sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
#Joey DialoGPT Model
{"tags": ["conversational"]}
text-generation
houssaineamzil/DialoGPT-small-joey
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Joey DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4241 - Wer: 0.3381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7749 | 4.0 | 500 | 2.0639 | 1.0018 | | 0.9252 | 8.0 | 1000 | 0.4853 | 0.4821 | | 0.3076 | 12.0 | 1500 | 0.4507 | 0.4044 | | 0.1732 | 16.0 | 2000 | 0.4315 | 0.3688 | | 0.1269 | 20.0 | 2500 | 0.4481 | 0.3559 | | 0.1087 | 24.0 | 3000 | 0.4354 | 0.3464 | | 0.0832 | 28.0 | 3500 | 0.4241 | 0.3381 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
automatic-speech-recognition
hrdipto/wav2vec2-base-timit-demo-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-timit-demo-colab ============================== This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4241 * Wer: 0.3381 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.10822959244251251, 0.099675752222538, -0.003300065640360117, 0.06340761482715607, 0.10860926657915115, -0.020167825743556023, 0.1288769543170929, 0.15049001574516296, -0.09271349757909775, 0.07457399368286133, 0.12636904418468475, 0.1505885273218155, 0.04232662543654442, 0.1459311991930008, -0.05005314201116562, -0.2829117476940155, 0.046162717044353485, 0.0348406657576561, -0.0121766971424222, 0.12717968225479126, 0.08421128243207932, -0.12457819283008575, 0.057947319000959396, 0.034365277737379074, -0.1584104299545288, -0.003970644436776638, -0.005117249675095081, -0.10462873429059982, 0.12317385524511337, 0.006251727696508169, 0.07064329087734222, 0.04838201776146889, 0.06631770730018616, -0.2193475365638733, 0.006690362934023142, 0.043937861919403076, 0.028387419879436493, 0.07415802031755447, 0.0581994503736496, -0.02945130504667759, 0.10399823635816574, -0.07501231133937836, 0.08020306378602982, 0.03743743896484375, -0.10571174323558807, -0.29113149642944336, -0.08603336662054062, 0.04763360694050789, 0.06857916712760925, 0.08891522884368896, -0.012067495845258236, 0.144022136926651, -0.05461663380265236, 0.11053165048360825, 0.28164494037628174, -0.31383398175239563, -0.04501998424530029, -0.03997642174363136, 0.05645865947008133, 0.060465965420007706, -0.09994802623987198, -0.017910847440361977, 0.015012132935225964, 0.044832006096839905, 0.13800188899040222, -0.016268642619252205, -0.05933629348874092, -0.006875182036310434, -0.149040088057518, -0.060275666415691376, 0.11524058878421783, 0.022648070007562637, -0.039792802184820175, -0.09874942153692245, -0.055090054869651794, -0.21280622482299805, -0.06727685779333115, -0.01608140580356121, 0.04322221875190735, -0.0424761027097702, -0.10445226728916168, -0.011462483555078506, -0.067214734852314, -0.07468024641275406, -0.04020216315984726, 0.19049659371376038, 0.0569683313369751, -0.0015599278267472982, -0.03913375735282898, 0.07671435922384262, -0.02081478387117386, -0.13849472999572754, -0.024057583883404732, 0.036882609128952026, -0.020599735900759697, -0.01540920790284872, -0.041751619428396225, -0.059525419026613235, 0.02147202007472515, 0.16159066557884216, -0.10229084640741348, 0.09610845148563385, -0.02040909230709076, 0.03964505344629288, -0.1023506298661232, 0.20751461386680603, -0.04149479418992996, 0.017300888895988464, -0.01036039274185896, 0.055753905326128006, 0.029493195936083794, -0.026112813502550125, -0.0944448858499527, 0.03134589642286301, 0.1209908202290535, 0.04713206738233566, -0.04747193679213524, 0.06453514844179153, -0.034078627824783325, -0.00976975541561842, 0.0015425614546984434, -0.1116979643702507, 0.036166802048683167, 0.019734438508749008, -0.06563939899206161, 0.004243024159222841, 0.014517679810523987, 0.007364774588495493, -0.054604124277830124, 0.08333495259284973, -0.06161367520689964, 0.03338611125946045, -0.05673642084002495, -0.1255759745836258, 0.0254832673817873, -0.11468040943145752, -0.003398764180019498, -0.09991598129272461, -0.10067108273506165, -0.011766123585402966, 0.03731279447674751, -0.03822978585958481, -0.02582731656730175, -0.07831884920597076, -0.0903376117348671, 0.045774877071380615, -0.03446253389120102, 0.07107189297676086, -0.07455966621637344, 0.09409195184707642, 