234623394906521, -0.11092648655176163, 0.19968008995056152, 0.032807014882564545, 0.10427170991897583, -0.03856785222887993, -0.06415960937738419, -0.04664336144924164, -0.012962655164301395, -0.07892443984746933, -0.03560107573866844, -0.08257368952035904, -0.022883499041199684, -0.00933822151273489, -0.032551031559705734, -0.033308472484350204, 0.041768502444028854, -0.03356103599071503, -0.058439742773771286, -0.07512574642896652, 0.04822169616818428, -0.1442268043756485, 0.03379140421748161, 0.11933258920907974, -0.055776502937078476, 0.12930454313755035, 0.053554415702819824, -0.0315793938934803, 0.02494441531598568, -0.1322803944349289, 0.055137742310762405, -0.0024774326011538506, 0.022488882765173912, 0.018730707466602325, -0.14903996884822845, 0.0036890078336000443, -0.0397489070892334, -0.06772053986787796, 0.005344923585653305, -0.020064013078808784, -0.13103152811527252, -0.00352868833579123, 0.09184792637825012, -0.0133045120164752, -0.06415945291519165, 0.07113847881555557, 0.06216254457831383, 0.03432023897767067, 0.060096945613622665, -0.009989543817937374, 0.06891798228025436, -0.18206679821014404, -0.06328218430280685, -0.0037915625143796206, 0.036438193172216415, 0.0482473224401474, -0.0234375, 0.03560877963900566, -0.01488573383539915, 0.20590442419052124, 0.01877106912434101, 0.0011611301451921463, 0.03390907868742943, -0.06177249550819397, -0.005408201366662979, 0.04372074827551842, 0.07501113414764404, -0.016490867361426353, -0.026552313938736916, 0.010952685959637165, -0.028050048276782036, -0.08959263563156128, -0.018301673233509064, 0.10006245225667953, 0.024116456508636475, 0.22219204902648926, -0.06180311366915703, 0.06357183307409286, -0.02245551533997059, -0.10859906673431396, -0.03248933330178261, -0.046096984297037125, 0.02607138454914093, -0.05652992054820061, 0.06502344459295273, 0.18310993909835815, -0.15417340397834778, 0.11789783835411072, 0.03778357431292534, -0.05785869434475899, -0.12139171361923218, -0.18762631714344025, -0.014426693320274353, -0.03528331592679024, 0.02434563636779785, -0.13500699400901794, 0.0976884737610817, 0.025435088202357292, 0.03865842893719673, -0.05961884930729866, 0.13145776093006134, -0.0913907065987587, -0.13735900819301605, 0.044957976788282394, 0.01986357755959034, 0.025436004623770714, 0.05265678092837334, 0.09062474220991135, 0.03623406961560249, 0.0008892451296560466, 0.07110311836004257, 0.040142547339200974, 0.027996322140097618, 0.045957300812006, -0.03195783123373985, -0.0434940904378891, 0.027655581012368202, -0.009354020468890667, 0.018392814323306084, 0.09208778291940689, 0.06839074939489365, -0.01225293055176735, -0.01576417125761509, 0.3197549283504486, -0.018079811707139015, -0.026510631665587425, -0.179485484957695, 0.15352863073349, 0.0035859819035977125, 0.007562717888504267, 0.020137237384915352, -0.1182875856757164, 0.014025669544935226, 0.10763441771268845, 0.14366352558135986, -0.025386804714798927, 0.026815732941031456, -0.021267017349600792, 0.017280863597989082, 0.036912333220243454, 0.11149806529283524, 0.06610534340143204, 0.19015443325042725, -0.024937450885772705, 0.0522286556661129, -0.01582491584122181, -0.020980864763259888, 0.01583588868379593, 0.10888761281967163, -0.043348271399736404, 0.008345012553036213, -0.053520191460847855, 0.10314949601888657, -0.060175761580467224, -0.3032255172729492, -0.037645045667886734, -0.017682882025837898, -0.09455742686986923, 0.07489845156669617, -0.027598435059189796, -0.02309541404247284, 0.07995344698429108, 0.03009604848921299, -0.04928703233599663, 0.16228513419628143, 0.053535956889390945, -0.04319114610552788, -0.008579819463193417, 0.11453297734260559, -0.02745562605559826, 0.16908586025238037, -0.038250986486673355, 0.017708564177155495, 0.0739719569683075, 0.012345463037490845, -0.126249298453331, 0.00143447145819664, 0.041820842772722244, -0.05189340189099312, -0.0183052197098732, 0.19980327785015106, 0.01416473463177681, 0.022265583276748657, 0.07620804756879807, -0.04345075413584709, 0.02317523956298828, -0.04193124175071716, 0.054393649101257324, -0.13905882835388184, 0.06523233652114868, -0.08270192891359329, 0.11746755987405777, 0.16891337931156158, -0.0689978376030922, 0.04054805263876915, -0.05977736786007881, 0.008148104883730412, -0.02742716670036316, 0.08808014541864395, -0.0210986640304327, -0.11333737522363663, 0.007238584104925394, 0.028639299795031548, 0.016493404284119606, -0.16805951297283173, -0.08395852893590927, 0.0739937499165535, -0.05334274843335152, 0.020031115040183067, 0.18054620921611786, 0.004842918366193771, 0.05663831904530525, -0.036812908947467804, -0.0008691353723406792, -0.008215732872486115, 0.11553818732500076, -0.18204128742218018, -0.07509034126996994 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/03634b3c46e2357fa70d455446936297.800x800x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sam Kim (샘김)</div> <a href="https://genius.com/artists/sam-kim"> <div style="text-align: center; font-size: 14px;">@sam-kim</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Sam Kim (샘김). Dataset is available [here](https://huggingface.co/datasets/huggingartists/sam-kim). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/sam-kim") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/38e0f1wf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sam Kim (샘김)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2rke2zbk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2rke2zbk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/sam-kim') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/sam-kim") model = AutoModelWithLMHead.from_pretrained("huggingartists/sam-kim") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/sam-kim"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/sam-kim
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/sam-kim", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sam-kim #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sam Kim (샘김)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@sam-kim</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Sam Kim (샘김). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Sam Kim (샘김)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Sam Kim (샘김).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sam Kim (샘김)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sam-kim #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Sam Kim (샘김).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sam Kim (샘김)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 53, 76, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sam-kim #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Sam Kim (샘김).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sam Kim (샘김)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.024440374225378036, 0.1551569700241089, -0.002788184443488717, 0.04055342078208923, 0.1102733388543129, 0.009414179250597954, 0.07101935148239136, 0.11139348894357681, 0.019909126684069633, 0.07221284508705139, 0.06975210458040237, 0.058759476989507675, 0.08577527850866318, 0.06654854863882065, 0.05815652012825012, -0.24986882507801056, 0.04365815967321396, -0.08026523143053055, 0.017749467864632607, 0.09832697361707687, 0.08736981451511383, -0.07417545467615128, 0.0877753496170044, 0.03193328157067299, -0.062478210777044296, -0.0005359371425583959, 0.0013386920327320695, -0.05944883078336716, 0.07388000190258026, 0.05921260640025139, 0.031475529074668884, 0.0323348231613636, 0.057332105934619904, -0.1749715358018875, 0.02696378529071808, 0.12062742561101913, 0.04108460247516632, 0.07847409695386887, 0.054773978888988495, -0.07471182197332382, 0.1485806703567505, -0.022343013435602188, 0.08534357696771622, 0.058718252927064896, -0.10820136964321136, -0.1095423772931099, -0.13773290812969208, 0.06286364793777466, 0.11132200062274933, 0.08228018134832382, -0.034540124237537384, 0.08389907330274582, -0.04532715305685997, 0.05497782677412033, 0.2443753331899643, -0.24057437479496002, -0.005798200611025095, 0.07995513826608658, 0.0578930489718914, 0.010758090764284134, -0.09055905789136887, 0.02034219540655613, 0.046685345470905304, 0.03185850754380226, 0.04465888813138008, -0.030966926366090775, 0.13804247975349426, 0.016735956072807312, -0.10779398679733276, -0.07389935851097107, 0.11894895881414413, -0.01739618554711342, -0.07850687205791473, -0.14227630198001862, 0.007573151960968971, -0.03243553638458252, 0.025866294279694557, 0.018414130434393883, -0.007783881854265928, -0.008980159647762775, -0.05607708543539047, -0.09756073355674744, -0.0695323571562767, -0.04791361093521118, -0.00968822743743658, 0.06187484785914421, 0.050835005939006805, 0.036061156541109085, -0.07758376747369766, 0.2234642058610916, 0.005507512483745813, -0.10829627513885498, -0.07163085043430328, -0.10907157510519028, -0.08770941942930222, -0.04661063104867935, 0.0005436674691736698, 0.00009182247595163062, -0.023412488400936127, 0.14714251458644867, -0.015516161918640137, 0.03807169198989868, -0.02806275151669979, 0.0005344292148947716, 0.14479638636112213, 0.14216384291648865, -0.1254468709230423, -0.029980065301060677, 0.06670872122049332, -0.001285057282075286, -0.06732851266860962, -0.05417659506201744, 0.0031359035056084394, -0.005884429439902306, 0.06528916954994202, 0.08125156164169312, 0.07246237248182297, 0.07422572374343872, 0.0023968678433448076, -0.057705678045749664, 0.07409194856882095, -0.1262178272008896, 0.003584356280043721, -0.013173772022128105, -0.0607992485165596, 0.0300484336912632, 0.051475998014211655, 0.015718890354037285, -0.1025010496377945, 0.1036696806550026, -0.0817541778087616, -0.04698193818330765, -0.07903304696083069, -0.10291782766580582, -0.003486861940473318, -0.061435189098119736, -0.01872013695538044, -0.07740314304828644, -0.1803537905216217, -0.04862918332219124, 0.012849175371229649, -0.06250794231891632, -0.025098726153373718, 0.02427159994840622, -0.048037003725767136, 0.011254506185650826, -0.017084291204810143, 0.007363383192569017, -0.030391396954655647, 0.037209052592515945, -0.0856727808713913, 0.038776710629463196, 0.09152968227863312, 0.04384157434105873, -0.12580600380897522, 0.07508325576782227, -0.1607428938150406, 0.12871471047401428, -0.0393676795065403, 0.012728444300591946, -0.090338796377182, -0.07950448244810104, -0.023341981694102287, -0.03415903449058533, 0.020462872460484505, 0.12837904691696167, -0.1611412614583969, -0.019105961546301842, 0.20552265644073486, -0.06588677316904068, -0.07129480689764023, 0.07115649431943893, -0.06725934147834778, 0.033111315220594406, 0.11437641829252243, 0.07141396403312683, 0.1441524475812912, -0.10479312390089035, -0.0878523513674736, -0.03411775082349777, -0.07096172124147415, 0.17871829867362976, 0.030401483178138733, -0.020860591903328896, 0.015224563889205456, 0.01113265473395586, -0.03835320472717285, -0.0047364323399960995, -0.038501251488924026, -0.0256009753793478, -0.013112413696944714, -0.017678027972579002, 0.0032472731545567513, -0.036460891366004944, -0.03463335335254669, -0.01641983352601528, -0.09395056217908859, 0.052700869739055634, 0.10137952119112015, -0.06866360455751419, 0.008570840582251549, -0.09976501017808914, 0.03790687397122383, -0.053692955523729324, 0.013592223636806011, -0.1808418333530426, -0.04388950392603874, 0.02907342091202736, -0.059881892055273056, 0.05485035851597786, 0.017072858288884163, 0.04073366895318031, 0.07226299494504929, -0.015781346708536148, -0.0016391826793551445, -0.02579425275325775, 0.00977884978055954, -0.0520002581179142, -0.1637689173221588, -0.05014338716864586, -0.04206296429038048, 0.0921722948551178, -0.1034921407699585, 0.0003405786701478064, 0.09302569180727005, 0.15520744025707245, 0.025594912469387054, -0.06589608639478683, 0.0445200651884079, -0.02632623352110386, -0.02915767766535282, -0.10059703141450882, -0.04644792526960373, 0.003245621221140027, -0.02908216044306755, 0.1674780547618866, -0.14906875789165497, -0.12722772359848022, 0.12196377664804459, 0.10234935581684113, -0.08570336550474167, 0.049606047570705414, -0.06546057760715485, -0.02513713203370571, -0.04755917191505432, -0.06220466271042824, 0.23932020366191864, 0.03852199390530586, 0.09102942049503326, -0.08866287767887115, -0.08332405984401703, 0.0020107426680624485, -0.041701026260852814, -0.03302828595042229, 0.05038803815841675, 0.03786693885922432, -0.18465539813041687, 0.047970958054065704, -0.015902426093816757, 0.09193900227546692, 0.19237498939037323, 0.02084885723888874, -0.09175187349319458, -0.054280076175928116, -0.07178690284490585, -0.0027304121758788824, 0.07365782558917999, -0.006929030176252127, 0.034983210265636444, 0.04632618650794029, 0.048217613250017166, 0.03944101557135582, -0.10870365053415298, 0.01240715105086565, 0.0509088933467865, -0.024417798966169357, -0.04871285334229469, 0.029670966789126396, 0.030334779992699623, 0.0874214917421341, 0.06740462779998779, 0.11119896918535233, -0.05326879397034645, -0.05376487970352173, -0.13134004175662994, 0.1414966732263565, -0.08921493589878082, -0.19303664565086365, -0.1283363401889801, -0.07883311808109283, 0.007521207444369793, 0.0035492011811584234, 0.031608033925294876, -0.04462016001343727, -0.04651253670454025, -0.10216645151376724, 0.06835979223251343, -0.03193033114075661, -0.013295683078467846, 0.0029187488835304976, 0.01151974592357874, -0.028698595240712166, -0.11293201893568039, -0.03644992783665657, 0.024609915912151337, -0.07297754287719727, 0.011308395303785801, 0.027470970526337624, 0.05794522166252136, 0.13705389201641083, 0.011184965260326862, 0.009232047945261002, -0.02098902314901352, 0.27840983867645264, -0.11728481203317642, 0.05878106877207756, 0.1678803265094757, -0.018358634784817696, 0.05423546954989433, 0.05524935945868492, -0.005475245416164398, -0.05353977903723717, 0.06132082641124725, 0.07116639614105225, -0.07383184880018234, -0.20292547345161438, -0.025552378967404366, -0.02324395254254341, 0.01776650920510292, 0.10208094865083694, 0.03124949149787426, 0.054332636296749115, 0.01398973073810339, -0.09913699328899384, 0.04984043911099434, 0.03186238184571266, 0.09596957266330719, -0.07616934180259705, -0.0071909502148628235, 0.051023609936237335, -0.05163152888417244, 0.03223777934908867, 0.11337142437696457, 0.011267995461821556, 0.2434106022119522, -0.07593423128128052, 0.05338480696082115, 0.09843359887599945, 0.10428757220506668, 0.020626122131943703, 0.03182903304696083, -0.02630983106791973, 0.021777572110295296, 0.005043476819992065, -0.09319975227117538, -0.004135322291404009, 0.03936263173818588, 0.02851402945816517, -0.02709665149450302, -0.058155838400125504, -0.06051783263683319, 0.04629632458090782, 0.23713578283786774, 0.052432239055633545, -0.16615872085094452, -0.08283479511737823, 0.07366389036178589, -0.03915712609887123, -0.053201060742139816, -0.014462118037045002, 0.06731868535280228, -0.22256621718406677, 0.05239769071340561, -0.03169704228639603, 0.1102287545800209, -0.1443856954574585, -0.002012853743508458, 0.04572224244475365, 0.05001136288046837, -0.06833060085773468, 0.0740705132484436, -0.17424048483371735, 0.07452051341533661, 0.003351078601554036, 0.08137137442827225, -0.08865480870008469, 0.014119632542133331, 0.03618735074996948, 0.019412174820899963, 0.09196876734495163, 0.015444925986230373, 0.006300310604274273, -0.07706677913665771, -0.04950954392552376, -0.0052642179653048515, 0.060022685676813126, -0.08813634514808655, 0.13107702136039734, -0.03279416263103485, 0.026358598843216896, -0.029237214475870132, -0.08312641084194183, -0.10945918411016464, -0.1382962018251419, 0.06985827535390854, -0.10775178670883179, 0.007203482091426849, -0.05726606398820877, -0.01613074354827404, 0.01680975966155529, 0.19370479881763458, -0.08549410849809647, -0.08404365181922913, -0.12932714819908142, 0.0051918625831604, 0.1456010341644287, -0.0805610939860344, -0.0009781307308003306, 0.001787551213055849, 0.14642824232578278, 0.01872113347053528, -0.1392005831003189, -0.004682190716266632, -0.0671779215335846, -0.19071421027183533, -0.012736792676150799, 0.124359130859375, 0.08107863366603851, 0.03827988728880882, 0.0072879730723798275, 0.010982345789670944, -0.026371072977781296, -0.17285031080245972, 0.027017150074243546, 0.16505125164985657, 0.027599528431892395, 0.049221351742744446, 0.025849809870123863, 0.024090038612484932, -0.14190858602523804, 0.01967550814151764, 0.045252926647663116, 0.19765612483024597, -0.06758265942335129, 0.14644455909729004, 0.016893671825528145, -0.08300241082906723, -0.1772945523262024, 0.01695430465042591, -0.0002627445792313665, 0.0328691340982914, 0.03653397038578987, -0.15972886979579926, 0.027801863849163055, 0.03146235644817352, -0.0031048376113176346, 0.05672967806458473, -0.3336451053619385, -0.1506376564502716, 0.03153826668858528, 0.02655748464167118, -0.06122060865163803, -0.03482187166810036, -0.042236171662807465, -0.06772223114967346, -0.24974024295806885, 0.07813329994678497, -0.11469395458698273, 0.08765538036823273, 0.016665607690811157, 0.051681265234947205, 0.04832744970917702, -0.06430790573358536, 0.13665080070495605, -0.02481974847614765, 0.07212533056735992, -0.09165697544813156, -0.04031483829021454, 0.08254064619541168, -0.05445268377661705, 0.10074867308139801, 0.01259350311011076, 0.08981342613697052, -0.10084731876850128, -0.06476948410272598, -0.08653467893600464, 0.007205505855381489, -0.05354032292962074, -0.08933178335428238, -0.08695166558027267, 0.09824012219905853, 0.11821543425321579, -0.036785878241062164, -0.09197086095809937, -0.045434050261974335, -0.020079568028450012, 0.07652835547924042, 0.10588309913873672, 0.09347255527973175, -0.05663405731320381, 0.00329576525837183, 0.008086124435067177, 0.0277724452316761, -0.13722831010818481, 0.03687606006860733, 0.07877598702907562, 0.03538871183991432, 0.11130762845277786, 0.013639815151691437, -0.17121976613998413, 0.029237117618322372, 0.03606310486793518, -0.15468788146972656, -0.12181063741445541, -0.04031762108206749, -0.023477546870708466, -0.0759284719824791, -0.043966419994831085, 0.13334175944328308, -0.03556763753294945, -0.03309572860598564, -0.005739412270486355, 0.06381572782993317, -0.04256126657128334, 0.11409339308738708, 0.014687314629554749, 0.0506623312830925, -0.07713532447814941, 0.11436808854341507, 0.05884420499205589, 0.029708867892622948, 0.042362574487924576, 0.03982475399971008, -0.09514478594064713, 0.0008176799165084958, -0.09431219846010208, 0.0282514039427042, -0.02706727758049965, -0.01132694911211729, -0.011529297567903996, -0.04758065938949585, 0.025840792804956436, 0.08780834823846817, -0.010572804138064384, 0.11733707040548325, -0.0279956366866827, -0.009879739955067635, -0.13470908999443054, 0.07969221472740173, 0.05694785341620445, 0.018089834600687027, -0.11944019794464111, 0.17379410564899445, 0.02882494404911995, 0.10369615256786346, -0.04476740583777428, -0.05225767567753792, -0.08098982274532318, -0.013062231242656708, -0.1342269480228424, -0.04959600791335106, -0.09588193148374557, -0.041416216641664505, -0.01266895979642868, -0.04875363036990166, -0.02791808545589447, 0.052147042006254196, -0.027459073811769485, -0.0638723373413086, -0.051636140793561935, 0.05486787110567093, -0.13763201236724854, 0.0005084524746052921, 0.12370145320892334, -0.07060595601797104, 0.10358874499797821, 0.0584392175078392, -0.032933156937360764, 0.022952673956751823, -0.073423832654953, 0.02956913225352764, -0.01856919936835766, 0.011962346732616425, 0.031691327691078186, -0.1334240734577179, -0.000379768549464643, -0.05620463192462921, -0.05079669505357742, 0.013776762410998344, -0.0020591579377651215, -0.12303511798381805, -0.003824786515906453, 0.062222693115472794, 0.0010654988000169396, -0.07825492322444916, 0.073174387216568, 0.08537181466817856, 0.026363633573055267, 0.07429302483797073, -0.03081912361085415, 0.08597414940595627, -0.16084633767604828, -0.046167053282260895, 0.004831889644265175, -0.00005074514410807751, 0.07326295226812363, -0.013715699315071106, 0.0527019239962101, -0.023024486377835274, 0.19448116421699524, 0.004613892175257206, -0.02957298792898655, 0.036055535078048706, -0.005205683410167694, 0.003952735103666782, 0.04922496899962425, 0.05763545632362366, -0.03313477337360382, -0.042335622012615204, -0.023872390389442444, 0.00710196141153574, -0.07350720465183258, -0.04348982498049736, 0.11986672878265381, 0.05967433750629425, 0.15258385241031647, -0.03862046077847481, 0.058078326284885406, -0.024290742352604866, -0.11898677051067352, -0.02805771678686142, -0.04635293036699295, 0.04342660307884216, -0.06907767802476883, 0.08288128674030304, 0.1582721322774887, -0.15981996059417725, 0.11194649338722229, 0.014407968148589134, -0.06678634136915207, -0.11030671000480652, -0.19488106667995453, -0.020573744550347328, -0.02285061590373516, 0.036236267536878586, -0.12644082307815552, 0.08304876834154129, 0.049572233110666275, 0.031539466232061386, -0.06402052938938141, 0.12319093197584152, -0.060396309942007065, -0.1086851954460144, 0.04105064272880554, 0.01559238787740469, 0.01297760009765625, 0.029693063348531723, 0.0656215101480484, 0.03557271882891655, 0.011196494102478027, 0.059850819408893585, 0.029865877702832222, 0.00613549305126071, 0.04350491985678673, -0.02034199982881546, -0.07195839285850525, 0.024878118187189102, 0.005871023517102003, 0.038287729024887085, 0.09434986114501953, 0.07812279462814331, -0.009327136911451817, -0.03527406230568886, 0.30764496326446533, -0.03899757191538811, -0.016924899071455002, -0.17474575340747833, 0.16650480031967163, 0.028843047097325325, -0.017910387367010117, 0.037462230771780014, -0.14701460301876068, 0.011213669553399086, 0.16207563877105713, 0.15999601781368256, -0.048844221979379654, 0.009529945440590382, -0.05561348795890808, 0.010739751160144806, 0.027430279180407524, 0.08920556306838989, 0.061476726084947586, 0.18840709328651428, -0.039703499525785446, 0.06894358992576599, -0.00374342268332839, -0.025574713945388794, -0.015730861574411392, 0.10078506171703339, -0.014864513650536537, -0.0006669433787465096, -0.06050917133688927, 0.09206657111644745, -0.08622398227453232, -0.24610577523708344, -0.01990664191544056, -0.0322439931333065, -0.09832305461168289, 0.05044262111186981, -0.04207964241504669, -0.0010541155934333801, 0.08964262157678604, 0.012680376879870892, -0.014941113069653511, 0.12945042550563812, 0.04208751767873764, -0.027485234662890434, -0.016284456476569176, 0.08844254165887833, -0.008624063804745674, 0.17946866154670715, -0.023738021031022072, 0.007757015526294708, 0.0968182235956192, 0.02090095542371273, -0.12490685284137726, 0.006846900563687086, 0.038672737777233124, -0.08871853351593018, -0.010639370419085026, 0.20399996638298035, 0.011825593188405037, 0.020303355529904366, 0.062199126929044724, -0.06366729736328125, 0.029971711337566376, -0.07823626697063446, 0.046158090233802795, -0.132572203874588, 0.04897671192884445, -0.07558153569698334, 0.14888177812099457, 0.18771839141845703, -0.07585623115301132, 0.02727101743221283, -0.047087911516427994, -0.00943087600171566, -0.02734874002635479, 0.03837583586573601, -0.024327794089913368, -0.11568205803632736, 0.023280717432498932, 0.0364895761013031, 0.01932246796786785, -0.1881384700536728, -0.06030985713005066, 0.04570697620511055, -0.05954166501760483, 0.014921612106263638, 0.16506396234035492, 0.038554850965738297, 0.04881202429533005, -0.03586455434560776, -0.021625781431794167, -0.019228393211960793, 0.10991986095905304, -0.1509377807378769, -0.08728945255279541 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/411d50392aef867fe0e9dd55a074ecfb.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Скриптонит (Scriptonite)</div> <a href="https://genius.com/artists/scriptonite"> <div style="text-align: center; font-size: 14px;">@scriptonite</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Скриптонит (Scriptonite). Dataset is available [here](https://huggingface.co/datasets/huggingartists/scriptonite). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/scriptonite") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/13pxeww0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Скриптонит (Scriptonite)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1itfp830) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1itfp830/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/scriptonite') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/scriptonite") model = AutoModelWithLMHead.from_pretrained("huggingartists/scriptonite") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/scriptonite"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/scriptonite
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/scriptonite", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/scriptonite #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Скриптонит (Scriptonite)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@scriptonite</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Скриптонит (Scriptonite). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Скриптонит (Scriptonite)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Скриптонит (Scriptonite).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Скриптонит (Scriptonite)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/scriptonite #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Скриптонит (Scriptonite).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Скриптонит (Scriptonite)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 56, 79, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/scriptonite #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Скриптонит (Scriptonite).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Скриптонит (Scriptonite)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.027791492640972137, 0.18564505875110626, -0.005221007391810417, 0.07307372987270355, 0.08019598573446274, -0.006195706315338612, 0.06329255551099777, 0.12676234543323517, -0.017648417502641678, 0.08024425804615021, 0.07190664112567902, 0.04166986793279648, 0.08089631050825119, 0.09021074324846268, 0.035734206438064575, -0.2508968710899353, 0.027482742443680763, -0.06550542265176773, -0.0275531318038702, 0.09208066016435623, 0.08528284728527069, -0.0734427273273468, 0.07659520953893661, 0.01107900682836771, -0.04158583655953407, -0.008505922742187977, 0.014366555027663708, -0.059841688722372055, 0.06327472627162933, 0.08149173110723495, 0.03495060279965401, 0.046207547187805176, 0.06409045308828354, -0.1721268594264984, 0.024518508464097977, 0.12152455002069473, 0.028675997629761696, 0.09245888888835907, 0.06853892654180527, -0.04682209715247154, 0.1230255663394928, -0.049333687871694565, 0.09191863983869553, 0.051005665212869644, -0.1057683676481247, -0.08532226085662842, -0.13462960720062256, 0.03605038300156593, 0.07484228909015656, 0.06454683095216751, -0.016640648245811462, 0.08133798837661743, -0.05465850979089737, 0.06170325726270676, 0.24560043215751648, -0.2672676146030426, -0.014849428087472916, 0.024642862379550934, 0.05142395943403244, 0.01109752245247364, -0.08811970055103302, 0.007650973275303841, 0.024053312838077545, 0.04406029358506203, 0.06715209037065506, -0.04314933344721794, 0.1166105791926384, -0.02051839791238308, -0.1039649173617363, -0.07447193562984467, 0.08558286726474762, -0.022720571607351303, -0.0830477625131607, -0.10830371826887131, -0.02164551243185997, -0.013237458653748035, 0.02423209697008133, 0.01329371053725481, 0.007180216256529093, -0.006243715528398752, -0.08748656511306763, -0.1281348317861557, -0.07352955639362335, -0.05035492405295372, -0.027889160439372063, 0.05011136829853058, 0.05936355143785477, 0.0421527735888958, -0.06225968524813652, 0.20372723042964935, 0.03157178685069084, -0.10931727290153503, -0.08916687965393066, -0.10706522315740585, -0.0858181044459343, -0.03641586750745773, 0.0028927966486662626, 0.010011542588472366, -0.011558378115296364, 0.15807394683361053, -0.03571753203868866, 0.030708234757184982, -0.05361489951610565, 0.019802061840891838, 0.09349663555622101, 0.14395296573638916, -0.09899098426103592, -0.0368371345102787, 0.0898694172501564, -0.02601025626063347, -0.03790157660841942, -0.042407941073179245, -0.008803509175777435, -0.05196022614836693, 0.05061031132936478, 0.09893989562988281, 0.0796821117401123, 0.052651189267635345, -0.011058250442147255, -0.042491793632507324, 0.02697168104350567, -0.15014977753162384, 0.036059603095054626, -0.0028360101860016584, -0.056288089603185654, 0.006101775448769331, 0.06917581707239151, -0.02516314946115017, -0.12730300426483154, 0.05110171437263489, -0.06668267399072647, -0.018665485084056854, -0.08356983214616776, -0.10302102565765381, 0.019229533150792122, -0.023783113807439804, -0.03013688512146473, -0.08115296065807343, -0.15550176799297333, -0.03008436970412731, 0.01572917029261589, -0.07455053925514221, -0.015609151683747768, 0.017755115404725075, -0.040156301110982895, 0.0018410275224596262, -0.005411134101450443, 0.014626327902078629, -0.014110191725194454, 0.056784097105264664, -0.07695025205612183, 0.04933641478419304, 0.07460066676139832, 0.03658068925142288, -0.11513713002204895, 0.08351727575063705, -0.15851478278636932, 0.15395934879779816, -0.025836724787950516, -0.04681811481714249, -0.09082233160734177, -0.11908360570669174, -0.01628134772181511, -0.05085810646414757, 0.04166058078408241, 0.1291114240884781, -0.15781164169311523, -0.01062841434031725, 0.23827922344207764, -0.07414791733026505, -0.04220464080572128, 0.08715686202049255, -0.06874030083417892, 0.032116979360580444, 0.11671886593103409, 0.028537709265947342, 0.14773961901664734, -0.07880967110395432, -0.08039336651563644, -0.015387331135571003, -0.08171570301055908, 0.17478393018245697, 0.0419045053422451, -0.026546813547611237, 0.05319800600409508, -0.003613089444115758, -0.015211784280836582, -0.024429110810160637, -0.035411398857831955, -0.030835069715976715, -0.016513612121343613, 0.0004400880425237119, 0.017437275499105453, -0.048963289707899094, -0.02384575456380844, -0.020045122131705284, -0.1053616926074028, 0.04457564651966095, 0.08996685594320297, -0.08103428781032562, 0.045700643211603165, -0.10747925192117691, 0.04366893321275711, -0.06523782014846802, 0.02313424088060856, -0.1738857924938202, -0.03468068316578865, 0.021783435717225075, -0.0647030919790268, 0.05776716768741608, 0.008734314702451229, 0.05610176548361778, 0.07973742485046387, -0.032433923333883286, 0.009043329395353794, -0.05221771448850632, -0.003925217315554619, -0.057527150958776474, -0.1526278406381607, -0.06200183555483818, -0.04209078475832939, 0.0492604523897171, -0.10356023162603378, 0.0015449804486706853, 0.10065799206495285, 0.14930906891822815, 0.0368204303085804, -0.05829024314880371, 0.03184559568762779, -0.02918250299990177, -0.015706079080700874, -0.11204670369625092, -0.049890171736478806, 0.019567985087633133, -0.030957575887441635, 0.14663711190223694, -0.1515476256608963, -0.07225976139307022, 0.10519865155220032, 0.08338841050863266, -0.08520912379026413, 0.03905649855732918, -0.0549030601978302, -0.024692056700587273, -0.0618598610162735, -0.04500312730669975, 0.21852459013462067, 0.04776213690638542, 0.095310740172863, -0.0955747663974762, -0.0702703669667244, -0.006308708339929581, -0.0371888093650341, -0.002746762940660119, 0.05775376409292221, 0.032552771270275116, -0.21825890243053436, 0.04693387821316719, 0.009476305916905403, 0.054982297122478485, 0.15429748594760895, 0.014113864861428738, -0.09980235248804092, -0.06541510671377182, -0.031674690544605255, 0.01566312089562416, 0.06860263645648956, 0.025901667773723602, 0.05302992835640907, 0.03664284199476242, 0.046508751809597015, 0.023763708770275116, -0.11800366640090942, 0.02967924065887928, 0.048441480845212936, -0.042631447315216064, -0.0418216809630394, -0.009878523647785187, 0.03638150170445442, 0.09205032140016556, 0.07369555532932281, 0.09605913609266281, -0.023806972429156303, -0.04571190103888512, -0.11746241897344589, 0.14105544984340668, -0.09944132715463638, -0.1873037964105606, -0.12213823199272156, -0.056990936398506165, 0.03576635196805, 0.01881357841193676, 0.021411661058664322, -0.0009123230702243745, -0.0367242805659771, -0.09042853862047195, 0.04658761993050575, -0.04527807980775833, -0.00969712808728218, -0.002224740106612444, 0.05046950280666351, 0.007046436425298452, -0.11573195457458496, -0.025285346433520317, 0.031193744391202927, -0.10130710899829865, 0.005328972823917866, 0.04156855493783951, 0.02879139594733715, 0.1198011040687561, -0.008215156383812428, 0.007614478003233671, -0.03432106971740723, 0.23296210169792175, -0.09946051239967346, 0.054471228271722794, 0.15055818855762482, -0.04545067995786667, 0.07176338136196136, 0.06972582638263702, -0.0024366904981434345, -0.04513351246714592, 0.043245796114206314, 0.038428936153650284, -0.06977570801973343, -0.19984698295593262, 0.0037895406130701303, -0.04011040925979614, 0.036130182445049286, 0.11045647412538528, 0.03469749912619591, -0.004151428584009409, 0.020843766629695892, -0.09345566481351852, 0.06369458138942719, 0.09014444053173065, 0.10179503262042999, -0.01762067899107933, -0.007010308559983969, 0.0680057629942894, -0.058263376355171204, 0.026810595765709877, 0.1026320531964302, 0.027477910742163658, 0.26442134380340576, -0.10325923562049866, 0.07014210522174835, 0.07745193690061569, 0.07280544936656952, 0.023726079612970352, 0.04303576424717903, -0.011088492348790169, 0.05526060611009598, 0.0013952081790193915, -0.09503451734781265, -0.017161836847662926, 0.030887313187122345, 0.03504732996225357, -0.022073259577155113, -0.043860938400030136, -0.04694806784391403, 0.03954668343067169, 0.1906161606311798, 0.09514792263507843, -0.15382340550422668, -0.08682209998369217, 0.07158026099205017, -0.05738231912255287, -0.06371729075908661, -0.012635299004614353, 0.10165248066186905, -0.22260414063930511, 0.01267228089272976, -0.03095960058271885, 0.11857301741838455, -0.1664849817752838, -0.021382860839366913, -0.006012387108057737, 0.06825639307498932, -0.0585651695728302, 0.0764816403388977, -0.18850722908973694, 0.06132225692272186, 0.007598832715302706, 0.10390593111515045, -0.053437065333127975, 0.039171140640974045, 0.054661303758621216, 0.014657326973974705, 0.09983544051647186, 0.010621017776429653, -0.007294196169823408, -0.07699033617973328, -0.07712528854608536, 0.010929667390882969, 0.06097250059247017, -0.051842398941516876, 0.12006855756044388, -0.038486361503601074, 0.01339925080537796, -0.01730182394385338, -0.06993507593870163, -0.10086925327777863, -0.1490519493818283, 0.07055824995040894, -0.12616728246212006, -0.001845402643084526, -0.058189522475004196, -0.029821395874023438, 0.04418010264635086, 0.20660175383090973, -0.1040148064494133, -0.10384322702884674, -0.10705654323101044, 0.037753622978925705, 0.15060703456401825, -0.08879122138023376, 0.03513503074645996, 0.011806893162429333, 0.1407240927219391, 0.02196645922958851, -0.12725283205509186, -0.011228272691369057, -0.04878176003694534, -0.19623801112174988, -0.010934109799563885, 0.13237951695919037, 0.06045927107334137, 0.05340186133980751, 0.017753031104803085, 0.017880164086818695, -0.016151953488588333, -0.1513306349515915, 0.010183974169194698, 0.11562082916498184, 0.07493899017572403, 0.03896228224039078, 0.013489270582795143, 0.03995148092508316, -0.10947826504707336, 0.04298848658800125, 0.07514338940382004, 0.2190273255109787, -0.0800192803144455, 0.14619174599647522, 0.0010488434927538037, -0.0900319442152977, -0.17331580817699432, 0.0011211284436285496, 0.008644536137580872, 0.029353903606534004, 0.015559450723230839, -0.1849704533815384, -0.009653161279857159, 0.028696559369564056, -0.010767283849418163, 0.11308307945728302, -0.3104519844055176, -0.12702395021915436, 0.03009304404258728, 0.026805367320775986, -0.050442010164260864, -0.021244945004582405, -0.05469951778650284, -0.06412342190742493, -0.23594948649406433, 0.09250339865684509, -0.11966942995786667, 0.0954432561993599, 0.011951128020882607, 0.007561676669865847, 0.03668896108865738, -0.053342554718256, 0.13386289775371552, -0.07418353110551834, 0.048056311905384064, -0.09451303631067276, -0.015088208019733429, 0.06621604412794113, -0.05891190469264984, 0.07506097853183746, 0.00811112578958273, 0.07847002893686295, -0.053866881877183914, -0.062031883746385574, -0.08042291551828384, 0.01704212836921215, -0.062000688165426254, -0.07813883572816849, -0.08380257338285446, 0.08550728112459183, 0.11485861986875534, -0.023354489356279373, -0.10323255509138107, -0.037705689668655396, -0.05377865955233574, 0.09556702524423599, 0.11462850868701935, 0.10100218653678894, -0.07776709645986557, 0.005509282927960157, -0.0015507540665566921, 0.04236986115574837, -0.09599345177412033, 0.063113272190094, 0.08518441021442413, 0.024375595152378082, 0.10897562652826309, 0.035656798630952835, -0.1493893414735794, 0.038175906985998154, 0.023733284324407578, -0.11326217651367188, -0.11515909433364868, -0.018187427893280983, -0.017842972651124, -0.09289867430925369, -0.04182692989706993, 0.14933635294437408, -0.03163332864642143, -0.0395609475672245, 0.01298635546118021, 0.06456127017736435, -0.04198244586586952, 0.11894320696592331, 0.0434739850461483, 0.03636300563812256, -0.07479813694953918, 0.10057372599840164, 0.0646979957818985, 0.0337531715631485, 0.038690757006406784, 0.07735905051231384, -0.09487847983837128, -0.00744900805875659, -0.06380734592676163, 0.004502765368670225, 0.0013921211939305067, -0.006509554572403431, -0.015100052580237389, -0.044588424265384674, 0.045926060527563095, 0.1032320111989975, -0.012064200825989246, 0.12623371183872223, -0.028675129637122154, 0.011962592601776123, -0.11451021581888199, 0.08138800412416458, 0.05567590892314911, 0.014930298551917076, -0.07491987943649292, 0.16930162906646729, 0.021684430539608, 0.1011359840631485, -0.04162181541323662, -0.04941000044345856, -0.07571856677532196, -0.007790931034833193, -0.16194596886634827, -0.012995800003409386, -0.08874206990003586, -0.04481644928455353, -0.018510179594159126, -0.03300221264362335, -0.03407011926174164, 0.061302490532398224, -0.02957523800432682, -0.07157747447490692, -0.06670326739549637, 0.03534131497144699, -0.16173167526721954, -0.018650222569704056, 0.12168071419000626, -0.09622067958116531, 0.11348003894090652, 0.05690130218863487, -0.03800133243203163, 0.0060195946134626865, -0.05340597406029701, -0.0028705052100121975, -0.03084138222038746, 0.006134982220828533, 0.020390817895531654, -0.14730852842330933, 0.02703072689473629, -0.053490281105041504, -0.046190306544303894, 0.009552170522511005, 0.03196557238698006, -0.1141623705625534, 0.0029762752819806337, 0.028556765988469124, -0.0018157368758693337, -0.06935496628284454, 0.08160089701414108, 0.027909744530916214, 0.046222247183322906, 0.06813450902700424, -0.03357325866818428, 0.104895681142807, -0.16835926473140717, -0.037832506000995636, 0.021996265277266502, 0.0032592834904789925, 0.09194651991128922, -0.012920853681862354, 0.0697021484375, -0.020107803866267204, 0.15841224789619446, -0.021758457645773888, -0.027862396091222763, 0.03065153770148754, -0.02642449364066124, 0.0015081156743690372, 0.05250530317425728, 0.061095595359802246, -0.0220880676060915, -0.05619807168841362, -0.024073978886008263, -0.005436943843960762, -0.04486869275569916, -0.07607493549585342, 0.1408708244562149, 0.062203336507081985, 0.15056033432483673, -0.022426661103963852, 0.045569129288196564, -0.007944850251078606, -0.12376724183559418, -0.03362564370036125, -0.0024376013316214085, 0.029529359191656113, -0.05675787478685379, 0.06866157054901123, 0.14124919474124908, -0.1491861194372177, 0.11874452233314514, 0.009892350062727928, -0.06684067845344543, -0.11770635843276978, -0.18606705963611603, -0.03732428699731827, -0.007382857613265514, 0.031168673187494278, -0.11976786702871323, 0.07253795862197876, 0.047806352376937866, 0.03248300030827522, -0.05764970928430557, 0.10290248692035675, -0.04097897186875343, -0.11764758080244064, 0.01781723089516163, 0.0319664403796196, 0.04806838184595108, 0.06772703677415848, 0.04614020138978958, 0.03234056383371353, 0.02733493782579899, 0.07976473867893219, 0.04243985936045647, 0.04982876032590866, 0.01404289249330759, -0.02023853175342083, -0.053163692355155945, 0.009576650336384773, 0.028152456507086754, 0.03193477541208267, 0.1356789916753769, 0.06382685154676437, -0.010853194631636143, -0.033416491001844406, 0.29739829897880554, -0.05340030789375305, -0.06717172265052795, -0.178475022315979, 0.18278758227825165, 0.025415627285838127, -0.015613429248332977, 0.03453396260738373, -0.14168308675289154, 0.010209268890321255, 0.13320396840572357, 0.16383588314056396, -0.05988682806491852, 0.014966975897550583, -0.009168130345642567, 0.006976503878831863, 0.044093068689107895, 0.0772254690527916, 0.04662923887372017, 0.19298133254051208, -0.06346040219068527, 0.05500572547316551, 0.021779706701636314, -0.0020191343501210213, -0.05047519877552986, 0.1181669756770134, -0.05303627625107765, 0.025914333760738373, -0.07277213037014008, 0.06131453067064285, -0.04015582054853439, -0.25446221232414246, 0.008146366104483604, -0.03668302297592163, -0.09487991780042648, 0.06007659062743187, -0.049428973346948624, -0.023891355842351913, 0.0765078067779541, 0.020456554368138313, -0.00006709408626193181, 0.12535682320594788, 0.04147869348526001, -0.026688147336244583, -0.0043216063641011715, 0.09208852797746658, -0.030879370868206024, 0.1957680583000183, -0.010728096589446068, 0.03759622946381569, 0.0953531339764595, 0.033354513347148895, -0.1209234669804573, 0.002312315860763192, 0.041598960757255554, -0.06013111025094986, -0.007253596093505621, 0.19963625073432922, -0.0006426186300814152, -0.006072455085813999, 0.07002279162406921, -0.006168488413095474, 0.018394125625491142, -0.06219019368290901, 0.027019603177905083, -0.12322171777486801, 0.019211625680327415, -0.08633998036384583, 0.11973467469215393, 0.17293711006641388, -0.06199853867292404, 0.03505712002515793, -0.05336342751979828, -0.009573887102305889, -0.000019264074580860324, 0.03041878342628479, -0.023270001634955406, -0.07853344827890396, 0.016894569620490074, 0.04909434914588928, 0.04089967906475067, -0.19187362492084503, -0.07920078933238983, 0.050140392035245895, -0.06162681803107262, -0.015882709994912148, 0.15010446310043335, 0.002730878069996834, 0.0522148460149765, -0.030898353084921837, -0.0441945381462574, -0.026168446987867355, 0.07488749921321869, -0.1400710642337799, -0.06459429115056992 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a5717aec4301e2adfb464d3b85701f74.300x300x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Сергей Летов (Sergei Letov)</div> <a href="https://genius.com/artists/sergei-letov"> <div style="text-align: center; font-size: 14px;">@sergei-letov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Сергей Летов (Sergei Letov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/sergei-letov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/sergei-letov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1chw67j7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Сергей Летов (Sergei Letov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/my7m2jp6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/my7m2jp6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/sergei-letov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/sergei-letov") model = AutoModelWithLMHead.from_pretrained("huggingartists/sergei-letov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/sergei-letov"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/sergei-letov
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/sergei-letov", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sergei-letov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Сергей Летов (Sergei Letov)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@sergei-letov</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Сергей Летов (Sergei Letov). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Сергей Летов (Sergei Letov)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Сергей Летов (Sergei Letov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Сергей Летов (Sergei Letov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sergei-letov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Сергей Летов (Sergei Letov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Сергей Летов (Sergei Letov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 57, 80, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sergei-letov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Сергей Летов (Sergei Letov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Сергей Летов (Sergei Letov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03182171657681465, 0.156351238489151, -0.006221288349479437, 0.07757972925901413, 0.07542792707681656, 0.001550129847601056, 0.09599286317825317, 0.1079024150967598, 0.018216069787740707, 0.05155529826879501, 0.07079809159040451, 0.03129703179001808, 0.059347327798604965, 0.11550755798816681, 0.02224508486688137, -0.231722891330719, 0.0161711685359478, -0.05999922379851341, -0.03737993538379669, 0.08708881586790085, 0.09843100607395172, -0.07204148173332214, 0.05299265682697296, -0.0007966049597598612, -0.0456591434776783, 0.0005529584013856947, 0.01843860372900963, -0.051789332181215286, 0.05999671295285225, 0.09022605419158936, 0.0543355830013752, 0.042443033307790756, 0.042580895125865936, -0.16688957810401917, 0.02693871781229973, 0.1047915518283844, 0.022858835756778717, 0.08190927654504776, 0.0732421800494194, -0.0678793266415596, 0.10366348177194595, -0.06488503515720367, 0.08419245481491089, 0.040483977645635605, -0.10874973237514496, -0.11462951451539993, -0.1100798025727272, 0.04193972051143646, 0.0360376238822937, 0.05416499823331833, -0.01845272071659565, 0.07705207914113998, -0.0573234036564827, 0.08418600261211395, 0.24064314365386963, -0.25644659996032715, -0.008275407366454601, 0.030663859099149704, 0.03683163598179817, 0.03595075011253357, -0.08140591531991959, 0.00323050026781857, 0.023740524426102638, 0.040403034538030624, 0.07041586935520172, -0.04451875388622284, 0.07349490374326706, -0.026618706062436104, -0.10802219063043594, -0.06866743415594101, 0.10114172846078873, -0.027985546737909317, -0.07979581505060196, -0.10224781930446625, -0.03830504044890404, -0.06351310759782791, 0.031747255474328995, 0.026015030220150948, 0.0077135697938501835, -0.000916956108994782, -0.07481079548597336, -0.12918436527252197, -0.06243641674518585, -0.0697469487786293, -0.030156724154949188, 0.1213960275053978, 0.04441726207733154, 0.035141896456480026, -0.056456178426742554, 0.18743887543678284, 0.07323528081178665, -0.11224991828203201, -0.06885179877281189, -0.0982200875878334, -0.10535262525081635, -0.028241151943802834, -0.021090969443321228, 0.00847187452018261, -0.0022209277376532555, 0.1687820702791214, -0.04674285650253296, 0.01562649756669998, -0.05924171954393387, 0.033304400742053986, 0.09235141426324844, 0.11654508113861084, -0.08731779456138611, -0.017345737665891647, 0.09147252887487411, -0.045190997421741486, -0.03456772118806839, -0.05502698943018913, -0.02521458826959133, -0.0829852968454361, 0.05800092592835426, 0.10574935376644135, 0.05753615126013756, 0.05091079697012901, -0.040783144533634186, -0.05240042507648468, 0.020184794440865517, -0.15897969901561737, 0.026253551244735718, 0.01559496484696865, -0.058376673609018326, -0.018578585237264633, 0.07252640277147293, -0.04512004181742668, -0.12266761809587479, 0.0597153976559639, -0.04785420745611191, -0.010792662389576435, -0.08261115849018097, -0.11479081213474274, 0.004179248120635748, -0.02402673102915287, -0.015929745510220528, -0.09470263123512268, -0.15647082030773163, -0.029431620612740517, 0.020756535232067108, -0.06892682611942291, -0.0026248935610055923, 0.012703021988272667, -0.028455592691898346, -0.009922086261212826, -0.013789438642561436, 0.030300496146082878, -0.030889207497239113, 0.06747224181890488, -0.08339928835630417, 0.07084687799215317, 0.05794450268149376, 0.03128943592309952, -0.11280184984207153, 0.0702342763543129, -0.12402669340372086, 0.17974363267421722, -0.03400314226746559, -0.055238187313079834, -0.07560022175312042, -0.08915825933218002, -0.01801423169672489, -0.030479634180665016, 0.04586352780461311, 0.10983388125896454, -0.16497573256492615, -0.012606767937541008, 0.25070464611053467, -0.07068242877721786, -0.041456881910562515, 0.10305596143007278, -0.0814439207315445, 0.054324690252542496, 0.11286970973014832, 0.05709736794233322, 0.1345655620098114, -0.055004578083753586, -0.06252121925354004, -0.014644114300608635, -0.05569218471646309, 0.1689949631690979, 0.04906899482011795, -0.0041457489132881165, 0.033201225101947784, -0.007270381785929203, -0.032500676810741425, -0.0016293306834995747, -0.03150438517332077, -0.042314283549785614, -0.014892417006194592, -0.027554186061024666, 0.04768495634198189, -0.051184821873903275, -0.007523134350776672, -0.024651017040014267, -0.09932209551334381, 0.08420083671808243, 0.10847732424736023, -0.08130280673503876, 0.05389710143208504, -0.11850672215223312, 0.02600247971713543, -0.04858219996094704, 0.021893413737416267, -0.19531318545341492, 0.010213726200163364, 0.028040491044521332, -0.05882222577929497, 0.057515062391757965, 0.030549539253115654, 0.05352216213941574, 0.07844030112028122, -0.0432528555393219, 0.009685764089226723, -0.04758959263563156, 0.0008181534940376878, -0.048667244613170624, -0.18733616173267365, -0.04341446980834007, -0.04692693054676056, 0.047378089278936386, -0.11216022074222565, -0.00413485849276185, 0.1141275092959404, 0.13937637209892273, 0.04215652868151665, -0.04528859630227089, 0.031100613996386528, -0.0057596853002905846, -0.015065870247781277, -0.0933636873960495, -0.03377746790647507, 0.027976244688034058, -0.061700448393821716, 0.12682488560676575, -0.14758533239364624, -0.05859964340925217, 0.11215241998434067, 0.06596238166093826, -0.09629246592521667, 0.030683476477861404, -0.04139382764697075, -0.019431712105870247, -0.047136854380369186, -0.035624437034130096, 0.2014423906803131, 0.03953349217772484, 0.09595932811498642, -0.10283159464597702, -0.06487584114074707, -0.01800091564655304, -0.04966350272297859, 0.027963483706116676, 0.0796094760298729, -0.01408713310956955, -0.21705494821071625, 0.04706009849905968, -0.005147176794707775, 0.012542104348540306, 0.22173194587230682, 0.007745250593870878, -0.10053227841854095, -0.0766613706946373, -0.015665441751480103, 0.02482639253139496, 0.09077160060405731, -0.02115299366414547, 0.048097047954797745, 0.03591668978333473, 0.029573800042271614, 0.02522250823676586, -0.10944710671901703, 0.028822707012295723, 0.05330602079629898, -0.057094961404800415, -0.038197144865989685, -0.01708781160414219, 0.021765295416116714, 0.08966943621635437, 0.0623902827501297, 0.09134092181921005, -0.017796166241168976, -0.05231897532939911, -0.11069729179143906, 0.12890970706939697, -0.09943311661481857, -0.18381506204605103, -0.10930351167917252, -0.07100716978311539, 0.01727512665092945, 0.030851757153868675, 0.026629602536559105, -0.0033250339329242706, -0.024445850402116776, -0.07398910075426102, 0.04933705925941467, -0.01047694031149149, -0.013211749494075775, 0.011710268445312977, 0.06176987290382385, 0.013762845657765865, -0.11882967501878738, -0.017616821452975273, 0.02342337556183338, -0.08694153279066086, 0.003520856611430645, 0.04495761916041374, 0.027291353791952133, 0.10514891147613525, -0.015607823617756367, 0.007309727370738983, -0.026893343776464462, 0.2335193157196045, -0.10131217539310455, 0.028722943738102913, 0.1463755965232849, -0.07546040415763855, 0.045047860592603683, 0.07011011242866516, 0.012234770692884922, -0.058707695454359055, 0.050114668905735016, 0.0256702471524477, -0.06291721016168594, -0.20144562423229218, -0.019552819430828094, -0.048538170754909515, 0.022948989644646645, 0.10513915121555328, 0.03848841041326523, -0.018480679020285606, 0.019535627216100693, -0.09265699982643127, 0.07365311682224274, 0.0719548761844635, 0.0919310674071312, -0.01568366400897503, -0.005230606999248266, 0.06771247833967209, -0.06185021996498108, 0.03551189601421356, 0.1000041738152504, 0.02976348251104355, 0.23525361716747284, -0.09479519724845886, 0.12089107930660248, 0.08061178773641586, 0.0681091696023941, 0.04431666433811188, 0.029163716360926628, -0.027198484167456627, 0.056263383477926254, 0.00679704500362277, -0.10677541047334671, -0.04229782894253731, 0.03239293023943901, 0.008755132555961609, -0.01517410296946764, -0.012759732082486153, -0.0768006294965744, 0.061601247638463974, 0.20223991572856903, 0.07224578410387039, -0.14530035853385925, -0.11677557229995728, 0.07026506960391998, -0.03999743610620499, -0.05539599061012268, -0.029495587572455406, 0.11403793841600418, -0.1926947832107544, -0.0023542619310319424, -0.00828634761273861, 0.1171603724360466, -0.18138737976551056, -0.011445751413702965, -0.02516281232237816, 0.07669985294342041, -0.05907883122563362, 0.06971162557601929, -0.22350351512432098, 0.057153742760419846, 0.012253928929567337, 0.1118403822183609, -0.05918155238032341, 0.028269732370972633, 0.05465206131339073, 0.011920001357793808, 0.08405815064907074, 0.021478259935975075, 0.025008942931890488, -0.11428042501211166, -0.062252361327409744, 0.012524626217782497, 0.05285587161779404, -0.062128905206918716, 0.10651928931474686, -0.034253545105457306, 0.018008476123213768, -0.009916866198182106, -0.09260320663452148, -0.09716043621301651, -0.14177905023097992, 0.0572873018682003, -0.12836262583732605, 0.03917189687490463, -0.0508047454059124, -0.023398539051413536, 0.04936249554157257, 0.18560321629047394, -0.11973327398300171, -0.11351954936981201, -0.09192580729722977, 0.041609276086091995, 0.12128441035747528, -0.09014558792114258, 0.03746376931667328, 0.02613348513841629, 0.1369863599538803, 0.0032564736902713776, -0.10809268802404404, 0.008612217381596565, -0.04825311526656151, -0.20318758487701416, -0.01085418276488781, 0.09922140836715698, 0.07563824951648712, 0.0678640678524971, 0.014760298654437065, 0.005871669854968786, -0.016738399863243103, -0.13860684633255005, -0.0028817777056246996, 0.10073656588792801, 0.026624826714396477, 0.04396983981132507, -0.00502448296174407, 0.030726032331585884, -0.10902401804924011, 0.008284456096589565, 0.09441263228654861, 0.2614467144012451, -0.08251193910837173, 0.1490027755498886, 0.04569508507847786, -0.09945175796747208, -0.17341682314872742, 0.005630397237837315, 0.016270503401756287, 0.03854616358876228, 0.008416063152253628, -0.2117902934551239, -0.014460517093539238, 0.040830694139003754, -0.0042201802134513855, 0.12823481857776642, -0.3075830042362213, -0.13962417840957642, 0.061393965035676956, 0.03850460797548294, -0.03207810968160629, -0.04025721177458763, -0.05168931931257248, -0.0929013192653656, -0.17826583981513977, 0.13336209952831268, -0.10411219298839569, 0.10971470922231674, 0.026032336056232452, -0.023251427337527275, 0.0383002907037735, -0.03497469052672386, 0.13781127333641052, -0.08503974974155426, 0.06595182418823242, -0.08887937664985657, -0.001117730513215065, 0.0715080127120018, -0.04901877045631409, 0.05101902037858963, 0.022132568061351776, 0.07742366939783096, -0.033056680113077164, -0.07570900022983551, -0.06721005588769913, 0.021060144528746605, -0.05200856551527977, -0.10070035606622696, -0.07917005568742752, 0.09890449047088623, 0.10737910866737366, -0.028767786920070648, -0.10070430487394333, -0.054442938417196274, -0.06690949946641922, 0.09390821307897568, 0.10562039166688919, 0.09381383657455444, -0.06858544796705246, 0.014139442704617977, -0.0143061438575387, 0.07218444347381592, -0.08743628114461899, 0.06720896065235138, 0.06678767502307892, 0.03924019634723663, 0.10834450274705887, 0.025939172133803368, -0.1409643590450287, 0.034577060490846634, 0.0248981025069952, -0.13596929609775543, -0.11036688089370728, -0.010455756448209286, -0.03128495067358017, -0.06562194973230362, -0.06267261505126953, 0.14978937804698944, -0.03601924702525139, -0.032900918275117874, 0.03511873260140419, 0.0420939065515995, -0.03910114988684654, 0.11746867746114731, 0.06217105686664581, 0.03484731540083885, -0.084015391767025, 0.0923009067773819, 0.06797018647193909, 0.050782766193151474, 0.04773201793432236, 0.054842304438352585, -0.10297971218824387, 0.0022245922591537237, -0.08726970106363297, 0.040679216384887695, 0.0010319272987544537, -0.018542345613241196, -0.03639496490359306, -0.04664694145321846, 0.03342464566230774, 0.1152900978922844, 0.015339409932494164, 0.12033078819513321, -0.027110012248158455, 0.026576831936836243, -0.10285333544015884, 0.09559550136327744, 0.05592142790555954, 0.021084172651171684, -0.06403658539056778, 0.18351344764232635, 0.02137678675353527, 0.08012862503528595, -0.042182449251413345, -0.049581751227378845, -0.08412367105484009, 0.008758330717682838, -0.20343255996704102, -0.0069303978234529495, -0.08376729488372803, -0.0232996828854084, -0.019967813044786453, -0.0254836305975914, -0.03147023543715477, 0.05179838836193085, -0.041228197515010834, -0.04954325780272484, -0.04539937153458595, 0.024215316399931908, -0.16261430084705353, -0.0318940132856369, 0.10477135330438614, -0.09846165031194687, 0.10923269391059875, 0.07720714062452316, -0.04308987036347389, 0.006646762136369944, -0.09408454596996307, 0.00973433069884777, -0.028228191658854485, 0.011615452356636524, 0.02091813087463379, -0.13959045708179474, 0.025279037654399872, -0.048136550933122635, -0.02754637785255909, 0.017240459099411964, 0.08133292198181152, -0.1220930963754654, 0.02600882761180401, 0.039210181683301926, 0.02134828083217144, -0.06340842694044113, 0.09264201670885086, 0.037115782499313354, 0.07198556512594223, 0.07644978165626526, -0.038703907281160355, 0.09627804905176163, -0.15340614318847656, -0.03387764096260071, 0.02740097977221012, -0.016604503616690636, 0.049730412662029266, -0.015215669758617878, 0.06414496898651123, -0.03317989781498909, 0.1877116858959198, -0.017466796562075615, -0.03250836208462715, 0.025375595316290855, -0.03848455846309662, 0.0003969068930018693, 0.039545442909002304, 0.09304387122392654, -0.020145459100604057, -0.038088735193014145, -0.03762673959136009, 0.0005417864304035902, -0.025503523647785187, -0.027741311118006706, 0.12213613837957382, 0.07453276962041855, 0.14504890143871307, -0.026127615943551064, 0.03411960229277611, -0.008788720704615116, -0.10676472634077072, -0.032662082463502884, 0.0008024471462704241, 0.035285722464323044, -0.06996311992406845, 0.07335621863603592, 0.13280361890792847, -0.1560775190591812, 0.13503007590770721, 0.029127303510904312, -0.0753181129693985, -0.11025804281234741, -0.19450226426124573, -0.027510587126016617, -0.007726844400167465, 0.015623253770172596, -0.12907683849334717, 0.05577945336699486, 0.0581311360001564, 0.03276295214891434, -0.05012058839201927, 0.10285627841949463, -0.028883880004286766, -0.11128812283277512, 0.02188756875693798, 0.01273269858211279, 0.033920347690582275, 0.035000551491975784, 0.009182596579194069, 0.05235551670193672, 0.041299574077129364, 0.05635584145784378, 0.061406366527080536, 0.039548784494400024, -0.010069331154227257, -0.010361255146563053, -0.0585249625146389, 0.010379302315413952, 0.03329039365053177, 0.031216837465763092, 0.16639666259288788, 0.07116325944662094, -0.017322245985269547, -0.025049224495887756, 0.29906541109085083, -0.03595278412103653, -0.09693261235952377, -0.17263095080852509, 0.14687927067279816, 0.011255252175033092, 0.003069593571126461, 0.03935243934392929, -0.13063453137874603, 0.005167899653315544, 0.12771697342395782, 0.17114774882793427, -0.05761094391345978, 0.038213882595300674, 0.002545577473938465, 0.013194065541028976, 0.026481041684746742, 0.0812370702624321, 0.023967402055859566, 0.19061900675296783, -0.05137746036052704, 0.0710638090968132, 0.013702807947993279, -0.007147735916078091, -0.03533908724784851, 0.12685799598693848, -0.030137116089463234, 0.019587025046348572, -0.08193933963775635, 0.05060989037156105, -0.07865506410598755, -0.26128342747688293, 0.01767917163670063, -0.03307602182030678, -0.10759473592042923, 0.0407518669962883, -0.04615125432610512, -0.012410982511937618, 0.07183455675840378, 0.012738989666104317, 0.01007420290261507, 0.09353120625019073, 0.031081190332770348, -0.014923487789928913, -0.018296195194125175, 0.09875354915857315, -0.00642482889816165, 0.18546895682811737, -0.007824486121535301, 0.06173449382185936, 0.08836661279201508, 0.039173733443021774, -0.11877235770225525, 0.015251114964485168, 0.03983166813850403, -0.06487156450748444, -0.000294906843919307, 0.19070106744766235, -0.019207265228033066, 0.02029753103852272, 0.07510850578546524, -0.006260483991354704, 0.02930457703769207, -0.05105958506464958, 0.01764104515314102, -0.11754804849624634, 0.001734976307488978, -0.08221807330846786, 0.09938783943653107, 0.19083870947360992, -0.060668181627988815, 0.02172805927693844, -0.04896385967731476, 0.008066981099545956, 0.015722153708338737, 0.0016198469093069434, -0.03189937397837639, -0.0905873030424118, 0.014883378520607948, 0.12187349051237106, 0.0504852831363678, -0.17830824851989746, -0.08192364126443863, 0.04039276763796806, -0.05484155938029289, -0.0030827918089926243, 0.13666486740112305, -0.0022403292823582888, 0.07109466940164566, -0.025731252506375313, -0.04798327758908272, -0.01999056339263916, 0.06317802518606186, -0.13162383437156677, -0.07345497608184814 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e2576b95c2049862de20cbd0f1a4e0d7.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">​shadowraze</div> <a href="https://genius.com/artists/shadowraze"> <div style="text-align: center; font-size: 14px;">@shadowraze</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ​shadowraze. Dataset is available [here](https://huggingface.co/datasets/huggingartists/shadowraze). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/shadowraze") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/pkbkflsq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ​shadowraze's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/tiu2mjo1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/tiu2mjo1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/shadowraze') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/shadowraze") model = AutoModelWithLMHead.from_pretrained("huggingartists/shadowraze") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/shadowraze"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/shadowraze
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/shadowraze", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/shadowraze #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">​shadowraze</div> <a href="URL <div style="text-align: center; font-size: 14px;">@shadowraze</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ​shadowraze. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ​shadowraze's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​shadowraze.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​shadowraze's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/shadowraze #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​shadowraze.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​shadowraze's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/shadowraze #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ​shadowraze.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​shadowraze's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.019590741023421288, 0.17300742864608765, -0.0032082409597933292, 0.04417204484343529, 0.08991069346666336, 0.00829535722732544, 0.09263647347688675, 0.10696946829557419, -0.010957997292280197, 0.07769056409597397, 0.07057112455368042, 0.020939752459526062, 0.06520137935876846, 0.08506306260824203, 0.07751785963773727, -0.25320014357566833, 0.032363034784793854, -0.09927494078874588, -0.010035073384642601, 0.1101992204785347, 0.09390580654144287, -0.057729531079530716, 0.08108050376176834, 0.03382120281457901, -0.08037741482257843, 0.01358347199857235, 0.001885819947347045, -0.0591268390417099, 0.08901159465312958, 0.06105267256498337, 0.037581916898489, 0.023594334721565247, 0.06881951540708542, -0.18428289890289307, 0.029424935579299927, 0.1262027472257614, 0.03423965349793434, 0.07850381731987, 0.05673443526029587, -0.08231020718812943, 0.15273597836494446, -0.015299489721655846, 0.09946625679731369, 0.04887974634766579, -0.11704596132040024, -0.1528293937444687, -0.1319303959608078, 0.08340900391340256, 0.09165112674236298, 0.08568467944860458, -0.029989266768097878, 0.058448195457458496, -0.02819102257490158, 0.04292941838502884, 0.23165827989578247, -0.24402236938476562, -0.016730261966586113, 0.0762188583612442, 0.04477202147245407, 0.02310757339000702, -0.08000858873128891, 0.011438591405749321, 0.037149522453546524, 0.023210512474179268, 0.05212651193141937, -0.01892656832933426, 0.17100124061107635, 0.02546638622879982, -0.10371118038892746, -0.07752033323049545, 0.12268555909395218, -0.027721256017684937, -0.07576892524957657, -0.13494037091732025, -0.009910274296998978, -0.0002634989214129746, 0.038941580802202225, 0.002563233720138669, 0.002277812920510769, 0.010084593668580055, -0.03546009585261345, -0.0983281061053276, -0.0846237912774086, -0.03810971975326538, -0.02269754745066166, 0.071454256772995, 0.03657227009534836, 0.03594661504030228, -0.07483824342489243, 0.22517307102680206, -0.006678495090454817, -0.0999569445848465, -0.046592023223638535, -0.09935729205608368, -0.09464328736066818, -0.04038392752408981, 0.008232733234763145, -0.001529783010482788, -0.03951073810458183, 0.18258486688137054, -0.02504570409655571, 0.032382458448410034, -0.01863110437989235, -0.004893551580607891, 0.13996125757694244, 0.14185312390327454, -0.10607806593179703, -0.04155378416180611, 0.062113456428050995, -0.009762845002114773, -0.05918757990002632, -0.053337085992097855, -0.010315080173313618, -0.011764192022383213, 0.03300269693136215, 0.07770832628011703, 0.07792602479457855, 0.06118800491094589, 0.006811880972236395, -0.06833858042955399, 0.07626986503601074, -0.13352540135383606, 0.015857281163334846, -0.001491097267717123, -0.04994654282927513, 0.00364893302321434, 0.0584816113114357, 0.019659752026200294, -0.10021156817674637, 0.11026081442832947, -0.059610918164253235, -0.05420170724391937, -0.08433661609888077, -0.09422729909420013, -0.003557030577212572, -0.019925856962800026, -0.039150018244981766, -0.07402848452329636, -0.16107913851737976, -0.03996775671839714, 0.03872149810194969, -0.05045326426625252, -0.04015541076660156, 0.026834841817617416, -0.02535300888121128, 0.01562688499689102, -0.014551904052495956, -0.028987102210521698, -0.024381961673498154, 0.028484690934419632, -0.053895253688097, 0.026283023878932, 0.06972620636224747, 0.044758982956409454, -0.10839754343032837, 0.07716598361730576, -0.14223487675189972, 0.12288065999746323, -0.01827801950275898, 0.016617707908153534, -0.09661173820495605, -0.08187928050756454, -0.027610545977950096, -0.0396818183362484, 0.008664386346936226, 0.1077953428030014, -0.16417455673217773, -0.03044174052774906, 0.19055211544036865, -0.06911931931972504, -0.0765594094991684, 0.0800313949584961, -0.07866980135440826, 0.025436431169509888, 0.11161801218986511, 0.08435742557048798, 0.14925186336040497, -0.11242836713790894, -0.06172236055135727, -0.04742119833827019, -0.07801911979913712, 0.1922556459903717, 0.057921890169382095, -0.028055639937520027, 0.025573015213012695, 0.005088701844215393, -0.03965654969215393, -0.018880406394600868, -0.01859581656754017, -0.038255974650382996, -0.015594348311424255, 0.00481813820078969, 0.007813706062734127, -0.038593318313360214, -0.0598829984664917, -0.028236478567123413, -0.10673888027667999, 0.06160624325275421, 0.10235888510942459, -0.06501533091068268, 0.007620315533131361, -0.10067545622587204, 0.015015914104878902, -0.04261324182152748, 0.008456310257315636, -0.17187438905239105, -0.05169954150915146, 0.027211321517825127, -0.06748393923044205, 0.08115492016077042, 0.022209323942661285, 0.04011336714029312, 0.07193908840417862, -0.014165932312607765, 0.003798531601205468, -0.046289388090372086, -0.018014205619692802, -0.027749929577112198, -0.15420296788215637, -0.05870676413178444, -0.04413414001464844, 0.09326329827308655, -0.11727030575275421, 0.009931962937116623, 0.089542917907238, 0.1217193678021431, 0.01966487243771553, -0.06714799255132675, 0.02190287783741951, -0.04984783008694649, -0.029367918148636818, -0.10750115662813187, -0.0450032614171505, 0.012835588306188583, -0.02139182947576046, 0.14541521668434143, -0.17258606851100922, -0.06883449852466583, 0.10969951748847961, 0.10886210203170776, -0.0771089419722557, 0.04560136795043945, -0.08129119873046875, -0.02096690610051155, -0.04181966558098793, -0.04196091368794441, 0.2571769058704376, 0.03002946823835373, 0.0852808877825737, -0.10596279054880142, -0.09354246407747269, -0.007351459935307503, -0.04835451766848564, -0.029372017830610275, 0.028046146035194397, 0.01568984054028988, -0.15210551023483276, 0.03664678707718849, -0.00306966295465827, 0.09410443902015686, 0.19504252076148987, 0.03881830349564552, -0.08034008741378784, -0.06591088324785233, -0.06568610668182373, 0.0033395870123058558, 0.07075144350528717, 0.013991627842187881, 0.03226832300424576, 0.04580116271972656, 0.056450940668582916, 0.042612362653017044, -0.1168680414557457, 0.012227916158735752, 0.06608805060386658, -0.03542698547244072, -0.05461585521697998, 0.014164982363581657, 0.02150568552315235, 0.07826249301433563, 0.09184224158525467, 0.1358892172574997, -0.0569600872695446, -0.05436616763472557, -0.14012496173381805, 0.12969790399074554, -0.09516235440969467, -0.22835513949394226, -0.13816243410110474, -0.0649108961224556, 0.011516911908984184, 0.01706640049815178, 0.032435089349746704, -0.04597415775060654, -0.037475261837244034, -0.08706114441156387, 0.09485971927642822, -0.05146476998925209, -0.024741103872656822, 0.011846418492496014, 0.023098928853869438, -0.016987241804599762, -0.11545457690954208, -0.03111311048269272, 0.03366304934024811, -0.09225586801767349, -0.004789638798683882, 0.023492779582738876, 0.04448728635907173, 0.15680989623069763, -0.008180718868970871, 0.004227783996611834, -0.014477533288300037, 0.2700948417186737, -0.11059650778770447, 0.06888657063245773, 0.170405775308609, -0.014181997627019882, 0.06321867555379868, 0.06762882322072983, 0.0040918029844760895, -0.05746075510978699, 0.06797652691602707, 0.07469066977500916, -0.07239969819784164, -0.21003681421279907, -0.03977002948522568, -0.013137063011527061, 0.01620565913617611, 0.11290553957223892, 0.04505402594804764, 0.04730347916483879, 0.00908442959189415, -0.09978204220533371, 0.03701719269156456, 0.032359663397073746, 0.10823625326156616, -0.07164724916219711, -0.008830685168504715, 0.052074506878852844, -0.05267872288823128, 0.031342763453722, 0.13086141645908356, 0.03397589176893234, 0.2038140892982483, -0.06737257540225983, 0.09174606204032898, 0.08223790675401688, 0.12548084557056427, 0.02810642123222351, 0.012600742280483246, -0.018963715061545372, 0.024702882394194603, 0.0019015998113900423, -0.09559120982885361, -0.019843384623527527, 0.04151352494955063, 0.027866948395967484, -0.006910912226885557, -0.0457271970808506, -0.059850871562957764, 0.05289936065673828, 0.24701489508152008, 0.013161920942366123, -0.17160482704639435, -0.10238607227802277, 0.06175176426768303, -0.06181952729821205, -0.06357640773057938, -0.0171197522431612, 0.06728307902812958, -0.21850794553756714, 0.04730688035488129, -0.037564702332019806, 0.10937093943357468, -0.11891496926546097, 0.00048457738012075424, 0.08152412623167038, 0.04029056057333946, -0.06347297132015228, 0.0931921899318695, -0.16205322742462158, 0.05758499726653099, -0.005373263265937567, 0.07657332718372345, -0.06630246341228485, 0.03169875219464302, 0.015038910321891308, 0.04556773230433464, 0.08139703422784805, 0.022089175879955292, 0.019656309857964516, -0.013956493698060513, -0.03639426827430725, 0.0017684847116470337, 0.06877927482128143, -0.11466629803180695, 0.12099491059780121, -0.03823767974972725, 0.03225400671362877, -0.02673967368900776, -0.07737209647893906, -0.08169900625944138, -0.14638397097587585, 0.08094390481710434, -0.12480203062295914, 0.003794877091422677, -0.07703451067209244, -0.008426669053733349, 0.02232958935201168, 0.23494675755500793, -0.09547944366931915, -0.07948902249336243, -0.13454322516918182, -0.008140756748616695, 0.13617554306983948, -0.0769258439540863, 0.0043273610062897205, -0.017239276319742203, 0.17495734989643097, -0.0008580248104408383, -0.13659170269966125, -0.008266438730061054, -0.06994852423667908, -0.17553313076496124, -0.019141653552651405, 0.16437861323356628, 0.06394784897565842, 0.031502865254879, 0.0012967298971489072, 0.007936139591038227, -0.055480021983385086, -0.17027468979358673, 0.029527269303798676, 0.14737190306186676, 0.012590043246746063, 0.022081753239035606, 0.02862256020307541, 0.02263718843460083, -0.1193922758102417, 0.023043984547257423, 0.043427761644124985, 0.18461887538433075, -0.07754793763160706, 0.18122100830078125, 0.03544172644615173, -0.09389162808656693, -0.16232582926750183, 0.01925133354961872, 0.013563966378569603, 0.02632647193968296, 0.02800103649497032, -0.19322188198566437, 0.037231557071208954, 0.03056580200791359, -0.007960019633173943, 0.04089612513780594, -0.34503933787345886, -0.1455906182527542, 0.007294713985174894, 0.008221890777349472, -0.11046379804611206, -0.04552903026342392, -0.038549911230802536, -0.08233427256345749, -0.2565661072731018, 0.09811718761920929, -0.12410376220941544, 0.07700963318347931, 0.011230310425162315, 0.07380413264036179, 0.04959781840443611, -0.05888081714510918, 0.13007217645645142, -0.027913549914956093, 0.06734292209148407, -0.10099484026432037, -0.06462135165929794, 0.10200455039739609, -0.0645424872636795, 0.10123929381370544, 0.03197008743882179, 0.09331592917442322, -0.11859848350286484, -0.0722709521651268, -0.07615793496370316, 0.005179297644644976, -0.06132696941494942, -0.09735836088657379, -0.08998876810073853, 0.09056635946035385, 0.12392068654298782, -0.0364702083170414, -0.09247668832540512, -0.05065814405679703, -0.008529200218617916, 0.06905800849199295, 0.10273825377225876, 0.09138821065425873, -0.07762515544891357, 0.007750403601676226, 0.0189102441072464, 0.021364087238907814, -0.1658877581357956, 0.04743350297212601, 0.0879213958978653, 0.040162697434425354, 0.10163544863462448, 0.010828664526343346, -0.16820672154426575, 0.009456486441195011, 0.04337272420525551, -0.1687735915184021, -0.11484924703836441, -0.04289161041378975, 0.011015772819519043, -0.10059992969036102, -0.0460272952914238, 0.13016271591186523, -0.03150486201047897, -0.03748815506696701, 0.007087561767548323, 0.048494912683963776, -0.0495465025305748, 0.09270508587360382, 0.014674786478281021, 0.045286137610673904, -0.06535451114177704, 0.12809176743030548, 0.06717833131551743, 0.03509138524532318, 0.03510913997888565, 0.07510976493358612, -0.09091324359178543, 0.00630291597917676, -0.08075690269470215, 0.017949294298887253, -0.02819855511188507, -0.01281609758734703, 0.0074141682125627995, -0.03803006932139397, 0.032375846058130264, 0.06406271457672119, -0.008956527337431908, 0.11208423227071762, -0.038157083094120026, 0.008726227097213268, -0.13260667026042938, 0.0751686692237854, 0.037740498781204224, 0.017288746312260628, -0.10721579194068909, 0.19324548542499542, 0.02438458241522312, 0.09592260420322418, -0.038260336965322495, -0.06348741799592972, -0.07286406308412552, -0.009636721573770046, -0.10810919106006622, -0.047760073095560074, -0.08102354407310486, -0.025973819196224213, -0.01279387902468443, -0.036912791430950165, -0.018775373697280884, 0.0476534441113472, -0.02988467924296856, -0.05893111974000931, -0.06840333342552185, 0.04311613366007805, -0.1381131410598755, 0.021527981385588646, 0.12377485632896423, -0.05515684187412262, 0.12077770382165909, 0.05953749269247055, -0.029747355729341507, 0.016346771270036697, -0.10360196977853775, 0.030675120651721954, -0.03429980203509331, 0.01512758620083332, 0.022444933652877808, -0.1522296816110611, 0.0038400397170335054, -0.04955194517970085, -0.06437636911869049, 0.003522762330248952, 0.016954708844423294, -0.1315586417913437, 0.004544250667095184, 0.06864356249570847, -0.020411062985658646, -0.07676476985216141, 0.06694840639829636, 0.04828175902366638, 0.027894210070371628, 0.060467224568128586, -0.025052515789866447, 0.07549607753753662, -0.16757658123970032, -0.0528213270008564, 0.01294919103384018, 0.021987684071063995, 0.03702651336789131, -0.008294066414237022, 0.036568135023117065, -0.02035619504749775, 0.1823694258928299, 0.009811571799218655, -0.020433958619832993, 0.0354231558740139, -0.04910504072904587, -0.005701111629605293, 0.044280149042606354, 0.06856752187013626, -0.04527939483523369, -0.03509582579135895, -0.0009306748979724944, -0.01573372446000576, -0.08916866034269333, -0.042267825454473495, 0.0992869958281517, 0.062244586646556854, 0.1890745908021927, -0.05074852705001831, 0.06806585937738419, -0.02259303815662861, -0.13394105434417725, 0.00028503432986326516, -0.03831139951944351, 0.03253380209207535, -0.06844382733106613, 0.06650110334157944, 0.17852741479873657, -0.15905405580997467, 0.12066677212715149, 0.026295321062207222, -0.05507935211062431, -0.1058955043554306, -0.18966734409332275, -0.01714600995182991, -0.031582627445459366, 0.03005257621407509, -0.13387086987495422, 0.09009969234466553, 0.0300825797021389, 0.029825804755091667, -0.06745278835296631, 0.12823235988616943, -0.08016602694988251, -0.11892499774694443, 0.02707073837518692, 0.017153199762105942, 0.02806970104575157, 0.06108298897743225, 0.07208514213562012, 0.031068000942468643, 0.017102180048823357, 0.07297900319099426, 0.04114923253655434, 0.02646394819021225, 0.03271344676613808, -0.026739880442619324, -0.05117722973227501, 0.031075667589902878, 0.006073200609534979, 0.028144441545009613, 0.09146185964345932, 0.06242922320961952, -0.022760067135095596, -0.025776872411370277, 0.31032994389533997, -0.042540960013866425, -0.044341761618852615, -0.17640109360218048, 0.16562281548976898, 0.007748912088572979, -0.006409168243408203, 0.02640746720135212, -0.12430181354284286, 0.007780078332871199, 0.13268601894378662, 0.1774267554283142, -0.03374965488910675, 0.014463618397712708, -0.026724984869360924, 0.015031013637781143, 0.03295879065990448, 0.09382474422454834, 0.06547760963439941, 0.19920046627521515, -0.0403592623770237, 0.05391686409711838, -0.004422489088028669, -0.015194450505077839, -0.009545992128551006, 0.11270289123058319, -0.03341095149517059, 0.003625518176704645, -0.05438872054219246, 0.09634004533290863, -0.046506695449352264, -0.26801079511642456, -0.021418923512101173, -0.02922734059393406, -0.09415832161903381, 0.06684248149394989, -0.034467458724975586, -0.03165283799171448, 0.09133540838956833, 0.022971654310822487, -0.04205171763896942, 0.1322360634803772, 0.04431721195578575, -0.050852641463279724, -0.008029225282371044, 0.10187843441963196, -0.022989695891737938, 0.19201542437076569, -0.024298690259456635, 0.007321043871343136, 0.08703437447547913, 0.014189035631716251, -0.12525776028633118, 0.008610949851572514, 0.03812205791473389, -0.07934856414794922, -0.022457189857959747, 0.19922465085983276, 0.012382076121866703, 0.03170126676559448, 0.06328242272138596, -0.05485192686319351, 0.024998119100928307, -0.06543455272912979, 0.0517578087747097, -0.15001089870929718, 0.05886068195104599, -0.0868447870016098, 0.1338459551334381, 0.18084122240543365, -0.0654260516166687, 0.026380283758044243, -0.06198105216026306, 0.005271336995065212, -0.02417200617492199, 0.08240397274494171, -0.01956588588654995, -0.1009616032242775, 0.01539077702909708, 0.019044047221541405, 0.01958124339580536, -0.18709205090999603, -0.0779220387339592, 0.05523962900042534, -0.04879308491945267, 0.023820817470550537, 0.17465634644031525, 0.03347356617450714, 0.06099852919578552, -0.035182494670152664, -0.027454258874058723, -0.017324265092611313, 0.11821801960468292, -0.15815019607543945, -0.082152359187603 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c42b7baa88dae01013eebc53c0aed177.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Skillet</div> <a href="https://genius.com/artists/skillet"> <div style="text-align: center; font-size: 14px;">@skillet</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Skillet. Dataset is available [here](https://huggingface.co/datasets/huggingartists/skillet). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/skillet") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1wmbkzn8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Skillet's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3jke6b6i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3jke6b6i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/skillet') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/skillet") model = AutoModelWithLMHead.from_pretrained("huggingartists/skillet") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/skillet"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/skillet
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/skillet", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/skillet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Skillet</div> <a href="URL <div style="text-align: center; font-size: 14px;">@skillet</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Skillet. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Skillet's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Skillet.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Skillet's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/skillet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Skillet.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Skillet's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/skillet #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Skillet.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Skillet's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02422352321445942, 0.1491047888994217, -0.0028038390446454287, 0.03266693279147148, 0.08804530650377274, -0.0017192406812682748, 0.08526909351348877, 0.10966000705957413, -0.010828010737895966, 0.06765216588973999, 0.0783877894282341, 0.01652829349040985, 0.06707713007926941, 0.13304723799228668, 0.0930044874548912, -0.2665627896785736, 0.03191803768277168, -0.10453995317220688, 0.023320181295275688, 0.12380626052618027, 0.09180154651403427, -0.053418099880218506, 0.08353082090616226, 0.03836170956492424, -0.07642032951116562, 0.030024653300642967, -0.008176443167030811, -0.07272074371576309, 0.09510181099176407, 0.07924342900514603, 0.03302566334605217, 0.03213248401880264, 0.06580068171024323, -0.19573372602462769, 0.03558027371764183, 0.12713037431240082, 0.02847479283809662, 0.06886672228574753, 0.0409240759909153, -0.07906404137611389, 0.17406563460826874, -0.02829086221754551, 0.09013695269823074, 0.046249475330114365, -0.10903938859701157, -0.17622916400432587, -0.12083420902490616, 0.08075851947069168, 0.09882161021232605, 0.08233080059289932, -0.031013822183012962, 0.048817556351423264, 0.0007425810326822102, 0.04638059809803963, 0.23536992073059082, -0.24255280196666718, -0.01577816717326641, 0.09150301665067673, 0.03966495022177696, 0.04347274824976921, -0.0782223716378212, 0.017370397225022316, 0.0482829324901104, 0.02619939297437668, 0.051496684551239014, -0.015261374413967133, 0.2181941270828247, 0.020159997045993805, -0.0914093479514122, -0.08781952410936356, 0.10579299926757812, -0.030003316700458527, -0.08416276425123215, -0.15696954727172852, 0.005622023716568947, -0.024292567744851112, 0.03925388678908348, -0.01255442202091217, -0.005519144237041473, -0.0005816370830871165, -0.041996393352746964, -0.09686588495969772, -0.09462299197912216, -0.02806551568210125, -0.025067923590540886, 0.0711301863193512, 0.024575041607022285, 0.03173812851309776, -0.07567048817873001, 0.23407864570617676, 0.008413669653236866, -0.10071656852960587, -0.055928703397512436, -0.09069537371397018, -0.1004524901509285, -0.058741528540849686, 0.011189176701009274, 0.02012682519853115, -0.06658836454153061, 0.1652194857597351, -0.03303096815943718, 0.03115529753267765, 0.003776479745283723, -0.023898394778370857, 0.15315739810466766, 0.12689697742462158, -0.09295853227376938, -0.028592549264431, 0.044402237981557846, -0.018147824332118034, -0.06964851170778275, -0.06210997700691223, -0.012230913154780865, -0.02540632151067257, 0.03411566838622093, 0.09543222188949585, 0.04785619676113129, 0.054509688168764114, 0.02991853654384613, -0.056798625737428665, 0.11011847108602524, -0.14663034677505493, 0.008297949098050594, -0.010840424336493015, -0.03332294151186943, 0.020906271412968636, 0.04791054502129555, 0.016357051208615303, -0.09940099716186523, 0.10898879915475845, -0.04923836514353752, -0.052177805453538895, -0.06659611314535141, -0.08585403114557266, -0.004909465555101633, -0.009664622135460377, -0.047581788152456284, -0.08592136949300766, -0.16159285604953766, -0.03551178798079491, 0.026230335235595703, -0.038574714213609695, -0.04202292859554291, 0.04100753366947174, -0.03511377424001694, 0.00027867010794579983, -0.016724038869142532, -0.019108811393380165, -0.0312550850212574, 0.02290223352611065, -0.06149345636367798, 0.031289707869291306, 0.08026552945375443, 0.03323249891400337, -0.10970296710729599, 0.06646107882261276, -0.16060666739940643, 0.1431846171617508, -0.009344718419015408, 0.016929544508457184, -0.10937193036079407, -0.09700889140367508, -0.027415335178375244, -0.02664531022310257, -0.010089497081935406, 0.09394270926713943, -0.19096805155277252, -0.04037937521934509, 0.20119602978229523, -0.07602487504482269, -0.08487719297409058, 0.06875446438789368, -0.0799221470952034, 0.04175402596592903, 0.1415780633687973, 0.059539955109357834, 0.1666741967201233, -0.11705737560987473, -0.06859349459409714, -0.04056022688746452, -0.06031695008277893, 0.217629075050354, 0.05399597808718681, -0.006653269287198782, 0.02686397172510624, 0.013104983605444431, -0.024134745821356773, -0.0283318180590868, -0.022499537095427513, -0.04497325047850609, -0.010774396359920502, 0.018194230273365974, -0.010523900389671326, -0.05148704722523689, -0.06684168428182602, -0.01820640079677105, -0.11267083883285522, 0.04457088187336922, 0.10168325155973434, -0.072932668030262, 0.01084310095757246, -0.09519878774881363, -0.009244806133210659, -0.03554454445838928, 0.021512502804398537, -0.1933460235595703, -0.062407612800598145, 0.021897492930293083, -0.07060853391885757, 0.08735424280166626, 0.02541409246623516, 0.03898448869585991, 0.06088367477059364, -0.007161526475101709, 0.023173319175839424, -0.05153540149331093, -0.022728949785232544, -0.03392641618847847, -0.14316584169864655, -0.07313818484544754, -0.05320988968014717, 0.08615448325872421, -0.13439980149269104, 0.007836778648197651, 0.1077975258231163, 0.11445895582437515, 0.024340160191059113, -0.05879281833767891, 0.006263697054237127, -0.03448658809065819, -0.04033003747463226, -0.11341746896505356, -0.06111547350883484, 0.009019133634865284, -0.04404297098517418, 0.15986211597919464, -0.1760571002960205, -0.06734037399291992, 0.097646564245224, 0.16398248076438904, -0.10538803786039352, 0.011483077891170979, -0.0932440534234047, -0.00929480791091919, -0.05066816881299019, -0.03825787827372551, 0.2732391655445099, 0.0416453592479229, 0.07754363864660263, -0.11085069924592972, -0.09967895597219467, -0.0005755475140176713, -0.035325393080711365, -0.026681795716285706, 0.026515498757362366, 0.008859529159963131, -0.16485778987407684, 0.022950999438762665, -0.004877351690083742, 0.12456969171762466, 0.2137296348810196, 0.05068919062614441, -0.09348180890083313, -0.06266548484563828, -0.08740124851465225, 0.001857154886238277, 0.0509435199201107, 0.03163827210664749, 0.026249676942825317, 0.042157407850027084, 0.052185963839292526, 0.0365440808236599, -0.11376321315765381, 0.008992536924779415, 0.08110830932855606, -0.04802734777331352, -0.056306641548871994, 0.016905618831515312, 0.016345297917723656, 0.08119907230138779, 0.07931727916002274, 0.14528028666973114, -0.07035305351018906, -0.04871411621570587, -0.14394623041152954, 0.13991771638393402, -0.07630735635757446, -0.26407483220100403, -0.1381094604730606, -0.0663289949297905, 0.024954894557595253, 0.00546042388305068, 0.03788298740983009, -0.05942941829562187, -0.03672771155834198, -0.10471528023481369, 0.08278253674507141, -0.05170996114611626, -0.017021868377923965, 0.00160922238137573, 0.021119391545653343, -0.033151064068078995, -0.1092219427227974, -0.02922351099550724, 0.042522985488176346, -0.10741525143384933, -0.014220892451703548, 0.030863875523209572, 0.03848214074969292, 0.1547335535287857, -0.009416721761226654, -0.005009237676858902, -0.035609688609838486, 0.28026506304740906, -0.12422541528940201, 0.06660851091146469, 0.1640586107969284, -0.021901289001107216, 0.05370127037167549, 0.07591281086206436, 0.007022770121693611, -0.06699249893426895, 0.07628181576728821, 0.07004329562187195, -0.09221965074539185, -0.2170172482728958, -0.027461601421236992, -0.006204020231962204, 0.02541208453476429, 0.1264227330684662, 0.05881338194012642, 0.05466949939727783, -0.005940786097198725, -0.10596182197332382, 0.04888444021344185, 0.030049078166484833, 0.10833749920129776, -0.07176265120506287, -0.01135104801505804, 0.04841583967208862, -0.06425996869802475, 0.030185101553797722, 0.139289990067482, 0.0457136444747448, 0.20330168306827545, -0.06053818389773369, 0.10107257217168808, 0.0772664025425911, 0.10408225655555725, 0.036645274609327316, 0.007618885952979326, 0.0020193899981677532, 0.012483526021242142, -0.0024500538129359484, -0.09643512219190598, -0.010511137545108795, 0.048202306032180786, 0.029313981533050537, -0.02571386843919754, -0.041089847683906555, -0.04750797152519226, 0.044134821742773056, 0.23423592746257782, -0.018040252849459648, -0.17951448261737823, -0.11765599995851517, 0.041204482316970825, -0.08304795622825623, -0.05015368387103081, -0.027374451979994774, 0.07760759443044662, -0.2226049154996872, 0.07059700042009354, -0.033634036779403687, 0.10722518712282181, -0.11362126469612122, 0.0021666830871254206, 0.0834621787071228, 0.04195448383688927, -0.06471690535545349, 0.09905741363763809, -0.16726154088974, 0.061594173312187195, -0.011944685131311417, 0.07014397531747818, -0.07835680991411209, 0.02715897001326084, -0.000551514036487788, 0.049527037888765335, 0.09086497873067856, 0.012889951467514038, 0.022664085030555725, -0.000431697815656662, -0.045930296182632446, 0.014837532304227352, 0.05824768915772438, -0.12692119181156158, 0.12483476847410202, -0.02449403703212738, 0.03619294986128807, -0.04455573484301567, -0.09893902391195297, -0.09209857136011124, -0.16790945827960968, 0.09018615633249283, -0.13043300807476044, -0.00020526908338069916, -0.0741085335612297, -0.030812561511993408, 0.03768700361251831, 0.27013376355171204, -0.060026466846466064, -0.07022912055253983, -0.1386040300130844, 0.019969305023550987, 0.14074112474918365, -0.08552231639623642, 0.008450130932033062, -0.009776027873158455, 0.21803943812847137, -0.001756102661602199, -0.12301111221313477, -0.021418511867523193, -0.060289304703474045, -0.16379688680171967, -0.00581066170707345, 0.1645601987838745, 0.061624158173799515, 0.02742752991616726, 0.012318044900894165, -0.01889602281153202, -0.04253777861595154, -0.1722111701965332, 0.02059786394238472, 0.16213782131671906, -0.01902587153017521, -0.0006942879990674555, 0.05014654994010925, 0.013867189176380634, -0.1355801373720169, 0.011399070732295513, 0.04911753162741661, 0.17503373324871063, -0.07998368889093399, 0.193271204829216, 0.032018519937992096, -0.09192827343940735, -0.154043510556221, 0.011117729358375072, 0.03872280567884445, 0.039173681288957596, 0.04564663767814636, -0.20894460380077362, 0.041893213987350464, 0.037557944655418396, 0.006125508341938257, 0.032537613064050674, -0.333322674036026, -0.15992768108844757, -0.009770123288035393, 0.008367366157472134, -0.1548209935426712, -0.04079371318221092, -0.034761231392621994, -0.09972342103719711, -0.2414766103029251, 0.10439606755971909, -0.12019862979650497, 0.07185149937868118, 0.030301451683044434, 0.09844348579645157, 0.044631849974393845, -0.0440121591091156, 0.13269583880901337, -0.015305496752262115, 0.0698155090212822, -0.09310410171747208, -0.05436626076698303, 0.08275290578603745, -0.07211657613515854, 0.08970553427934647, 0.03331204131245613, 0.08086986094713211, -0.09509456157684326, -0.09028268605470657, -0.06440805643796921, 0.001058268011547625, -0.05235563591122627, -0.08894828706979752, -0.08781855553388596, 0.08474580198526382, 0.11956528574228287, -0.04711845517158508, -0.09489638358354568, -0.07103273272514343, 0.003392209066078067, 0.03991347551345825, 0.12734857201576233, 0.0741877406835556, -0.061135511845350266, 0.0007987245917320251, 0.01857183687388897, 0.00854456890374422, -0.18246670067310333, 0.047091156244277954, 0.09494752436876297, 0.04211294651031494, 0.10526233911514282, 0.003139838809147477, -0.16889961063861847, 0.007354347035288811, 0.05309274420142174, -0.16067209839820862, -0.13117249310016632, -0.037703629583120346, 0.028322631493210793, -0.10172880440950394, -0.052634090185165405, 0.1343589425086975, -0.03488818183541298, -0.03689498081803322, 0.0015291745075955987, 0.0334332175552845, -0.041570596396923065, 0.0881439819931984, -0.011146235279738903, 0.0419585257768631, -0.06774748861789703, 0.11785122752189636, 0.06746704131364822, 0.00017321280029136688, 0.04101713001728058, 0.060493916273117065, -0.09277074784040451, 0.015396256931126118, -0.10226595401763916, 0.0046563539654016495, -0.02757042460143566, -0.013834003359079361, 0.026723043993115425, -0.03126012161374092, 0.04778314754366875, 0.08917349576950073, -0.01508708018809557, 0.1077950969338417, -0.04743347689509392, 0.020499998703598976, -0.12660183012485504, 0.06760728359222412, 0.036744337528944016, 0.019584663212299347, -0.11076702922582626, 0.21304523944854736, 0.03812939301133156, 0.1068575382232666, -0.035885006189346313, -0.06649865955114365, -0.047142788767814636, -0.009217612445354462, -0.07688964158296585, -0.0361052043735981, -0.0884285569190979, -0.023151954635977745, -0.0036723054945468903, -0.0284605473279953, -0.03187495842576027, 0.04404311999678612, -0.03318195790052414, -0.06146712601184845, -0.07531725615262985, 0.04669030010700226, -0.14001916348934174, 0.03558918833732605, 0.11738713830709457, -0.056672245264053345, 0.1245926022529602, 0.05674246326088905, -0.036187704652547836, 0.02831246145069599, -0.1393960565328598, 0.05080621317028999, -0.004440668970346451, 0.021006351336836815, 0.01575559563934803, -0.14734429121017456, 0.005294058471918106, -0.03200002387166023, -0.06808644533157349, 0.007880550809204578, -0.02107001282274723, -0.13135957717895508, -0.011281224898993969, 0.09343698620796204, -0.012886148877441883, -0.06788675487041473, 0.0738435760140419, 0.0567907951772213, 0.023393241688609123, 0.0580575168132782, -0.010935335420072079, 0.07041359692811966, -0.17823660373687744, -0.06143270432949066, -0.004227552097290754, 0.033864837139844894, 0.044650692492723465, -0.02608780562877655, 0.03572746366262436, -0.017775222659111023, 0.2097712904214859, 0.020619727671146393, -0.0028348416090011597, 0.03783096745610237, -0.07559642940759659, -0.012111234478652477, 0.041857898235321045, 0.08231297135353088, -0.012895637191832066, -0.02733718417584896, 0.005867559928447008, -0.02667294628918171, -0.09902220964431763, -0.01955953799188137, 0.09571061283349991, 0.020089125260710716, 0.20803844928741455, -0.057375192642211914, 0.06672809273004532, -0.016088953241705894, -0.1060967817902565, -0.031242409721016884, -0.049499448388814926, 0.030334578827023506, -0.057819634675979614, 0.054220858961343765, 0.1916182041168213, -0.15533871948719025, 0.11820463091135025, 0.04433394595980644, -0.05903906747698784, -0.12047237902879715, -0.19466711580753326, -0.011513161472976208, -0.03130609169602394, 0.02617100067436695, -0.13752222061157227, 0.09802465885877609, 0.021059827879071236, 0.04034881293773651, -0.05806947872042656, 0.13794924318790436, -0.0887230634689331, -0.1396055817604065, 0.048507291823625565, 0.017552094534039497, 0.028987223282456398, 0.044389840215444565, 0.09055843204259872, 0.03644394874572754, 0.005149623844772577, 0.07311013340950012, 0.04245606064796448, 0.03354943171143532, 0.03923267498612404, -0.033241938799619675, -0.040781017392873764, 0.028615867719054222, -0.008346311748027802, 0.02042228914797306, 0.09573525190353394, 0.06898321956396103, -0.020407283678650856, -0.017851518467068672, 0.31556203961372375, -0.01977708749473095, -0.036193180829286575, -0.18652032315731049, 0.1662222295999527, 0.014061530120670795, -0.0025350681971758604, 0.020879164338111877, -0.11533474922180176, 0.019104128703475, 0.11457397788763046, 0.1490851640701294, -0.020047377794981003, 0.024821899831295013, -0.024946117773652077, 0.017680222168564796, 0.03695729374885559, 0.11125209182500839, 0.05894951894879341, 0.19258397817611694, -0.025667153298854828, 0.056608524173498154, -0.013482268899679184, -0.02381921000778675, 0.01586386002600193, 0.10554998368024826, -0.04194493591785431, 0.007614240515977144, -0.05283082649111748, 0.10340452194213867, -0.05466098710894585, -0.30434927344322205, -0.03463570773601532, -0.013075821101665497, -0.0876133069396019, 0.07602287828922272, -0.03312015160918236, -0.020564861595630646, 0.08231367915868759, 0.031240036711096764, -0.048267122358083725, 0.16365867853164673, 0.0530218742787838, -0.04570158198475838, -0.00295129232108593, 0.1122220978140831, -0.03973985090851784, 0.16242803633213043, -0.03958962485194206, 0.0180929247289896, 0.07493419200181961, 0.015222803689539433, -0.12475410848855972, 0.00444781081750989, 0.03541375324130058, -0.04755072668194771, -0.020049644634127617, 0.20521654188632965, 0.01377046573907137, 0.023743504658341408, 0.07293695956468582, -0.05484386906027794, 0.021190861240029335, -0.03669082000851631, 0.058353424072265625, -0.13384012877941132, 0.06708633154630661, -0.0756048858165741, 0.11680138111114502, 0.17647437751293182, -0.06585202366113663, 0.0403592549264431, -0.0606810599565506, 0.005290426779538393, -0.028382526710629463, 0.07253658771514893, -0.018364379182457924, -0.11338774114847183, 0.0063145277090370655, 0.029478663578629494, 0.01231356244534254, -0.17479188740253448, -0.0833420678973198, 0.0789312794804573, -0.05465550720691681, 0.025377308949828148, 0.17965246737003326, 0.00969915185123682, 0.058830976486206055, -0.03785189986228943, -0.009148464538156986, -0.003968244884163141, 0.11639412492513657, -0.17485648393630981, -0.0787402093410492 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e63e3a804916ed71bf2941ac4e190063.847x847x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Слава КПСС (Slava KPSS)</div> <a href="https://genius.com/artists/slava-kpss"> <div style="text-align: center; font-size: 14px;">@slava-kpss</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Слава КПСС (Slava KPSS). Dataset is available [here](https://huggingface.co/datasets/huggingartists/slava-kpss). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/slava-kpss") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2f2r3u3b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Слава КПСС (Slava KPSS)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/pecxkpae) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/pecxkpae/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/slava-kpss') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/slava-kpss") model = AutoModelWithLMHead.from_pretrained("huggingartists/slava-kpss") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/slava-kpss"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/slava-kpss
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/slava-kpss", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/slava-kpss #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Слава КПСС (Slava KPSS)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@slava-kpss</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Слава КПСС (Slava KPSS). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Слава КПСС (Slava KPSS)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Слава КПСС (Slava KPSS).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Слава КПСС (Slava KPSS)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/slava-kpss #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Слава КПСС (Slava KPSS).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Слава КПСС (Slava KPSS)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 56, 79, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/slava-kpss #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Слава КПСС (Slava KPSS).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Слава КПСС (Slava KPSS)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03031596913933754, 0.1530829221010208, -0.005646703764796257, 0.07127871364355087, 0.07930896431207657, -0.0002652315888553858, 0.07003569602966309, 0.11734852194786072, 0.0021168163511902094, 0.06735024601221085, 0.07714693993330002, 0.04388633742928505, 0.08438482880592346, 0.11727001518011093, 0.03315846621990204, -0.26572123169898987, 0.024682359769940376, -0.06455345451831818, -0.03021400049328804, 0.09198804199695587, 0.08214004337787628, -0.0873946100473404, 0.05625249817967415, 0.0006814745138399303, -0.03703068569302559, -0.014590037986636162, 0.004170610103756189, -0.06982636451721191, 0.06119003891944885, 0.07696133106946945, 0.04736265167593956, 0.04808809608221054, 0.05776724964380264, -0.16781672835350037, 0.028938231989741325, 0.11057379841804504, 0.041492220014333725, 0.08426105231046677, 0.060190506279468536, -0.042424511164426804, 0.12397885322570801, -0.084272101521492, 0.0899432823061943, 0.029369855299592018, -0.10020888596773148, -0.12542232871055603, -0.12229365110397339, 0.04125021770596504, 0.07589858770370483, 0.05343323573470116, -0.018252117559313774, 0.0785210132598877, -0.07459653913974762, 0.07224085181951523, 0.22617892920970917, -0.27601251006126404, -0.011923722922801971, 0.021461758762598038, 0.014247601851820946, 0.029714416712522507, -0.07750361412763596, 0.016969220712780952, 0.012725761160254478, 0.03846384584903717, 0.07930504530668259, -0.0461704358458519, 0.08074311912059784, -0.02226364053785801, -0.11548199504613876, -0.07938455790281296, 0.11064954102039337, -0.028223440051078796, -0.0762455090880394, -0.11290888488292694, -0.024108901619911194, -0.039003051817417145, 0.02654285728931427, 0.01506517082452774, 0.0008785477257333696, -0.020404929295182228, -0.08830274641513824, -0.12128686159849167, -0.06789296120405197, -0.06942114233970642, -0.04363349452614784, 0.10428037494421005, 0.06548994034528732, 0.044442445039749146, -0.03766752406954765, 0.20074397325515747, 0.041494883596897125, -0.11449255049228668, -0.08522206544876099, -0.10704737901687622, -0.10206133872270584, -0.025275221094489098, 0.002087807282805443, 0.0057165478356182575, -0.0041664824821054935, 0.141834557056427, -0.032390426844358444, 0.021393919363617897, -0.030084757134318352, 0.03358854725956917, 0.10072155296802521, 0.13399115204811096, -0.10385578125715256, -0.005615785252302885, 0.08551269769668579, -0.041221681982278824, -0.029269034042954445, -0.05510300025343895, -0.0064363423734903336, -0.07393889874219894, 0.05434190109372139, 0.10248959809541702, 0.06026666611433029, 0.06210901588201523, -0.021880917251110077, -0.04568394646048546, 0.005429076496511698, -0.14942336082458496, 0.022130649536848068, 0.0036909354384988546, -0.06936816871166229, 0.01020923163741827, 0.05541500449180603, -0.032074037939310074, -0.12358532845973969, 0.07918093353509903, -0.05121002718806267, -0.022072458639740944, -0.08853895217180252, -0.10963134467601776, 0.007337470538914204, -0.034251727163791656, -0.020932398736476898, -0.08669101446866989, -0.17142274975776672, -0.029312467202544212, 0.014853404834866524, -0.06959933042526245, -0.022608185186982155, 0.016632236540317535, -0.03875158727169037, 0.00008377104677492753, -0.019705507904291153, 0.039718642830848694, -0.031368304044008255, 0.0675499364733696, -0.09319576621055603, 0.07191575318574905, 0.06967998296022415, 0.03741966560482979, -0.11045831441879272, 0.07283017039299011, -0.17410224676132202, 0.1728478968143463, -0.05253377929329872, -0.054711341857910156, -0.08069843053817749, -0.11429598182439804, -0.024236153811216354, -0.043758243322372437, 0.04596972092986107, 0.11914332211017609, -0.15719909965991974, -0.01290210708975792, 0.24354586005210876, -0.07384917140007019, -0.03343287482857704, 0.09800005704164505, -0.07123472541570663, 0.03398003429174423, 0.11526929587125778, 0.0646851435303688, 0.14833055436611176, -0.06715469062328339, -0.06752517074346542, -0.0035071594174951315, -0.06568364053964615, 0.16608551144599915, 0.05314875766634941, -0.01867091841995716, 0.03692816197872162, 0.005256353411823511, -0.03663794323801994, -0.006923839915543795, -0.04314354807138443, -0.03469667583703995, -0.009474866092205048, -0.015363117679953575, 0.035322535783052444, -0.045728158205747604, -0.00744473235681653, -0.015931246802210808, -0.09921922534704208, 0.049596067517995834, 0.10285316407680511, -0.07952852547168732, 0.03927057236433029, -0.104063980281353, 0.042157985270023346, -0.04343465343117714, 0.025954628363251686, -0.1709602177143097, -0.020792312920093536, 0.030488934367895126, -0.05389709398150444, 0.05239946022629738, 0.014544626697897911, 0.048300668597221375, 0.07900118082761765, -0.03749574348330498, 0.0038682841695845127, -0.0560784637928009, -0.0006005917675793171, -0.05629168450832367, -0.16937828063964844, -0.043269019573926926, -0.037625450640916824, 0.037438251078128815, -0.08462832123041153, -0.0031296981032937765, 0.11614047735929489, 0.1368231326341629, 0.03573088347911835, -0.04162364453077316, 0.038814663887023926, -0.0006182989454828203, -0.0000019035488776353304, -0.09694153070449829, -0.03446681424975395, 0.01767687313258648, -0.041489653289318085, 0.14011035859584808, -0.14017635583877563, -0.07572262734174728, 0.10897745192050934, 0.08514465391635895, -0.09365898370742798, 0.03784501180052757, -0.049811821430921555, -0.016985349357128143, -0.06043259799480438, -0.027424074709415436, 0.218653604388237, 0.04718317836523056, 0.0820811465382576, -0.09671136736869812, -0.06611505150794983, -0.011649437248706818, -0.04179006442427635, 0.025250505656003952, 0.0794067457318306, 0.022911619395017624, -0.19918331503868103, 0.04590143635869026, -0.006461892742663622, 0.02739277109503746, 0.1938065141439438, 0.0003144477668683976, -0.10779350250959396, -0.06873597204685211, -0.024104004725813866, 0.0072922855615615845, 0.09805799275636673, -0.002967547159641981, 0.04785745218396187, 0.04610003903508186, 0.03473229333758354, 0.019974060356616974, -0.12641850113868713, 0.021102476865053177, 0.04244412109255791, -0.053667083382606506, -0.04071895033121109, -0.0027426632586866617, 0.03602530062198639, 0.09688251465559006, 0.07060780376195908, 0.09258216619491577, -0.029398951679468155, -0.05140002816915512, -0.10641217231750488, 0.1410890519618988, -0.10294780135154724, -0.19115501642227173, -0.10645522177219391, -0.019915172830224037, 0.026667537167668343, 0.013503155671060085, 0.018622351810336113, -0.003677756292745471, -0.036240190267562866, -0.08080185204744339, 0.04729817435145378, -0.021869346499443054, -0.005884139332920313, 0.0021126186475157738, 0.04495294392108917, -0.015579731203615665, -0.10742861032485962, -0.023053355515003204, 0.01817554049193859, -0.09715915471315384, 0.018767235800623894, 0.0543697252869606, 0.03702511265873909, 0.11960926651954651, -0.011086171492934227, 0.009104263037443161, -0.039761196821928024, 0.20628541707992554, -0.11102740466594696, 0.04086364805698395, 0.13556832075119019, -0.05100202560424805, 0.05830784887075424, 0.08522007614374161, 0.00017317637684755027, -0.0413629449903965, 0.04882662743330002, 0.030884580686688423, -0.07262493669986725, -0.19602566957473755, -0.011048877611756325, -0.04388676583766937, 0.037612058222293854, 0.09050707519054413, 0.038473621010780334, -0.03836983069777489, 0.032519590109586716, -0.08797607570886612, 0.05114056169986725, 0.07945260405540466, 0.08744167536497116, 0.002205668017268181, -0.012133931741118431, 0.07510335743427277, -0.06689709424972534, 0.02340887300670147, 0.10017627477645874, 0.009919682517647743, 0.27344077825546265, -0.12150063365697861, 0.06252830475568771, 0.09413692355155945, 0.09361693263053894, 0.033258918672800064, 0.03149743750691414, -0.0074451398104429245, 0.058532342314720154, 0.0009752421174198389, -0.09574215114116669, -0.033549051731824875, 0.03174947202205658, 0.03296405076980591, -0.0263326745480299, -0.027011627331376076, -0.0556650273501873, 0.04770611599087715, 0.2238275110721588, 0.08684210479259491, -0.13836275041103363, -0.10543949156999588, 0.06835327297449112, -0.03651752322912216, -0.053768955171108246, -0.013265958987176418, 0.1127961128950119, -0.21995487809181213, 0.01544205192476511, -0.01240465883165598, 0.11018466204404831, -0.1812524050474167, -0.025921180844306946, -0.019400738179683685, 0.07056884467601776, -0.059866003692150116, 0.07972363382577896, -0.23137764632701874, 0.07873079180717468, 0.0055730901658535, 0.11643829196691513, -0.0655696839094162, 0.024889793246984482, 0.06243894621729851, 0.009905796498060226, 0.09731867164373398, 0.020257968455553055, -0.0022551182191818953, -0.11566472798585892, -0.08032272011041641, 0.023137450218200684, 0.05224818363785744, -0.052326641976833344, 0.11108491569757462, -0.0237570907920599, 0.023323751986026764, -0.019010979682207108, -0.07203498482704163, -0.10285975784063339, -0.1312359869480133, 0.05778127536177635, -0.12390676140785217, 0.006205803714692593, -0.0487959161400795, -0.036047108471393585, 0.022565051913261414, 0.17341212928295135, -0.09531432390213013, -0.12238982319831848, -0.09554465115070343, 0.027950238436460495, 0.13327491283416748, -0.09665986150503159, 0.038093581795692444, 0.022608425468206406, 0.12960126996040344, 0.025240907445549965, -0.11746937036514282, -0.00027234971639700234, -0.042477574199438095, -0.21218059957027435, 0.007530348375439644, 0.10244117677211761, 0.0759306252002716, 0.05916910991072655, 0.01172972284257412, 0.025046654045581818, -0.01083756797015667, -0.15929339826107025, 0.021662646904587746, 0.1261821687221527, 0.05352243408560753, 0.06484264135360718, 0.005550669971853495, 0.025411834940314293, -0.11171188950538635, 0.01827791891992092, 0.09536997973918915, 0.26067039370536804, -0.08587441593408585, 0.15684126317501068, 0.014084086753427982, -0.09600362926721573, -0.19621917605400085, -0.0035615391097962856, 0.021256431937217712, 0.04306238144636154, 0.022341663017868996, -0.20624840259552002, -0.01852470263838768, 0.05025035887956619, -0.011109071783721447, 0.11605915427207947, -0.3212137222290039, -0.138828843832016, 0.0689995065331459, 0.04536254703998566, -0.03525470197200775, -0.027371184900403023, -0.04658537730574608, -0.06602850556373596, -0.1776328980922699, 0.1149459257721901, -0.12117137014865875, 0.10972652584314346, 0.011560354381799698, 0.008369714953005314, 0.037800971418619156, -0.04632704704999924, 0.14107297360897064, -0.07849210500717163, 0.05543927848339081, -0.09823611378669739, 0.0037761551793664694, 0.06620149314403534, -0.05430780351161957, 0.06872627884149551, 0.02834215573966503, 0.08128590881824493, -0.055742863565683365, -0.0608273409307003, -0.08110670000314713, 0.02451186627149582, -0.05132433772087097, -0.09018298983573914, -0.09991275519132614, 0.09704060852527618, 0.110297791659832, -0.030661219730973244, -0.11568792164325714, -0.0371786504983902, -0.04939546436071396, 0.07866860181093216, 0.09857578575611115, 0.11644788831472397, -0.05664118751883507, 0.004326319321990013, -0.010278983041644096, 0.05499563366174698, -0.07753129303455353, 0.05798964574933052, 0.08830373734235764, 0.03631459176540375, 0.09916656464338303, 0.027734218165278435, -0.145363450050354, 0.0444168895483017, 0.022405996918678284, -0.137503519654274, -0.12232038378715515, -0.009208077564835548, -0.04567061737179756, -0.055034931749105453, -0.052603550255298615, 0.13690626621246338, -0.03853532671928406, -0.03563116118311882, 0.020387839525938034, 0.05860736221075058, -0.031154030933976173, 0.13023735582828522, 0.05975605174899101, 0.03815276175737381, -0.0770244300365448, 0.10178613662719727, 0.06037125736474991, 0.037230074405670166, 0.05198737978935242, 0.05344676598906517, -0.10600608587265015, -0.0006502092001028359, -0.05837734043598175, 0.00007674485095776618, 0.024015730246901512, -0.01649460569024086, -0.028176147490739822, -0.05718351900577545, 0.03646111488342285, 0.10641548782587051, -0.0005508203757926822, 0.11534561216831207, -0.02384139969944954, 0.024258766323328018, -0.0940268337726593, 0.10370410233736038, 0.04977205768227577, 0.00810074619948864, -0.07460375130176544, 0.19100505113601685, 0.02426227554678917, 0.10050847381353378, -0.051172513514757156, -0.054010648280382156, -0.08322019875049591, 0.006762901321053505, -0.16679507493972778, -0.011792783625423908, -0.09305821359157562, -0.04311489686369896, -0.02479644864797592, -0.03607498109340668, -0.039191633462905884, 0.0542912483215332, -0.044901493936777115, -0.049659766256809235, -0.053373850882053375, 0.031550947576761246, -0.16002190113067627, -0.040228549391031265, 0.11337557435035706, -0.08647949248552322, 0.11073459684848785, 0.06908465176820755, -0.03869782015681267, 0.007992198690772057, -0.06137087941169739, 0.011712184175848961, -0.019552582874894142, 0.017907127737998962, 0.014451132155954838, -0.13853316009044647, 0.023696493357419968, -0.051343150436878204, -0.03600301593542099, 0.024039294570684433, 0.05490659177303314, -0.11766313761472702, 0.010320622473955154, 0.033563919365406036, 0.005506690125912428, -0.0697832852602005, 0.09561552852392197, 0.02754826471209526, 0.0714583545923233, 0.07133522629737854, -0.04536765068769455, 0.09888812899589539, -0.15275827050209045, -0.039558976888656616, 0.022740671411156654, 0.0014038182562217116, 0.07401394844055176, -0.012120183557271957, 0.07473810017108917, -0.02651355043053627, 0.19252893328666687, -0.007117869332432747, -0.05407153442502022, 0.025620266795158386, -0.03581922501325607, 0.01294616423547268, 0.045030876994132996, 0.0867701917886734, -0.014640433713793755, -0.05163975805044174, -0.017780261114239693, 0.005754179786890745, -0.051066625863313675, -0.06086732819676399, 0.14539843797683716, 0.048506975173950195, 0.16348525881767273, -0.0274457149207592, 0.04322423040866852, -0.013944288715720177, -0.10421358793973923, -0.049388207495212555, -0.012588734738528728, 0.03665356710553169, -0.059292107820510864, 0.08595126122236252, 0.1305469274520874, -0.16866542398929596, 0.12929323315620422, 0.016992824152112007, -0.08389940857887268, -0.12758158147335052, -0.21246594190597534, -0.032379887998104095, -0.01782137341797352, 0.028495296835899353, -0.12458430975675583, 0.05406240373849869, 0.07235001772642136, 0.03679065406322479, -0.05274923890829086, 0.10412971675395966, -0.04213513433933258, -0.11235641688108444, 0.035771068185567856, 0.02485707215964794, 0.035739440470933914, 0.03316152095794678, 0.023706192150712013, 0.043861232697963715, 0.03933095186948776, 0.06836576759815216, 0.04400236904621124, 0.015052760019898415, 0.0008445877465419471, -0.011801773682236671, -0.046743087470531464, 0.007618493866175413, 0.03282398357987404, 0.05110350623726845, 0.12750589847564697, 0.07587918639183044, -0.020841514691710472, -0.03043781779706478, 0.30647826194763184, -0.043287213891744614, -0.07575704902410507, -0.1664774864912033, 0.16511310636997223, 0.007475691847503185, -0.00879666954278946, 0.04886097460985184, -0.13646627962589264, 0.001480939332395792, 0.11963071674108505, 0.1706874817609787, -0.05493736267089844, 0.02712494321167469, -0.019764848053455353, 0.009136452339589596, 0.03363543376326561, 0.09131357818841934, 0.04220636934041977, 0.19615958631038666, -0.06672484427690506, 0.06407038122415543, 0.009437667205929756, -0.003058486618101597, -0.05364120379090309, 0.10303685069084167, -0.026847267523407936, 0.013119468465447426, -0.09035182744264603, 0.07049765437841415, -0.08595827221870422, -0.2392713874578476, 0.013813351280987263, -0.03113146312534809, -0.11469503492116928, 0.05002831295132637, -0.05313461273908615, -0.013148138299584389, 0.06386512517929077, 0.005151616409420967, 0.020115001127123833, 0.09891609847545624, 0.04896954447031021, -0.010814526118338108, -0.012174573726952076, 0.10251785069704056, -0.004544568248093128, 0.17727155983448029, -0.01110920775681734, 0.07286133617162704, 0.09239589422941208, 0.03192407265305519, -0.11335019767284393, 0.015912042930722237, 0.043570488691329956, -0.07620050013065338, -0.0045836977660655975, 0.19446830451488495, -0.006303893402218819, -0.0044599128887057304, 0.08560650795698166, 0.010201769880950451, 0.02882290445268154, -0.06704254448413849, 0.02407584711909294, -0.12406659126281738, 0.02171207219362259, -0.09459172189235687, 0.10800212621688843, 0.1748797446489334, -0.05962463468313217, 0.034134723246097565, -0.05505360662937164, -0.011753486469388008, -0.002800275105983019, 0.009256021119654179, -0.017429403960704803, -0.07984492927789688, 0.015989242121577263, 0.08181850612163544, 0.04693536460399628, -0.17500725388526917, -0.06854186207056046, 0.02760917693376541, -0.0658615231513977, -0.004707444924861193, 0.14443136751651764, -0.010777642950415611, 0.05751209333539009, -0.034538980573415756, -0.07290129363536835, -0.026973480358719826, 0.07098458707332611, -0.1519632190465927, -0.06655234098434448 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e308b1bc9eeb159ecfa9d807d715f095.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SLAVA MARLOW</div> <a href="https://genius.com/artists/slava-marlow"> <div style="text-align: center; font-size: 14px;">@slava-marlow</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from SLAVA MARLOW. Dataset is available [here](https://huggingface.co/datasets/huggingartists/slava-marlow). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/slava-marlow") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1fdcz1s5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on SLAVA MARLOW's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/ro4q353s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/ro4q353s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/slava-marlow') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/slava-marlow") model = AutoModelWithLMHead.from_pretrained("huggingartists/slava-marlow") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/slava-marlow"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/slava-marlow
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/slava-marlow", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/slava-marlow #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">SLAVA MARLOW</div> <a href="URL <div style="text-align: center; font-size: 14px;">@slava-marlow</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from SLAVA MARLOW. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on SLAVA MARLOW's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from SLAVA MARLOW.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on SLAVA MARLOW's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/slava-marlow #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from SLAVA MARLOW.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on SLAVA MARLOW's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/slava-marlow #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from SLAVA MARLOW.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on SLAVA MARLOW's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04314908757805824, 0.1452978402376175, -0.0027701505459845066, 0.04512675851583481, 0.11702381074428558, 0.010710136964917183, 0.09123989939689636, 0.10588836669921875, 0.02205723524093628, 0.08020800352096558, 0.08114714920520782, 0.0513082854449749, 0.06634475290775299, 0.09505991637706757, 0.0689217820763588, -0.22888371348381042, 0.046464793384075165, -0.08831802755594254, 0.012469502165913582, 0.09938524663448334, 0.09692108631134033, -0.06471648812294006, 0.07653751224279404, 0.028352981433272362, -0.07078966498374939, 0.011886239983141422, 0.010329624637961388, -0.0624285489320755, 0.09077172726392746, 0.06739744544029236, 0.033511918038129807, 0.024737436324357986, 0.06838428229093552, -0.17793548107147217, 0.02964578941464424, 0.12041330337524414, 0.030997008085250854, 0.07574111968278885, 0.05574246868491173, -0.08918377012014389, 0.1440960019826889, -0.030702130869030952, 0.08377161622047424, 0.054360441863536835, -0.11736675351858139, -0.13224609196186066, -0.14324887096881866, 0.08899787813425064, 0.09014440327882767, 0.09013590961694717, -0.030500490218400955, 0.07898209244012833, -0.0329153947532177, 0.056321561336517334, 0.23387610912322998, -0.24644599854946136, -0.01164343673735857, 0.09500516206026077, 0.05336026847362518, 0.009841769933700562, -0.07996044307947159, 0.02557116560637951, 0.04464631527662277, 0.029329681769013405, 0.04358027130365372, -0.021087640896439552, 0.15071973204612732, 0.025193942710757256, -0.10887950658798218, -0.08706098794937134, 0.11475557088851929, -0.026062170043587685, -0.07821574062108994, -0.1341712921857834, 0.0032765334472060204, -0.0284288227558136, 0.03255235403776169, 0.027833569794893265, -0.0036891482304781675, 0.0028290555346757174, -0.042592473328113556, -0.11486458778381348, -0.07459758222103119, -0.04312377795577049, -0.0035314534325152636, 0.06168285384774208, 0.04116179794073105, 0.04146501421928406, -0.08354268968105316, 0.21675755083560944, -0.019015485420823097, -0.09937544912099838, -0.05287356302142143, -0.10444250702857971, -0.09686112403869629, -0.03830112889409065, -0.007995886728167534, -0.006852395832538605, -0.033576685935258865, 0.15553148090839386, -0.026822278276085854, 0.026340927928686142, -0.014896130189299583, 0.005975299049168825, 0.131048783659935, 0.14049875736236572, -0.12219354510307312, -0.035865381360054016, 0.06873944401741028, -0.010533042252063751, -0.05605698749423027, -0.051748622208833694, -0.01293315552175045, -0.016805371269583702, 0.042678624391555786, 0.08244618028402328, 0.07570800185203552, 0.06885036081075668, 0.0080404756590724, -0.055838678032159805, 0.05501853674650192, -0.13075412809848785, 0.01060109306126833, -0.010111282579600811, -0.05788394808769226, 0.02656974457204342, 0.06498227268457413, 0.0037186313420534134, -0.10936455428600311, 0.10973045974969864, -0.06585761159658432, -0.039682094007730484, -0.09231202304363251, -0.11021874099969864, 0.0005831733578816056, -0.06543827801942825, -0.03514322265982628, -0.07799672335386276, -0.1993347555398941, -0.04720363765954971, 0.01611153967678547, -0.054247524589300156, -0.02555583044886589, 0.02252204157412052, -0.03592357039451599, 0.011213807389140129, -0.025627369061112404, -0.022030889987945557, -0.03411741182208061, 0.03252706676721573, -0.0713614746928215, 0.03281926363706589, 0.0630578100681305, 0.04202824458479881, -0.11341353505849838, 0.07206679880619049, -0.13007265329360962, 0.12304440885782242, -0.02489938959479332, 0.014555384404957294, -0.09115473181009293, -0.07919246703386307, -0.01977449096739292, -0.025163494050502777, 0.03337440639734268, 0.1228928193449974, -0.1793743371963501, -0.019979625940322876, 0.20945720374584198, -0.07700169831514359, -0.0678260400891304, 0.07005328685045242, -0.06702551990747452, 0.028813714161515236, 0.12294843792915344, 0.08400951325893402, 0.14087550342082977, -0.10830923169851303, -0.07717540860176086, -0.048139262944459915, -0.06895415484905243, 0.15605677664279938, 0.03842577338218689, -0.021291282027959824, 0.036750372499227524, 0.009227925911545753, -0.025380808860063553, 0.007452853489667177, -0.031355299055576324, -0.03104208968579769, -0.02757936157286167, -0.013181440532207489, -0.0012755135539919138, -0.035564158111810684, -0.04780839756131172, -0.029256252571940422, -0.09696318954229355, 0.08573301136493683, 0.10301418602466583, -0.06714183837175369, 0.016488725319504738, -0.10008670389652252, 0.04689209908246994, -0.0500645712018013, 0.014235489070415497, -0.18212752044200897, -0.044520314782857895, 0.013140304014086723, -0.04966682195663452, 0.06239873915910721, 0.025043534114956856, 0.04478120058774948, 0.06537668406963348, -0.012253941968083382, -0.00018522892787586898, -0.03642600402235985, -0.004591967444866896, -0.04149773344397545, -0.17037692666053772, -0.05596567690372467, -0.04547598958015442, 0.08764081448316574, -0.12187567353248596, 0.009138665162026882, 0.07968953251838684, 0.14778141677379608, 0.017943205311894417, -0.0715353935956955, 0.04300946369767189, -0.025162652134895325, -0.02901536040008068, -0.10538913309574127, -0.035425618290901184, 0.00924209039658308, -0.029103534296154976, 0.16284459829330444, -0.14785484969615936, -0.09700262546539307, 0.1257418841123581, 0.09694922715425491, -0.0840887725353241, 0.04447921738028526, -0.06866344064474106, -0.014298834837973118, -0.04907560721039772, -0.05834449455142021, 0.23109568655490875, 0.0337468646466732, 0.09529780596494675, -0.0877850279211998, -0.07982634752988815, -0.002576414728537202, -0.042744603008031845, -0.03492601215839386, 0.04859120398759842, 0.024033373221755028, -0.14712892472743988, 0.05364304408431053, -0.02543211169540882, 0.08624951541423798, 0.198745995759964, 0.030010340735316277, -0.0921495109796524, -0.05471884459257126, -0.06875894218683243, 0.0006723373080603778, 0.0942181721329689, -0.00952633935958147, 0.025887534022331238, 0.045062702149152756, 0.044161129742860794, 0.040444545447826385, -0.11178307235240936, 0.008168073371052742, 0.0625874474644661, -0.035773105919361115, -0.06023963540792465, 0.024619124829769135, 0.02648782543838024, 0.09005655348300934, 0.06993761658668518, 0.12427438795566559, -0.056393276900053024, -0.05001731216907501, -0.136250838637352, 0.1324785351753235, -0.09167710691690445, -0.21301515400409698, -0.13851597905158997, -0.061059266328811646, -0.0007832976407371461, 0.01288830116391182, 0.03853538632392883, -0.054078228771686554, -0.044298090040683746, -0.09548994898796082, 0.07915835082530975, -0.03042227402329445, -0.013334414921700954, -0.0012792089255526662, 0.012916689738631248, -0.014656785875558853, -0.11976546049118042, -0.03295435383915901, 0.018411312252283096, -0.06358052790164948, 0.0035305011551827192, 0.03104761801660061, 0.05075510963797569, 0.14161065220832825, 0.0007016780436970294, 0.015684116631746292, -0.0239445511251688, 0.2735459804534912, -0.10377924889326096, 0.052429746836423874, 0.19319552183151245, -0.002160834614187479, 0.04861219972372055, 0.0630762130022049, -0.004154848866164684, -0.06204431131482124, 0.05523345246911049, 0.06761820614337921, -0.080763079226017, -0.21144115924835205, -0.04134370759129524, -0.02249785140156746, 0.011195377446711063, 0.1064341813325882, 0.03460735082626343, 0.03542936593294144, 0.01596573367714882, -0.10556133836507797, 0.04400832951068878, 0.020031239837408066, 0.10191848129034042, -0.04596255347132683, -0.009057351388037205, 0.057971466332674026, -0.05862170457839966, 0.04582417756319046, 0.12186934798955917, 0.01922585815191269, 0.2279384732246399, -0.07844486087560654, 0.07058057934045792, 0.08606511354446411, 0.10322820395231247, 0.01515549048781395, 0.02911670133471489, -0.02439182996749878, 0.024680521339178085, 0.012523604556918144, -0.09878318756818771, -0.025858871638774872, 0.03429265320301056, 0.022871527820825577, -0.008963390253484249, -0.06087278574705124, -0.0661931186914444, 0.05824095755815506, 0.2311856746673584, 0.02967040240764618, -0.17427006363868713, -0.10868930071592331, 0.06266102939844131, -0.0348362922668457, -0.05467082932591438, -0.02085452899336815, 0.0793423056602478, -0.2091628760099411, 0.04307394102215767, -0.02971271425485611, 0.11399301141500473, -0.11393584311008453, 0.004206362180411816, 0.05567161366343498, 0.04358348995447159, -0.06265220791101456, 0.07681215554475784, -0.1670057624578476, 0.08611106127500534, 0.0009913292014971375, 0.0828457772731781, -0.07080864906311035, 0.018777571618556976, 0.028429226949810982, 0.03747105970978737, 0.0892644077539444, 0.022906465455889702, 0.013413508422672749, -0.054291222244501114, -0.040891021490097046, -0.00900935661047697, 0.04801202565431595, -0.08160755783319473, 0.1253238022327423, -0.03260524570941925, 0.03156430646777153, -0.02825848013162613, -0.08732288330793381, -0.1022365540266037, -0.1366441547870636, 0.07419651746749878, -0.09030869603157043, -0.0022487947717309, -0.06655303388834, -0.023676475510001183, 0.009582399390637875, 0.2225738912820816, -0.08402526378631592, -0.08182713389396667, -0.14373956620693207, 0.019155198708176613, 0.14145593345165253, -0.0741729885339737, 0.005701147485524416, -0.00722192507237196, 0.16134293377399445, -0.002758173970505595, -0.13276858627796173, -0.006431616842746735, -0.0689225047826767, -0.17344771325588226, -0.01673816330730915, 0.14344362914562225, 0.05982799082994461, 0.0344812236726284, 0.006052103824913502, 0.011434474028646946, -0.04066929966211319, -0.1695431023836136, 0.025451401248574257, 0.16832879185676575, 0.019490033388137817, 0.035814497619867325, 0.022572791203856468, 0.006454066839069128, -0.1161963939666748, 0.009055471047759056, 0.0581434890627861, 0.19922231137752533, -0.08039502054452896, 0.16868586838245392, -0.002404618775472045, -0.09286320954561234, -0.18222790956497192, 0.037791658192873, 0.0005984856397844851, 0.033658407628536224, 0.021850453689694405, -0.16886459290981293, 0.0197109654545784, 0.021952439099550247, -0.002517866203561425, 0.04988370090723038, -0.3599081039428711, -0.1563369333744049, 0.021902581676840782, 0.02659863606095314, -0.06881670653820038, -0.04485433176159859, -0.04079260677099228, -0.08231182396411896, -0.24141037464141846, 0.07944238930940628, -0.12294407188892365, 0.08777201920747757, 0.012110690586268902, 0.07261893153190613, 0.05422615632414818, -0.0673191100358963, 0.13516880571842194, -0.026830017566680908, 0.06713364273309708, -0.09239604324102402, -0.0337969996035099, 0.09047301113605499, -0.06326954811811447, 0.10579949617385864, 0.017357749864459038, 0.08797593414783478, -0.12868967652320862, -0.07024975121021271, -0.07816638052463531, 0.01886751875281334, -0.05497632548213005, -0.09067784994840622, -0.07693120092153549, 0.09353473037481308, 0.11937566101551056, -0.03441180661320686, -0.08756827563047409, -0.06494560837745667, -0.012490670196712017, 0.06351429969072342, 0.09826929867267609, 0.09179771691560745, -0.0844896137714386, 0.016648638993501663, 0.011053760536015034, 0.023369217291474342, -0.15996985137462616, 0.03056294284760952, 0.08276020735502243, 0.040495675057172775, 0.10432928055524826, 0.010119707323610783, -0.15627844631671906, 0.020550910383462906, 0.04017302021384239, -0.1656552255153656, -0.09986864030361176, -0.034329853951931, 0.006434465292841196, -0.0762469694018364, -0.042617641389369965, 0.14614328742027283, -0.04295695200562477, -0.0261245034635067, -0.007322209887206554, 0.05008067190647125, -0.04871125519275665, 0.10698053240776062, 0.0151103800162673, 0.05000818520784378, -0.07223420590162277, 0.11079913377761841, 0.05663872882723808, 0.015195389278233051, 0.04648878052830696, 0.055256154388189316, -0.08997394889593124, -0.0043538580648601055, -0.0954258143901825, 0.02375023253262043, -0.05223498120903969, -0.02010415308177471, -0.01320850383490324, -0.04832983389496803, 0.034996334463357925, 0.10994067043066025, -0.00680837407708168, 0.10368923097848892, -0.02968510612845421, -0.014028100296854973, -0.13509532809257507, 0.06799891591072083, 0.05462389066815376, 0.01089543104171753, -0.1137714758515358, 0.20741398632526398, 0.024902475997805595, 0.09066051244735718, -0.04185255616903305, -0.05340970680117607, -0.09089035540819168, -0.0018074809340760112, -0.14701581001281738, -0.047527968883514404, -0.09101718664169312, -0.03688477352261543, -0.01569630764424801, -0.04251047596335411, -0.016486959531903267, 0.05750972032546997, -0.027930093929171562, -0.060120437294244766, -0.05536055937409401, 0.051921963691711426, -0.15238377451896667, 0.007820157334208488, 0.10520577430725098, -0.0598568394780159, 0.10899951308965683, 0.07574412226676941, -0.03409678488969803, 0.01549084484577179, -0.1087261363863945, 0.032923758029937744, -0.02906058356165886, 0.006560313515365124, 0.02883058413863182, -0.13897806406021118, 0.015447936952114105, -0.04816246032714844, -0.05793924629688263, 0.016138985753059387, 0.01665116846561432, -0.1244179978966713, -0.0011457110522314906, 0.07961411029100418, 0.00039391746395267546, -0.06627298146486282, 0.07369070500135422, 0.07246317714452744, 0.0365733839571476, 0.06316165626049042, -0.041627127677202225, 0.07655948400497437, -0.1661890298128128, -0.0457361564040184, 0.00013867647794540972, 0.011142522096633911, 0.037274159491062164, -0.008948948234319687, 0.04704035818576813, -0.01924390345811844, 0.18910463154315948, 0.011425935663282871, -0.016040537506341934, 0.04453656077384949, -0.035443827509880066, -0.0016115744365379214, 0.04507957398891449, 0.05891609191894531, -0.043779775500297546, -0.020462781190872192, -0.011978009715676308, 0.0012276435736566782, -0.06921189278364182, -0.02363087795674801, 0.107901431620121, 0.06591547280550003, 0.17527252435684204, -0.026399333029985428, 0.055286526679992676, -0.028066158294677734, -0.11248991638422012, -0.026513531804084778, -0.04018699377775192, 0.04532449319958687, -0.08263999968767166, 0.0782124474644661, 0.1666003316640854, -0.15907324850559235, 0.11295294016599655, 0.014113718643784523, -0.05572976917028427, -0.09929713606834412, -0.1830400973558426, -0.010279171168804169, -0.024862203747034073, 0.036862295120954514, -0.1306457668542862, 0.08435622602701187, 0.034872084856033325, 0.033827848732471466, -0.061699122190475464, 0.11942081898450851, -0.07616392523050308, -0.10234694927930832, 0.026643196120858192, 0.021945687010884285, 0.02346806600689888, 0.027895232662558556, 0.06501851975917816, 0.03270244598388672, 0.0035519571974873543, 0.056487683206796646, 0.045180726796388626, 0.03580271825194359, 0.03851671889424324, -0.014688534662127495, -0.05417967587709427, 0.028037242591381073, 0.015564683824777603, 0.0440407432615757, 0.11701655387878418, 0.07583564519882202, -0.021186651661992073, -0.04006873443722725, 0.3086787760257721, -0.037994273006916046, -0.045673616230487823, -0.17320045828819275, 0.16325992345809937, 0.029910296201705933, -0.022218577563762665, 0.019725270569324493, -0.13530537486076355, 0.014848001301288605, 0.16266441345214844, 0.1806226670742035, -0.03890567272901535, 0.01333956141024828, -0.05254170671105385, 0.011846926063299179, 0.03531995788216591, 0.08873719722032547, 0.06502990424633026, 0.18604955077171326, -0.042024847120046616, 0.058911748230457306, -0.011017563752830029, -0.01863466389477253, -0.020745394751429558, 0.11235625296831131, -0.03703466057777405, -0.0013758325949311256, -0.05371551588177681, 0.09800229221582413, -0.07612372189760208, -0.24878449738025665, -0.0073320274241268635, -0.048838719725608826, -0.09330196678638458, 0.05063283443450928, -0.03167051821947098, -0.013032009825110435, 0.09331519156694412, 0.00835250224918127, -0.025078197941184044, 0.1302642822265625, 0.03654453158378601, -0.04298332333564758, -0.02917017973959446, 0.08699861913919449, -0.015107553452253342, 0.19002696871757507, -0.02905765175819397, 0.004897825885564089, 0.09418843686580658, 0.0245429165661335, -0.12802791595458984, 0.0038926287088543177, 0.04012899473309517, -0.09109313040971756, -0.01943546161055565, 0.18782873451709747, 0.0005684082279913127, 0.04392574355006218, 0.052501413971185684, -0.06046917289495468, 0.029796577990055084, -0.05469321087002754, 0.052557602524757385, -0.12991397082805634, 0.05672304704785347, -0.0807221531867981, 0.14376693964004517, 0.18320885300636292, -0.07328929752111435, 0.015334747731685638, -0.06229982525110245, -0.000253171194344759, -0.02506883814930916, 0.0401945561170578, -0.022390248253941536, -0.11326180398464203, 0.029420608654618263, 0.030336502939462662, 0.020086931064724922, -0.19629837572574615, -0.07495582848787308, 0.04445377364754677, -0.052967317402362823, 0.01746022328734398, 0.17135345935821533, 0.038615841418504715, 0.05907735973596573, -0.03172265738248825, -0.013925562612712383, -0.007788367103785276, 0.11703598499298096, -0.1399143636226654, -0.09735822677612305 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/91bd22f5e53a3ea3cb1436de8f4a3722.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Snoop Dogg</div> <a href="https://genius.com/artists/snoop-dogg"> <div style="text-align: center; font-size: 14px;">@snoop-dogg</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Snoop Dogg. Dataset is available [here](https://huggingface.co/datasets/huggingartists/snoop-dogg). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/snoop-dogg") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/xru6xdjl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Snoop Dogg's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1o72aoie) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1o72aoie/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/snoop-dogg') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/snoop-dogg") model = AutoModelWithLMHead.from_pretrained("huggingartists/snoop-dogg") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/snoop-dogg"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/snoop-dogg
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/snoop-dogg", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/snoop-dogg #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Snoop Dogg</div> <a href="URL <div style="text-align: center; font-size: 14px;">@snoop-dogg</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Snoop Dogg. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Snoop Dogg's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Snoop Dogg.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Snoop Dogg's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/snoop-dogg #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Snoop Dogg.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Snoop Dogg's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/snoop-dogg #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Snoop Dogg.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Snoop Dogg's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.018986141309142113, 0.19841934740543365, -0.003661074209958315, 0.05008954927325249, 0.09577580541372299, -0.00043417589040473104, 0.07576616108417511, 0.11330146342515945, -0.006773530971258879, 0.07684987038373947, 0.05461247265338898, 0.06483505666255951, 0.08484494686126709, 0.06527506560087204, 0.05513595789670944, -0.24631482362747192, 0.04561395198106766, -0.06422876566648483, -0.0014958538813516498, 0.09230118989944458, 0.08183110505342484, -0.08371814340353012, 0.07900940626859665, 0.04087566211819649, -0.04915779083967209, 0.003593097673729062, -0.003292636713013053, -0.04812310263514519, 0.06869088858366013, 0.07233826071023941, 0.035485852509737015, 0.03417898714542389, 0.06129877641797066, -0.17194105684757233, 0.020923789590597153, 0.12141120433807373, 0.029585950076580048, 0.09374310821294785, 0.08141504228115082, -0.06961312144994736, 0.10319030284881592, -0.030576741322875023, 0.08216776698827744, 0.061707086861133575, -0.09707082808017731, -0.08702453225851059, -0.14581209421157837, 0.07550327479839325, 0.07717245817184448, 0.09429281204938889, -0.032886624336242676, 0.09516221284866333, -0.03439405933022499, 0.04910704866051674, 0.2541199028491974, -0.24563664197921753, -0.009696293622255325, 0.056438591331243515, 0.05195489525794983, 0.011948798783123493, -0.09614507108926773, 0.013516264036297798, 0.03945811465382576, 0.02421807125210762, 0.03821813687682152, -0.02612743340432644, 0.16087456047534943, 0.00643641222268343, -0.11071686446666718, -0.07760248333215714, 0.07076753675937653, -0.01063217967748642, -0.08904952555894852, -0.12450933456420898, 0.0015668622218072414, -0.023838918656110764, 0.015548588708043098, 0.012245065532624722, 0.007793340366333723, -0.003717178711667657, -0.06037558242678642, -0.1229090690612793, -0.071251280605793, -0.035626765340566635, -0.026074927300214767, 0.06763870269060135, 0.04958805441856384, 0.03076440840959549, -0.06357989460229874, 0.20438843965530396, 0.03582169860601425, -0.09857989102602005, -0.05623813718557358, -0.10565289855003357, -0.09902779757976532, -0.030185982584953308, -0.014360928907990456, -0.008204065263271332, -0.012983852997422218, 0.14247138798236847, -0.01495600026100874, 0.022999178618192673, -0.06319448351860046, 0.006733995396643877, 0.11241272836923599, 0.14129261672496796, -0.12841376662254333, -0.043337631970644, 0.06171838566660881, -0.010953899472951889, -0.06751550734043121, -0.044609833508729935, -0.006008128169924021, -0.03747284784913063, 0.048420894891023636, 0.06947262585163116, 0.09842424094676971, 0.06927206367254257, 0.005787544418126345, -0.053666602820158005, 0.03466947376728058, -0.14026525616645813, 0.012436865828931332, -0.012572222389280796, -0.061646718531847, 0.02293478697538376, 0.03904729336500168, 0.010306100361049175, -0.11628977954387665, 0.08879745006561279, -0.08446528762578964, -0.04512878879904747, -0.09036988019943237, -0.10847218334674835, 0.00420967023819685, -0.05029667541384697, -0.022714907303452492, -0.07304700464010239, -0.16203387081623077, -0.03784184157848358, 0.011310776695609093, -0.06742321699857712, -0.01894104667007923, 0.02114822342991829, -0.0446275919675827, 0.007222607731819153, -0.015975909307599068, 0.014595786109566689, -0.013132544234395027, 0.04298621043562889, -0.09657599031925201, 0.03258397802710533, 0.06023859605193138, 0.04216537997126579, -0.1190241351723671, 0.06600522994995117, -0.1349700540304184, 0.14486020803451538, -0.03349834308028221, -0.021709345281124115, -0.09440670907497406, -0.0846213698387146, -0.025870835408568382, -0.03849612921476364, 0.033007100224494934, 0.1284417062997818, -0.1597416251897812, -0.018310384824872017, 0.21264642477035522, -0.07218354195356369, -0.04456987604498863, 0.07917163521051407, -0.06842996180057526, 0.025569025427103043, 0.12308410555124283, 0.05607273802161217, 0.14669771492481232, -0.10025762021541595, -0.09515244513750076, -0.03318208083510399, -0.07824558764696121, 0.19178906083106995, 0.028872840106487274, -0.03076215460896492, 0.03449233993887901, 0.008365650661289692, -0.019392944872379303, -0.008205748163163662, -0.026611967012286186, -0.03298133984208107, -0.014526492916047573, -0.003986942116171122, 0.02440696395933628, -0.046442192047834396, -0.03292550891637802, -0.0033995951525866985, -0.10545924305915833, 0.05211424455046654, 0.09082955867052078, -0.06946669518947601, 0.017198896035552025, -0.10004782676696777, 0.032575756311416626, -0.05416847765445709, 0.017345966771245003, -0.18611811101436615, -0.020982543006539345, 0.010875229723751545, -0.06860772520303726, 0.06820757687091827, 0.036725450307130814, 0.04088331013917923, 0.05705993250012398, -0.016030482947826385, 0.011174185201525688, -0.03472713381052017, 0.004722921177744865, -0.05979405343532562, -0.15591241419315338, -0.04518193379044533, -0.03812894597649574, 0.07829578965902328, -0.09559819102287292, 0.013200263492763042, 0.09657711535692215, 0.1587003767490387, 0.027827579528093338, -0.06333741545677185, 0.026645733043551445, -0.032085467129945755, -0.027026016265153885, -0.09383329749107361, -0.04880937561392784, 0.010793989524245262, -0.033764563500881195, 0.16162000596523285, -0.13283883035182953, -0.11124679446220398, 0.13611364364624023, 0.09494607150554657, -0.07237308472394943, 0.01795217953622341, -0.062178656458854675, -0.023791080340743065, -0.03797856345772743, -0.07941741496324539, 0.22603943943977356, 0.05064152926206589, 0.09221603721380234, -0.0908152163028717, -0.08605686575174332, -0.001182546722702682, -0.034022316336631775, -0.023549038916826248, 0.04408138245344162, 0.008955895900726318, -0.17472918331623077, 0.06743206083774567, -0.013713853433728218, 0.07919907569885254, 0.16672030091285706, 0.017011746764183044, -0.10207835584878922, -0.05132904648780823, -0.06654807925224304, 0.011034947820007801, 0.06987959891557693, 0.02350592240691185, 0.05806349590420723, 0.041489120572805405, 0.050598446279764175, 0.04106343537569046, -0.10971279442310333, 0.02302933670580387, 0.05023769289255142, -0.028988415375351906, -0.04666583240032196, 0.0030693390872329473, 0.04138344153761864, 0.09207134693861008, 0.0750669315457344, 0.10886632651090622, -0.03709989786148071, -0.05302254855632782, -0.12615783512592316, 0.12871959805488586, -0.0998007133603096, -0.20929095149040222, -0.1321413666009903, -0.09492111206054688, 0.012309672310948372, 0.01116074901074171, 0.029015788808465004, -0.037385910749435425, -0.033016983419656754, -0.08608977496623993, 0.07931218296289444, -0.05106853321194649, -0.0026596912648528814, -0.0035560978576540947, 0.0379997082054615, -0.005199446342885494, -0.10925982147455215, -0.022313212975859642, 0.022978242486715317, -0.07603786885738373, -0.010149365290999413, 0.03731534630060196, 0.052643999457359314, 0.1199549213051796, -0.01005043089389801, -0.006251913029700518, -0.027779439464211464, 0.2710326313972473, -0.10685934126377106, 0.04333651065826416, 0.15156181156635284, -0.04122062027454376, 0.06848888844251633, 0.061387259513139725, -0.003632093546912074, -0.04307142645120621, 0.05112699419260025, 0.0672270879149437, -0.06127005070447922, -0.21009615063667297, -0.021430274471640587, -0.026102017611265182, 0.00919526070356369, 0.11066937446594238, 0.030938075855374336, 0.037662211805582047, 0.028606565669178963, -0.10241430252790451, 0.05654097720980644, 0.048985835164785385, 0.09822815656661987, -0.035359881818294525, -0.014667164534330368, 0.06103966757655144, -0.05244447663426399, 0.018097752705216408, 0.09943452477455139, 0.046044498682022095, 0.2499454766511917, -0.07559768855571747, 0.06397220492362976, 0.08784788846969604, 0.07871728390455246, 0.016807425767183304, 0.05274628475308418, -0.02874702215194702, 0.03212343901395798, -0.0011183362221345305, -0.0931834876537323, -0.011829759925603867, 0.03744996711611748, 0.035704243928194046, -0.010168365202844143, -0.055098630487918854, -0.07914340496063232, 0.043196674436330795, 0.22563926875591278, 0.04248284921050072, -0.16337436437606812, -0.07439973205327988, 0.06605029851198196, -0.05307799205183983, -0.05084303021430969, -0.021375734359025955, 0.07179072499275208, -0.2079431712627411, 0.02771550416946411, -0.04338281974196434, 0.11737286299467087, -0.14856649935245514, 0.0008492785855196416, 0.007286740932613611, 0.05791127309203148, -0.062161993235349655, 0.07652819901704788, -0.1804903894662857, 0.07243053615093231, 0.014256007969379425, 0.0764908492565155, -0.07193441689014435, 0.03645825758576393, 0.040675535798072815, 0.006282059475779533, 0.09944753348827362, 0.002409204374998808, -0.0049706134013831615, -0.07889223098754883, -0.06673825532197952, -0.0019345964537933469, 0.05855540931224823, -0.07269322127103806, 0.13447122275829315, -0.03686051070690155, 0.03315386176109314, -0.022329242900013924, -0.046880483627319336, -0.10812979191541672, -0.17382998764514923, 0.06898880749940872, -0.11271390318870544, 0.013446892611682415, -0.055275026708841324, -0.025866065174341202, 0.012407946400344372, 0.19722135365009308, -0.12610194087028503, -0.08554158359766006, -0.12479209899902344, 0.04025350883603096, 0.1523197740316391, -0.0734621211886406, 0.012487178668379784, 0.0027536721900105476, 0.15873020887374878, 0.0030776828061789274, -0.1326991617679596, -0.028930852189660072, -0.061912693083286285, -0.18655720353126526, -0.025267891585826874, 0.11422315239906311, 0.09174126386642456, 0.057812999933958054, 0.020015815272927284, 0.003980929031968117, -0.02607610449194908, -0.1546461582183838, 0.0068674590438604355, 0.1404334157705307, 0.06044773757457733, 0.038052141666412354, 0.004232330713421106, 0.007131919264793396, -0.14589156210422516, 0.036327481269836426, 0.06764493882656097, 0.18271836638450623, -0.07681708037853241, 0.14784148335456848, 0.009744198992848396, -0.09349292516708374, -0.1716523915529251, 0.03056175634264946, 0.01571464352309704, 0.027916375547647476, 0.03013860061764717, -0.1708805114030838, 0.012649149633944035, 0.04724666848778725, -0.00861994456499815, 0.06265579909086227, -0.3029950261116028, -0.1306784301996231, 0.030046042054891586, 0.018606457859277725, -0.08362352848052979, -0.040288567543029785, -0.04936402291059494, -0.07094121724367142, -0.2430606186389923, 0.09113437682390213, -0.09667709469795227, 0.0810990035533905, 0.022396055981516838, 0.04086726903915405, 0.05390838161110878, -0.055939435958862305, 0.13189895451068878, -0.03443858399987221, 0.05598888173699379, -0.08606545627117157, -0.028087306767702103, 0.0732053741812706, -0.04833757504820824, 0.0760197713971138, 0.002213436644524336, 0.07204174995422363, -0.08223479241132736, -0.06107018515467644, -0.0782952830195427, 0.008920564316213131, -0.06187667325139046, -0.09211109578609467, -0.08961506187915802, 0.09649871289730072, 0.1324308067560196, -0.03408156707882881, -0.09393908083438873, -0.059135351330041885, -0.03585023060441017, 0.08957722783088684, 0.10428911447525024, 0.10718116164207458, -0.07322379946708679, 0.009709913283586502, 0.00597093440592289, 0.031646259129047394, -0.11750088632106781, 0.04644181951880455, 0.08474298566579819, 0.020675135776400566, 0.09915732592344284, 0.025554880499839783, -0.17150212824344635, 0.02794533409178257, 0.02929929830133915, -0.12709017097949982, -0.09992114454507828, -0.023706741631031036, -0.006158509291708469, -0.09969617426395416, -0.04929041117429733, 0.1434050053358078, -0.0289780143648386, -0.03710957244038582, 0.005215390585362911, 0.0586916022002697, -0.038962848484516144, 0.11823410540819168, 0.017085785046219826, 0.05076809599995613, -0.07631751894950867, 0.09448467940092087, 0.06558188050985336, 0.01478551235049963, 0.036443840712308884, 0.030733592808246613, -0.08007892221212387, 0.0023455163463950157, -0.09151582419872284, -0.005639344919472933, -0.017652198672294617, -0.007724941708147526, -0.0025747218169271946, -0.04986618831753731, 0.039536189287900925, 0.08476471900939941, -0.009875273331999779, 0.12174811214208603, -0.017888039350509644, -0.002593191107735038, -0.12831665575504303, 0.07747436314821243, 0.04141249880194664, 0.018249832093715668, -0.09670354425907135, 0.16407303512096405, 0.020808229222893715, 0.07822949439287186, -0.039823979139328, -0.04269033670425415, -0.08302798122167587, -0.010193550027906895, -0.1453007012605667, -0.029142016544938087, -0.09669037908315659, -0.05321619659662247, -0.015600726939737797, -0.039386358112096786, -0.020387012511491776, 0.04980022460222244, -0.030381454154849052, -0.07334797084331512, -0.050416674464941025, 0.053443461656570435, -0.1427990049123764, 0.008549584075808525, 0.12470801174640656, -0.0758824422955513, 0.10532574355602264, 0.04995553568005562, -0.03589869290590286, 0.016432270407676697, -0.0864623412489891, 0.015205218456685543, -0.02925647422671318, 0.017517060041427612, 0.02883615344762802, -0.12915077805519104, 0.012709852308034897, -0.05249548330903053, -0.05220533162355423, 0.011862067505717278, 0.02149142511188984, -0.12085442990064621, -0.010408736765384674, 0.057988036423921585, 0.014258154667913914, -0.07359440624713898, 0.06541261076927185, 0.0741218701004982, 0.027113469317555428, 0.0804397240281105, -0.026336543262004852, 0.09332423657178879, -0.16598691046237946, -0.03359109163284302, 0.005621570162475109, 0.0017288478557020426, 0.10024911165237427, -0.02769382670521736, 0.05276584252715111, -0.01659056358039379, 0.19259780645370483, -0.0020007891580462456, -0.025559594854712486, 0.04143387824296951, -0.030963288620114326, 0.007352868095040321, 0.05429358407855034, 0.08087970316410065, -0.022720297798514366, -0.04528430849313736, -0.02292388118803501, -0.0008417912758886814, -0.07220807671546936, -0.05587063729763031, 0.11254098266363144, 0.08713389933109283, 0.16258952021598816, -0.027202285826206207, 0.08428029716014862, -0.0049466416239738464, -0.11937470734119415, -0.015485988929867744, -0.02043212577700615, 0.03157450631260872, -0.06465866416692734, 0.09348686039447784, 0.14793723821640015, -0.15354782342910767, 0.12338443100452423, 0.020357834175229073, -0.04745984449982643, -0.10429756343364716, -0.17992769181728363, -0.018458262085914612, -0.015431242063641548, 0.03296693414449692, -0.12388510257005692, 0.0682787373661995, 0.05889183282852173, 0.025517836213111877, -0.05622897297143936, 0.0924094170331955, -0.05742653086781502, -0.1180785596370697, 0.020897289738059044, 0.03332819789648056, 0.018835524097085, 0.02797997184097767, 0.050027381628751755, 0.03831331059336662, 0.0327451154589653, 0.06702786684036255, 0.029372990131378174, 0.042398713529109955, 0.03238325193524361, -0.026271138340234756, -0.05096542090177536, 0.02902114763855934, 0.009423159062862396, 0.050696272403001785, 0.12829184532165527, 0.06516003608703613, -0.02315400168299675, -0.04955357685685158, 0.28920474648475647, -0.044599566608667374, -0.03374873474240303, -0.1749325692653656, 0.15661419928073883, 0.026382071897387505, -0.0035435263998806477, 0.02625145949423313, -0.1500159651041031, 0.009372920729219913, 0.16844120621681213, 0.16997648775577545, -0.05608057975769043, 0.010248403064906597, -0.024593481793999672, 0.01040484569966793, 0.03195800259709358, 0.07990479469299316, 0.06797273457050323, 0.2078116536140442, -0.04940849170088768, 0.07020355015993118, -0.0013866738881915808, -0.01516775507479906, -0.023029303178191185, 0.11500765383243561, -0.042563796043395996, 0.006538150832056999, -0.066377192735672, 0.08567159622907639, -0.06211503595113754, -0.26816031336784363, -0.007710899226367474, -0.02981836535036564, -0.09257277101278305, 0.05788230895996094, -0.06289840489625931, -0.018878798931837082, 0.08142182976007462, 0.02233404852449894, -0.005013155285269022, 0.12098854780197144, 0.026983121410012245, -0.019318191334605217, -0.004645051900297403, 0.08249810338020325, -0.017693964764475822, 0.1965688318014145, -0.014809164218604565, 0.015615842305123806, 0.09687136113643646, 0.03646603226661682, -0.12317010015249252, -0.011738664470613003, 0.033947937190532684, -0.08049444854259491, -0.0022637166548520327, 0.1871844381093979, 0.011979359202086926, 0.013996997848153114, 0.07116696983575821, -0.030256135389208794, 0.039998721331357956, -0.09169606864452362, 0.035606011748313904, -0.12333083152770996, 0.04497937113046646, -0.0914362221956253, 0.1372922658920288, 0.1829729825258255, -0.06614012271165848, 0.031429871916770935, -0.04491432383656502, -0.019648553803563118, -0.025879312306642532, 0.04601030424237251, -0.027434011921286583, -0.1028660237789154, 0.012807720340788364, 0.0543811060488224, 0.013721976429224014, -0.2090419977903366, -0.07555048912763596, 0.05000579357147217, -0.06430137157440186, 0.00646236352622509, 0.1483766734600067, 0.03627125918865204, 0.04594062268733978, -0.03283001855015755, -0.04423357918858528, -0.029973363503813744, 0.09509926289319992, -0.13798870146274567, -0.07434985786676407 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3557a234d4c5912569afbea078a23eff.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sqwore</div> <a href="https://genius.com/artists/sqwore"> <div style="text-align: center; font-size: 14px;">@sqwore</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Sqwore. Dataset is available [here](https://huggingface.co/datasets/huggingartists/sqwore). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/sqwore") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3gzd5crq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sqwore's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/vzeft23g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/vzeft23g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/sqwore') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/sqwore") model = AutoModelWithLMHead.from_pretrained("huggingartists/sqwore") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/sqwore"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/sqwore