0.03365432471036911, 0.08763306587934494, -0.01564944162964821, 0.06029713898897171, -0.07134567946195602, 0.026744363829493523, -0.19970214366912842, 0.07492507249116898, -0.08829209953546524, 0.05765917897224426, -0.12506166100502014, -0.11516561359167099, 0.02212962694466114, -0.007345497142523527, 0.09889665991067886, 0.0976170003414154, -0.17107638716697693, -0.08861831575632095, 0.20791228115558624, -0.08212082087993622, -0.08377639949321747, 0.12448340654373169, -0.02486608363687992, -0.00034487590892240405, 0.05570755526423454, 0.25771892070770264, 0.04567098990082741, -0.12561871111392975, 0.007944315671920776, -0.040438469499349594, 0.0426238514482975, -0.035683345049619675, 0.058901671320199966, -0.028174052014946938, 0.06841765344142914, 0.01783875562250614, -0.004300459288060665, 0.0377449095249176, -0.08730132132768631, -0.0771728903055191, -0.043716900050640106, -0.07817266881465912, 0.029336441308259964, 0.032532043755054474, 0.06398753076791763, -0.11690137535333633, -0.10784720629453659, 0.03895878419280052, 0.0814940482378006, -0.10364940762519836, 0.07184524834156036, -0.1202312484383583, 0.08338981866836548, -0.01493844948709011, -0.005216938443481922, -0.19063900411128998, 0.03534865006804466, 0.03775133937597275, -0.028579330071806908, 0.04033041372895241, -0.06452071666717529, 0.07755736261606216, 0.045356228947639465, -0.026059629395604134, -0.04673822969198227, -0.009306485764682293, 0.010259725153446198, -0.08931370079517365, -0.20704664289951324, -0.03785887360572815, -0.038044244050979614, 0.07835710793733597, -0.13819026947021484, 0.034040216356515884, 0.07705976814031601, 0.0922568067908287, 0.032501887530088425, -0.03155825659632683, -0.0013533032033592463, 0.08992743492126465, -0.020763428881764412, -0.06439613550901413, 0.05805477127432823, 0.020028982311487198, -0.08660950511693954, 0.03891601413488388, -0.14935077726840973, 0.12675049901008606, 0.14704614877700806, -0.015051227062940598, -0.06689473241567612, 0.00010667734750313684, -0.04766694828867912, -0.03477296233177185, -0.0042805140838027, 0.03377611190080643, 0.2151905596256256, 0.013937880285084248, 0.14332830905914307, -0.0892372876405716, -0.04220341518521309, 0.04966939240694046, -0.02212832309305668, -0.0064864978194236755, 0.11720538139343262, 0.0451214499771595, -0.05501340702176094, 0.11844924837350845, 0.0907815545797348, -0.0788188949227333, 0.12142251431941986, -0.06029483675956726, -0.07461198419332504, -0.020842645317316055, 0.005617763847112656, 0.023748908191919327, 0.09859650582075119, -0.16244098544120789, -0.039806708693504333, 0.025940977036952972, 0.025764435529708862, 0.020472196862101555, -0.20870044827461243, 0.014138329774141312, 0.02901417203247547, -0.08571688830852509, -0.04336029291152954, 0.0030441186390817165, 0.012708943337202072, 0.09419949352741241, 0.01257222518324852, -0.0939040407538414, 0.01075243204832077, 0.003870375920087099, -0.07392288744449615, 0.1760009527206421, -0.11667042225599289, -0.17668895423412323, -0.10546509921550751, -0.09277024120092392, -0.03984987363219261, -0.002946222200989723, 0.08907544612884521, -0.09253612160682678, -0.03951948508620262, -0.08322479575872421, -0.015800848603248596, -0.02584817260503769, 0.041999366134405136, 0.0313355028629303, -0.011593472212553024, 0.06448721885681152, -0.11675503849983215, -0.021844986826181412, -0.0398770235478878, -0.0008108904585242271, 0.05417420715093613, 0.03741366043686867, 0.10862545669078827, 0.15839046239852905, -0.01037275604903698, 0.050479814410209656, -0.0457041934132576, 0.18834930658340454, -0.07471095770597458, -0.03741134703159332, 0.11121487617492676, -0.0058354721404612064, 0.06876740604639053, 0.11724447458982468, 0.048488009721040726, -0.09788484871387482, -0.012771572917699814, 0.004045606590807438, -0.04586487263441086, -0.21520774066448212, -0.03567230701446533, -0.04488169774413109, -0.0015765558928251266, 0.10597339272499084, 0.04105941206216812, 0.03757038712501526, 0.021633010357618332, 0.03250035271048546, 0.0055378032848238945, 0.0024906140752136707, 0.09663364291191101, 0.1290869563817978, 0.040204159915447235, 0.13291816413402557, -0.03813957795500755, -0.03726104274392128, 0.030234666541218758, 0.00462446128949523, 