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/sqwore", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sqwore #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sqwore</div> <a href="URL <div style="text-align: center; font-size: 14px;">@sqwore</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Sqwore. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Sqwore's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Sqwore.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sqwore's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sqwore #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Sqwore.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sqwore's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sqwore #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Sqwore.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sqwore's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04271818324923515, 0.16034148633480072, -0.002617171499878168, 0.04873000830411911, 0.10833467543125153, 0.012964176945388317, 0.08697482198476791, 0.11356768757104874, 0.022811200469732285, 0.07840385288000107, 0.07409290224313736, 0.043160825967788696, 0.0697135403752327, 0.08990079164505005, 0.06467977911233902, -0.22223001718521118, 0.04176272451877594, -0.07990177720785141, 0.011809400282800198, 0.10164517164230347, 0.09169275313615799, -0.06113141402602196, 0.07891683280467987, 0.029036061838269234, -0.07728765159845352, 0.013709107413887978, 0.011692196130752563, -0.06128568574786186, 0.09034700691699982, 0.06858102977275848, 0.039297547191381454, 0.025795798748731613, 0.06486508250236511, -0.17931677401065826, 0.03087039291858673, 0.12880708277225494, 0.02877308987081051, 0.08144012838602066, 0.05259121581912041, -0.08493820577859879, 0.12144076824188232, -0.020839137956500053, 0.08401686698198318, 0.05789191275835037, -0.11993439495563507, -0.1199478730559349, -0.1417226791381836, 0.10248158872127533, 0.09084075689315796, 0.09203410148620605, -0.030178813263773918, 0.08095956593751907, -0.027270806953310966, 0.051033906638622284, 0.23723696172237396, -0.24044020473957062, -0.008786819875240326, 0.07809150964021683, 0.05254752188920975, 0.01569189690053463, -0.08696480095386505, 0.012425445020198822, 0.04641176760196686, 0.032986875623464584, 0.030998289585113525, -0.025521401315927505, 0.14688622951507568, 0.020822009071707726, -0.1029474288225174, -0.0795322135090828, 0.10594143718481064, -0.020976096391677856, -0.08101501315832138, -0.128359854221344, -0.0033869175240397453, -0.03378339111804962, 0.035978421568870544, 0.019147127866744995, -0.004762246273458004, 0.006590931210666895, -0.04146523028612137, -0.11129423975944519, -0.07530862838029861, -0.03917263075709343, -0.010169916786253452, 0.05301915854215622, 0.04022148251533508, 0.03939654678106308, -0.091944620013237, 0.22363156080245972, -0.011847049929201603, -0.09643322229385376, -0.05550863966345787, -0.10390309989452362, -0.09484931081533432, -0.039639610797166824, -0.0003754686040338129, 0.001469257054850459, -0.03455304726958275, 0.14776071906089783, -0.04332082346081734, 0.025229474529623985, -0.021716155111789703, 0.009133913554251194, 0.13653890788555145, 0.13508768379688263, -0.11799652874469757, -0.04117012396454811, 0.07129484415054321, 0.000002276744680784759, -0.06868725270032883, -0.050726424902677536, -0.005580364726483822, -0.017072513699531555, 0.04279197379946709, 0.07635693997144699, 0.07951623946428299, 0.06277653574943542, 0.006027876399457455, -0.05960272252559662, 0.07054370641708374, -0.1265300214290619, 0.010106600821018219, -0.0074005890637636185, -0.057383883744478226, 0.025673668831586838, 0.07021455466747284, 0.003581434255465865, -0.11109227687120438, 0.09805925190448761, -0.07320032268762589, -0.047459881752729416, -0.08477228879928589, -0.1048363521695137, -0.006313276942819357, -0.05404452607035637, -0.03414538502693176, -0.0750209242105484, -0.18816199898719788, -0.04856562614440918, 0.01657763496041298, -0.049081698060035706, -0.028483929112553596, 0.028443850576877594, -0.03413328528404236, 0.010966134257614613, -0.02227560244500637, -0.03280125558376312, -0.02868374064564705, 0.03194482624530792, -0.07508652657270432, 0.027820687741041183, 0.053532760590314865, 0.04137954115867615, -0.11900343000888824, 0.07489723712205887, -0.13070039451122284, 0.1239427998661995, -0.01725834608078003, 0.005075926426798105, -0.09613984078168869, -0.0787738561630249, -0.020943963900208473, -0.026911752298474312, 0.026354625821113586, 0.11943558603525162, -0.16764961183071136, -0.02375243790447712, 0.2095862776041031, -0.07040897756814957, -0.07396899163722992, 0.06758821755647659, -0.07095763087272644, 0.038653284311294556, 0.1192270889878273, 0.08049805462360382, 0.15621474385261536, -0.11020578444004059, -0.08822844922542572, -0.040908608585596085, -0.06766163557767868, 0.16526250541210175, 0.029037225991487503, -0.02404261939227581, 0.036673273891210556, 0.0023935248609632254, -0.03056498058140278, 0.0014942922862246633, -0.027966858819127083, -0.03274660184979439, -0.025366991758346558, -0.012214078567922115, -0.00993907731026411, -0.037930671125650406, -0.050192851573228836, -0.019745785742998123, -0.0966646671295166, 0.07295093685388565, 0.10261765867471695, -0.06993737816810608, 0.01527138240635395, -0.09963928908109665, 0.03257884830236435, -0.046650685369968414, 0.013176379725337029, -0.18228432536125183, -0.04574178159236908, 0.014770569279789925, -0.06388279795646667, 0.0682525634765625, 0.028169501572847366, 0.042038243263959885, 0.06764943897724152, -0.01292643416672945, -0.008526296354830265, -0.039201389998197556, -0.0053549655713140965, -0.04573427885770798, -0.1689445525407791, -0.05163808912038803, -0.045137159526348114, 0.08490677922964096, -0.1158425360918045, 0.009590509347617626, 0.07887417078018188, 0.1352546066045761, 0.023521510884165764, -0.0706762969493866, 0.03783806413412094, -0.03017234243452549, -0.03106611780822277, -0.10641184449195862, -0.04231806844472885, 0.013645176775753498, -0.025821257382631302, 0.15732766687870026, -0.1543150395154953, -0.09875238686800003, 0.12092030793428421, 0.10823293030261993, -0.09133020043373108, 0.04229229688644409, -0.07151776552200317, -0.01829528622329235, -0.04935235157608986, -0.05795308202505112, 0.25001850724220276, 0.033761970698833466, 0.09322147071361542, -0.08664166182279587, -0.07900584489107132, -0.0025492613203823566, -0.042809609323740005, -0.025729482993483543, 0.04019524157047272, 0.019058624282479286, -0.16233159601688385, 0.053495798259973526, -0.016073688864707947, 0.08453750610351562, 0.19507640600204468, 0.033087413758039474, -0.08779531717300415, -0.053291741758584976, -0.06783042103052139, 0.00017743691569194198, 0.09404150396585464, 0.0067299287766218185, 0.03182259202003479, 0.04052652418613434, 0.04905584454536438, 0.04097842797636986, -0.1141892820596695, 0.01011485606431961, 0.058856938034296036, -0.031237689778208733, -0.06364516913890839, 0.017488526180386543, 0.0263797827064991, 0.0898444801568985, 0.07180462777614594, 0.11822722852230072, -0.056513577699661255, -0.05225340649485588, -0.14056144654750824, 0.13951778411865234, -0.0906459242105484, -0.20595061779022217, -0.13135969638824463, -0.06258169561624527, 0.007913866080343723, 0.009138784371316433, 0.03745300695300102, -0.05282948911190033, -0.037685319781303406, -0.09327445179224014, 0.07981207221746445, -0.03197456896305084, -0.011355185881257057, -0.003211198141798377, 0.011333337984979153, -0.010875357314944267, -0.12112638354301453, -0.031466029584407806, 0.022122006863355637, -0.07493270188570023, -0.00032408666447736323, 0.026944059878587723, 0.04532628506422043, 0.15286344289779663, 0.0009486532653681934, 0.009985305368900299, -0.022824790328741074, 0.2805367410182953, -0.10864627361297607, 0.058755405247211456, 0.17588531970977783, -0.004368379712104797, 0.05378078669309616, 0.06060368940234184, -0.001994627295061946, -0.05835459381341934, 0.05574837699532509, 0.0705181434750557, -0.0722910538315773, -0.2077988237142563, -0.03310968354344368, -0.019977442920207977, 0.011479014530777931, 0.11347858607769012, 0.03475351259112358, 0.04786738008260727, 0.01608729548752308, -0.10287006944417953, 0.05528820678591728, 0.013281119987368584, 0.09851274639368057, -0.07540953904390335, -0.005189701449126005, 0.05128227174282074, -0.056282609701156616, 0.043737102299928665, 0.12081239372491837, 0.04387092590332031, 0.22732658684253693, -0.08196365088224411, 0.07670064270496368, 0.08768241852521896, 0.10606274753808975, 0.019560346379876137, 0.030701646581292152, -0.027393296360969543, 0.02501518465578556, 0.010759876109659672, -0.0938473641872406, -0.013945071958005428, 0.034997839480638504, 0.023761427029967308, -0.007142192684113979, -0.062239766120910645, -0.06724821031093597, 0.053680431097745895, 0.23729893565177917, 0.0339958593249321, -0.1691252440214157, -0.10432516038417816, 0.059744495898485184, -0.04133721441030502, -0.05756240338087082, -0.020627325400710106, 0.07467614859342575, -0.2094690352678299, 0.036844391375780106, -0.03327286243438721, 0.11515513062477112, -0.12226586043834686, 0.004093026276677847, 0.05579196289181709, 0.039664898067712784, -0.06813915818929672, 0.0712367445230484, -0.1607423573732376, 0.08359047025442123, 0.003048245096579194, 0.08242566883563995, -0.0649004727602005, 0.019849849864840508, 0.03050510212779045, 0.036924347281455994, 0.08861654996871948, 0.020357035100460052, 0.024981938302516937, -0.051956187933683395, -0.03538259491324425, -0.00482908496633172, 0.05050592124462128, -0.0816289633512497, 0.12948834896087646, -0.02954912930727005, 0.03412918373942375, -0.022896498441696167, -0.08699090778827667, -0.09894091635942459, -0.14007028937339783, 0.07232151180505753, -0.09771953523159027, 0.0018141752807423472, -0.06455133110284805, -0.014652630314230919, 0.01971820555627346, 0.21540482342243195, -0.10397747904062271, -0.07652496546506882, -0.1386701464653015, 0.011711335740983486, 0.13658744096755981, -0.07715465128421783, 0.00019019127648789436, -0.00807738397270441, 0.1577730029821396, -0.0013741431757807732, -0.13475297391414642, -0.004321429878473282, -0.07262184470891953, -0.1723407804965973, -0.026708945631980896, 0.13266028463840485, 0.06781373918056488, 0.03557629510760307, 0.006631175056099892, 0.0008205007761716843, -0.04717320203781128, -0.17026683688163757, 0.029806066304445267, 0.14623552560806274, 0.017856447026133537, 0.03581082075834274, 0.02321617491543293, 0.018612952902913094, -0.12508510053157806, 0.022357847541570663, 0.05147227644920349, 0.19022643566131592, -0.07537873089313507, 0.16223584115505219, 0.007884449325501919, -0.09294140338897705, -0.17675472795963287, 0.03908807784318924, 0.0055734021589159966, 0.029709666967391968, 0.017832722514867783, -0.173286572098732, 0.027249310165643692, 0.023990750312805176, -0.004078116733580828, 0.056797515600919724, -0.34754544496536255, -0.1489313244819641, 0.025447944179177284, 0.01970890536904335, -0.08036170899868011, -0.047942742705345154, -0.03486849367618561, -0.07367093116044998, -0.24016490578651428, 0.09230540692806244, -0.13243567943572998, 0.08548566699028015, 0.01051692571491003, 0.07162610441446304, 0.04912840202450752, -0.06573302298784256, 0.13064081966876984, -0.024133291095495224, 0.06715113669633865, -0.08320102095603943, -0.03833900764584541, 0.09177874773740768, -0.06471029669046402, 0.10082560777664185, 0.022284170612692833, 0.0924161970615387, -0.12378568202257156, -0.06427290290594101, -0.08457277715206146, 0.015207364223897457, -0.054103292524814606, -0.09448635578155518, -0.076636403799057, 0.09433984756469727, 0.12330312281847, -0.034012604504823685, -0.0912771075963974, -0.05538293719291687, -0.005480547435581684, 0.07051098346710205, 0.09712249785661697, 0.10146161913871765, -0.10253740847110748, 0.012122713960707188, 0.009554194286465645, 0.02961163967847824, -0.1612890213727951, 0.032865092158317566, 0.08094554394483566, 0.04006989672780037, 0.11066042631864548, 0.014365380629897118, -0.15831977128982544, 0.02428598888218403, 0.03955152630805969, -0.16041746735572815, -0.09657206386327744, -0.03355012461543083, 0.009316345676779747, -0.0895666554570198, -0.04333687946200371, 0.14550819993019104, -0.03899770230054855, -0.028852246701717377, -0.003084070049226284, 0.05228240787982941, -0.0535203218460083, 0.1087191179394722, 0.021354971453547478, 0.049591194838285446, -0.07117296755313873, 0.11116953939199448, 0.0571427121758461, 0.019512178376317024, 0.04538979008793831, 0.054965611547231674, -0.08681448549032211, -0.0015050651272758842, -0.09039831161499023, 0.023060251027345657, -0.059777822345495224, -0.015512146055698395, -0.008607863448560238, -0.040196627378463745, 0.030135074630379677, 0.10529043525457382, -0.015233010053634644, 0.1062549576163292, -0.03256755322217941, -0.013442029245197773, -0.1370536834001541, 0.06380519270896912, 0.04603772237896919, 0.016139164566993713, -0.110894113779068, 0.20077095925807953, 0.028410041704773903, 0.09715598821640015, -0.03848456218838692, -0.05385742709040642, -0.08874437212944031, -0.0035855157766491175, -0.14418970048427582, -0.04229612648487091, -0.0821550190448761, -0.03784938156604767, -0.015006402507424355, -0.03813167288899422, -0.015779253095388412, 0.05524185299873352, -0.030099835246801376, -0.062358010560274124, -0.05053415894508362, 0.050658486783504486, -0.1480889469385147, 0.014241336844861507, 0.11062561720609665, -0.05995854735374451, 0.1087692379951477, 0.06796566396951675, -0.03803877532482147, 0.01612825319170952, -0.10930033028125763, 0.030435293912887573, -0.029407024383544922, 0.009333071298897266, 0.02755236066877842, -0.1338542103767395, 0.011276137083768845, -0.0543951652944088, -0.060094065964221954, 0.01288159191608429, 0.013741747476160526, -0.12019674479961395, 0.001371772144921124, 0.0729234591126442, 0.007685189601033926, -0.07369425892829895, 0.07313866913318634, 0.0724065750837326, 0.03403078392148018, 0.06007829308509827, -0.03862232342362404, 0.07897553592920303, -0.17167627811431885, -0.048371803015470505, 0.008604469709098339, 0.013997509144246578, 0.04778262972831726, -0.008203032426536083, 0.04565736651420593, -0.019247526302933693, 0.18500080704689026, -0.002703223144635558, -0.014564542099833488, 0.04104280099272728, -0.04626889526844025, -0.015447846613824368, 0.043978020548820496, 0.05912310257554054, -0.04171889275312424, -0.025959983468055725, -0.020648447796702385, -0.001410291763022542, -0.0749303326010704, -0.021655045449733734, 0.11109532415866852, 0.057059839367866516, 0.17588172852993011, -0.029274461790919304, 0.05210621654987335, -0.031122535467147827, -0.10934042185544968, -0.02557336911559105, -0.042779333889484406, 0.04138140007853508, -0.07498766481876373, 0.0661584883928299, 0.16427287459373474, -0.15233449637889862, 0.11612451076507568, 0.01581786759197712, -0.05730817839503288, -0.09889038652181625, -0.1622956097126007, -0.0056407819502055645, -0.025582261383533478, 0.03284943103790283, -0.1301979124546051, 0.08597840368747711, 0.03255026042461395, 0.03217581659555435, -0.06010754406452179, 0.12279216945171356, -0.0682932436466217, -0.10881044715642929, 0.02519272454082966, 0.024535518139600754, 0.02347356639802456, 0.02825300209224224, 0.07097930461168289, 0.03448702394962311, 0.004680837504565716, 0.0632518008351326, 0.04275140166282654, 0.03208499401807785, 0.04220250993967056, -0.01675357110798359, -0.05558335781097412, 0.027205687016248703, 0.011229581199586391, 0.03279188647866249, 0.11461330950260162, 0.07432081550359726, -0.018074240535497665, -0.03637249767780304, 0.29902178049087524, -0.04139497131109238, -0.04033740982413292, -0.17930947244167328, 0.177239790558815, 0.02402404136955738, -0.022775383666157722, 0.020526885986328125, -0.13686057925224304, 0.016190091148018837, 0.15348567068576813, 0.17583052814006805, -0.05496949329972267, 0.0156483743339777, -0.04604718089103699, 0.011260032653808594, 0.032805271446704865, 0.08989708870649338, 0.06510850042104721, 0.20139019191265106, -0.04696814715862274, 0.059961866587400436, -0.004743845202028751, -0.01870860531926155, -0.010259449481964111, 0.11406342685222626, -0.03403381630778313, 0.0028333496302366257, -0.05954781547188759, 0.09438836574554443, -0.07680046558380127, -0.2648358643054962, -0.006551181897521019, -0.047320324927568436, -0.09213826060295105, 0.04955987259745598, -0.03922855108976364, -0.01782098598778248, 0.09358415007591248, 0.012314839288592339, -0.024682827293872833, 0.1332124024629593, 0.03179861605167389, -0.042194679379463196, -0.024414611980319023, 0.08465972542762756, -0.025496669113636017, 0.1883876472711563, -0.02618739940226078, -0.0016067761462181807, 0.09132898598909378, 0.022268185392022133, -0.12217577546834946, 0.0004334535333327949, 0.03662841022014618, -0.08522231131792068, -0.02663261629641056, 0.1917489469051361, 0.004586563445627689, 0.03717725723981857, 0.05402612313628197, -0.061123237013816833, 0.028006279841065407, -0.056877605617046356, 0.04991734027862549, -0.13897046446800232, 0.047325074672698975, -0.0719052255153656, 0.14780224859714508, 0.18287009000778198, -0.07311870157718658, 0.023105096071958542, -0.056798387318849564, -0.004003588110208511, -0.017496025189757347, 0.05169761925935745, -0.025036485865712166, -0.10616984963417053, 0.031776949763298035, 0.0301817599684, 0.02237839251756668, -0.19960229098796844, -0.07329972833395004, 0.05383023992180824, -0.05329779535531998, 0.014302796684205532, 0.17252394556999207, 0.03981190547347069, 0.06426343321800232, -0.02983206696808338, 0.004355161916464567, -0.014544251374900341, 0.1119978278875351, -0.13594941794872284, -0.09839172661304474 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/8b5c8fe74f6176047b2b5681e0e0e2d4.273x273x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sugar Ray</div> <a href="https://genius.com/artists/sugar-ray"> <div style="text-align: center; font-size: 14px;">@sugar-ray</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Sugar Ray. Dataset is available [here](https://huggingface.co/datasets/huggingartists/sugar-ray). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/sugar-ray") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/sugar-ray") model = AutoModelWithLMHead.from_pretrained("huggingartists/sugar-ray") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/10440qj4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sugar Ray's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2n3xk5nv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2n3xk5nv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/sugar-ray') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/sugar-ray"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/sugar-ray
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/sugar-ray", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sugar-ray #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sugar Ray</div> <a href="URL <div style="text-align: center; font-size: 14px;">@sugar-ray</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Sugar Ray. Dataset is available here. And can be used with: Or with Transformers library: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Sugar Ray's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Sugar Ray.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sugar Ray's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sugar-ray #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Sugar Ray.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sugar Ray's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 58, 72, 18, 47, 40 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sugar-ray #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Sugar Ray.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sugar Ray's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 0.004822931252419949, 0.1455725133419037, -0.0034282461274415255, 0.05989843234419823, 0.09420100599527359, -0.007566655520349741, 0.06513933092355728, 0.10153133422136307, -0.02926788479089737, 0.06886283308267593, 0.060293048620224, 0.03577776998281479, 0.0588579960167408, 0.11403150111436844, 0.0801028460264206, -0.2617762088775635, 0.01865547150373459, -0.07111044973134995, 0.016035573557019234, 0.12139099091291428, 0.08325112611055374, -0.06978151202201843, 0.09366478770971298, 0.017189716920256615, -0.07091435045003891, 0.021956128999590874, 0.0021645603701472282, -0.07627392560243607, 0.09901351481676102, 0.07765281200408936, 0.03180555999279022, 0.052606046199798584, 0.04941840469837189, -0.15674370527267456, 0.02938086912035942, 0.1267712265253067, 0.021991310641169548, 0.07832486927509308, 0.03198669105768204, -0.08161307871341705, 0.15862762928009033, -0.014059602282941341, 0.10623105615377426, 0.05835955590009689, -0.12327154725790024, -0.10287709534168243, -0.1215967908501625, 0.03141503781080246, 0.06886514276266098, 0.080013707280159, -0.03099951520562172, 0.08699439465999603, -0.035055626183748245, 0.03932713344693184, 0.27016010880470276, -0.2465476244688034, 0.002255549654364586, 0.05384240671992302, 0.03784927353262901, 0.06567667424678802, -0.08697951585054398, 0.0315311998128891, 0.05451415479183197, 0.04192469269037247, 0.06844330579042435, -0.02411891333758831, 0.18313166499137878, 0.01288379542529583, -0.09505874663591385, -0.09330330789089203, 0.0850081592798233, -0.03297720476984978, -0.09012246131896973, -0.12634041905403137, 0.00259261392056942, 0.0019458438036963344, 0.044801630079746246, 0.004168117884546518, -0.0024395869113504887, 0.0017033820040524006, -0.0968548133969307, -0.11509426683187485, -0.09265618026256561, -0.040831468999385834, -0.03787415474653244, 0.04847931116819382, 0.03600580617785454, 0.026519788429141045, -0.06282664090394974, 0.21556565165519714, 0.044147346168756485, -0.09580182284116745, -0.082203209400177, -0.1145816370844841, -0.07971914112567902, -0.03552399203181267, 0.001682037254795432, 0.04059891775250435, -0.04658979922533035, 0.15626169741153717, -0.04395012557506561, 0.027226675301790237, -0.04641759768128395, -0.007501737214624882, 0.1395881623029709, 0.12171126902103424, -0.11420202255249023, 0.0054602064192295074, 0.06520938873291016, -0.02138032391667366, -0.06985130161046982, -0.06675513833761215, 0.001348104327917099, -0.03174653276801109, 0.04281230643391609, 0.08023162931203842, 0.059111762791872025, 0.06670224666595459, 0.005028425715863705, -0.0559120774269104, 0.04646185413002968, -0.13929049670696259, 0.0024758195504546165, -0.007559286430478096, -0.04501430690288544, -0.006324618589133024, 0.055860765278339386, -0.009547919034957886, -0.09785113483667374, 0.08223988860845566, -0.08237401396036148, -0.0525372251868248, -0.08530867844820023, -0.09483719617128372, 0.006896876264363527, -0.05834975093603134, -0.03178343176841736, -0.09034115076065063, -0.15671971440315247, -0.04088353365659714, -0.006505673285573721, -0.06157180294394493, -0.027401844039559364, 0.024768836796283722, -0.01831071265041828, 0.0014306026278063655, -0.019610535353422165, -0.012024033814668655, -0.02099088579416275, 0.05355684086680412, -0.0907059833407402, 0.045950066298246384, 0.08005637675523758, 0.04986271634697914, -0.1430382877588272, 0.06580382585525513, -0.1479412019252777, 0.14227931201457977, -0.028878889977931976, 0.018218351528048515, -0.09057104587554932, -0.11186196655035019, -0.042961716651916504, -0.02919398993253708, 0.014494684524834156, 0.11214519292116165, -0.18285509943962097, -0.04309971258044243, 0.19342391192913055, -0.07405093312263489, -0.05507177487015724, 0.07310743629932404, -0.07881347090005875, 0.05904644355177879, 0.1278613954782486, 0.05984339490532875, 0.1253301352262497, -0.06198102608323097, -0.06266568601131439, -0.0375039242208004, -0.09831654280424118, 0.21097184717655182, 0.032783735543489456, -0.009918238036334515, 0.029657499864697456, 0.007868809625506401, 0.006444921251386404, -0.030324671417474747, -0.040905676782131195, -0.027378153055906296, -0.0013092521112412214, -0.00045937238610349596, 0.004740518983453512, -0.04662426933646202, -0.05147084593772888, -0.020998245105147362, -0.09802840650081635, 0.07077419012784958, 0.07566789537668228, -0.07464105635881424, 0.017350884154438972, -0.10863690823316574, 0.0018860858399420977, 0.0001497307966928929, 0.016918640583753586, -0.18627123534679413, -0.021038226783275604, 0.01334527600556612, -0.05437792092561722, 0.09549640864133835, 0.03158320114016533, 0.03547375276684761, 0.06025301292538643, -0.004823427647352219, 0.03659089282155037, -0.06409099698066711, -0.00995673332363367, -0.04054633155465126, -0.1362650990486145, -0.03694874793291092, -0.03967118635773659, 0.07449888437986374, -0.09432410448789597, 0.0013668861938640475, 0.12909077107906342, 0.1302298903465271, 0.01758795604109764, -0.0578518770635128, 0.030413242056965828, -0.02131327986717224, -0.03553202375769615, -0.11029977351427078, -0.04417133703827858, 0.0030467486940324306, -0.029295533895492554, 0.173810213804245, -0.16274477541446686, -0.08346649259328842, 0.11241395771503448, 0.1075606718659401, -0.08650268614292145, 0.041911374777555466, -0.07690156996250153, -0.01451217569410801, -0.06649312376976013, -0.05436280742287636, 0.2640988230705261, 0.028822068125009537, 0.08725205808877945, -0.10403414070606232, -0.08262578397989273, -0.0018129177624359727, -0.0308369193226099, -0.03780663385987282, 0.039286527782678604, -0.01132420264184475, -0.21744456887245178, 0.047408588230609894, -0.013671784661710262, 0.11970582604408264, 0.17819106578826904, 0.051406197249889374, -0.09946715086698532, -0.03614722192287445, -0.09018823504447937, 0.011514149606227875, 0.052040986716747284, 0.0367877371609211, 0.03512417897582054, 0.04139662906527519, 0.04782329127192497, 0.034531496465206146, -0.10549334436655045, 0.002530494472011924, 0.07624030113220215, -0.030604654923081398, -0.07365391403436661, 0.011104987002909184, 0.035406216979026794, 0.0911622941493988, 0.07195232063531876, 0.13217101991176605, -0.05764446035027504, -0.040448278188705444, -0.12945780158042908, 0.14638537168502808, -0.09509832412004471, -0.2984764873981476, -0.13298237323760986, -0.050887592136859894, 0.04555603116750717, 0.02340524084866047, 0.04813582822680473, -0.04278486967086792, -0.04032864794135094, -0.09228003770112991, 0.07103754580020905, -0.041827909648418427, -0.010941607877612114, -0.005606163293123245, 0.042894843965768814, -0.016888391226530075, -0.12134132534265518, -0.012409490533173084, 0.029214724898338318, -0.12469793111085892, 0.021818548440933228, 0.00970752164721489, 0.046720653772354126, 0.13048766553401947, -0.017558500170707703, -0.006275965366512537, -0.037784308195114136, 0.2590862214565277, -0.10889998823404312, 0.03817695379257202, 0.13870076835155487, -0.02936895750463009, 0.05537009984254837, 0.03144896402955055, -0.010664102621376514, -0.07597710192203522, 0.08291543275117874, 0.08086666464805603, -0.09799163788557053, -0.20301300287246704, -0.00681072473526001, -0.004821285605430603, 0.033661775290966034, 0.13473659753799438, 0.055453017354011536, 0.04206147417426109, 0.014402061700820923, -0.09992522746324539, 0.057641949504613876, 0.047713249921798706, 0.08988592028617859, -0.049230560660362244, -0.025665655732154846, 0.06442441046237946, -0.06274814158678055, 0.02011081948876381, 0.12221238762140274, 0.002802317263558507, 0.23856663703918457, -0.09918668866157532, 0.07657655328512192, 0.08987537026405334, 0.08523554354906082, 0.05047294870018959, 0.04170826077461243, -0.024742214009165764, 0.032123759388923645, -0.01526560541242361, -0.0859798938035965, -0.03315645456314087, 0.03442723676562309, 0.012431125156581402, -0.04334525018930435, -0.04370665177702904, -0.06970781087875366, 0.038202717900276184, 0.18938539922237396, 0.022892441600561142, -0.1540692150592804, -0.10012319684028625, 0.0511651448905468, -0.044272057712078094, -0.06284774094820023, -0.0017498970264568925, 0.09967424720525742, -0.20831920206546783, 0.03810090199112892, -0.025511033833026886, 0.1191762164235115, -0.1187366247177124, 0.007021754514425993, 0.03750917315483093, 0.02642154134809971, -0.07727224379777908, 0.09857605397701263, -0.2181268334388733, 0.06540422886610031, -0.003503653220832348, 0.06120523810386658, -0.08002530783414841, -0.0032976760994642973, 0.01773880608379841, 0.028617963194847107, 0.09633118659257889, 0.02088063769042492, 0.04403171315789223, -0.059353671967983246, -0.06417364627122879, 0.012603513896465302, 0.059666115790605545, -0.08615706115961075, 0.11739115417003632, -0.02607623301446438, 0.04882502183318138, -0.03299877792596817, -0.07268692553043365, -0.09514032304286957, -0.15307971835136414, 0.07515323907136917, -0.14599718153476715, 0.00150040362495929, -0.06695060431957245, -0.0406181626021862, 0.05625172331929207, 0.1987314671278, -0.06872887909412384, -0.07549256831407547, -0.12660056352615356, 0.05184123292565346, 0.14330212771892548, -0.07399517297744751, 0.016761748120188713, 0.024102333933115005, 0.169370636343956, 0.017683908343315125, -0.14129625260829926, -0.025130674242973328, -0.03505506366491318, -0.18349093198776245, 0.005577054340392351, 0.12716898322105408, 0.0789792388677597, 0.05277271941304207, 0.021129103377461433, 0.00936150923371315, -0.028093256056308746, -0.167803093791008, 0.022335706278681755, 0.13486707210540771, 0.01564202830195427, 0.03086572326719761, 0.04405933991074562, 0.052909333258867264, -0.13630057871341705, 0.017678335309028625, 0.06712153553962708, 0.17614419758319855, -0.08617545664310455, 0.20233820378780365, 0.014569650404155254, -0.09253409504890442, -0.1953328251838684, 0.011268679983913898, -0.0038129216991364956, 0.049975596368312836, 0.07144974172115326, -0.21030785143375397, -0.01677236519753933, 0.038311585783958435, 0.0038599874824285507, 0.03409075736999512, -0.29846787452697754, -0.14816690981388092, 0.029011808335781097, 0.02405697852373123, -0.05993250012397766, -0.017520379275083542, -0.03507937863469124, -0.07826180756092072, -0.225996196269989, 0.10570549964904785, -0.11569583415985107, 0.10073111206293106, 0.011032162234187126, 0.06582921743392944, 0.0551898255944252, -0.04359772801399231, 0.11572334170341492, -0.05445073917508125, 0.061407770961523056, -0.11039986461400986, -0.030372941866517067, 0.09015340358018875, -0.04195091873407364, 0.07036051899194717, 0.03611011430621147, 0.08564229309558868, -0.072506844997406, -0.07493151724338531, -0.08070149272680283, 0.01235464308410883, -0.05963585153222084, -0.08565017580986023, -0.0934358537197113, 0.09278027713298798, 0.11212493479251862, -0.046988923102617264, -0.1119707003235817, -0.06904145330190659, -0.014456216245889664, 0.058239348232746124, 0.1289779394865036, 0.045212522149086, -0.048892516642808914, 0.015036228112876415, 0.014684791676700115, 0.019739465788006783, -0.15181104838848114, 0.053792428225278854, 0.09048247337341309, 0.044638801366090775, 0.09593513607978821, 0.034859128296375275, -0.16370625793933868, 0.03196833282709122, 0.061355721205472946, -0.14479506015777588, -0.11140657961368561, -0.04531097039580345, -0.02501879632472992, -0.0759822204709053, -0.056261930614709854, 0.13008274137973785, -0.04424509033560753, -0.04170416295528412, -0.0009351352346129715, 0.042381446808576584, -0.03838803246617317, 0.11143648624420166, 0.010799003764986992, 0.040804099291563034, -0.07574436813592911, 0.11457604169845581, 0.07732927799224854, 0.01752002164721489, 0.04488542303442955, 0.05181160196661949, -0.09669636934995651, 0.010032801888883114, -0.08753657341003418, -0.043022602796554565, -0.03342915326356888, 0.010532815009355545, -0.0029390142299234867, -0.03491930663585663, 0.042241863906383514, 0.10856971889734268, -0.011727557517588139, 0.15186931192874908, -0.04252642020583153, 0.017605194821953773, -0.1185111477971077, 0.056925009936094284, 0.02344270795583725, 0.017577001824975014, -0.09110472351312637, 0.20668159425258636, 0.04046231508255005, 0.11150559037923813, -0.05673310533165932, -0.06351353228092194, -0.06266770511865616, -0.009051349945366383, -0.09674090892076492, -0.04245162010192871, -0.07689516991376877, -0.052101146429777145, -0.02054317109286785, -0.044767383486032486, -0.023871449753642082, 0.051464151591062546, -0.02393174171447754, -0.06284680217504501, -0.07382862269878387, 0.046980299055576324, -0.1523585468530655, 0.01992473565042019, 0.13930118083953857, -0.05965535715222359, 0.12356532365083694, 0.047008417546749115, -0.049356259405612946, 0.015441298484802246, -0.09715107083320618, 0.017668429762125015, -0.01817147433757782, 0.019504394382238388, 0.023748600855469704, -0.1240377351641655, 0.008965321816504002, -0.0560440793633461, -0.05927756428718567, 0.010392834432423115, 0.016511155292391777, -0.12205202877521515, -0.009033135138452053, 0.08217466622591019, -0.01542051974684, -0.06624748557806015, 0.05807751044631004, 0.035157330334186554, 0.0401390865445137, 0.05738187953829765, -0.023292524740099907, 0.0706663727760315, -0.1649969220161438, -0.05967741459608078, 0.007296884432435036, 0.015696916729211807, 0.07422325015068054, -0.027553880587220192, 0.048945046961307526, -0.002405012957751751, 0.20625558495521545, 0.02486603520810604, -0.0341138057410717, 0.04689393565058708, -0.03117154724895954, 0.009267077781260014, 0.043606020510196686, 0.07816939800977707, -0.022737659513950348, -0.04361649602651596, 0.0008167967898771167, -0.004107328597456217, -0.08594663441181183, -0.04239683598279953, 0.11359897255897522, 0.047554586082696915, 0.17886702716350555, -0.0762597844004631, 0.06903591006994247, 0.007676583714783192, -0.12055367231369019, -0.0358552485704422, -0.015403568744659424, 0.015322336927056313, -0.0648547112941742, 0.021566513925790787, 0.1831594705581665, -0.14637967944145203, 0.12266617268323898, 0.00542102474719286, -0.059352338314056396, -0.12153445929288864, -0.1675439029932022, -0.023696957156062126, -0.03330627456307411, 0.030992994084954262, -0.1367868334054947, 0.09452693164348602, 0.039863795042037964, 0.029373617842793465, -0.05502511188387871, 0.11859595030546188, -0.07702108472585678, -0.13229763507843018, 0.024982726201415062, 0.023925956338644028, 0.03717822954058647, 0.03484538942575455, 0.07014752179384232, 0.04646208509802818, 0.04444260150194168, 0.06708016246557236, 0.028325052931904793, 0.0502903126180172, 0.03193509951233864, -0.04170296713709831, -0.04167398437857628, 0.026028499007225037, 0.0025420428719371557, 0.030165381729602814, 0.07200941443443298, 0.0786481499671936, -0.01848643645644188, -0.02209358848631382, 0.3415640592575073, -0.022929517552256584, -0.04877104237675667, -0.16536670923233032, 0.18794091045856476, 0.04308686777949333, -0.00964518915861845, 0.036607563495635986, -0.11859224736690521, 0.025179073214530945, 0.1426094025373459, 0.16363325715065002, -0.04446197301149368, 0.021993547677993774, -0.047384027391672134, 0.0209608543664217, 0.07372746616601944, 0.1143558993935585, 0.07862982898950577, 0.20465627312660217, -0.04636376351118088, 0.03782746568322182, -0.01641399972140789, -0.0018746135756373405, -0.020880112424492836, 0.10117628425359726, -0.03266501426696777, 0.015906447544693947, -0.07314562052488327, 0.08425333350896835, -0.04950231686234474, -0.24519473314285278, -0.03021775744855404, -0.04545353353023529, -0.08184131234884262, 0.06043786555528641, -0.04267973080277443, -0.023125004023313522, 0.07661571353673935, 0.038333483040332794, -0.000042023857531603426, 0.10281351208686829, 0.05518818646669388, -0.04782452806830406, 0.013002444989979267, 0.10618561506271362, -0.02542632818222046, 0.17146584391593933, -0.029195304960012436, 0.004088984802365303, 0.07880396395921707, 0.042850155383348465, -0.1316300630569458, -0.008140885271131992, 0.019696077331900597, -0.06499192863702774, -0.0161911454051733, 0.1931508183479309, 0.017998211085796356, -0.008721869438886642, 0.05565033480525017, -0.05957604944705963, 0.03586699813604355, -0.04698673635721207, 0.06760784238576889, -0.10297603905200958, 0.04221300780773163, -0.07937274128198624, 0.12964048981666565, 0.16927793622016907, -0.07028640061616898, 0.03248809278011322, -0.06093936413526535, -0.022769657894968987, -0.028111357241868973, 0.04354553297162056, -0.02578968182206154, -0.1129884347319603, -0.015271277166903019, 0.019350040704011917, -0.0022871396504342556, -0.20959529280662537, -0.057081375271081924, 0.05957411602139473, -0.05351746082305908, 0.007491621188819408, 0.17354391515254974, -0.002054128795862198, 0.052638258785009384, -0.04064705967903137, -0.05187598988413811, -0.009695149026811123, 0.11273079365491867, -0.16343030333518982, -0.07034400850534439 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/86b0ba099a6797bab3deeba685f3dbc2.800x800x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Suicideoscope</div> <a href="https://genius.com/artists/suicideoscope"> <div style="text-align: center; font-size: 14px;">@suicideoscope</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Suicideoscope. Dataset is available [here](https://huggingface.co/datasets/huggingartists/suicideoscope). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/suicideoscope") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/suicideoscope") model = AutoModelWithLMHead.from_pretrained("huggingartists/suicideoscope") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/17opu10a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Suicideoscope's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2w46luqb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2w46luqb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/suicideoscope') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/suicideoscope"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/suicideoscope
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/suicideoscope", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/suicideoscope #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Suicideoscope</div> <a href="URL <div style="text-align: center; font-size: 14px;">@suicideoscope</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Suicideoscope. Dataset is available here. And can be used with: Or with Transformers library: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Suicideoscope's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Suicideoscope.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Suicideoscope's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/suicideoscope #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Suicideoscope.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Suicideoscope's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 61, 75, 18, 47, 40 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/suicideoscope #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Suicideoscope.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Suicideoscope's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.012882055714726448, 0.17700767517089844, -0.003656162414699793, 0.05902060493826866, 0.0753553956747055, 0.011177743785083294, 0.0779338926076889, 0.1063779965043068, -0.0026031294837594032, 0.08582614362239838, 0.05479086562991142, 0.061205290257930756, 0.07657128572463989, 0.07558835297822952, 0.03252716362476349, -0.226365864276886, 0.02137807197868824, -0.058943115174770355, -0.0006892728852108121, 0.08310907334089279, 0.07214093953371048, -0.07147255539894104, 0.05574611574411392, 0.011878891848027706, -0.021494509652256966, 0.013558800332248211, 0.008151873014867306, -0.04545930400490761, 0.08629976212978363, 0.063475601375103, 0.017780231311917305, 0.03939248248934746, 0.056294169276952744, -0.1396336555480957, 0.031527772545814514, 0.12829703092575073, 0.02128227986395359, 0.0789538323879242, 0.04725005105137825, -0.055114831775426865, 0.08741630613803864, -0.03716325759887695, 0.10362263768911362, 0.04264618828892708, -0.10792170464992523, -0.13938044011592865, -0.1419714391231537, 0.04712975397706032, 0.044622860848903656, 0.07763609290122986, -0.028994830325245857, 0.11936759203672409, -0.001347583718597889, 0.048732463270425797, 0.23419815301895142, -0.2127259075641632, -0.016056155785918236, 0.04442216455936432, 0.07459042221307755, 0.04529143497347832, -0.09630557894706726, 0.025950849056243896, 0.047040145844221115, 0.056060921400785446, 0.056248921900987625, -0.020656712353229523, 0.12511083483695984, -0.0075368573889136314, -0.09290041774511337, -0.07739482074975967, 0.08484787493944168, -0.03623892366886139, -0.06832870841026306, -0.12429758161306381, -0.007939652539789677, -0.036963656544685364, 0.04378568008542061, -0.01207395363599062, -0.00755333574488759, -0.010839640162885189, -0.07831109315156937, -0.132432758808136, -0.07125763595104218, -0.05841730907559395, -0.011096755042672157, 0.039282139390707016, 0.05300978943705559, 0.03892822563648224, -0.08184324949979782, 0.19719748198986053, -0.0084614222869277, -0.10144335776567459, -0.07672156393527985, -0.10780122131109238, -0.10531590133905411, -0.025998147204518318, 0.0024441098794341087, -0.043389249593019485, 0.004459930583834648, 0.14912652969360352, -0.008908781222999096, -0.004194481763988733, -0.09717774391174316, 0.021212762221693993, 0.12894602119922638, 0.1105334535241127, -0.11184241622686386, -0.024656618013978004, 0.09663181006908417, 0.013145710341632366, -0.03790312260389328, -0.045644551515579224, 0.015079623088240623, -0.03872530162334442, 0.07377921044826508, 0.09293891489505768, 0.08187812566757202, 0.05119505897164345, 0.0011598501587286592, -0.04567378759384155, 0.02847103588283062, -0.1457541137933731, 0.002533248858526349, -0.02898130565881729, -0.03815861791372299, 0.00790091697126627, 0.08843041211366653, -0.04510103538632393, -0.11164223402738571, 0.08828684687614441, -0.07886067777872086, -0.05390063300728798, -0.08934453129768372, -0.1014787033200264, 0.009693484753370285, -0.044234272092580795, -0.033665794879198074, -0.06765636056661606, -0.1699182093143463, -0.019974883645772934, -0.007681704591959715, -0.05335504561662674, -0.01350738201290369, 0.027531784027814865, -0.018999455496668816, -0.013980254530906677, -0.011111259460449219, -0.02381916530430317, -0.007136074360460043, 0.0476633682847023, -0.0836649239063263, 0.06096995249390602, 0.044461384415626526, 0.03638892620801926, -0.10665977001190186, 0.07860039919614792, -0.17461708188056946, 0.1482143998146057, -0.05067838728427887, -0.04656202346086502, -0.08026834577322006, -0.08590122312307358, -0.014228896237909794, -0.06229454278945923, 0.04634404927492142, 0.1097799614071846, -0.15989187359809875, -0.02144407480955124, 0.19522041082382202, -0.09188481420278549, -0.05877235531806946, 0.08575804531574249, -0.07789738476276398, 0.05622817575931549, 0.10630668699741364, 0.037747323513031006, 0.09992042183876038, -0.09395045042037964, -0.08489526063203812, -0.04816003143787384, -0.09693893790245056, 0.20956480503082275, 0.015100053511559963, -0.01729622669517994, 0.033010248094797134, 0.0008355114841833711, 0.008343842811882496, -0.028483353555202484, -0.038872066885232925, -0.026896972209215164, -0.02699640952050686, -0.018657924607396126, 0.019216034561395645, -0.04729926586151123, -0.03278614580631256, -0.002869646530598402, -0.09466125071048737, 0.04172096401453018, 0.09977814555168152, -0.07973300665616989, 0.024125961586833, -0.09969314932823181, 0.018572499975562096, -0.08088242262601852, 0.02112589031457901, -0.1753387302160263, -0.04456283152103424, 0.023554593324661255, -0.06586968153715134, 0.07710930705070496, 0.006088586524128914, 0.05185942351818085, 0.0931863859295845, -0.023817336186766624, 0.02075749821960926, -0.07115080207586288, 0.005516202189028263, -0.050212785601615906, -0.17228426039218903, -0.05542705953121185, -0.05407429113984108, 0.03956333547830582, -0.09677392244338989, 0.0020265928469598293, 0.06560103595256805, 0.13937759399414062, 0.02919294685125351, -0.06899471580982208, 0.03827422484755516, -0.04760774224996567, -0.030479447916150093, -0.09177065640687943, -0.06816276907920837, 0.0018175826407968998, -0.04786096513271332, 0.14415839314460754, -0.15292885899543762, -0.09995667636394501, 0.1080855056643486, 0.08946096152067184, -0.08455117046833038, 0.05197058245539665, -0.05690185725688934, -0.03423473984003067, -0.08689709007740021, -0.08030882477760315, 0.20094607770442963, 0.04650706425309181, 0.09714528173208237, -0.10668187588453293, -0.06242944300174713, -0.000861432752572, -0.0203115064650774, -0.02668791078031063, 0.04004308953881264, -0.014471093192696571, -0.19790707528591156, 0.046600133180618286, -0.013845725916326046, 0.04305703192949295, 0.17652300000190735, 0.028727781027555466, -0.09811705350875854, -0.0713702142238617, -0.054858144372701645, 0.029180467128753662, 0.1051943376660347, -0.011731673032045364, 0.09564027935266495, 0.03947409242391586, 0.024141140282154083, 0.025056321173906326, -0.10239335149526596, 0.005090042017400265, 0.04961085692048073, -0.028728367760777473, -0.04044920206069946, 0.02531839720904827, 0.04880896583199501, 0.08707090467214584, 0.034490276128053665, 0.13094216585159302, -0.026918690651655197, -0.054617490619421005, -0.10772786289453506, 0.12684209644794464, -0.09394829720258713, -0.21490007638931274, -0.1267327517271042, -0.013832978904247284, 0.021193668246269226, 0.005749852396547794, 0.029847487807273865, -0.030851056799292564, -0.034154124557971954, -0.08054348081350327, 0.08049724996089935, -0.015549461357295513, -0.010875781066715717, -0.004367012530565262, 0.04985685646533966, 0.01033084187656641, -0.12582387030124664, -0.015699636191129684, 0.012438875623047352, -0.10466974228620529, -0.00032605748856440187, 0.03349943831562996, 0.03129139915108681, 0.11074391007423401, -0.011224726215004921, 0.005345108453184366, -0.01792261376976967, 0.2306862324476242, -0.09967261552810669, 0.05083417892456055, 0.18409234285354614, -0.06325986236333847, 0.08078459650278091, 0.01880781352519989, -0.0015140003524720669, -0.0449458546936512, 0.04996098205447197, 0.0672791376709938, -0.06639983505010605, -0.19533711671829224, -0.012414625845849514, -0.02957351878285408, 0.014660227112472057, 0.10890253633260727, 0.03573824465274811, 0.03345188871026039, 0.034353841096162796, -0.10368596017360687, 0.08582986146211624, 0.06169708073139191, 0.1006079614162445, -0.04634159058332443, -0.012598270550370216, 0.05782248452305794, -0.05009941756725311, 0.010939367115497589, 0.09986148774623871, 0.034306541085243225, 0.2768196761608124, -0.09030642360448837, 0.042805105447769165, 0.08904305845499039, 0.06507118046283722, 0.03413353115320206, 0.04355207830667496, -0.03528684005141258, 0.04103774577379227, 0.007433457300066948, -0.11246343702077866, -0.014492002315819263, 0.040730733424425125, -0.012361391447484493, 0.010702300816774368, -0.03404207527637482, -0.046839937567710876, 0.04009575396776199, 0.18130718171596527, 0.07589094340801239, -0.1563725471496582, -0.08887345343828201, 0.05721434950828552, -0.027152778580784798, -0.059964265674352646, -0.025056321173906326, 0.09670105576515198, -0.19299086928367615, 0.02517685480415821, -0.04656050354242325, 0.10947662591934204, -0.17062616348266602, -0.013161059468984604, -0.030442995950579643, 0.04014935344457626, -0.08228057622909546, 0.07853486388921738, -0.15026263892650604, 0.06596428155899048, 0.012578043155372143, 0.09674548357725143, -0.08613144606351852, 0.01997288130223751, 0.06867030262947083, 0.034779034554958344, 0.11994105577468872, 0.0028768242336809635, 0.01827191188931465, -0.054663702845573425, -0.08110056072473526, 0.0021884082816541195, 0.04137870669364929, -0.06068741902709007, 0.11500026285648346, -0.03617747873067856, 0.045565180480480194, -0.019596556201577187, -0.06099824234843254, -0.1216902881860733, -0.16064172983169556, 0.07347701489925385, -0.09548801183700562, -0.005077554378658533, -0.06139415130019188, -0.03230482339859009, 0.06056685000658035, 0.20027174055576324, -0.0946650579571724, -0.09400609880685806, -0.1171838566660881, 0.06876751780509949, 0.15984362363815308, -0.06773398071527481, 0.014560753479599953, 0.012158959172666073, 0.1479913592338562, -0.025718137621879578, -0.1313808262348175, -0.019005505368113518, -0.058850668370723724, -0.20813409984111786, -0.030646495521068573, 0.11892414093017578, 0.08950905501842499, 0.04939200356602669, 0.040912482887506485, 0.0048104687593877316, -0.0017625839682295918, -0.13931821286678314, 0.025601107627153397, 0.1309056431055069, 0.058272022753953934, 0.06613902002573013, -0.0026232514064759016, 0.011613311246037483, -0.11870303004980087, 0.025211816653609276, 0.05880293622612953, 0.24748092889785767, -0.07450741529464722, 0.14495879411697388, 0.002791312290355563, -0.1049150601029396, -0.2010766565799713, 0.01481003686785698, 0.012363058514893055, 0.01517114881426096, 0.0636884942650795, -0.16831554472446442, -0.002723056124523282, 0.05119709670543671, -0.01734529435634613, 0.09077706187963486, -0.32560133934020996, -0.14125904440879822, 0.04978586733341217, 0.023149069398641586, -0.05685203894972801, -0.016292905434966087, -0.038169413805007935, -0.07770982384681702, -0.18506082892417908, 0.10163062065839767, -0.11796554923057556, 0.09528625011444092, 0.0003412746009416878, 0.019487418234348297, 0.06098243594169617, -0.060189198702573776, 0.13587713241577148, -0.06475348770618439, 0.0938081443309784, -0.0991957038640976, -0.02149282954633236, 0.14578157663345337, -0.04895839840173721, 0.08150771260261536, 0.015414489433169365, 0.07804761081933975, -0.04183828458189964, -0.06195583939552307, -0.08456186950206757, 0.015888676047325134, -0.051615066826343536, -0.09242197126150131, -0.10548482090234756, 0.10631301254034042, 0.11344321072101593, -0.026297997683286667, -0.07992924749851227, -0.04931013658642769, -0.013422234915196896, 0.08492188155651093, 0.09730135649442673, 0.13191242516040802, -0.09114466607570648, 0.028175098821520805, 0.0015654988819733262, 0.051211319863796234, -0.07183771580457687, 0.0737205222249031, 0.07321466505527496, 0.02848799340426922, 0.10777734965085983, 0.032809317111968994, -0.18583273887634277, 0.055959321558475494, 0.03808819130063057, -0.15690012276172638, -0.15753571689128876, -0.03068104200065136, -0.010535160079598427, -0.06867953389883041, -0.02928113378584385, 0.15088529884815216, -0.03551705554127693, -0.023291485384106636, 0.009731980040669441, 0.08035765588283539, -0.036392342299222946, 0.12090027332305908, 0.019620895385742188, 0.045368943363428116, -0.07168401032686234, 0.10902763903141022, 0.08684243261814117, 0.020598648115992546, 0.049512047320604324, 0.052387334406375885, -0.05904190242290497, 0.019493991509079933, -0.07946951687335968, 0.015139464288949966, -0.0029650903306901455, 0.001519909012131393, -0.01687835529446602, -0.02562161721289158, 0.01812860183417797, 0.12684203684329987, -0.015082303434610367, 0.11230195313692093, -0.018203221261501312, -0.00006841550202807412, -0.1434500813484192, 0.10267309844493866, 0.03301818668842316, 0.02800452895462513, -0.05976158380508423, 0.1771848201751709, 0.012605701573193073, 0.10871882736682892, -0.05657751113176346, -0.06662457436323166, -0.0772077888250351, -0.016011765226721764, -0.1493818312883377, -0.027993081137537956, -0.06583463400602341, -0.05942518636584282, -0.015938404947519302, -0.017816752195358276, -0.013947692699730396, 0.05642906576395035, -0.016699673607945442, -0.06364771723747253, -0.037982277572155, 0.017138853669166565, -0.17982527613639832, -0.027011053636670113, 0.13304992020130157, -0.07592878490686417, 0.12365685403347015, 0.0402049757540226, -0.034722842276096344, 0.0010309552308171988, -0.054377686232328415, 0.009663851000368595, -0.029546678066253662, 0.01695934869349003, 0.027796519920229912, -0.10923317074775696, 0.01358769554644823, -0.0682995542883873, -0.06332188844680786, 0.023392928764224052, 0.058559052646160126, -0.11935260146856308, -0.020275862887501717, 0.07184730470180511, 0.0180530808866024, -0.054032132029533386, 0.058444634079933167, 0.013640932738780975, 0.02875647135078907, 0.04759981855750084, -0.035074084997177124, 0.09995535761117935, -0.18822816014289856, -0.04428081959486008, 0.020236177369952202, -0.000763782300055027, 0.11992283165454865, 0.0019629362504929304, 0.06077306717634201, -0.028454020619392395, 0.20407171547412872, -0.014288357459008694, -0.04431058466434479, 0.03126510977745056, -0.015078771859407425, -0.0031040820758789778, 0.016781799495220184, 0.04339195787906647, -0.03624715656042099, -0.04388115927577019, -0.05644321069121361, -0.011067470535635948, -0.06130177900195122, -0.05624142289161682, 0.14149323105812073, 0.02817501127719879, 0.14392022788524628, -0.04678153991699219, 0.08526504784822464, 0.002849462442100048, -0.10083027184009552, -0.06403588503599167, 0.019028304144740105, 0.03782330080866814, -0.03830326721072197, 0.011925621889531612, 0.14947882294654846, -0.13120344281196594, 0.1393977701663971, 0.021092817187309265, -0.060250259935855865, -0.1151173934340477, -0.22038333117961884, -0.024760987609624863, -0.011977966874837875, 0.03836772218346596, -0.1305689811706543, 0.08882749825716019, 0.02785203605890274, 0.031784821301698685, -0.06245754659175873, 0.12296520918607712, -0.05719880759716034, -0.09795838594436646, 0.031565915793180466, 0.030860571190714836, 0.03398998826742172, 0.056830503046512604, 0.06444325298070908, 0.0552549809217453, 0.03456418588757515, 0.04855117201805115, 0.03297434002161026, 0.06508488953113556, 0.019994448870420456, -0.007499992847442627, -0.0682213082909584, 0.008236357010900974, 0.0010542069794610143, 0.03403659164905548, 0.11765419691801071, 0.06650549918413162, 0.004976493772119284, -0.04628009349107742, 0.27368229627609253, -0.041583362966775894, -0.06312838196754456, -0.15424518287181854, 0.17973557114601135, 0.013492020778357983, -0.0158044695854187, 0.041515760123729706, -0.14130674302577972, 0.02025844343006611, 0.12476585805416107, 0.16482843458652496, -0.054845672100782394, 0.026402033865451813, -0.04034654423594475, 0.006929981056600809, 0.037156444042921066, 0.07196664065122604, 0.030221009626984596, 0.19584977626800537, -0.0601179301738739, 0.08272645622491837, -0.009253403171896935, 0.005663564428687096, -0.020272910594940186, 0.12381336838006973, -0.0383518747985363, 0.018820933997631073, -0.05977938324213028, 0.07948232442140579, -0.054159894585609436, -0.24982954561710358, 0.010953309014439583, -0.02909364365041256, -0.11178458482027054, 0.03503316268324852, -0.046982284635305405, -0.054156385362148285, 0.06178436800837517, 0.024282969534397125, 0.001428641495294869, 0.14019308984279633, 0.0273873433470726, -0.02689889818429947, -0.03851960599422455, 0.09430085122585297, -0.017124010249972343, 0.19970090687274933, -0.001846861676312983, 0.02797478251159191, 0.07425343245267868, -0.0017638133140280843, -0.10729195177555084, 0.014794601127505302, 0.030546756461262703, -0.06349118798971176, -0.009557072073221207, 0.2296866476535797, 0.018268706277012825, 0.013466140255331993, 0.05499161407351494, -0.019274631515145302, 0.02579103782773018, -0.0907386839389801, 0.006055462174117565, -0.10633358359336853, 0.029482387006282806, -0.07542037218809128, 0.12350694090127945, 0.17681802809238434, -0.0674426332116127, 0.04464469477534294, -0.04836210608482361, -0.003698720596730709, 0.0023768851533532143, 0.03884490579366684, 0.002472613239660859, -0.09327211230993271, 0.007395414635539055, 0.05590176209807396, 0.026234949007630348, -0.2185220569372177, -0.08477995544672012, 0.03632982820272446, -0.08238158375024796, 0.02480485290288925, 0.14318083226680756, 0.030391423031687737, 0.05655607581138611, -0.034269001334905624, -0.02679208666086197, -0.019642159342765808, 0.059232451021671295, -0.14712271094322205, -0.05928709730505943 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/7cf5f61ac4ffe9a0fd1f6a4b235b95eb.320x320x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sum 41</div> <a href="https://genius.com/artists/sum-41"> <div style="text-align: center; font-size: 14px;">@sum-41</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Sum 41. Dataset is available [here](https://huggingface.co/datasets/huggingartists/sum-41). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/sum-41") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3fy2kvn1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sum 41's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2hgx7kne) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2hgx7kne/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/sum-41') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/sum-41") model = AutoModelWithLMHead.from_pretrained("huggingartists/sum-41") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/sum-41"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/sum-41
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/sum-41", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sum-41 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sum 41</div> <a href="URL <div style="text-align: center; font-size: 14px;">@sum-41</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Sum 41. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Sum 41's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Sum 41.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sum 41's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sum-41 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Sum 41.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sum 41's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/sum-41 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Sum 41.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Sum 41's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02571219950914383, 0.15207087993621826, -0.0026593690272420645, 0.036904167383909225, 0.09109683334827423, 0.002950632944703102, 0.08429227769374847, 0.10539338737726212, -0.009637578390538692, 0.07452299445867538, 0.07824494689702988, 0.005699804052710533, 0.06802429258823395, 0.12759695947170258, 0.08758974820375443, -0.26978498697280884, 0.025853291153907776, -0.09937051683664322, 0.012392129749059677, 0.12118925899267197, 0.09477131068706512, -0.055383697152137756, 0.08391475677490234, 0.03705987706780434, -0.07184918969869614, 0.02599252387881279, -0.007454198785126209, -0.07343658059835434, 0.09276414662599564, 0.07855840772390366, 0.0331449918448925, 0.021169360727071762, 0.06464245915412903, -0.18985451757907867, 0.032184898853302, 0.12448954582214355, 0.029333818703889847, 0.07112222164869308, 0.04376283288002014, -0.0775018185377121, 0.17725415527820587, -0.02674279175698757, 0.09113074094057083, 0.046823639422655106, -0.11435570567846298, -0.16367213428020477, -0.12300357222557068, 0.08288087695837021, 0.1025022342801094, 0.08735563606023788, -0.03377837687730789, 0.04527917876839638, -0.008583269082009792, 0.04679356515407562, 0.23241370916366577, -0.2550351321697235, -0.016757937148213387, 0.08631032705307007, 0.0344013087451458, 0.0352899432182312, -0.07762821018695831, 0.014840085990726948, 0.05109298601746559, 0.026498259976506233, 0.044475484639406204, -0.015245460905134678, 0.2166229784488678, 0.020154152065515518, -0.099840447306633, -0.08465156704187393, 0.11806083470582962, -0.026548445224761963, -0.07897162437438965, -0.1438816487789154, 0.0020931721664965153, -0.03629942983388901, 0.035115811973810196, -0.0049993437714874744, -0.0055551063269376755, 0.004535607527941465, -0.03668130189180374, -0.0908203125, -0.09523818641901016, -0.025187628343701363, -0.0261615552008152, 0.06810034066438675, 0.025372521951794624, 0.03367523476481438, -0.08432499319314957, 0.22894985973834991, -0.018829667940735817, -0.1020529642701149, -0.05269135162234306, -0.087642602622509, -0.09401515871286392, -0.061442457139492035, 0.00898037664592266, 0.009415827691555023, -0.06634224206209183, 0.16308832168579102, -0.037578485906124115, 0.04019780457019806, 0.0035736393183469772, -0.01745178923010826, 0.14756818115711212, 0.13362270593643188, -0.09913535416126251, -0.04084404185414314, 0.050463564693927765, -0.01758638396859169, -0.06315455585718155, -0.05650879442691803, -0.008108106441795826, -0.01724044233560562, 0.026140859350562096, 0.08999927341938019, 0.04374882951378822, 0.06062399968504906, 0.024120861664414406, -0.05530982464551926, 0.09268014132976532, -0.1442469209432602, 0.012789514847099781, -0.011745653115212917, -0.03568011522293091, 0.020065519958734512, 0.05122267082333565, 0.010241715237498283, -0.1009972095489502, 0.11985361576080322, -0.056974511593580246, -0.05309813842177391, -0.07414074242115021, -0.08331410586833954, -0.0007332009263336658, -0.0058852024376392365, -0.04857197403907776, -0.07863380759954453, -0.1633366495370865, -0.0390341691672802, 0.027439920231699944, -0.04327600076794624, -0.03851241245865822, 0.03943689540028572, -0.03185209259390831, 0.010241597890853882, -0.01125339325517416, -0.015271516516804695, -0.03146151080727577, 0.026631422340869904, -0.05364467203617096, 0.03392340615391731, 0.07543806731700897, 0.03785515949130058, -0.11449289321899414, 0.07110154628753662, -0.16617505252361298, 0.14107802510261536, -0.010560273192822933, 0.021724414080381393, -0.10606473684310913, -0.09499424695968628, -0.03797779232263565, -0.02714391238987446, -0.0013265280285850167, 0.09672810882329941, -0.18765775859355927, -0.03624507039785385, 0.2002849280834198, -0.0782412514090538, -0.08512017130851746, 0.06998749822378159, -0.07486116141080856, 0.037537820637226105, 0.13838568329811096, 0.06038721278309822, 0.16056543588638306, -0.10800275951623917, -0.07086686789989471, -0.043035246431827545, -0.05888418108224869, 0.20766250789165497, 0.04982646554708481, -0.009932853281497955, 0.010802362114191055, 0.010341962799429893, -0.019618740305304527, -0.025151295587420464, -0.02154708467423916, -0.04266751930117607, -0.011806420981884003, 0.0147011149674654, -0.01661117561161518, -0.04772906005382538, -0.06465113162994385, -0.028238384053111076, -0.1099085733294487, 0.034609533846378326, 0.09905867278575897, -0.06910546123981476, 0.009691469371318817, -0.0946221649646759, 0.0011337422765791416, -0.03060479275882244, 0.019855357706546783, -0.19387194514274597, -0.05712830275297165, 0.017641397193074226, -0.06371184438467026, 0.08874130994081497, 0.021775996312499046, 0.03981338068842888, 0.0614033006131649, -0.013000252656638622, 0.025035826489329338, -0.04069388657808304, -0.024093078449368477, -0.038306474685668945, -0.1407761424779892, -0.06421288102865219, -0.050224315375089645, 0.0844673439860344, -0.13930672407150269, 0.007182103116065264, 0.1089545339345932, 0.11585395783185959, 0.021796055138111115, -0.06019419804215431, 0.011061882600188255, -0.032938867807388306, -0.034863799810409546, -0.11139079183340073, -0.055110733956098557, 0.011521813459694386, -0.041747741401195526, 0.15071594715118408, -0.1805654615163803, -0.07470567524433136, 0.10142405331134796, 0.1518472135066986, -0.10864951461553574, 0.0203737560659647, -0.08575736731290817, -0.010574509389698505, -0.054671499878168106, -0.042830172926187515, 0.26833030581474304, 0.03705507144331932, 0.07962989062070847, -0.10729223489761353, -0.10148587077856064, -0.0014905816642567515, -0.03851968050003052, -0.02690912038087845, 0.029883798211812973, 0.0215862225741148, -0.18481223285198212, 0.02754257433116436, -0.0018271213630214334, 0.1082417443394661, 0.20614174008369446, 0.047720711678266525, -0.09182765334844589, -0.05910453200340271, -0.07548147439956665, 0.0035848822444677353, 0.05346030369400978, 0.019309837371110916, 0.027446448802947998, 0.041340913623571396, 0.05559539794921875, 0.038879841566085815, -0.11906753480434418, 0.011045621708035469, 0.07953579723834991, -0.040766891092061996, -0.06659753620624542, 0.017129993066191673, 0.017474668100476265, 0.08472371101379395, 0.08030349761247635, 0.1455347090959549, -0.06628841161727905, -0.04654709994792938, -0.14543578028678894, 0.14564158022403717, -0.07662364840507507, -0.25991421937942505, -0.13922849297523499, -0.07261036336421967, 0.02850371040403843, 0.0065330564975738525, 0.039277583360672, -0.06212356314063072, -0.04322463274002075, -0.0991644561290741, 0.0831693708896637, -0.05315016582608223, -0.011099312454462051, 0.007540753576904535, 0.0174606591463089, -0.022045539692044258, -0.10790602117776871, -0.03184089809656143, 0.03809118643403053, -0.09859777987003326, -0.011640165001153946, 0.03073561005294323, 0.03742009773850441, 0.15998360514640808, -0.015495913103222847, -0.000498849549330771, -0.031903788447380066, 0.28490203619003296, -0.12146896123886108, 0.06451257318258286, 0.154668927192688, -0.01884661801159382, 0.057997241616249084, 0.07369168102741241, 0.007591972127556801, -0.07324695587158203, 0.07832706719636917, 0.0774749144911766, -0.09332604706287384, -0.21877804398536682, -0.026209581643342972, -0.013402635231614113, 0.023643311113119125, 0.13024014234542847, 0.05803428590297699, 0.046816635876894, 0.004042428452521563, -0.10103561729192734, 0.054926250129938126, 0.026835717260837555, 0.10503571480512619, -0.0613313652575016, -0.010567198507487774, 0.05004917085170746, -0.06492885947227478, 0.028542442247271538, 0.13736142218112946, 0.035147134214639664, 0.20012710988521576, -0.06281468272209167, 0.09557997435331345, 0.07629136741161346, 0.09833935648202896, 0.037641942501068115, 0.018621744588017464, -0.01113868597894907, 0.009703845717012882, -0.0028998428024351597, -0.09701851010322571, -0.012103800661861897, 0.04724966734647751, 0.02577849291265011, -0.021433843299746513, -0.04256055876612663, -0.044636406004428864, 0.04360336810350418, 0.23889873921871185, -0.003852906869724393, -0.18237851560115814, -0.11347250640392303, 0.045288778841495514, -0.0787702202796936, -0.054079435765743256, -0.01929914765059948, 0.07379814982414246, -0.21465638279914856, 0.07868848741054535, -0.03382011875510216, 0.11005542427301407, -0.1084669828414917, 0.00010543148528086022, 0.08921700716018677, 0.04650329053401947, -0.06605716794729233, 0.09637659043073654, -0.16702623665332794, 0.06768086552619934, -0.008888354524970055, 0.07130147516727448, -0.07480479776859283, 0.028830500319600105, 0.0022873233538120985, 0.047624196857213974, 0.08284628391265869, 0.015180408954620361, 0.011989112943410873, -0.0048391674645245075, -0.04490481689572334, 0.01221479568630457, 0.06017722189426422, -0.12048587203025818, 0.1278245598077774, -0.02678263746201992, 0.03619150444865227, -0.038347065448760986, -0.09221319854259491, -0.08382311463356018, -0.16763311624526978, 0.08651846647262573, -0.12051435559988022, -0.0015694469911977649, -0.07043778896331787, -0.024905649945139885, 0.038292501121759415, 0.25796186923980713, -0.05563177168369293, -0.07514619827270508, -0.1380377560853958, 0.023822028189897537, 0.13910962641239166, -0.08305121958255768, 0.0061313011683523655, -0.010756761766970158, 0.20216183364391327, 0.0036863870918750763, -0.12569420039653778, -0.013274253346025944, -0.06039676070213318, -0.1649402529001236, -0.008311563171446323, 0.17534726858139038, 0.06049327924847603, 0.029101664200425148, 0.004879700019955635, -0.011178012937307358, -0.03969857096672058, -0.17656376957893372, 0.022098038345575333, 0.15315239131450653, -0.00777093693614006, 0.0020520309917628765, 0.04770918935537338, 0.03077138401567936, -0.12960964441299438, 0.015733325853943825, 0.05534430593252182, 0.17474281787872314, -0.07787331193685532, 0.17990374565124512, 0.02639606222510338, -0.09028191864490509, -0.1533290445804596, 0.015466355718672276, 0.03446771204471588, 0.04076870158314705, 0.03999919816851616, -0.20349565148353577, 0.05046108365058899, 0.040902961045503616, 0.004049139097332954, 0.049514029175043106, -0.3275255858898163, -0.15949833393096924, -0.0072209532372653484, 0.0034248793963342905, -0.1317259520292282, -0.045282091945409775, -0.036537136882543564, -0.08934888243675232, -0.2415161281824112, 0.10208076238632202, -0.11317109316587448, 0.07946845889091492, 0.029678674414753914, 0.09953218698501587, 0.04483918473124504, -0.048073265701532364, 0.1316891312599182, -0.019825635477900505, 0.06537771970033646, -0.09482094645500183, -0.05671592429280281, 0.07648830860853195, -0.07080426812171936, 0.09431277215480804, 0.027528051286935806, 0.08210660517215729, -0.10100992023944855, -0.08622051775455475, -0.06383731216192245, 0.0025975857861340046, -0.05464096739888191, -0.08435440808534622, -0.09120769053697586, 0.08257190883159637, 0.11931944638490677, -0.04969985410571098, -0.08900067210197449, -0.0657593384385109, 0.006912596989423037, 0.047878146171569824, 0.12605881690979004, 0.06825485080480576, -0.07255028933286667, 0.003550600027665496, 0.01821918971836567, 0.016334159299731255, -0.1881295144557953, 0.046601783484220505, 0.09390941262245178, 0.043491922318935394, 0.10692855715751648, 0.008991282433271408, -0.16306109726428986, 0.007852008566260338, 0.05717509984970093, -0.16155776381492615, -0.1321249157190323, -0.0411209911108017, 0.02844793163239956, -0.10848083347082138, -0.05262580141425133, 0.13130325078964233, -0.03764769062399864, -0.03389196842908859, 0.00473272567614913, 0.037503041326999664, -0.046338193118572235, 0.09612026810646057, -0.008661570027470589, 0.045559361577034, -0.07015504688024521, 0.11896156519651413, 0.0683254823088646, 0.004486883990466595, 0.04000120609998703, 0.07505630701780319, -0.09187109023332596, 0.01472106296569109, -0.10141964256763458, 0.000995909096673131, -0.027048222720623016, -0.013175788335502148, 0.025601547211408615, -0.03729657828807831, 0.050821006298065186, 0.08925369381904602, -0.01699104532599449, 0.10787446796894073, -0.05151674523949623, 0.018689874559640884, -0.1294596940279007, 0.06546937674283981, 0.04160921648144722, 0.01958358846604824, -0.11019933968782425, 0.2051955610513687, 0.03475454822182655, 0.0980646014213562, -0.034982580691576004, -0.062245529145002365, -0.05342402681708336, -0.009939901530742645, -0.08234188705682755, -0.03616490587592125, -0.09314630925655365, -0.02212422341108322, -0.005822324194014072, -0.030221344903111458, -0.03350349888205528, 0.04376715049147606, -0.03446581959724426, -0.05985141918063164, -0.07544542849063873, 0.04185090586543083, -0.1347348541021347, 0.03890227898955345, 0.11655489355325699, -0.05645296722650528, 0.12105011194944382, 0.05543427914381027, -0.03554467856884003, 0.02571762353181839, -0.12959928810596466, 0.04778588190674782, -0.0019312421791255474, 0.016215557232499123, 0.017083968967199326, -0.15156851708889008, 0.007043731864541769, -0.03776755556464195, -0.06650813668966293, 0.008669058792293072, -0.021159397438168526, -0.13441495597362518, -0.006471614819020033, 0.08683052659034729, -0.015519394539296627, -0.06958998739719391, 0.06585372239351273, 0.05722547695040703, 0.022625135257840157, 0.06054570898413658, -0.017174767330288887, 0.07041376829147339, -0.17788775265216827, -0.05718725174665451, -0.002203238196671009, 0.03450677543878555, 0.04100518301129341, -0.02080717124044895, 0.039825692772865295, -0.021577414125204086, 0.20032857358455658, 0.01571839116513729, -0.009675967507064342, 0.04060406982898712, -0.06743369996547699, -0.0009564550709910691, 0.04252959415316582, 0.0856097936630249, -0.02034612186253071, -0.035873234272003174, 0.0035986758302897215, -0.01746022142469883, -0.09152211993932724, -0.021600797772407532, 0.11167722195386887, 0.018731433898210526, 0.19847653806209564, -0.052984222769737244, 0.05531669780611992, -0.01598246768116951, -0.11938619613647461, -0.01936367154121399, -0.046221040189266205, 0.03327285870909691, -0.06084134057164192, 0.051121748983860016, 0.18999311327934265, -0.1540270298719406, 0.11691484600305557, 0.02889314666390419, -0.06132573261857033, -0.12133221328258514, -0.19750860333442688, -0.014567517675459385, -0.03346218541264534, 0.02508426271378994, -0.140226811170578, 0.09451532363891602, 0.02022475004196167, 0.03869329020380974, -0.061909858137369156, 0.14048761129379272, -0.0932595506310463, -0.13034458458423615, 0.04334111511707306, 0.022893205285072327, 0.03218759223818779, 0.048406872898340225, 0.08606953918933868, 0.030898943543434143, 0.001338713220320642, 0.07009034603834152, 0.04177677631378174, 0.031435925513505936, 0.03786207735538483, -0.02849959395825863, -0.03886380046606064, 0.026810534298419952, -0.0004947488196194172, 0.030772503465414047, 0.09096959978342056, 0.06489482522010803, -0.021237434819340706, -0.020030220970511436, 0.30948665738105774, -0.02950488030910492, -0.034263141453266144, -0.1904522031545639, 0.16986528038978577, 0.01077895238995552, -0.0033870467450469732, 0.01928214728832245, -0.12078235298395157, 0.018662793561816216, 0.12143193185329437, 0.15322741866111755, -0.018524590879678726, 0.02359645441174507, -0.0306467954069376, 0.018240036442875862, 0.035629238933324814, 0.10395451635122299, 0.06369555741548538, 0.20269548892974854, -0.030119437724351883, 0.053670480847358704, -0.014601321890950203, -0.02098306268453598, 0.010810335166752338, 0.10894006490707397, -0.037101760506629944, 0.008444980718195438, -0.0544033981859684, 0.10373634099960327, -0.0528932586312294, -0.29446282982826233, -0.03453174605965614, -0.024070877581834793, -0.09235022217035294, 0.07586550712585449, -0.03909317031502724, -0.018072329461574554, 0.085443876683712, 0.028509045019745827, -0.05117209255695343, 0.14763076603412628, 0.053561918437480927, -0.0511881448328495, -0.011143295094370842, 0.107207290828228, -0.020821766927838326, 0.16651834547519684, -0.031269799917936325, 0.006932639051228762, 0.08058249950408936, 0.018475543707609177, -0.1259174942970276, 0.0041462332010269165, 0.037809595465660095, -0.05668599531054497, -0.02267957106232643, 0.1960417777299881, 0.012211935594677925, 0.03077942505478859, 0.07008901983499527, -0.05765794217586517, 0.01981895975768566, -0.0434001088142395, 0.06416762620210648, -0.1425832360982895, 0.061011385172605515, -0.07965109497308731, 0.1255800873041153, 0.18921346962451935, -0.0675891563296318, 0.033757347613573074, -0.05682706460356712, 0.008788538165390491, -0.028830192983150482, 0.0672810822725296, -0.01795543171465397, -0.11899816244840622, 0.008828084915876389, 0.032902371138334274, 0.015152491629123688, -0.1774129569530487, -0.07879792153835297, 0.07946017384529114, -0.04843024164438248, 0.020997315645217896, 0.17633052170276642, 0.017855841666460037, 0.058852653950452805, -0.03972621262073517, -0.02553320862352848, -0.005500572267919779, 0.12036283314228058, -0.1705615371465683, -0.08111409097909927 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5688d59e74bfc07b0531636114f56c1e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">System of a Down</div> <a href="https://genius.com/artists/system-of-a-down"> <div style="text-align: center; font-size: 14px;">@system-of-a-down</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from System of a Down. Dataset is available [here](https://huggingface.co/datasets/huggingartists/system-of-a-down). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/system-of-a-down") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3m1sikv8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on System of a Down's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/wf3qe4yi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/wf3qe4yi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/system-of-a-down') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/system-of-a-down") model = AutoModelWithLMHead.from_pretrained("huggingartists/system-of-a-down") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/system-of-a-down"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/system-of-a-down
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/system-of-a-down", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/system-of-a-down #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">System of a Down</div> <a href="URL <div style="text-align: center; font-size: 14px;">@system-of-a-down</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from System of a Down. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on System of a Down's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from System of a Down.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on System of a Down's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/system-of-a-down #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from System of a Down.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on System of a Down's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 87, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/system-of-a-down #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from System of a Down.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on System of a Down's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.029352828860282898, 0.16950668394565582, -0.00323482439853251, 0.053042102605104446, 0.09562677890062332, 0.002698916243389249, 0.06002982333302498, 0.10996436327695847, -0.0016010089311748743, 0.06629177182912827, 0.06469351798295975, 0.05562575161457062, 0.08179105818271637, 0.06695231795310974, 0.058801908046007156, -0.251930296421051, 0.037875160574913025, -0.07479625195264816, 0.0065836189314723015, 0.09668293595314026, 0.08375123888254166, -0.0737505778670311, 0.08493915945291519, 0.038331806659698486, -0.04231887310743332, -0.0023344613146036863, 0.004644799046218395, -0.055356886237859726, 0.07763180881738663, 0.08497164398431778, 0.03326196223497391, 0.03172222152352333, 0.0680881142616272, -0.1687176376581192, 0.026252539828419685, 0.12168242037296295, 0.0316803976893425, 0.08508691936731339, 0.05656096339225769, -0.06171758472919464, 0.12548114359378815, -0.019819963723421097, 0.08716230094432831, 0.06450972706079483, -0.10321804881095886, -0.09680624306201935, -0.14500683546066284, 0.06155044212937355, 0.0907929465174675, 0.07727394253015518, -0.02342352271080017, 0.089882031083107, -0.03143642842769623, 0.049043066799640656, 0.239593505859375, -0.240369513630867, -0.004104434512555599, 0.07419972866773605, 0.06291453540325165, 0.01411823183298111, -0.08919224888086319, 0.007010035682469606, 0.04282746464014053, 0.024647170677781105, 0.04209218919277191, -0.02240220084786415, 0.15965020656585693, 0.01637229695916176, -0.10539975762367249, -0.07000791281461716, 0.08576904982328415, -0.014391823671758175, -0.08884090930223465, -0.1380203664302826, 0.0035423655062913895, -0.03615184873342514, 0.02354258857667446, 0.014362170360982418, -0.004918642807751894, -0.00499791419133544, -0.04850255697965622, -0.11313924193382263, -0.07487227022647858, -0.03415760397911072, -0.018499741330742836, 0.05378314107656479, 0.048313818871974945, 0.034476038068532944, -0.0716170072555542, 0.21503601968288422, 0.03161943331360817, -0.0993451327085495, -0.06465607136487961, -0.12036861479282379, -0.09155716747045517, -0.03946985676884651, -0.007585687562823296, -0.0017315390286967158, -0.027677632868289948, 0.14084957540035248, -0.024592552334070206, 0.029454557225108147, -0.04121950641274452, 0.00870463252067566, 0.1304166316986084, 0.14537690579891205, -0.13479413092136383, -0.04044817388057709, 0.07218975573778152, -0.0005993801169097424, -0.05830499902367592, -0.05793720483779907, -0.0027531739324331284, -0.025071654468774796, 0.040754638612270355, 0.07072101533412933, 0.08342033624649048, 0.06984621286392212, 0.004378683865070343, -0.0626109167933464, 0.05298914760351181, -0.14058232307434082, 0.007185152731835842, -0.010717717930674553, -0.06547615677118301, 0.036139555275440216, 0.05375046655535698, 0.003701641922816634, -0.10833845287561417, 0.08330833911895752, -0.08426075428724289, -0.04848567768931389, -0.0920930728316307, -0.10864899307489395, 0.0003663189127109945, -0.04387747123837471, -0.019814789295196533, -0.07003026455640793, -0.16280192136764526, -0.03538673743605614, 0.022617001086473465, -0.057615265250205994, -0.01907024346292019, 0.025534266605973244, -0.04832078889012337, 0.002543875016272068, -0.014463305473327637, -0.01596451923251152, -0.018948396667838097, 0.04244586452841759, -0.09132152050733566, 0.04068981111049652, 0.06655284762382507, 0.036317940801382065, -0.11782122403383255, 0.06570166349411011, -0.1623430699110031, 0.13066953420639038, -0.029108120128512383, -0.003427949035540223, -0.0875878632068634, -0.09512876719236374, -0.013271027244627476, -0.03343980759382248, 0.028235360980033875, 0.12909576296806335, -0.1725320816040039, -0.019302036613225937, 0.2093513458967209, -0.07089189440011978, -0.052879199385643005, 0.07077635824680328, -0.0742795318365097, 0.031718842685222626, 0.1156810075044632, 0.049539715051651, 0.1576647311449051, -0.09858545660972595, -0.08817032724618912, -0.03078625164926052, -0.09042907506227493, 0.18823857605457306, 0.021139658987522125, -0.011384900659322739, 0.0357644259929657, 0.016178345307707787, -0.024393882602453232, -0.008321679197251797, -0.03388998284935951, -0.03762469068169594, -0.01006645243614912, 0.003637215355411172, 0.013593724928796291, -0.04890551418066025, -0.045069094747304916, -0.00037846993654966354, -0.10392440855503082, 0.04538213834166527, 0.09848989546298981, -0.07773958146572113, 0.018555009737610817, -0.11434190720319748, 0.03662184253334999, -0.04432474449276924, 0.020414330065250397, -0.18001273274421692, -0.02219937928020954, 0.009983065538108349, -0.07189622521400452, 0.06988027691841125, 0.02870052680373192, 0.043028026819229126, 0.06549259275197983, -0.013753718696534634, 0.009280450642108917, -0.04275918006896973, -0.0008925143629312515, -0.0411226712167263, -0.17685532569885254, -0.056205663830041885, -0.04142001271247864, 0.07683335244655609, -0.11126231402158737, 0.007102243136614561, 0.09376398473978043, 0.14156712591648102, 0.03580942749977112, -0.05834696814417839, 0.029251132160425186, -0.03651152178645134, -0.03613929823040962, -0.09830086678266525, -0.051565077155828476, 0.011762631125748158, -0.03782125189900398, 0.16594170033931732, -0.14211499691009521, -0.10587450861930847, 0.12754681706428528, 0.08678025007247925, -0.07726351916790009, 0.03686085343360901, -0.06857479363679886, -0.017417922616004944, -0.030335139483213425, -0.07008258253335953, 0.2337004542350769, 0.05300062894821167, 0.09166964143514633, -0.08794791996479034, -0.07951467484235764, 0.0018340052338317037, -0.04103158414363861, -0.02680594101548195, 0.03219863027334213, 0.025463473051786423, -0.17099282145500183, 0.037712790071964264, -0.014491954818367958, 0.08508990705013275, 0.18496979773044586, 0.023565644398331642, -0.09463096410036087, -0.055368825793266296, -0.06666649878025055, 0.005558023229241371, 0.08663491904735565, 0.020307891070842743, 0.05003828555345535, 0.041304007172584534, 0.043553221970796585, 0.04276968538761139, -0.10516097396612167, 0.016650959849357605, 0.056131888180971146, -0.027430517598986626, -0.05126536637544632, 0.01025475561618805, 0.03312906622886658, 0.09039454907178879, 0.06232765316963196, 0.09883590042591095, -0.047297682613134384, -0.057555925101041794, -0.12652310729026794, 0.1388680338859558, -0.09861068427562714, -0.20814529061317444, -0.1409798413515091, -0.08136150985956192, 0.0035782279446721077, 0.006679616868495941, 0.025431254878640175, -0.04441025108098984, -0.04450039565563202, -0.09844836592674255, 0.0726170539855957, -0.0355352982878685, -0.008654407225549221, -0.006578860338777304, 0.037457022815942764, -0.012158891186118126, -0.12492238730192184, -0.02000119723379612, 0.024391744285821915, -0.08418161422014236, 0.012995495460927486, 0.0378519743680954, 0.04353403300046921, 0.13881780207157135, -0.006030026823282242, -0.0027035027742385864, -0.023796673864126205, 0.25623050332069397, -0.10346738249063492, 0.05274893343448639, 0.15925176441669464, -0.03703051805496216, 0.06432536989450455, 0.0528734065592289, -0.0008259380701929331, -0.05178274214267731, 0.05799207091331482, 0.06319422274827957, -0.06747651845216751, -0.1994905322790146, -0.022507788613438606, -0.01840159296989441, 0.016604909673333168, 0.1012977585196495, 0.02629447542130947, 0.030391082167625427, 0.014034423045814037, -0.09796669334173203, 0.051388129591941833, 0.04760919511318207, 0.09588373452425003, -0.04461957886815071, -0.02598070725798607, 0.056619804352521896, -0.054819054901599884, 0.02792358212172985, 0.11081930249929428, 0.028481293469667435, 0.25836774706840515, -0.08146388828754425, 0.056247033178806305, 0.09189224988222122, 0.08859215676784515, 0.020855095237493515, 0.051763057708740234, -0.023626070469617844, 0.03016568534076214, -0.002784223761409521, -0.09688155353069305, -0.013583497144281864, 0.034948501735925674, 0.024492496624588966, -0.01422697864472866, -0.05687679722905159, -0.06034788861870766, 0.043145839124917984, 0.21405529975891113, 0.04787584766745567, -0.17073628306388855, -0.08714877814054489, 0.061177484691143036, -0.04215245693922043, -0.05304064601659775, -0.01613016054034233, 0.06925579905509949, -0.19785913825035095, 0.03503630310297012, -0.04456233233213425, 0.10892881453037262, -0.15113253891468048, 0.0037586900871247053, 0.02869410626590252, 0.055331651121377945, -0.0628545731306076, 0.06954124569892883, -0.1554577797651291, 0.07428333908319473, 0.010652879253029823, 0.07615648210048676, -0.07311555743217468, 0.023641709238290787, 0.04182232543826103, 0.016548868268728256, 0.08918996900320053, 0.008484327234327793, 0.01758788339793682, -0.08133788406848907, -0.05797990411520004, 0.004834184423089027, 0.05948055908083916, -0.06543764472007751, 0.13816863298416138, -0.03672754019498825, 0.03615378960967064, -0.02177709899842739, -0.06112755835056305, -0.1055528074502945, -0.1604274958372116, 0.07527104020118713, -0.12039071321487427, -0.009085237979888916, -0.05844832584261894, -0.026100629940629005, 0.01652419939637184, 0.19771672785282135, -0.11740048229694366, -0.07712476700544357, -0.12485378980636597, 0.019772224128246307, 0.15192896127700806, -0.07438444346189499, 0.011255589313805103, 0.01076521910727024, 0.15203146636486053, 0.0189190860837698, -0.13706281781196594, -0.0121945571154356, -0.05798240378499031, -0.17445418238639832, -0.017923617735505104, 0.11539260298013687, 0.08785789459943771, 0.04100114107131958, 0.015455333516001701, -0.007936939597129822, -0.022914765402674675, -0.17280304431915283, 0.0065656909719109535, 0.16279597580432892, 0.03905925154685974, 0.03621283546090126, 0.005992290563881397, 0.021456731483340263, -0.12957163155078888, 0.041767507791519165, 0.048334717750549316, 0.19436338543891907, -0.07555364072322845, 0.15704011917114258, 0.013774668797850609, -0.08845330774784088, -0.17883120477199554, 0.02463097870349884, 0.008191335946321487, 0.041222624480724335, 0.05153382197022438, -0.16720382869243622, 0.014111535623669624, 0.02599545381963253, -0.005455339327454567, 0.06511761993169785, -0.31122562289237976, -0.133008673787117, 0.032910700887441635, 0.02476591244339943, -0.05922640860080719, -0.02306375466287136, -0.03188149631023407, -0.07282106578350067, -0.24925993382930756, 0.08069183677434921, -0.11692211776971817, 0.08643501996994019, 0.015044700354337692, 0.04589260369539261, 0.05260901525616646, -0.057848233729600906, 0.1309419870376587, -0.04332982748746872, 0.07559185475111008, -0.09188298135995865, -0.02965550497174263, 0.10356650501489639, -0.05286530405282974, 0.09041348844766617, 0.015787186101078987, 0.08301287144422531, -0.09887256473302841, -0.06201034039258957, -0.06459596753120422, 0.010144484229385853, -0.05805589631199837, -0.09018179029226303, -0.08532651513814926, 0.09942582249641418, 0.12900184094905853, -0.03342285007238388, -0.10580523312091827, -0.05485531687736511, -0.04695463180541992, 0.08468230068683624, 0.11124427616596222, 0.07995413988828659, -0.059316832572221756, 0.01776130124926567, 0.017472971230745316, 0.03001251630485058, -0.13189765810966492, 0.0469827838242054, 0.08507326990365982, 0.027125777676701546, 0.09017816931009293, 0.024071380496025085, -0.1670711636543274, 0.03405686840415001, 0.040068093687295914, -0.1383318305015564, -0.10019431263208389, -0.02958577312529087, -0.017152920365333557, -0.09650822728872299, -0.032947491854429245, 0.14599035680294037, -0.02474520541727543, -0.02980111911892891, -0.0007007103995420039, 0.06286691129207611, -0.04050619155168533, 0.10502941161394119, 0.017580384388566017, 0.042741693556308746, -0.07178763300180435, 0.09354256093502045, 0.0597873218357563, 0.007804239168763161, 0.03695903718471527, 0.01996484212577343, -0.0855669379234314, 0.0008733845315873623, -0.09323430061340332, -0.0013144573895260692, -0.03479545935988426, -0.002428903244435787, -0.002524093259125948, -0.040860358625650406, 0.026313554495573044, 0.08304763585329056, -0.009706496261060238, 0.1299595683813095, -0.02828376740217209, -0.003535797353833914, -0.12943102419376373, 0.07780664414167404, 0.048607323318719864, 0.010621459223330021, -0.10826984792947769, 0.1607024073600769, 0.019436851143836975, 0.0841703712940216, -0.04450979083776474, -0.0533524826169014, -0.07744519412517548, -0.010789230465888977, -0.13765470683574677, -0.04075085371732712, -0.08673450350761414, -0.03835098445415497, -0.014537799172103405, -0.031382329761981964, -0.02413017302751541, 0.05044059082865715, -0.02477811835706234, -0.06443338096141815, -0.0536767914891243, 0.049178313463926315, -0.1418849229812622, 0.013960795477032661, 0.12365344166755676, -0.07661464065313339, 0.11456768959760666, 0.04922758415341377, -0.04292505607008934, 0.02286248281598091, -0.0724567100405693, 0.019719984382390976, -0.028053849935531616, 0.018039533868432045, 0.030500397086143494, -0.13417382538318634, 0.011994882486760616, -0.054606273770332336, -0.0608481764793396, 0.007030779030174017, 0.012054785154759884, -0.11910706758499146, -0.002597747603431344, 0.06465564668178558, 0.011412182822823524, -0.07052673399448395, 0.07438365370035172, 0.07213311642408371, 0.03223389759659767, 0.08013995736837387, -0.020316578447818756, 0.07795678079128265, -0.17008139193058014, -0.04265602305531502, 0.008973936550319195, 0.014934051781892776, 0.09047871828079224, -0.019092757254838943, 0.050558965653181076, -0.02207307144999504, 0.19959889352321625, -0.0014989710180088878, -0.023704200983047485, 0.03409542143344879, -0.02570587582886219, -0.0036665790248662233, 0.05304893106222153, 0.06797648966312408, -0.03401166573166847, -0.036389078944921494, -0.022818364202976227, -0.0020766190718859434, -0.07405645400285721, -0.0685763880610466, 0.10886763781309128, 0.05318686366081238, 0.14937667548656464, -0.035525668412446976, 0.06921885907649994, -0.013557021506130695, -0.10630753636360168, -0.013111790642142296, -0.024323711171746254, 0.032475199550390244, -0.0622379407286644, 0.07828514277935028, 0.17186889052391052, -0.14277616143226624, 0.1230154037475586, 0.01726912520825863, -0.059938669204711914, -0.11094818264245987, -0.20025630295276642, -0.017222076654434204, -0.029654184356331825, 0.03339998796582222, -0.1256476491689682, 0.07730229943990707, 0.03714100271463394, 0.03088623471558094, -0.06241188198328018, 0.09993555396795273, -0.059021130204200745, -0.1184704452753067, 0.026523523032665253, 0.033150359988212585, 0.008502578362822533, 0.03732791915535927, 0.06368181109428406, 0.03507017716765404, 0.023990260437130928, 0.06246260181069374, 0.032551564276218414, 0.038216788321733475, 0.043026357889175415, -0.027842601761221886, -0.05363079160451889, 0.019990285858511925, 0.002941776067018509, 0.039928920567035675, 0.10981997847557068, 0.06483364850282669, -0.023128066211938858, -0.04259709268808365, 0.29911142587661743, -0.041286978870630264, -0.03072771616280079, -0.17394664883613586, 0.15894241631031036, 0.0435253269970417, -0.0053946226835250854, 0.02511921152472496, -0.14381268620491028, 0.0224639642983675, 0.1468304544687271, 0.17800915241241455, -0.06314301490783691, 0.010214125737547874, -0.038031965494155884, 0.009820591658353806, 0.022810088470578194, 0.08634704351425171, 0.06287728995084763, 0.1999007910490036, -0.03993535041809082, 0.05671318247914314, -0.0036867307499051094, -0.009934008121490479, -0.008908338844776154, 0.10333918780088425, -0.033851031213998795, 0.0014277445152401924, -0.06488627940416336, 0.08894001692533493, -0.06612569838762283, -0.2516498267650604, -0.017060719430446625, -0.03191659227013588, -0.08444182574748993, 0.05376196652650833, -0.043314624577760696, -0.021163875237107277, 0.0857313722372055, 0.01987512968480587, -0.02107906900346279, 0.13907407224178314, 0.033201005309820175, -0.025220653042197227, -0.01151399128139019, 0.08159080892801285, -0.014399285428225994, 0.19009310007095337, -0.015457870438694954, 0.014783455990254879, 0.09099774807691574, 0.03572419658303261, -0.1215236634016037, -0.008203129284083843, 0.02843121811747551, -0.07734448462724686, -0.015512395650148392, 0.18784461915493011, 0.017547640949487686, 0.017064223065972328, 0.05988488346338272, -0.03837359696626663, 0.03784025087952614, -0.09036755561828613, 0.040328383445739746, -0.12384495884180069, 0.04846303164958954, -0.08192563056945801, 0.14213043451309204, 0.17310558259487152, -0.06751789152622223, 0.03333593159914017, -0.0486845001578331, -0.015656929463148117, -0.018734395503997803, 0.05242982506752014, -0.01983199082314968, -0.10347829014062881, 0.015515640377998352, 0.025124402716755867, 0.01121248584240675, -0.1873355507850647, -0.0733267143368721, 0.06459946185350418, -0.05661816522479057, 0.014208785258233547, 0.16215737164020538, 0.03427324816584587, 0.05179481580853462, -0.03452897444367409, 0.002212169812992215, -0.026098020374774933, 0.10144449025392532, -0.15062600374221802, -0.08587640523910522 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/73716ad8dca0ea2fd5f02924ffcbcdad.639x639x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Танцы Минус (Tanzy Minus)</div> <a href="https://genius.com/artists/tanzy-minus"> <div style="text-align: center; font-size: 14px;">@tanzy-minus</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Танцы Минус (Tanzy Minus). Dataset is available [here](https://huggingface.co/datasets/huggingartists/tanzy-minus). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/tanzy-minus") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14vmwaxq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Танцы Минус (Tanzy Minus)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/ru5wxieh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/ru5wxieh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/tanzy-minus') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/tanzy-minus") model = AutoModelWithLMHead.from_pretrained("huggingartists/tanzy-minus") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/tanzy-minus"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/tanzy-minus
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/tanzy-minus", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tanzy-minus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Танцы Минус (Tanzy Minus)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@tanzy-minus</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Танцы Минус (Tanzy Minus). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Танцы Минус (Tanzy Minus)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Танцы Минус (Tanzy Minus).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Танцы Минус (Tanzy Minus)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tanzy-minus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Танцы Минус (Tanzy Minus).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Танцы Минус (Tanzy Minus)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 57, 80, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tanzy-minus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Танцы Минус (Tanzy Minus).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Танцы Минус (Tanzy Minus)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03234414756298065, 0.15887291729450226, -0.005843218415975571, 0.08074069768190384, 0.06542875617742538, 0.0024950657971203327, 0.07193728536367416, 0.10631263256072998, -0.010483737103641033, 0.058566298335790634, 0.06303402781486511, 0.037086132913827896, 0.07251851260662079, 0.11137943714857101, 0.02132314071059227, -0.24421517550945282, 0.01821465604007244, -0.058184001594781876, -0.025661900639533997, 0.09184904396533966, 0.09309644252061844, -0.07535780966281891, 0.05218374729156494, 0.0018637583125382662, -0.040205299854278564, -0.008233106695115566, 0.009185969829559326, -0.053683407604694366, 0.059963520616292953, 0.08664190024137497, 0.05238453671336174, 0.03672432899475098, 0.04483117535710335, -0.16369301080703735, 0.02642228454351425, 0.11181551218032837, 0.03233668580651283, 0.08747207373380661, 0.07130405306816101, -0.05868861824274063, 0.12095309793949127, -0.05996963009238243, 0.09348370879888535, 0.04042094573378563, -0.11038191616535187, -0.10624989122152328, -0.11645834147930145, 0.037175074219703674, 0.05558565631508827, 0.05406011641025543, -0.018969940021634102, 0.08894625306129456, -0.0672454908490181, 0.0776294469833374, 0.23205232620239258, -0.25419822335243225, -0.008382866159081459, 0.020137755200266838, 0.04542875662446022, 0.03568417206406593, -0.08018485456705093, -0.0011152072111144662, 0.024940073490142822, 0.04167213290929794, 0.059447430074214935, -0.04079161956906319, 0.10321280360221863, -0.031531523913145065, -0.10786187648773193, -0.07050729542970657, 0.09122343361377716, -0.02612484060227871, -0.08248038589954376, -0.11245560646057129, -0.036397431045770645, -0.05786365270614624, 0.024512479081749916, 0.02142011746764183, 0.008378465659916401, -0.0038600750267505646, -0.07834375649690628, -0.1231844425201416, -0.050926126539707184, -0.06180345639586449, -0.0414135679602623, 0.09051745384931564, 0.048983681946992874, 0.03589896857738495, -0.054493073374032974, 0.18882788717746735, 0.07600895315408707, -0.1148797795176506, -0.07429772615432739, -0.09862476587295532, -0.1020747497677803, -0.032969728112220764, -0.009880018420517445, 0.012738315388560295, -0.004587139002978802, 0.16090434789657593, -0.05074820667505264, 0.022124720737338066, -0.06815537065267563, 0.03449356555938721, 0.09608061611652374, 0.11690251529216766, -0.09041237086057663, -0.034167371690273285, 0.09100773930549622, -0.03762149065732956, -0.025999201461672783, -0.05672706663608551, -0.012830689549446106, -0.06929372996091843, 0.05440886691212654, 0.10492019355297089, 0.07330633699893951, 0.0444062314927578, -0.0471489243209362, -0.054536886513233185, 0.03203140199184418, -0.15541595220565796, 0.030267179012298584, 0.015814702957868576, -0.0640573799610138, -0.0031548654660582542, 0.06126580387353897, -0.03680184483528137, -0.12475889921188354, 0.06849149614572525, -0.059327367693185806, -0.022346114739775658, -0.08869553357362747, -0.11358031630516052, 0.009671134874224663, -0.02159888483583927, -0.019067294895648956, -0.08110715448856354, -0.15853969752788544, -0.01953202858567238, 0.016836876049637794, -0.07208635658025742, -0.014740822836756706, 0.008038372732698917, -0.03344552591443062, -0.005020475015044212, -0.011050471104681492, 0.043953970074653625, -0.025307195261120796, 0.06774990260601044, -0.08094208687543869, 0.06925765424966812, 0.05845854803919792, 0.02858617715537548, -0.11663706600666046, 0.08564407378435135, -0.1330731213092804, 0.1808425784111023, -0.027598459273576736, -0.0538809671998024, -0.0788886621594429, -0.1004331037402153, -0.01699041575193405, -0.04061158373951912, 0.04582512751221657, 0.10959209501743317, -0.17043763399124146, -0.01011465210467577, 0.24652434885501862, -0.07492680102586746, -0.03743290901184082, 0.10225736349821091, -0.07801716029644012, 0.03389286994934082, 0.1114860251545906, 0.0655474066734314, 0.12193644046783447, -0.05827154964208603, -0.059763237833976746, -0.015806877985596657, -0.05826724320650101, 0.17560328543186188, 0.052185025066137314, -0.0068047065287828445, 0.0360911600291729, -0.007625376805663109, -0.018357563763856888, 0.0006739194504916668, -0.0384671650826931, -0.0431075319647789, -0.014317908324301243, -0.026355186477303505, 0.045766331255435944, -0.046154335141181946, -0.01797458715736866, -0.023191651329398155, -0.10296887159347534, 0.0706341490149498, 0.10706780850887299, -0.08004719018936157, 0.04340042173862457, -0.11768990755081177, 0.031403519213199615, -0.045871034264564514, 0.01549815759062767, -0.19095225632190704, -0.006322774104773998, 0.0246136374771595, -0.0642581358551979, 0.05105780437588692, 0.021616332232952118, 0.04910947382450104, 0.08535909652709961, -0.0402638241648674, 0.01170140877366066, -0.04689636081457138, 0.00265735131688416, -0.05305834114551544, -0.1765393316745758, -0.04800466448068619, -0.042128123342990875, 0.04957816004753113, -0.11913083493709564, -0.008547579869627953, 0.10532360523939133, 0.1463482826948166, 0.043775852769613266, -0.05227667838335037, 0.03145132586359978, -0.0036563139874488115, -0.009468008764088154, -0.10325471311807632, -0.03513836860656738, 0.026025226339697838, -0.053098008036613464, 0.1267269104719162, -0.15734243392944336, -0.07480673491954803, 0.11233952641487122, 0.07325553148984909, -0.09355488419532776, 0.035576194524765015, -0.04740724340081215, -0.024075372144579887, -0.05737483128905296, -0.03728790953755379, 0.20738151669502258, 0.044281281530857086, 0.09534874558448792, -0.10393187403678894, -0.06704341620206833, -0.020064828917384148, -0.04099438339471817, 0.019172303378582, 0.07913383841514587, -0.007863021455705166, -0.22255755960941315, 0.04762354493141174, 0.0009499746956862509, 0.021310163661837578, 0.199520543217659, 0.007350195664912462, -0.10274224728345871, -0.07407033443450928, -0.02148032747209072, 0.02699369378387928, 0.08410997688770294, -0.004703482612967491, 0.0592670738697052, 0.034868936985731125, 0.03462501987814903, 0.02562946081161499, -0.11396019160747528, 0.0260327011346817, 0.05196743085980415, -0.04747559130191803, -0.04103027656674385, -0.015418521128594875, 0.02790595218539238, 0.09401657432317734, 0.059725672006607056, 0.0896696150302887, -0.024143194779753685, -0.05037258565425873, -0.11139794439077377, 0.1337127536535263, -0.09523812681436539, -0.19496563076972961, -0.09919661283493042, -0.05443960800766945, 0.028390785679221153, 0.0183388851583004, 0.015800893306732178, 0.009152358397841454, -0.02786937728524208, -0.08465370535850525, 0.03499346598982811, -0.025784121826291084, -0.016055451706051826, 0.004115439485758543, 0.05691422522068024, 0.012491083703935146, -0.12518207728862762, -0.016393156722187996, 0.027107998728752136, -0.08914221823215485, 0.00019399206212256104, 0.03987759351730347, 0.030899247154593468, 0.11197034269571304, -0.0191514790058136, 0.0023640079889446497, -0.024782570078969002, 0.2365685999393463, -0.10751450061798096, 0.030988162383437157, 0.1396752893924713, -0.07087914645671844, 0.05326080322265625, 0.07076048851013184, 0.005696293897926807, -0.05685289576649666, 0.04705138877034187, 0.03141690418124199, -0.06439442187547684, -0.19611096382141113, -0.017437385395169258, -0.04571536183357239, 0.021043991670012474, 0.1028284877538681, 0.042577240616083145, -0.030936487019062042, 0.013579617254436016, -0.09039115905761719, 0.07263380289077759, 0.07299993187189102, 0.08712785691022873, -0.018689986318349838, -0.0061400821432471275, 0.07242453098297119, -0.06228719279170036, 0.030454451218247414, 0.09790598601102829, 0.027194853872060776, 0.24856364727020264, -0.0994327962398529, 0.11445900797843933, 0.08148090541362762, 0.07410896569490433, 0.046703264117240906, 0.033954519778490067, -0.026386721059679985, 0.060771629214286804, 0.0017463747644796968, -0.09767626971006393, -0.03940337896347046, 0.020718688145279884, 0.027631724253296852, -0.004110324662178755, -0.01737818866968155, -0.07766945660114288, 0.05516325682401657, 0.19752717018127441, 0.07600715756416321, -0.15580227971076965, -0.10146132856607437, 0.07195109128952026, -0.04291022941470146, -0.05108672380447388, -0.025176744908094406, 0.10795385390520096, -0.19674190878868103, 0.0018576979637145996, -0.010345162823796272, 0.12184693664312363, -0.19642065465450287, -0.020578263327479362, -0.027677590027451515, 0.06692805886268616, -0.05473746731877327, 0.06872010231018066, -0.23233704268932343, 0.0545930489897728, 0.013760310597717762, 0.11843123286962509, -0.0545952171087265, 0.026147563010454178, 0.054698359221220016, 0.005685160867869854, 0.0893571600317955, 0.019512036815285683, 0.01908154971897602, -0.11543867737054825, -0.0774570181965828, 0.01247110404074192, 0.04754430428147316, -0.04745776206254959, 0.10469366610050201, -0.03329988196492195, 0.01773817650973797, -0.012645837850868702, -0.08029042184352875, -0.10349772125482559, -0.1437414586544037, 0.058007512241601944, -0.12706342339515686, 0.012157673016190529, -0.04936065152287483, -0.027848077937960625, 0.06003774702548981, 0.18574200570583344, -0.10733645409345627, -0.11367198824882507, -0.0942656472325325, 0.03594253212213516, 0.1332697719335556, -0.08369996398687363, 0.03466354310512543, 0.029767079278826714, 0.13714125752449036, 0.011829281225800514, -0.11030274629592896, 0.005637279246002436, -0.04750067740678787, -0.20589113235473633, -0.011965318582952023, 0.09528631716966629, 0.08308921009302139, 0.07204579561948776, 0.018437573686242104, 0.013519704341888428, -0.01861143298447132, -0.14486095309257507, -0.0017876868369057775, 0.10730424523353577, 0.03886503726243973, 0.03703116253018379, 0.0026344156358391047, 0.033188145607709885, -0.10261809080839157, 0.019864976406097412, 0.09007111936807632, 0.25820404291152954, -0.07574600726366043, 0.1416393667459488, 0.030960647389292717, -0.09935185313224792, -0.17160029709339142, 0.0017275030259042978, 0.020180830731987953, 0.040426719933748245, 0.019688354805111885, -0.1994827538728714, -0.01836894080042839, 0.05210160091519356, -0.006455282215029001, 0.1319025754928589, -0.32578569650650024, -0.12983843684196472, 0.056097984313964844, 0.043320395052433014, -0.05242009088397026, -0.037240006029605865, -0.0514075830578804, -0.08252736181020737, -0.18364787101745605, 0.13561561703681946, -0.11546333879232407, 0.10684394091367722, 0.026510752737522125, -0.019474972039461136, 0.039802417159080505, -0.040814388543367386, 0.13976183533668518, -0.08349674195051193, 0.059529032558202744, -0.08811342716217041, -0.011230160482227802, 0.07118172943592072, -0.04353808984160423, 0.0514947772026062, 0.015369623899459839, 0.08305700868368149, -0.03326664865016937, -0.06946670264005661, -0.06784728914499283, 0.02027898281812668, -0.05848052352666855, -0.08994066715240479, -0.08573511242866516, 0.10262589156627655, 0.11436187475919724, -0.024857137352228165, -0.11078286916017532, -0.0441255047917366, -0.06357625126838684, 0.09394118934869766, 0.10959804803133011, 0.10378337651491165, -0.06609832495450974, 0.009931343607604504, -0.010185712948441505, 0.06446429342031479, -0.07808923721313477, 0.06542718410491943, 0.0768476203083992, 0.03562118858098984, 0.10754937678575516, 0.0303963553160429, -0.14675860106945038, 0.04513317719101906, 0.022012416273355484, -0.11977501958608627, -0.11890564858913422, -0.008369967341423035, -0.030373815447092056, -0.06305187940597534, -0.06820735335350037, 0.14018841087818146, -0.030511926859617233, -0.03706412389874458, 0.031149355694651604, 0.04663930833339691, -0.042147982865571976, 0.12378273159265518, 0.051705069839954376, 0.03964810445904732, -0.08156196027994156, 0.09342296421527863, 0.07983707636594772, 0.028369948267936707, 0.04296783357858658, 0.06127369776368141, -0.09945781528949738, 0.005002827383577824, -0.08025366067886353, 0.020268775522708893, 0.021120714023709297, -0.012752381153404713, -0.029971018433570862, -0.042916812002658844, 0.03502781689167023, 0.10324268788099289, 0.006161566823720932, 0.12418589740991592, -0.026907874271273613, 0.0178747046738863, -0.10274572670459747, 0.09503266215324402, 0.051259055733680725, 0.02102736569941044, -0.051673367619514465, 0.180898517370224, 0.030677052214741707, 0.07722041010856628, -0.04161323234438896, -0.052879754453897476, -0.08538176864385605, 0.008686112239956856, -0.18109320104122162, -0.0018569608218967915, -0.08694475144147873, -0.029553735628724098, -0.021940317004919052, -0.0257955864071846, -0.03270963206887245, 0.0532243587076664, -0.03578338027000427, -0.058613188564777374, -0.04596555605530739, 0.023706844076514244, -0.16115356981754303, -0.02978827804327011, 0.11221840977668762, -0.09479131549596786, 0.10518333315849304, 0.06182307004928589, -0.04345288500189781, -0.00036888840259052813, -0.07822827994823456, 0.0036416733637452126, -0.03259644657373428, 0.017315268516540527, 0.024596309289336205, -0.14794518053531647, 0.02680598758161068, -0.043593037873506546, -0.03664949908852577, 0.018383188173174858, 0.07066868990659714, -0.123127780854702, 0.011135980486869812, 0.03828563168644905, 0.0018989145755767822, -0.06763993203639984, 0.08413644134998322, 0.035419657826423645, 0.0629950687289238, 0.07813000679016113, -0.0283921267837286, 0.09293267130851746, -0.15340425074100494, -0.04006531089544296, 0.028386976569890976, -0.0034786672331392765, 0.07116954773664474, -0.007084743119776249, 0.06759186089038849, -0.03506358340382576, 0.18794672191143036, -0.0185322817414999, -0.037955351173877716, 0.02625695988535881, -0.028359508141875267, -0.004988427273929119, 0.04133990406990051, 0.10604626685380936, -0.018148181959986687, -0.04038470983505249, -0.02303115837275982, -0.004235885106027126, -0.04146532341837883, -0.02545563131570816, 0.13104844093322754, 0.07098818570375443, 0.13899309933185577, -0.03400019556283951, 0.030910154804587364, -0.007495158817619085, -0.11906220763921738, -0.030112380161881447, 0.00717339338734746, 0.02943084016442299, -0.05972714349627495, 0.07902996987104416, 0.13975423574447632, -0.1604986935853958, 0.13250848650932312, 0.02353701926767826, -0.07874257117509842, -0.11825322359800339, -0.2021774798631668, -0.030805006623268127, 0.008656996302306652, 0.018438581377267838, -0.12668165564537048, 0.06223340705037117, 0.07962337136268616, 0.03452380374073982, -0.051117341965436935, 0.0965525284409523, -0.03322800248861313, -0.11024685949087143, 0.020104318857192993, 0.022402573376893997, 0.038447849452495575, 0.03501123562455177, 0.017582589760422707, 0.04486747458577156, 0.038728103041648865, 0.06529992818832397, 0.05188598856329918, 0.03204621002078056, -0.001897467183880508, -0.012205006554722786, -0.05743321031332016, 0.011218884959816933, 0.02447277307510376, 0.033276017755270004, 0.14837005734443665, 0.07467348128557205, -0.012074925005435944, -0.02837706357240677, 0.2988710105419159, -0.03821389749646187, -0.08945851027965546, -0.17032769322395325, 0.15142177045345306, 0.006493269931524992, -0.007100262679159641, 0.046065401285886765, -0.1321025937795639, 0.009394011460244656, 0.12231477349996567, 0.17050357162952423, -0.07085935026407242, 0.02783789113163948, 0.0005550612113438547, 0.010583395138382912, 0.032087940722703934, 0.08580083400011063, 0.03525780513882637, 0.19476671516895294, -0.06287100166082382, 0.06594645231962204, 0.00445267790928483, -0.012744633480906487, -0.039665210992097855, 0.12918265163898468, -0.031815558671951294, 0.02654401585459709, -0.08892694860696793, 0.05875445157289505, -0.07536233216524124, -0.2332344651222229, 0.01632414199411869, -0.035604655742645264, -0.11379657685756683, 0.04447929561138153, -0.052314747124910355, -0.021593203768134117, 0.06656263023614883, 0.013325363397598267, 0.0135034853592515, 0.09435407817363739, 0.033455990254879, -0.01566074602305889, -0.0150685403496027, 0.09502467513084412, -0.0003444915637373924, 0.18999327719211578, -0.004897837992757559, 0.05298379063606262, 0.09225345402956009, 0.04021727293729782, -0.11542156338691711, 0.018995780497789383, 0.04291728138923645, -0.06619114428758621, 0.006713505368679762, 0.19918429851531982, -0.011914924718439579, 0.018006471917033195, 0.07672639191150665, 0.0007085179095156491, 0.03451178967952728, -0.07076845318078995, 0.019824611023068428, -0.11572220176458359, 0.005740011110901833, -0.07900670170783997, 0.10813058912754059, 0.1828058660030365, -0.05802832916378975, 0.027557529509067535, -0.050476089119911194, -0.002531501231715083, 0.010331188328564167, 0.015148359350860119, -0.0268399678170681, -0.09521714597940445, 0.012343518435955048, 0.10679137706756592, 0.04739540070295334, -0.17508848011493683, -0.07425189763307571, 0.03560468181967735, -0.06906929612159729, -0.011086480692029, 0.1379394382238388, -0.0026560400146991014, 0.056954123079776764, -0.03168720006942749, -0.049940336495637894, -0.02442251332104206, 0.06509961932897568, -0.13225573301315308, -0.06636425852775574 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/721a6c465a666419bf286b473287c33f.446x446x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Taylor Swift</div> <a href="https://genius.com/artists/taylor-swift"> <div style="text-align: center; font-size: 14px;">@taylor-swift</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Taylor Swift. Dataset is available [here](https://huggingface.co/datasets/huggingartists/taylor-swift). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/taylor-swift") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2l84tzp2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Taylor Swift's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1hy7aa65) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1hy7aa65/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/taylor-swift') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/taylor-swift") model = AutoModelWithLMHead.from_pretrained("huggingartists/taylor-swift") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/taylor-swift"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/taylor-swift
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/taylor-swift", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/taylor-swift #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Taylor Swift</div> <a href="URL <div style="text-align: center; font-size: 14px;">@taylor-swift</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Taylor Swift. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Taylor Swift's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Taylor Swift.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Taylor Swift's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/taylor-swift #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Taylor Swift.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Taylor Swift's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/taylor-swift #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Taylor Swift.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Taylor Swift's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.019100353121757507, 0.1646489053964615, -0.0031849867664277554, 0.04421385005116463, 0.08816678822040558, 0.005862047895789146, 0.08635818213224411, 0.10558386147022247, 0.019913867115974426, 0.07402748614549637, 0.06463700532913208, 0.01806272193789482, 0.06484530121088028, 0.09672143310308456, 0.07672684639692307, -0.24709287285804749, 0.02928059920668602, -0.09673357754945755, 0.01013171672821045, 0.11144545674324036, 0.0955800786614418, -0.06419439613819122, 0.08025719225406647, 0.042588695883750916, -0.07182825356721878, 0.017514729872345924, 0.0067491549998521805, -0.06583517789840698, 0.08705370873212814, 0.054452985525131226, 0.04910817742347717, 0.028117110952734947, 0.07221052795648575, -0.18134799599647522, 0.02843252569437027, 0.1281198114156723, 0.03812117129564285, 0.07412512600421906, 0.05333087220788002, -0.08702708780765533, 0.14158986508846283, -0.00964497122913599, 0.10114092379808426, 0.04346328601241112, -0.11381496489048004, -0.13932418823242188, -0.13447847962379456, 0.07869262993335724, 0.08751259744167328, 0.08372091501951218, -0.02631896734237671, 0.04403633996844292, -0.030237089842557907, 0.040167052298784256, 0.22621425986289978, -0.23805736005306244, -0.014359908178448677, 0.06496315449476242, 0.05088648200035095, 0.03199515491724014, -0.08244623243808746, 0.011397818103432655, 0.03397100046277046, 0.022363206371665, 0.05720800161361694, -0.014034257270395756, 0.16295908391475677, 0.027349332347512245, -0.10169834643602371, -0.08018823713064194, 0.11154840141534805, -0.0299786776304245, -0.0749405175447464, -0.13425712287425995, -0.0029433351010084152, -0.01660926267504692, 0.041509922593832016, -0.003876459551975131, -0.00024183302593883127, 0.003242102451622486, -0.04758365824818611, -0.10856069624423981, -0.08732631802558899, -0.030777322128415108, -0.03054928034543991, 0.05299270153045654, 0.031427785754203796, 0.03875307738780975, -0.07315891981124878, 0.22332072257995605, -0.010526986792683601, -0.09682460874319077, -0.045903049409389496, -0.09596101939678192, -0.09613645076751709, -0.05184106156229973, 0.0020470540039241314, -0.0007693131337873638, -0.05214105546474457, 0.15137873589992523, -0.022128980606794357, 0.02817877009510994, -0.009573370218276978, -0.012321054004132748, 0.14279039204120636, 0.14502444863319397, -0.10229628533124924, -0.030015306547284126, 0.058019619435071945, -0.011309911496937275, -0.07116947323083878, -0.051349107176065445, -0.009936479851603508, -0.01952996291220188, 0.039567191153764725, 0.07603352516889572, 0.065314382314682, 0.05048844590783119, 0.008715183474123478, -0.0695684403181076, 0.07264936715364456, -0.13516807556152344, 0.019682297483086586, -0.005759021267294884, -0.04757774621248245, 0.023064274340867996, 0.05325599014759064, 0.02019474096596241, -0.10144424438476562, 0.11315128207206726, -0.060653675347566605, -0.04780016094446182, -0.08482202887535095, -0.08767610043287277, -0.0023182439617812634, -0.033082298934459686, -0.04516831785440445, -0.07282562553882599, -0.18905524909496307, -0.04193233698606491, 0.0370735302567482, -0.049296945333480835, -0.031490445137023926, 0.031863030046224594, -0.01743919402360916, 0.014905966818332672, -0.017726022750139236, -0.03954732045531273, -0.026775851845741272, 0.03318636119365692, -0.06816752254962921, 0.02949000708758831, 0.08084683865308762, 0.04843451455235481, -0.11418380588293076, 0.06609929352998734, -0.16044703125953674, 0.13315987586975098, -0.017242509871721268, 0.021108249202370644, -0.09661819785833359, -0.07580062747001648, -0.028883252292871475, -0.03537393733859062, 0.0016021940391510725, 0.08935467153787613, -0.17499296367168427, -0.03241599351167679, 0.19139955937862396, -0.06390991061925888, -0.06760776042938232, 0.07401831448078156, -0.08114203065633774, 0.035006243735551834, 0.12470466643571854, 0.08383733034133911, 0.1749730408191681, -0.1194838210940361, -0.05473340302705765, -0.04485505446791649, -0.06307026743888855, 0.19195544719696045, 0.040454067289829254, -0.02348802052438259, 0.024514777585864067, 0.01073748804628849, -0.0369655042886734, -0.019671011716127396, -0.017865091562271118, -0.036408696323633194, -0.021891016513109207, 0.0017955702496692538, 0.0010840457398444414, -0.04256456345319748, -0.05905101075768471, -0.027561496943235397, -0.10841597616672516, 0.06276127696037292, 0.09903359413146973, -0.06877083331346512, 0.004664475563913584, -0.09811312705278397, 0.015874549746513367, -0.0328853465616703, 0.0029494643677026033, -0.17194001376628876, -0.05366101115942001, 0.026096830144524574, -0.06805108487606049, 0.0781623050570488, 0.026338815689086914, 0.037462711334228516, 0.059513211250305176, -0.012249049730598927, 0.005564858205616474, -0.03951432928442955, -0.017735356464982033, -0.028092674911022186, -0.14391900599002838, -0.0607391893863678, -0.040759455412626266, 0.0884435772895813, -0.11176896095275879, 0.00319169694557786, 0.08101877570152283, 0.13015542924404144, 0.02431580424308777, -0.06710401177406311, 0.010438695549964905, -0.0435599684715271, -0.030709218233823776, -0.10518856346607208, -0.05206293985247612, 0.010499524883925915, -0.007311881985515356, 0.15295428037643433, -0.15515172481536865, -0.08287748694419861, 0.11054044961929321, 0.12092091888189316, -0.08586570620536804, 0.05065479129552841, -0.07460231333971024, -0.012241551652550697, -0.05812465399503708, -0.04657905176281929, 0.2522117495536804, 0.032382600009441376, 0.07937505841255188, -0.10530418902635574, -0.09994727373123169, -0.007826396264135838, -0.04475635290145874, -0.024796906858682632, 0.02176368050277233, 0.01688026450574398, -0.163527250289917, 0.035748280584812164, -0.0020947474986314774, 0.08916294574737549, 0.1997826099395752, 0.03906303644180298, -0.08963539451360703, -0.06205715239048004, -0.06952371448278427, -0.0005693884450010955, 0.06476413458585739, 0.01965915970504284, 0.030120396986603737, 0.040774304419755936, 0.052091170102357864, 0.03836004436016083, -0.11680630594491959, 0.011111236177384853, 0.07151021808385849, -0.03659747913479805, -0.04867944493889809, 0.008980127982795238, 0.026143020018935204, 0.08076068013906479, 0.0834871307015419, 0.13428665697574615, -0.060269247740507126, -0.05301815643906593, -0.13579225540161133, 0.12776179611682892, -0.08518292009830475, -0.23315681517124176, -0.13703036308288574, -0.0736590027809143, 0.02379828877747059, 0.015508287586271763, 0.028831936419010162, -0.04333169013261795, -0.04639061167836189, -0.09448029845952988, 0.08197528123855591, -0.04776720702648163, -0.025199152529239655, 0.005890852306038141, 0.022008350118994713, -0.01573996990919113, -0.11226408928632736, -0.03132539615035057, 0.03541058301925659, -0.09226185828447342, -0.006533507257699966, 0.029688963666558266, 0.03882788494229317, 0.1544976532459259, -0.01745026558637619, 0.0042095971293747425, -0.016360437497496605, 0.26194557547569275, -0.11498738080263138, 0.06965945661067963, 0.16133858263492584, -0.007029006257653236, 0.059810273349285126, 0.06492020934820175, 0.0017659544246271253, -0.052357230335474014, 0.06846152991056442, 0.07269889861345291, -0.07159272581338882, -0.21447962522506714, -0.03516615182161331, -0.009335779584944248, 0.011918425559997559, 0.11390399187803268, 0.03933921456336975, 0.04754946753382683, 0.008373559452593327, -0.09580495953559875, 0.051540084183216095, 0.03044021688401699, 0.09598544985055923, -0.054104894399642944, -0.0047112987376749516, 0.049362290650606155, -0.05064137279987335, 0.031958092004060745, 0.12941724061965942, 0.03538056090474129, 0.21410484611988068, -0.07182145118713379, 0.09984681010246277, 0.07246684283018112, 0.12089216709136963, 0.029364103451371193, 0.014803256839513779, -0.017823873087763786, 0.029549019411206245, 0.006461938843131065, -0.08942218869924545, -0.009073350578546524, 0.03171727433800697, 0.03311772644519806, -0.017196837812662125, -0.037781164050102234, -0.06323999166488647, 0.04615962132811546, 0.24472345411777496, 0.01956876553595066, -0.17062032222747803, -0.09942781925201416, 0.06070100516080856, -0.0732276514172554, -0.06040338799357414, -0.011088483035564423, 0.06650348752737045, -0.21722647547721863, 0.048426371067762375, -0.03164355829358101, 0.10703529417514801, -0.12383347004652023, -0.004110313486307859, 0.08493513613939285, 0.04861977696418762, -0.06412413716316223, 0.09182267636060715, -0.152854785323143, 0.05224629119038582, -0.004194225650280714, 0.07715962827205658, -0.06594906002283096, 0.026306642219424248, 0.012095978483557701, 0.03400442376732826, 0.07525769621133804, 0.01917988806962967, 0.025790905579924583, -0.01245073415338993, -0.04229943826794624, -0.0021145071368664503, 0.06335549801588058, -0.1141539141535759, 0.12872424721717834, -0.04001577943563461, 0.02931966818869114, -0.030980747193098068, -0.09035080671310425, -0.08774307370185852, -0.15222430229187012, 0.0767974928021431, -0.12504270672798157, 0.0034927723463624716, -0.06970775127410889, -0.014912713319063187, 0.025992438197135925, 0.22534975409507751, -0.06648193299770355, -0.07599987089633942, -0.13889102637767792, -0.011561455205082893, 0.14732010662555695, -0.0740654319524765, 0.00877020787447691, -0.00972064957022667, 0.18636305630207062, 0.0010025722440332174, -0.13526147603988647, -0.008161907084286213, -0.0636659562587738, -0.16978305578231812, -0.024924885481595993, 0.1597294807434082, 0.07205594331026077, 0.030705569311976433, 0.005248948000371456, 0.0057411957532167435, -0.05860726907849312, -0.1647651344537735, 0.027936851605772972, 0.1560513824224472, -0.010047688148915768, 0.027673620730638504, 0.03626682981848717, 0.0177833940833807, -0.1194923147559166, 0.02404312789440155, 0.04880867898464203, 0.15686631202697754, -0.07827261090278625, 0.18331722915172577, 0.02911442518234253, -0.09066803008317947, -0.16425548493862152, 0.02634809911251068, 0.018579117953777313, 0.03110315650701523, 0.027743441984057426, -0.18694211542606354, 0.04261390492320061, 0.0423177145421505, -0.007276006508618593, 0.0687064602971077, -0.32903045415878296, -0.14968563616275787, 0.003835039446130395, 0.005449709016829729, -0.11954108625650406, -0.03758358210325241, -0.03861979395151138, -0.08223539590835571, -0.25877904891967773, 0.09984366595745087, -0.11433589458465576, 0.07767044752836227, 0.0170569010078907, 0.09410934895277023, 0.04738113656640053, -0.05355008691549301, 0.12010206282138824, -0.027681143954396248, 0.06210292875766754, -0.09420569986104965, -0.04054102301597595, 0.10086948424577713, -0.06471411138772964, 0.10158727318048477, 0.029859255999326706, 0.08709122985601425, -0.11424390226602554, -0.08025125414133072, -0.07819604128599167, 0.00946398638188839, -0.056800078600645065, -0.08986177295446396, -0.08628831803798676, 0.08748731017112732, 0.12420614063739777, -0.043429188430309296, -0.10303211212158203, -0.04912298172712326, -0.00845016073435545, 0.07022972404956818, 0.11166127026081085, 0.0865253433585167, -0.07976602762937546, 0.006517262198030949, 0.015847167000174522, 0.01890847086906433, -0.16703474521636963, 0.047220394015312195, 0.0850052684545517, 0.041001755744218826, 0.10152324289083481, 0.006232159677892923, -0.1653568595647812, 0.010121718049049377, 0.04118141531944275, -0.16846907138824463, -0.11205953359603882, -0.04374294355511665, 0.015433124266564846, -0.0991789698600769, -0.04879196733236313, 0.12935003638267517, -0.0316837877035141, -0.04104035720229149, 0.0038716127164661884, 0.04850606992840767, -0.04328189045190811, 0.09333658963441849, 0.015123209916055202, 0.03884267434477806, -0.06477949768304825, 0.12043517082929611, 0.07510961592197418, 0.017564814537763596, 0.031196027994155884, 0.06520659476518631, -0.08962742984294891, 0.005354779306799173, -0.08921132981777191, 0.016948768869042397, -0.0407770574092865, -0.004861913621425629, 0.015467027202248573, -0.04401591047644615, 0.03767305240035057, 0.09427658468484879, -0.01575087383389473, 0.10983584821224213, -0.0392804816365242, 0.007791993673890829, -0.13114692270755768, 0.08405402302742004, 0.04751688241958618, 0.024500038474798203, -0.11146923154592514, 0.19095025956630707, 0.022458283230662346, 0.08846843987703323, -0.03603273630142212, -0.05934010446071625, -0.05962160602211952, -0.007836389355361462, -0.12682273983955383, -0.04506419226527214, -0.08520285785198212, -0.027451537549495697, -0.009478911757469177, -0.038799967616796494, -0.017283424735069275, 0.04624828323721886, -0.031023772433400154, -0.06122347339987755, -0.06622249633073807, 0.04102247953414917, -0.13883115351200104, 0.028413167223334312, 0.11906909942626953, -0.05698269605636597, 0.11790864169597626, 0.06973650306463242, -0.024862313643097878, 0.01930415630340576, -0.10450451821088791, 0.029972782358527184, -0.035002559423446655, 0.017356477677822113, 0.02907429449260235, -0.15267589688301086, 0.006735286675393581, -0.043999411165714264, -0.06535200029611588, 0.0016936496831476688, -0.003890828462317586, -0.13051679730415344, 0.008439222350716591, 0.08515038341283798, -0.020950734615325928, -0.08010368049144745, 0.06393244862556458, 0.06382308155298233, 0.02423180267214775, 0.06387388706207275, -0.026727642863988876, 0.07571984082460403, -0.1684866100549698, -0.05250672623515129, 0.010253424756228924, 0.03225618600845337, 0.027811866253614426, -0.010993272066116333, 0.03864838555455208, -0.02089347504079342, 0.19017614424228668, 0.018388528376817703, -0.013285522349178791, 0.03350113704800606, -0.06029390171170235, -0.00328527158126235, 0.04861970618367195, 0.06103299930691719, -0.04076758027076721, -0.037928733974695206, -0.008085059933364391, -0.026264967396855354, -0.09099205583333969, -0.042506344616413116, 0.10145566612482071, 0.05022018402814865, 0.1876099407672882, -0.05363869294524193, 0.07014834880828857, -0.01022813655436039, -0.1318964958190918, -0.017449839040637016, -0.05279571935534477, 0.034021928906440735, -0.0647667646408081, 0.06168122962117195, 0.1693805754184723, -0.16963522136211395, 0.12166355550289154, 0.018284033983945847, -0.060580287128686905, -0.10540473461151123, -0.1955343782901764, -0.018411675468087196, -0.0387788750231266, 0.03221750631928444, -0.1360953450202942, 0.09811572730541229, 0.026264553889632225, 0.03161986172199249, -0.07090048491954803, 0.12465886771678925, -0.07040658593177795, -0.12167278677225113, 0.04093204811215401, 0.027220342308282852, 0.03195779398083687, 0.050105273723602295, 0.07888906449079514, 0.021725988015532494, 0.01306996401399374, 0.0667843148112297, 0.04043761268258095, 0.027847545221447945, 0.03143368288874626, -0.019584963098168373, -0.04770747944712639, 0.03211230784654617, 0.0009435028186999261, 0.024942580610513687, 0.07277312874794006, 0.06555315107107162, -0.016905194148421288, -0.026465052738785744, 0.3073660731315613, -0.041987095028162, -0.04118577763438225, -0.17691366374492645, 0.1618674099445343, 0.009588882327079773, -0.00892408937215805, 0.03261224552989006, -0.12731577455997467, 0.011455942876636982, 0.1346919685602188, 0.16040104627609253, -0.03864746168255806, 0.018446212634444237, -0.03125102445483208, 0.011548800393939018, 0.033914729952812195, 0.0905579999089241, 0.06471636146306992, 0.21137869358062744, -0.03966229781508446, 0.049188289791345596, -0.0013242369750514627, -0.019848402589559555, -0.010796085931360722, 0.10614648461341858, -0.04797648265957832, 0.00538845919072628, -0.05938461050391197, 0.09549497067928314, -0.05341688171029091, -0.27919575572013855, -0.016040001064538956, -0.027971958741545677, -0.0926874503493309, 0.060180049389600754, -0.01912670023739338, -0.030626744031906128, 0.08581617474555969, 0.02013116329908371, -0.03898736834526062, 0.14161981642246246, 0.04449596256017685, -0.04667893797159195, -0.009121245704591274, 0.09905298799276352, -0.01629732921719551, 0.17236562073230743, -0.025166772305965424, 0.004443109501153231, 0.08146534860134125, 0.022473549470305443, -0.12176944315433502, 0.007175073958933353, 0.04377186298370361, -0.07334507256746292, -0.024713600054383278, 0.19649431109428406, 0.012588392943143845, 0.042797986418008804, 0.07326409965753555, -0.05550307780504227, 0.02844504453241825, -0.05113204941153526, 0.06155724823474884, -0.1471974104642868, 0.0523424968123436, -0.08153176307678223, 0.13590356707572937, 0.19112877547740936, -0.06833086162805557, 0.029674815014004707, -0.05746975168585777, 0.0005567939952015877, -0.021404564380645752, 0.0766981765627861, -0.021878059953451157, -0.09999777376651764, 0.012724552303552628, 0.044141799211502075, 0.02648775838315487, -0.18703438341617584, -0.07336627691984177, 0.06369457393884659, -0.05512969195842743, 0.025224922224879265, 0.1799555867910385, 0.03571782633662224, 0.06602176278829575, -0.031347934156656265, 0.019205830991268158, -0.013029172085225582, 0.11844407021999359, -0.1601405143737793, -0.07786224037408829 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9e0451fa9d3f8cf38aa11994dbd934a8.600x600x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The 69 Eyes</div> <a href="https://genius.com/artists/the-69-eyes"> <div style="text-align: center; font-size: 14px;">@the-69-eyes</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The 69 Eyes. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-69-eyes). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-69-eyes") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/26sibipb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The 69 Eyes's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1mjcdm16) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1mjcdm16/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-69-eyes') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-69-eyes") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-69-eyes") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-69-eyes"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-69-eyes
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-69-eyes", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-69-eyes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The 69 Eyes</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-69-eyes</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The 69 Eyes. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The 69 Eyes's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The 69 Eyes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The 69 Eyes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-69-eyes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The 69 Eyes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The 69 Eyes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-69-eyes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The 69 Eyes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The 69 Eyes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03820126876235008, 0.16778692603111267, -0.0031988373957574368, 0.05502433329820633, 0.09602345526218414, 0.014700653962790966, 0.07429133355617523, 0.10764528810977936, 0.011013543233275414, 0.07243576645851135, 0.06647783517837524, 0.0493813194334507, 0.08108445256948471, 0.09079314023256302, 0.06132383644580841, -0.24305401742458344, 0.037618488073349, -0.07649311423301697, 0.011938187293708324, 0.10075467824935913, 0.08710232377052307, -0.0748584195971489, 0.08193235844373703, 0.027506988495588303, -0.05780848115682602, 0.003859475953504443, 0.006733574438840151, -0.056008923798799515, 0.08096195012331009, 0.07810942083597183, 0.035176798701286316, 0.02511513978242874, 0.0648900717496872, -0.18243618309497833, 0.0262502022087574, 0.12311864644289017, 0.03063632920384407, 0.07528407871723175, 0.06209459900856018, -0.06637317687273026, 0.134559765458107, -0.03359853848814964, 0.0921492800116539, 0.05757783353328705, -0.11467940360307693, -0.11796591430902481, -0.14045506715774536, 0.07162027060985565, 0.08738098293542862, 0.0857928991317749, -0.03459210321307182, 0.10027549415826797, -0.020761124789714813, 0.05794491246342659, 0.2534940540790558, -0.2384551465511322, -0.010737316682934761, 0.07006476074457169, 0.05178643390536308, 0.01950930245220661, -0.0918344184756279, 0.019819770008325577, 0.05009808763861656, 0.032217592000961304, 0.037177883088588715, -0.02557540498673916, 0.1490601748228073, 0.010578698478639126, -0.11197885870933533, -0.08101038634777069, 0.0988624170422554, -0.015253341756761074, -0.0870409607887268, -0.1361597627401352, -0.005222567357122898, -0.02641064114868641, 0.02634759247303009, 0.02304317243397236, 0.006360978353768587, -0.006317317020148039, -0.04520098865032196, -0.10438556969165802, -0.07328671216964722, -0.039436064660549164, -0.023937445133924484, 0.04731389507651329, 0.040780022740364075, 0.03941774740815163, -0.06419950723648071, 0.2194448560476303, 0.029405608773231506, -0.09701395779848099, -0.06396002322435379, -0.10824080556631088, -0.09501262754201889, -0.04246186837553978, -0.0047105117700994015, 0.01391830388456583, -0.03526744991540909, 0.1466723382472992, -0.018042732030153275, 0.028691576793789864, -0.04930820316076279, 0.0026129574980586767, 0.1283254474401474, 0.1374076008796692, -0.1314772367477417, -0.03931214660406113, 0.06510447710752487, -0.0019288777839392424, -0.06096195802092552, -0.04970898479223251, 0.005814301315695047, -0.024266880005598068, 0.05354822054505348, 0.07466032356023788, 0.0796341523528099, 0.0681975707411766, 0.00008829728903947398, -0.0625167265534401, 0.04562082886695862, -0.13456138968467712, 0.012500595301389694, -0.00858604721724987, -0.06528961658477783, 0.027328643947839737, 0.06358518451452255, 0.0030057700350880623, -0.11119061708450317, 0.07493772357702255, -0.08327223360538483, -0.04652243107557297, -0.08824558556079865, -0.1105828657746315, 0.002885873895138502, -0.03679012134671211, -0.02919705957174301, -0.07052429020404816, -0.17040327191352844, -0.04417387396097183, 0.024933600798249245, -0.061006974428892136, -0.02357015572488308, 0.026738010346889496, -0.03768429532647133, 0.00853490550071001, -0.014004990458488464, 0.0021345403511077166, -0.02172957919538021, 0.04102122038602829, -0.07838022708892822, 0.04085996747016907, 0.0772705003619194, 0.04056193307042122, -0.1182469055056572, 0.07253880053758621, -0.14542050659656525, 0.13153091073036194, -0.033783890306949615, 0.0016377782449126244, -0.08702361583709717, -0.091434545814991, -0.004498075693845749, -0.03463023155927658, 0.027565764263272285, 0.13352927565574646, -0.172592431306839, -0.019453104585409164, 0.20365098118782043, -0.0746678039431572, -0.07302051782608032, 0.07325903326272964, -0.07531719654798508, 0.020263265818357468, 0.11340059340000153, 0.05533567816019058, 0.14347197115421295, -0.1098511591553688, -0.08616329729557037, -0.04464494064450264, -0.06755557656288147, 0.17666780948638916, 0.032345183193683624, -0.013049829751253128, 0.018278315663337708, 0.00515277124941349, -0.04444802924990654, -0.001067597884684801, -0.034415289759635925, -0.03697231411933899, -0.010336240753531456, -0.0047167022712528706, -0.0010656806407496333, -0.03389037027955055, -0.045539095997810364, -0.01798262633383274, -0.09195003658533096, 0.04867555573582649, 0.09927024692296982, -0.07313128560781479, 0.01596684753894806, -0.10688066482543945, 0.03572086989879608, -0.054462675005197525, 0.011255547404289246, -0.17703522741794586, -0.050569359213113785, 0.019724948331713676, -0.08524354547262192, 0.058608099818229675, 0.01959313452243805, 0.045171041041612625, 0.07567224651575089, -0.020880499854683876, 0.0017353761941194534, -0.03655528649687767, -0.0022259934339672327, -0.04901890456676483, -0.1778789758682251, -0.04839850962162018, -0.04098857194185257, 0.09335354715585709, -0.11217447370290756, 0.0008534942753612995, 0.08718455582857132, 0.15010523796081543, 0.02552015893161297, -0.06509468704462051, 0.03601257503032684, -0.03760526701807976, -0.02486734464764595, -0.10657564550638199, -0.041171468794345856, 0.005960660520941019, -0.018322039395570755, 0.15950952470302582, -0.14497338235378265, -0.09707987308502197, 0.12808170914649963, 0.08344143629074097, -0.08371952921152115, 0.038612980395555496, -0.06986264139413834, -0.019874531775712967, -0.04366478696465492, -0.05938262492418289, 0.230113685131073, 0.0399051308631897, 0.08680465072393417, -0.09189958870410919, -0.0829557329416275, 0.004439832642674446, -0.03841570019721985, -0.041910428553819656, 0.0392700657248497, 0.02672012895345688, -0.17615221440792084, 0.04997922107577324, -0.02762528508901596, 0.08637391030788422, 0.18402959406375885, 0.02687269076704979, -0.09412650763988495, -0.05488799139857292, -0.0688723623752594, 0.004464297089725733, 0.08995363861322403, -0.0022046577651053667, 0.0371566116809845, 0.04574872553348541, 0.03702957555651665, 0.04356011003255844, -0.11241677403450012, 0.014129916206002235, 0.05539388209581375, -0.026908690109848976, -0.052995651960372925, 0.01737191528081894, 0.025079520419239998, 0.09163176268339157, 0.06841003894805908, 0.0947842076420784, -0.05188222974538803, -0.060170747339725494, -0.13701127469539642, 0.13952533900737762, -0.08929325640201569, -0.20814022421836853, -0.13687820732593536, -0.07427623122930527, 0.007371552288532257, 0.007608998101204634, 0.021161053329706192, -0.03690606355667114, -0.044379156082868576, -0.0991404578089714, 0.06634396314620972, -0.02423420175909996, -0.007075321860611439, 0.012617666274309158, 0.016794364899396896, -0.008844597265124321, -0.11746250838041306, -0.03100517764687538, 0.021771056577563286, -0.07736915349960327, 0.005115073639899492, 0.019791916012763977, 0.06031039357185364, 0.13823679089546204, 0.0015092309331521392, 0.008222010917961597, -0.020426789298653603, 0.2861451804637909, -0.11391659826040268, 0.054159097373485565, 0.1505933254957199, -0.008489462547004223, 0.05741015821695328, 0.06394381076097488, -0.006450505927205086, -0.065317302942276, 0.06101645901799202, 0.07517652958631516, -0.062373388558626175, -0.20027291774749756, -0.03133877366781235, -0.024325426667928696, 0.014706783927977085, 0.10786421597003937, 0.029622379690408707, 0.03581401705741882, 0.01351366750895977, -0.09714099019765854, 0.057799890637397766, 0.03853437677025795, 0.09950614720582962, -0.05289052426815033, -0.010615337640047073, 0.05151284858584404, -0.05414748564362526, 0.030456257984042168, 0.11644937843084335, 0.01940479315817356, 0.24642561376094818, -0.08273155987262726, 0.06252014636993408, 0.08945439755916595, 0.08871184289455414, 0.020552705973386765, 0.05163007974624634, -0.025800298899412155, 0.030553234741091728, 0.0037345776800066233, -0.09364211559295654, -0.01484221126884222, 0.037711068987846375, 0.03271110728383064, -0.018411237746477127, -0.05422353371977806, -0.07160568982362747, 0.05300839990377426, 0.2376648187637329, 0.04885824769735336, -0.1776726245880127, -0.08293391019105911, 0.06835301965475082, -0.04472850635647774, -0.06041610613465309, -0.02196759358048439, 0.0608191043138504, -0.21340276300907135, 0.04977523535490036, -0.04485788196325302, 0.1079438105225563, -0.13975419104099274, -0.0053952415473759174, 0.040695495903491974, 0.03332560509443283, -0.07091344147920609, 0.07511148601770401, -0.17540588974952698, 0.08361043781042099, 0.00036783379619009793, 0.08149106800556183, -0.07182110846042633, 0.01241344679147005, 0.044175419956445694, 0.028474314138293266, 0.1005830392241478, 0.0201975479722023, 0.038963090628385544, -0.07334182411432266, -0.03917032480239868, 0.0009639580966904759, 0.05391312018036842, -0.07607642561197281, 0.13806630671024323, -0.03381454199552536, 0.029328126460313797, -0.023000136017799377, -0.058879442512989044, -0.09836941957473755, -0.14521658420562744, 0.0753156915307045, -0.12309370934963226, 0.0002603809116408229, -0.06570819765329361, -0.02930300123989582, 0.01073392666876316, 0.1907704770565033, -0.11192070692777634, -0.08018500357866287, -0.13189978897571564, 0.022989511489868164, 0.15069346129894257, -0.08046159893274307, 0.01084192655980587, 0.003359057242050767, 0.15987145900726318, 0.008321464993059635, -0.13191263377666473, -0.006207946687936783, -0.0676359236240387, -0.18390034139156342, -0.016269205138087273, 0.1171351820230484, 0.0768561065196991, 0.043689873069524765, 0.009064326994121075, 0.007623172365128994, -0.029579507187008858, -0.16622354090213776, 0.028932509943842888, 0.15088114142417908, 0.026287153363227844, 0.04185241088271141, 0.024695076048374176, 0.010477817617356777, -0.1344800442457199, 0.028911933302879333, 0.04856230318546295, 0.19562232494354248, -0.06742560863494873, 0.1424226313829422, 0.02719999849796295, -0.09535359591245651, -0.17226789891719818, 0.03398306667804718, 0.005657933186739683, 0.03257136046886444, 0.027625299990177155, -0.173260897397995, 0.01826484501361847, 0.02368212677538395, -0.0046486579813063145, 0.060720112174749374, -0.3205430507659912, -0.14386136829853058, 0.035498254001140594, 0.03383183479309082, -0.0694521814584732, -0.036267783492803574, -0.0334276482462883, -0.07389052212238312, -0.2533363699913025, 0.08074794709682465, -0.11057892441749573, 0.09050451219081879, 0.013823696412146091, 0.055957820266485214, 0.04838380590081215, -0.06547526270151138, 0.13943076133728027, -0.029509130865335464, 0.07595958560705185, -0.0925501212477684, -0.04493875429034233, 0.09304054081439972, -0.053792063146829605, 0.09832767397165298, 0.037633977830410004, 0.08766283094882965, -0.10056442767381668, -0.0707981139421463, -0.08398839086294174, 0.00803633127361536, -0.05521731451153755, -0.0932190865278244, -0.07824037224054337, 0.10650023818016052, 0.13506591320037842, -0.038145992904901505, -0.10978161543607712, -0.04829123616218567, -0.035217225551605225, 0.07312939316034317, 0.11007069796323776, 0.09722865372896194, -0.07584331929683685, 0.009155108593404293, 0.013324952684342861, 0.026467712596058846, -0.12131351977586746, 0.04007367417216301, 0.09128748625516891, 0.032761022448539734, 0.11301641911268234, 0.018766334280371666, -0.17171522974967957, 0.02907533012330532, 0.03696518391370773, -0.14769390225410461, -0.10912270098924637, -0.0310947448015213, -0.020578347146511078, -0.09313517808914185, -0.048226434737443924, 0.13230299949645996, -0.03498871251940727, -0.029003264382481575, -0.0019979439675807953, 0.05893561244010925, -0.04215183109045029, 0.11659002304077148, 0.025267066434025764, 0.04573597386479378, -0.07719746232032776, 0.10653293132781982, 0.0552019439637661, 0.016460690647363663, 0.03505319356918335, 0.04691730812191963, -0.08860043436288834, 0.0008570878999307752, -0.07476767897605896, 0.026332831010222435, -0.05721151456236839, -0.004696988500654697, -0.01037195511162281, -0.04662246257066727, 0.03433982655405998, 0.10036882013082504, -0.004384490195661783, 0.12109491974115372, -0.030293835327029228, -0.009935223497450352, -0.12457532435655594, 0.08249835669994354, 0.055676139891147614, 0.015906615182757378, -0.10421288758516312, 0.1837836652994156, 0.028024449944496155, 0.0885508581995964, -0.04547012969851494, -0.052005961537361145, -0.07614901661872864, -0.007474116515368223, -0.1474858522415161, -0.04087201878428459, -0.0872044488787651, -0.03385749086737633, -0.01659134216606617, -0.04147927463054657, -0.024196907877922058, 0.056431885808706284, -0.03015262447297573, -0.0627548098564148, -0.051222510635852814, 0.050570856779813766, -0.14974935352802277, -0.002685417653992772, 0.12288542836904526, -0.07055822014808655, 0.10821940004825592, 0.05126471444964409, -0.03358469158411026, 0.011654076166450977, -0.09295984357595444, 0.017971372231841087, -0.02945069409906864, 0.013839018531143665, 0.030906151980161667, -0.14674553275108337, 0.012652168050408363, -0.0530967116355896, -0.05851799622178078, 0.015332676470279694, 0.017905840650200844, -0.12040023505687714, -0.004201041534543037, 0.0623408667743206, 0.0014507586602121592, -0.07147487252950668, 0.07509340345859528, 0.06901764124631882, 0.032607026398181915, 0.07063755393028259, -0.029312890022993088, 0.07986613363027573, -0.1667567640542984, -0.046443622559309006, 0.005200628656893969, 0.010266182012856007, 0.08084374666213989, -0.011178203858435154, 0.052957553416490555, -0.020836155861616135, 0.20139873027801514, 0.006201911251991987, -0.025383751839399338, 0.03641386330127716, -0.02466387115418911, -0.004615819547325373, 0.04816697910428047, 0.05966787040233612, -0.039859589189291, -0.03452230989933014, -0.006584423594176769, 0.0021298646461218596, -0.06908363848924637, -0.02685476280748844, 0.10786284506320953, 0.051555030047893524, 0.16590048372745514, -0.02826969511806965, 0.06505749374628067, -0.02664191648364067, -0.12045087665319443, -0.03435215353965759, -0.03227277845144272, 0.039492085576057434, -0.07290619611740112, 0.08206291496753693, 0.16378231346607208, -0.16199526190757751, 0.12121562659740448, 0.01700410805642605, -0.06081228330731392, -0.09940993785858154, -0.18940924108028412, -0.018450463190674782, -0.015949176624417305, 0.03936714679002762, -0.12771131098270416, 0.08365453779697418, 0.0459434874355793, 0.03447888419032097, -0.05963986739516258, 0.12142530083656311, -0.06869396567344666, -0.1158251166343689, 0.038616348057985306, 0.02706516720354557, 0.016751442104578018, 0.03431253135204315, 0.06607147306203842, 0.0338965579867363, 0.010642310604453087, 0.0591621994972229, 0.031728118658065796, 0.02368147484958172, 0.039177149534225464, -0.01685742475092411, -0.06056174635887146, 0.02093150094151497, 0.004376628436148167, 0.037668243050575256, 0.11186956614255905, 0.07248298823833466, -0.009656216017901897, -0.03732626885175705, 0.28889405727386475, -0.045231737196445465, -0.03429288789629936, -0.1785593181848526, 0.1611098051071167, 0.02604176290333271, -0.007195166777819395, 0.030426405370235443, -0.14003095030784607, 0.01935712620615959, 0.1487027406692505, 0.16838622093200684, -0.061045460402965546, 0.007188779767602682, -0.03543207421898842, 0.011411789804697037, 0.029321057721972466, 0.09098409116268158, 0.06643791496753693, 0.20146450400352478, -0.047994524240493774, 0.06758732348680496, -0.009575369767844677, -0.023584682494401932, 0.0009512451943010092, 0.10963567346334457, -0.01961303874850273, 0.011692549102008343, -0.06744804978370667, 0.09206664562225342, -0.06270180642604828, -0.2594211995601654, 0.0008956397650763392, -0.030763421207666397, -0.09085610508918762, 0.05524864047765732, -0.05564715340733528, -0.007740271743386984, 0.08571310341358185, 0.020009532570838928, -0.016157541424036026, 0.13046866655349731, 0.03934529796242714, -0.04368755221366882, -0.02528403326869011, 0.09137891978025436, -0.023604616522789, 0.20039500296115875, -0.022817140445113182, 0.011747770942747593, 0.09182530641555786, 0.02205771766602993, -0.12059018015861511, 0.0036315065808594227, 0.038320571184158325, -0.07933560758829117, -0.011799953877925873, 0.19987468421459198, 0.012550337240099907, 0.021589120849967003, 0.057650770992040634, -0.03950788453221321, 0.03609433025121689, -0.07780855894088745, 0.0397387333214283, -0.13374729454517365, 0.04761158674955368, -0.08650561422109604, 0.14375759661197662, 0.18555742502212524, -0.06950995326042175, 0.026400964707136154, -0.05198904871940613, -0.017004553228616714, -0.016295326873660088, 0.05149407312273979, -0.014944231137633324, -0.10790462791919708, 0.019886022433638573, 0.026153935119509697, 0.0223596952855587, -0.1870705783367157, -0.07439454644918442, 0.04995409771800041, -0.0615227073431015, 0.016623105853796005, 0.16998636722564697, 0.03393428772687912, 0.05353108048439026, -0.03603316470980644, -0.007373780477792025, -0.02065538428723812, 0.10892637073993683, -0.14813567698001862, -0.08416911214590073 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c771d3ee1c0969503cdaf34edf76f38a.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Beatles</div> <a href="https://genius.com/artists/the-beatles"> <div style="text-align: center; font-size: 14px;">@the-beatles</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Beatles. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-beatles). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-beatles") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2p2c5864/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Beatles's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/286vzjah) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/286vzjah/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-beatles') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-beatles") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-beatles") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-beatles"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-beatles
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-beatles", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-beatles #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Beatles</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-beatles</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The Beatles. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The Beatles's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Beatles.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Beatles's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-beatles #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Beatles.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Beatles's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-beatles #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The Beatles.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Beatles's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.001287925406359136, 0.17389844357967377, -0.003010681364685297, 0.05487523227930069, 0.08018344640731812, 0.0029909261502325535, 0.0721825659275055, 0.09693572670221329, -0.0002813848841469735, 0.07615020871162415, 0.06261878460645676, 0.015093531459569931, 0.05226821452379227, 0.07059434056282043, 0.08537356555461884, -0.26022809743881226, 0.04073029011487961, -0.09991536289453506, -0.0292572733014822, 0.12211281061172485, 0.09138008207082748, -0.05406298115849495, 0.09261509776115417, 0.033458955585956573, -0.07992981374263763, 0.03010343201458454, -0.032616473734378815, -0.055451951920986176, 0.08067536354064941, 0.07412169128656387, 0.007633104454725981, 0.04078080505132675, 0.05035420507192612, -0.19733640551567078, 0.02471490390598774, 0.12917637825012207, 0.04539739340543747, 0.06431888043880463, 0.055390384048223495, -0.09414388239383698, 0.14641457796096802, 0.006840258836746216, 0.11057958751916885, 0.04551263526082039, -0.10654489696025848, -0.17678532004356384, -0.12718704342842102, 0.07507020980119705, 0.11934203654527664, 0.08467019349336624, -0.035215020179748535, 0.033006392419338226, -0.014937741681933403, 0.03840739279985428, 0.2684330642223358, -0.23141908645629883, -0.004937443416565657, 0.05642400309443474, 0.044137727469205856, 0.0342424176633358, -0.08264715224504471, 0.021277135238051414, 0.04712856933474541, 0.026205208152532578, 0.042331743985414505, -0.02638116106390953, 0.17620861530303955, 0.030633674934506416, -0.10679162293672562, -0.0847879946231842, 0.13490059971809387, -0.015840847045183182, -0.09675309807062149, -0.1092262864112854, 0.020457277074456215, -0.0019189539598301053, 0.02971659228205681, -0.017697839066386223, 0.005670974962413311, 0.009029807522892952, -0.061810676008462906, -0.12113794684410095, -0.0693591982126236, -0.03180789574980736, -0.024717681109905243, 0.07468508183956146, 0.03794459253549576, 0.0277225561439991, -0.052774518728256226, 0.22150903940200806, -0.04532862454652786, -0.08578354120254517, -0.0590100958943367, -0.08282478898763657, -0.06808529794216156, -0.06182675436139107, -0.005543340463191271, 0.02282796800136566, -0.06948535144329071, 0.16214320063591003, 0.009804757311940193, 0.0027623064815998077, -0.0012728304136544466, 0.0018753253389149904, 0.19124487042427063, 0.08245911449193954, -0.12717068195343018, -0.05211273580789566, 0.06664891541004181, -0.004874248988926411, -0.07090799510478973, -0.04799478501081467, -0.010741105303168297, -0.021928921341896057, 0.04507632926106453, 0.04955023527145386, 0.048240598291158676, 0.05066446214914322, 0.018294893205165863, -0.05864062160253525, 0.11169597506523132, -0.13358916342258453, 0.01119846012443304, -0.011728744953870773, -0.03531632572412491, -0.0033966219052672386, 0.06246495619416237, 0.035023126751184464, -0.09913638234138489, 0.12977121770381927, -0.054049231112003326, -0.06068847328424454, -0.05499303340911865, -0.0837855339050293, 0.00108182558324188, -0.028654830530285835, -0.01875687576830387, -0.03866705298423767, -0.1797926127910614, -0.029315372928977013, 0.044169455766677856, -0.04628997668623924, -0.06486178189516068, 0.028649762272834778, -0.019084470346570015, -0.011618482880294323, -0.013918892480432987, -0.02789488062262535, -0.027428606525063515, 0.038993291556835175, -0.06395713239908218, 0.041234660893678665, 0.058422818779945374, 0.06434419006109238, -0.13611266016960144, 0.053431589156389236, -0.19722238183021545, 0.12122014164924622, -0.015452743507921696, -0.01572985015809536, -0.10194439440965652, -0.10281280428171158, -0.003380676731467247, -0.008404807187616825, -0.0101127615198493, 0.06913800537586212, -0.17203733325004578, -0.0626477375626564, 0.14461387693881989, -0.05783073976635933, -0.06457413733005524, 0.0902128741145134, -0.07769040763378143, 0.04565864056348801, 0.11835146695375443, 0.05299782007932663, 0.16954681277275085, -0.10119827836751938, -0.05799968168139458, -0.04266703873872757, -0.06606278568506241, 0.2232947051525116, 0.04676768556237221, -0.02721092291176319, 0.005689352285116911, 0.022301575168967247, -0.029929714277386665, -0.04035726189613342, 0.000198655019630678, -0.027410725131630898, -0.016004212200641632, -0.0046132393181324005, 0.0010020474437624216, -0.0349135622382164, -0.08193366229534149, -0.031483348459005356, -0.09963719546794891, 0.07094266265630722, 0.09209775179624557, -0.06620580703020096, 0.012467429041862488, -0.07611507922410965, 0.01417597196996212, -0.04528489708900452, -0.008826637640595436, -0.18152840435504913, 0.0033358847722411156, 0.011031564325094223, -0.06932902336120605, 0.11536833643913269, 0.045325614511966705, 0.02792898565530777, 0.07295620441436768, -0.023771829903125763, 0.03432484716176987, -0.038557615131139755, -0.019282273948192596, -0.024692945182323456, -0.15068894624710083, -0.06351515650749207, -0.044568758457899094, 0.07373753190040588, -0.10670430958271027, -0.007388264872133732, 0.11626754701137543, 0.10154233872890472, 0.03055279515683651, -0.06828435510396957, 0.035487957298755646, -0.026600971817970276, -0.04151255264878273, -0.09237711131572723, -0.05802520364522934, 0.0133922528475523, 0.005977692548185587, 0.12701605260372162, -0.14917248487472534, -0.09414010494947433, 0.1091572642326355, 0.13319078087806702, -0.1079891249537468, 0.07687537372112274, -0.073760025203228, -0.02390579879283905, -0.07287846505641937, -0.03281799703836441, 0.26131826639175415, 0.02726532146334648, 0.07976538687944412, -0.12412258982658386, -0.09968817234039307, -0.00010667552123777568, -0.047610118985176086, -0.03128518536686897, 0.021117348223924637, 0.023451223969459534, -0.17872177064418793, 0.04033892601728439, 0.004863777197897434, 0.06400339305400848, 0.23205089569091797, 0.049696024507284164, -0.09787876904010773, -0.04338324815034866, -0.09158656001091003, -0.01982276700437069, 0.05482938513159752, 0.00024378484522458166, 0.05981271341443062, 0.04963649436831474, 0.05690654739737511, 0.023187167942523956, -0.13123194873332977, 0.009159817360341549, 0.08792126178741455, -0.04196998104453087, -0.10549400746822357, 0.007345025427639484, 0.0335409939289093, 0.06849589198827744, 0.08832373470067978, 0.1158461719751358, -0.05878094211220741, -0.039675772190093994, -0.13971656560897827, 0.10561544448137283, -0.09586376696825027, -0.20830021798610687, -0.12845070660114288, -0.09939128160476685, 0.008856131695210934, 0.011396382935345173, 0.0481683611869812, -0.03813081607222557, -0.03784918412566185, -0.10371540486812592, 0.10216186195611954, -0.07062827050685883, -0.033167898654937744, -0.016311390325427055, 0.038603659719228745, -0.046690210700035095, -0.08879023790359497, -0.019095445051789284, 0.03950006514787674, -0.09909878671169281, -0.04982265457510948, 0.0058864387683570385, 0.020670102909207344, 0.15018166601657867, -0.0012015346437692642, 0.005570539738982916, -0.02408287115395069, 0.30992743372917175, -0.11929487437009811, 0.07075831294059753, 0.12768596410751343, -0.02255336008965969, 0.052847620099782944, 0.09567559510469437, 0.010544638149440289, -0.06042546033859253, 0.06559230387210846, 0.0823010504245758, -0.08112689107656479, -0.2107265591621399, -0.026054829359054565, 0.0024761357344686985, 0.032980117946863174, 0.11438992619514465, 0.04915374889969826, 0.047291554510593414, 0.0157256368547678, -0.08625885099172592, 0.05158236250281334, 0.03358658775687218, 0.09229622781276703, -0.08788353204727173, -0.012130219489336014, 0.0376802422106266, -0.04991312325000763, 0.03104362078011036, 0.1515752226114273, 0.046100251376628876, 0.19141750037670135, -0.06530319899320602, 0.06606490164995193, 0.068650983273983, 0.10425558686256409, 0.03044729307293892, 0.04390142485499382, -0.018023574724793434, 0.01591816544532776, -0.012246851809322834, -0.08614624291658401, -0.0011697260197252035, 0.029791058972477913, 0.05791306868195534, -0.012695511803030968, -0.03436021879315376, -0.08628739416599274, 0.011958261020481586, 0.25796985626220703, 0.005856402684003115, -0.1455790400505066, -0.08442678302526474, 0.04787184298038483, -0.07381853461265564, -0.06199486553668976, 0.007298178039491177, 0.05873843654990196, -0.2085597813129425, 0.07131845504045486, -0.0037109116092324257, 0.10354579985141754, -0.12789557874202728, -0.014591770246624947, 0.10880392044782639, 0.02691228874027729, -0.0688994750380516, 0.08685474842786789, -0.13636250793933868, 0.05268414318561554, -0.0021567100193351507, 0.08481129258871078, -0.054274119436740875, 0.02408555895090103, -0.002116507850587368, 0.07300440967082977, 0.10183478891849518, 0.015965614467859268, 0.009634453803300858, 0.00661531463265419, -0.02183799259364605, 0.0016329369973391294, 0.057484615594148636, -0.12614689767360687, 0.1103057861328125, -0.04254613816738129, 0.023539647459983826, -0.04441439360380173, -0.0899607390165329, -0.06834691017866135, -0.1611746996641159, 0.076936274766922, -0.1383180320262909, -0.008236001245677471, -0.044949185103178024, -0.023771118372678757, 0.03081020526587963, 0.26261675357818604, -0.04170553758740425, -0.06723843514919281, -0.1340709924697876, -0.011133870109915733, 0.14707475900650024, -0.05909483879804611, 0.008327165618538857, -0.008426236920058727, 0.1843496561050415, 0.0021626988891512156, -0.13174882531166077, -0.01480920985341072, -0.05154545605182648, -0.1697254627943039, -0.006383862346410751, 0.1637759953737259, 0.06509792059659958, 0.034996844828128815, 0.00710279168561101, 0.009714043699204922, -0.052432313561439514, -0.15094222128391266, 0.0475599505007267, 0.13935983180999756, -0.020307229831814766, 0.0177850890904665, 0.0468604639172554, 0.04437749832868576, -0.11482572555541992, 0.013036992400884628, 0.06321656703948975, 0.2104063630104065, -0.06506681442260742, 0.17268764972686768, 0.05914504453539848, -0.08495573699474335, -0.16303078830242157, 0.01674431562423706, 0.02183651737868786, 0.03153190016746521, 0.026130137965083122, -0.21666784584522247, 0.04579457268118858, 0.05187428370118141, -0.0020654124673455954, 0.03359135985374451, -0.320723295211792, -0.16120420396327972, 0.03949272260069847, 0.007932364009320736, -0.09025604277849197, -0.015474664978682995, -0.011034260503947735, -0.10217099636793137, -0.2903740406036377, 0.11026103794574738, -0.0935606062412262, 0.08156342804431915, 0.03044833242893219, 0.10304753482341766, 0.04282795265316963, -0.027747085317969322, 0.1158972829580307, -0.00042122078593820333, 0.06385382264852524, -0.07522528618574142, -0.06078660488128662, 0.060343123972415924, -0.052025359123945236, 0.09183052182197571, 0.02495528571307659, 0.06666135787963867, -0.09075023233890533, -0.09205189347267151, -0.06692462414503098, -0.017283741384744644, -0.04887290671467781, -0.09197796136140823, -0.11065664142370224, 0.07598506659269333, 0.10833755880594254, -0.04963846132159233, -0.10564031451940536, -0.07120390236377716, -0.039981354027986526, 0.0703897550702095, 0.1436954140663147, 0.08386896550655365, -0.09930894523859024, 0.03875303640961647, 0.0012476813280954957, 0.02553146332502365, -0.17183798551559448, 0.045251816511154175, 0.07331728935241699, 0.06435010582208633, 0.09164323657751083, 0.007954359985888004, -0.16802845895290375, -0.014837541617453098, 0.035336870700120926, -0.2001984715461731, -0.14975613355636597, -0.03878860920667648, -0.025727741420269012, -0.10210640728473663, -0.09307936578989029, 0.11610402911901474, -0.03639295697212219, -0.06196407601237297, 0.018054332584142685, 0.040435098111629486, -0.05704835429787636, 0.0972563698887825, 0.0236260574311018, 0.029735999181866646, -0.07290344685316086, 0.14311528205871582, 0.056046899408102036, 0.012215902097523212, 0.03552468121051788, 0.06268585473299026, -0.08531120419502258, 0.011414565145969391, -0.0664801299571991, 0.004733801819384098, -0.006043725647032261, -0.005624930374324322, 0.05071888491511345, -0.03661365061998367, 0.0394357293844223, 0.1052512601017952, 0.00466617988422513, 0.10847358405590057, -0.06425578147172928, 0.009516147896647453, -0.14956340193748474, 0.09403558820486069, 0.02805420011281967, 0.030335277318954468, -0.10005215555429459, 0.16330675780773163, 0.017572226002812386, 0.09531489759683609, -0.046810995787382126, -0.05753854289650917, -0.053738124668598175, -0.013290909118950367, -0.06461071968078613, -0.057535093277692795, -0.08899975568056107, -0.042753566056489944, 0.00042524709715507925, -0.04076939448714256, -0.028440218418836594, 0.0352766215801239, -0.04299021139740944, -0.05109558627009392, -0.05414815619587898, 0.03361199051141739, -0.1442061960697174, 0.04547298327088356, 0.14783088862895966, -0.048268165439367294, 0.11817539483308792, 0.05874507129192352, -0.03765016049146652, 0.0168763380497694, -0.12425079941749573, 0.006362295709550381, -0.008574987761676311, 0.002970549976453185, 0.0467422679066658, -0.16828905045986176, -0.01210901141166687, -0.04563840478658676, -0.04829735681414604, 0.0029284388292580843, 0.025523873046040535, -0.12021379917860031, 0.007846232503652573, 0.10757328569889069, -0.030345313251018524, -0.06601134687662125, 0.060328301042318344, 0.09344473481178284, 0.022864123806357384, 0.06518860906362534, -0.009640290401875973, 0.060825932770967484, -0.15060406923294067, -0.04334630072116852, 0.005040230695158243, 0.007204036228358746, 0.02754218317568302, 0.00033264217199757695, 0.020897934213280678, -0.028662418946623802, 0.19338451325893402, 0.01604229211807251, -0.05412007495760918, 0.0337873212993145, -0.05962207168340683, 0.017853427678346634, 0.03865962103009224, 0.0643378347158432, -0.04183042049407959, -0.05628490820527077, -0.004175653215497732, -0.01426656637340784, -0.092782162129879, -0.029228076338768005, 0.09296802431344986, 0.02886403538286686, 0.22675561904907227, -0.06427159905433655, 0.06622368842363358, -0.006364062428474426, -0.12284787744283676, -0.004015061073005199, 0.005921137053519487, 0.062026239931583405, -0.05945606529712677, 0.11606036871671677, 0.18104097247123718, -0.1733795702457428, 0.14024873077869415, 0.031211504712700844, -0.057166874408721924, -0.14028242230415344, -0.1890556812286377, -0.025260206311941147, -0.052482426166534424, 0.037268031388521194, -0.14330068230628967, 0.1009991392493248, 0.02094591036438942, 0.031499143689870834, -0.0500202476978302, 0.09714492410421371, -0.10509969294071198, -0.11440368741750717, 0.03786244988441467, 0.0063841394148766994, 0.00783493835479021, 0.04307474195957184, 0.09362851083278656, 0.052029453217983246, -0.007304742466658354, 0.07721183449029922, 0.038745444267988205, 0.015653660520911217, 0.04294751212000847, -0.05612492933869362, -0.03894598037004471, 0.027628295123577118, 0.009170729666948318, 0.027412431314587593, 0.06269827485084534, 0.06415580958127975, -0.016072820872068405, -0.01162911206483841, 0.3141203224658966, -0.03036549501121044, -0.029997697100043297, -0.18678343296051025, 0.1563180387020111, 0.01189301535487175, 0.0031127824913710356, 0.05543866753578186, -0.11048118025064468, 0.009588487446308136, 0.1276695877313614, 0.15834170579910278, -0.01825050264596939, 0.01602589339017868, -0.023143164813518524, 0.020102590322494507, 0.03540085628628731, 0.05671224370598793, 0.07789182662963867, 0.19369585812091827, -0.05078462138772011, 0.04699520766735077, -0.026419995352625847, -0.03497747704386711, -0.006567892152816057, 0.11692972481250763, -0.016150113195180893, -0.02255919575691223, -0.04918514937162399, 0.09216730296611786, -0.05965261533856392, -0.2662782073020935, -0.05816371738910675, -0.0013386508217081428, -0.10586407780647278, 0.06915085017681122, -0.04326885566115379, -0.009147760458290577, 0.08069241046905518, 0.016477972269058228, -0.06574206054210663, 0.1546451449394226, 0.04465077444911003, -0.06049652397632599, 0.0004877746105194092, 0.1043974757194519, -0.02439328469336033, 0.178739532828331, -0.017926879227161407, -0.0001447744289180264, 0.0584745854139328, 0.03355922922492027, -0.12183947116136551, -0.012609369121491909, 0.035010866820812225, -0.043404702097177505, -0.03537021577358246, 0.23604048788547516, 0.013463694602251053, 0.034512605518102646, 0.07047683000564575, -0.03589354828000069, 0.031658004969358444, -0.08249301463365555, 0.05140851438045502, -0.1297212541103363, 0.05144299566745758, -0.1019822284579277, 0.11746907234191895, 0.18389421701431274, -0.06370590627193451, 0.031216779723763466, -0.05641977861523628, 0.0035335011780261993, -0.022860253229737282, 0.09130390733480453, -0.008032508194446564, -0.09210959821939468, 0.008919385261833668, 0.06722564995288849, -0.00019633275223895907, -0.1750565767288208, -0.07672359049320221, 0.0630895271897316, -0.050547391176223755, 0.027031686156988144, 0.15956752002239227, 0.04039125144481659, 0.055712442845106125, -0.04081741347908974, -0.005578613840043545, -0.020961003378033638, 0.09983169287443161, -0.18400071561336517, -0.08661296963691711 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9793a6d598f68414ca37eb1135e6b0c1.686x686x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Gazette</div> <a href="https://genius.com/artists/the-gazette"> <div style="text-align: center; font-size: 14px;">@the-gazette</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Gazette. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-gazette). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-gazette") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3ck1sdfv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Gazette's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/m1wevlws) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/m1wevlws/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-gazette') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-gazette") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-gazette") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-gazette"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-gazette
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-gazette", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-gazette #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Gazette</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-gazette</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The Gazette. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The Gazette's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Gazette.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Gazette's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-gazette #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Gazette.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Gazette's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-gazette #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The Gazette.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Gazette's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.013438335619866848, 0.15822970867156982, -0.00310421921312809, 0.041631001979112625, 0.08894416689872742, 0.01723426952958107, 0.08699607104063034, 0.10602264851331711, 0.011048125103116035, 0.06907161325216293, 0.06641602516174316, 0.01397638488560915, 0.07213180512189865, 0.09124478697776794, 0.07854671776294708, -0.24964165687561035, 0.033411137759685516, -0.09213974326848984, -0.007009340915828943, 0.11153558641672134, 0.09831157326698303, -0.06223103776574135, 0.0800899937748909, 0.042272891849279404, -0.06760567426681519, 0.017887644469738007, 0.008455131202936172, -0.06078289821743965, 0.09421632438898087, 0.05893734470009804, 0.04722330719232559, 0.022636407986283302, 0.07332348823547363, -0.18504825234413147, 0.029282869771122932, 0.12484955787658691, 0.0335608646273613, 0.07434755563735962, 0.049349118024110794, -0.07240068167448044, 0.1429528445005417, -0.019846715033054352, 0.09860171377658844, 0.0505264513194561, -0.1193012148141861, -0.16004154086112976, -0.12960724532604218, 0.09143827110528946, 0.0855351984500885, 0.08497952669858932, -0.029102999716997147, 0.04600738361477852, -0.02584688365459442, 0.03592563793063164, 0.22013233602046967, -0.24510763585567474, -0.015543736517429352, 0.08067651838064194, 0.04871702194213867, 0.033111799508333206, -0.08561654388904572, 0.013488968834280968, 0.033936336636543274, 0.02142956294119358, 0.05518486723303795, -0.01721266843378544, 0.1932627260684967, 0.026518428698182106, -0.1004251018166542, -0.0817471444606781, 0.12761226296424866, -0.02537655085325241, -0.0703219398856163, -0.13468718528747559, -0.0039451224729418755, -0.008611212484538555, 0.03793199360370636, -0.0033084258902817965, 0.001798994722776115, 0.009420500136911869, -0.03260247781872749, -0.11596450954675674, -0.0899263545870781, -0.03418101742863655, -0.02950577437877655, 0.06325309723615646, 0.03397059813141823, 0.03919021785259247, -0.07717020809650421, 0.23079243302345276, -0.015258580446243286, -0.0950746238231659, -0.04451429843902588, -0.09571616351604462, -0.09705833345651627, -0.05019780620932579, 0.010299062356352806, 0.004893268924206495, -0.04752897471189499, 0.15965136885643005, -0.030846377834677696, 0.026753941550850868, -0.016924122348427773, -0.00870121642947197, 0.14578162133693695, 0.14320290088653564, -0.1072918102145195, -0.037553414702415466, 0.05643710866570473, -0.006618674844503403, -0.07048330456018448, -0.051113564521074295, -0.0037812849041074514, -0.01752435602247715, 0.0328608974814415, 0.07987351715564728, 0.06704238802194595, 0.05836392939090729, 0.014477218501269817, -0.06841079145669937, 0.08420310169458389, -0.13371914625167847, 0.01400306262075901, -0.001693653641268611, -0.044346120208501816, 0.018458226695656776, 0.048198405653238297, 0.016617434099316597, -0.09984450787305832, 0.10931359231472015, -0.06275995075702667, -0.05167919769883156, -0.08336257189512253, -0.09133654832839966, -0.011625916697084904, -0.025948461145162582, -0.047593455761671066, -0.06687543541193008, -0.16882072389125824, -0.04106280580163002, 0.037126507610082626, -0.049489326775074005, -0.034960366785526276, 0.034114770591259, -0.015636369585990906, 0.01354917697608471, -0.014243652112782001, -0.03458794951438904, -0.02739347703754902, 0.03066510334610939, -0.06572264432907104, 0.027667375281453133, 0.07013645023107529, 0.04757317900657654, -0.10593196004629135, 0.07213419675827026, -0.14935338497161865, 0.1187555268406868, -0.016535546630620956, 0.008836162276566029, -0.09675361216068268, -0.08023244142532349, -0.022741826251149178, -0.03347378969192505, -0.004035871475934982, 0.09455972164869308, -0.16784469783306122, -0.03257102146744728, 0.19503450393676758, -0.07173728197813034, -0.07443775236606598, 0.07180557399988174, -0.0766000896692276, 0.04151375591754913, 0.11718069016933441, 0.07898419350385666, 0.1613716036081314, -0.11854875832796097, -0.05482178181409836, -0.04810047149658203, -0.0685727670788765, 0.19259962439537048, 0.05109082907438278, -0.025614991784095764, 0.023082133382558823, 0.007030429318547249, -0.043183404952287674, -0.019717136397957802, -0.016611194238066673, -0.03797363117337227, -0.019018040969967842, 0.007262618280947208, 0.004328664392232895, -0.04496864974498749, -0.06124834716320038, -0.02613878808915615, -0.10069062560796738, 0.05029185116291046, 0.0979134663939476, -0.06494970619678497, 0.009865202009677887, -0.09276115149259567, 0.009670606814324856, -0.034378331154584885, 0.008470024913549423, -0.16928653419017792, -0.051085107028484344, 0.026873551309108734, -0.07262882590293884, 0.0839642658829689, 0.03911418840289116, 0.039682477712631226, 0.05764516443014145, -0.019402790814638138, 0.005197163671255112, -0.04749372974038124, -0.014448650181293488, -0.024972185492515564, -0.15072663128376007, -0.054831307381391525, -0.04094094783067703, 0.08851472288370132, -0.11079185456037521, 0.008578761480748653, 0.08396370708942413, 0.12477154284715652, 0.019461633637547493, -0.0619739294052124, 0.014024422504007816, -0.048859432339668274, -0.026828819885849953, -0.10058129578828812, -0.04505223035812378, 0.010678967460989952, -0.011426642537117004, 0.1488429307937622, -0.1597445160150528, -0.07663316279649734, 0.11012209206819534, 0.1176336333155632, -0.08331969380378723, 0.04092466086149216, -0.07924877107143402, -0.014040842652320862, -0.046266358345746994, -0.05236262083053589, 0.2656018137931824, 0.03270915150642395, 0.08408530056476593, -0.10178851336240768, -0.09689749032258987, -0.011103253811597824, -0.04242096096277237, -0.03250716254115105, 0.02005338855087757, 0.02839200757443905, -0.1641969084739685, 0.039014559239149094, 0.0019041035557165742, 0.09633934497833252, 0.20462794601917267, 0.039402663707733154, -0.08371146768331528, -0.06371261179447174, -0.07390745729207993, -0.003020671894773841, 0.07547084242105484, 0.0077814981341362, 0.030060306191444397, 0.04601689428091049, 0.056942280381917953, 0.04109371453523636, -0.12128978222608566, 0.013128927908837795, 0.06808280199766159, -0.039393775165081024, -0.0482761524617672, 0.01320612896233797, 0.025192255154252052, 0.08653578162193298, 0.09323828667402267, 0.13848137855529785, -0.06398123502731323, -0.05252118408679962, -0.13698402047157288, 0.1272958368062973, -0.0880066454410553, -0.23791831731796265, -0.14086970686912537, -0.0703599750995636, 0.013608030043542385, 0.012454082258045673, 0.029973212629556656, -0.05133899301290512, -0.042385779321193695, -0.08912768959999084, 0.09633088111877441, -0.04838305339217186, -0.024191133677959442, 0.016644436866044998, 0.024317674338817596, -0.016348406672477722, -0.11956239491701126, -0.0351773202419281, 0.029964936897158623, -0.09142725169658661, -0.007959684357047081, 0.03355652093887329, 0.03891369327902794, 0.15766438841819763, -0.008714391849935055, 0.006390404421836138, -0.020832069218158722, 0.26818886399269104, -0.11655447632074356, 0.08032552897930145, 0.16880932450294495, -0.009653757326304913, 0.059404049068689346, 0.0765627771615982, 0.008145476691424847, -0.053485207259655, 0.06649330258369446, 0.07459776848554611, -0.06809362769126892, -0.2127138078212738, -0.03861064836382866, -0.015204153954982758, 0.005811808630824089, 0.11251366138458252, 0.043336909264326096, 0.04964109882712364, 0.006040772423148155, -0.10093700885772705, 0.04156404361128807, 0.0348496250808239, 0.10013196617364883, -0.046324435621500015, -0.009482854045927525, 0.04921631142497063, -0.05470976233482361, 0.027338813990354538, 0.12958519160747528, 0.04605380818247795, 0.20915119349956512, -0.05944919213652611, 0.09800181537866592, 0.08116907626390457, 0.10286986082792282, 0.026898320764303207, 0.01878836564719677, -0.019623463973402977, 0.02342147007584572, 0.0023924673441797495, -0.08896837383508682, -0.004599401727318764, 0.03633087873458862, 0.0386073924601078, -0.012630261480808258, -0.04183431342244148, -0.07681471109390259, 0.050030749291181564, 0.2349097728729248, 0.01731415092945099, -0.157588392496109, -0.09891064465045929, 0.06262284517288208, -0.06798332929611206, -0.0635499358177185, -0.017949722707271576, 0.05988839641213417, -0.21626925468444824, 0.04896845296025276, -0.033651869744062424, 0.10597371309995651, -0.12409865856170654, 0.000027327654606779106, 0.086153544485569, 0.042327769100666046, -0.0666363313794136, 0.08977484703063965, -0.15362197160720825, 0.07002902030944824, -0.005976703949272633, 0.07254890352487564, -0.06675750017166138, 0.028570769354701042, 0.016079962253570557, 0.0478719137609005, 0.08072154223918915, 0.0187781173735857, 0.03516921401023865, -0.01436506025493145, -0.04158322885632515, 0.004050400573760271, 0.062118642032146454, -0.12257295101881027, 0.12314706295728683, -0.04306945577263832, 0.03459868207573891, -0.02687804214656353, -0.07948705554008484, -0.08894354104995728, -0.15201617777347565, 0.08477414399385452, -0.11904148012399673, -0.0015822647837921977, -0.07070572674274445, -0.01319765206426382, 0.020719751715660095, 0.24031497538089752, -0.0806608498096466, -0.0783436968922615, -0.13991935551166534, -0.00959537923336029, 0.1405593603849411, -0.07840781658887863, 0.005549628287553787, -0.019436728209257126, 0.1882607340812683, -0.0035653135273605585, -0.13398927450180054, -0.012278582900762558, -0.06421839445829391, -0.17337870597839355, -0.023904306814074516, 0.1658710241317749, 0.06982036679983139, 0.034277305006980896, 0.003525214036926627, 0.0053308201022446156, -0.0529896542429924, -0.16955652832984924, 0.03139180690050125, 0.15022940933704376, 0.002590321935713291, 0.015986165031790733, 0.029085950925946236, 0.012658296152949333, -0.12632296979427338, 0.01940949261188507, 0.0507037378847599, 0.1732204109430313, -0.07442844659090042, 0.18308857083320618, 0.02725897915661335, -0.09071864932775497, -0.16306912899017334, 0.020250510424375534, 0.011254444718360901, 0.02774188108742237, 0.016589652746915817, -0.1910897046327591, 0.03659171238541603, 0.0328507162630558, -0.008934583514928818, 0.05138562247157097, -0.3264254927635193, -0.15093795955181122, 0.008287736214697361, 0.009717471897602081, -0.11548659950494766, -0.0394795686006546, -0.03597811609506607, -0.07465311139822006, -0.2598172128200531, 0.09877041727304459, -0.11153369396924973, 0.07687360048294067, 0.009103440679609776, 0.08022192865610123, 0.042155664414167404, -0.054920442402362823, 0.13302341103553772, -0.028456248342990875, 0.060941051691770554, -0.0928247794508934, -0.06071573868393898, 0.0915951281785965, -0.06609703600406647, 0.1045873612165451, 0.0397341288626194, 0.08448036760091782, -0.11368224769830704, -0.07949773222208023, -0.08062921464443207, 0.007132466416805983, -0.061772219836711884, -0.10027063637971878, -0.09369412809610367, 0.09153830260038376, 0.1220509335398674, -0.04424002766609192, -0.09365880489349365, -0.05082525685429573, -0.0029895384795963764, 0.06002487614750862, 0.11046246439218521, 0.08512881398200989, -0.08903010189533234, 0.007210487965494394, 0.016676276922225952, 0.01839033141732216, -0.1603187471628189, 0.04567147418856621, 0.08846277743577957, 0.036774832755327225, 0.10911540687084198, 0.011036626994609833, -0.16590112447738647, 0.004351405426859856, 0.04241878539323807, -0.165459543466568, -0.11262982338666916, -0.04424365609884262, 0.009865094907581806, -0.10466305166482925, -0.05134234577417374, 0.12989820539951324, -0.027545511722564697, -0.03648330643773079, 0.0034391588997095823, 0.04743460938334465, -0.043572697788476944, 0.08789043873548508, 0.01672244444489479, 0.04313111677765846, -0.06360781192779541, 0.11498437821865082, 0.07006436586380005, 0.020858926698565483, 0.030765416100621223, 0.0653458684682846, -0.08883507549762726, 0.006166587583720684, -0.08288884907960892, 0.016957834362983704, -0.03336399048566818, -0.010464760474860668, 0.011681552045047283, -0.04896726459264755, 0.03688674792647362, 0.07781623303890228, -0.012002932839095592, 0.10501404106616974, -0.04218018800020218, 0.005143547896295786, -0.12856805324554443, 0.07721959054470062, 0.03669329732656479, 0.017998646944761276, -0.10879510641098022, 0.18835896253585815, 0.02771816961467266, 0.09160038083791733, -0.037547238171100616, -0.06281188875436783, -0.06682837009429932, -0.01001667883247137, -0.10554390400648117, -0.05236252024769783, -0.08831257373094559, -0.027998611330986023, -0.007870796136558056, -0.044760338962078094, -0.020448029041290283, 0.044464752078056335, -0.03236541152000427, -0.05851390212774277, -0.0657677873969078, 0.045156508684158325, -0.14083048701286316, 0.02652388997375965, 0.12401660531759262, -0.05868953838944435, 0.11680956184864044, 0.05672901123762131, -0.02960444986820221, 0.021379681304097176, -0.11002375185489655, 0.03684692084789276, -0.035310301929712296, 0.018462656065821648, 0.026403697207570076, -0.15386474132537842, 0.009683488868176937, -0.04978334158658981, -0.06839603185653687, 0.008112863637506962, 0.0008379319333471358, -0.12497436255216599, 0.011687956750392914, 0.07454393059015274, -0.01997518353164196, -0.06966682523488998, 0.06444352865219116, 0.06439338624477386, 0.019305089488625526, 0.05567193403840065, -0.026383468881249428, 0.07677178829908371, -0.17131385207176208, -0.04838305339217186, 0.007697132881730795, 0.029235683381557465, 0.046124763786792755, -0.019687820225954056, 0.03411218896508217, -0.01748877391219139, 0.1971016675233841, 0.01528367679566145, -0.018836606293916702, 0.039887696504592896, -0.05923095718026161, -0.006716074422001839, 0.04565573111176491, 0.06348312646150589, -0.040651023387908936, -0.03677752986550331, -0.005085794720798731, -0.023121824488043785, -0.09264502674341202, -0.04905334860086441, 0.11120438575744629, 0.04910099878907204, 0.18606144189834595, -0.05654369294643402, 0.06749360263347626, -0.023757966235280037, -0.12543661892414093, -0.011217186227440834, -0.04914602264761925, 0.027085186913609505, -0.0636461079120636, 0.06213366985321045, 0.17115481197834015, -0.16979511082172394, 0.12249623984098434, 0.021346990019083023, -0.055754758417606354, -0.1016761064529419, -0.18189263343811035, -0.013998881913721561, -0.035657159984111786, 0.02972317300736904, -0.13229648768901825, 0.08833978325128555, 0.02410193346440792, 0.03343411907553673, -0.06950269639492035, 0.12723985314369202, -0.07580359280109406, -0.11842291057109833, 0.03558674454689026, 0.03053213097155094, 0.029531115666031837, 0.040739476680755615, 0.08259514719247818, 0.02237645909190178, 0.012254191562533379, 0.06528246402740479, 0.04447418078780174, 0.023216137662529945, 0.02375122159719467, -0.02000425010919571, -0.04622902721166611, 0.030243366956710815, -0.002053619362413883, 0.024795256555080414, 0.09180928021669388, 0.0585157535970211, -0.019037863239645958, -0.026016756892204285, 0.2961379289627075, -0.036074258387088776, -0.04493813216686249, -0.17688538134098053, 0.16836176812648773, 0.007842029444873333, -0.010799911804497242, 0.03086118772625923, -0.12398513406515121, 0.003399625886231661, 0.14128397405147552, 0.17490318417549133, -0.031238103285431862, 0.020447606220841408, -0.024258991703391075, 0.01615770533680916, 0.03737455978989601, 0.09362424165010452, 0.06679227203130722, 0.19968630373477936, -0.04189686477184296, 0.04788566753268242, -0.010216892696917057, -0.015991589054465294, 0.0015828532632440329, 0.11168500781059265, -0.03229515627026558, 0.007540353573858738, -0.06154230609536171, 0.09886392951011658, -0.04026951268315315, -0.27827706933021545, -0.014987295493483543, -0.02994738332927227, -0.0909164547920227, 0.061867449432611465, -0.02721770852804184, -0.03834997117519379, 0.08246888965368271, 0.026111241430044174, -0.04344848170876503, 0.143189936876297, 0.044889114797115326, -0.045153744518756866, -0.0068555595353245735, 0.10541990399360657, -0.02840191125869751, 0.19297009706497192, -0.02401294745504856, 0.001774669624865055, 0.08316968381404877, 0.012562301941215992, -0.11779006570577621, 0.01129970233887434, 0.04193807765841484, -0.06903482228517532, -0.02741180546581745, 0.19423823058605194, 0.015812749043107033, 0.030139923095703125, 0.06780264526605606, -0.05883264169096947, 0.03139583766460419, -0.05838794261217117, 0.04783172160387039, -0.14641225337982178, 0.06454742699861526, -0.08908917009830475, 0.13610760867595673, 0.1855287402868271, -0.06380666792392731, 0.02693496271967888, -0.061558980494737625, 0.004611155018210411, -0.02025613933801651, 0.08373433351516724, -0.019950110465288162, -0.10278495401144028, 0.012947439216077328, 0.023627663031220436, 0.021818839013576508, -0.1887892484664917, -0.0798405259847641, 0.06507159769535065, -0.05074162408709526, 0.024670306593179703, 0.17439773678779602, 0.027737699449062347, 0.06717470288276672, -0.032494883984327316, -0.000038391230191336945, -0.016086291521787643, 0.11429516226053238, -0.1587546467781067, -0.07571756839752197 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/18f21c424e2f02f0c9a59c15bac56406.736x736x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Grateful Dead</div> <a href="https://genius.com/artists/the-grateful-dead"> <div style="text-align: center; font-size: 14px;">@the-grateful-dead</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Grateful Dead. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-grateful-dead). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-grateful-dead") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2agvlyoo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Grateful Dead's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1ex4c8kc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1ex4c8kc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-grateful-dead') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-grateful-dead") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-grateful-dead") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-grateful-dead"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-grateful-dead
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-grateful-dead", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-grateful-dead #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Grateful Dead</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-grateful-dead</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The Grateful Dead. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The Grateful Dead's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Grateful Dead.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Grateful Dead's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-grateful-dead #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Grateful Dead.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Grateful Dead's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-grateful-dead #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The Grateful Dead.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Grateful Dead's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01028644572943449, 0.18532057106494904, -0.00478554330766201, 0.06491927057504654, 0.07734450697898865, 0.006649332121014595, 0.059368450194597244, 0.11732447892427444, -0.0006329055759124458, 0.08418069779872894, 0.06946602463722229, 0.05693025887012482, 0.08023405075073242, 0.06844520568847656, 0.03227756544947624, -0.23891954123973846, 0.03257057070732117, -0.06949027627706528, -0.014800040051341057, 0.09114006161689758, 0.07581175863742828, -0.07494764775037766, 0.08369734138250351, 0.021212847903370857, -0.03886088728904724, 0.0012933161342516541, 0.021420249715447426, -0.052867110818624496, 0.07602445036172867, 0.089101143181324, 0.033242594450712204, 0.026682879775762558, 0.055376943200826645, -0.17192798852920532, 0.028588024899363518, 0.11871754378080368, 0.015283030457794666, 0.09242106229066849, 0.06942908465862274, -0.05870743468403816, 0.1072692796587944, -0.045753855258226395, 0.08218173682689667, 0.06095259264111519, -0.11929695308208466, -0.09600350260734558, -0.13809625804424286, 0.04751843214035034, 0.06788261979818344, 0.07832378149032593, -0.027222108095884323, 0.09042304754257202, -0.033001016825437546, 0.04786025732755661, 0.22374047338962555, -0.2521372139453888, -0.01962939091026783, 0.059703826904296875, 0.06507352739572525, 0.014263719320297241, -0.09553015977144241, 0.02622373215854168, 0.03285010904073715, 0.03971448168158531, 0.047189533710479736, -0.03472739830613136, 0.14062823355197906, -0.006529329344630241, -0.09875435382127762, -0.06371840089559555, 0.05671599879860878, -0.012509658001363277, -0.06373432278633118, -0.11047576367855072, -0.01070431713014841, -0.005292022600769997, 0.02458464726805687, 0.009036032482981682, -0.0002425708808004856, -0.0026439870707690716, -0.08502614498138428, -0.13547581434249878, -0.073643758893013, -0.040652111172676086, -0.031206659972667694, 0.04143292084336281, 0.04594310745596886, 0.03733404353260994, -0.05031316354870796, 0.188703253865242, 0.0012592800194397569, -0.09306628257036209, -0.07919927686452866, -0.1144954189658165, -0.09939597547054291, -0.03750603646039963, -0.00818557757884264, 0.013703851960599422, -0.011167312040925026, 0.1557379961013794, -0.022814875468611717, 0.02301182970404625, -0.05749824643135071, 0.017841562628746033, 0.09999583661556244, 0.10374241322278976, -0.11192794144153595, -0.06419932842254639, 0.07678715884685516, -0.017332598567008972, -0.0425182580947876, -0.047395430505275726, -0.004531589802354574, -0.03891070932149887, 0.05592375621199608, 0.0820242390036583, 0.08439413458108902, 0.05092557147145271, -0.011727333068847656, -0.049705225974321365, 0.01499120518565178, -0.13094648718833923, 0.023806951940059662, -0.00837378017604351, -0.05322612449526787, 0.001343464944511652, 0.044874176383018494, -0.0017973239300772548, -0.11337092518806458, 0.06821590662002563, -0.07833703607320786, -0.02607756108045578, -0.08527226001024246, -0.11261802911758423, 0.01710319332778454, -0.03741387650370598, -0.02711411938071251, -0.07304942607879639, -0.13095888495445251, -0.03596057742834091, 0.02873680368065834, -0.08043303340673447, -0.014015520922839642, 0.019537245854735374, -0.044651348143815994, 0.006283698603510857, -0.008550598286092281, 0.015634968876838684, -0.007263664621859789, 0.05120537802577019, -0.07801233232021332, 0.0470605231821537, 0.06034047156572342, 0.03856360912322998, -0.10525684803724289, 0.06493761390447617, -0.15110377967357635, 0.1479058712720871, -0.03880498558282852, -0.04158955067396164, -0.0973522961139679, -0.0942467600107193, -0.011222678236663342, -0.042195357382297516, 0.04308074340224266, 0.12181291729211807, -0.1689676195383072, -0.010613824240863323, 0.21617594361305237, -0.06987621635198593, -0.045636165887117386, 0.09238845854997635, -0.07371591031551361, 0.0329025574028492, 0.10715856403112411, 0.043464936316013336, 0.10674098134040833, -0.07932862639427185, -0.08448762446641922, -0.03928092494606972, -0.07928414642810822, 0.19024239480495453, 0.03563019260764122, -0.022792747244238853, 0.050616949796676636, -0.00885478314012289, -0.0024171664845198393, -0.028082678094506264, -0.035664401948451996, -0.03718030825257301, -0.008492312394082546, 0.0014002523384988308, 0.03165564313530922, -0.05614516884088516, -0.030855638906359673, -0.012285531498491764, -0.10096195340156555, 0.05372494086623192, 0.07891689985990524, -0.06373349577188492, 0.025199083611369133, -0.10917055606842041, 0.03636852279305458, -0.07334565371274948, 0.017930056899785995, -0.1810787469148636, -0.0411548912525177, 0.01173658762127161, -0.06580052524805069, 0.06950356066226959, 0.025671575218439102, 0.0611221082508564, 0.07694526016712189, -0.03041563183069229, 0.016559962183237076, -0.05242277309298515, 0.0033843866549432278, -0.06871528923511505, -0.1611425280570984, -0.05304385721683502, -0.04119448363780975, 0.04915974289178848, -0.11222284287214279, -0.0026189852505922318, 0.09373539686203003, 0.15243668854236603, 0.042399752885103226, -0.06127583980560303, 0.024540720507502556, -0.03264114260673523, -0.02735958620905876, -0.09503969550132751, -0.04297543689608574, 0.005656284745782614, -0.03796470910310745, 0.16204103827476501, -0.14637668430805206, -0.07202445715665817, 0.11452598869800568, 0.06482048332691193, -0.08455928415060043, 0.04192045331001282, -0.05540691688656807, -0.02090689167380333, -0.05740740895271301, -0.05827627703547478, 0.22206607460975647, 0.05344488099217415, 0.0854673758149147, -0.0903722494840622, -0.07588109374046326, -0.0012491157976910472, -0.03071402944624424, -0.01898306794464588, 0.05108172446489334, 0.026652952656149864, -0.23980450630187988, 0.06029411405324936, 0.0030789568554610014, 0.05510645732283592, 0.15278702974319458, 0.030292121693491936, -0.09750334173440933, -0.0724903866648674, -0.04973786696791649, 0.02114913985133171, 0.07634034007787704, 0.020738767459988594, 0.06413621455430984, 0.03579137846827507, 0.04720378294587135, 0.0267367921769619, -0.11330874264240265, 0.01995493844151497, 0.04432367905974388, -0.03635713458061218, -0.040548212826251984, 0.008351730182766914, 0.03343933820724487, 0.08947529643774033, 0.07279841601848602, 0.10528285801410675, -0.022505175322294235, -0.05134669318795204, -0.10804571211338043, 0.12529869377613068, -0.09975913166999817, -0.21350671350955963, -0.1288130134344101, -0.07310318946838379, 0.027479713782668114, 0.012419022619724274, 0.03261103108525276, -0.02574104070663452, -0.038601238280534744, -0.08723308891057968, 0.06274529546499252, -0.05176331475377083, -0.021957192569971085, -0.0016053990693762898, 0.05482209473848343, -0.0019856789149343967, -0.10477766394615173, -0.019512347877025604, 0.012213188223540783, -0.08338744938373566, 0.006384388543665409, 0.05052824690937996, 0.03478909656405449, 0.09446511417627335, -0.007128553465008736, -0.0037223182152956724, -0.028255131095647812, 0.26056259870529175, -0.10432048887014389, 0.0585913322865963, 0.1610264629125595, -0.04277535527944565, 0.0780128538608551, 0.05799010396003723, 0.0050501516088843346, -0.046051621437072754, 0.044161003082990646, 0.07304996997117996, -0.05655236169695854, -0.2048468291759491, -0.0034630075097084045, -0.043023549020290375, 0.0023277816362679005, 0.10233578830957413, 0.02443964220583439, 0.013271762989461422, 0.02435113489627838, -0.10183022171258926, 0.07308769226074219, 0.07077617943286896, 0.09892061352729797, -0.011960887350142002, -0.015228873118758202, 0.06414198875427246, -0.04827555641531944, 0.018939407542347908, 0.1144208237528801, 0.03547298163175583, 0.25309377908706665, -0.06841127574443817, 0.06765501201152802, 0.08497567474842072, 0.07579303532838821, 0.02989134192466736, 0.034037064760923386, -0.023103559389710426, 0.04018152505159378, -0.009745089337229729, -0.09266632050275803, -0.018172329291701317, 0.04628676548600197, 0.044523291289806366, -0.017607860267162323, -0.03250981494784355, -0.04775078222155571, 0.03830279782414436, 0.18741537630558014, 0.08903994411230087, -0.1522950530052185, -0.09656814485788345, 0.07356682419776917, -0.05186861380934715, -0.06505604088306427, -0.020167965441942215, 0.10242008417844772, -0.21169814467430115, 0.016594311222434044, -0.051668934524059296, 0.117508664727211, -0.1520242840051651, -0.008277691900730133, -0.014639525674283504, 0.05835290253162384, -0.06218206137418747, 0.07745816558599472, -0.1941816806793213, 0.06710450351238251, 0.016674727201461792, 0.08401834964752197, -0.05957590416073799, 0.02657369337975979, 0.058271802961826324, 0.007275864481925964, 0.10756475478410721, 0.008340725675225258, -0.00897406879812479, -0.0776982232928276, -0.0812641978263855, 0.006837731692939997, 0.06520866602659225, -0.06433079391717911, 0.12591449916362762, -0.04212833568453789, 0.02592937834560871, -0.01934409700334072, -0.049384117126464844, -0.11556316912174225, -0.16582874953746796, 0.07166250795125961, -0.11138267070055008, 0.01898624747991562, -0.05315383896231651, -0.026467004790902138, 0.0514158271253109, 0.2221209555864334, -0.1312861442565918, -0.08798223733901978, -0.12230262160301208, 0.04101056233048439, 0.15905381739139557, -0.0807332769036293, 0.024210987612605095, 0.006892777513712645, 0.15330341458320618, 0.004780435934662819, -0.12159331887960434, -0.0028980649076402187, -0.06446678191423416, -0.189139723777771, -0.025123637169599533, 0.11482600122690201, 0.07189768552780151, 0.060712046921253204, 0.023847300559282303, 0.02143688127398491, -0.02891799435019493, -0.1459406018257141, 0.022706983610987663, 0.13195441663265228, 0.06210409477353096, 0.0342329703271389, -0.002634144853800535, 0.02722235955297947, -0.12343383580446243, 0.036107804626226425, 0.0873769149184227, 0.2050299048423767, -0.07483931630849838, 0.15026992559432983, 0.013739983551204205, -0.08729062974452972, -0.1781257688999176, 0.011979309841990471, 0.006808021571487188, 0.03252436965703964, 0.02539706975221634, -0.17831537127494812, -0.008023064583539963, 0.03677162528038025, -0.006361501757055521, 0.08886454999446869, -0.2932228446006775, -0.12312018126249313, 0.010506891645491123, 0.028852419927716255, -0.0322846956551075, -0.023136667907238007, -0.06002265214920044, -0.07289905846118927, -0.22352370619773865, 0.10337722301483154, -0.1182890385389328, 0.09872805327177048, 0.017758985981345177, 0.02680242247879505, 0.04057617485523224, -0.05279947444796562, 0.13168609142303467, -0.06348316371440887, 0.05922011286020279, -0.09320850670337677, -0.03306789696216583, 0.08766783028841019, -0.059030670672655106, 0.06123196333646774, 0.0055030896328389645, 0.06749080866575241, -0.0645986869931221, -0.06456570327281952, -0.0703262910246849, 0.010307933203876019, -0.06482727080583572, -0.08839909732341766, -0.0704890713095665, 0.10804519057273865, 0.1196923702955246, -0.025635400786995888, -0.08836627751588821, -0.04516823962330818, -0.029509440064430237, 0.0933375284075737, 0.1102479100227356, 0.11591944843530655, -0.07365763932466507, 0.015172337181866169, -0.001637046691030264, 0.045420173555612564, -0.08601978421211243, 0.0565812774002552, 0.08649765700101852, 0.019909027963876724, 0.10941027849912643, 0.029018308967351913, -0.17054282128810883, 0.047444574534893036, 0.026061110198497772, -0.12276449054479599, -0.13122962415218353, -0.02265654131770134, -0.01858384720981121, -0.08815588057041168, -0.04669314622879028, 0.15715420246124268, -0.02790091745555401, -0.03884151577949524, 0.013025498017668724, 0.07040615379810333, -0.03552984818816185, 0.11137742549180984, 0.018877118825912476, 0.041925594210624695, -0.07248103618621826, 0.08674459904432297, 0.0636012852191925, 0.012304112315177917, 0.03770009055733681, 0.060142505913972855, -0.08409309387207031, -0.00819262396544218, -0.08001992851495743, 0.0041327206417918205, -0.02433088608086109, 0.0014743994688615203, -0.006513061933219433, -0.0428408607840538, 0.04310651123523712, 0.11325424164533615, -0.010513540357351303, 0.10389525443315506, -0.019821392372250557, -0.0059430357068777084, -0.11361033469438553, 0.0863463506102562, 0.04012150317430496, 0.01771625131368637, -0.07158400118350983, 0.1575564742088318, 0.016369035467505455, 0.07665913552045822, -0.04191219061613083, -0.043374717235565186, -0.08450153470039368, -0.017339712008833885, -0.15583288669586182, -0.019800269976258278, -0.08623871952295303, -0.046406954526901245, -0.017690833657979965, -0.03591868281364441, -0.030740924179553986, 0.055450063198804855, -0.028521282598376274, -0.07075172662734985, -0.06314469873905182, 0.04091672599315643, -0.1624743491411209, -0.006326205097138882, 0.12862907350063324, -0.08391106128692627, 0.11506635695695877, 0.04055308178067207, -0.03486408665776253, 0.00546619389206171, -0.06791769713163376, 0.004773320630192757, -0.033231884241104126, 0.014327535405755043, 0.038752757012844086, -0.1414484679698944, 0.016469553112983704, -0.06784439086914062, -0.033533863723278046, 0.018022360280156136, 0.03326133266091347, -0.1125362440943718, -0.012105288915336132, 0.03929779306054115, -0.004571680445224047, -0.06256327778100967, 0.0745169073343277, 0.03554902598261833, 0.028305474668741226, 0.08344800770282745, -0.024796370416879654, 0.10667028278112411, -0.16083510220050812, -0.025240963324904442, 0.015051417984068394, 0.0065156035125255585, 0.0855914056301117, -0.023201225325465202, 0.0643032118678093, -0.023292049765586853, 0.16988064348697662, -0.011590808629989624, -0.028256623074412346, 0.036030542105436325, -0.04655814543366432, -0.018413735553622246, 0.04123291000723839, 0.05475042387843132, -0.006103262305259705, -0.05018957704305649, -0.03416211158037186, -0.0023794295266270638, -0.052998609840869904, -0.07011338323354721, 0.14488475024700165, 0.08882363885641098, 0.15954743325710297, -0.023287970572710037, 0.07080281525850296, -0.010172768495976925, -0.11044259369373322, -0.012052199803292751, -0.013229543343186378, 0.028229592368006706, -0.05502316355705261, 0.06850452721118927, 0.1472657024860382, -0.14460177719593048, 0.11564112454652786, 0.006188758183270693, -0.05522635579109192, -0.11230180412530899, -0.1825103908777237, -0.041902635246515274, 0.002876652404665947, 0.03075941652059555, -0.1272486448287964, 0.08126256614923477, 0.041679445654153824, 0.03260939568281174, -0.055772799998521805, 0.09383945167064667, -0.046837277710437775, -0.11480536311864853, 0.024464895948767662, 0.03278734162449837, 0.0311917494982481, 0.054755423218011856, 0.04267704114317894, 0.028927113860845566, 0.02930963970720768, 0.0705670565366745, 0.03840607777237892, 0.041697852313518524, 0.019885940477252007, -0.020011357963085175, -0.060903698205947876, 0.010793055407702923, 0.018272513523697853, 0.03544984757900238, 0.12946650385856628, 0.06225117668509483, -0.009581039659678936, -0.03652679920196533, 0.2890785336494446, -0.04753537476062775, -0.04545552283525467, -0.1699550896883011, 0.1773907095193863, 0.019191313534975052, 0.0003948077792301774, 0.020443573594093323, -0.1393311768770218, 0.022819289937615395, 0.14444105327129364, 0.1641380786895752, -0.07266062498092651, 0.013053142465651035, -0.0011364463716745377, 0.00999644584953785, 0.04509507864713669, 0.07262533158063889, 0.043479081243276596, 0.1890966296195984, -0.06765377521514893, 0.05419236049056053, 0.010774800553917885, -0.006179905962198973, -0.023552509024739265, 0.10846960544586182, -0.037965573370456696, 0.01537334080785513, -0.06762421876192093, 0.07856806367635727, -0.06257205456495285, -0.24264168739318848, 0.0016160669038072228, -0.03463507071137428, -0.10408739745616913, 0.05034542456269264, -0.04258006066083908, -0.023266619071364403, 0.08339819312095642, 0.031016282737255096, -0.009594706818461418, 0.1272500455379486, 0.03567833453416824, -0.03220289573073387, -0.006209164392203093, 0.08930879831314087, -0.007282357197254896, 0.19502060115337372, -0.007327639032155275, 0.026820668950676918, 0.10341618955135345, 0.022894300520420074, -0.10954109579324722, 0.002257305895909667, 0.04068708047270775, -0.06899161636829376, -0.004170061554759741, 0.19907766580581665, 0.01278479490429163, 0.024963418021798134, 0.07956220954656601, -0.03399701416492462, 0.028442824259400368, -0.08173341304063797, 0.02361825481057167, -0.1090097650885582, 0.03613100200891495, -0.08756368607282639, 0.13104136288166046, 0.1846347153186798, -0.06810083240270615, 0.028822438791394234, -0.04658866673707962, -0.009896595031023026, -0.011125687509775162, 0.04718099534511566, -0.024191472679376602, -0.10044519603252411, 0.009994613006711006, 0.0305764339864254, 0.031527984887361526, -0.2195725291967392, -0.08342352509498596, 0.0437893383204937, -0.050008341670036316, -0.004896482918411493, 0.14203527569770813, 0.03704756870865822, 0.045192379504442215, -0.03074398823082447, -0.040368955582380295, -0.02074386365711689, 0.08011054992675781, -0.13165363669395447, -0.061712659895420074 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/eab8847b08e686561c3593f987917434.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Король и Шут (The King and the Jester)</div> <a href="https://genius.com/artists/the-king-and-the-jester"> <div style="text-align: center; font-size: 14px;">@the-king-and-the-jester</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Король и Шут (The King and the Jester). Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-king-and-the-jester). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-king-and-the-jester") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1qw2ic95/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Король и Шут (The King and the Jester)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/hhhj9047) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/hhhj9047/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-king-and-the-jester') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-king-and-the-jester") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-king-and-the-jester") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-king-and-the-jester"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-king-and-the-jester
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-king-and-the-jester", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-king-and-the-jester #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Король и Шут (The King and the Jester)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-king-and-the-jester</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Король и Шут (The King and the Jester). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Король и Шут (The King and the Jester)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Король и Шут (The King and the Jester).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Король и Шут (The King and the Jester)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-king-and-the-jester #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Король и Шут (The King and the Jester).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Король и Шут (The King and the Jester)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 90, 21, 60, 83, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-king-and-the-jester #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Король и Шут (The King and the Jester).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Король и Шут (The King and the Jester)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.05436107516288757, 0.1845889836549759, -0.005714221391826868, 0.09958597272634506, 0.08377593010663986, -0.004697354976087809, 0.12362541258335114, 0.09105194360017776, 0.05247385799884796, 0.06204185634851456, 0.041421499103307724, 0.06517718732357025, 0.03746943548321724, 0.04613852873444557, 0.0004699706332758069, -0.25196266174316406, 0.003071101848036051, -0.07055023312568665, -0.037273697555065155, 0.11534880101680756, 0.0932280421257019, -0.064081110060215, 0.05932808667421341, 0.03373226523399353, -0.08927126228809357, -0.000836024759337306, 0.04161962494254112, -0.042250797152519226, 0.0427531935274601, 0.07108228653669357, 0.11155442148447037, 0.044878002256155014, 0.05558415874838829, -0.1425887644290924, 0.03204138204455376, 0.10665567219257355, 0.033079054206609726, 0.07476159930229187, 0.0608464814722538, -0.09935412555932999, 0.07654491066932678, -0.04362780973315239, 0.07303129136562347, 0.042331159114837646, -0.12726318836212158, -0.1257716417312622, -0.11393845826387405, 0.043189484626054764, 0.038880854845047, 0.06336727738380432, -0.034089624881744385, 0.10180637985467911, -0.040977079421281815, 0.08767867088317871, 0.23976241052150726, -0.17424972355365753, -0.021033862605690956, 0.03951290249824524, 0.03998731076717377, 0.08034790307283401, -0.0840553566813469, -0.0063377502374351025, 0.012689502909779549, 0.015656478703022003, 0.08892443776130676, -0.03938528150320053, 0.08555043488740921, 0.011932026594877243, -0.12638965249061584, -0.0682813748717308, 0.05170288309454918, -0.028011035174131393, -0.06787563115358353, -0.08595433086156845, -0.029219839721918106, -0.0804680585861206, 0.04768529534339905, 0.027660222724080086, -0.020023927092552185, -0.005319047719240189, -0.048856038600206375, -0.11290138959884644, -0.05842319875955582, -0.061628974974155426, -0.05147577449679375, 0.14936389029026031, 0.025839898735284805, 0.039802201092243195, -0.10150496661663055, 0.18576748669147491, 0.08189558982849121, -0.1313847452402115, -0.03605358675122261, -0.09631562978029251, -0.09271591901779175, -0.00986843928694725, -0.03424881398677826, -0.03816945478320122, -0.02643866464495659, 0.11392571777105331, -0.04462446644902229, 0.017604608088731766, -0.06693638116121292, 0.021222304552793503, 0.12129724770784378, 0.1479063481092453, -0.05377283692359924, -0.03847390413284302, 0.08776921778917313, 0.033149201422929764, -0.04942845553159714, -0.053039222955703735, 0.007654255721718073, -0.052993420511484146, 0.05286935344338417, 0.0804516077041626, 0.05801524594426155, 0.055100563913583755, -0.04037472978234291, -0.06272954493761063, 0.035500265657901764, -0.16980800032615662, 0.028434734791517258, 0.030055884271860123, -0.06420741975307465, 0.026267247274518013, 0.06310726702213287, -0.00915494840592146, -0.09789412468671799, 0.08211716264486313, -0.05617599934339523, -0.00906465109437704, -0.10301000624895096, -0.11215640604496002, 0.0021226361859589815, -0.02621670998632908, -0.03710852935910225, -0.05573359504342079, -0.15512672066688538, -0.04643109068274498, 0.03559280186891556, -0.040126070380210876, 0.0017793969018384814, 0.013048146851360798, -0.008642657659947872, -0.02103368565440178, -0.014292385429143906, -0.026673337444663048, -0.0037961197085678577, 0.07104157656431198, -0.07446788996458054, 0.051375824958086014, 0.04985857754945755, 0.033745694905519485, -0.10396241396665573, 0.05689067766070366, -0.18282973766326904, 0.18781456351280212, -0.06144798919558525, -0.06915159523487091, -0.06862993538379669, -0.06382172554731369, 0.007126361131668091, -0.007640196476131678, 0.03746876120567322, 0.08585137128829956, -0.1751547008752823, -0.03874560445547104, 0.2019069641828537, -0.07903708517551422, -0.024703802540898323, 0.09854190796613693, -0.09087478369474411, 0.03939599543809891, 0.1282544881105423, 0.09397535026073456, 0.18400803208351135, -0.10874300450086594, -0.06099895015358925, -0.06367457658052444, -0.024335041642189026, 0.1784176230430603, 0.050632577389478683, 0.013619296252727509, 0.01789175532758236, 0.008802643977105618, -0.05907703563570976, -0.01321755163371563, -0.018220681697130203, -0.04323376342654228, -0.02336255833506584, 0.000011754021215892863, 0.008630381897091866, -0.036048825830221176, -0.0161097664386034, -0.0015212632715702057, -0.08882857859134674, 0.13681678473949432, 0.08784814924001694, -0.09347788989543915, 0.030604079365730286, -0.10081557929515839, 0.014508130960166454, -0.031328801065683365, -0.01136496476829052, -0.2305842787027359, -0.03216329962015152, 0.009636187925934792, -0.1710149496793747, 0.09508541226387024, -0.003208552487194538, 0.030293872579932213, 0.08023232966661453, -0.016511153429746628, 0.026708198711276054, -0.034204401075839996, -0.00645212410017848, -0.0584498830139637, -0.17263013124465942, -0.03728387877345085, -0.04983225464820862, 0.032515618950128555, -0.09171240776777267, 0.023895397782325745, 0.10385855287313461, 0.11519916355609894, 0.05049632117152214, -0.061189401894807816, 0.03210283815860748, -0.0019303265726193786, -0.010454542934894562, -0.05766884237527847, -0.04673027992248535, 0.00466467160731554, -0.047928549349308014, 0.11273270845413208, -0.15726833045482635, -0.10335481911897659, 0.12467899173498154, 0.09669549763202667, -0.04088914766907692, -0.028261948376893997, -0.04024558141827583, -0.015656020492315292, -0.07181212306022644, -0.05750377103686333, 0.18577468395233154, 0.048148222267627716, 0.08605659008026123, -0.11178760975599289, -0.07401291280984879, -0.025848420336842537, -0.04870707169175148, -0.0004356419376563281, 0.07299984991550446, -0.03039802797138691, -0.18340378999710083, 0.06626656651496887, 0.023136591538786888, -0.009852331131696701, 0.23862910270690918, -0.0005258042947389185, -0.0736737996339798, -0.09359807521104813, -0.05596773326396942, 0.011783508583903313, 0.06075285002589226, 0.026309242472052574, 0.06698746234178543, 0.042037419974803925, 0.04901736229658127, 0.021256541833281517, -0.12815913558006287, 0.016540803015232086, 0.04940993711352348, -0.04471974074840546, -0.10366670787334442, 0.00841542985290289, 0.03961093723773956, 0.08275385200977325, 0.02385455183684826, 0.0979447290301323, -0.044581905007362366, -0.0617595799267292, -0.0944695994257927, 0.11694614589214325, -0.1152181550860405, -0.16200301051139832, -0.14579994976520538, -0.07063745707273483, -0.029765283688902855, 0.0019080574857071042, 0.036108508706092834, -0.008565373718738556, -0.024169087409973145, -0.0814642533659935, 0.13692860305309296, 0.03763622045516968, -0.027233820408582687, 0.02410069853067398, 0.032440103590488434, -0.019263582304120064, -0.1351921111345291, -0.027200570330023766, 0.020539000630378723, -0.03644014894962311, 0.010780218057334423, 0.04465731233358383, 0.0402604341506958, 0.12612609565258026, 0.0036159895826131105, -0.002255665836855769, -0.0029712924733757973, 0.28670328855514526, -0.09743357449769974, 0.08411896973848343, 0.1507522016763687, -0.07448184490203857, 0.07959746569395065, 0.06342604011297226, 0.03242119401693344, -0.04994294419884682, 0.05486557260155678, 0.06474868953227997, -0.06507013738155365, -0.22799105942249298, -0.02390388585627079, -0.03090813383460045, -0.03806068375706673, 0.06229545548558235, 0.0044566267170012, -0.0030796576756983995, 0.016436168923974037, -0.07244522869586945, 0.06957355886697769, 0.0729338750243187, 0.07073554396629333, -0.0032217877451330423, 0.011322603560984135, 0.06721847504377365, -0.05063631758093834, 0.02703818306326866, 0.10095391422510147, 0.059134747833013535, 0.2283959984779358, -0.08548745512962341, 0.11639612168073654, 0.10167324542999268, 0.068080835044384, 0.07609433680772781, 0.02758035808801651, -0.03697394207119942, 0.06175008788704872, 0.004859794396907091, -0.10519752651453018, -0.02025025151669979, -0.006849201396107674, -0.032588355243206024, 0.005317874252796173, -0.004049731884151697, -0.05356598645448685, 0.05553776025772095, 0.2201709896326065, 0.026996063068509102, -0.1525382399559021, -0.08181428909301758, 0.07888408750295639, -0.021493352949619293, -0.04382963106036186, -0.031804803758859634, 0.07494743168354034, -0.15780074894428253, 0.0049369907937943935, -0.05395515263080597, 0.11467177420854568, -0.13786731660366058, 0.007661699317395687, -0.002497759647667408, 0.11746309697628021, -0.06897169351577759, 0.03417619690299034, -0.16510751843452454, 0.09835800528526306, 0.026146331802010536, 0.07836659252643585, -0.053217872977256775, 0.01065851841121912, 0.053289417177438736, 0.028138214722275734, 0.053043920546770096, 0.0225667767226696, -0.03721499443054199, -0.10918500274419785, -0.05705978348851204, 0.01472551841288805, 0.08096412569284439, -0.09003599733114243, 0.11666131764650345, -0.01904408633708954, 0.019560622051358223, -0.012428327463567257, -0.1161021888256073, -0.1193506270647049, -0.1307784765958786, 0.04543030634522438, -0.07727804780006409, 0.012606797739863396, -0.03422568738460541, -0.022022202610969543, 0.03616989776492119, 0.088609978556633, -0.14820706844329834, -0.10604789853096008, -0.11135271936655045, 0.023698091506958008, 0.1426304280757904, -0.10931647568941116, -0.012745434418320656, -0.0017629916546866298, 0.13557520508766174, 0.0031600231304764748, -0.12590382993221283, 0.004928369540721178, -0.034119103103876114, -0.1923922449350357, -0.02725984714925289, 0.08394290506839752, 0.10596039146184921, 0.05326608195900917, 0.0044796522706747055, 0.011866943910717964, -0.03364866226911545, -0.14909006655216217, -0.030889904126524925, 0.14133760333061218, 0.022945569828152657, 0.06434329599142075, -0.009827989153563976, -0.0033931892830878496, -0.12718477845191956, 0.026975564658641815, 0.05685409903526306, 0.20979507267475128, -0.05309683084487915, 0.11903613805770874, 0.10840736329555511, -0.09084371477365494, -0.1665986329317093, 0.03077799826860428, 0.04744860529899597, 0.04624579846858978, 0.04360483959317207, -0.1720547378063202, 0.026527782902121544, 0.09020467847585678, 0.002114861737936735, 0.04679124429821968, -0.3189122974872589, -0.14467699825763702, 0.028923552483320236, 0.05805067718029022, -0.1037878468632698, -0.05897882208228111, -0.04461219161748886, -0.06641476601362228, -0.218058779835701, 0.16389742493629456, -0.12488432228565216, 0.09072953462600708, 0.026689276099205017, 0.05153229832649231, 0.04085571691393852, -0.0391659140586853, 0.14156819880008698, -0.027292683720588684, 0.09188499301671982, -0.06888950616121292, -0.03720543906092644, 0.08175072818994522, -0.06588903069496155, 0.07068569213151932, -0.017667461186647415, 0.07585285604000092, -0.05886944383382797, -0.08048021793365479, -0.09012087434530258, 0.0019357305718585849, -0.07141709327697754, -0.09684117138385773, -0.05873842164874077, 0.08218089491128922, 0.07713434100151062, -0.05393734946846962, -0.04179981350898743, -0.062273140996694565, -0.06812786310911179, 0.1246398314833641, 0.0941910445690155, 0.13180367648601532, -0.09679978340864182, 0.004740824922919273, 0.00948960892856121, 0.07752124220132828, -0.1567126363515854, 0.0580933652818203, 0.07334121316671371, 0.04448705539107323, 0.11014395207166672, 0.012250424362719059, -0.15736344456672668, 0.04804545268416405, 0.018151728436350822, -0.12788936495780945, -0.09588754922151566, -0.01868315413594246, -0.042514264583587646, -0.07467285543680191, -0.06042089685797691, 0.15520316362380981, -0.010142292827367783, -0.03497309237718582, 0.029760342091321945, 0.028484616428613663, -0.01321366522461176, 0.12719780206680298, 0.0591333769261837, 0.03664907440543175, -0.08539826422929764, 0.08665226399898529, 0.07179223001003265, 0.00989772379398346, 0.02261304296553135, 0.07133308053016663, -0.08297323435544968, -0.012837577611207962, -0.05646995082497597, 0.07642579823732376, -0.04507296532392502, 0.025727583095431328, -0.02774685248732567, -0.04585438221693039, 0.024617405608296394, 0.1724008172750473, 0.019919702783226967, 0.09248152375221252, -0.05038097873330116, 0.010648034512996674, -0.10158862918615341, 0.11302924156188965, 0.06245626509189606, 0.028171945363283157, -0.08161687850952148, 0.13168290257453918, 0.007409278769046068, 0.04652862995862961, -0.02982334978878498, -0.05516209453344345, -0.1084626168012619, -0.00020571143249981105, -0.17962494492530823, -0.014259964227676392, -0.05601608753204346, -0.009800506755709648, -0.022074498236179352, -0.06631583720445633, -0.006065576337277889, 0.052259497344493866, -0.03681497648358345, -0.045339301228523254, -0.03622078895568848, 0.03607075661420822, -0.17206040024757385, -0.01897568255662918, 0.12133605033159256, -0.08206049352884293, 0.10026808828115463, 0.07953116297721863, -0.04781682416796684, 0.03815390542149544, -0.12572088837623596, 0.048966627568006516, -0.033543627709150314, 0.021437786519527435, 0.058109838515520096, -0.09577906131744385, 0.020083975046873093, -0.06302531063556671, 0.010118482634425163, 0.02296842634677887, 0.07602418959140778, -0.11915922909975052, 0.04528341069817543, 0.08541283011436462, 0.004321864806115627, -0.08513883501291275, 0.07571596652269363, 0.08099453151226044, 0.06019378826022148, 0.08569087833166122, -0.002059147460386157, 0.09804542362689972, -0.18043912947177887, -0.036736033856868744, 0.038314756006002426, -0.03169616684317589, 0.020149560645222664, -0.032657962292432785, 0.05360591784119606, -0.03330361843109131, 0.13864710927009583, 0.027371954172849655, -0.017262142151594162, 0.02040037326514721, -0.0025983895175158978, -0.04079489782452583, 0.039266686886548996, 0.015689851716160774, -0.022745465859770775, -0.0235430970788002, -0.012398636899888515, -0.03489562124013901, -0.06862340867519379, -0.052254289388656616, 0.1147589311003685, 0.10596496611833572, 0.1367575228214264, -0.040662553161382675, 0.08315937221050262, 0.051893312484025955, -0.15062646567821503, -0.05796652287244797, -0.01758272387087345, 0.020748713985085487, -0.06923486292362213, 0.06503955274820328, 0.09688282012939453, -0.15607593953609467, 0.15205620229244232, 0.027359405532479286, -0.0847114846110344, -0.12189668416976929, -0.2253441959619522, -0.014942203648388386, 0.01963108591735363, 0.0059851170517504215, -0.1303006261587143, 0.08608835190534592, 0.005502287298440933, 0.03463065251708031, -0.034015506505966187, 0.11553190648555756, -0.009818769060075283, -0.09818191826343536, 0.02750466950237751, 0.026599010452628136, 0.006246614269912243, 0.04937969148159027, 0.04912623390555382, 0.06413029134273529, 0.04447508975863457, 0.04220303148031235, 0.05515943840146065, 0.007191447541117668, -0.026983672752976418, -0.07023236155509949, -0.07741227746009827, 0.008714240975677967, 0.013751310296356678, 0.02799961529672146, 0.1315963715314865, 0.06418035924434662, -0.01755903661251068, -0.027970287948846817, 0.29399916529655457, -0.014478080905973911, -0.06580989807844162, -0.1675281971693039, 0.16750232875347137, -0.017795395106077194, 0.009173107333481312, 0.034013569355010986, -0.11804431676864624, 0.00019482997595332563, 0.12680618464946747, 0.1486060470342636, -0.07435157895088196, 0.02438691072165966, -0.031493015587329865, 0.02068215422332287, -0.00937320850789547, 0.10379024595022202, 0.04356876015663147, 0.19951118528842926, -0.03304457664489746, 0.11533797532320023, -0.02192067541182041, -0.051450520753860474, -0.0024202209897339344, 0.09163970500230789, -0.043760720640420914, -0.01903240941464901, -0.08225277811288834, 0.088868148624897, -0.0748678594827652, -0.24333840608596802, -0.01079440489411354, -0.029062846675515175, -0.10679814964532852, 0.02804170548915863, 0.011996306478977203, -0.025981372222304344, 0.05843043699860573, 0.02180090732872486, -0.017118992283940315, 0.11018060147762299, 0.00001559087286295835, -0.0007383336778730154, -0.009820153936743736, 0.10012171417474747, -0.028650851920247078, 0.14564956724643707, 0.009021173231303692, 0.08253874629735947, 0.09133513271808624, 0.025801915675401688, -0.10462706536054611, 0.02440793439745903, 0.04078315943479538, -0.08143283426761627, -0.04188349097967148, 0.19756175577640533, -0.0039332895539700985, 0.022913912311196327, 0.06330659240484238, 0.003303336212411523, 0.031939808279275894, -0.08392781019210815, 0.015014943666756153, -0.12247700989246368, 0.013424457982182503, -0.07156851142644882, 0.10076025128364563, 0.20273500680923462, -0.05014542490243912, 0.04498710855841637, -0.041559647768735886, 0.014357456006109715, -0.00037016186979599297, 0.05394237861037254, -0.025039473548531532, -0.09626608341932297, 0.00527059193700552, 0.14118123054504395, 0.032258983701467514, -0.1883344054222107, -0.0882362648844719, 0.0370173379778862, -0.07621410489082336, 0.03338228538632393, 0.13298073410987854, 0.029585223644971848, 0.07793248444795609, -0.007358483970165253, -0.06618252396583557, -0.027719948440790176, 0.08494571596384048, -0.142781063914299, -0.054091908037662506 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/664976b54a605d6ac0df2415a8ccac16.564x564x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Notorious B.I.G.</div> <a href="https://genius.com/artists/the-notorious-big"> <div style="text-align: center; font-size: 14px;">@the-notorious-big</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Notorious B.I.G.. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-notorious-big). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-notorious-big") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/wkvasju4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Notorious B.I.G.'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1coezuy2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1coezuy2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-notorious-big') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-notorious-big") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-notorious-big") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-notorious-big"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-notorious-big
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-notorious-big", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-notorious-big #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Notorious B.I.G.</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-notorious-big</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The Notorious B.I.G.. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The Notorious B.I.G.'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Notorious B.I.G..\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Notorious B.I.G.'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-notorious-big #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Notorious B.I.G..\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Notorious B.I.G.'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 87, 21, 58, 80, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-notorious-big #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The Notorious B.I.G..\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Notorious B.I.G.'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03879702463746071, 0.19611981511116028, -0.006204140838235617, 0.08751267939805984, 0.06930029392242432, 0.008366543799638748, 0.09045086801052094, 0.12488734722137451, -0.005467230454087257, 0.0573544017970562, 0.03457367420196533, 0.03897707536816597, 0.06255597621202469, 0.09146124124526978, 0.016874680295586586, -0.22478333115577698, -0.0032292455434799194, -0.043209001421928406, -0.05159790441393852, 0.08296115696430206, 0.10372326523065567, -0.06509409844875336, 0.04996899142861366, 0.01178832072764635, -0.05818101018667221, 0.0050019691698253155, 0.01434782799333334, -0.0555272214114666, 0.05413881316781044, 0.07113417983055115, 0.07341690361499786, 0.042665909975767136, 0.05253112316131592, -0.14891040325164795, 0.025040388107299805, 0.11067093163728714, 0.03711558133363724, 0.07826021313667297, 0.09220676869153976, -0.10440577566623688, 0.06558246165513992, -0.03928367793560028, 0.0856621041893959, 0.04654640704393387, -0.12495511025190353, -0.12894763052463531, -0.11038036644458771, 0.03876527398824692, 0.017825352028012276, 0.041388142853975296, -0.013199429027736187, 0.054024334996938705, -0.057130713015794754, 0.07174807786941528, 0.22730787098407745, -0.23174701631069183, -0.00910516269505024, 0.06404799222946167, 0.04709547385573387, 0.041813429445028305, -0.09620440751314163, -0.009017882868647575, 0.006901079788804054, 0.050552792847156525, 0.06989893317222595, -0.02756214700639248, 0.08637876808643341, -0.005580588709563017, -0.10231512784957886, -0.06502348184585571, 0.10514961183071136, -0.039651837199926376, -0.06168270483613014, -0.09304851293563843, -0.053098779171705246, -0.06103907898068428, 0.030342353507876396, 0.04555732011795044, 0.010079731233417988, 0.012234127148985863, -0.07162396609783173, -0.11362749338150024, -0.07107823342084885, -0.06635057181119919, -0.04326693341135979, 0.10419002920389175, 0.04454140365123749, 0.020586520433425903, -0.08519581705331802, 0.19527670741081238, 0.07448339462280273, -0.12770307064056396, -0.07954295724630356, -0.09598908573389053, -0.09271476417779922, -0.028378181159496307, -0.028358405455946922, 0.014572236686944962, 0.00909808836877346, 0.17385420203208923, -0.030632885172963142, 0.02046114206314087, -0.07511588931083679, 0.035042695701122284, 0.10393587499856949, 0.14103221893310547, -0.06685425341129303, -0.009143458679318428, 0.10903122276067734, -0.01543134544044733, -0.05975092202425003, -0.05187053978443146, -0.015444444492459297, -0.06877738237380981, 0.06175975874066353, 0.09584658592939377, 0.06379564851522446, 0.044075656682252884, -0.05721481516957283, -0.06159229204058647, 0.03278352692723274, -0.16853462159633636, 0.02661902830004692, 0.03456779569387436, -0.04597471281886101, -0.005414559505879879, 0.07333073765039444, -0.04191901907324791, -0.10999447107315063, 0.05822194367647171, -0.05796905234456062, -0.013507086783647537, -0.08926162123680115, -0.1005820631980896, 0.00035241650766693056, -0.03427191078662872, -0.020648961886763573, -0.07370439916849136, -0.15897178649902344, -0.026143090799450874, 0.025314636528491974, -0.07182114571332932, 0.00029794449801556766, 0.008477584458887577, -0.02623462863266468, -0.009305250830948353, -0.0012309339363127947, -0.0069558946415781975, -0.02743219956755638, 0.0703275129199028, -0.05562911927700043, 0.06354941427707672, 0.06332400441169739, 0.034554511308670044, -0.12055160850286484, 0.08460607379674911, -0.13054406642913818, 0.1758905053138733, -0.037502627819776535, -0.07599730044603348, -0.05753415450453758, -0.07358168810606003, -0.02781623601913452, -0.030450329184532166, 0.03879762813448906, 0.08116547018289566, -0.17752094566822052, -0.023364560678601265, 0.2609972357749939, -0.05625701695680618, -0.04029414802789688, 0.09629358351230621, -0.08140409737825394, 0.03842560946941376, 0.08311057090759277, 0.09195064008235931, 0.12434658408164978, -0.04663151875138283, -0.05581849813461304, -0.035869866609573364, -0.0415685810148716, 0.19392231106758118, 0.04935178533196449, -0.01673460565507412, 0.06751897186040878, -0.003323431359604001, -0.015924673527479172, -0.014956838451325893, -0.027158930897712708, -0.03073188103735447, -0.03637859225273132, -0.015363968908786774, 0.03953385353088379, -0.05934472754597664, -0.029800860211253166, -0.019968396052718163, -0.0988985002040863, 0.10814189910888672, 0.0993538349866867, -0.09795793890953064, 0.03236567601561546, -0.10779090970754623, 0.042661599814891815, -0.0723068118095398, 0.001852698507718742, -0.18935132026672363, -0.011147743090987206, 0.032928574830293655, -0.09170518815517426, 0.07891636341810226, 0.05581717938184738, 0.039789505302906036, 0.0838179662823677, -0.0413692444562912, 0.012161700055003166, -0.06972281634807587, 0.006171132437884808, -0.03254864364862442, -0.1599169671535492, -0.04174099117517471, -0.039766889065504074, 0.07412190735340118, -0.10591664910316467, 0.0059909215196967125, 0.10755567997694016, 0.15100298821926117, 0.030604887753725052, -0.05281270667910576, 0.04204966127872467, -0.020679332315921783, -0.032880254089832306, -0.1007625162601471, -0.0397278293967247, 0.020558232441544533, -0.035414036363363266, 0.13695602118968964, -0.1676344871520996, -0.07008685916662216, 0.1163964718580246, 0.06684566289186478, -0.0670289620757103, 0.0315285287797451, -0.05200161784887314, -0.026510752737522125, -0.06073454022407532, -0.03898109495639801, 0.20103558897972107, 0.03173463046550751, 0.10992033034563065, -0.11661499738693237, -0.08283358067274094, -0.028720125555992126, -0.04005323722958565, 0.03678103908896446, 0.047946732491254807, 0.004983790218830109, -0.20869918167591095, 0.061395805329084396, 0.011704160831868649, 0.019094860181212425, 0.2072570025920868, 0.00968877226114273, -0.09917250275611877, -0.07483135163784027, -0.028644168749451637, 0.029526816681027412, 0.08298934251070023, -0.0034123784862458706, 0.0671151876449585, 0.03785215690732002, 0.06074858456850052, 0.04602636769413948, -0.11247844994068146, 0.03725496307015419, 0.06926094740629196, -0.05431888625025749, -0.060710955411195755, -0.00793206226080656, 0.03184909000992775, 0.08484071493148804, 0.050409819930791855, 0.0979590117931366, -0.02348450757563114, -0.047010596841573715, -0.09437786042690277, 0.11460454761981964, -0.09450916945934296, -0.19062012434005737, -0.1293504238128662, -0.06519726663827896, -0.004486297722905874, 0.03855377808213234, 0.02337408810853958, 0.02922578528523445, -0.023851877078413963, -0.07366738468408585, 0.05123913288116455, -0.01721813715994358, -0.022596584632992744, -0.003649706020951271, 0.06365849822759628, 0.016805773600935936, -0.14996615052223206, -0.023064259439706802, 0.0412205271422863, -0.09479762613773346, 0.004883137531578541, 0.032343581318855286, 0.026087455451488495, 0.11653638631105423, -0.028748322278261185, -0.004517143126577139, -0.008926605805754662, 0.22704355418682098, -0.09245243668556213, 0.0591236911714077, 0.13931351900100708, -0.08610977977514267, 0.05619879439473152, 0.04927624389529228, 0.016980797052383423, -0.06626786291599274, 0.038980063050985336, 0.04532252997159958, -0.051761239767074585, -0.2100907564163208, -0.00873706303536892, -0.05030286684632301, 0.02252599038183689, 0.0995083823800087, 0.044025968760252, -0.005230515263974667, 0.014319367706775665, -0.09033804386854172, 0.06639403104782104, 0.07432527840137482, 0.09155350923538208, -0.010405060835182667, 0.011158930137753487, 0.06973955780267715, -0.05702512711286545, 0.037990130484104156, 0.08950669318437576, 0.06891532987356186, 0.20670241117477417, -0.09651581197977066, 0.1215161606669426, 0.0770203024148941, 0.056971821933984756, 0.08240243047475815, 0.03846150264143944, -0.03533793240785599, 0.05538114532828331, 0.0020554291550070047, -0.09797251969575882, -0.036977700889110565, 0.010814941488206387, 0.01587075926363468, -0.004321848973631859, 0.0060471235774457455, -0.10238108783960342, 0.062457770109176636, 0.19409145414829254, 0.09010105580091476, -0.13840289413928986, -0.08454649895429611, 0.07253453880548477, -0.02757876366376877, -0.0627121552824974, -0.013405897654592991, 0.10603279620409012, -0.17014504969120026, -0.004872961435467005, -0.008105501532554626, 0.11570151150226593, -0.1808561384677887, -0.02223900891840458, -0.02455565333366394, 0.09354711323976517, -0.06001213937997818, 0.06853552907705307, -0.20181524753570557, 0.028319887816905975, 0.022641930729150772, 0.1053277924656868, -0.051495008170604706, 0.030294302850961685, 0.052776891738176346, 0.012596577405929565, 0.05059249326586723, 0.015008741989731789, 0.021477580070495605, -0.0971822515130043, -0.07994744926691055, 0.02308257296681404, 0.05857698991894722, -0.08161602169275284, 0.12079182267189026, -0.04541405662894249, 0.0044619059190154076, -0.013159189373254776, -0.08926587551832199, -0.08343937247991562, -0.1479678899049759, 0.05532380938529968, -0.12246082723140717, 0.027125205844640732, -0.05874589830636978, -0.007028596010059118, 0.026167670264840126, 0.19195345044136047, -0.13027913868427277, -0.10748946666717529, -0.09428480267524719, 0.029455678537487984, 0.13602787256240845, -0.060019347816705704, 0.03667813539505005, 0.012921564280986786, 0.15703672170639038, 0.02192242443561554, -0.12113354355096817, 0.00833942648023367, -0.043981198221445084, -0.2056419849395752, -0.028104586526751518, 0.11431300640106201, 0.05523934215307236, 0.07286406308412552, 0.02063962258398533, 0.033693648874759674, -0.033962432295084, -0.12729786336421967, -0.004264642018824816, 0.12133534997701645, 0.03154619038105011, 0.05556615814566612, -0.03484676405787468, 0.042515695095062256, -0.09007654339075089, 0.012654492631554604, 0.07493987679481506, 0.2689954340457916, -0.0708923414349556, 0.13064247369766235, 0.04505443945527077, -0.1042148694396019, -0.16739559173583984, 0.006353822536766529, 0.0011501152766868472, 0.04785913601517677, 0.02293105609714985, -0.19466350972652435, -0.0028696516528725624, 0.06909500062465668, 0.0008674068376421928, 0.12394000589847565, -0.3313622772693634, -0.13833929598331451, 0.01711820624768734, 0.027000313624739647, -0.09389107674360275, -0.03321113437414169, -0.03617190942168236, -0.07657168060541153, -0.19785895943641663, 0.12251279503107071, -0.11510790884494781, 0.12674561142921448, 0.017651746049523354, -0.036897964775562286, 0.04032411053776741, -0.04234138876199722, 0.1455257087945938, -0.078236423432827, 0.06784596294164658, -0.06990736722946167, 0.012935004197061062, 0.11794335395097733, -0.037371356040239334, 0.05429147183895111, 0.008091763593256474, 0.09499429911375046, -0.007301740814000368, -0.08213230967521667, -0.06861275434494019, 0.019505565986037254, -0.05338596925139427, -0.09454621374607086, -0.07415377348661423, 0.07220929116010666, 0.09839170426130295, -0.02698449045419693, -0.10678036510944366, -0.061133649200201035, -0.05219065397977829, 0.0979795828461647, 0.10591606050729752, 0.09341688454151154, -0.08484604209661484, -0.010013298131525517, -0.009861182421445847, 0.04867985099554062, -0.08333009481430054, 0.07433181256055832, 0.08098110556602478, 0.03902750462293625, 0.09524738043546677, 0.04531269893050194, -0.13226625323295593, 0.03542781248688698, 0.022367533296346664, -0.1235080286860466, -0.11130533367395401, -0.013989011757075787, -0.018109969794750214, -0.07311314344406128, -0.06757111102342606, 0.14366893470287323, -0.014529280364513397, -0.045763906091451645, 0.043624360114336014, 0.023075057193636894, -0.04056212306022644, 0.12037540227174759, 0.056768402457237244, 0.03723610192537308, -0.07847074419260025, 0.11092552542686462, 0.08132356405258179, 0.03516632691025734, 0.0317755751311779, 0.05366387590765953, -0.09482892602682114, 0.009623739868402481, -0.07609523832798004, 0.06192490831017494, 0.008394116535782814, 0.001536792260594666, -0.05335547402501106, -0.02398134209215641, 0.029652997851371765, 0.12845216691493988, 0.009097123518586159, 0.14271070063114166, -0.03504512086510658, 0.02211817540228367, -0.12813647091388702, 0.10271938145160675, 0.04907405003905296, 0.054961979389190674, -0.07471246272325516, 0.1719951331615448, 0.016475819051265717, 0.056889474391937256, -0.04071605205535889, -0.05818844959139824, -0.07479584217071533, -0.0020443254616111517, -0.19444389641284943, -0.009030763991177082, -0.055106136947870255, -0.02774742990732193, -0.0158772524446249, -0.03378937020897865, -0.01746724732220173, 0.04988271743059158, -0.03928709030151367, -0.05863029509782791, -0.058113522827625275, 0.02027137577533722, -0.1642606258392334, -0.02712053433060646, 0.11584880203008652, -0.11553990840911865, 0.11285251379013062, 0.07429327070713043, -0.05223068594932556, -0.008948669768869877, -0.09990131109952927, -0.014384808950126171, -0.03642578423023224, 0.01818380132317543, 0.01682768389582634, -0.14005349576473236, 0.0422070175409317, -0.04734592139720917, -0.04172985255718231, 0.011674280278384686, 0.06725788861513138, -0.12884584069252014, 0.006317205261439085, 0.036719683557748795, 0.00764405308291316, -0.06718290597200394, 0.06148367002606392, 0.04806290566921234, 0.07556937634944916, 0.06753309816122055, -0.034803301095962524, 0.08304020762443542, -0.16560839116573334, -0.034710194915533066, 0.017888467758893967, -0.021571865305304527, 0.052704546600580215, -0.016957802698016167, 0.056705210357904434, -0.022029811516404152, 0.19220317900180817, -0.014963853172957897, -0.021345430985093117, 0.02470688708126545, -0.029899831861257553, -0.00020477132056839764, 0.046224307268857956, 0.09824738651514053, -0.01758020929992199, -0.042821526527404785, -0.02078106999397278, 0.0026231578085571527, -0.04200766608119011, -0.04232937470078468, 0.11502078920602798, 0.0649217814207077, 0.11404730379581451, -0.0472230426967144, 0.046189676970243454, -0.0038238978013396263, -0.14171604812145233, -0.01771732233464718, 0.009597064927220345, 0.020456328988075256, -0.07197175920009613, 0.058458805084228516, 0.1296781599521637, -0.14973564445972443, 0.13713720440864563, 0.009207361377775669, -0.07492026686668396, -0.10493016988039017, -0.17257966101169586, -0.03215616196393967, 0.006175861228257418, 0.010172317735850811, -0.1250593066215515, 0.08062554150819778, 0.05865488946437836, 0.039683934301137924, -0.060174211859703064, 0.1057533249258995, -0.02452745847404003, -0.1044401228427887, -0.012662523426115513, 0.012997196055948734, 0.04060788080096245, 0.04171723872423172, 0.012475603260099888, 0.04699535295367241, 0.06081429868936539, 0.06525649130344391, 0.05948113277554512, 0.062482405453920364, -0.014521920122206211, -0.02704695053398609, -0.05735524371266365, 0.015681330114603043, 0.010465936735272408, 0.009202711284160614, 0.13247808814048767, 0.06327298283576965, -0.016208969056606293, -0.00977410189807415, 0.29667216539382935, -0.02722921222448349, -0.11342605948448181, -0.16243435442447662, 0.13818053901195526, 0.013781673274934292, 0.0014693413395434618, 0.04085811227560043, -0.14272966980934143, -0.0005189694929867983, 0.11173532903194427, 0.13621476292610168, -0.05990520119667053, 0.03697562217712402, 0.0165393203496933, 0.010539596900343895, 0.008392219431698322, 0.051586396992206573, 0.02945387177169323, 0.19311131536960602, -0.053144581615924835, 0.052775874733924866, 0.0196806900203228, -0.0032334409188479185, -0.03444189950823784, 0.10731092095375061, -0.053587839007377625, 0.01891576126217842, -0.0833507850766182, 0.03136029094457626, -0.061410438269376755, -0.22420047223567963, -0.0005561664002016187, -0.038529615849256516, -0.11672063916921616, 0.027621841058135033, -0.0352051667869091, -0.04629097878932953, 0.06159373000264168, 0.005910184234380722, 0.0019018127350136638, 0.1106787621974945, 0.012345260940492153, -0.0016487024258822203, 0.010898631066083908, 0.08725536614656448, -0.014509803615510464, 0.18058961629867554, -0.010878073051571846, 0.04427328333258629, 0.09485843777656555, 0.04455764219164848, -0.12017275393009186, 0.012070069089531898, 0.036286912858486176, -0.062445808202028275, 0.0009257121128030121, 0.19521944224834442, -0.010387914255261421, 0.013007216155529022, 0.06384511291980743, -0.00801521260291338, 0.03479364514350891, -0.055502358824014664, 0.014578627422451973, -0.11801128834486008, -0.013461530208587646, -0.061362117528915405, 0.10565182566642761, 0.16840724647045135, -0.05644751712679863, 0.024151023477315903, -0.05598554387688637, 0.016969803720712662, 0.0285932794213295, 0.020257150754332542, -0.02710285410284996, -0.1021009013056755, 0.01174596045166254, 0.11040931940078735, 0.03878074511885643, -0.17588934302330017, -0.07952788472175598, 0.06532019376754761, -0.06407783180475235, -0.009417661465704441, 0.13993220031261444, 0.007600198034197092, 0.08683472871780396, -0.034963469952344894, -0.0468362532556057, -0.0297711119055748, 0.06189620494842529, -0.15324288606643677, -0.07172001898288727 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/da10eeb7730741736a4f7ac4cc998c4e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Sugarcubes</div> <a href="https://genius.com/artists/the-sugarcubes"> <div style="text-align: center; font-size: 14px;">@the-sugarcubes</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Sugarcubes. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-sugarcubes). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-sugarcubes") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1zrlgv5f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Sugarcubes's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/24shllae) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/24shllae/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-sugarcubes') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-sugarcubes") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-sugarcubes") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-sugarcubes"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-sugarcubes
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-sugarcubes", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-sugarcubes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Sugarcubes</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-sugarcubes</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The Sugarcubes. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The Sugarcubes's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Sugarcubes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Sugarcubes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-sugarcubes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Sugarcubes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Sugarcubes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-sugarcubes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The Sugarcubes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Sugarcubes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.034110430628061295, 0.15936541557312012, -0.002954397816210985, 0.056514203548431396, 0.10409791022539139, 0.0033595196437090635, 0.05909835547208786, 0.10043980926275253, 0.023806791752576828, 0.08740337193012238, 0.07704714685678482, 0.05332207307219505, 0.061718832701444626, 0.10034885257482529, 0.06165318563580513, -0.24405735731124878, 0.04601600393652916, -0.07770483195781708, 0.013687174767255783, 0.1021248921751976, 0.08378738164901733, -0.06967286765575409, 0.08259236067533493, 0.025152819231152534, -0.06735489517450333, 0.0017379999626427889, 0.0064667221158742905, -0.06193139776587486, 0.07641378790140152, 0.07773953676223755, 0.04060754552483559, 0.03673747926950455, 0.047301195561885834, -0.17384935915470123, 0.026108158752322197, 0.11576792597770691, 0.03445545956492424, 0.08726311475038528, 0.04847805202007294, -0.08058150857686996, 0.13354137539863586, -0.023455128073692322, 0.09296426922082901, 0.06298024952411652, -0.1275596171617508, -0.08221150189638138, -0.1409948170185089, 0.07190850377082825, 0.08455099165439606, 0.08099653571844101, -0.034195560961961746, 0.08958962559700012, -0.039184875786304474, 0.051526520401239395, 0.26048076152801514, -0.2341509610414505, -0.0013344500912353396, 0.07892687618732452, 0.06340569257736206, 0.02139083668589592, -0.08087313175201416, 0.01519465446472168, 0.05518393591046333, 0.02723924070596695, 0.028127312660217285, -0.027364889159798622, 0.15444855391979218, 0.013888620771467686, -0.11687234789133072, -0.0838613212108612, 0.08423395454883575, -0.009010854177176952, -0.08674376457929611, -0.12041661143302917, 0.0019720045384019613, -0.02639211155474186, 0.032434966415166855, 0.02388465218245983, 0.005168505012989044, -0.0025375315453857183, -0.05223475769162178, -0.10623235255479813, -0.06422121822834015, -0.04099216312170029, -0.008020909503102303, 0.05403644219040871, 0.031116271391510963, 0.025462204590439796, -0.06009812280535698, 0.20792408287525177, 0.011005048640072346, -0.10263869166374207, -0.077072374522686, -0.11207180470228195, -0.09034907817840576, -0.05297202989459038, -0.006575687788426876, 0.03314761444926262, -0.030849339440464973, 0.13760103285312653, -0.03424510732293129, 0.029422448948025703, -0.04249294474720955, -0.005316024646162987, 0.1407591700553894, 0.13822942972183228, -0.14241796731948853, -0.019177855923771858, 0.06984633207321167, -0.0029142131097614765, -0.07232154160737991, -0.0503663532435894, -0.002027625683695078, -0.014642695896327496, 0.04354720562696457, 0.0864572525024414, 0.07838557660579681, 0.06343348324298859, -0.01333211362361908, -0.0625448003411293, 0.06296025216579437, -0.1275176852941513, 0.014136219397187233, -0.005909808911383152, -0.06449616700410843, 0.02320314198732376, 0.06633075326681137, 0.005104651674628258, -0.10681844502687454, 0.08449751138687134, -0.0966944620013237, -0.043736107647418976, -0.09016453474760056, -0.10890502482652664, 0.006041252985596657, -0.050143688917160034, -0.02561677247285843, -0.067347951233387, -0.17660841345787048, -0.053947221487760544, 0.003935033455491066, -0.06575091928243637, -0.0336301364004612, 0.01742280274629593, -0.04083333536982536, 0.007315327879041433, -0.014312184415757656, -0.007998728193342686, -0.01998191513121128, 0.03717247396707535, -0.09171141684055328, 0.03471921384334564, 0.08620768040418625, 0.03930569812655449, -0.1286025196313858, 0.07370488345623016, -0.16513778269290924, 0.1393173187971115, -0.03715623542666435, 0.02326323464512825, -0.09844585508108139, -0.0817873626947403, -0.005743032321333885, -0.035505957901477814, 0.02792557328939438, 0.13578079640865326, -0.16801361739635468, -0.026380490511655807, 0.20706051588058472, -0.06608448177576065, -0.06570101529359818, 0.06240340694785118, -0.07215499132871628, 0.04018789529800415, 0.1176680326461792, 0.050178468227386475, 0.13141824305057526, -0.1032242700457573, -0.07871789485216141, -0.050156913697719574, -0.06740633398294449, 0.17511025071144104, 0.029146181419491768, -0.03135436773300171, 0.013442372903227806, 0.0037343082949519157, -0.026188964024186134, 0.003467851085588336, -0.038194622844457626, -0.022980520501732826, -0.012470240704715252, -0.009764478541910648, -0.010143400169909, -0.0412612147629261, -0.04562697559595108, -0.005194640252739191, -0.09506922215223312, 0.0841420590877533, 0.09471404552459717, -0.06730206310749054, 0.014451099559664726, -0.10364895313978195, 0.04351266101002693, -0.04989119991660118, 0.012370469979941845, -0.18923436105251312, -0.03149349242448807, 0.02008887007832527, -0.0767226293683052, 0.06346018612384796, 0.014698376879096031, 0.036186859011650085, 0.06964877992868423, -0.006924756802618504, 0.0064129456877708435, -0.038616832345724106, 0.004835514817386866, -0.05200428515672684, -0.17762406170368195, -0.046050090342760086, -0.04807141423225403, 0.10314837098121643, -0.10295404493808746, -0.00035702125751413405, 0.09447034448385239, 0.15214699506759644, 0.02479470521211624, -0.06788915395736694, 0.05203085392713547, -0.02245030365884304, -0.02248450182378292, -0.10735886543989182, -0.046619050204753876, 0.008618038147687912, -0.026904620230197906, 0.1547151356935501, -0.1404375284910202, -0.11442054063081741, 0.12215375155210495, 0.10555988550186157, -0.07957607507705688, 0.024155043065547943, -0.06357822567224503, -0.016213685274124146, -0.039403609931468964, -0.05552217364311218, 0.23578394949436188, 0.043969977647066116, 0.09285355359315872, -0.09613338112831116, -0.0768609344959259, -0.0012093946570530534, -0.04230041429400444, -0.04632296785712242, 0.04595832899212837, 0.01909627765417099, -0.18388187885284424, 0.04958844557404518, -0.024028047919273376, 0.10603300482034683, 0.18575158715248108, 0.03306274861097336, -0.09698308259248734, -0.06115633621811867, -0.07807674258947372, 0.0032303533516824245, 0.07196813076734543, 0.009703466668725014, 0.045973651111125946, 0.041315145790576935, 0.03888528048992157, 0.04396849125623703, -0.08833179622888565, 0.01734553836286068, 0.05696317180991173, -0.027881501242518425, -0.06644675880670547, 0.009329876862466335, 0.029303282499313354, 0.08879528939723969, 0.07487714290618896, 0.11479870229959488, -0.05223789066076279, -0.04561484232544899, -0.1346447765827179, 0.1477648764848709, -0.10090322047472, -0.21202410757541656, -0.13363374769687653, -0.07342562079429626, 0.01933792605996132, 0.013294832780957222, 0.027616403996944427, -0.03727427497506142, -0.051269661635160446, -0.09422876685857773, 0.08976572751998901, -0.009290513582527637, -0.015385295264422894, 0.006415549665689468, 0.017747269943356514, -0.01286371424794197, -0.1191318929195404, -0.020840885117650032, 0.015633808448910713, -0.07165762782096863, 0.003633445594459772, 0.012975407764315605, 0.05519869551062584, 0.14904862642288208, 0.011411706916987896, 0.005185632035136223, -0.018521472811698914, 0.28129106760025024, -0.10180973261594772, 0.04921814799308777, 0.15435191988945007, -0.012554161250591278, 0.05534852296113968, 0.05622193217277527, -0.010814792476594448, -0.06281698495149612, 0.0624234676361084, 0.06582803279161453, -0.06761283427476883, -0.20241966843605042, -0.03615185245871544, -0.018072383478283882, 0.012199103832244873, 0.10761859267950058, 0.025907322764396667, 0.044562701135873795, 0.01616867445409298, -0.09772176295518875, 0.049566932022571564, 0.02194594405591488, 0.09569460153579712, -0.07258635759353638, -0.018309075385332108, 0.048984844237565994, -0.04993308708071709, 0.04444935917854309, 0.11971820890903473, 0.003608937840908766, 0.23999735713005066, -0.08216670900583267, 0.07322008907794952, 0.09452245384454727, 0.07945581525564194, 0.03822687268257141, 0.050949156284332275, -0.029469482600688934, 0.03180505707859993, 0.004334005061537027, -0.09301615506410599, -0.02536184713244438, 0.03287162259221077, 0.022771310061216354, -0.01282091811299324, -0.06705130636692047, -0.06699170917272568, 0.04827194660902023, 0.2215903103351593, 0.04493033140897751, -0.1678595095872879, -0.09613530337810516, 0.06954797357320786, -0.032789912074804306, -0.05836694687604904, -0.02286706678569317, 0.06258466094732285, -0.2075660526752472, 0.027237974107265472, -0.032125167548656464, 0.1108509749174118, -0.12546072900295258, 0.0045959120616316795, 0.036147382110357285, 0.03910830244421959, -0.07969122380018234, 0.07291463762521744, -0.18595992028713226, 0.07887963205575943, 0.003675768617540598, 0.07043206691741943, -0.07108299434185028, 0.014163465239107609, 0.03114616684615612, 0.026681311428546906, 0.09642665088176727, 0.023440076038241386, 0.04628606140613556, -0.07939904928207397, -0.0533691830933094, -0.0057056983932852745, 0.04074244573712349, -0.07402997463941574, 0.13245153427124023, -0.023077938705682755, 0.030047187581658363, -0.022309381514787674, -0.08328176289796829, -0.11418988555669785, -0.14144490659236908, 0.0754314437508583, -0.13578416407108307, 0.018549449741840363, -0.06730826199054718, -0.028867293149232864, 0.029788190498948097, 0.19342176616191864, -0.10077928006649017, -0.08236110210418701, -0.13424503803253174, 0.038826048374176025, 0.157575786113739, -0.08703193068504333, 0.014819703996181488, 0.000870152551215142, 0.16073450446128845, 0.010676398873329163, -0.12849800288677216, -0.0004220647388137877, -0.06496846675872803, -0.1858634352684021, -0.016943953931331635, 0.11938394606113434, 0.08294598013162613, 0.039183828979730606, 0.010750447399914265, 0.011861381120979786, -0.030430341139435768, -0.1731022596359253, 0.010414043441414833, 0.14767763018608093, 0.023883415386080742, 0.056050315499305725, 0.018018683418631554, 0.026559608057141304, -0.1261885017156601, 0.03337917476892471, 0.04839346185326576, 0.1979837566614151, -0.0732412114739418, 0.15370583534240723, 0.028812330216169357, -0.08921642601490021, -0.1725141555070877, 0.029878586530685425, 0.0026465824339538813, 0.03784812241792679, 0.022389641031622887, -0.17971612513065338, 0.015056231990456581, 0.033812154084444046, -0.0009612410794943571, 0.033576156944036484, -0.31545305252075195, -0.14560866355895996, 0.04422920569777489, 0.02343529835343361, -0.07217153161764145, -0.03635073080658913, -0.04958820715546608, -0.07083501666784286, -0.23309187591075897, 0.09550055861473083, -0.11866126954555511, 0.0829237699508667, 0.009789306670427322, 0.05629798397421837, 0.05706629902124405, -0.06445091962814331, 0.1327880620956421, -0.021095091477036476, 0.061534054577350616, -0.08887636661529541, -0.0393582284450531, 0.08168249577283859, -0.06084134057164192, 0.08117774873971939, 0.04834601283073425, 0.09307447075843811, -0.1014908105134964, -0.06527220457792282, -0.0871371477842331, 0.020732777193188667, -0.06745407730340958, -0.08960139006376266, -0.07116792351007462, 0.1040397435426712, 0.11740807443857193, -0.0373721718788147, -0.10818569362163544, -0.06018134206533432, -0.03523113951086998, 0.08061128109693527, 0.10344833135604858, 0.06801757216453552, -0.047000981867313385, 0.030163822695612907, 0.010395128279924393, 0.02150622196495533, -0.13907872140407562, 0.03977729752659798, 0.08123768121004105, 0.041179098188877106, 0.10723806917667389, 0.017140530049800873, -0.16685350239276886, 0.01948564313352108, 0.040013086050748825, -0.15327665209770203, -0.08438640832901001, -0.039380814880132675, -0.026357460767030716, -0.08672965317964554, -0.061140742152929306, 0.1447971761226654, -0.022320939227938652, -0.037201423197984695, -0.004896060097962618, 0.05430115386843681, -0.041879020631313324, 0.11192208528518677, 0.027347924187779427, 0.04591439664363861, -0.08101692795753479, 0.09538968652486801, 0.07008317112922668, 0.00891868956387043, 0.031480222940444946, 0.04746440425515175, -0.09215379506349564, -0.0010947491973638535, -0.09285242855548859, 0.03509512171149254, -0.07152830064296722, 0.005568359047174454, -0.013971911743283272, -0.04650912806391716, 0.03699098899960518, 0.11912330240011215, -0.009431102313101292, 0.12692129611968994, -0.030422672629356384, -0.016185086220502853, -0.13543105125427246, 0.07696544378995895, 0.052446335554122925, 0.013994641602039337, -0.10520260781049728, 0.18777693808078766, 0.02039993368089199, 0.08977216482162476, -0.045029692351818085, -0.05195426940917969, -0.09328032284975052, -0.015096617862582207, -0.12873028218746185, -0.03795570880174637, -0.09540130943059921, -0.04181472584605217, -0.022208968177437782, -0.047643933445215225, -0.013273107819259167, 0.05240527540445328, -0.025685494765639305, -0.05973878130316734, -0.054023779928684235, 0.06818488240242004, -0.1506398320198059, 0.002136511029675603, 0.12762832641601562, -0.06985495984554291, 0.11372724175453186, 0.05314203351736069, -0.02562660537660122, 0.014180170372128487, -0.09623870998620987, 0.031317029148340225, -0.022361649200320244, 0.010303623974323273, 0.04403090849518776, -0.143880695104599, 0.014890296384692192, -0.05790702998638153, -0.0545024573802948, 0.008821875788271427, 0.01399384718388319, -0.1249241754412651, -0.004084221087396145, 0.08147252351045609, 0.00567190395668149, -0.07113976031541824, 0.07070843875408173, 0.06958930194377899, 0.02673071250319481, 0.06588035076856613, -0.02311750315129757, 0.07798465341329575, -0.16114647686481476, -0.04759154096245766, 0.0036678225733339787, 0.0185646191239357, 0.07184333354234695, -0.011721190996468067, 0.04963304474949837, -0.013172855600714684, 0.19183532893657684, 0.005766989663243294, -0.007830902934074402, 0.04284614324569702, -0.030189357697963715, 0.015290248207747936, 0.05432147532701492, 0.049317147582769394, -0.034655142575502396, -0.02718031406402588, -0.004710820969194174, 0.006587309297174215, -0.07275644689798355, -0.03233709558844566, 0.11037664860486984, 0.05904853716492653, 0.17894577980041504, -0.03895464912056923, 0.060006190091371536, -0.020537441596388817, -0.09544945508241653, -0.027678415179252625, -0.028889980167150497, 0.032183121889829636, -0.06734319776296616, 0.054158035665750504, 0.14374010264873505, -0.1608823984861374, 0.11203321814537048, 0.021551210433244705, -0.06663039326667786, -0.09981219470500946, -0.15314409136772156, -0.017706934362649918, -0.01859002560377121, 0.032639190554618835, -0.1406322717666626, 0.08576842397451401, 0.03455989807844162, 0.021207351237535477, -0.050270505249500275, 0.11008182168006897, -0.07405340671539307, -0.10945049673318863, 0.032922301441431046, 0.026515766978263855, 0.02151493728160858, 0.019968854263424873, 0.06885372847318649, 0.030650727450847626, 0.030331982299685478, 0.047861963510513306, 0.03941354900598526, 0.028983458876609802, 0.03916138410568237, -0.021984655410051346, -0.06278073042631149, 0.023441165685653687, 0.010654186829924583, 0.034256428480148315, 0.11293748766183853, 0.07037767767906189, -0.017438434064388275, -0.03281809017062187, 0.3007681965827942, -0.03897688165307045, -0.03936323896050453, -0.17415077984333038, 0.16527873277664185, 0.03836619481444359, -0.011930780485272408, 0.027211986482143402, -0.13760946691036224, 0.020680222660303116, 0.14682312309741974, 0.14938199520111084, -0.05696107819676399, 0.011887732893228531, -0.051265865564346313, 0.012293966487050056, 0.04611425846815109, 0.08815611898899078, 0.07551103830337524, 0.1980433613061905, -0.050564635545015335, 0.06262587755918503, -0.008351970463991165, -0.021443989127874374, -0.014843546785414219, 0.10979756712913513, -0.0250405240803957, 0.0031505078077316284, -0.05982303246855736, 0.09354077279567719, -0.08141057938337326, -0.2544356882572174, -0.01377144642174244, -0.037300143390893936, -0.08856961876153946, 0.03811284899711609, -0.05334996059536934, -0.008000842295587063, 0.08936777710914612, 0.022937864065170288, -0.02569587528705597, 0.13962553441524506, 0.03743401914834976, -0.04264669865369797, -0.022337332367897034, 0.08887501806020737, -0.027194155380129814, 0.19433344900608063, -0.01680256798863411, -0.003949434496462345, 0.10249993950128555, 0.026565494015812874, -0.14527586102485657, -0.008897860534489155, 0.03451090306043625, -0.08954006433486938, -0.005123453680425882, 0.1863885372877121, 0.019111376255750656, 0.021438803523778915, 0.04635033756494522, -0.06661573052406311, 0.03524737432599068, -0.06975173950195312, 0.04835238307714462, -0.1297125220298767, 0.05032078176736832, -0.07557464390993118, 0.14676286280155182, 0.1860155314207077, -0.07857154309749603, 0.03078426606953144, -0.050382647663354874, -0.0038437230978161097, -0.03006543032824993, 0.05518877133727074, -0.026527244597673416, -0.10647010058164597, 0.02574065700173378, 0.038318440318107605, 0.01618846505880356, -0.20733116567134857, -0.06187157705426216, 0.04102865606546402, -0.055992741137742996, 0.011050277389585972, 0.17993424832820892, 0.02284112758934498, 0.059578657150268555, -0.026042547076940536, 0.006407574750483036, -0.02544396184384823, 0.11537854373455048, -0.14284008741378784, -0.08813867717981339 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2f1fd1b951237ad3387096f392d41fa5.720x720x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The ‘’Вепри’’ (The Pigs)</div> <a href="https://genius.com/artists/the-the-pigs"> <div style="text-align: center; font-size: 14px;">@the-the-pigs</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The ‘’Вепри’’ (The Pigs). Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-the-pigs). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-the-pigs") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/7yh65db9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The ‘’Вепри’’ (The Pigs)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/65gj1lk1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/65gj1lk1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-the-pigs') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-the-pigs") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-the-pigs") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-the-pigs"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-the-pigs
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-the-pigs", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-the-pigs #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The ‘’Вепри’’ (The Pigs)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-the-pigs</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The ‘’Вепри’’ (The Pigs). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The ‘’Вепри’’ (The Pigs)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The ‘’Вепри’’ (The Pigs).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The ‘’Вепри’’ (The Pigs)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-the-pigs #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The ‘’Вепри’’ (The Pigs).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The ‘’Вепри’’ (The Pigs)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 58, 81, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-the-pigs #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The ‘’Вепри’’ (The Pigs).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The ‘’Вепри’’ (The Pigs)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02453634701669216, 0.19071035087108612, -0.0050734574906528, 0.07420308142900467, 0.07411108911037445, 0.010373186320066452, 0.08993846923112869, 0.12614542245864868, -0.017300302162766457, 0.03700965270400047, 0.04227881133556366, 0.05029565468430519, 0.06736509501934052, 0.07209062576293945, 0.019823089241981506, -0.2382483184337616, 0.016444971784949303, -0.03554782643914223, -0.06583186239004135, 0.08455180376768112, 0.10173606127500534, -0.06415330618619919, 0.06348512321710587, 0.02648776024580002, -0.052731793373823166, -0.0024447378236800432, 0.009451724588871002, -0.039485253393650055, 0.06854233145713806, 0.07437628507614136, 0.08257478475570679, 0.03453678637742996, 0.06063803285360336, -0.1635783314704895, 0.027336198836565018, 0.10749035328626633, 0.037346888333559036, 0.0799068957567215, 0.07389436662197113, -0.0852222740650177, 0.06197651848196983, -0.029826439917087555, 0.09433093667030334, 0.05095048248767853, -0.12175989896059036, -0.14323362708091736, -0.08899480849504471, 0.048211708664894104, 0.024294940754771233, 0.030376825481653214, -0.01799214631319046, 0.04780514910817146, -0.05900438129901886, 0.08122852444648743, 0.248228058218956, -0.2463894933462143, -0.011729561723768711, 0.05697394907474518, 0.05990509316325188, 0.036850713193416595, -0.09222479909658432, -0.005044921766966581, 0.02190876565873623, 0.04538726806640625, 0.041464030742645264, -0.030358128249645233, 0.09223944693803787, -0.015071437694132328, -0.11430177837610245, -0.06467562913894653, 0.1232103779911995, -0.037005163729190826, -0.07049112021923065, -0.09531980007886887, -0.05495862290263176, -0.060891639441251755, 0.024091709405183792, 0.021742083132267, 0.0032573300413787365, 0.011173768900334835, -0.06260501593351364, -0.11274078488349915, -0.07179920375347137, -0.06375645846128464, -0.04470646381378174, 0.08805016428232193, 0.04961005225777626, 0.014096259139478207, -0.088932104408741, 0.1995348185300827, 0.0821651890873909, -0.1131543293595314, -0.06164535880088806, -0.09407054632902145, -0.10358214378356934, -0.0345010980963707, -0.03263295814394951, 0.01655387133359909, 0.00933147594332695, 0.177876278758049, -0.02356133610010147, 0.018858613446354866, -0.08036161214113235, 0.02765394188463688, 0.10318487882614136, 0.13933981955051422, -0.09025857597589493, -0.017768705263733864, 0.09070705622434616, -0.013894418254494667, -0.08040256053209305, -0.05829518660902977, -0.02276931330561638, -0.06528070569038391, 0.06765038520097733, 0.08274552971124649, 0.061045993119478226, 0.061325158923864365, -0.049984920769929886, -0.06838220357894897, 0.03032541833817959, -0.16602639853954315, 0.01402245368808508, 0.031246833503246307, -0.041537005454301834, 0.003238795092329383, 0.07953169196844101, -0.01807130128145218, -0.10178788751363754, 0.07146650552749634, -0.06787803769111633, -0.022757824510335922, -0.0855843648314476, -0.10953706502914429, -0.0016636563232168555, -0.02013859525322914, -0.02174466662108898, -0.06997808068990707, -0.1482396274805069, -0.015182815492153168, 0.03771310672163963, -0.05464998260140419, -0.016607606783509254, 0.012232952751219273, -0.020247342064976692, -0.006537771783769131, 0.004426065366715193, 0.005253499373793602, -0.024724479764699936, 0.06879826635122299, -0.06335324794054031, 0.05614594370126724, 0.04601786285638809, 0.04071640223264694, -0.12215673923492432, 0.08690543472766876, -0.13611219823360443, 0.1616261750459671, -0.03611430525779724, -0.046197690069675446, -0.04839973896741867, -0.08040325343608856, -0.028927944600582123, -0.028692297637462616, 0.01979665830731392, 0.06424703449010849, -0.18479040265083313, -0.02146967500448227, 0.25380367040634155, -0.06922977417707443, -0.05218113586306572, 0.10318242013454437, -0.08042491227388382, 0.06318125873804092, 0.1085280254483223, 0.10396605730056763, 0.16128040850162506, -0.0838472917675972, -0.034598566591739655, -0.01165784988552332, -0.04242504760622978, 0.21115104854106903, 0.049172379076480865, -0.02435072883963585, 0.05147106945514679, 0.0034299809485673904, -0.015437630005180836, -0.01826903410255909, -0.028351781889796257, -0.036913543939590454, -0.028135813772678375, -0.015454952605068684, 0.04716482385993004, -0.055956169962882996, -0.03988436609506607, -0.022397611290216446, -0.0875181034207344, 0.1170400008559227, 0.11026886105537415, -0.09290078282356262, 0.03538169339299202, -0.10203342139720917, 0.03844056650996208, -0.047747012227773666, 0.0037307064048945904, -0.19047652184963226, -0.02051866054534912, 0.024183029308915138, -0.10501217097043991, 0.07553262263536453, 0.09027940779924393, 0.034758564084768295, 0.08210085332393646, -0.02692958526313305, 0.02595648355782032, -0.051338035613298416, 0.008797978051006794, -0.048366546630859375, -0.16657285392284393, -0.039211053401231766, -0.040256157517433167, 0.08673041313886642, -0.09649551659822464, 0.017288433387875557, 0.08976326137781143, 0.14693772792816162, 0.03160380944609642, -0.051151201128959656, 0.024524526670575142, -0.024042287841439247, -0.032513633370399475, -0.08459172397851944, -0.02878514677286148, 0.02276189811527729, -0.03791186586022377, 0.1361190676689148, -0.17410707473754883, -0.05541577935218811, 0.1157696545124054, 0.04868195950984955, -0.08251430094242096, 0.02979545295238495, -0.05399845167994499, -0.02735186368227005, -0.061886247247457504, -0.06008456274867058, 0.21689143776893616, 0.018615547567605972, 0.10500927269458771, -0.12336412817239761, -0.09188824146986008, -0.0393894799053669, -0.05678602308034897, 0.040527813136577606, 0.0588977113366127, -0.016045043244957924, -0.21797408163547516, 0.06059294193983078, 0.004720661789178848, 0.029636317864060402, 0.20748963952064514, 0.01109504234045744, -0.0990610271692276, -0.07323291152715683, -0.015969133004546165, 0.021577708423137665, 0.0847146287560463, -0.01617676392197609, 0.07340621948242188, 0.044634126126766205, 0.06883499771356583, 0.041024841368198395, -0.11436797678470612, 0.042709819972515106, 0.07320984452962875, -0.06310942023992538, -0.057989977300167084, -0.018109934404492378, 0.03721735626459122, 0.09748131781816483, 0.05255590379238129, 0.09569140523672104, -0.026815494522452354, -0.05021205171942711, -0.09794603288173676, 0.11645539104938507, -0.09432469308376312, -0.20481126010417938, -0.1269695907831192, -0.09305775910615921, 0.002193000866100192, 0.04227873310446739, 0.031270645558834076, 0.019061587750911713, -0.02207774855196476, -0.060107432305812836, 0.03783969581127167, -0.018886880949139595, -0.021336685866117477, 0.009066921658813953, 0.05586039274930954, 0.04595820605754852, -0.15300007164478302, -0.01978420838713646, 0.019623149186372757, -0.07974479347467422, -0.015066779218614101, 0.032499704509973526, 0.035778649151325226, 0.12447404116392136, -0.03384745866060257, -0.010649548843502998, -0.00888129137456417, 0.2551014721393585, -0.07594659179449081, 0.04421024024486542, 0.1298484355211258, -0.10716260969638824, 0.0655200332403183, 0.06620267778635025, 0.015501484274864197, -0.06508295238018036, 0.04975122585892677, 0.061155226081609726, -0.05682932212948799, -0.18868820369243622, -0.010386158712208271, -0.04365363344550133, 0.030808860436081886, 0.10385916382074356, 0.035596925765275955, -0.0166192427277565, 0.01406019926071167, -0.09670254588127136, 0.07736049592494965, 0.08068062365055084, 0.08945562690496445, -0.01276889257133007, -0.0020982089918106794, 0.07768847793340683, -0.05252312123775482, 0.012738188728690147, 0.08019094914197922, 0.06465364247560501, 0.21126237511634827, -0.09158781915903091, 0.13160954415798187, 0.08131998032331467, 0.07598515599966049, 0.0844498798251152, 0.045484255999326706, -0.05203396826982498, 0.053705476224422455, -0.00721239298582077, -0.09054611623287201, -0.04511638730764389, 0.0038191548082977533, 0.014434808865189552, 0.010075649246573448, 0.0010638079838827252, -0.07819472998380661, 0.06309328228235245, 0.20191478729248047, 0.08858557790517807, -0.13383443653583527, -0.07350242882966995, 0.07049679756164551, -0.03497230261564255, -0.05750182271003723, -0.023200972005724907, 0.09911321848630905, -0.18185845017433167, -0.012107546441257, -0.012392302975058556, 0.12417097389698029, -0.17564736306667328, -0.004852999467402697, -0.017371902242302895, 0.07156690955162048, -0.07081232964992523, 0.08174293488264084, -0.21951857209205627, 0.03760321065783501, 0.015467556193470955, 0.09193310886621475, -0.05464352294802666, 0.030875375494360924, 0.05187559872865677, 0.02556198090314865, 0.04972824826836586, 0.014011102728545666, 0.03183697536587715, -0.10213220119476318, -0.08470065891742706, 0.023159582167863846, 0.06412629038095474, -0.07836902141571045, 0.12241506576538086, -0.05957537889480591, 0.024258747696876526, -0.004628963768482208, -0.060094673186540604, -0.08035916090011597, -0.148862823843956, 0.058624494820833206, -0.14499594271183014, 0.0382220521569252, -0.05019378662109375, -0.002985586877912283, 0.0014398450730368495, 0.20351825654506683, -0.13260577619075775, -0.11680915951728821, -0.0976695716381073, 0.006070979870855808, 0.11527274549007416, -0.07099483907222748, 0.023359430953860283, 0.005877054296433926, 0.154070183634758, 0.024101410061120987, -0.12903353571891785, 0.009035779163241386, -0.05029674991965294, -0.20612899959087372, -0.026736274361610413, 0.09998568892478943, 0.06508871912956238, 0.08958335220813751, 0.032201994210481644, 0.008015116676688194, -0.04067617282271385, -0.13248415291309357, -0.028759315609931946, 0.10471034795045853, 0.03144226223230362, 0.05173270031809807, -0.05693766102194786, 0.029374293982982635, -0.11029987037181854, 0.03420929238200188, 0.09408683329820633, 0.24597138166427612, -0.07022362947463989, 0.13585121929645538, 0.07039054483175278, -0.10988980531692505, -0.1687493473291397, -0.014341832138597965, 0.005839240271598101, 0.03315872699022293, 0.024523595348000526, -0.1846049726009369, 0.026883207261562347, 0.07783754169940948, -0.006860080640763044, 0.11913010478019714, -0.32826974987983704, -0.14353211224079132, 0.04897598922252655, 0.019287234172225, -0.08139373362064362, -0.03443559631705284, -0.036032360047101974, -0.07258898764848709, -0.21304872632026672, 0.12499067187309265, -0.12204400449991226, 0.12491139769554138, 0.031172968447208405, -0.03290766850113869, 0.038078952580690384, -0.039288196712732315, 0.14522597193717957, -0.04675843194127083, 0.06829116493463516, -0.08505678176879883, 0.0058760447427630424, 0.09082181751728058, -0.03692793846130371, 0.057066675275564194, 0.004433969967067242, 0.08537594228982925, -0.04569704085588455, -0.07726859301328659, -0.060261864215135574, 0.02408616803586483, -0.06383338570594788, -0.10411912202835083, -0.077443428337574, 0.06855104863643646, 0.11296972632408142, -0.026280272752046585, -0.11425162106752396, -0.07145287096500397, -0.02961224690079689, 0.0985272154211998, 0.1014520525932312, 0.09152019768953323, -0.07460056990385056, -0.009871858172118664, -0.0007442705682478845, 0.0499691404402256, -0.04695655032992363, 0.07957851886749268, 0.0818878561258316, 0.02765161544084549, 0.11791492998600006, 0.04050396755337715, -0.1330791711807251, 0.03801652044057846, 0.018400955945253372, -0.13941633701324463, -0.08169419318437576, -0.01183504331856966, -0.04901009425520897, -0.10378990322351456, -0.07205969095230103, 0.13673336803913116, 0.002553993370383978, -0.038939349353313446, 0.03897648677229881, 0.027748461812734604, -0.03969894349575043, 0.12254736572504044, 0.053813859820365906, 0.0375131331384182, -0.08815839141607285, 0.0901060402393341, 0.07718446850776672, 0.05032128095626831, 0.03715481236577034, 0.031853169202804565, -0.09971641004085541, 0.013595870696008205, -0.07594025880098343, 0.08020264655351639, -0.00018342012481298298, 0.00004406299194670282, -0.047382984310388565, -0.046598028391599655, 0.028512731194496155, 0.12224303930997849, 0.02432132326066494, 0.1368653029203415, -0.027345027774572372, 0.018740897998213768, -0.12158892303705215, 0.11832396686077118, 0.056783974170684814, 0.053784001618623734, -0.07399255037307739, 0.19127903878688812, 0.022397279739379883, 0.051611825823783875, -0.039349619299173355, -0.05314257740974426, -0.08668432384729385, -0.00221195537596941, -0.1977221816778183, -0.009599950164556503, -0.0596613883972168, -0.019162900745868683, -0.002347598783671856, -0.04894791916012764, -0.012859871610999107, 0.034592971205711365, -0.04679563641548157, -0.05653902143239975, -0.03725246340036392, 0.021647851914167404, -0.1683243364095688, -0.024038229137659073, 0.1234821304678917, -0.09985244274139404, 0.09575086832046509, 0.06892601400613785, -0.05498616769909859, 0.004482889547944069, -0.0939713567495346, -0.006729507818818092, -0.03761311247944832, 0.023330599069595337, 0.0203158650547266, -0.1334291696548462, 0.031224748119711876, -0.046171996742486954, -0.0404718853533268, 0.017630837857723236, 0.0670897513628006, -0.13655833899974823, 0.014977484941482544, 0.035917721688747406, -0.005271002650260925, -0.06331386417150497, 0.03792627155780792, 0.04272839426994324, 0.07227113842964172, 0.09091927856206894, -0.037644658237695694, 0.08529216796159744, -0.1622951179742813, -0.03443820774555206, 0.030638759955763817, -0.016320308670401573, 0.04878205806016922, -0.03335290774703026, 0.03800525888800621, -0.020643873140215874, 0.1980973184108734, -0.027274610474705696, -0.01679787039756775, 0.021937260404229164, -0.035256609320640564, 0.0015313256299123168, 0.03801571577787399, 0.09950941056013107, -0.02335168421268463, -0.039919592440128326, -0.023153334856033325, 0.005135615821927786, -0.04836030304431915, -0.07493985444307327, 0.1245594322681427, 0.05826388671994209, 0.1025775671005249, -0.05879192426800728, 0.04265153780579567, 0.014026215299963951, -0.15701720118522644, -0.02442341484129429, -0.0007264051819220185, 0.015073463320732117, -0.05581634119153023, 0.06834696233272552, 0.14135059714317322, -0.15437981486320496, 0.13800425827503204, 0.01789739914238453, -0.07564403861761093, -0.12283488363027573, -0.17254698276519775, -0.02700151316821575, 0.00695407297462225, -0.0011439870577305555, -0.13815344870090485, 0.06973828375339508, 0.08502774685621262, 0.03469770774245262, -0.05166280269622803, 0.10782057046890259, -0.04592357575893402, -0.1055092141032219, -0.03352324292063713, 0.016254015266895294, 0.04659903794527054, 0.032837964594364166, 0.002699041971936822, 0.056579090654850006, 0.07525265216827393, 0.06460237503051758, 0.047112807631492615, 0.05265296623110771, -0.027396591380238533, -0.03155122324824333, -0.0504794642329216, 0.015150899067521095, 0.010840309783816338, 0.00985753908753395, 0.13186140358448029, 0.06531941890716553, -0.025817783549427986, -0.018361473456025124, 0.2765774130821228, -0.031553950160741806, -0.11778758466243744, -0.18289150297641754, 0.15676775574684143, 0.010561100207269192, 0.015635568648576736, 0.041426826268434525, -0.13282336294651031, 0.0005486473091877997, 0.14251361787319183, 0.15595485270023346, -0.07432219386100769, 0.03708064556121826, 0.00036597391590476036, 0.014326086267828941, 0.020036322996020317, 0.05450400337576866, 0.05014193430542946, 0.18908779323101044, -0.04341520741581917, 0.050723109394311905, 0.013298561796545982, -0.00838236790150404, -0.048022061586380005, 0.09787110984325409, -0.033791013062000275, 0.021183175966143608, -0.08712635934352875, 0.0349503755569458, -0.06347282975912094, -0.2412094622850418, -0.022795429453253746, -0.01305554248392582, -0.11016406118869781, 0.026738539338111877, -0.038827840238809586, -0.03928662836551666, 0.05737162381410599, 0.0039058320689946413, -0.003130041528493166, 0.11207538843154907, 0.013059405609965324, -0.007554834708571434, 0.0017278797458857298, 0.09655579179525375, -0.016579046845436096, 0.18421415984630585, -0.001953284488990903, 0.018164396286010742, 0.09519834071397781, 0.03475746512413025, -0.0987539291381836, 0.008209925144910812, 0.03055545873939991, -0.05892785266041756, -0.0059080347418785095, 0.1784450262784958, -0.005363619886338711, 0.01825074292719364, 0.07226085662841797, -0.02186209335923195, 0.039740074425935745, -0.06548139452934265, 0.02331746742129326, -0.10722656548023224, -0.010155515745282173, -0.07050786912441254, 0.11751705408096313, 0.19808025658130646, -0.055290352553129196, 0.03371373936533928, -0.05913511663675308, -0.0060184006579220295, 0.019860105589032173, -0.010611561127007008, -0.03594061732292175, -0.11605627834796906, 0.0012667546980082989, 0.10722166299819946, 0.02920340560376644, -0.19424724578857422, -0.09020350873470306, 0.057285018265247345, -0.06185060739517212, -0.004860499408096075, 0.13852058351039886, 0.0058293528854846954, 0.08652830123901367, -0.027550529688596725, -0.008126059547066689, -0.03880681097507477, 0.07929892838001251, -0.15353474020957947, -0.07191789150238037 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://s3.amazonaws.com/rapgenius/vu.jpeg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Velvet Underground</div> <a href="https://genius.com/artists/the-velvet-underground"> <div style="text-align: center; font-size: 14px;">@the-velvet-underground</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Velvet Underground. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-velvet-underground). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-velvet-underground") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/lbkqy84q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Velvet Underground's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1e4s74q4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1e4s74q4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-velvet-underground') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-velvet-underground") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-velvet-underground") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-velvet-underground"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-velvet-underground
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-velvet-underground", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-velvet-underground #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Velvet Underground</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-velvet-underground</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The Velvet Underground. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The Velvet Underground's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Velvet Underground.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Velvet Underground's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-velvet-underground #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Velvet Underground.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Velvet Underground's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 87, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-velvet-underground #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The Velvet Underground.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Velvet Underground's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.026439204812049866, 0.18895858526229858, -0.003322513308376074, 0.06088831648230553, 0.09890592098236084, 0.0021269789431244135, 0.06302641332149506, 0.10936393588781357, 0.006119758356362581, 0.07417456060647964, 0.061939895153045654, 0.06578566133975983, 0.07707087695598602, 0.06580369174480438, 0.05816953256726265, -0.24124068021774292, 0.030020827427506447, -0.08207900822162628, 0.0006156849558465183, 0.09567783027887344, 0.08510416001081467, -0.08409904688596725, 0.0836203470826149, 0.0310771856456995, -0.06349997222423553, 0.00897003710269928, 0.00027771759778261185, -0.052446398884058, 0.07738424092531204, 0.0813770741224289, 0.0402369499206543, 0.03213922679424286, 0.06798528879880905, -0.1760954111814499, 0.02416064403951168, 0.12383420765399933, 0.02952408231794834, 0.08501837402582169, 0.08653587102890015, -0.074732705950737, 0.12058523297309875, -0.0390169657766819, 0.0949820801615715, 0.059520527720451355, -0.0978040024638176, -0.09558307379484177, -0.14238972961902618, 0.06410099565982819, 0.09279173612594604, 0.0788143202662468, -0.029399449005723, 0.08479252457618713, -0.037851810455322266, 0.052755601704120636, 0.24865376949310303, -0.25049909949302673, -0.011076262220740318, 0.06435275077819824, 0.05797500163316727, 0.022381477057933807, -0.08615398406982422, 0.017967216670513153, 0.04291717708110809, 0.02779572829604149, 0.041096873581409454, -0.028405748307704926, 0.14180514216423035, 0.005286786239594221, -0.11634313315153122, -0.06471060961484909, 0.0965486392378807, -0.017208410426974297, -0.08663783222436905, -0.11900646984577179, -0.003657145658507943, -0.015306896530091763, 0.021879374980926514, 0.015347597189247608, 0.0030220234766602516, -0.008793387562036514, -0.05969938635826111, -0.10884937644004822, -0.06909055262804031, -0.03413387015461922, -0.006725838407874107, 0.054867394268512726, 0.051037903875112534, 0.03221990540623665, -0.061563197523355484, 0.20777007937431335, 0.018184445798397064, -0.10681335628032684, -0.05822480097413063, -0.11616189777851105, -0.08611451089382172, -0.043364983052015305, -0.013995742425322533, -0.02090160921216011, -0.02240246720612049, 0.15950514376163483, -0.0005461135879158974, 0.03893198072910309, -0.06196589395403862, 0.015405317768454552, 0.12801119685173035, 0.14143000543117523, -0.13829444348812103, -0.06138189136981964, 0.07391771674156189, -0.012911270372569561, -0.046000123023986816, -0.05883125588297844, -0.0015160783659666777, -0.03096143715083599, 0.04203133285045624, 0.0670570507645607, 0.09357576817274094, 0.06707338243722916, -0.002138957381248474, -0.05614439770579338, 0.041172076016664505, -0.14150144159793854, 0.005563483107835054, -0.018905572593212128, -0.06711424887180328, 0.008068419992923737, 0.05947515740990639, 0.01271022204309702, -0.10213211923837662, 0.09977461397647858, -0.08433360606431961, -0.05282967537641525, -0.09105890989303589, -0.1125919446349144, -0.00017430885054636747, -0.03698568046092987, -0.014830718748271465, -0.067615807056427, -0.16272374987602234, -0.0349913090467453, 0.021762320771813393, -0.057368140667676926, -0.030841609463095665, 0.020636536180973053, -0.043371059000492096, 0.007330936845391989, -0.010836360044777393, -0.010264129377901554, -0.014718960970640182, 0.03685851767659187, -0.083445243537426, 0.03956096991896629, 0.07084695994853973, 0.039596620947122574, -0.11991020292043686, 0.0668589249253273, -0.16932356357574463, 0.12844447791576385, -0.04057785123586655, 0.0009257979691028595, -0.09195609390735626, -0.09068397432565689, -0.016158537939190865, -0.03352488577365875, 0.026705123484134674, 0.12250201404094696, -0.16885434091091156, -0.02346739172935486, 0.20074361562728882, -0.07255174964666367, -0.04311268776655197, 0.08375978469848633, -0.0737387165427208, 0.013458413071930408, 0.11073184758424759, 0.07385812699794769, 0.1649838089942932, -0.09088791161775589, -0.08974639326334, -0.025230728089809418, -0.07714881747961044, 0.1853170245885849, 0.03143634647130966, -0.015241025947034359, 0.035099953413009644, 0.014329548925161362, -0.026026619598269463, -0.01221342571079731, -0.034262847155332565, -0.033952172845602036, -0.015894398093223572, -0.010390633717179298, 0.016706112772226334, -0.04244370013475418, -0.04234425723552704, -0.005279407370835543, -0.10529521852731705, 0.03160666674375534, 0.09851466119289398, -0.06824057549238205, 0.01868685707449913, -0.10714994370937347, 0.04733181372284889, -0.04289946332573891, 0.00804185215383768, -0.18209388852119446, -0.014403021894395351, 0.014827602542936802, -0.06053948774933815, 0.06731366366147995, 0.03699168562889099, 0.0315721370279789, 0.07235310226678848, -0.016903335228562355, 0.009198426268994808, -0.0418986901640892, -0.004699226934462786, -0.04151551425457001, -0.17483031749725342, -0.058675140142440796, -0.04637110233306885, 0.07452049106359482, -0.09963730722665787, 0.008998917415738106, 0.08182189613580704, 0.1425265669822693, 0.03522166237235069, -0.06321687996387482, 0.025956733152270317, -0.025606106966733932, -0.037638917565345764, -0.10075394064188004, -0.04430661350488663, 0.00604143925011158, -0.02694828249514103, 0.13992257416248322, -0.13300581276416779, -0.10170786827802658, 0.12906089425086975, 0.06888148188591003, -0.08265884220600128, 0.04890977591276169, -0.06102387607097626, -0.01922428607940674, -0.035728245973587036, -0.059824131429195404, 0.25134700536727905, 0.047088105231523514, 0.08268583565950394, -0.08189460635185242, -0.07302283495664597, -0.001680488814599812, -0.04649760574102402, -0.03245045617222786, 0.029163101688027382, 0.035904087126255035, -0.16667598485946655, 0.04181750863790512, -0.01632399670779705, 0.07969486713409424, 0.17645211517810822, 0.03316080942749977, -0.09004146605730057, -0.048296984285116196, -0.07220897078514099, 0.007706980686634779, 0.07238414883613586, 0.014913379214704037, 0.047843992710113525, 0.038456544280052185, 0.03297937288880348, 0.04327793046832085, -0.10608232766389847, 0.008532186038792133, 0.0565790981054306, -0.014888527803122997, -0.06458036601543427, 0.008393438532948494, 0.02925296314060688, 0.0846501886844635, 0.06460785120725632, 0.10005345195531845, -0.047554850578308105, -0.05895816162228584, -0.1224852129817009, 0.13522987067699432, -0.1014610081911087, -0.21029411256313324, -0.13288018107414246, -0.09471669793128967, 0.007936036214232445, 0.009847095236182213, 0.02916203811764717, -0.04430486634373665, -0.04370296746492386, -0.09202154725790024, 0.09220986813306808, -0.0487729087471962, -0.014326277188956738, 0.006169583182781935, 0.035475362092256546, -0.012321535497903824, -0.11708199977874756, -0.019679533317685127, 0.024913668632507324, -0.09594336152076721, 0.0056992643512785435, 0.04088858887553215, 0.0557955726981163, 0.13433390855789185, -0.0016294236993417144, -0.0037835605908185244, -0.019535306841135025, 0.26309293508529663, -0.10196734219789505, 0.047022346407175064, 0.16143487393856049, -0.0385587103664875, 0.07200446724891663, 0.07583072036504745, 0.001423237263225019, -0.05626704543828964, 0.05558859929442406, 0.06320618838071823, -0.06367829442024231, -0.20118068158626556, -0.029927896335721016, -0.021446051076054573, 0.019005563110113144, 0.09590152651071548, 0.022414125502109528, 0.021020719781517982, 0.019342022016644478, -0.09908051788806915, 0.053553786128759384, 0.04750361293554306, 0.0961974635720253, -0.051465779542922974, -0.022467628121376038, 0.06349733471870422, -0.050028443336486816, 0.029714103788137436, 0.10501327365636826, 0.023169703781604767, 0.2490619271993637, -0.08420273661613464, 0.045272815972566605, 0.08484919369220734, 0.1041114553809166, 0.021492276340723038, 0.04181384667754173, -0.019068334251642227, 0.029364069923758507, -0.003735923208296299, -0.08884481340646744, -0.01942344568669796, 0.030484536662697792, 0.026520248502492905, -0.016643144190311432, -0.05783996358513832, -0.046504877507686615, 0.04240930452942848, 0.22158561646938324, 0.04461728036403656, -0.17068001627922058, -0.07456280291080475, 0.0680706650018692, -0.0393705889582634, -0.04894530400633812, -0.010798943229019642, 0.06674697995185852, -0.2017192840576172, 0.046613071113824844, -0.04397471249103546, 0.10445336997509003, -0.14578285813331604, 0.005189563613384962, 0.04221043735742569, 0.051683153957128525, -0.0635325089097023, 0.07394383102655411, -0.16581518948078156, 0.06890404969453812, 0.01201551966369152, 0.07733561843633652, -0.06326908618211746, 0.024225516244769096, 0.03998258337378502, 0.0339774414896965, 0.10489802062511444, 0.005855280440300703, 0.006226364057511091, -0.07818407565355301, -0.06189999729394913, 0.0076829250901937485, 0.06030004471540451, -0.07473717629909515, 0.129998579621315, -0.038127876818180084, 0.02778301201760769, -0.020236019045114517, -0.05396203696727753, -0.1199413388967514, -0.1639641970396042, 0.07415226101875305, -0.13564258813858032, -0.030117427930235863, -0.06548207253217697, -0.026287265121936798, 0.022976836189627647, 0.20853841304779053, -0.10366193950176239, -0.07558178156614304, -0.12137231230735779, 0.027496924623847008, 0.14428868889808655, -0.07762034237384796, 0.021251901984214783, 0.013963844627141953, 0.16046126186847687, 0.00796911958605051, -0.1388833075761795, -0.021481456235051155, -0.06364621222019196, -0.17298556864261627, -0.023283347487449646, 0.10710588842630386, 0.08536261320114136, 0.04616311192512512, 0.010146315209567547, 0.005645509343594313, -0.015407032333314419, -0.16139233112335205, 0.01067521795630455, 0.1590186208486557, 0.0299039576202631, 0.031922847032547, 0.010709044523537159, -0.007435233797878027, -0.13434991240501404, 0.04044661298394203, 0.06335709989070892, 0.19973894953727722, -0.08149904012680054, 0.1535407155752182, 0.0159193966537714, -0.09357202053070068, -0.19414806365966797, 0.03618411347270012, 0.011381971649825573, 0.03212624788284302, 0.06208828464150429, -0.1842202991247177, 0.016365379095077515, 0.016780806705355644, -0.004974593408405781, 0.05538061633706093, -0.33280354738235474, -0.1343381106853485, 0.037426646798849106, 0.027136163786053658, -0.06510605663061142, -0.020921064540743828, -0.03635380417108536, -0.08059348911046982, -0.22499984502792358, 0.06323855370283127, -0.11349757015705109, 0.08208077400922775, 0.014647544361650944, 0.04520363360643387, 0.05864758417010307, -0.05971631407737732, 0.12279660254716873, -0.03894002363085747, 0.07368724793195724, -0.09229912608861923, -0.027491431683301926, 0.0844000056385994, -0.04935735836625099, 0.07129634916782379, 0.013718116097152233, 0.07802936434745789, -0.07337971031665802, -0.05739473178982735, -0.06460512429475784, 0.023085840046405792, -0.06085974723100662, -0.09090219438076019, -0.08519498258829117, 0.0970538780093193, 0.12780632078647614, -0.03314414992928505, -0.10055385529994965, -0.04673027619719505, -0.04113851860165596, 0.09304502606391907, 0.11185641586780548, 0.11087629944086075, -0.05647898465394974, 0.020952686667442322, 0.011161498725414276, 0.02630295604467392, -0.12240748852491379, 0.040000252425670624, 0.0866369679570198, 0.029199494048953056, 0.08504720777273178, 0.022197281941771507, -0.1663098782300949, 0.02908436581492424, 0.04168771207332611, -0.14947962760925293, -0.09298019856214523, -0.029907796531915665, -0.00918527040630579, -0.09470957517623901, -0.050638116896152496, 0.13762541115283966, -0.03365444391965866, -0.03868601843714714, -0.004441836848855019, 0.06893095374107361, -0.04539268836379051, 0.1079147607088089, 0.027271468192338943, 0.03739350661635399, -0.06875693798065186, 0.11071722209453583, 0.06495554000139236, 0.022871188819408417, 0.030281996354460716, 0.025717593729496002, -0.0798831358551979, -0.002301261993125081, -0.06811554729938507, 0.014708119444549084, -0.02317853830754757, -0.00014665229537058622, -0.007713336497545242, -0.035264864563941956, 0.018883567303419113, 0.09624622017145157, -0.007271275389939547, 0.11937739700078964, -0.030917568132281303, -0.009989289566874504, -0.13312476873397827, 0.08766034245491028, 0.050611671060323715, 0.01770610362291336, -0.11935321241617203, 0.172294020652771, 0.022029366344213486, 0.07364878803491592, -0.046076107770204544, -0.04220627620816231, -0.07473398745059967, -0.013030816800892353, -0.13165731728076935, -0.03730231896042824, -0.07716065645217896, -0.036479733884334564, -0.024580931290984154, -0.028564875945448875, -0.028957393020391464, 0.04786074906587601, -0.02852940931916237, -0.06863503903150558, -0.05581919476389885, 0.049781400710344315, -0.1487467736005783, 0.007264948915690184, 0.1299644112586975, -0.07124371081590652, 0.1053735688328743, 0.037039268761873245, -0.038327086716890335, 0.020881548523902893, -0.08514196425676346, 0.016671042889356613, -0.028121603652834892, 0.017758086323738098, 0.03153112903237343, -0.1140933409333229, 0.0073103830218315125, -0.06497298181056976, -0.06532774120569229, 0.0033895978704094887, 0.033152151852846146, -0.124843530356884, -0.000854464597068727, 0.06368398666381836, -0.002437604358419776, -0.07358323782682419, 0.07591604441404343, 0.081630639731884, 0.03987333923578262, 0.07361073046922684, -0.027230000123381615, 0.08223944902420044, -0.17053593695163727, -0.0406644344329834, 0.012425563298165798, 0.015270990319550037, 0.07702738791704178, -0.011376569047570229, 0.05158722773194313, -0.02163366787135601, 0.1979793757200241, 0.01590224914252758, -0.02665337175130844, 0.0318652018904686, -0.02686537429690361, -0.006806907244026661, 0.05542304739356041, 0.058024611324071884, -0.043439481407403946, -0.034266095608472824, -0.0196395181119442, -0.003599044866859913, -0.06978121399879456, -0.0588710680603981, 0.11297062039375305, 0.0711527019739151, 0.16305363178253174, -0.04398190230131149, 0.06695706397294998, -0.02275933511555195, -0.11552933603525162, -0.013947009108960629, -0.015972845256328583, 0.03573578968644142, -0.06085501238703728, 0.08323108404874802, 0.15113237500190735, -0.14862452447414398, 0.11936651915311813, 0.011096000671386719, -0.059939611703157425, -0.11680833250284195, -0.18108028173446655, -0.02097294293344021, -0.017995452508330345, 0.04241963103413582, -0.12933212518692017, 0.08504403382539749, 0.03895742818713188, 0.015843957662582397, -0.06632040441036224, 0.10647360980510712, -0.07482245564460754, -0.11365997046232224, 0.028799643740057945, 0.029617421329021454, 0.003688009222969413, 0.03325922414660454, 0.06411377340555191, 0.02910456992685795, 0.037146151065826416, 0.05977226421236992, 0.025262121111154556, 0.024723311886191368, 0.04685503989458084, -0.02736799791455269, -0.0613209530711174, 0.021095242351293564, 0.0029658880084753036, 0.04532240703701973, 0.10134819895029068, 0.06261855363845825, -0.018780043348670006, -0.044591035693883896, 0.31413567066192627, -0.04439811781048775, -0.008690495043992996, -0.16143572330474854, 0.16344250738620758, 0.03982405737042427, -0.002239132998511195, 0.030763844028115273, -0.1466536968946457, 0.017961952835321426, 0.14070406556129456, 0.1833226978778839, -0.056988831609487534, 0.009821622632443905, -0.038460537791252136, 0.01021479070186615, 0.019118554890155792, 0.08387944847345352, 0.06299017369747162, 0.1863771229982376, -0.051651060581207275, 0.05374717339873314, -0.00902421586215496, -0.0095466123893857, -0.014997383579611778, 0.10890918970108032, -0.03029574826359749, 0.009347915649414062, -0.06415894627571106, 0.09843213856220245, -0.06761181354522705, -0.25905105471611023, -0.016011768952012062, -0.04056344926357269, -0.09248046576976776, 0.05939056724309921, -0.03630327805876732, -0.01981232687830925, 0.09834151715040207, 0.014736104756593704, -0.01996397227048874, 0.13004574179649353, 0.03526664152741432, -0.020482530817389488, -0.0161487627774477, 0.08162578195333481, -0.020142417401075363, 0.2105051428079605, -0.018483953550457954, 0.005053543020039797, 0.08837836235761642, 0.03791644424200058, -0.11741136014461517, -0.015905048698186874, 0.03328261896967888, -0.06488095223903656, -0.012649644166231155, 0.20459668338298798, 0.007033102214336395, 0.03870299085974693, 0.06243489682674408, -0.039549052715301514, 0.04560353234410286, -0.11868350207805634, 0.04239245504140854, -0.12267838418483734, 0.049117207527160645, -0.08996504545211792, 0.14208880066871643, 0.17685534060001373, -0.06455067545175552, 0.026195628568530083, -0.05040740966796875, -0.022120092064142227, -0.02135510742664337, 0.07629209756851196, -0.014599700458347797, -0.10994651913642883, 0.01910165511071682, 0.039785150438547134, 0.013152338564395905, -0.18666976690292358, -0.07251045107841492, 0.04952307045459747, -0.0590074397623539, 0.0005634971312247217, 0.1547008752822876, 0.03916732221841812, 0.04173443838953972, -0.03865969926118851, -0.01199752651154995, -0.02685779333114624, 0.09771934896707535, -0.14961101114749908, -0.08252647519111633 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1bab7f9dbd1216febc16d73ae4da9bd0.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Weeknd</div> <a href="https://genius.com/artists/the-weeknd"> <div style="text-align: center; font-size: 14px;">@the-weeknd</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Weeknd. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-weeknd). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-weeknd") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/34tqtrsm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Weeknd's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1pjby702) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1pjby702/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-weeknd') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-weeknd") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-weeknd") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/the-weeknd"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/the-weeknd
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-weeknd", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-weeknd #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Weeknd</div> <a href="URL <div style="text-align: center; font-size: 14px;">@the-weeknd</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from The Weeknd. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on The Weeknd's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Weeknd.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Weeknd's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-weeknd #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from The Weeknd.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Weeknd's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/the-weeknd #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from The Weeknd.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on The Weeknd's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.040236834436655045, 0.1801915466785431, -0.0033157954458147287, 0.05626168102025986, 0.08303775638341904, 0.010057960636913776, 0.09471438080072403, 0.10510950535535812, 0.012030280195176601, 0.07952634245157242, 0.05488143488764763, 0.049596864730119705, 0.07656241208314896, 0.10906566679477692, 0.06254193186759949, -0.23650768399238586, 0.029922835528850555, -0.07716311514377594, 0.004557537380605936, 0.11114386469125748, 0.0790017694234848, -0.07869810611009598, 0.07113263010978699, 0.03604612872004509, -0.04961719736456871, -0.006938958074897528, 0.0010148921282961965, -0.06430785357952118, 0.0707440972328186, 0.0648936852812767, 0.03407978639006615, 0.029557300731539726, 0.066286101937294, -0.16723541915416718, 0.024933630600571632, 0.12779094278812408, 0.0284349974244833, 0.07919718325138092, 0.0904688760638237, -0.05396882817149162, 0.11880148947238922, -0.04386201500892639, 0.07540933787822723, 0.04907431825995445, -0.12496504187583923, -0.09892775863409042, -0.1664753556251526, 0.07844731956720352, 0.07736927270889282, 0.0950651541352272, -0.02919687330722809, 0.12737782299518585, -0.05203790217638016, 0.045409802347421646, 0.25188958644866943, -0.22505904734134674, -0.013108260929584503, 0.06805535405874252, 0.057926539331674576, 0.008679376915097237, -0.08794120699167252, 0.0020900110248476267, 0.04467837139964104, 0.027610812336206436, 0.041903749108314514, -0.012981419451534748, 0.1447121798992157, 0.012100660242140293, -0.11859022080898285, -0.07406439632177353, 0.08626295626163483, -0.011050769127905369, -0.0649716779589653, -0.12090569734573364, -0.003446960588917136, -0.03733927011489868, 0.022357869893312454, 0.03049895167350769, 0.006169572006911039, -0.00596325658261776, -0.030888443812727928, -0.09541349858045578, -0.06744470447301865, -0.019687077030539513, -0.033220771700143814, 0.056598637253046036, 0.03216716647148132, 0.027757620438933372, -0.08517755568027496, 0.19995155930519104, 0.0034516574814915657, -0.0989273190498352, -0.06186892092227936, -0.08650770038366318, -0.07340270280838013, -0.06647158414125443, 0.009680545888841152, 0.03612728789448738, -0.030169064179062843, 0.14629268646240234, -0.03863522782921791, 0.015649592503905296, -0.029311448335647583, 0.0007050546701066196, 0.13423773646354675, 0.13457095623016357, -0.11285225301980972, -0.060367971658706665, 0.05808381736278534, 0.01660514436662197, -0.07555432617664337, -0.04963277280330658, 0.010581068694591522, -0.03662285581231117, 0.04585474357008934, 0.07568428665399551, 0.08857408165931702, 0.07309028506278992, -0.0001058174020727165, -0.052889302372932434, 0.06607101112604141, -0.14897999167442322, 0.023510606959462166, 0.0030639164615422487, -0.06795991957187653, 0.03570810332894325, 0.04581400379538536, -0.010086188092827797, -0.10284089297056198, 0.08229364454746246, -0.09166707843542099, -0.020873751491308212, -0.0842352882027626, -0.12147365510463715, 0.006643017753958702, -0.0557108037173748, -0.04666154831647873, -0.0689881443977356, -0.16544228792190552, -0.059249795973300934, -0.01153304148465395, -0.059865791350603104, -0.030484316870570183, 0.020874571055173874, -0.05059438943862915, 0.005832904018461704, -0.021776912733912468, 0.019980372861027718, -0.03588627651333809, 0.03837340697646141, -0.06720511615276337, 0.033639028668403625, 0.08212604373693466, 0.04400657117366791, -0.11436223238706589, 0.07145671546459198, -0.15072856843471527, 0.12293961644172668, -0.02709590084850788, 0.007841709069907665, -0.09463999420404434, -0.08439206331968307, -0.02317158319056034, -0.033788666129112244, 0.015254617668688297, 0.11224884539842606, -0.18493854999542236, -0.0397968515753746, 0.2045058012008667, -0.058118753135204315, -0.050643522292375565, 0.0788155198097229, -0.07158929854631424, 0.02651805244386196, 0.10595715045928955, 0.062029555439949036, 0.1737852543592453, -0.11124537140130997, -0.09349825233221054, -0.029907021671533585, -0.07696095108985901, 0.16120702028274536, 0.009502274915575981, -0.024297786876559258, 0.02857169881463051, 0.005165828857570887, -0.04109479859471321, 0.0019974159076809883, -0.04075298830866814, -0.025584358721971512, -0.015466392040252686, -0.009020848199725151, 0.023915233090519905, -0.049857087433338165, -0.047546543180942535, -0.013201199471950531, -0.07895727455615997, 0.059185076504945755, 0.09311249852180481, -0.04660565406084061, 0.008113065734505653, -0.1015842854976654, 0.06666643917560577, -0.04671813175082207, 0.004899566527456045, -0.18258881568908691, -0.041414525359869, 0.023899326100945473, -0.04185887426137924, 0.057936299592256546, 0.021892324090003967, 0.03696087375283241, 0.05736876651644707, -0.004964007064700127, 0.008904603309929371, -0.040650419890880585, -0.0008100935956463218, -0.06321621686220169, -0.15666663646697998, -0.05155280604958534, -0.034244243055582047, 0.06896822899580002, -0.1375579684972763, -0.0010282292496412992, 0.10499195009469986, 0.13291986286640167, 0.017951712012290955, -0.04717389866709709, 0.0292603000998497, -0.011296970769762993, -0.03327048197388649, -0.09775375574827194, -0.04477054625749588, -0.006086124572902918, -0.01848112791776657, 0.15846161544322968, -0.16784578561782837, -0.1419018805027008, 0.12306974083185196, 0.09899981319904327, -0.08633475750684738, 0.03509226068854332, -0.07274239510297775, -0.025648554787039757, -0.07284072041511536, -0.048449426889419556, 0.21343287825584412, 0.04287183657288551, 0.08941968530416489, -0.08324095606803894, -0.08673996478319168, -0.004692336078733206, -0.040676817297935486, -0.03839634358882904, 0.06065544858574867, 0.012384473346173763, -0.1319987028837204, 0.057954903692007065, -0.02148292027413845, 0.06980837881565094, 0.2161094695329666, 0.018066594377160072, -0.0994565337896347, -0.051237281411886215, -0.07207953184843063, 0.0036717308685183525, 0.05556143447756767, 0.024502141401171684, 0.03565317764878273, 0.04213646426796913, 0.06249135732650757, 0.02962428703904152, -0.12310931086540222, 0.009258185513317585, 0.03863908350467682, -0.030656788498163223, -0.06305567175149918, 0.004649103153496981, 0.05349436402320862, 0.0980384573340416, 0.0688563883304596, 0.09860242903232574, -0.04129747301340103, -0.053376782685518265, -0.1350852996110916, 0.1266881227493286, -0.08807706832885742, -0.2011777013540268, -0.1364596039056778, -0.08023416996002197, 0.0167818795889616, -0.007427278906106949, 0.02534359320998192, -0.03144521266222, -0.04144708439707756, -0.10934334248304367, 0.09738744050264359, -0.01617351546883583, -0.015650782734155655, -0.005491273943334818, 0.03755006194114685, 0.0037520143669098616, -0.12300997227430344, -0.026235951110720634, 0.03116726316511631, -0.07843957096338272, 0.02486247383058071, 0.022008301690220833, 0.040976136922836304, 0.14421406388282776, 0.002346832538023591, 0.0010395351564511657, -0.008222922682762146, 0.30524635314941406, -0.12874819338321686, 0.058640092611312866, 0.16429747641086578, 0.0013205554569140077, 0.060080576688051224, 0.05034906417131424, -0.0015860353596508503, -0.05320407450199127, 0.06567705422639847, 0.08072853833436966, -0.060078758746385574, -0.19957637786865234, -0.0487578921020031, -0.028790416195988655, 0.01361649576574564, 0.09941304475069046, 0.030884863808751106, 0.031092694029211998, -0.007566612679511309, -0.08921688795089722, 0.044057697057724, 0.03404555097222328, 0.08207941800355911, -0.04682904854416847, 0.004399031400680542, 0.043250542134046555, -0.0567009299993515, 0.024947598576545715, 0.11455687880516052, 0.03879327327013016, 0.22939269244670868, -0.08487167209386826, 0.06628391891717911, 0.08504727482795715, 0.10893744230270386, 0.038155559450387955, 0.028966490179300308, -0.009916702285408974, 0.020307740196585655, 0.010692564770579338, -0.0861552506685257, 0.010060807690024376, 0.03122900053858757, 0.056398794054985046, -0.02313877083361149, -0.04000155255198479, -0.0672312006354332, 0.05032985657453537, 0.2551192343235016, 0.04892982915043831, -0.17865586280822754, -0.07675608992576599, 0.04310440644621849, -0.05313285440206528, -0.03241411969065666, -0.03005872294306755, 0.056785713881254196, -0.20521323382854462, 0.043105240911245346, -0.02456049621105194, 0.11071469634771347, -0.1355954259634018, -0.005333017557859421, 0.02344691939651966, 0.06933697313070297, -0.07338208705186844, 0.07645117491483688, -0.19575539231300354, 0.08289948105812073, 0.002392233582213521, 0.09142016619443893, -0.06191429868340492, 0.005834501702338457, 0.037303365767002106, 0.0379200279712677, 0.06633876264095306, 0.018539441749453545, 0.042981069535017014, -0.09386612474918365, -0.06201186776161194, -0.025435471907258034, 0.04075949639081955, -0.06243486702442169, 0.1410016119480133, -0.029679730534553528, 0.023812439292669296, -0.024487238377332687, -0.06919099390506744, -0.10010185092687607, -0.1359167844057083, 0.07831895351409912, -0.10246441513299942, -0.007812036667019129, -0.059133149683475494, -0.043092597275972366, -0.014577711932361126, 0.15560466051101685, -0.08186186850070953, -0.06287135928869247, -0.13795962929725647, 0.01444200985133648, 0.14941197633743286, -0.07344797998666763, -0.004140495788305998, 0.022987358272075653, 0.16408652067184448, 0.011042293161153793, -0.12389583885669708, 0.0021207055542618036, -0.06113815680146217, -0.21051417291164398, -0.02295977808535099, 0.11401456594467163, 0.11132106184959412, 0.04887806251645088, 0.0027279348578304052, 0.00875951535999775, -0.027582243084907532, -0.1435239017009735, 0.017285218462347984, 0.159403994679451, 0.041097305715084076, 0.019361764192581177, 0.0240457933396101, 0.03351890295743942, -0.14357875287532806, 0.015243987552821636, 0.021855082362890244, 0.18273930251598358, -0.07188274711370468, 0.14920367300510406, 0.010384781286120415, -0.08887002617120743, -0.188847616314888, 0.03595730662345886, 0.026256099343299866, 0.029577460139989853, 0.05500660091638565, -0.1605675369501114, 0.03846283257007599, 0.050085533410310745, -0.0009220399078913033, 0.06683790683746338, -0.34905296564102173, -0.13294894993305206, 0.010682357475161552, -0.0011859190417453647, -0.0930580124258995, -0.023581435903906822, -0.03178708255290985, -0.058897465467453, -0.25186508893966675, 0.10468877106904984, -0.1198718398809433, 0.08172661811113358, 0.01262668427079916, 0.07767368108034134, 0.03780803456902504, -0.05742821469902992, 0.13397924602031708, 0.010224633850157261, 0.06309449672698975, -0.08776773512363434, -0.038449324667453766, 0.09054119884967804, -0.0588584840297699, 0.08784150332212448, 0.03729742020368576, 0.0751161202788353, -0.09646502137184143, -0.07568791508674622, -0.09362298250198364, 0.037352900952100754, -0.05938401445746422, -0.06749846786260605, -0.05513674020767212, 0.09951501339673996, 0.10514994710683823, -0.03756820410490036, -0.08593352138996124, -0.0467693954706192, -0.015060828998684883, 0.08545415103435516, 0.1224755272269249, 0.08960913866758347, -0.09960005432367325, 0.006372473668307066, 0.0240795761346817, 0.02811269462108612, -0.09177326411008835, 0.0410832054913044, 0.08525281399488449, 0.04165514186024666, 0.11006803810596466, 0.022270090878009796, -0.16535967588424683, 0.023681093007326126, 0.020583992823958397, -0.14440777897834778, -0.10780913382768631, -0.014702864922583103, -0.031851306557655334, -0.09793735295534134, -0.0657910630106926, 0.1351170390844345, -0.026569949463009834, -0.04098435491323471, 0.011147860437631607, 0.05719580873847008, -0.04372419789433479, 0.13650532066822052, 0.0321735218167305, 0.054568905383348465, -0.07274292409420013, 0.09705067425966263, 0.05937790498137474, 0.017030632123351097, 0.02846815623342991, 0.07267560064792633, -0.09645253419876099, -0.01629665493965149, -0.07641799002885818, 0.023954259231686592, -0.037255238741636276, -0.01240503042936325, 0.0034155261237174273, -0.04717794805765152, 0.044535402208566666, 0.11491409689188004, -0.007304691709578037, 0.12634071707725525, -0.03511102497577667, -0.025605333968997, -0.1305067241191864, 0.07201915979385376, 0.05792421102523804, 0.025831587612628937, -0.07580826431512833, 0.20078705251216888, 0.014865255914628506, 0.0965939536690712, -0.040830790996551514, -0.05060086026787758, -0.08383085578680038, -0.01037142239511013, -0.12392053753137589, -0.03018121048808098, -0.08738960325717926, -0.03060224838554859, -0.01943223737180233, -0.03948798403143883, -0.01037445105612278, 0.05018380284309387, -0.031964581459760666, -0.06536707282066345, -0.05664214491844177, 0.07301738113164902, -0.13075697422027588, 0.010943185538053513, 0.11877692490816116, -0.0734933614730835, 0.11130545288324356, 0.04491440951824188, -0.03387831524014473, 0.013557168655097485, -0.08901828527450562, 0.0045439330860972404, -0.04404588043689728, 0.017241468653082848, 0.050767965614795685, -0.12484589219093323, 0.006712828762829304, -0.05654601752758026, -0.0363580584526062, 0.01773674227297306, -0.00660738768056035, -0.1283743530511856, -0.004847890697419643, 0.056401971727609634, -0.014153245836496353, -0.07041307538747787, 0.06725722551345825, 0.07173977792263031, 0.023763539269566536, 0.08464702218770981, -0.039656639099121094, 0.08286917954683304, -0.15756084024906158, -0.048186302185058594, 0.002440518466755748, -0.0018752494361251593, 0.07208573073148727, -0.007495903875678778, 0.07533913105726242, -0.018267255276441574, 0.181808739900589, 0.03300085291266441, -0.016253288835287094, 0.03640911355614662, -0.05021720007061958, -0.03551315888762474, 0.04500959441065788, 0.06663139164447784, -0.023380206897854805, -0.027712080627679825, -0.0071016950532794, -0.01240162830799818, -0.07197458297014236, -0.02632772922515869, 0.14025627076625824, 0.05569376423954964, 0.16378216445446014, -0.029773347079753876, 0.056728098541498184, -0.05508004501461983, -0.11593347042798996, -0.021765176206827164, -0.06820227950811386, 0.05476519465446472, -0.08058293908834457, 0.0858500748872757, 0.14334307610988617, -0.14301517605781555, 0.12385270744562149, 0.001129462500102818, -0.06185763329267502, -0.11031609773635864, -0.19182966649532318, -0.017392676323652267, -0.0286312997341156, 0.04454825818538666, -0.12256775051355362, 0.09525351971387863, 0.07274607568979263, 0.03265877813100815, -0.05651286244392395, 0.09520075470209122, -0.040371816605329514, -0.11529038101434708, 0.034018758684396744, 0.01484779454767704, 0.026451565325260162, 0.0030355602502822876, 0.06116010621190071, 0.030059242621064186, 0.0032061864621937275, 0.06298132240772247, 0.036439672112464905, 0.028512487187981606, 0.030898205935955048, -0.022027097642421722, -0.08403003215789795, 0.024731382727622986, -0.009595700539648533, 0.023391811177134514, 0.10673084855079651, 0.07991638034582138, -0.010426720604300499, -0.035371970385313034, 0.2856113016605377, -0.03186551481485367, -0.03772236779332161, -0.16375088691711426, 0.17307204008102417, 0.019832566380500793, -0.014435582794249058, 0.013692153617739677, -0.14759917557239532, 0.017076760530471802, 0.1551932394504547, 0.1639091521501541, -0.04807974398136139, 0.021449150517582893, -0.042567480355501175, 0.005952729377895594, 0.0357375293970108, 0.08591579645872116, 0.0630122646689415, 0.18433311581611633, -0.04171508550643921, 0.046049341559410095, -0.02315315417945385, -0.01084810495376587, -0.017665201798081398, 0.0921509638428688, -0.03203872591257095, 0.010435628704726696, -0.07408183068037033, 0.07975739985704422, -0.06088711693882942, -0.26168736815452576, -0.007585480343550444, -0.027289707213640213, -0.09977231919765472, 0.04342544451355934, -0.03660173341631889, -0.0019370095105841756, 0.08791787177324295, 0.016175106167793274, -0.021527277305722237, 0.1446763128042221, 0.01476422417908907, -0.02653983235359192, -0.025262007489800453, 0.0909886434674263, -0.02218744158744812, 0.1832621842622757, -0.025291047990322113, 0.0010561845265328884, 0.08957978338003159, 0.025231430307030678, -0.1253916621208191, 0.027520135045051575, 0.0334295853972435, -0.05439462512731552, -0.01124230120331049, 0.18495886027812958, 0.018203726038336754, 0.011168182827532291, 0.06342612206935883, -0.07384590059518814, 0.02907487377524376, -0.0832451581954956, 0.05502179265022278, -0.14149709045886993, 0.04267850145697594, -0.06605758517980576, 0.14285197854042053, 0.18964903056621552, -0.07415176182985306, 0.02023146115243435, -0.04531671479344368, -0.021263618022203445, -0.02948903851211071, 0.06266265362501144, -0.030691146850585938, -0.11168009042739868, 0.018980098888278008, 0.029998773708939552, 0.0170785840600729, -0.18739454448223114, -0.0691397413611412, 0.04833601042628288, -0.07553641498088837, 0.0240502767264843, 0.14964306354522705, 0.04031839221715927, 0.06513243913650513, -0.03358137980103493, 0.003932173829525709, -0.02095041051506996, 0.11480551213026047, -0.15582220256328583, -0.0772952288389206 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9ca13ed308504f6f9ac7c3cabdb54138.556x556x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tiamat</div> <a href="https://genius.com/artists/tiamat"> <div style="text-align: center; font-size: 14px;">@tiamat</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Tiamat. Dataset is available [here](https://huggingface.co/datasets/huggingartists/tiamat). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/tiamat") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1tqzwb4a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Tiamat's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/ttkys3mq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/ttkys3mq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/tiamat') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/tiamat") model = AutoModelWithLMHead.from_pretrained("huggingartists/tiamat") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/tiamat"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/tiamat
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/tiamat", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tiamat #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tiamat</div> <a href="URL <div style="text-align: center; font-size: 14px;">@tiamat</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Tiamat. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Tiamat's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Tiamat.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tiamat's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tiamat #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Tiamat.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tiamat's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tiamat #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Tiamat.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tiamat's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02445930428802967, 0.14444293081760406, -0.0025661601684987545, 0.0347464419901371, 0.08982817083597183, -0.001446921261958778, 0.08343154937028885, 0.10922855883836746, -0.016901886090636253, 0.06749249249696732, 0.07840296626091003, 0.012351252138614655, 0.06490436941385269, 0.13324923813343048, 0.08975251764059067, -0.2719552218914032, 0.02943374775350094, -0.10365685075521469, 0.022362442687153816, 0.1240634024143219, 0.09233182668685913, -0.05455532297492027, 0.08562866598367691, 0.038086410611867905, -0.07582306861877441, 0.03015856258571148, -0.012164127081632614, -0.07473530620336533, 0.09467830508947372, 0.08025030046701431, 0.03157730773091316, 0.03327619656920433, 0.06541172415018082, -0.1849701851606369, 0.034835632890462875, 0.1258353441953659, 0.028148606419563293, 0.0698142722249031, 0.04094163328409195, -0.07634403556585312, 0.18313659727573395, -0.02618902362883091, 0.09049860388040543, 0.04669375345110893, -0.10873404890298843, -0.17667758464813232, -0.12069306522607803, 0.08344995230436325, 0.1007455512881279, 0.08312662690877914, -0.032941609621047974, 0.05272231996059418, 0.0010977055644616485, 0.048106059432029724, 0.23834776878356934, -0.2455606460571289, -0.015254837460815907, 0.09337214380502701, 0.0415770448744297, 0.04324445128440857, -0.07549601048231125, 0.0173579603433609, 0.05196841061115265, 0.024426067247986794, 0.04970841482281685, -0.016015153378248215, 0.2179548591375351, 0.01982337422668934, -0.09657392650842667, -0.08582941442728043, 0.11258970946073532, -0.02966196835041046, -0.08462712168693542, -0.15174080431461334, 0.0032769350800663233, -0.03223390877246857, 0.04016030207276344, -0.011937856674194336, -0.0066570681519806385, -0.00020769245747942477, -0.039736468344926834, -0.09705283492803574, -0.09613563865423203, -0.024978138506412506, -0.029065018519759178, 0.0690186396241188, 0.025670887902379036, 0.030206507071852684, -0.07677459716796875, 0.23220272362232208, 0.0023890631273388863, -0.10148262977600098, -0.0557933934032917, -0.09184447675943375, -0.09760389477014542, -0.06005169078707695, 0.01006398256868124, 0.013801902532577515, -0.0672900453209877, 0.16342824697494507, -0.029856301844120026, 0.032451290637254715, 0.0008998485282063484, -0.02428114414215088, 0.15313474833965302, 0.12950602173805237, -0.09646198898553848, -0.028838234022259712, 0.045319560915231705, -0.017073366791009903, -0.06869282573461533, -0.0603608600795269, -0.014020584523677826, -0.02395625226199627, 0.033560238778591156, 0.0957934558391571, 0.04693535342812538, 0.060148853808641434, 0.034026723355054855, -0.05770547315478325, 0.11158454418182373, -0.1441260427236557, 0.0064265490509569645, -0.013046598993241787, -0.03288772329688072, 0.020533526316285133, 0.04991816356778145, 0.015399682335555553, -0.09757214039564133, 0.11102261394262314, -0.050667162984609604, -0.05476619675755501, -0.06685201078653336, -0.08700988441705704, -0.006307570729404688, -0.015561598353087902, -0.048025548458099365, -0.08956602960824966, -0.15790875256061554, -0.031670521944761276, 0.023346126079559326, -0.03837326541543007, -0.03851109743118286, 0.042165908962488174, -0.03724425286054611, 0.0011714297579601407, -0.0158254224807024, -0.01657632179558277, -0.03209836408495903, 0.021866267547011375, -0.05932369455695152, 0.0347910150885582, 0.07961636036634445, 0.034641463309526443, -0.10828253626823425, 0.06907070428133011, -0.1565767228603363, 0.1439061015844345, -0.00723186694085598, 0.019648535177111626, -0.10939113050699234, -0.10001301765441895, -0.025870343670248985, -0.026978978887200356, -0.009670570492744446, 0.09627654403448105, -0.19167651236057281, -0.03951585665345192, 0.20087333023548126, -0.07679060846567154, -0.08656110614538193, 0.07081872969865799, -0.0769537091255188, 0.042611826211214066, 0.1409675031900406, 0.05659696087241173, 0.16048564016819, -0.11718648672103882, -0.06901050359010696, -0.044848013669252396, -0.06268960982561111, 0.2205631583929062, 0.05507519468665123, -0.005589779932051897, 0.021163813769817352, 0.011087264865636826, -0.020558921620249748, -0.029363607987761497, -0.024083899334073067, -0.04454333707690239, -0.011364459060132504, 0.014930183999240398, -0.011029656045138836, -0.050901323556900024, -0.06586139649152756, -0.02120230346918106, -0.1123659685254097, 0.045443907380104065, 0.1052120104432106, -0.07240113615989685, 0.010587303899228573, -0.09555890411138535, -0.007347771432250738, -0.03704330697655678, 0.02072140760719776, -0.19359497725963593, -0.058750372380018234, 0.02072296105325222, -0.06320149451494217, 0.08926006406545639, 0.026079222559928894, 0.038711052387952805, 0.06522677093744278, -0.009540791623294353, 0.023880967870354652, -0.046185415238142014, -0.01970071904361248, -0.03226034343242645, -0.1417558342218399, -0.07199864834547043, -0.05227236449718475, 0.08531394600868225, -0.13805043697357178, 0.008958947844803333, 0.10894658416509628, 0.11129921674728394, 0.025351673364639282, -0.05743206664919853, 0.008565717376768589, -0.03622886911034584, -0.04139019921422005, -0.11549556255340576, -0.060219064354896545, 0.007679860573261976, -0.04249420762062073, 0.15618519484996796, -0.17956404387950897, -0.06634080410003662, 0.10031900554895401, 0.16664044559001923, -0.10997555404901505, 0.015353523194789886, -0.09545710682868958, -0.010362084023654461, -0.04626225307583809, -0.03871637210249901, 0.26836660504341125, 0.03825827315449715, 0.07864399999380112, -0.11206814646720886, -0.0984177216887474, 0.0015776138752698898, -0.03608768805861473, -0.030051490291953087, 0.02875317633152008, 0.016156760975718498, -0.18147683143615723, 0.023043587803840637, -0.000936249562073499, 0.12258181720972061, 0.21254079043865204, 0.05127448961138725, -0.09727665036916733, -0.06100531294941902, -0.08811091631650925, 0.005869964603334665, 0.04778948426246643, 0.029987545683979988, 0.02782820723950863, 0.04348914697766304, 0.05302194878458977, 0.03646080568432808, -0.11180955916643143, 0.0087860943749547, 0.08168945461511612, -0.045157935470342636, -0.05894109979271889, 0.01988743059337139, 0.015701455995440483, 0.0819464698433876, 0.07949981093406677, 0.14501120150089264, -0.07163739949464798, -0.045380059629678726, -0.1442103534936905, 0.14002028107643127, -0.07745765149593353, -0.2694862186908722, -0.13673728704452515, -0.07169341295957565, 0.024600476026535034, 0.0061527821235358715, 0.04105191305279732, -0.06058545038104057, -0.03899514302611351, -0.10721606016159058, 0.08589217066764832, -0.052893251180648804, -0.00948773231357336, -0.0015222759684547782, 0.02205883525311947, -0.033097367733716965, -0.10895556956529617, -0.02885720692574978, 0.04173412546515465, -0.10925797373056412, -0.01282076258212328, 0.02529018186032772, 0.038382451981306076, 0.15669505298137665, -0.011402319185435772, -0.004490676801651716, -0.036774225533008575, 0.2828823924064636, -0.12343621253967285, 0.06839556246995926, 0.16354481875896454, -0.0241397675126791, 0.052520524710416794, 0.07979929447174072, 0.0038001055363565683, -0.06962042301893234, 0.078512042760849, 0.06917548179626465, -0.0941702350974083, -0.21727252006530762, -0.026144051924347878, -0.007022347301244736, 0.028409011662006378, 0.12902075052261353, 0.05921541526913643, 0.061038028448820114, -0.0035569537431001663, -0.1046144962310791, 0.04491843283176422, 0.027728674933314323, 0.10949438810348511, -0.07077325135469437, -0.010471251793205738, 0.049486663192510605, -0.06709838658571243, 0.028616994619369507, 0.14317573606967926, 0.04149490222334862, 0.20537340641021729, -0.06161271408200264, 0.09820791333913803, 0.0784699022769928, 0.10245505720376968, 0.03696582838892937, 0.00959568191319704, -0.003353767329826951, 0.011074838228523731, -0.004144374746829271, -0.09774702787399292, -0.005994355771690607, 0.048892777413129807, 0.03024257719516754, -0.024622539058327675, -0.04115372896194458, -0.048930540680885315, 0.04371638596057892, 0.2314765453338623, -0.016528518870472908, -0.18541641533374786, -0.11968217045068741, 0.03879043832421303, -0.0801745280623436, -0.04935339465737343, -0.028239047154784203, 0.07445418834686279, -0.2205657809972763, 0.074251689016819, -0.031571026891469955, 0.10809171199798584, -0.11049697548151016, 0.0025318327825516462, 0.0841505154967308, 0.04297994449734688, -0.06660941988229752, 0.09770646691322327, -0.16677065193653107, 0.06533533334732056, -0.011636105366051197, 0.06719862669706345, -0.07865817099809647, 0.025859912857413292, -0.00035166522138752043, 0.05539144575595856, 0.08794229477643967, 0.0111609548330307, 0.0270695760846138, 0.0010279127163812518, -0.047195594757795334, 0.013491989113390446, 0.0604478158056736, -0.12550273537635803, 0.1270161122083664, -0.02619549073278904, 0.03338727355003357, -0.04162134975194931, -0.09761560708284378, -0.08774778991937637, -0.1671571284532547, 0.09203779697418213, -0.1295437216758728, -0.0005984129384160042, -0.07165228575468063, -0.03394916281104088, 0.035608451813459396, 0.26943767070770264, -0.05222826078534126, -0.0723351389169693, -0.13849489390850067, 0.017392104491591454, 0.1470707803964615, -0.08518898487091064, 0.01284471433609724, -0.009470620192587376, 0.2135801762342453, 0.0008813364547677338, -0.12589555978775024, -0.017710404470562935, -0.060730841010808945, -0.16591490805149078, -0.004049774259328842, 0.16816754639148712, 0.059586863964796066, 0.02786884270608425, 0.011358327232301235, -0.017277082428336143, -0.04247293993830681, -0.1716635674238205, 0.01920272409915924, 0.15982063114643097, -0.012697712518274784, -0.005565856117755175, 0.051667798310518265, 0.007484100759029388, -0.13652952015399933, 0.00944287795573473, 0.04993041977286339, 0.18293605744838715, -0.07965271174907684, 0.1919245719909668, 0.025954673066735268, -0.08944050222635269, -0.14725346863269806, 0.012965078465640545, 0.03727414831519127, 0.037966061383485794, 0.045733492821455, -0.20544010400772095, 0.038640592247247696, 0.03733283653855324, 0.00734991068020463, 0.0391000360250473, -0.3345353603363037, -0.162033349275589, -0.007817123085260391, 0.007467924151569605, -0.15273970365524292, -0.04401789978146553, -0.03477666154503822, -0.09701196104288101, -0.24071644246578217, 0.10762373358011246, -0.1157248243689537, 0.07528803497552872, 0.0330158993601799, 0.09394942969083786, 0.04552594944834709, -0.04432806745171547, 0.13319163024425507, -0.018747135996818542, 0.06594372540712357, -0.09488523751497269, -0.058914076536893845, 0.08201879262924194, -0.07004732638597488, 0.09235981851816177, 0.03657211735844612, 0.08128803223371506, -0.09373018145561218, -0.0909351333975792, -0.06259741634130478, 0.0008473819470964372, -0.051299799233675, -0.09098293632268906, -0.09048398584127426, 0.0851849913597107, 0.11961883306503296, -0.05037401244044304, -0.0982004925608635, -0.07216797024011612, 0.0010248018661513925, 0.041068222373723984, 0.12644235789775848, 0.07273712009191513, -0.056546587496995926, 0.0014763612998649478, 0.0172576904296875, 0.008073211647570133, -0.18404503166675568, 0.04637669026851654, 0.09381970763206482, 0.039621952921152115, 0.10401451587677002, 0.004861785098910332, -0.16739551723003387, 0.009247790090739727, 0.055150289088487625, -0.1611962467432022, -0.1271304190158844, -0.04080050811171532, 0.026327868923544884, -0.10065137594938278, -0.04612083360552788, 0.13449257612228394, -0.03825819864869118, -0.036990463733673096, 0.0026546968147158623, 0.03312307968735695, -0.03868081793189049, 0.08562251180410385, -0.009669122286140919, 0.04038814455270767, -0.06836355477571487, 0.11829477548599243, 0.06933077424764633, -0.00010597907385090366, 0.040972281247377396, 0.0656401515007019, -0.09516312927007675, 0.016297148540616035, -0.10367876291275024, -0.0033552406821399927, -0.031190410256385803, -0.013341345824301243, 0.028113776817917824, -0.028563708066940308, 0.05035954341292381, 0.09505046159029007, -0.01460660994052887, 0.1060149297118187, -0.04902774095535278, 0.022891370579600334, -0.1296558529138565, 0.06664470583200455, 0.036467816680669785, 0.020822541788220406, -0.11301678419113159, 0.21647094190120697, 0.03778768703341484, 0.10654260963201523, -0.03770549222826958, -0.0661579817533493, -0.045992713421583176, -0.01191107276827097, -0.07459741830825806, -0.0365416593849659, -0.08992686122655869, -0.02334783971309662, -0.0036985864862799644, -0.03089953400194645, -0.033349934965372086, 0.04418819770216942, -0.03261583670973778, -0.06087172031402588, -0.0755871832370758, 0.044401854276657104, -0.14091266691684723, 0.035501763224601746, 0.1181686520576477, -0.05668565258383751, 0.12707312405109406, 0.055038612335920334, -0.03754085302352905, 0.0260633435100317, -0.13346059620380402, 0.05016285553574562, -0.0016013957792893052, 0.02116062305867672, 0.01716245524585247, -0.14864502847194672, 0.0058785490691661835, -0.03270193561911583, -0.06741420924663544, 0.00773644307628274, -0.018518950790166855, -0.13048997521400452, -0.01157644297927618, 0.09140155464410782, -0.012060348875820637, -0.06524840742349625, 0.07042115926742554, 0.05677887424826622, 0.021674416959285736, 0.057917580008506775, -0.010380792431533337, 0.06922819465398788, -0.1757187396287918, -0.0635484829545021, -0.007190156728029251, 0.02970573492348194, 0.04321220517158508, -0.025182858109474182, 0.03604758530855179, -0.018728407099843025, 0.2064027041196823, 0.018301846459507942, 0.0007956734043546021, 0.03793387487530708, -0.0720287337899208, -0.006658792495727539, 0.042832326143980026, 0.09289262443780899, -0.013991118408739567, -0.028242001309990883, 0.00382429757155478, -0.024763545021414757, -0.0975581631064415, -0.020566940307617188, 0.09691473096609116, 0.016288569197058678, 0.20178627967834473, -0.058239102363586426, 0.0635392963886261, -0.016556553542613983, -0.11230450868606567, -0.03329204395413399, -0.04689370468258858, 0.031398702412843704, -0.05613366886973381, 0.05404377356171608, 0.19449226558208466, -0.15344928205013275, 0.11557137966156006, 0.04215347766876221, -0.05801355838775635, -0.11911183595657349, -0.19316847622394562, -0.01424127072095871, -0.03233073279261589, 0.024604380130767822, -0.1380370855331421, 0.0978330746293068, 0.017084432765841484, 0.04318942129611969, -0.05900928005576134, 0.14117909967899323, -0.09277380257844925, -0.13916416466236115, 0.04654644429683685, 0.01722683571279049, 0.027034329250454903, 0.04593586549162865, 0.0903557762503624, 0.03606833890080452, 0.00501638650894165, 0.06911120563745499, 0.0416620671749115, 0.033122967928647995, 0.03931502252817154, -0.03258567675948143, -0.04019537195563316, 0.026910269632935524, -0.005528179928660393, 0.022610248997807503, 0.09145478159189224, 0.06757589429616928, -0.02098943293094635, -0.016080360859632492, 0.3162428140640259, -0.02020080015063286, -0.03870777413249016, -0.18750786781311035, 0.16303668916225433, 0.013342026621103287, -0.0016561014344915748, 0.02120043896138668, -0.11691644042730331, 0.016380470246076584, 0.12079137563705444, 0.15266460180282593, -0.018231626600027084, 0.024247413501143456, -0.024329351261258125, 0.018317721784114838, 0.037266265600919724, 0.11155107617378235, 0.06154757738113403, 0.1910652071237564, -0.025785237550735474, 0.054060447961091995, -0.015025156550109386, -0.020595703274011612, 0.01510706264525652, 0.10516762733459473, -0.03935278579592705, 0.005842502694576979, -0.048173803836107254, 0.10422638058662415, -0.056826841086149216, -0.30523887276649475, -0.04127891734242439, -0.016619645059108734, -0.09026217460632324, 0.07728403806686401, -0.03468215838074684, -0.017882082611322403, 0.07964777946472168, 0.02959771454334259, -0.04793263599276543, 0.15783482789993286, 0.05495584011077881, -0.04877673462033272, -0.004256769549101591, 0.11366463452577591, -0.03291325643658638, 0.16041763126850128, -0.03889961540699005, 0.012902584858238697, 0.07346034795045853, 0.01293079275637865, -0.12940645217895508, 0.004074034281075001, 0.03828268125653267, -0.0474848598241806, -0.017297329381108284, 0.2013424038887024, 0.012786798179149628, 0.024041175842285156, 0.07125630229711533, -0.05694923922419548, 0.020566776394844055, -0.03522332385182381, 0.06179892644286156, -0.1324911266565323, 0.06602611392736435, -0.07827817648649216, 0.11931377649307251, 0.17745280265808105, -0.06760082393884659, 0.03902745246887207, -0.06194060668349266, 0.007217865437269211, -0.02744756080210209, 0.06880203634500504, -0.017713060602545738, -0.11413922905921936, 0.003930072765797377, 0.02799271047115326, 0.013487637042999268, -0.17615960538387299, -0.08180171251296997, 0.07769075036048889, -0.053766947239637375, 0.02055608667433262, 0.17837129533290863, 0.012703138403594494, 0.0568995364010334, -0.03869045898318291, -0.008505884557962418, -0.005207720212638378, 0.11639199405908585, -0.17777298390865326, -0.07785982638597488 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/48d6ca7ca17a9dfc9ad3034e71533a89.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Till Lindemann</div> <a href="https://genius.com/artists/till-lindemann"> <div style="text-align: center; font-size: 14px;">@till-lindemann</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Till Lindemann. Dataset is available [here](https://huggingface.co/datasets/huggingartists/till-lindemann). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/till-lindemann") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2xh6fyqt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Till Lindemann's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/32ohf092) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/32ohf092/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/till-lindemann') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/till-lindemann") model = AutoModelWithLMHead.from_pretrained("huggingartists/till-lindemann") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/till-lindemann"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/till-lindemann
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/till-lindemann", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/till-lindemann #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Till Lindemann</div> <a href="URL <div style="text-align: center; font-size: 14px;">@till-lindemann</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Till Lindemann. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Till Lindemann's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Till Lindemann.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Till Lindemann's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/till-lindemann #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Till Lindemann.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Till Lindemann's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 89, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/till-lindemann #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Till Lindemann.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Till Lindemann's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03480705991387367, 0.18865375220775604, -0.003575771115720272, 0.07374273240566254, 0.0878162607550621, -0.004632818046957254, 0.05713500455021858, 0.11508858948945999, -0.007670223247259855, 0.07624819129705429, 0.0715852752327919, 0.05287183076143265, 0.07675614953041077, 0.06154594570398331, 0.04330766946077347, -0.25095656514167786, 0.034093208611011505, -0.05633281171321869, 0.007847183384001255, 0.0907914862036705, 0.08220726996660233, -0.08449625968933105, 0.09135837107896805, 0.03436733037233353, -0.04033344238996506, -0.0023899278603494167, 0.016719190403819084, -0.055479295551776886, 0.08242975920438766, 0.08328893780708313, 0.034172382205724716, 0.0389719232916832, 0.05883781239390373, -0.1646570861339569, 0.022077228873968124, 0.12071466445922852, 0.025333378463983536, 0.08864875137805939, 0.05976267158985138, -0.05584188178181648, 0.13147775828838348, -0.042341914027929306, 0.07819746434688568, 0.06109563633799553, -0.11149522662162781, -0.0650576576590538, -0.1491580307483673, 0.06307678669691086, 0.0715143084526062, 0.0812949389219284, -0.023313207551836967, 0.11157891154289246, -0.029787324368953705, 0.057411909103393555, 0.25706589221954346, -0.2738700211048126, -0.011068204417824745, 0.05919492244720459, 0.08110687881708145, -0.00103994261007756, -0.09595915675163269, 0.024306580424308777, 0.047126203775405884, 0.03812072426080704, 0.05235905572772026, -0.04694191738963127, 0.13781142234802246, -0.00509483739733696, -0.10433696210384369, -0.0631217509508133, 0.09016414731740952, -0.009416650049388409, -0.08378832787275314, -0.11430235207080841, 0.001962411217391491, -0.02363167703151703, 0.026214418932795525, 0.009715000167489052, -0.002705901162698865, -0.007448673713952303, -0.0678444653749466, -0.12689542770385742, -0.07574309408664703, -0.02203950472176075, -0.01378481462597847, 0.037337951362133026, 0.04363162815570831, 0.02831714041531086, -0.0570254884660244, 0.19088779389858246, 0.003909448627382517, -0.10338393598794937, -0.07539596408605576, -0.12444174289703369, -0.06765660643577576, -0.04659745842218399, -0.016604207456111908, -0.009811043739318848, -0.023040510714054108, 0.14004984498023987, -0.03141641616821289, 0.024786174297332764, -0.05505862832069397, 0.01562780700623989, 0.11123021692037582, 0.1317548006772995, -0.13043008744716644, -0.06209897994995117, 0.07923316210508347, -0.017140191048383713, -0.05197497457265854, -0.05239781364798546, 0.0034776751417666674, -0.04457402601838112, 0.053326185792684555, 0.06738187372684479, 0.07963792979717255, 0.07470720261335373, 0.0032330204267054796, -0.04361703619360924, 0.030499108135700226, -0.1280931532382965, 0.018942194059491158, -0.02095876820385456, -0.0626877099275589, 0.018145179376006126, 0.06256328523159027, 0.003070744452998042, -0.11188165098428726, 0.07428937405347824, -0.08891142159700394, -0.03810394927859306, -0.0879376158118248, -0.11954181641340256, 0.011749105527997017, -0.051721323281526566, -0.016307350248098373, -0.08545124530792236, -0.15037384629249573, -0.04223663732409477, 0.017360778525471687, -0.05914813652634621, -0.011892837472259998, 0.022909941151738167, -0.05301244184374809, 0.009280556812882423, -0.016598284244537354, -0.009541934356093407, -0.013304680585861206, 0.045781806111335754, -0.09685894846916199, 0.0453827902674675, 0.046702463179826736, 0.03369251266121864, -0.12440767139196396, 0.07364252954721451, -0.1543307900428772, 0.12759223580360413, -0.03518098220229149, -0.026081563904881477, -0.0953778401017189, -0.10467888414859772, -0.009824594482779503, -0.03210832551121712, 0.05252736806869507, 0.13271299004554749, -0.17086046934127808, -0.004345552064478397, 0.2003699243068695, -0.0730745792388916, -0.053980618715286255, 0.07226341962814331, -0.07047591358423233, 0.038011107593774796, 0.11371549963951111, 0.059645239263772964, 0.14092987775802612, -0.09097135812044144, -0.10561433434486389, -0.03134334832429886, -0.08410292118787766, 0.17284438014030457, 0.014273513108491898, -0.010173489339649677, 0.043936196714639664, 0.0029434403404593468, 0.003237743629142642, -0.012619332410395145, -0.03515235334634781, -0.032590605318546295, -0.013679810799658298, -0.007459079846739769, 0.016522163525223732, -0.04154098778963089, -0.03166842460632324, -0.010521341115236282, -0.09592873603105545, 0.05767417699098587, 0.0783919095993042, -0.07496942579746246, 0.029002172872424126, -0.09935011714696884, 0.03442847356200218, -0.05632111802697182, 0.011627238243818283, -0.18342623114585876, -0.028178086504340172, 0.004954214207828045, -0.0556974932551384, 0.06086322292685509, 0.03743165731430054, 0.049330178648233414, 0.0705682560801506, -0.023228971287608147, 0.01284014992415905, -0.039747852832078934, 0.010481725446879864, -0.060148775577545166, -0.16311763226985931, -0.055956609547138214, -0.04206385090947151, 0.04728522151708603, -0.11720169335603714, -0.002639029873535037, 0.09720373898744583, 0.1491416096687317, 0.03853127360343933, -0.05780736729502678, 0.03267156705260277, -0.01367073506116867, -0.032549332827329636, -0.09971800446510315, -0.04088844731450081, 0.015717223286628723, -0.03416775166988373, 0.16204755008220673, -0.1433844417333603, -0.1113470122218132, 0.12701956927776337, 0.060951944440603256, -0.0894525870680809, 0.031064147129654884, -0.055902399122714996, -0.02826947160065174, -0.03390497714281082, -0.06365292519330978, 0.2249028980731964, 0.04726335406303406, 0.09417572617530823, -0.0814497172832489, -0.0685761347413063, 0.005678798072040081, -0.0369267463684082, -0.026453973725438118, 0.044373832643032074, 0.030571548268198967, -0.1997486799955368, 0.05120658874511719, -0.004782386589795351, 0.06822584569454193, 0.15754935145378113, 0.03248376399278641, -0.08987569808959961, -0.05584465712308884, -0.06650299578905106, 0.015559984371066093, 0.07832295447587967, 0.00806986354291439, 0.04704636335372925, 0.035877570509910583, 0.050188835710287094, 0.03196236491203308, -0.10044890642166138, 0.013048971071839333, 0.05050196498632431, -0.013884186744689941, -0.05208127945661545, 0.013490022160112858, 0.0335235632956028, 0.08694957196712494, 0.06271522492170334, 0.0841352641582489, -0.03261552006006241, -0.048006054013967514, -0.12051401287317276, 0.1376962661743164, -0.09808056056499481, -0.22086556255817413, -0.11760885268449783, -0.09119748324155807, 0.0069665731862187386, 0.01294274628162384, 0.038442954421043396, -0.016486983746290207, -0.04221509024500847, -0.09888176620006561, 0.061422914266586304, -0.03601592406630516, -0.008554081432521343, -0.017527852207422256, 0.03711821883916855, -0.00044289827928878367, -0.115781769156456, -0.023128284141421318, 0.023370467126369476, -0.0757976844906807, 0.010148708708584309, 0.04328663647174835, 0.05465742573142052, 0.11034207791090012, -0.007397301495075226, -0.0009202143992297351, -0.02935072034597397, 0.27254518866539, -0.10273788869380951, 0.05520610511302948, 0.16148333251476288, -0.039023712277412415, 0.06498753279447556, 0.06044962257146835, -0.0030426527373492718, -0.05304170399904251, 0.046491049230098724, 0.05988277494907379, -0.061314456164836884, -0.18867036700248718, -0.018043529242277145, -0.036947619169950485, 0.014773549512028694, 0.11489539593458176, 0.019935091957449913, 0.028687262907624245, 0.029223091900348663, -0.0808577835559845, 0.0735420435667038, 0.05046854540705681, 0.10516798496246338, -0.017054496333003044, -0.019758734852075577, 0.06309118121862411, -0.04418432340025902, 0.02122870646417141, 0.1003531664609909, 0.028689805418252945, 0.24730882048606873, -0.08525176346302032, 0.042445097118616104, 0.08333949744701385, 0.08502001315355301, 0.010435812175273895, 0.05797512084245682, -0.02853289246559143, 0.028837068006396294, -0.0026261606253683567, -0.09420206397771835, -0.015255605801939964, 0.03832389414310455, 0.018897797912359238, -0.017913933843374252, -0.06697062402963638, -0.04816769063472748, 0.03784308582544327, 0.20545919239521027, 0.07362974435091019, -0.16173900663852692, -0.08694043010473251, 0.05964411422610283, -0.034219272434711456, -0.05915335193276405, -0.007135437335819006, 0.09550818055868149, -0.20072562992572784, 0.029296020045876503, -0.04401974380016327, 0.11346396803855896, -0.14786608517169952, 0.0015743240946903825, -0.0013522712979465723, 0.04950842633843422, -0.06266433745622635, 0.06858842819929123, -0.17976103723049164, 0.08430200070142746, 0.015094242990016937, 0.08284195512533188, -0.0693523958325386, 0.018218275159597397, 0.04381287470459938, 0.027113890275359154, 0.11201193183660507, 0.011756861582398415, -0.006648974493145943, -0.09159045666456223, -0.057884737849235535, 0.004294254817068577, 0.05837337300181389, -0.04059646278619766, 0.1253354698419571, -0.033466637134552, 0.02750139683485031, -0.015439794398844242, -0.0426834411919117, -0.12644967436790466, -0.1568823605775833, 0.07561761140823364, -0.10153746604919434, -0.0036583486944437027, -0.05012238025665283, -0.02832278423011303, 0.01922512799501419, 0.21877047419548035, -0.09306560456752777, -0.07659196853637695, -0.11744692921638489, 0.03775069862604141, 0.1588968187570572, -0.07529358565807343, 0.018735161051154137, 0.017703674733638763, 0.13487344980239868, 0.005900654476135969, -0.11926400661468506, -0.004541028756648302, -0.05709714815020561, -0.1710524559020996, -0.021723736077547073, 0.10719411075115204, 0.06889420002698898, 0.04719903692603111, 0.031032364815473557, 0.012172561138868332, -0.01931767724454403, -0.16067922115325928, 0.0034812360536307096, 0.1121654063463211, 0.05856716260313988, 0.016639677807688713, 0.009436258114874363, 0.03327907621860504, -0.1184995248913765, 0.03933635354042053, 0.07581505924463272, 0.2012762725353241, -0.08260876685380936, 0.14100472629070282, 0.005193504970520735, -0.08927898854017258, -0.18243388831615448, 0.03163749724626541, -0.005925587844103575, 0.027768924832344055, 0.03504762053489685, -0.14951872825622559, 0.013258937746286392, 0.02443021722137928, 0.0008150266949087381, 0.0739915743470192, -0.2919316589832306, -0.13170821964740753, 0.021446097642183304, 0.02901659533381462, -0.03934648260474205, -0.0233090128749609, -0.03647679090499878, -0.0686727911233902, -0.23833177983760834, 0.08295554667711258, -0.10864892601966858, 0.0908670574426651, 0.021297799423336983, 0.037446893751621246, 0.05074040964245796, -0.0647357776761055, 0.12400287389755249, -0.048774294555187225, 0.06373345106840134, -0.09439057111740112, -0.03633758798241615, 0.08118801563978195, -0.04808296635746956, 0.08289555460214615, 0.007172306068241596, 0.0729193463921547, -0.07042744010686874, -0.05848405137658119, -0.07901918888092041, 0.03232366964221001, -0.06335077434778214, -0.09442755579948425, -0.0739782378077507, 0.11107005923986435, 0.1276504546403885, -0.020361922681331635, -0.0941341370344162, -0.05789551883935928, -0.04114704206585884, 0.08930320292711258, 0.11986678838729858, 0.0768578052520752, -0.06204139441251755, 0.026748333126306534, 0.00252535124309361, 0.0410538986325264, -0.1120513528585434, 0.05005978047847748, 0.09085027873516083, 0.022183159366250038, 0.09850457310676575, 0.028620323166251183, -0.15430663526058197, 0.03958558663725853, 0.031794387847185135, -0.1381397545337677, -0.0837259441614151, -0.02588985301554203, -0.015162876807153225, -0.07481440156698227, -0.038421276956796646, 0.16181765496730804, -0.04968692362308502, -0.0309955645352602, -0.003259457880631089, 0.05655316263437271, -0.04511253908276558, 0.09960690885782242, 0.02481219172477722, 0.04056335985660553, -0.06470590829849243, 0.08806309849023819, 0.06263575702905655, 0.004946592263877392, 0.04284437745809555, 0.04432874172925949, -0.08643421530723572, -0.012737153097987175, -0.09609775990247726, -0.0013433751882985234, -0.03420040383934975, -0.0031889404635876417, -0.0024433094076812267, -0.03350573033094406, 0.02829679101705551, 0.10910750925540924, -0.014281627722084522, 0.11340896040201187, -0.02860979549586773, -0.01731729693710804, -0.1336601972579956, 0.06472950428724289, 0.04024851694703102, 0.01819026842713356, -0.08893647789955139, 0.1757202297449112, 0.016111789271235466, 0.08602343499660492, -0.044032614678144455, -0.03789804130792618, -0.0873018279671669, -0.02147676981985569, -0.14191405475139618, -0.034186434000730515, -0.0931171253323555, -0.04119878262281418, -0.02305043861269951, -0.035634975880384445, -0.03307746350765228, 0.052896976470947266, -0.024560822173953056, -0.06616370379924774, -0.04969574511051178, 0.050459034740924835, -0.15324057638645172, -0.01026206649839878, 0.12012912333011627, -0.0748770609498024, 0.1083550974726677, 0.029279310256242752, -0.04441644623875618, 0.007184943184256554, -0.07682385295629501, 0.014523135498166084, -0.02821224369108677, 0.015120409429073334, 0.03740180283784866, -0.12606196105480194, 0.010924442671239376, -0.05482562258839607, -0.04198875278234482, 0.011754345148801804, 0.014172273688018322, -0.11541608721017838, -0.007654333021491766, 0.05696979910135269, 0.0018259882926940918, -0.07109930366277695, 0.07213017344474792, 0.06126679107546806, 0.0289828572422266, 0.07600268721580505, -0.025846080854535103, 0.09372396022081375, -0.16137933731079102, -0.0368318147957325, 0.012036226689815521, -0.004428069572895765, 0.09660609066486359, -0.01841367408633232, 0.06345868855714798, -0.023551128804683685, 0.1793980449438095, 0.0006460055592469871, -0.013591574504971504, 0.03642301261425018, -0.04450900852680206, -0.019497258588671684, 0.04565323889255524, 0.07010828703641891, -0.029570378363132477, -0.04693101346492767, -0.028522538021206856, 0.012753800489008427, -0.05803056061267853, -0.03596857935190201, 0.13400639593601227, 0.0747578889131546, 0.1532171070575714, -0.026371393352746964, 0.05672600492835045, -0.011760047636926174, -0.11543814092874527, -0.0298535767942667, -0.002031911164522171, 0.04156740382313728, -0.06575778871774673, 0.06840702146291733, 0.14363299310207367, -0.14362949132919312, 0.1188349649310112, -0.0028438447043299675, -0.05944567173719406, -0.10363519191741943, -0.18967290222644806, -0.027101559564471245, 0.00130793871358037, 0.03298189118504524, -0.13195985555648804, 0.07726874947547913, 0.02937907539308071, 0.027386806905269623, -0.05823635309934616, 0.1033010259270668, -0.06712296605110168, -0.10413486510515213, 0.024802662432193756, 0.03287503868341446, 0.02509370446205139, 0.03127421438694, 0.054994337260723114, 0.016859224066138268, 0.02416720800101757, 0.05321807786822319, 0.03183591738343239, 0.047417446970939636, 0.025415834039449692, -0.022009219974279404, -0.05917710065841675, 0.008698830381035805, 0.015202191658318043, 0.057895150035619736, 0.11926455050706863, 0.07035675644874573, -0.013505598530173302, -0.04636584594845772, 0.2991701662540436, -0.044622138142585754, -0.04072640463709831, -0.1728876382112503, 0.16854341328144073, 0.03540472686290741, -0.008542178198695183, 0.01347262691706419, -0.14176437258720398, 0.028357140719890594, 0.16923357546329498, 0.18077269196510315, -0.07176495343446732, 0.012797409668564796, -0.03420409932732582, 0.010304599069058895, 0.03413243964314461, 0.08090957254171371, 0.06288814544677734, 0.19043244421482086, -0.0564105361700058, 0.056884147226810455, -0.00941748358309269, -0.0010847779922187328, -0.028506426140666008, 0.1144680455327034, -0.03052300028502941, 0.010141219012439251, -0.06735721230506897, 0.08318816870450974, -0.06665781885385513, -0.2478906810283661, -0.009282270446419716, -0.0556480810046196, -0.0884370356798172, 0.05891730263829231, -0.048778049647808075, -0.014868325553834438, 0.08739941567182541, 0.017178591340780258, -0.007869213819503784, 0.11627644300460815, 0.03372317925095558, -0.01817093789577484, -0.004498396534472704, 0.0797005444765091, -0.0031633104663342237, 0.20264054834842682, -0.016559232026338577, 0.02144083008170128, 0.10182083398103714, 0.044269002974033356, -0.11862965673208237, -0.018625054508447647, 0.04265499487519264, -0.0819263607263565, -0.00791801605373621, 0.18305130302906036, 0.006890505086630583, 0.02844194509088993, 0.059624750167131424, -0.04896344617009163, 0.03555784001946449, -0.06582222878932953, 0.04515212029218674, -0.105936698615551, 0.04003522917628288, -0.07574781775474548, 0.15168343484401703, 0.17556163668632507, -0.06685467809438705, 0.020768409594893456, -0.05112343281507492, -0.015405058860778809, -0.02180258370935917, 0.033578936010599136, -0.03600304573774338, -0.09379815310239792, 0.016840621829032898, 0.03691371902823448, 0.018025700002908707, -0.19402360916137695, -0.07760806381702423, 0.05268203467130661, -0.05838710069656372, -0.0063309622928500175, 0.1461368352174759, 0.02497148886322975, 0.039363764226436615, -0.03392277657985687, -0.02225494384765625, -0.024674180895090103, 0.09239046275615692, -0.1359383463859558, -0.08416812121868134 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/505d2d5d1d43304dca446fd2e788a0f8.750x750x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Waits</div> <a href="https://genius.com/artists/tom-waits"> <div style="text-align: center; font-size: 14px;">@tom-waits</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Tom Waits. Dataset is available [here](https://huggingface.co/datasets/huggingartists/tom-waits). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/tom-waits") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/tom-waits") model = AutoModelWithLMHead.from_pretrained("huggingartists/tom-waits") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/216zw2jw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Tom Waits's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/16iei9vt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/16iei9vt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/tom-waits') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/tom-waits"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/tom-waits
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/tom-waits", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tom-waits #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Waits</div> <a href="URL <div style="text-align: center; font-size: 14px;">@tom-waits</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Tom Waits. Dataset is available here. And can be used with: Or with Transformers library: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Tom Waits's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Tom Waits.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tom Waits's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tom-waits #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Tom Waits.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tom Waits's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 59, 73, 18, 47, 40 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tom-waits #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Tom Waits.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tom Waits's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 0.004279032815247774, 0.15714478492736816, -0.003625245066359639, 0.06515752524137497, 0.08543124049901962, 0.002403364982455969, 0.08191726356744766, 0.11523719131946564, -0.02847619354724884, 0.06055174395442009, 0.0533008798956871, 0.03312252089381218, 0.06861767172813416, 0.08566325157880783, 0.06506732106208801, -0.2423647791147232, 0.016568662598729134, -0.06550893932580948, -0.0016660476103425026, 0.10692302882671356, 0.08496685326099396, -0.08244073390960693, 0.09180128574371338, 0.01993606984615326, -0.0503406785428524, 0.016472103074193, 0.01638295315206051, -0.0670611709356308, 0.10282915085554123, 0.07066483050584793, 0.03159646317362785, 0.033162180334329605, 0.06299452483654022, -0.1451631486415863, 0.028921371325850487, 0.14001260697841644, 0.019114354625344276, 0.08135386556386948, 0.05357985198497772, -0.06418368965387344, 0.12284819781780243, -0.025690637528896332, 0.102260060608387, 0.05561958625912666, -0.11302933096885681, -0.09566667675971985, -0.13585473597049713, 0.05304955318570137, 0.05736919492483139, 0.08475527912378311, -0.026526717469096184, 0.10731745511293411, -0.030695782974362373, 0.04607405886054039, 0.2493859976530075, -0.2732630670070648, -0.010935473255813122, 0.019698675721883774, 0.05425572022795677, 0.05730437859892845, -0.09414772689342499, 0.0312986820936203, 0.04132191091775894, 0.04943959414958954, 0.06542188674211502, -0.024511557072401047, 0.15729987621307373, 0.004939550068229437, -0.09849140048027039, -0.07999031990766525, 0.11795517802238464, -0.03036176972091198, -0.0814366266131401, -0.12426167726516724, -0.01778574287891388, -0.0032006895635277033, 0.048162344843149185, 0.003480717772617936, -0.0035150451585650444, 0.004773233085870743, -0.09571807086467743, -0.13563372194766998, -0.09940218925476074, -0.036651480942964554, -0.05048747360706329, 0.021389396861195564, 0.05027597025036812, 0.03763321042060852, -0.07624432444572449, 0.21342329680919647, 0.03795744851231575, -0.08496351540088654, -0.06498753279447556, -0.11402924358844757, -0.08586031198501587, -0.030783960595726967, 0.005332075525075197, -0.009364171884953976, -0.03887705132365227, 0.15541675686836243, -0.024873454123735428, 0.012790449894964695, -0.057316433638334274, 0.009200862608850002, 0.12573131918907166, 0.13284994661808014, -0.1176992803812027, -0.018007295206189156, 0.07832051068544388, -0.02746410295367241, -0.06535599380731583, -0.055365558713674545, 0.00420448137447238, -0.04661523550748825, 0.06091088429093361, 0.07262999564409256, 0.0830683633685112, 0.06179328262805939, 0.012161429971456528, -0.056189198046922684, 0.034113507717847824, -0.13571743667125702, 0.008395534940063953, -0.018185142427682877, -0.0489230751991272, -0.0027109174989163876, 0.06552837789058685, -0.014643698930740356, -0.10659972578287125, 0.06941766291856766, -0.07893764227628708, -0.060817424207925797, -0.07692970335483551, -0.09911692142486572, -0.0005597068229690194, -0.0499439612030983, -0.03288240730762482, -0.08918210864067078, -0.16777963936328888, -0.033038776367902756, 0.007550966460257769, -0.05456101894378662, -0.015217896550893784, 0.03610505163669586, -0.018607817590236664, 0.0025381685700267553, -0.013944468460977077, -0.01960992068052292, -0.019949089735746384, 0.05495437607169151, -0.08855070173740387, 0.0424366220831871, 0.06837275624275208, 0.04810497537255287, -0.13585036993026733, 0.06496104598045349, -0.1407194882631302, 0.12900497019290924, -0.01921909488737583, -0.008546136319637299, -0.08284422755241394, -0.11027649790048599, -0.02480860985815525, -0.03741033747792244, 0.022866075858473778, 0.10550474375486374, -0.16329072415828705, -0.02972782962024212, 0.2050384283065796, -0.07090826332569122, -0.061599861830472946, 0.08609268814325333, -0.07241106033325195, 0.05839742720127106, 0.1226724162697792, 0.06248462200164795, 0.13707776367664337, -0.07983208447694778, -0.0738169327378273, -0.03843194991350174, -0.0999772697687149, 0.2008570432662964, 0.02637600153684616, -0.02131221815943718, 0.04572440683841705, 0.000938447134103626, -0.005229540169239044, -0.03316967934370041, -0.039986710995435715, -0.032987095415592194, -0.02018216997385025, -0.007403853349387646, 0.012959000654518604, -0.04532325640320778, -0.04164648428559303, -0.03057255409657955, -0.09963038563728333, 0.054764870554208755, 0.08692960441112518, -0.07005033642053604, 0.03147019445896149, -0.10311707109212875, 0.015344285406172276, -0.009787523187696934, 0.011779885739088058, -0.16961637139320374, -0.028315100818872452, 0.017154069617390633, -0.046067915856838226, 0.08908671885728836, 0.028249135240912437, 0.04787111282348633, 0.0683874860405922, -0.021439379081130028, 0.01136516872793436, -0.06246846169233322, -0.00903074536472559, -0.04677252471446991, -0.14921104907989502, -0.035154737532138824, -0.02758486196398735, 0.0429091602563858, -0.08444257080554962, -0.0009718355722725391, 0.08885727822780609, 0.1405142992734909, 0.03186126798391342, -0.05851293355226517, 0.01943228766322136, -0.03447859361767769, -0.03577070310711861, -0.10470961779356003, -0.04765763878822327, -0.00020755462173838168, -0.011510943993926048, 0.17309768497943878, -0.1590479612350464, -0.07823481410741806, 0.12174546718597412, 0.08496036380529404, -0.09024550765752792, 0.08425701409578323, -0.06693266332149506, -0.023055220022797585, -0.06524834781885147, -0.058890216052532196, 0.24484343826770782, 0.031090186908841133, 0.08824723213911057, -0.09199634939432144, -0.07506861537694931, -0.005691296420991421, -0.03224683552980423, -0.02623062953352928, 0.04053816571831703, -0.004378609359264374, -0.21703922748565674, 0.05420764535665512, -0.002403884893283248, 0.0842825397849083, 0.18060936033725739, 0.03557729721069336, -0.10419099777936935, -0.04416497424244881, -0.06927848607301712, 0.01886005885899067, 0.07087884098291397, 0.016410211101174355, 0.035784076899290085, 0.039844200015068054, 0.04618149250745773, 0.027349751442670822, -0.11417914927005768, 0.006150129716843367, 0.06579263508319855, -0.02323928289115429, -0.041388195008039474, 0.015071830712258816, 0.03308906778693199, 0.09418215602636337, 0.07153180241584778, 0.118453249335289, -0.05175981670618057, -0.045912906527519226, -0.12108924239873886, 0.12670648097991943, -0.10993656516075134, -0.255844384431839, -0.1311119943857193, -0.03929255157709122, 0.027353830635547638, 0.026217389851808548, 0.04883265867829323, -0.03618861362338066, -0.03923240676522255, -0.0880594253540039, 0.061636827886104584, -0.05288921669125557, -0.0008542734431102872, -0.013063999824225903, 0.03921106830239296, -0.008569703437387943, -0.1255464106798172, -0.017289409413933754, 0.030097423121333122, -0.11978590488433838, 0.018154241144657135, 0.022983191534876823, 0.04650714248418808, 0.12020660936832428, -0.019691482186317444, -0.006862848997116089, -0.035721514374017715, 0.25155842304229736, -0.1179981529712677, 0.04900190606713295, 0.1440371572971344, -0.013014296069741249, 0.060526009649038315, 0.02862427569925785, -0.009286011569201946, -0.05876149982213974, 0.07537264376878738, 0.0764768198132515, -0.06876108050346375, -0.20551864802837372, -0.012454337440431118, -0.015625767409801483, 0.0403221994638443, 0.12227659672498703, 0.050716858357191086, 0.03491997718811035, 0.01364635955542326, -0.10035225003957748, 0.06905853003263474, 0.06281627714633942, 0.09246918559074402, -0.03266679123044014, -0.013640357181429863, 0.061328474432229996, -0.05794120952486992, 0.017245259135961533, 0.12194927781820297, 0.014502323232591152, 0.2357052117586136, -0.09885463118553162, 0.07793812453746796, 0.07944416999816895, 0.09363328665494919, 0.028521230444312096, 0.03891259804368019, -0.016543757170438766, 0.04529182240366936, -0.0030248877592384815, -0.08378318697214127, -0.012995828874409199, 0.03277141600847244, 0.028377478942275047, -0.027894433587789536, -0.03720071166753769, -0.0630958303809166, 0.04793982580304146, 0.22644932568073273, 0.05490411818027496, -0.1368946135044098, -0.10916547477245331, 0.051401153206825256, -0.05662032961845398, -0.06643860787153244, -0.0022182497195899487, 0.09679687023162842, -0.2158985584974289, 0.01944929175078869, -0.02499840222299099, 0.11443494260311127, -0.135483518242836, -0.0035709303338080645, 0.008896758779883385, 0.03408319130539894, -0.08012884855270386, 0.08431421965360641, -0.1959204226732254, 0.06692329794168472, 0.004410373978316784, 0.08090569823980331, -0.06267508119344711, 0.0031377009581774473, 0.03360043093562126, 0.037415761500597, 0.09579110145568848, 0.015223381109535694, 0.04779892787337303, -0.05778581649065018, -0.06494802236557007, 0.006581285502761602, 0.07288721203804016, -0.07812529057264328, 0.12188658863306046, -0.04928482323884964, 0.04122134670615196, -0.01752243936061859, -0.06089026480913162, -0.0942898690700531, -0.1409326046705246, 0.06820210069417953, -0.1309714913368225, 0.005290744826197624, -0.06145597994327545, -0.03390296921133995, 0.03765321895480156, 0.20031282305717468, -0.0853317528963089, -0.07612540572881699, -0.1174749955534935, 0.005191213451325893, 0.15107600390911102, -0.07431086897850037, 0.02176201157271862, 0.017425552010536194, 0.1450093537569046, 0.013757768087089062, -0.1425863802433014, -0.016845645383000374, -0.04266173392534256, -0.19573283195495605, -0.013476496562361717, 0.11810852587223053, 0.08152751624584198, 0.05916428193449974, 0.024236299097537994, 0.015013490803539753, -0.04578870162367821, -0.1448540985584259, 0.03607684746384621, 0.1255381852388382, 0.03815750405192375, 0.037985771894454956, 0.037810228765010834, 0.03857463225722313, -0.1284472793340683, 0.014581013470888138, 0.07305720448493958, 0.1846422553062439, -0.08071613311767578, 0.1888929158449173, 0.0029275580309331417, -0.09194190055131912, -0.19281011819839478, 0.01111289206892252, -0.01267003919929266, 0.03800463303923607, 0.042769934982061386, -0.1890963315963745, -0.0021486557088792324, 0.03215745463967323, -0.004200381692498922, 0.0768270269036293, -0.3062760531902313, -0.14603736996650696, 0.03859991952776909, 0.019074436277151108, -0.052588220685720444, -0.021269991993904114, -0.018915953114628792, -0.06576677411794662, -0.21286289393901825, 0.09068696200847626, -0.13250680267810822, 0.10627429187297821, 0.010464736260473728, 0.05408814549446106, 0.040259234607219696, -0.04628710076212883, 0.11775224655866623, -0.06861446797847748, 0.06339195370674133, -0.10422158241271973, -0.017434880137443542, 0.11247430741786957, -0.03998837247490883, 0.08041593432426453, 0.03390350937843323, 0.08497459441423416, -0.07401593029499054, -0.06672043353319168, -0.08332277834415436, 0.021285535767674446, -0.04955097287893295, -0.09773145616054535, -0.0936359316110611, 0.09819317609071732, 0.12279834598302841, -0.039273664355278015, -0.09683611243963242, -0.044363684952259064, -0.012003540992736816, 0.06511741131544113, 0.12009624391794205, 0.08354517817497253, -0.08521563559770584, 0.007993727922439575, -0.00007809108501533046, 0.03880319744348526, -0.11061425507068634, 0.054079730063676834, 0.08398701250553131, 0.03610827773809433, 0.09805300086736679, 0.0320519395172596, -0.17014577984809875, 0.04477657005190849, 0.04489380866289139, -0.15653495490550995, -0.12436240166425705, -0.03243505582213402, -0.042895447462797165, -0.07630955427885056, -0.034589339047670364, 0.13757900893688202, -0.04628286510705948, -0.04254606366157532, 0.007786738686263561, 0.05251738429069519, -0.04462062940001488, 0.11504266411066055, 0.01921791024506092, 0.030633045360445976, -0.06685127317905426, 0.11778751760721207, 0.07555948942899704, 0.03144874423742294, 0.055329468101263046, 0.05636424571275711, -0.09004684537649155, -0.0004592138866428286, -0.06738973408937454, -0.04383867606520653, -0.025740770623087883, 0.00532560795545578, 0.0020735107827931643, -0.02750343829393387, 0.035899143666028976, 0.10988660156726837, -0.019236469641327858, 0.13237114250659943, -0.03809433430433273, 0.014550639316439629, -0.12170526385307312, 0.06934059411287308, 0.03871821612119675, 0.017146294936537743, -0.08926702290773392, 0.19991092383861542, 0.02775794267654419, 0.10339184105396271, -0.05355088412761688, -0.06451645493507385, -0.06684186309576035, -0.00710631487891078, -0.14712314307689667, -0.051816001534461975, -0.06531713902950287, -0.05065012723207474, -0.014469531364738941, -0.04281717166304588, -0.018920093774795532, 0.05125981569290161, -0.025722209364175797, -0.07151046395301819, -0.05926737189292908, 0.035372018814086914, -0.16955476999282837, 0.007659725844860077, 0.13337087631225586, -0.06114921718835831, 0.11891674250364304, 0.06441380083560944, -0.044749196618795395, 0.010276364162564278, -0.07594428956508636, -0.003224962158128619, -0.04551555588841438, 0.014572521671652794, 0.0228264182806015, -0.12109145522117615, 0.0033642828930169344, -0.06408676505088806, -0.056749794632196426, 0.017365043982863426, 0.035554226487874985, -0.11163010448217392, -0.0019521203357726336, 0.062947578728199, 0.0007678386755287647, -0.06948678940534592, 0.06421999633312225, 0.030189579352736473, 0.04167085140943527, 0.05721234157681465, -0.042414937168359756, 0.08165149390697479, -0.16280077397823334, -0.04940761625766754, 0.009591168724000454, 0.00747055746614933, 0.08050984144210815, -0.020821845158934593, 0.05338240787386894, -0.014558854512870312, 0.18927237391471863, 0.01445623580366373, -0.021159762516617775, 0.04164714738726616, -0.029468033462762833, -0.02736023999750614, 0.03447645902633667, 0.08127293735742569, -0.025848453864455223, -0.047703247517347336, -0.017036201432347298, -0.0019583834800869226, -0.073255755007267, -0.056212618947029114, 0.1153489276766777, 0.04175439476966858, 0.14423801004886627, -0.06665778905153275, 0.06171566620469093, -0.0027734884060919285, -0.14637315273284912, -0.06776486337184906, -0.03121919184923172, 0.02824772521853447, -0.06500618904829025, 0.04529818892478943, 0.17069901525974274, -0.14579768478870392, 0.12547989189624786, -0.003003234276548028, -0.053534772247076035, -0.1123116984963417, -0.18122507631778717, -0.023746628314256668, -0.028026647865772247, 0.0326547771692276, -0.12860146164894104, 0.0892409086227417, 0.031301748007535934, 0.03786041587591171, -0.06736084818840027, 0.10939817875623703, -0.06130824238061905, -0.12754416465759277, 0.02639191225171089, 0.034370679408311844, 0.03371898829936981, 0.03966815769672394, 0.051341332495212555, 0.02922554686665535, 0.03265971690416336, 0.0648689717054367, 0.028862347826361656, 0.040929559618234634, 0.03225374221801758, -0.02855849824845791, -0.04773642122745514, 0.018937986344099045, 0.016138862818479538, 0.02204069122672081, 0.0816754475235939, 0.07710251212120056, -0.014573592692613602, -0.03004378452897072, 0.33879411220550537, -0.04559554532170296, -0.05164395272731781, -0.1642841249704361, 0.20706672966480255, 0.0227770134806633, -0.016048215329647064, 0.044117119163274765, -0.13545283675193787, 0.009518726728856564, 0.15495352447032928, 0.19379372894763947, -0.05446590483188629, 0.025972211733460426, -0.031823791563510895, 0.014489895664155483, 0.048072200268507004, 0.09140080213546753, 0.0694381445646286, 0.19600676000118256, -0.05522520840167999, 0.06426278501749039, -0.009232155978679657, 0.005743082612752914, -0.02996251732110977, 0.09367060661315918, -0.039358947426080704, 0.016066035255789757, -0.06935915350914001, 0.07409831881523132, -0.04865435138344765, -0.272173136472702, -0.015836242586374283, -0.04042631760239601, -0.08672356605529785, 0.05969121307134628, -0.049720775336027145, -0.025079384446144104, 0.0768711045384407, 0.03449534252285957, 0.012592562474310398, 0.11779218912124634, 0.05107242614030838, -0.045470502227544785, -0.0016096848994493484, 0.1057833805680275, -0.030916539952158928, 0.18467485904693604, -0.02373017929494381, -0.0038314738776534796, 0.07338529080152512, 0.04037822410464287, -0.11180095374584198, -0.003610150655731559, 0.03336870297789574, -0.06488136202096939, -0.024372460320591927, 0.19131632149219513, 0.00985354371368885, 0.005223835352808237, 0.06590826064348221, -0.04521017149090767, 0.03159932792186737, -0.05961957573890686, 0.061257749795913696, -0.10832884162664413, 0.03588220104575157, -0.08511582762002945, 0.13856342434883118, 0.1778782308101654, -0.06855593621730804, 0.028245996683835983, -0.061422668397426605, -0.03171926364302635, -0.007556971162557602, 0.026525720953941345, -0.02668648026883602, -0.09101448208093643, -0.005470663774758577, 0.02672158181667328, 0.01656760834157467, -0.21151870489120483, -0.06969264894723892, 0.06236845999956131, -0.05731132626533508, 0.0034438653383404016, 0.16294167935848236, 0.016851581633090973, 0.047661229968070984, -0.03921489790081978, -0.0072866640985012054, -0.014630415476858616, 0.09402681142091751, -0.15383535623550415, -0.06544291228055954 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/7249d6785a5c87095850bd4048595e08.989x989x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Тони Раут (Tony Raut) & Гарри Топор (Garry Topor)</div> <a href="https://genius.com/artists/tony-raut-and-garry-topor"> <div style="text-align: center; font-size: 14px;">@tony-raut-and-garry-topor</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Тони Раут (Tony Raut) & Гарри Топор (Garry Topor). Dataset is available [here](https://huggingface.co/datasets/huggingartists/tony-raut-and-garry-topor). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/tony-raut-and-garry-topor") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/xnzxet17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Тони Раут (Tony Raut) & Гарри Топор (Garry Topor)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/tfby1rj2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/tfby1rj2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/tony-raut-and-garry-topor') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/tony-raut-and-garry-topor") model = AutoModelWithLMHead.from_pretrained("huggingartists/tony-raut-and-garry-topor") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/tony-raut-and-garry-topor"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/tony-raut-and-garry-topor
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/tony-raut-and-garry-topor", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tony-raut-and-garry-topor #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Тони Раут (Tony Raut) & Гарри Топор (Garry Topor)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@tony-raut-and-garry-topor</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Тони Раут (Tony Raut) & Гарри Топор (Garry Topor). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Тони Раут (Tony Raut) & Гарри Топор (Garry Topor)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Тони Раут (Tony Raut) & Гарри Топор (Garry Topor).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Тони Раут (Tony Raut) & Гарри Топор (Garry Topor)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tony-raut-and-garry-topor #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Тони Раут (Tony Raut) & Гарри Топор (Garry Topor).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Тони Раут (Tony Raut) & Гарри Топор (Garry Topor)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 93, 21, 68, 91, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tony-raut-and-garry-topor #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Тони Раут (Tony Raut) & Гарри Топор (Garry Topor).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Тони Раут (Tony Raut) & Гарри Топор (Garry Topor)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 0.001904047792777419, 0.17534099519252777, -0.006178043317049742, 0.05556496977806091, 0.08653905987739563, 0.007280311081558466, 0.07424300163984299, 0.11462216824293137, -0.04294528067111969, 0.09373851865530014, 0.010458135977387428, 0.031019914895296097, 0.06567544490098953, 0.08749651163816452, 0.0456705279648304, -0.3134971559047699, -0.00514648575335741, -0.11865948140621185, -0.015747591853141785, 0.11441405862569809, 0.09418616443872452, -0.01608913391828537, 0.08328089863061905, 0.029270697385072708, -0.06797633320093155, 0.03361993655562401, 0.0003267092688474804, -0.04723874852061272, 0.03158010542392731, 0.0682004988193512, 0.08307772874832153, -0.008269928395748138, 0.07299288362264633, -0.15891119837760925, 0.033655911684036255, 0.1346742808818817, 0.000068568107963074, 0.07395628094673157, 0.08329976350069046, -0.12268980592489243, 0.1770118623971939, -0.0895538181066513, 0.06164461746811867, 0.04539874568581581, -0.10583052784204483, -0.11581519991159439, -0.07949385792016983, 0.027043024078011513, 0.05633016303181648, 0.06509359180927277, -0.02926204912364483, 0.029645919799804688, 0.022802269086241722, 0.05236222967505455, 0.22943037748336792, -0.19013537466526031, -0.07234244793653488, 0.08419521898031235, 0.05888224393129349, 0.09159260988235474, -0.09636835008859634, 0.004762491676956415, -0.006698556710034609, 0.0200327280908823, 0.07547631859779358, -0.039623163640499115, 0.09629850089550018, 0.016910722479224205, -0.1409825086593628, -0.02078399434685707, 0.05193115025758743, -0.05573118105530739, -0.0653337836265564, -0.08922126889228821, -0.09197894483804703, -0.01880897395312786, 0.03756701573729515, -0.020242558792233467, -0.0018542157486081123, 0.036255717277526855, -0.056999366730451584, -0.1393316686153412, -0.08097802847623825, -0.06224720552563667, -0.05813509598374367, 0.12957468628883362, 0.012643545866012573, 0.049152374267578125, -0.020643766969442368, 0.16030775010585785, 0.015466785058379173, -0.12212122976779938, -0.02236156538128853, -0.06351116299629211, -0.13907423615455627, -0.03406510129570961, -0.014428381808102131, -0.06453975290060043, -0.020197156816720963, 0.16218557953834534, 0.019113197922706604, 0.043641142547130585, -0.04504358768463135, -0.029208121821284294, 0.12451326102018356, 0.136630117893219, -0.0927504450082779, -0.03753557428717613, 0.05095129460096359, -0.04778168722987175, -0.015981309115886688, -0.04784124344587326, 0.004238743335008621, -0.03594250977039337, 0.0469721257686615, 0.04635762795805931, 0.03786235675215721, 0.011472027748823166, 0.0031310198828577995, -0.07344003766775131, 0.10211291164159775, -0.15434885025024414, 0.0688745304942131, 0.02583661861717701, -0.023638371378183365, 0.06586071848869324, 0.036075156182050705, 0.012047241441905499, -0.053751714527606964, 0.11621706932783127, -0.05387354642152786, 0.011062193661928177, -0.07427489012479782, -0.07272408902645111, -0.0049856482073664665, 0.036889880895614624, -0.07625214010477066, -0.05715781822800636, -0.09437331557273865, -0.04323042929172516, 0.08526826649904251, -0.08731990307569504, 0.01983564719557762, 0.02398782968521118, -0.009859790094196796, -0.00861386302858591, 0.03452666476368904, -0.029488038271665573, -0.0022677837405353785, 0.050512559711933136, -0.04470784589648247, 0.044600456953048706, 0.08371636271476746, 0.03767332434654236, -0.07102158665657043, 0.013151182793080807, -0.26634782552719116, 0.14300177991390228, -0.05501636862754822, -0.0475725419819355, -0.1445419192314148, -0.06839985400438309, -0.010424070060253143, -0.03859185427427292, 0.0019058905309066176, 0.046620991080999374, -0.17532479763031006, -0.022015634924173355, 0.19957590103149414, -0.0958959087729454, 0.055317144840955734, 0.12122771143913269, -0.06561420857906342, 0.0520179457962513, 0.11175192892551422, 0.06268318742513657, 0.1883992850780487, -0.13271723687648773, -0.011227970011532307, -0.057175833731889725, -0.02926088683307171, 0.20616424083709717, 0.0869176909327507, -0.005311545915901661, 0.0056694746017456055, -0.014267067424952984, -0.024532796815037727, -0.0629299059510231, 0.013143517076969147, -0.02922486886382103, -0.0230890903621912, 0.025646569207310677, -0.018216589465737343, -0.028159864246845245, -0.04643112048506737, 0.005032973363995552, -0.11504720896482468, 0.06061148643493652, 0.09530571103096008, -0.03949816897511482, 0.023035947233438492, -0.07855086028575897, -0.011783920228481293, -0.0346783809363842, -0.02076644077897072, -0.16673177480697632, 0.008673973381519318, 0.024852868169546127, -0.1284746378660202, 0.1491796374320984, 0.006236520130187273, 0.039246540516614914, 0.06627451628446579, -0.022272519767284393, 0.0522271953523159, 0.021761007606983185, -0.03403173387050629, -0.0032812266144901514, -0.09748809784650803, -0.022559786215424538, -0.04418418928980827, 0.06299040466547012, -0.06431722640991211, -0.0010401573963463306, 0.06303536891937256, 0.11678890883922577, 0.03892457112669945, -0.05943012982606888, 0.025368858128786087, -0.05018894746899605, 0.016926156356930733, -0.0716399997472763, -0.06641699373722076, 0.025248678401112556, -0.005746840499341488, 0.04073610529303551, -0.13684074580669403, -0.10233188420534134, 0.06208641827106476, 0.11841454356908798, -0.09189453721046448, 0.029644666239619255, -0.030213244259357452, -0.003353732405230403, -0.11831820756196976, -0.04918006435036659, 0.2187577337026596, 0.06182728707790375, 0.043118882924318314, -0.0960964560508728, -0.04434609413146973, -0.021239085122942924, -0.05784397944808006, 0.03153117001056671, 0.04836666211485863, -0.017852487042546272, -0.24228909611701965, 0.02240699902176857, -0.0037575894966721535, -0.004588382318615913, 0.19736185669898987, 0.029287083074450493, -0.08812245726585388, -0.10393314808607101, -0.018836449831724167, 0.008269564248621464, -0.0012480588629841805, 0.09987138956785202, 0.0491563118994236, 0.02365204505622387, 0.05063820630311966, -0.0012869074707850814, -0.11520873755216599, 0.02301037684082985, 0.04154963046312332, -0.0531802661716938, -0.03393149748444557, 0.030943632125854492, -0.0066718170419335365, 0.0593089796602726, 0.06509796530008316, 0.08140841126441956, -0.07005992531776428, -0.05763477832078934, -0.07251915335655212, 0.09393889456987381, -0.1204451248049736, -0.15556158125400543, -0.13835421204566956, -0.0591430626809597, -0.00654965965077281, 0.012902527116239071, 0.02979886904358864, -0.015396052040159702, -0.03268750011920929, -0.05943862721323967, 0.12066449224948883, -0.047884728759527206, -0.06755930930376053, -0.04761307314038277, 0.009892938658595085, -0.03193212300539017, -0.10284107178449631, -0.004062306135892868, 0.02850532718002796, -0.1675288826227188, 0.000365388608770445, 0.01794753223657608, 0.02759104035794735, 0.1039809063076973, 0.006325318943709135, -0.003249014960601926, 0.0031708097085356712, 0.22942112386226654, -0.09807415306568146, 0.12168661504983902, 0.14019359648227692, -0.033852674067020416, 0.11437097191810608, 0.10451735556125641, 0.04982586205005646, -0.012491644360125065, 0.040253639221191406, 0.06178047135472298, -0.042087964713573456, -0.22373144328594208, -0.023573024198412895, -0.0332595556974411, -0.011308991350233555, 0.06943240016698837, 0.05684333294630051, -0.008243129588663578, 0.0020482188556343317, -0.04987948760390282, 0.0174117311835289, 0.07372912019491196, 0.08150044828653336, 0.023634763434529305, 0.01820085011422634, 0.05971807986497879, -0.05756437033414841, -0.019848188385367393, 0.13783875107765198, 0.03843410685658455, 0.20436544716358185, 0.007641153875738382, 0.0998595729470253, 0.029864231124520302, 0.07026170194149017, 0.04179522022604942, 0.025764815509319305, -0.0273731779307127, 0.07564128190279007, -0.042840376496315, -0.09020913392305374, -0.007567989639937878, 0.038266103714704514, -0.0017985817976295948, -0.03588981181383133, 0.08351778239011765, -0.054236773401498795, 0.05949747934937477, 0.2076501101255417, 0.010597272776067257, -0.0898965448141098, -0.04558949172496796, 0.04476417601108551, -0.09385302662849426, -0.06044749915599823, 0.00023024390975479037, 0.04477385804057121, -0.16889289021492004, 0.05702665075659752, -0.07383543998003006, 0.09534014016389847, -0.11225096136331558, -0.023509303107857704, 0.07963630557060242, 0.14061804115772247, -0.05363546311855316, 0.07227073609828949, -0.11605295538902283, 0.05573834478855133, 0.027567004784941673, 0.06638873368501663, -0.04062538221478462, 0.0290723517537117, 0.04587472230195999, 0.007746455725282431, 0.0666893944144249, 0.013942004181444645, -0.09935331344604492, -0.010015840642154217, -0.07873335480690002, 0.032517191022634506, 0.12510427832603455, -0.1390226036310196, 0.07103884965181351, -0.06560578942298889, -0.009965377859771252, -0.038666486740112305, -0.07695502787828445, -0.08293424546718597, -0.13313420116901398, 0.06603369116783142, -0.09098945558071136, 0.03354818373918533, -0.01778177171945572, -0.005865972489118576, 0.05249521881341934, 0.1312137246131897, 0.00007526328408857808, -0.0905645564198494, -0.12403593957424164, -0.047586891800165176, 0.17264865338802338, -0.09465564042329788, 0.017674114555120468, -0.027973011136054993, 0.1375250369310379, 0.017429908737540245, -0.12360035628080368, 0.006913410499691963, -0.011023334227502346, -0.13840512931346893, -0.012981430627405643, 0.14310523867607117, 0.10828572511672974, 0.036686286330223083, -0.014745882712304592, 0.08932823687791824, -0.09050989151000977, -0.14702768623828888, -0.017230549827218056, 0.10373279452323914, -0.04493182525038719, 0.068951316177845, 0.009375862777233124, -0.05616259574890137, -0.10133536905050278, 0.0262528695166111, 0.064349465072155, 0.1207631453871727, -0.06684558838605881, 0.12898771464824677, 0.08571558445692062, -0.07576565444469452, -0.14533954858779907, -0.036702290177345276, 0.04221569746732712, 0.008221789263188839, 0.03154252469539642, -0.2505602240562439, 0.04510604962706566, 0.06640861928462982, -0.017042076215147972, 0.07039982080459595, -0.2459801286458969, -0.09481287002563477, -0.014144974760711193, -0.008297760039567947, -0.13400542736053467, -0.1077217236161232, -0.06267605721950531, -0.04764283075928688, -0.1595497727394104, 0.13060398399829865, -0.1503322422504425, 0.09440947324037552, 0.03700516000390053, 0.16494403779506683, 0.02486639842391014, -0.009906082414090633, 0.08604350686073303, -0.01456188689917326, 0.0300217904150486, -0.06356462836265564, -0.010150885209441185, 0.04201488196849823, -0.056954264640808105, 0.05972686782479286, -0.03223401680588722, 0.06924013793468475, -0.03525295853614807, -0.047489531338214874, -0.054851848632097244, -0.013958476483821869, -0.04975172504782677, -0.0682683140039444, -0.09505855292081833, 0.08416061848402023, 0.07453950494527817, -0.06800796091556549, -0.03683388605713844, -0.049434784799814224, 0.01811632141470909, 0.09473791718482971, 0.04223863407969475, 0.12745453417301178, -0.06919008493423462, -0.003348307451233268, -0.0005511544877663255, 0.04056043550372124, -0.18285849690437317, 0.06371179968118668, 0.0784047320485115, 0.05267564579844475, 0.10224022716283798, -0.023869311437010765, -0.167244091629982, 0.003989853896200657, 0.033043939620256424, -0.1441565603017807, -0.1227424219250679, -0.021938087418675423, 0.023103250190615654, -0.09496753662824631, -0.038422804325819016, 0.1235312893986702, -0.003086498472839594, -0.0671241283416748, 0.0645870640873909, 0.064748115837574, -0.029481325298547745, 0.07111572474241257, 0.023555239662528038, -0.002605405170470476, -0.06497519463300705, 0.06027453765273094, 0.09624062478542328, 0.07057888805866241, -0.016693949699401855, 0.13265085220336914, -0.0700230523943901, -0.01022275723516941, -0.029621383175253868, 0.04303772374987602, -0.053190503269433975, 0.049447450786828995, 0.06566327065229416, 0.011172210797667503, -0.008724777027964592, 0.09705754369497299, 0.013945091515779495, 0.03906863555312157, -0.05913718044757843, 0.04670466482639313, -0.059610314667224884, 0.08792352676391602, 0.07321519404649734, 0.02807454764842987, -0.06454931199550629, 0.08045145869255066, -0.006535608321428299, 0.025300635024905205, -0.02683866024017334, -0.04213026165962219, -0.06011049821972847, -0.02388700656592846, -0.0809069275856018, -0.008037019520998001, -0.06545229256153107, -0.002726141596212983, 0.0010118811624124646, -0.06509628146886826, -0.01460964884608984, 0.018033020198345184, -0.02746722847223282, -0.051371414214372635, -0.07728632539510727, 0.02078855410218239, -0.16810855269432068, 0.006233337800949812, 0.11833742260932922, -0.053954415023326874, 0.08806648850440979, 0.07009497284889221, -0.03381718695163727, 0.026389501988887787, -0.12149251252412796, 0.01703052408993244, -0.03686865046620369, 0.0031826430931687355, 0.028673119843006134, -0.15681158006191254, 0.024643154814839363, -0.05954218655824661, -0.008433571085333824, -0.007459897547960281, 0.047015588730573654, -0.12018309533596039, 0.07827680557966232, -0.013944358564913273, -0.026290729641914368, -0.07098919153213501, 0.033898551017045975, 0.0659145638346672, 0.060704126954078674, 0.0584678128361702, -0.02378268539905548, 0.13117101788520813, -0.15919503569602966, -0.019346704706549644, 0.026582859456539154, -0.004822996910661459, -0.029907669872045517, -0.054043930023908615, 0.03151281550526619, -0.040085576474666595, 0.1069268062710762, 0.06883500516414642, 0.023232534527778625, 0.016626762226223946, -0.0017193980747833848, -0.062818244099617, -0.00997917726635933, 0.0030262505169957876, 0.019825218245387077, -0.023084033280611038, 0.004008052404969931, -0.06147678568959236, -0.09145871549844742, -0.10713038593530655, 0.05273422971367836, 0.05877959728240967, 0.12162436544895172, -0.057249944657087326, 0.08559341728687286, 0.007642936892807484, -0.16308905184268951, -0.029035838320851326, -0.014651318080723286, -0.01315572950989008, -0.06321504712104797, 0.07481714338064194, 0.09795869141817093, -0.13614678382873535, 0.12379918992519379, 0.00948173925280571, -0.054674793034791946, -0.13864634931087494, -0.19988545775413513, -0.04522417113184929, -0.04366488754749298, -0.005497898440808058, -0.09939718246459961, 0.13478557765483856, -0.028785089030861855, 0.01770690456032753, -0.005200796760618687, 0.10866514593362808, -0.0491115041077137, -0.1320067048072815, 0.05676526576280594, 0.03624187037348747, 0.04539128765463829, 0.10895160585641861, 0.06258752942085266, 0.023702366277575493, 0.05946076288819313, 0.09143087267875671, 0.044014494866132736, 0.03643837198615074, 0.018752802163362503, -0.12526215612888336, -0.0658937320113182, -0.006318064872175455, 0.03867565840482712, -0.018844353035092354, 0.12630833685398102, 0.05739188566803932, -0.01621691882610321, -0.010881821624934673, 0.28917765617370605, -0.058282703161239624, -0.050960224121809006, -0.16873031854629517, 0.22651922702789307, -0.06341215968132019, 0.004573068115860224, 0.01176899578422308, -0.11438191682100296, -0.024559859186410904, 0.11143149435520172, 0.13817989826202393, -0.02956327609717846, 0.025617586448788643, 0.022285889834165573, 0.02185322530567646, 0.04336898401379585, 0.03690575063228607, 0.03060854785144329, 0.2143145650625229, -0.04936862736940384, 0.08555759489536285, -0.01497467327862978, -0.057035427540540695, -0.044362183660268784, 0.03101830929517746, -0.057729322463274, 0.006601874250918627, -0.029265351593494415, 0.13317307829856873, -0.06110510230064392, -0.32219398021698, -0.04833390191197395, 0.0004523385432548821, -0.09927104413509369, 0.05157351493835449, 0.049646202474832535, 0.010095179080963135, 0.06426140666007996, 0.023476948961615562, -0.045238371938467026, 0.14960025250911713, 0.029175536707043648, -0.005611949600279331, -0.0020919006783515215, 0.1119367703795433, -0.09119220077991486, 0.09202565252780914, 0.020656900480389595, 0.013904858380556107, 0.07145411521196365, 0.028223320841789246, -0.09242310374975204, 0.040736716240644455, 0.04168353229761124, -0.12529657781124115, -0.05631675198674202, 0.21826554834842682, -0.005036673042923212, 0.008871914818882942, 0.09048593789339066, 0.023490337654948235, 0.006573932245373726, -0.038705144077539444, 0.04034731164574623, -0.12754975259304047, 0.053700465708971024, -0.1059826985001564, 0.11003445088863373, 0.1986473947763443, -0.029686294496059418, 0.05667979642748833, -0.06945966929197311, -0.004668661393225193, 0.021070770919322968, 0.07458216696977615, -0.03805924952030182, -0.08170506358146667, -0.04063747450709343, 0.10752619802951813, 0.0693180188536644, -0.10447479039430618, -0.057049769908189774, 0.06312301754951477, -0.0240313783288002, 0.010338201187551022, 0.12051159888505936, -0.012605170719325542, 0.05106469616293907, 0.013818704523146152, -0.06345469504594803, -0.017098817974328995, 0.07713138312101364, -0.17194941639900208, -0.011066459119319916 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/acf1d51a2d729391074dc51a6dd26857.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tool</div> <a href="https://genius.com/artists/tool"> <div style="text-align: center; font-size: 14px;">@tool</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Tool. Dataset is available [here](https://huggingface.co/datasets/huggingartists/tool). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/tool") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2w1h70ok/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Tool's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1zikehwi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1zikehwi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/tool') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/tool") model = AutoModelWithLMHead.from_pretrained("huggingartists/tool") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/tool"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/tool
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/tool", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tool #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tool</div> <a href="URL <div style="text-align: center; font-size: 14px;">@tool</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Tool. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Tool's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Tool.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tool's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tool #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Tool.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tool's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 81, 21, 49, 71, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/tool #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Tool.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Tool's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.05147514492273331, 0.16662150621414185, -0.002157408045604825, 0.030288971960544586, 0.10356701165437698, -0.008235426619648933, 0.0848383754491806, 0.11328431218862534, -0.003987241070717573, 0.07333231717348099, 0.09232994168996811, 0.032917652279138565, 0.0690554529428482, 0.1688828021287918, 0.11063458770513535, -0.26206424832344055, 0.032861147075891495, -0.1099819540977478, 0.04220813885331154, 0.12614668905735016, 0.05980450659990311, -0.06411117315292358, 0.08106949925422668, 0.022904779762029648, -0.07268696278333664, 0.02789817564189434, -0.025370527058839798, -0.06731145083904266, 0.09705038368701935, 0.08696458488702774, -0.0012229247950017452, 0.03354983404278755, 0.06107748672366142, -0.1694939136505127, 0.042187564074993134, 0.11804632097482681, 0.03864384815096855, 0.08095351606607437, 0.03120926022529602, -0.04810638725757599, 0.18377652764320374, -0.02962038666009903, 0.057278990745544434, 0.042364366352558136, -0.08939290791749954, -0.194950133562088, -0.12127883732318878, 0.09814369678497314, 0.09669182449579239, 0.08241236209869385, -0.027699748054146767, 0.057316407561302185, 0.0350097194314003, 0.03962169215083122, 0.23892007768154144, -0.2240060269832611, -0.006273153703659773, 0.11177583783864975, 0.037312861531972885, 0.05510316044092178, -0.07185143232345581, 0.026156475767493248, 0.04301290586590767, 0.02111460268497467, 0.039217911660671234, -0.031639549881219864, 0.1996399462223053, 0.013166285119950771, -0.08342177420854568, -0.0967327430844307, 0.11331310868263245, -0.028786417096853256, -0.09263892471790314, -0.16262921690940857, 0.005388754419982433, -0.031210530549287796, 0.033131275326013565, -0.017971154302358627, -0.0028820219449698925, -0.01370715070515871, -0.03429795801639557, -0.114565908908844, -0.09709986299276352, -0.037939343601465225, -0.008240809664130211, 0.0934736505150795, 0.01779312640428543, 0.028251953423023224, -0.08271803706884384, 0.23522627353668213, -0.005244994070380926, -0.09608129411935806, -0.07557546347379684, -0.10853993892669678, -0.06630241870880127, -0.03382249176502228, 0.02113921009004116, 0.00876162014901638, -0.056232113391160965, 0.13372550904750824, -0.03759662061929703, 0.03488214686512947, 0.015158301219344139, -0.015602980740368366, 0.17108596861362457, 0.12730512022972107, -0.10528511554002762, -0.010667059570550919, 0.05472584813833237, -0.006682124454528093, -0.055521365255117416, -0.08158368617296219, -0.015411391854286194, -0.031952183693647385, 0.011686215177178383, 0.1108424961566925, 0.06199973449110985, 0.059675391763448715, 0.049776848405599594, -0.06363201141357422, 0.12774640321731567, -0.1360163390636444, -0.0010643531568348408, -0.01345158088952303, -0.030159929767251015, 0.021775683388113976, 0.05413934960961342, -0.000562424014788121, -0.10016704350709915, 0.10186002403497696, -0.047689951956272125, -0.06941895186901093, -0.057860858738422394, -0.08378899097442627, -0.01861131377518177, 0.0009442390874028206, -0.03674551472067833, -0.09842343628406525, -0.1598370224237442, -0.04247470572590828, 0.009081815369427204, -0.01864408329129219, -0.04573958367109299, 0.05914271995425224, -0.042801227420568466, -0.01985953375697136, -0.03277432173490524, -0.028342630714178085, -0.038638196885585785, 0.012310348451137543, -0.0651896595954895, 0.029228124767541885, 0.06258585304021835, 0.025291983038187027, -0.10951629281044006, 0.07203555852174759, -0.15694352984428406, 0.1327372044324875, -0.015725113451480865, 0.007683688309043646, -0.10311421751976013, -0.09258541464805603, -0.03271598368883133, -0.022397572174668312, 0.004615691024810076, 0.1117713525891304, -0.19212813675403595, -0.05258289724588394, 0.20639702677726746, -0.07415124773979187, -0.09578920900821686, 0.03463919833302498, -0.055767498910427094, 0.0549931675195694, 0.1366165280342102, 0.06164158135652542, 0.17961683869361877, -0.10909448564052582, -0.08716338872909546, -0.037021346390247345, -0.05078770965337753, 0.19737988710403442, 0.05228757485747337, -0.01612921804189682, 0.016447722911834717, 0.03220079466700554, -0.03998253121972084, -0.03473969176411629, -0.02339680679142475, -0.04348776489496231, -0.015018483623862267, 0.011770954355597496, -0.017913011834025383, -0.05373634770512581, -0.07336202263832092, 0.01680143177509308, -0.09614326804876328, 0.01986543834209442, 0.11696676909923553, -0.08083710074424744, 0.016056763008236885, -0.07429387420415878, 0.018265601247549057, -0.043673597276210785, 0.04815568029880524, -0.20977939665317535, -0.053983673453330994, 0.018145786598324776, -0.08475560694932938, 0.08422945439815521, 0.030458718538284302, 0.037512410432100296, 0.07733473926782608, 0.024075791239738464, 0.011131249368190765, -0.06139880046248436, -0.02035321481525898, -0.029975395649671555, -0.1441386640071869, -0.08202943950891495, -0.055913761258125305, 0.09220219403505325, -0.12645593285560608, 0.00415796646848321, 0.08703646063804626, 0.07908796519041061, 0.017562638968229294, -0.06387969851493835, 0.02549179270863533, -0.03273148089647293, -0.043760158121585846, -0.11276621371507645, -0.05445219576358795, -0.0028603821992874146, -0.03972065448760986, 0.14741890132427216, -0.17631138861179352, -0.07790713757276535, 0.08819031715393066, 0.20878100395202637, -0.08492311090230942, -0.008894629776477814, -0.09498278051614761, -0.011512571014463902, -0.023620039224624634, -0.03864280879497528, 0.2724493145942688, 0.06658437848091125, 0.07651170343160629, -0.09794363379478455, -0.06364274024963379, 0.017227353528141975, -0.030296334996819496, -0.011461618356406689, 0.025902049615979195, 0.02458915300667286, -0.10833333432674408, 0.014403583481907845, 0.01309280563145876, 0.14554955065250397, 0.21381139755249023, 0.0662008672952652, -0.10451700538396835, -0.055957768112421036, -0.11056787520647049, -0.001140792854130268, 0.05276228114962578, 0.03225668892264366, 0.017488332465291023, 0.04864136502146721, 0.049925364553928375, 0.03455761820077896, -0.09459921717643738, 0.005277340766042471, 0.07305536419153214, -0.03878752142190933, -0.05544234439730644, 0.023870402947068214, 0.007232614792883396, 0.0720612183213234, 0.07492844760417938, 0.1489010900259018, -0.08129610121250153, -0.0497455932199955, -0.13603653013706207, 0.1560281366109848, -0.07107123732566833, -0.2899959683418274, -0.1487947553396225, -0.061199985444545746, -0.0186354611068964, -0.004915340803563595, 0.05416685342788696, -0.051959551870822906, -0.03148423507809639, -0.10890865325927734, 0.10652173310518265, -0.042472582310438156, -0.02220241352915764, -0.019440267235040665, 0.007160428445786238, -0.04615144059062004, -0.12247974425554276, -0.028193162754178047, 0.04341084510087967, -0.10584348440170288, -0.01221176702529192, 0.054168179631233215, 0.050924867391586304, 0.14988283812999725, -0.005127785261720419, -0.008551088161766529, -0.030765658244490623, 0.27629905939102173, -0.11279940605163574, 0.05111468583345413, 0.19303160905838013, -0.023781899362802505, 0.051966823637485504, 0.06886285543441772, 0.012386936694383621, -0.0626499131321907, 0.06417401880025864, 0.0513276644051075, -0.09314719587564468, -0.2092219740152359, -0.028158968314528465, -0.006674481090158224, 0.05418607220053673, 0.13268601894378662, 0.06742730736732483, 0.04780641198158264, 0.0030108806677162647, -0.09438448399305344, 0.024427924305200577, 0.0026470248121768236, 0.11635079234838486, -0.07157163321971893, -0.03466024249792099, 0.040438733994960785, -0.05413675680756569, 0.041259877383708954, 0.1406198889017105, 0.04378608241677284, 0.20789490640163422, -0.060522954910993576, 0.09967511892318726, 0.08697880059480667, 0.09595595300197601, 0.02944803610444069, 0.020881105214357376, 0.030765684321522713, 0.008835948072373867, 0.0019288526382297277, -0.11303815245628357, -0.03246665000915527, 0.048940662294626236, 0.012365473434329033, -0.012623575516045094, -0.052944108843803406, -0.02812250703573227, 0.028469381853938103, 0.22511820495128632, -0.041732922196388245, -0.17101101577281952, -0.12178913503885269, 0.01955433562397957, -0.04943837970495224, -0.06072511523962021, -0.032541751861572266, 0.06838756799697876, -0.23262496292591095, 0.04174540936946869, -0.04587572067975998, 0.11519162356853485, -0.12945261597633362, 0.015008101239800453, 0.050486139953136444, 0.05223141983151436, -0.05214342847466469, 0.10322340577840805, -0.12790162861347198, 0.05794042721390724, -0.012105378322303295, 0.05644997954368591, -0.09078525751829147, 0.02999163046479225, -0.0011652044486254454, 0.05817282572388649, 0.09589461982250214, 0.008121853694319725, 0.03004995733499527, -0.01908758655190468, -0.06446489691734314, 0.03170470893383026, 0.04381030797958374, -0.1344815194606781, 0.11950591206550598, -0.017968278378248215, 0.03687414899468422, -0.07245001941919327, -0.08123121410608292, -0.10050085932016373, -0.17414189875125885, 0.1045781746506691, -0.12042637169361115, 0.015309061855077744, -0.07248137146234512, -0.038979023694992065, 0.057576972991228104, 0.28866732120513916, -0.050412025302648544, -0.06389778107404709, -0.12765663862228394, 0.021511003375053406, 0.15038293600082397, -0.09606216847896576, 0.001794910174794495, -0.024359624832868576, 0.23091834783554077, -0.0008742496138438582, -0.13454310595989227, -0.02821006253361702, -0.067489393055439, -0.15261799097061157, 0.001008452381938696, 0.14608174562454224, 0.044630780816078186, 0.010864523239433765, 0.004888975527137518, -0.029026200994849205, -0.05035531520843506, -0.17817547917366028, 0.009951652958989143, 0.19051936268806458, -0.01537399087101221, -0.021676572039723396, 0.045555319637060165, 0.01470915600657463, -0.1347244530916214, 0.018431054428219795, 0.056866131722927094, 0.1826881617307663, -0.08101776242256165, 0.19984033703804016, 0.06714309006929398, -0.0875808522105217, -0.17045430839061737, -0.004117148462682962, 0.04006299376487732, 0.041862085461616516, 0.08700145781040192, -0.22134295105934143, 0.0555310882627964, 0.04662886634469032, 0.009852597489953041, 0.03726672753691673, -0.3468066453933716, -0.15886293351650238, 0.005731869954615831, 0.028676390647888184, -0.16819337010383606, -0.04605814442038536, -0.03317127004265785, -0.09625722467899323, -0.23810391128063202, 0.08264749497175217, -0.12396807223558426, 0.07962680608034134, 0.01689981296658516, 0.10982687771320343, 0.05224553123116493, -0.04728741943836212, 0.14486750960350037, -0.03836776316165924, 0.06128368899226189, -0.08285709470510483, -0.057791661471128464, 0.07682930678129196, -0.08498737215995789, 0.09583312273025513, 0.027281804010272026, 0.10011990368366241, -0.08296331763267517, -0.08205574750900269, -0.05226850137114525, 0.0058214301243424416, -0.03668833523988724, -0.09134141355752945, -0.07275509089231491, 0.07553134113550186, 0.09193013608455658, -0.03807367756962776, -0.08359197527170181, -0.07870270311832428, 0.006247098557651043, 0.047263652086257935, 0.10917989909648895, 0.04238671436905861, -0.07563053071498871, 0.000544196052942425, 0.014519612304866314, 0.008872135542333126, -0.1877507120370865, 0.037909265607595444, 0.10116657614707947, 0.049768682569265366, 0.08129164576530457, -0.002303086221218109, -0.16203652322292328, 0.006161950062960386, 0.0513501800596714, -0.17727860808372498, -0.13725392520427704, -0.033491846174001694, 0.06218154728412628, -0.10582773387432098, -0.030675936490297318, 0.1342407763004303, -0.04037407413125038, -0.038615550845861435, 0.0038451137952506542, 0.01824577897787094, -0.03336547315120697, 0.09283583611249924, -0.016954241320490837, 0.043446436524391174, -0.07614398002624512, 0.12191759794950485, 0.05719410255551338, 0.01234983466565609, 0.042185038328170776, 0.04516344144940376, -0.09316906332969666, 0.014125531539320946, -0.1279614418745041, 0.011453993618488312, -0.009224606677889824, -0.029069192707538605, 0.04626541957259178, -0.0061429934576153755, 0.023145455867052078, 0.05379648134112358, -0.029866451397538185, 0.09845080971717834, -0.055169619619846344, 0.012068835087120533, -0.13561715185642242, 0.06348226219415665, 0.01819591596722603, 0.022597966715693474, -0.11206953972578049, 0.18782319128513336, 0.041940901428461075, 0.1418096423149109, -0.037562888115644455, -0.08344300836324692, -0.03425952047109604, -0.0160391703248024, -0.07011968642473221, -0.03902484476566315, -0.09604859352111816, -0.034606706351041794, -0.002059247810393572, -0.011782348155975342, -0.030868932604789734, 0.04456474632024765, -0.02641933411359787, -0.06518487632274628, -0.07591906934976578, 0.0535312294960022, -0.1532323658466339, 0.047018807381391525, 0.10100240260362625, -0.04602137953042984, 0.12853297591209412, 0.06727099418640137, -0.029420925304293633, 0.030898943543434143, -0.13439738750457764, 0.06140577420592308, 0.004508583340793848, 0.03042403981089592, 0.012146985158324242, -0.1288764923810959, -0.0038650992792099714, -0.03230099007487297, -0.08324925601482391, -0.004774345550686121, -0.022424500435590744, -0.1407579779624939, -0.018807485699653625, 0.09380614757537842, 0.009554929099977016, -0.05897771194577217, 0.08066726475954056, 0.04724054038524628, 0.03705920651555061, 0.04953460395336151, -0.0030642549972981215, 0.07225121557712555, -0.16987834870815277, -0.07139171659946442, -0.017878994345664978, 0.026553774252533913, 0.047535158693790436, -0.04948354884982109, 0.031906064599752426, -0.012042122893035412, 0.21809297800064087, 0.023939764127135277, 0.024081090465188026, 0.022030334919691086, -0.07667401432991028, -0.008022661320865154, 0.02001880295574665, 0.07378119230270386, -0.003167632967233658, -0.006303200963884592, 0.008661545813083649, 0.005102936178445816, -0.1078960970044136, 0.008172023110091686, 0.0846652239561081, -0.023426488041877747, 0.2099364697933197, -0.05729004368185997, 0.061050478368997574, -0.008194458670914173, -0.09300979971885681, -0.051666855812072754, -0.03629051148891449, 0.03523265942931175, -0.07093141973018646, 0.054287031292915344, 0.18671800196170807, -0.12425563484430313, 0.11552457511425018, 0.050649918615818024, -0.05050142481923103, -0.12081751227378845, -0.1865033358335495, 0.00246020732447505, -0.0396566316485405, 0.013919615186750889, -0.13432560861110687, 0.09375637024641037, 0.01570979133248329, 0.03448548913002014, -0.06588848680257797, 0.1499796211719513, -0.06645406782627106, -0.1492723822593689, 0.03913993388414383, 0.005239907186478376, 0.02422628551721573, 0.008855429477989674, 0.09643059968948364, 0.04800838977098465, -0.008302120491862297, 0.07468583434820175, 0.05830628424882889, 0.0390387624502182, 0.04435086250305176, -0.040525685995817184, -0.05262649059295654, 0.01157377939671278, -0.00760730030015111, 0.017375603318214417, 0.11879299581050873, 0.07577429711818695, -0.03403622657060623, -0.021955789998173714, 0.31618764996528625, -0.01025594212114811, -0.007337954360991716, -0.15528836846351624, 0.17815986275672913, 0.009432494640350342, -0.002643781481310725, 0.011888711713254452, -0.12369321286678314, 0.00635282089933753, 0.12271399796009064, 0.14938762784004211, -0.021171556785702705, 0.030646096915006638, -0.015821006149053574, 0.020190458744764328, 0.01179465837776661, 0.12587690353393555, 0.05159590393304825, 0.19396944344043732, -0.02047037146985531, 0.07263555377721786, -0.02190457470715046, -0.01798861101269722, 0.015634512528777122, 0.09490331262350082, -0.04438649117946625, -0.007403481751680374, -0.04473147541284561, 0.0921420007944107, -0.08483846485614777, -0.31798526644706726, -0.04434739798307419, -0.02067718654870987, -0.08680858463048935, 0.06272141635417938, -0.02683844603598118, 0.0019897674210369587, 0.0898176059126854, 0.013469620607793331, -0.0421849861741066, 0.18857182562351227, 0.04199155420064926, -0.037306446582078934, -0.024580217897892, 0.10765654593706131, -0.04719355329871178, 0.1644987314939499, -0.05131823197007179, 0.016068357974290848, 0.05903724953532219, 0.010472231544554234, -0.1468743532896042, -0.010896704159677029, 0.034210339188575745, -0.06218569353222847, -0.020537281408905983, 0.18258458375930786, 0.011201196350157261, 0.024614499881863594, 0.06119624525308609, -0.045942772179841995, 0.007353221531957388, 0.0015029719797894359, 0.0820542499423027, -0.11308114230632782, 0.07028783857822418, -0.06564255803823471, 0.12132091075181961, 0.13791903853416443, -0.06360350549221039, 0.024729127064347267, -0.07209792733192444, 0.024069253355264664, -0.02525339648127556, 0.06255641579627991, -0.016328176483511925, -0.11544022709131241, 0.006283514201641083, 0.036903806030750275, 0.009960627183318138, -0.18291853368282318, -0.0736539214849472, 0.089418925344944, -0.047067560255527496, 0.03937755897641182, 0.17155790328979492, -0.006692308001220226, 0.05091232806444168, -0.036166224628686905, 0.003088525962084532, -0.00002994155693158973, 0.12065570801496506, -0.1876831203699112, -0.08973479270935059 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5d19fecdb3828ca9ec89dda588e2eb7d.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Travis Scott</div> <a href="https://genius.com/artists/travis-scott"> <div style="text-align: center; font-size: 14px;">@travis-scott</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Travis Scott. Dataset is available [here](https://huggingface.co/datasets/huggingartists/travis-scott). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/travis-scott") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1ezlbvd0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Travis Scott's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2w91gglb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2w91gglb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/travis-scott') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/travis-scott") model = AutoModelWithLMHead.from_pretrained("huggingartists/travis-scott") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/travis-scott"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/travis-scott
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/travis-scott", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/travis-scott #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Travis Scott</div> <a href="URL <div style="text-align: center; font-size: 14px;">@travis-scott</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Travis Scott. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Travis Scott's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Travis Scott.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Travis Scott's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/travis-scott #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Travis Scott.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Travis Scott's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/travis-scott #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Travis Scott.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Travis Scott's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.025602934882044792, 0.1488337516784668, -0.0031011169776320457, 0.04678943380713463, 0.10127835720777512, 0.0084183095023036, 0.08573349565267563, 0.10469561815261841, 0.005685494281351566, 0.06912419945001602, 0.07414143532514572, 0.01423328835517168, 0.06907229870557785, 0.08599644154310226, 0.07478968799114227, -0.2460581213235855, 0.02613089047372341, -0.10072535276412964, -0.01070728711783886, 0.11251087486743927, 0.09397226572036743, -0.05864619091153145, 0.08725511282682419, 0.03835807368159294, -0.07443968951702118, 0.01596940867602825, 0.007832417264580727, -0.059499021619558334, 0.09339623898267746, 0.05889095366001129, 0.04254898056387901, 0.03219222277402878, 0.0748240202665329, -0.18213433027267456, 0.0294624213129282, 0.12202127277851105, 0.04027724266052246, 0.0782105028629303, 0.05934727191925049, -0.07754228264093399, 0.12236309796571732, -0.002117183292284608, 0.1018528863787651, 0.05350175499916077, -0.11943496763706207, -0.14250995218753815, -0.13822615146636963, 0.07402478903532028, 0.09443233907222748, 0.08663535118103027, -0.030013607814908028, 0.05192327871918678, -0.025501064956188202, 0.04203091561794281, 0.22867067158222198, -0.2524857223033905, -0.016745075583457947, 0.0758272185921669, 0.04993682727217674, 0.023011954501271248, -0.07784418016672134, 0.010940205305814743, 0.03471284732222557, 0.025749685242772102, 0.061478547751903534, -0.015491684898734093, 0.16981253027915955, 0.030964605510234833, -0.10012497007846832, -0.07481148093938828, 0.12754051387310028, -0.0241522379219532, -0.07489154487848282, -0.1288580596446991, -0.001400961191393435, -0.018926260992884636, 0.043708436191082, -0.0018528103828430176, 0.0005443713162094355, 0.010835066437721252, -0.04760676249861717, -0.10679056495428085, -0.08922730386257172, -0.036583855748176575, -0.0315968282520771, 0.047037865966558456, 0.03321009501814842, 0.041446734219789505, -0.07497000694274902, 0.22859971225261688, -0.013413417153060436, -0.0965220257639885, -0.046798527240753174, -0.09939565509557724, -0.09728752076625824, -0.049374837428331375, 0.00649780360981822, -0.006095078308135271, -0.050783898681402206, 0.16605855524539948, -0.010207446292042732, 0.02717072144150734, -0.017740920186042786, -0.009224344976246357, 0.13381144404411316, 0.14766499400138855, -0.10619444400072098, -0.03196863830089569, 0.05756763741374016, -0.008314493112266064, -0.07178127020597458, -0.054520025849342346, -0.011835223995149136, -0.012706518173217773, 0.03864411637187004, 0.07972849905490875, 0.06975333392620087, 0.0577576644718647, 0.009155897423624992, -0.06619372963905334, 0.08520722389221191, -0.12800148129463196, 0.01422589085996151, -0.002549172146245837, -0.048438455909490585, 0.014510732144117355, 0.05731051415205002, 0.02347559854388237, -0.09545361995697021, 0.11570591479539871, -0.05877186730504036, -0.04892022907733917, -0.07608287036418915, -0.09506805986166, -0.008413407020270824, -0.019935667514801025, -0.04430612549185753, -0.07993017882108688, -0.1732061356306076, -0.0433758907020092, 0.03162834793329239, -0.04862913489341736, -0.03687138855457306, 0.03452647104859352, -0.022734573110938072, 0.014636781066656113, -0.019073715433478355, -0.029243601486086845, -0.028092650696635246, 0.03192427381873131, -0.06190529093146324, 0.024930071085691452, 0.07773703336715698, 0.05133018270134926, -0.10785666108131409, 0.06757976859807968, -0.14781251549720764, 0.1241425946354866, -0.015134141780436039, 0.027582436800003052, -0.09911777824163437, -0.08079992234706879, -0.030338216572999954, -0.03705500811338425, 0.005836982745677233, 0.10394859313964844, -0.16749848425388336, -0.03344269469380379, 0.19091163575649261, -0.06485913693904877, -0.07865572720766068, 0.07535679638385773, -0.07527970522642136, 0.031329698860645294, 0.1182064488530159, 0.07635242491960526, 0.16124658286571503, -0.12269368022680283, -0.05430099740624428, -0.04930160939693451, -0.06774414330720901, 0.182471364736557, 0.053705088794231415, -0.029488487169146538, 0.014690974727272987, 0.01010075118392706, -0.04176728427410126, -0.015127204358577728, -0.020603187382221222, -0.034361280500888824, -0.020778631791472435, -0.0006366429151967168, 0.007388764526695013, -0.04334104806184769, -0.057776954025030136, -0.030335644260048866, -0.10654707252979279, 0.05168211832642555, 0.08776744455099106, -0.05835800990462303, 0.009545532986521721, -0.09372247755527496, 0.011614191345870495, -0.04340391233563423, 0.0019159315852448344, -0.16770684719085693, -0.060479242354631424, 0.021901248022913933, -0.045095041394233704, 0.0843641459941864, 0.03403330221772194, 0.04041359946131706, 0.06096971780061722, -0.015528620220720768, 0.005285251419991255, -0.03974428027868271, -0.017182214185595512, -0.0293381679803133, -0.14527498185634613, -0.05716582387685776, -0.043792665004730225, 0.09587274491786957, -0.10932694375514984, 0.0100578423589468, 0.08496848493814468, 0.1196439266204834, 0.02732834778726101, -0.06779409945011139, 0.020539607852697372, -0.043370287865400314, -0.02457982487976551, -0.10753875225782394, -0.045768920332193375, 0.012760358862578869, -0.017825046554207802, 0.15130290389060974, -0.1656649261713028, -0.06662570685148239, 0.11348928511142731, 0.12336822599172592, -0.09174952656030655, 0.05169219523668289, -0.07783757150173187, -0.013295983895659447, -0.05173781141638756, -0.052112240344285965, 0.2578587830066681, 0.037271056324243546, 0.08855579048395157, -0.09774889051914215, -0.09696212410926819, -0.010378659702837467, -0.038557421416044235, -0.02875659428536892, 0.027917345985770226, 0.031376052647829056, -0.15259617567062378, 0.03591121733188629, 0.003564621089026332, 0.10374374687671661, 0.19255107641220093, 0.041290055960416794, -0.0833544060587883, -0.06382200866937637, -0.0714619979262352, 0.006700566969811916, 0.0702466368675232, 0.024960970506072044, 0.03414924815297127, 0.04314282909035683, 0.05914689972996712, 0.03779657185077667, -0.12235333025455475, 0.007990662008523941, 0.07189525663852692, -0.03691830486059189, -0.05925842002034187, 0.014864413999021053, 0.025275493040680885, 0.07711226493120193, 0.09192472696304321, 0.13370944559574127, -0.05761626362800598, -0.05065904185175896, -0.13970047235488892, 0.12614084780216217, -0.0923897847533226, -0.2247612029314041, -0.14934735000133514, -0.06170964613556862, 0.016413841396570206, 0.013103232719004154, 0.03750689700245857, -0.04815741255879402, -0.04570016264915466, -0.09249670803546906, 0.10174203664064407, -0.05353647097945213, -0.02298678085207939, 0.010355208069086075, 0.016306618228554726, -0.016137223690748215, -0.11711317300796509, -0.030764073133468628, 0.032652050256729126, -0.0991804301738739, -0.00672444561496377, 0.025789346545934677, 0.041991446167230606, 0.15673908591270447, -0.006780372466892004, 0.005286968778818846, -0.02285568043589592, 0.2768745720386505, -0.11022143065929413, 0.0739717036485672, 0.17210322618484497, -0.009920238517224789, 0.060118239372968674, 0.07255704700946808, 0.005297256633639336, -0.05471350625157356, 0.07035305351018906, 0.07345055788755417, -0.07685302942991257, -0.2204730212688446, -0.02775411307811737, -0.009484343230724335, 0.022156408056616783, 0.11326108872890472, 0.04014058783650398, 0.04215250164270401, 0.008730034343898296, -0.09743472188711166, 0.03427588939666748, 0.03144317865371704, 0.10251593589782715, -0.05407177656888962, -0.008026408031582832, 0.05634203553199768, -0.051384337246418, 0.03470280393958092, 0.12994146347045898, 0.040908172726631165, 0.20504343509674072, -0.06222337856888771, 0.09156472980976105, 0.07221722602844238, 0.1220068410038948, 0.02174404449760914, 0.022531384602189064, -0.01749531552195549, 0.02606939524412155, 0.004291148856282234, -0.08582566678524017, -0.003769856644794345, 0.032148633152246475, 0.03888247534632683, -0.015326087363064289, -0.04599245265126228, -0.06475983560085297, 0.044600117951631546, 0.23613868653774261, 0.020438911393284798, -0.16393399238586426, -0.10461795330047607, 0.054150477051734924, -0.06761934608221054, -0.060191553086042404, -0.010863501578569412, 0.06610523164272308, -0.21904531121253967, 0.05189497396349907, -0.038348253816366196, 0.11138346791267395, -0.10797146707773209, -0.0006625904352404177, 0.09028475731611252, 0.039285916835069656, -0.06691864877939224, 0.0845310166478157, -0.15109612047672272, 0.05854975804686546, -0.004911437164992094, 0.06868262588977814, -0.06277072429656982, 0.03159469738602638, 0.018832143396139145, 0.048895079642534256, 0.07581914216279984, 0.017676759511232376, 0.017532100901007652, -0.02228446863591671, -0.04649662598967552, 0.001695695100352168, 0.06178990751504898, -0.12561987340450287, 0.12349191308021545, -0.04223506525158882, 0.033201251178979874, -0.027866095304489136, -0.07164031267166138, -0.08557021617889404, -0.14940090477466583, 0.08318232744932175, -0.12123993039131165, 0.009497687220573425, -0.07042868435382843, -0.01613892801105976, 0.006841051392257214, 0.22289936244487762, -0.09295319765806198, -0.07728613168001175, -0.14069820940494537, -0.007564941421151161, 0.14122183620929718, -0.07611195743083954, 0.0008733263821341097, -0.013518793508410454, 0.17790189385414124, 0.0007718960987403989, -0.14007291197776794, -0.004572287667542696, -0.06594466418027878, -0.17720235884189606, -0.02171431854367256, 0.17019909620285034, 0.059782322496175766, 0.032855477184057236, 0.001614491455256939, 0.006211798172444105, -0.06021563708782196, -0.16521652042865753, 0.03201672434806824, 0.13657625019550323, -0.0035763978958129883, 0.025022074580192566, 0.03979656845331192, 0.018368395045399666, -0.12416017800569534, 0.020046325400471687, 0.04885386303067207, 0.1661354899406433, -0.08009175956249237, 0.1832277625799179, 0.01027662307024002, -0.08602263033390045, -0.16350553929805756, 0.03177697956562042, 0.013332637026906013, 0.02798384055495262, 0.03989775851368904, -0.18210066854953766, 0.042467162013053894, 0.034526653587818146, -0.007810236420482397, 0.056386902928352356, -0.3248186707496643, -0.15458574891090393, 0.001790383132174611, 0.006441510282456875, -0.10284683108329773, -0.046441804617643356, -0.03825205937027931, -0.07474606484174728, -0.2711865305900574, 0.09579445421695709, -0.1155802309513092, 0.0777265802025795, 0.014750129543244839, 0.09173200279474258, 0.04525166004896164, -0.054278355091810226, 0.12996624410152435, -0.02752738818526268, 0.06113184988498688, -0.09521526843309402, -0.05423307418823242, 0.09459906816482544, -0.06348718702793121, 0.10094223916530609, 0.02364066243171692, 0.08778452128171921, -0.11514759808778763, -0.07820858061313629, -0.07847600430250168, 0.005821518134325743, -0.06093940511345863, -0.0918484702706337, -0.08851559460163116, 0.08334513753652573, 0.12047336250543594, -0.0478670671582222, -0.10214821249246597, -0.05341297388076782, 0.0058380975387990475, 0.07300619035959244, 0.10760761797428131, 0.0806826800107956, -0.08085796236991882, 0.007916472852230072, 0.012588713318109512, 0.019958339631557465, -0.16439442336559296, 0.04705847427248955, 0.08954416960477829, 0.034869126975536346, 0.10132138431072235, 0.012792818248271942, -0.16573849320411682, 0.010282139293849468, 0.042088497430086136, -0.1606329381465912, -0.12466354668140411, -0.04803663492202759, 0.012351196259260178, -0.10372702777385712, -0.048520877957344055, 0.13907727599143982, -0.033358391374349594, -0.03655928373336792, 0.005298139061778784, 0.048672839999198914, -0.041126955300569534, 0.09287446737289429, 0.015574158169329166, 0.04471129924058914, -0.0645805224776268, 0.1140790656208992, 0.06681077927350998, 0.026339968666434288, 0.030412772670388222, 0.05994424596428871, -0.08611270040273666, 0.0043227714486420155, -0.08338762819766998, 0.02302325703203678, -0.0380203016102314, -0.006068797316402197, 0.00921196211129427, -0.04957638680934906, 0.036980390548706055, 0.08531000465154648, -0.016863109543919563, 0.10620024800300598, -0.036163948476314545, 0.004924575798213482, -0.12822648882865906, 0.07695406675338745, 0.03917331248521805, 0.020044751465320587, -0.11479189246892929, 0.20071206986904144, 0.016643445938825607, 0.09266573190689087, -0.033216796815395355, -0.05973830074071884, -0.06158413738012314, -0.01189375203102827, -0.10211633145809174, -0.05119868740439415, -0.08252239227294922, -0.02453109622001648, -0.007940596900880337, -0.041269104927778244, -0.018226852640509605, 0.046501945704221725, -0.032113585621118546, -0.06104658916592598, -0.06848617643117905, 0.039252571761608124, -0.1423989087343216, 0.026817774400115013, 0.12173927575349808, -0.056238606572151184, 0.12108885496854782, 0.06025489419698715, -0.03118024952709675, 0.021577896550297737, -0.10411074012517929, 0.03113352321088314, -0.03835934400558472, 0.015542153269052505, 0.022822121158242226, -0.1465328484773636, 0.0006789159378968179, -0.05140571668744087, -0.06485345959663391, 0.007799763232469559, 0.011814352124929428, -0.12754389643669128, 0.0001649690675549209, 0.07751201093196869, -0.011716715060174465, -0.0736834853887558, 0.06343815475702286, 0.05629309266805649, 0.029100585728883743, 0.06173960119485855, -0.027767250314354897, 0.08146439492702484, -0.17101538181304932, -0.050701312720775604, 0.008742132224142551, 0.023524701595306396, 0.03486514464020729, -0.012801108881831169, 0.04015067592263222, -0.01612955518066883, 0.18139223754405975, 0.01479655597358942, -0.005345498211681843, 0.03737230971455574, -0.04705340415239334, -0.006102756131440401, 0.04347522556781769, 0.055459558963775635, -0.042090121656656265, -0.038071732968091965, -0.007221142761409283, -0.019732097163796425, -0.08641049265861511, -0.047610048204660416, 0.1160697415471077, 0.05122201144695282, 0.18196526169776917, -0.053035471588373184, 0.06945918500423431, -0.021214179694652557, -0.12805047631263733, -0.027389151975512505, -0.04448457062244415, 0.03674696013331413, -0.06573453545570374, 0.05929729714989662, 0.16466017067432404, -0.16510866582393646, 0.11900343000888824, 0.011048675514757633, -0.05427510291337967, -0.11072312295436859, -0.1767299473285675, -0.013631675392389297, -0.043967198580503464, 0.030954090878367424, -0.1293819397687912, 0.08720606565475464, 0.031165333464741707, 0.0318257212638855, -0.06437530368566513, 0.12809740006923676, -0.08533908426761627, -0.11321008950471878, 0.03555441275238991, 0.021684523671865463, 0.02786250226199627, 0.04893996939063072, 0.07813194394111633, 0.02444259636104107, 0.015224660746753216, 0.06761366873979568, 0.03916260972619057, 0.019815223291516304, 0.03047841042280197, -0.025763491168618202, -0.053209953010082245, 0.029034323990345, 0.00854963157325983, 0.02552441880106926, 0.09020330756902695, 0.060551002621650696, -0.015381797216832638, -0.02604895457625389, 0.311211496591568, -0.042966537177562714, -0.03718218207359314, -0.183766707777977, 0.14129729568958282, 0.0072722649201750755, -0.010801106691360474, 0.0292325709015131, -0.12763932347297668, 0.009637921117246151, 0.14060449600219727, 0.17172670364379883, -0.03915999457240105, 0.018321378156542778, -0.031408146023750305, 0.013670247048139572, 0.03840864822268486, 0.09025499224662781, 0.06486043334007263, 0.1933668702840805, -0.04194611310958862, 0.04840589314699173, 0.00040682137478142977, -0.018064096570014954, -0.0036976372357457876, 0.10083697736263275, -0.04224294424057007, 0.0076249875128269196, -0.05833057686686516, 0.10119632631540298, -0.04438004642724991, -0.27953124046325684, -0.013726592995226383, -0.03844929859042168, -0.08884383738040924, 0.05425725504755974, -0.019561773166060448, -0.03467349335551262, 0.08728531002998352, 0.021974630653858185, -0.036141347140073776, 0.13837680220603943, 0.04408914968371391, -0.04680117219686508, -0.009348124265670776, 0.10302971303462982, -0.01724853552877903, 0.17564307153224945, -0.022252757102251053, -0.0009595963638275862, 0.08268590271472931, 0.021104566752910614, -0.1280871480703354, 0.00524170370772481, 0.0414896123111248, -0.07123593240976334, -0.026113010942935944, 0.19422560930252075, 0.01280954573303461, 0.04180854186415672, 0.06274550408124924, -0.06780295073986053, 0.027858704328536987, -0.05511800944805145, 0.05288027599453926, -0.14273348450660706, 0.059899285435676575, -0.08548256009817123, 0.13781781494617462, 0.1883063167333603, -0.06728752702474594, 0.028794972226023674, -0.05501599609851837, -0.0036053380463272333, -0.023265967145562172, 0.08203624188899994, -0.02223167009651661, -0.09903929382562637, 0.01166984811425209, 0.02770378254354, 0.02204107493162155, -0.20479276776313782, -0.08041942864656448, 0.058560192584991455, -0.052027564495801926, 0.02427498623728752, 0.1794777363538742, 0.03656084090471268, 0.05726613104343414, -0.03155365586280823, 0.008598552085459232, -0.01764383539557457, 0.12042287737131119, -0.1571546494960785, -0.07605816423892975 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5ab9e38cf86aa170734fea1731610abc.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">​twenty one pilots</div> <a href="https://genius.com/artists/twenty-one-pilots"> <div style="text-align: center; font-size: 14px;">@twenty-one-pilots</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ​twenty one pilots. Dataset is available [here](https://huggingface.co/datasets/huggingartists/twenty-one-pilots). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/twenty-one-pilots") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2wr3j4nk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ​twenty one pilots's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3jhgvd5t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3jhgvd5t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/twenty-one-pilots') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/twenty-one-pilots") model = AutoModelWithLMHead.from_pretrained("huggingartists/twenty-one-pilots") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/twenty-one-pilots"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/twenty-one-pilots
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/twenty-one-pilots", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/twenty-one-pilots #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">​twenty one pilots</div> <a href="URL <div style="text-align: center; font-size: 14px;">@twenty-one-pilots</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ​twenty one pilots. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ​twenty one pilots's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​twenty one pilots.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​twenty one pilots's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/twenty-one-pilots #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​twenty one pilots.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​twenty one pilots's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/twenty-one-pilots #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ​twenty one pilots.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​twenty one pilots's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03276352211833, 0.18821050226688385, -0.0031813497189432383, 0.05759114399552345, 0.08309787511825562, 0.008245271630585194, 0.07693257927894592, 0.11030115187168121, -0.01714508980512619, 0.06843653321266174, 0.07269413769245148, 0.046605464071035385, 0.08992237597703934, 0.08006218075752258, 0.04108979552984238, -0.24103453755378723, 0.04406626150012016, -0.07241582870483398, 0.001785348984412849, 0.10429854691028595, 0.07940312474966049, -0.07602640986442566, 0.07633208483457565, 0.0339786559343338, -0.042134109884500504, -0.0037497365847229958, 0.02175011672079563, -0.06223113089799881, 0.08518704026937485, 0.0969386026263237, 0.04475286975502968, 0.03539302200078964, 0.07818377763032913, -0.1821044683456421, 0.02083517424762249, 0.1299266368150711, 0.033296193927526474, 0.08716102689504623, 0.053242892026901245, -0.044914137572050095, 0.1377219259738922, -0.011680254712700844, 0.08606025576591492, 0.06800270080566406, -0.1100151315331459, -0.07636893540620804, -0.1650771200656891, 0.08042843639850616, 0.0810433030128479, 0.09178347885608673, -0.026115572080016136, 0.11874958872795105, -0.027474742382764816, 0.05282028391957283, 0.25287720561027527, -0.23916751146316528, -0.01637020893394947, 0.0506204292178154, 0.056976381689310074, 0.0028951168060302734, -0.09056372195482254, 0.013573536649346352, 0.05382874608039856, 0.027363641187548637, 0.03957977890968323, -0.021180372685194016, 0.15310664474964142, 0.002682700753211975, -0.11222067475318909, -0.08978413045406342, 0.08921419084072113, -0.0020648553036153316, -0.0881715938448906, -0.12238926440477371, -0.016901090741157532, -0.02148621715605259, 0.03551407530903816, 0.0004565413109958172, -0.007646660320460796, -0.0024494784884154797, -0.03791807219386101, -0.13178856670856476, -0.08220002800226212, -0.04477594792842865, -0.04341379180550575, 0.07421763241291046, 0.04673689976334572, 0.04646718502044678, -0.06416405737400055, 0.20632228255271912, 0.048424046486616135, -0.09621882438659668, -0.06766987591981888, -0.12277697026729584, -0.07841943204402924, -0.03014887124300003, -0.004298331681638956, -0.007080861832946539, -0.025393234565854073, 0.1307283341884613, -0.017985787242650986, 0.019766490906476974, -0.06784173101186752, 0.008168946951627731, 0.09595336765050888, 0.135207861661911, -0.1206391230225563, -0.048379991203546524, 0.06672462075948715, -0.0075921169482171535, -0.04931884631514549, -0.05662812665104866, -0.000464654469396919, -0.02707001380622387, 0.04552755877375603, 0.0665513277053833, 0.07437928766012192, 0.06827286630868912, 0.005066787824034691, -0.0486886166036129, 0.038650136440992355, -0.13586504757404327, 0.00522231450304389, -0.01172503363341093, -0.056453604251146317, 0.009502599015831947, 0.06866604834794998, 0.008024152368307114, -0.10710743069648743, 0.05852043628692627, -0.0770546942949295, -0.042150501161813736, -0.07837944477796555, -0.11022355407476425, -0.0071393693797290325, -0.0395100861787796, -0.03430236876010895, -0.07066109776496887, -0.16242939233779907, -0.03890126943588257, 0.022489838302135468, -0.05889319255948067, -0.028787564486265182, 0.027172207832336426, -0.042402688413858414, 0.01309031993150711, -0.01892404444515705, -0.002401341451331973, -0.014529806561768055, 0.043563831597566605, -0.08094584196805954, 0.04961464926600456, 0.049979474395513535, 0.04099402576684952, -0.11682603508234024, 0.06839559227228165, -0.13970066606998444, 0.1343531757593155, -0.04557318612933159, -0.03653716295957565, -0.0892132967710495, -0.0909292995929718, -0.006682034116238356, -0.03784073144197464, 0.033245380967855453, 0.13095368444919586, -0.18020305037498474, -0.004501812160015106, 0.202917218208313, -0.08840936422348022, -0.04117072373628616, 0.06427835673093796, -0.07445075362920761, 0.039418477565050125, 0.11077006906270981, 0.04221568629145622, 0.13777165114879608, -0.08706783503293991, -0.07399843633174896, -0.031283147633075714, -0.08660989254713058, 0.1795334368944168, 0.022143183276057243, -0.01920890249311924, 0.017929911613464355, 0.0030775892082601786, -0.014580952003598213, -0.006667648907750845, -0.022753430530428886, -0.04239797219634056, -0.016641724854707718, -0.0038043742533773184, 0.01494687981903553, -0.04529581218957901, -0.042379170656204224, -0.013816853053867817, -0.0984661877155304, 0.03125651553273201, 0.09705258160829544, -0.07060059905052185, 0.02503799833357334, -0.08919154107570648, 0.015314494259655476, -0.06655941158533096, -0.00017841947556007653, -0.17439594864845276, -0.032699789851903915, 0.0020230768714100122, -0.05781755596399307, 0.06609640270471573, 0.06368524581193924, 0.034936778247356415, 0.06806724518537521, -0.01088777370750904, 0.018707329407334328, -0.025806432589888573, 0.008016468025743961, -0.05211916193366051, -0.16342265903949738, -0.050872694700956345, -0.04266166687011719, 0.06959743797779083, -0.1167437732219696, 0.0064887092448771, 0.07852336764335632, 0.15103396773338318, 0.02520168572664261, -0.05612577497959137, 0.04043247178196907, -0.04092758148908615, -0.034790053963661194, -0.10675151646137238, -0.04968398064374924, 0.012236091308295727, -0.04852462559938431, 0.15549792349338531, -0.13621248304843903, -0.10221914947032928, 0.12407342344522476, 0.09874454885721207, -0.07891079038381577, 0.03577858954668045, -0.059949859976768494, -0.029954977333545685, -0.041581831872463226, -0.049183279275894165, 0.2188173085451126, 0.05856276676058769, 0.08533050119876862, -0.08559811115264893, -0.08179514855146408, 0.0013788043288514018, -0.03435911610722542, -0.03609621524810791, 0.029923899099230766, 0.03667789325118065, -0.2046901136636734, 0.06261535733938217, -0.015337293036282063, 0.08923860639333725, 0.1663801670074463, 0.023769436404109, -0.0936209037899971, -0.053300004452466965, -0.0692010372877121, 0.007239192724227905, 0.08665861189365387, 0.020517859607934952, 0.05129462853074074, 0.043985508382320404, 0.040194813162088394, 0.03636576980352402, -0.11571519821882248, 0.005143941380083561, 0.061418697237968445, -0.03754628077149391, -0.05372616648674011, 0.008031284436583519, 0.026282232254743576, 0.08590908348560333, 0.054597485810518265, 0.07999169081449509, -0.03914154693484306, -0.056942619383335114, -0.11724890023469925, 0.12417463958263397, -0.081601083278656, -0.20892862975597382, -0.14275336265563965, -0.08127181231975555, -0.016243990510702133, 0.008810671046376228, 0.03665471449494362, -0.02937035821378231, -0.031318873167037964, -0.10179965943098068, 0.0772697925567627, -0.03294246271252632, -0.0027966350317001343, 0.0015131683321669698, 0.022369269281625748, -0.002969107124954462, -0.13517142832279205, -0.025544028729200363, 0.014272825792431831, -0.07642604410648346, -0.0002031072071986273, 0.04633796215057373, 0.04401622712612152, 0.12101150304079056, -0.00717264274135232, 0.001610215869732201, -0.03313290327787399, 0.2782214879989624, -0.10638576745986938, 0.054511819034814835, 0.15552018582820892, -0.03918410465121269, 0.06646507978439331, 0.07092239707708359, 0.0019688003230839968, -0.05797414109110832, 0.05364912748336792, 0.059713251888751984, -0.05712287500500679, -0.20664823055267334, -0.014646355994045734, -0.020157290622591972, -0.012641831301152706, 0.10071580857038498, 0.018098432570695877, 0.04177596792578697, 0.03689596801996231, -0.10345323383808136, 0.06427832692861557, 0.040762998163700104, 0.09254204481840134, -0.01678643934428692, -0.01330811157822609, 0.06787987798452377, -0.05781450495123863, 0.0159531831741333, 0.11110064387321472, 0.0297914519906044, 0.2656876742839813, -0.07142206281423569, 0.05099239572882652, 0.08948225528001785, 0.08467183262109756, 0.010710828937590122, 0.07858175784349442, -0.02416432835161686, 0.03395639732480049, -0.0047045438550412655, -0.09035240113735199, -0.029231630265712738, 0.03972811996936798, 0.02260514348745346, 0.005773983430117369, -0.043608687818050385, -0.06483038514852524, 0.022085126489400864, 0.21889837086200714, 0.053185075521469116, -0.1597272753715515, -0.08124903589487076, 0.06389967352151871, -0.0585908368229866, -0.05489528924226761, -0.009370263665914536, 0.08364040404558182, -0.1961173266172409, 0.04086292162537575, -0.048639457672834396, 0.10935631394386292, -0.14430564641952515, -0.0008132567163556814, 0.006034498102962971, 0.04903147369623184, -0.06376593559980392, 0.07981500029563904, -0.16796894371509552, 0.09780412912368774, -0.003965758252888918, 0.07042567431926727, -0.08017653971910477, 0.033573053777217865, 0.049816060811281204, 0.01887768693268299, 0.10297929495573044, 0.0014378490159288049, -0.014767582528293133, -0.0768282562494278, -0.06935430318117142, 0.007899104617536068, 0.03969018533825874, -0.06566233932971954, 0.13878373801708221, -0.035027600824832916, 0.03832823410630226, -0.009694445878267288, -0.028242189437150955, -0.13453130424022675, -0.16852451860904694, 0.07177554070949554, -0.11710119247436523, -0.028679296374320984, -0.07001256942749023, -0.04419151693582535, 0.026463454589247704, 0.17638656497001648, -0.11281666904687881, -0.07885591685771942, -0.12175711989402771, 0.03455176576972008, 0.16163265705108643, -0.07900819927453995, 0.012844090349972248, 0.009240392595529556, 0.13992980122566223, 0.004603901412338018, -0.12629452347755432, -0.014795647002756596, -0.05643792450428009, -0.18970653414726257, -0.023001499474048615, 0.10821996629238129, 0.07650240510702133, 0.0497744120657444, 0.01954125426709652, 0.001839652075432241, -0.023476123809814453, -0.16923516988754272, 0.007416436914354563, 0.12964750826358795, 0.042216673493385315, 0.014582437463104725, 0.035196952521800995, 0.013286885805428028, -0.14148756861686707, 0.029604509472846985, 0.07941297441720963, 0.18482588231563568, -0.08103504776954651, 0.1555052250623703, 0.005816436838358641, -0.0901649072766304, -0.15742753446102142, 0.019651830196380615, -0.004696031101047993, 0.02951665408909321, 0.022355297580361366, -0.14969338476657867, 0.014840503223240376, 0.03763849288225174, -0.007004282902926207, 0.0607638955116272, -0.3043622672557831, -0.12781213223934174, 0.05523055046796799, 0.028499331325292587, -0.0521366111934185, -0.027529967948794365, -0.04394182190299034, -0.07959739863872528, -0.23972508311271667, 0.07714325934648514, -0.10050619393587112, 0.09480273723602295, 0.009478402324020863, 0.04193965345621109, 0.042966328561306, -0.05485255643725395, 0.12581609189510345, -0.046272020787000656, 0.07565179467201233, -0.0993107408285141, -0.03891574963927269, 0.08951504528522491, -0.052807193249464035, 0.09524303674697876, 0.0018154613208025694, 0.0752892792224884, -0.07654240727424622, -0.0722663626074791, -0.08111202716827393, 0.021995816379785538, -0.06795942038297653, -0.09189765155315399, -0.07417985051870346, 0.0883578360080719, 0.12927936017513275, -0.032289423048496246, -0.10861838608980179, -0.0481322705745697, -0.033256374299526215, 0.09480045735836029, 0.11403018981218338, 0.09294083714485168, -0.06941200792789459, 0.014940581284463406, 0.01500958576798439, 0.04158356040716171, -0.12321841716766357, 0.03799895569682121, 0.0770738497376442, 0.018345605581998825, 0.09430663287639618, 0.03345392271876335, -0.17379723489284515, 0.03356445953249931, 0.02817988023161888, -0.1259153187274933, -0.11186321079730988, -0.027447683736681938, -0.017787691205739975, -0.08377524465322495, -0.03119346871972084, 0.1490844339132309, -0.04900228604674339, -0.029866144061088562, -0.011458074674010277, 0.05478665232658386, -0.047640349715948105, 0.1092425212264061, 0.0404057614505291, 0.04813329502940178, -0.07008940726518631, 0.09748492389917374, 0.06933138519525528, 0.02074703946709633, 0.03365505114197731, 0.035954732447862625, -0.07322719693183899, -0.010519811883568764, -0.07488272339105606, 0.029792726039886475, -0.02412346377968788, -0.0025710132904350758, 0.004189806524664164, -0.048305414617061615, 0.03623013570904732, 0.12021304666996002, -0.006304292008280754, 0.11828475445508957, -0.04551732912659645, -0.007814544253051281, -0.11754964292049408, 0.0757768303155899, 0.052128925919532776, 0.024452539160847664, -0.10558408498764038, 0.15860094130039215, 0.016054445877671242, 0.0760657861828804, -0.04325375333428383, -0.04183661937713623, -0.0713464766740799, -0.013935774564743042, -0.14804372191429138, -0.03200705721974373, -0.09195130318403244, -0.030458111315965652, -0.010547904297709465, -0.043137092143297195, -0.026931075379252434, 0.06592614948749542, -0.029289714992046356, -0.06392787396907806, -0.057593464851379395, 0.05347517505288124, -0.15040497481822968, 0.004697001539170742, 0.12419159710407257, -0.07870833575725555, 0.10836593806743622, 0.03138875216245651, -0.0440986230969429, 0.0006071265088394284, -0.0738488957285881, 0.02059856243431568, -0.038134507834911346, 0.01743224635720253, 0.03973102197051048, -0.1388242244720459, 0.012257495895028114, -0.047624148428440094, -0.044649556279182434, 0.004598658997565508, 0.025455238297581673, -0.11344561725854874, -0.023218315094709396, 0.0783703625202179, -0.0043434863910079, -0.06379073113203049, 0.05842404440045357, 0.0842624232172966, 0.019619440659880638, 0.08805126696825027, -0.013356762938201427, 0.09229135513305664, -0.18106229603290558, -0.03576245903968811, 0.013022001832723618, -0.0019305457826703787, 0.09845926612615585, -0.028438350185751915, 0.05716292932629585, -0.014472169801592827, 0.19918745756149292, -0.0008959510014392436, -0.020774442702531815, 0.028282243758440018, -0.027938494458794594, 0.0008865726413205266, 0.04421500489115715, 0.08663854002952576, -0.02085079811513424, -0.04329540580511093, -0.014042457565665245, -0.019345076754689217, -0.06967677175998688, -0.056795090436935425, 0.12218029052019119, 0.07797769457101822, 0.15972216427326202, -0.0218744445592165, 0.07820438593626022, -0.009167943149805069, -0.10313765704631805, -0.026766641065478325, -0.009081363677978516, 0.03337908536195755, -0.05432479456067085, 0.06302221119403839, 0.14579439163208008, -0.14779694378376007, 0.12434069812297821, 0.006676220800727606, -0.052605900913476944, -0.1088743656873703, -0.20739714801311493, -0.023338235914707184, -0.023091614246368408, 0.04050824046134949, -0.12200058251619339, 0.07626325637102127, 0.06593716889619827, 0.03470340371131897, -0.05665089935064316, 0.10562314093112946, -0.05432920902967453, -0.11050188541412354, 0.016928425058722496, 0.0374772846698761, 0.008274289779365063, 0.02048153057694435, 0.07129400223493576, 0.0326947383582592, 0.028913870453834534, 0.06299331784248352, 0.02653568796813488, 0.04012740030884743, 0.03959415480494499, -0.019354745745658875, -0.05179251357913017, 0.024570845067501068, 0.0009563022176735103, 0.04916924983263016, 0.13010819256305695, 0.06575854122638702, -0.000956439645960927, -0.03580835461616516, 0.2669825255870819, -0.05331815406680107, -0.07439535111188889, -0.18022750318050385, 0.1550770103931427, 0.019748007878661156, 0.0002987602783832699, 0.009687642566859722, -0.14352494478225708, 0.02211066335439682, 0.16547389328479767, 0.18125756084918976, -0.06005605682730675, 0.013803122565150261, -0.023838212713599205, 0.005528484936803579, 0.014403711073100567, 0.07747089862823486, 0.07796113938093185, 0.17194326221942902, -0.04860236123204231, 0.05457612872123718, -0.000886853551492095, -0.01688903383910656, -0.0070916106924414635, 0.13178768754005432, -0.03762195631861687, 0.015802882611751556, -0.06930577754974365, 0.08778972178697586, -0.03805346041917801, -0.25685441493988037, -0.018840856850147247, -0.02918856218457222, -0.08650679141283035, 0.06800202280282974, -0.029627257958054543, -0.0177302248775959, 0.06685272604227066, 0.026791315525770187, -0.01161605678498745, 0.13836538791656494, 0.03187890350818634, -0.04480865225195885, -0.009498389437794685, 0.08820736408233643, -0.04420095682144165, 0.2156148999929428, -0.0078050196170806885, 0.016610940918326378, 0.0892263874411583, 0.03772284835577011, -0.11300409585237503, 0.017421256750822067, 0.03673839569091797, -0.055781833827495575, -0.008106729947030544, 0.18843334913253784, 0.019421927630901337, 0.02325267344713211, 0.06120142340660095, -0.06671015173196793, 0.042167048901319504, -0.06282173842191696, 0.03631174936890602, -0.12093192338943481, 0.03712181746959686, -0.08977749943733215, 0.14935743808746338, 0.1761997789144516, -0.06491906195878983, 0.03645792976021767, -0.05557649955153465, -0.02103789895772934, -0.030023109167814255, 0.06880193203687668, -0.02319752424955368, -0.09349411725997925, 0.009677523747086525, 0.027305224910378456, 0.0280280951410532, -0.19305424392223358, -0.07834608852863312, 0.04973972961306572, -0.07238902896642685, 0.014952950179576874, 0.13658492267131805, 0.04139901325106621, 0.049417078495025635, -0.03641648590564728, -0.039458565413951874, -0.031732894480228424, 0.09227566421031952, -0.14231979846954346, -0.06742624938488007 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e0fa9b5bdd037ab75031dd7372d05cd6.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">UPSAHL</div> <a href="https://genius.com/artists/upsahl"> <div style="text-align: center; font-size: 14px;">@upsahl</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from UPSAHL. Dataset is available [here](https://huggingface.co/datasets/huggingartists/upsahl). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/upsahl") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2o3af3ts/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on UPSAHL's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2lr9eqkt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2lr9eqkt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/upsahl') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/upsahl") model = AutoModelWithLMHead.from_pretrained("huggingartists/upsahl") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/upsahl"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/upsahl
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/upsahl", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/upsahl #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">UPSAHL</div> <a href="URL <div style="text-align: center; font-size: 14px;">@upsahl</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from UPSAHL. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on UPSAHL's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from UPSAHL.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on UPSAHL's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/upsahl #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from UPSAHL.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on UPSAHL's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/upsahl #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from UPSAHL.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on UPSAHL's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.021852750331163406, 0.16209840774536133, -0.0031018019653856754, 0.036369018256664276, 0.09456460177898407, 0.008632593788206577, 0.0871126800775528, 0.10268854349851608, -0.0037367285694926977, 0.07186347246170044, 0.06990688294172287, 0.011344939470291138, 0.07437432557344437, 0.11071596294641495, 0.08019372075796127, -0.253274530172348, 0.033843621611595154, -0.09599349647760391, -0.005958011373877525, 0.11696836352348328, 0.09848418831825256, -0.05898895114660263, 0.08731457591056824, 0.0378720760345459, -0.06967534869909286, 0.01941855065524578, -0.0002547106705605984, -0.06526068598031998, 0.08668910712003708, 0.06769558042287827, 0.03838525339961052, 0.025009766221046448, 0.06871567666530609, -0.1879233866930008, 0.030441515147686005, 0.12502796947956085, 0.03421393409371376, 0.07377640157938004, 0.04674098268151283, -0.08229800313711166, 0.15892469882965088, -0.018491003662347794, 0.09373398870229721, 0.04721340537071228, -0.1181221529841423, -0.1471131592988968, -0.12677903473377228, 0.08829669654369354, 0.09713046252727509, 0.09093079715967178, -0.03081483580172062, 0.048250164836645126, -0.02464897185564041, 0.04348820820450783, 0.23178435862064362, -0.2304476946592331, -0.014801181852817535, 0.08467675745487213, 0.03746602311730385, 0.02486652322113514, -0.08006447553634644, 0.011820846237242222, 0.04322941228747368, 0.01993301883339882, 0.04493667185306549, -0.01603054068982601, 0.1866908073425293, 0.02961229719221592, -0.1020529717206955, -0.08475742489099503, 0.1178373396396637, -0.02495550364255905, -0.07414228469133377, -0.13732169568538666, -0.0002302274078829214, -0.01782139390707016, 0.03580634668469429, -0.004568872507661581, -0.0006279286462813616, 0.004935184493660927, -0.03468829765915871, -0.10432268679141998, -0.09399138391017914, -0.02937356010079384, -0.026708608493208885, 0.06442876905202866, 0.02916039153933525, 0.036992788314819336, -0.07717310637235641, 0.2276799976825714, -0.013910965994000435, -0.09888897836208344, -0.05027402937412262, -0.09391732513904572, -0.09807224571704865, -0.05696679279208183, 0.006826748140156269, 0.006614074110984802, -0.051324788480997086, 0.15192945301532745, -0.030300835147500038, 0.032410878688097, -0.001754719647578895, -0.013041844591498375, 0.15326762199401855, 0.14026829600334167, -0.09891749173402786, -0.026926180347800255, 0.053471989929676056, -0.008794913999736309, -0.06836617738008499, -0.052628036588430405, -0.010268023237586021, -0.01777089200913906, 0.03610680624842644, 0.0834670141339302, 0.06253743171691895, 0.06051728501915932, 0.011146719567477703, -0.06604031473398209, 0.09274936467409134, -0.14007820188999176, 0.014518924988806248, -0.00308808870613575, -0.04339011013507843, 0.023079747334122658, 0.04696211218833923, 0.02010156773030758, -0.10326839238405228, 0.11488384753465652, -0.060122665017843246, -0.04836491122841835, -0.08103888481855392, -0.08532007783651352, -0.001964601455256343, -0.01665523648262024, -0.043767668306827545, -0.07056183367967606, -0.1781775951385498, -0.04352870583534241, 0.03712031990289688, -0.049364518374204636, -0.041274119168519974, 0.030407553538680077, -0.021520616486668587, 0.013908718712627888, -0.01599298231303692, -0.030888529494404793, -0.030073432251811028, 0.02784348465502262, -0.06032793968915939, 0.026529652997851372, 0.07993024587631226, 0.047880738973617554, -0.11597862839698792, 0.06811786442995071, -0.16509251296520233, 0.12903596460819244, -0.0167252104729414, 0.024861574172973633, -0.10064697265625, -0.08942697197198868, -0.02309475466609001, -0.02855754643678665, -0.006988105364143848, 0.10153335332870483, -0.18122044205665588, -0.03657300025224686, 0.19473940134048462, -0.0783083364367485, -0.08030711859464645, 0.06725531071424484, -0.07661929726600647, 0.03386630117893219, 0.12662437558174133, 0.06989651173353195, 0.16027754545211792, -0.11224536597728729, -0.06037939339876175, -0.041301626712083817, -0.06136263906955719, 0.19622670114040375, 0.05278976634144783, -0.019011083990335464, 0.01724591664969921, 0.006292221136391163, -0.03771915286779404, -0.023586686700582504, -0.017440907657146454, -0.03971928358078003, -0.012900825589895248, 0.010201123543083668, -0.010132561437785625, -0.03975588083267212, -0.06667666137218475, -0.027681754902005196, -0.10593404620885849, 0.04762906953692436, 0.09952510893344879, -0.06786435097455978, 0.0070114475674927235, -0.09453506767749786, 0.000461951713077724, -0.02644827775657177, 0.010785454884171486, -0.17099250853061676, -0.05807898938655853, 0.019174199551343918, -0.07390900701284409, 0.08445814996957779, 0.03616907820105553, 0.03811691328883171, 0.05542347952723503, -0.015395247377455235, 0.013959111645817757, -0.04307439178228378, -0.01856379769742489, -0.020164545625448227, -0.15115229785442352, -0.0576045997440815, -0.04716125875711441, 0.09034954756498337, -0.1247941255569458, 0.007937624119222164, 0.09855058789253235, 0.12366056442260742, 0.022132759913802147, -0.06336410343647003, 0.02096286229789257, -0.04481996223330498, -0.029626762494444847, -0.10690630972385406, -0.05343436077237129, 0.012376533821225166, -0.02090930938720703, 0.15181832015514374, -0.16798213124275208, -0.074252650141716, 0.1060052141547203, 0.1312141865491867, -0.09616312384605408, 0.03180275484919548, -0.08119836449623108, -0.014343823306262493, -0.048373159021139145, -0.04328880086541176, 0.2588030695915222, 0.035799555480480194, 0.08015518635511398, -0.10457250475883484, -0.10058325529098511, -0.008534152060747147, -0.04619906470179558, -0.03128426894545555, 0.026028016582131386, 0.02756975032389164, -0.17526844143867493, 0.040269944816827774, -0.002273655729368329, 0.10354708880186081, 0.20541298389434814, 0.039792027324438095, -0.0853191465139389, -0.059630218893289566, -0.07089461386203766, -0.003849857486784458, 0.059601329267024994, 0.009916628710925579, 0.03039861097931862, 0.04414235055446625, 0.05896487087011337, 0.042789243161678314, -0.11656494438648224, 0.01094071939587593, 0.07520992308855057, -0.04172015190124512, -0.057493604719638824, 0.012300948612391949, 0.021854573860764503, 0.08021652698516846, 0.08809537440538406, 0.1414434015750885, -0.06224437057971954, -0.049661602824926376, -0.1462770253419876, 0.13838298618793488, -0.08555520325899124, -0.24951350688934326, -0.1397773027420044, -0.07427498698234558, 0.019854605197906494, 0.011775407008826733, 0.031689759343862534, -0.05577800050377846, -0.046646296977996826, -0.09228673577308655, 0.09916290640830994, -0.04833749681711197, -0.022343134507536888, 0.013288149610161781, 0.023054715245962143, -0.02150978334248066, -0.11245355010032654, -0.03036964312195778, 0.03857803717255592, -0.09951261430978775, -0.01043821219354868, 0.03147758170962334, 0.03477846086025238, 0.16177916526794434, -0.010023994371294975, 0.004008220974355936, -0.024464959278702736, 0.28417664766311646, -0.11905863136053085, 0.07292285561561584, 0.16242662072181702, -0.010901606641709805, 0.05613948032259941, 0.08114662766456604, 0.004748380742967129, -0.06092172488570213, 0.07360458374023438, 0.0732153058052063, -0.07791245728731155, -0.21780405938625336, -0.033388424664735794, -0.01344648003578186, 0.01422695443034172, 0.11964400857686996, 0.048783231526613235, 0.04508018121123314, 0.009940125979483128, -0.1034807339310646, 0.042657915502786636, 0.0265200175344944, 0.10008163750171661, -0.05544685572385788, -0.005490684416145086, 0.04989147558808327, -0.05984434857964516, 0.031833719462156296, 0.13436435163021088, 0.03698978200554848, 0.2015213668346405, -0.06880331039428711, 0.08848930895328522, 0.07888201624155045, 0.09821267426013947, 0.02879524789750576, 0.019997024908661842, -0.01732696034014225, 0.014418724924325943, 0.0005661519826389849, -0.09107714146375656, -0.01806558109819889, 0.043340928852558136, 0.03127330169081688, -0.02082912251353264, -0.03998277708888054, -0.059621602296829224, 0.04196043685078621, 0.2363223284482956, 0.01577255129814148, -0.16983702778816223, -0.10650075227022171, 0.05525204911828041, -0.07078539580106735, -0.05793919041752815, -0.015292847529053688, 0.06676691770553589, -0.21766260266304016, 0.06982044130563736, -0.028891924768686295, 0.10885021835565567, -0.11869257688522339, -0.00023090184549801052, 0.09144387394189835, 0.043505266308784485, -0.06452855467796326, 0.10114963352680206, -0.16948413848876953, 0.06595727801322937, -0.009368302300572395, 0.07288549840450287, -0.06824494153261185, 0.031444959342479706, 0.00814551580697298, 0.04746527597308159, 0.07797488570213318, 0.020422086119651794, 0.008186977356672287, -0.0069478279910981655, -0.04163071885704994, 0.005656486377120018, 0.057187244296073914, -0.11797405779361725, 0.12496566027402878, -0.03716364502906799, 0.03423895314335823, -0.03386224806308746, -0.08178939670324326, -0.08405757695436478, -0.15868328511714935, 0.08593274652957916, -0.12313815206289291, 0.0026125458534806967, -0.07057787477970123, -0.018937543034553528, 0.022027358412742615, 0.2446807324886322, -0.061951737850904465, -0.08297857642173767, -0.1378784030675888, 0.005242855753749609, 0.1366174966096878, -0.08209159225225449, 0.00864913035184145, -0.01318818423897028, 0.19118182361125946, 0.009071426466107368, -0.13182519376277924, -0.008180270902812481, -0.06819439679384232, -0.17353633046150208, -0.010310347191989422, 0.16788828372955322, 0.06485266983509064, 0.03190609812736511, 0.0025529549457132816, 0.0003531789989210665, -0.05238403379917145, -0.1731034517288208, 0.02718697302043438, 0.1552601158618927, -0.006731838919222355, 0.0258305873721838, 0.04565327987074852, 0.012426967732608318, -0.12227477133274078, 0.016125880181789398, 0.05139767378568649, 0.17619898915290833, -0.07243801653385162, 0.18421009182929993, 0.02736462466418743, -0.08997216820716858, -0.16216517984867096, 0.022675683721899986, 0.024265747517347336, 0.03434574976563454, 0.029705237597227097, -0.20325171947479248, 0.04632119834423065, 0.034565046429634094, -0.0040074544958770275, 0.04837299883365631, -0.3210228681564331, -0.14969594776630402, 0.005004826933145523, 0.001959341112524271, -0.1228240355849266, -0.03595910966396332, -0.03644680976867676, -0.08130168914794922, -0.26376035809516907, 0.09980455785989761, -0.10668884217739105, 0.07220584899187088, 0.019535591825842857, 0.09873207658529282, 0.04502767696976662, -0.05176275223493576, 0.12874391674995422, -0.02378450520336628, 0.0609905831515789, -0.10128399729728699, -0.05288693681359291, 0.08412580192089081, -0.06444984674453735, 0.10178475826978683, 0.030471304431557655, 0.08811727911233902, -0.10271117836236954, -0.08276183158159256, -0.07665111869573593, 0.0037406424526125193, -0.059171002358198166, -0.09192861616611481, -0.09715420752763748, 0.0883333832025528, 0.12472342699766159, -0.04493386298418045, -0.09263711422681808, -0.0559871569275856, 0.0013023907085880637, 0.06739414483308792, 0.11850397288799286, 0.07354727387428284, -0.07377989590167999, 0.00009371205669594929, 0.019317399710416794, 0.016196943819522858, -0.16749072074890137, 0.048123568296432495, 0.08959406614303589, 0.03880937770009041, 0.10776404291391373, 0.007514174096286297, -0.16473576426506042, 0.0026438969653099775, 0.05026884004473686, -0.16616438329219818, -0.12327484041452408, -0.04546205699443817, 0.019825974479317665, -0.11099857091903687, -0.04870440438389778, 0.13278065621852875, -0.029095245525240898, -0.03574048727750778, 0.005413713399320841, 0.04785089194774628, -0.043322037905454636, 0.09465909749269485, 0.005792118143290281, 0.047380171716213226, -0.06935159862041473, 0.11476144939661026, 0.06915803998708725, 0.011624637059867382, 0.038542237132787704, 0.06424567103385925, -0.0905972272157669, 0.007623117417097092, -0.09058099240064621, 0.00992795079946518, -0.033117711544036865, -0.01414648350328207, 0.01558417547494173, -0.04412462189793587, 0.04434776306152344, 0.07463540881872177, -0.01060863584280014, 0.11110732704401016, -0.03819833695888519, 0.012165665626525879, -0.12397833913564682, 0.0707387626171112, 0.041877973824739456, 0.021609000861644745, -0.11947522312402725, 0.1902359426021576, 0.025652818381786346, 0.09770022332668304, -0.03654543682932854, -0.06055363640189171, -0.06271082162857056, -0.008456967771053314, -0.09323212504386902, -0.04401078820228577, -0.09421665221452713, -0.02586137130856514, -0.002491566352546215, -0.04337378963828087, -0.026084333658218384, 0.04372802749276161, -0.03623608127236366, -0.05592750385403633, -0.0714292973279953, 0.04649608954787254, -0.13757485151290894, 0.03566703200340271, 0.12374846637248993, -0.05442863330245018, 0.11949557811021805, 0.05635962262749672, -0.03594058007001877, 0.02750902809202671, -0.11499635875225067, 0.03565075621008873, -0.017540698871016502, 0.017447084188461304, 0.023261796683073044, -0.15420860052108765, 0.005044030956923962, -0.03903839737176895, -0.06607712805271149, 0.0056483084335923195, -0.002151048742234707, -0.1293695867061615, 0.004506298340857029, 0.0847865492105484, -0.021578935906291008, -0.07270988076925278, 0.06809874624013901, 0.05293353646993637, 0.02153359353542328, 0.06728247553110123, -0.023222247138619423, 0.074968621134758, -0.17072783410549164, -0.05343557894229889, 0.005219137296080589, 0.035731133073568344, 0.04230630770325661, -0.014431243762373924, 0.037824034690856934, -0.02036932297050953, 0.19925573468208313, 0.017468277364969254, -0.022100789472460747, 0.03900665044784546, -0.058652617037296295, 0.009693796746432781, 0.04542665556073189, 0.07459259033203125, -0.03531588986515999, -0.0394173301756382, -0.00045606933417730033, -0.022785551846027374, -0.09241741895675659, -0.047743313014507294, 0.11589933186769485, 0.04247048497200012, 0.18386755883693695, -0.051856689155101776, 0.06226561963558197, -0.01914575695991516, -0.1197754442691803, -0.014095849357545376, -0.04993098974227905, 0.03538699820637703, -0.06187997758388519, 0.0649508461356163, 0.17988291382789612, -0.16360902786254883, 0.12109936773777008, 0.01650076173245907, -0.05880552902817726, -0.11368191987276077, -0.19862408936023712, -0.018235834315419197, -0.04757664352655411, 0.028235742822289467, -0.1386609971523285, 0.09077334403991699, 0.031166445463895798, 0.03609371930360794, -0.06704211980104446, 0.13447056710720062, -0.0778854712843895, -0.12422162294387817, 0.034168604761362076, 0.025131195783615112, 0.02948930487036705, 0.048091281205415726, 0.08380736410617828, 0.027470404282212257, 0.01875067502260208, 0.07321463525295258, 0.03956764191389084, 0.026258300989866257, 0.03316812962293625, -0.026804186403751373, -0.04514102637767792, 0.030008893460035324, -0.0012775054201483727, 0.02281920798122883, 0.08067049086093903, 0.060619354248046875, -0.015080192126333714, -0.022798310965299606, 0.3110799789428711, -0.038524117320775986, -0.04741566628217697, -0.18358460068702698, 0.1566658318042755, 0.007708200719207525, -0.0045212674885988235, 0.02777457982301712, -0.12561525404453278, 0.007441892754286528, 0.12893614172935486, 0.16967670619487762, -0.02798609994351864, 0.020594950765371323, -0.03253202512860298, 0.019599683582782745, 0.035457853227853775, 0.09812035411596298, 0.06530243903398514, 0.20012079179286957, -0.035193804651498795, 0.04505737125873566, -0.008453148417174816, -0.021755913272500038, 0.0009933399269357324, 0.1019609346985817, -0.03581055998802185, 0.0072609251365065575, -0.05705580487847328, 0.10563413053750992, -0.049597714096307755, -0.2788790464401245, -0.038374561816453934, -0.02766326628625393, -0.09509515762329102, 0.06283411383628845, -0.019540606066584587, -0.0207048412412405, 0.08598775416612625, 0.028064299374818802, -0.04739508032798767, 0.14719311892986298, 0.048900481313467026, -0.04893728345632553, -0.00921536237001419, 0.11015868186950684, -0.02499742992222309, 0.176011860370636, -0.02818920835852623, 0.004924982786178589, 0.08214136958122253, 0.015163946896791458, -0.12126317620277405, 0.004310688469558954, 0.04143373668193817, -0.0657680481672287, -0.021992510184645653, 0.19459593296051025, 0.013099716044962406, 0.029033660888671875, 0.07051409035921097, -0.06794844567775726, 0.019682761281728745, -0.05605258420109749, 0.057641468942165375, -0.14725205302238464, 0.06472761929035187, -0.08440261334180832, 0.12921921908855438, 0.18739207088947296, -0.06752509623765945, 0.02834489196538925, -0.058880191296339035, 0.009624416008591652, -0.027131112292408943, 0.08152472972869873, -0.01844817027449608, -0.11061415821313858, 0.006508794147521257, 0.028210245072841644, 0.02683127112686634, -0.17652344703674316, -0.0705890879034996, 0.07031579315662384, -0.04836786910891533, 0.022707104682922363, 0.17918822169303894, 0.02223316952586174, 0.06293784081935883, -0.036774251610040665, -0.004810761194676161, -0.013017594814300537, 0.11784747987985611, -0.16153183579444885, -0.08198186755180359 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/08ad78acc3e91c45a426390e7524d4e9.853x853x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">V $ X V PRiNCE</div> <a href="https://genius.com/artists/v-x-v-prince"> <div style="text-align: center; font-size: 14px;">@v-x-v-prince</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from V $ X V PRiNCE. Dataset is available [here](https://huggingface.co/datasets/huggingartists/v-x-v-prince). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/v-x-v-prince") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/a6qdzbfe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on V $ X V PRiNCE's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1rv03n56) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1rv03n56/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/v-x-v-prince') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/v-x-v-prince") model = AutoModelWithLMHead.from_pretrained("huggingartists/v-x-v-prince") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/v-x-v-prince"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/v-x-v-prince
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/v-x-v-prince", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/v-x-v-prince #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">V $ X V PRiNCE</div> <a href="URL <div style="text-align: center; font-size: 14px;">@v-x-v-prince</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from V $ X V PRiNCE. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on V $ X V PRiNCE's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from V $ X V PRiNCE.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on V $ X V PRiNCE's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/v-x-v-prince #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from V $ X V PRiNCE.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on V $ X V PRiNCE's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 56, 78, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/v-x-v-prince #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from V $ X V PRiNCE.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on V $ X V PRiNCE's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03603776916861534, 0.16601817309856415, -0.005861896555870771, 0.0813303142786026, 0.07054542750120163, 0.006382000166922808, 0.06384332478046417, 0.11561852693557739, -0.011414053849875927, 0.06164786219596863, 0.06796319782733917, 0.046794112771749496, 0.07311400771141052, 0.10594594478607178, 0.0218881294131279, -0.2437688559293747, 0.015773624181747437, -0.056444570422172546, -0.018140500411391258, 0.09458603709936142, 0.09035835415124893, -0.08122652769088745, 0.05627338960766792, 0.0015266104601323605, -0.042457181960344315, -0.007674716413021088, 0.0006088611553423107, -0.05571898818016052, 0.06077658757567406, 0.08778508752584457, 0.058959949761629105, 0.04274430871009827, 0.06168889254331589, -0.1756102591753006, 0.028943754732608795, 0.11442381888628006, 0.028711140155792236, 0.09084776788949966, 0.06764670461416245, -0.051549118012189865, 0.10722610354423523, -0.04609858989715576, 0.10213717073202133, 0.04041297361254692, -0.10683213174343109, -0.12563808262348175, -0.11781001836061478, 0.04350556805729866, 0.04688642546534538, 0.05629855394363403, -0.014079662971198559, 0.07389310002326965, -0.0641942024230957, 0.07834076881408691, 0.2399088591337204, -0.24935133755207062, -0.011421246454119682, 0.013863345608115196, 0.05217263102531433, 0.051571376621723175, -0.07796350866556168, -0.005861253477632999, 0.022644855082035065, 0.04942706599831581, 0.07518479228019714, -0.03861880302429199, 0.07912033051252365, -0.023378638550639153, -0.11071096360683441, -0.07795467972755432, 0.08377037197351456, -0.02968444675207138, -0.08046646416187286, -0.10592734813690186, -0.03309467062354088, -0.06855400651693344, 0.030458591878414154, 0.0194552019238472, 0.008075891062617302, -0.006023016758263111, -0.06480320543050766, -0.11909765750169754, -0.05547982454299927, -0.07008187472820282, -0.029992474243044853, 0.07682126015424728, 0.05665087327361107, 0.03782451152801514, -0.05648190528154373, 0.19932430982589722, 0.08804155141115189, -0.11171078681945801, -0.09036046266555786, -0.10345115512609482, -0.10163198411464691, -0.03607747703790665, 0.0005545318126678467, 0.02322988398373127, -0.009075189009308815, 0.16146163642406464, -0.04170181602239609, 0.013833996839821339, -0.06563825160264969, 0.031313490122556686, 0.10131429880857468, 0.12274304777383804, -0.09529852867126465, -0.025022177025675774, 0.09778948873281479, -0.023823097348213196, -0.03320880979299545, -0.0475277304649353, -0.012309986166656017, -0.07054696977138519, 0.04899728298187256, 0.1120448112487793, 0.06546913087368011, 0.0428602397441864, -0.04130939766764641, -0.04756830632686615, 0.031981244683265686, -0.152972012758255, 0.027774721384048462, 0.02194460667669773, -0.058875638991594315, -0.007053229492157698, 0.07885240018367767, -0.04787447303533554, -0.12679989635944366, 0.06679576635360718, -0.05134724825620651, -0.024812845513224602, -0.08770814538002014, -0.11514931172132492, 0.01093772891908884, -0.024781929329037666, -0.024365903809666634, -0.08392810076475143, -0.15436440706253052, -0.025210093706846237, 0.010003320872783661, -0.07285027205944061, -0.016702227294445038, 0.010756796225905418, -0.024145670235157013, -0.01480345893651247, -0.019830754026770592, 0.04675498977303505, -0.02758239395916462, 0.06967467814683914, -0.08219167590141296, 0.07446441799402237, 0.06417367607355118, 0.03289647772908211, -0.10213075578212738, 0.0740569606423378, -0.11945807933807373, 0.18070243299007416, -0.03351936116814613, -0.05854307860136032, -0.08005597442388535, -0.10534840077161789, -0.01240173727273941, -0.03355807811021805, 0.04213006794452667, 0.10788927972316742, -0.16809402406215668, -0.011127996258437634, 0.2666004002094269, -0.07313782721757889, -0.051413342356681824, 0.09596085548400879, -0.0815625861287117, 0.0348723866045475, 0.11094371974468231, 0.027268139645457268, 0.13076071441173553, -0.07266239821910858, -0.06164301186800003, -0.01732601597905159, -0.0492212250828743, 0.17084598541259766, 0.054752595722675323, -0.008930397219955921, 0.04361509531736374, -0.009649419225752354, -0.028163140639662743, -0.002311797346919775, -0.03939636051654816, -0.04169280081987381, -0.015138496644794941, -0.021817589178681374, 0.017779165878891945, -0.0481281504034996, -0.018986284732818604, -0.010183840058743954, -0.10420611500740051, 0.07109999656677246, 0.11028413474559784, -0.09028754383325577, 0.04487426578998566, -0.11374633759260178, 0.03654263913631439, -0.05245201662182808, 0.021171750500798225, -0.19445517659187317, -0.0004719804273918271, 0.024926844984292984, -0.06372858583927155, 0.054644227027893066, 0.022960126399993896, 0.04622635617852211, 0.08699940890073776, -0.03876917064189911, 0.006196357775479555, -0.05401674285531044, -0.0000990495755104348, -0.05031079053878784, -0.17401322722434998, -0.053956709802150726, -0.05424130707979202, 0.03125723451375961, -0.11872364580631256, -0.004103847313672304, 0.11573798954486847, 0.14011861383914948, 0.047679364681243896, -0.052387770265340805, 0.03741703927516937, -0.0035038224887102842, -0.012301227077841759, -0.10298272222280502, -0.04046396538615227, 0.016908787190914154, -0.04779314622282982, 0.12306904047727585, -0.14475445449352264, -0.055295515805482864, 0.11177755892276764, 0.06706412136554718, -0.09166312217712402, 0.023908358067274094, -0.04775204882025719, -0.014464513398706913, -0.07504518330097198, -0.04134427756071091, 0.21542829275131226, 0.046385787427425385, 0.09979089349508286, -0.1039297878742218, -0.07012210041284561, -0.023690873757004738, -0.028080550953745842, 0.029430953785777092, 0.08047103136777878, 0.009163293056190014, -0.2026165872812271, 0.04408137872815132, 0.0015850939089432359, 0.020102282986044884, 0.18358951807022095, 0.008378990925848484, -0.10804585367441177, -0.06441569328308105, -0.021199747920036316, 0.027732867747545242, 0.07533391565084457, -0.008277710527181625, 0.05191412195563316, 0.03465740755200386, 0.029395664110779762, 0.024570005014538765, -0.11781497299671173, 0.024285119026899338, 0.06133318692445755, -0.053354158997535706, -0.04303867742419243, -0.020686903968453407, 0.030446277931332588, 0.09256424754858017, 0.057017795741558075, 0.08864786475896835, -0.025790033861994743, -0.05402281880378723, -0.11428466439247131, 0.1410554200410843, -0.09534793347120285, -0.1949530392885208, -0.10206089913845062, -0.05518631264567375, 0.048223428428173065, 0.018572209402918816, 0.02111697755753994, -0.0009207890252582729, -0.03452620655298233, -0.0863063856959343, 0.040951017290353775, -0.01859678141772747, -0.010128369554877281, 0.0009438584093004465, 0.05173790082335472, 0.0046567367389798164, -0.13002458214759827, -0.008917943574488163, 0.026962043717503548, -0.09791465103626251, -0.0007700232090428472, 0.0500648096203804, 0.029300127178430557, 0.11119165271520615, -0.009778032079339027, 0.006877250503748655, -0.026207560673356056, 0.23406808078289032, -0.10360052436590195, 0.029688062146306038, 0.14246203005313873, -0.07308875769376755, 0.05060095340013504, 0.07395393401384354, 0.009167340584099293, -0.05467309057712555, 0.04101703315973282, 0.024819767102599144, -0.0630752444267273, -0.20980478823184967, -0.005928102880716324, -0.045939184725284576, 0.008060789667069912, 0.11324743926525116, 0.04586900770664215, -0.036016035825014114, 0.01823105476796627, -0.09096208959817886, 0.07501468062400818, 0.07662145048379898, 0.08283039182424545, -0.017530102282762527, -0.013086353428661823, 0.0649615153670311, -0.06246845796704292, 0.03283655643463135, 0.09954570233821869, 0.04133020341396332, 0.2519700527191162, -0.1093023419380188, 0.11162098497152328, 0.08313167840242386, 0.06811519712209702, 0.050436872988939285, 0.03897213190793991, -0.03106706589460373, 0.06114891543984413, -0.0014088883763179183, -0.09641196578741074, -0.03490319475531578, 0.024974750354886055, 0.02301696501672268, -0.010859857313334942, -0.011631324887275696, -0.08126450330018997, 0.046567391604185104, 0.20308038592338562, 0.07265384495258331, -0.15598441660404205, -0.0891147255897522, 0.06996646523475647, -0.047100502997636795, -0.05922064930200577, -0.018905259668827057, 0.1112784594297409, -0.19442535936832428, -0.005815558135509491, -0.011648979038000107, 0.12343208491802216, -0.20360401272773743, -0.024783417582511902, -0.012169335968792439, 0.07436055690050125, -0.054461169987916946, 0.061645571142435074, -0.22649940848350525, 0.05701672285795212, 0.010771500878036022, 0.11786329001188278, -0.05166066437959671, 0.0355815663933754, 0.05679262429475784, 0.018612941727042198, 0.09374906122684479, 0.013249583542346954, 0.024816518649458885, -0.10670475661754608, -0.07473398000001907, 0.021291691809892654, 0.03591960668563843, -0.05283107981085777, 0.10409820824861526, -0.026381181553006172, 0.014394750818610191, -0.012692755088210106, -0.09283817559480667, -0.09341944009065628, -0.14646555483341217, 0.05525035411119461, -0.13635525107383728, 0.03384096920490265, -0.052702952176332474, -0.03297474980354309, 0.0489061065018177, 0.17269708216190338, -0.13224662840366364, -0.10960071533918381, -0.09906820207834244, 0.04368240758776665, 0.12510286271572113, -0.08368536829948425, 0.042543813586235046, 0.02674603834748268, 0.13453848659992218, 0.011154447682201862, -0.10355764627456665, 0.0026783368084579706, -0.04275751858949661, -0.20645812153816223, -0.019694846123456955, 0.09098118543624878, 0.07682491093873978, 0.06974456459283829, 0.01478347647935152, 0.009624805301427841, -0.018652671948075294, -0.1453578770160675, 0.002472706139087677, 0.13230562210083008, 0.042256228625774384, 0.04384949430823326, 0.0011402483796700835, 0.02669125609099865, -0.09900355339050293, 0.020960921421647072, 0.09005015343427658, 0.24846334755420685, -0.07978672534227371, 0.13902340829372406, 0.03374859318137169, -0.10528828948736191, -0.17852123081684113, -0.004319888539612293, 0.019060740247368813, 0.040130048990249634, 0.01325609814375639, -0.2070455551147461, -0.014058229513466358, 0.05479935184121132, -0.0035028578713536263, 0.12976166605949402, -0.31565606594085693, -0.13120535016059875, 0.06632683426141739, 0.05068308487534523, -0.06889592856168747, -0.03876742720603943, -0.051619287580251694, -0.07621420919895172, -0.1875128298997879, 0.13162370026111603, -0.11265046894550323, 0.10526271164417267, 0.019413670524954796, -0.023233698680996895, 0.0344291590154171, -0.044321004301309586, 0.13479892909526825, -0.08671444654464722, 0.05568065121769905, -0.08044137805700302, -0.006398480385541916, 0.04671120643615723, -0.04653606936335564, 0.05055399239063263, 0.014702867716550827, 0.08068564534187317, -0.036886755377054214, -0.07098580151796341, -0.06769762188196182, 0.01393513847142458, -0.058065567165613174, -0.083427295088768, -0.08686232566833496, 0.09313586354255676, 0.11046057194471359, -0.029428979381918907, -0.10126931965351105, -0.05508529767394066, -0.06396985799074173, 0.08918339759111404, 0.1125507578253746, 0.1078924685716629, -0.07285147160291672, -0.002607189118862152, -0.011184281669557095, 0.07105718553066254, -0.09074375033378601, 0.06381720304489136, 0.07947196066379547, 0.03443341329693794, 0.11658716201782227, 0.02992737479507923, -0.1469041407108307, 0.05004347115755081, 0.018124641850590706, -0.11828778684139252, -0.11199790984392166, -0.005148930940777063, -0.03407525271177292, -0.07317108660936356, -0.06876033544540405, 0.13910344243049622, -0.0300563033670187, -0.04052838683128357, 0.030281968414783478, 0.05105849355459213, -0.03547050058841705, 0.12996549904346466, 0.06369943916797638, 0.03942200168967247, -0.08387964218854904, 0.08348607271909714, 0.07299971580505371, 0.028121445327997208, 0.03856445476412773, 0.06828310340642929, -0.0956193283200264, 0.0025490131229162216, -0.07427435368299484, 0.01665278524160385, 0.019391953945159912, -0.00860652606934309, -0.029046587646007538, -0.05220624431967735, 0.04540928453207016, 0.12241196632385254, -0.0005226977518759668, 0.12338636070489883, -0.02984451688826084, 0.022722899913787842, -0.10026897490024567, 0.10050132870674133, 0.04373596981167793, 0.02341814711689949, -0.06086096912622452, 0.17752109467983246, 0.03329391032457352, 0.07622726261615753, -0.040436360985040665, -0.050141219049692154, -0.08365336805582047, 0.011429890058934689, -0.20782019197940826, 0.008415380492806435, -0.07613468915224075, -0.026295747607946396, -0.022758038714528084, -0.02835192158818245, -0.02729662135243416, 0.056090254336595535, -0.03686636686325073, -0.05241350457072258, -0.047320492565631866, 0.027824582532048225, -0.16776585578918457, -0.031800996512174606, 0.10449409484863281, -0.09767947345972061, 0.11229049414396286, 0.05565071105957031, -0.049957845360040665, -0.006492517422884703, -0.0928889662027359, -0.0010560768423601985, -0.018839117139577866, 0.017715472728013992, 0.025377696380019188, -0.13683970272541046, 0.0332505963742733, -0.04608598351478577, -0.04791995510458946, 0.014239124953746796, 0.06411435455083847, -0.11584609001874924, 0.017161201685667038, 0.03968936204910278, 0.012443047016859055, -0.06455289572477341, 0.08836434036493301, 0.04187735170125961, 0.06053335219621658, 0.07007183134555817, -0.030555864796042442, 0.10179081559181213, -0.16588884592056274, -0.037408020347356796, 0.027487965300679207, -0.001125678070820868, 0.05601227283477783, -0.006925591733306646, 0.06733974069356918, -0.03494667634367943, 0.19580452144145966, -0.024861792102456093, -0.04497416689991951, 0.028778864070773125, -0.030226431787014008, -0.007070634514093399, 0.04538595676422119, 0.07893014699220657, -0.017892247065901756, -0.037075262516736984, -0.027596820145845413, -0.012580824084579945, -0.038481246680021286, -0.027538742870092392, 0.1272958368062973, 0.06911367177963257, 0.15667560696601868, -0.02942388691008091, 0.0407988615334034, -0.008283659815788269, -0.10618695616722107, -0.04416806250810623, 0.010660974308848381, 0.029181281104683876, -0.05885325372219086, 0.07325665652751923, 0.13411204516887665, -0.1527521163225174, 0.12219048291444778, 0.023759372532367706, -0.07610844075679779, -0.12115144729614258, -0.1877029985189438, -0.031101226806640625, 0.0045532588846981525, 0.018746107816696167, -0.1296328902244568, 0.05979187414050102, 0.060478419065475464, 0.03787396103143692, -0.04719911143183708, 0.09167610108852386, -0.008948666974902153, -0.11012629419565201, 0.019525911659002304, 0.028308721259236336, 0.04543212801218033, 0.024684766307473183, 0.02688831090927124, 0.050577543675899506, 0.04052857682108879, 0.06373068690299988, 0.05672500282526016, 0.030598631128668785, -0.0017364701488986611, -0.017318621277809143, -0.048711881041526794, 0.008044637739658356, 0.024284398183226585, 0.027492383494973183, 0.16743628680706024, 0.0714145377278328, -0.014869516715407372, -0.020146925002336502, 0.2853147089481354, -0.036593928933143616, -0.07980416715145111, -0.17557059228420258, 0.1481636017560959, 0.006577047053724527, 0.00008495114889228716, 0.05231690779328346, -0.12354825437068939, 0.00801808200776577, 0.12795209884643555, 0.16216930747032166, -0.06782492995262146, 0.030572455376386642, 0.006686080247163773, 0.009476084262132645, 0.0265547726303339, 0.081295907497406, 0.04755833372473717, 0.20882102847099304, -0.056795634329319, 0.06742533296346664, 0.017301959916949272, -0.01072106696665287, -0.02867433987557888, 0.10879624634981155, -0.03288119286298752, 0.027480898424983025, -0.08716341853141785, 0.054833557456731796, -0.07404323667287827, -0.2526516616344452, 0.02857344225049019, -0.027154281735420227, -0.11631323397159576, 0.03837230056524277, -0.04813612252473831, -0.020923804491758347, 0.055927205830812454, 0.01580522023141384, 0.004464758560061455, 0.12163231521844864, 0.02972228266298771, -0.01720847375690937, -0.023340579122304916, 0.09960614889860153, -0.024374525994062424, 0.20008379220962524, -0.0054012141190469265, 0.04969330132007599, 0.0865035206079483, 0.037101563066244125, -0.12465301156044006, 0.009704111143946648, 0.038711853325366974, -0.06782444566488266, -0.0028241523541510105, 0.1943519115447998, -0.015764612704515457, 0.023792440071702003, 0.07377663254737854, 0.01247415877878666, 0.030504221096634865, -0.07143756747245789, 0.005398368928581476, -0.11993397027254105, 0.00227960548363626, -0.07444971799850464, 0.10502578318119049, 0.17941179871559143, -0.0594450905919075, 0.03202008083462715, -0.051622603088617325, 0.0003355676308274269, 0.013786176219582558, 0.02335280366241932, -0.018529077991843224, -0.0818585753440857, 0.01158786378800869, 0.10593373328447342, 0.04532989487051964, -0.17336872220039368, -0.08123491704463959, 0.03525387495756149, -0.0695778876543045, -0.015838632360100746, 0.13691790401935577, 0.0020430227741599083, 0.07124923914670944, -0.027948645874857903, -0.04102720320224762, -0.021465905010700226, 0.06528740376234055, -0.14099033176898956, -0.06424172967672348 ]