0.23055092990398407, 0.019664591178297997, 0.19055898487567902, 0.056628961116075516, 0.17497165501117706, 0.04161965847015381, 0.06674608588218689, -0.001665950519964099, -0.011428255587816238, 0.011377641931176186, -0.05277388170361519, -0.039488013833761215, 0.024215510115027428, 0.024078506976366043, 0.010328367352485657, -0.11433999240398407, -0.011104782111942768, 0.046694785356521606, 0.35245031118392944, 0.028211859986186028, -0.33761468529701233, -0.09064370393753052, -0.012201257050037384, -0.08551396429538727, -0.030578618869185448, 0.04586395248770714, 0.08793317526578903, -0.08076810091733932, 0.06415379047393799, -0.062390632927417755, 0.08992937952280045, -0.0642600953578949, 0.03401235491037369, 0.03723759949207306, 0.07146970927715302, 0.004128440748900175, 0.03326454013586044, -0.29203230142593384, 0.28165560960769653, 0.005191357806324959, 0.07652265578508377, -0.06112175062298775, 0.008107251487672329, 0.025618722662329674, 0.01830456405878067, 0.08772759884595871, -0.025723259896039963, -0.11981545388698578, -0.17462708055973053, -0.09302173554897308, 0.011321182362735271, 0.12884265184402466, 0.01404081005603075, 0.11067666113376617, -0.011263678781688213, -0.016661478206515312, 0.049431778490543365, -0.09618551284074783, -0.06534599512815475, -0.09206702560186386, 0.011860211379826069, 0.08234149217605591, 0.03347118943929672, -0.07286433130502701, -0.10325606167316437, -0.08850222080945969, 0.14942961931228638, -0.05208592489361763, -0.042645301669836044, -0.11885630339384079, 0.008311794139444828, 0.109124094247818, -0.07936578243970871, 0.06090658903121948, 0.009680752642452717, 0.10459772497415543, 0.011390188708901405, -0.06779034435749054, 0.11945819109678268, -0.06419113278388977, -0.16671337187290192, -0.028847509995102882, 0.14494214951992035, 0.03056386671960354, 0.060433026403188705, -0.008058210834860802, 0.038120876997709274, -0.021853651851415634, -0.0774228423833847, 0.0406605489552021, 0.026499440893530846, 0.0439123660326004, -0.013164152391254902, -0.018967239186167717, -0.006070209201425314, -0.09074874222278595, -0.01814614050090313, 0.2064867615699768, 0.24344108998775482, -0.09640686959028244, 0.09291441738605499, 0.06943506747484207, -0.042097147554159164, -0.17234089970588684, -0.0038790483959019184, 0.06509050726890564, 0.000005351470463210717, -0.0248651634901762, -0.1938454508781433, 0.023908907547593117, 0.06926876306533813, -0.020998604595661163, 0.08171622455120087, -0.3183232247829437, -0.1406307816505432, 0.1374066323041916, 0.11396436393260956, 0.059524938464164734, -0.14593273401260376, -0.05537234991788864, -0.010357857681810856, -0.1036871075630188, 0.09447412192821503, -0.07449747622013092, 0.1356905996799469, -0.02407083474099636, 0.09048546850681305, 0.011327960528433323, -0.05825302377343178, 0.10642484575510025, 0.012443309649825096, 0.059944190084934235, -0.045728690922260284, 0.017388567328453064, 0.04785845801234245, -0.06322921067476273, 0.055156588554382324, -0.08024109899997711, 0.02839946746826172, -0.08033619076013565, -0.03248301148414612, -0.08508959412574768, 0.01420549862086773, -0.009605566039681435, -0.0333847776055336, -0.037120092660188675, 0.0018844814039766788, 0.06282699108123779, -0.010366815142333508, 0.15573710203170776, -0.027310438454151154, 0.12642912566661835, 0.16214096546173096, 0.10141889750957489, -0.10404428839683533, -0.07683391124010086, 0.005353863351047039, -0.03425366058945656, 0.05507161468267441, -0.11772949248552322, 0.0374416708946228, 0.1360854059457779, 0.031792279332876205, 0.1228531077504158, 0.06948218494653702, -0.06524974852800369, 0.03323432430624962, 0.04207287356257439, -0.13784939050674438, -0.12749193608760834, 0.013279353268444538, 0.02333078719675541, -0.07195265591144562, 0.07305441796779633, 0.11555314809083939, -0.055095698684453964, -0.013801833614706993, -0.0019095407333225012, 0.013798229396343231, -0.04101138189435005, 0.19526535272598267, 0.03678850829601288, 0.06154259294271469, -0.1245705634355545, 0.08053390681743622, 0.038583576679229736, -0.1331944614648819, 0.060929812490940094, 0.10616770386695862, -0.09484384208917618, -0.02851886674761772, 0.028711074963212013, 0.11185205727815628, -0.028263479471206665, -0.07390765845775604, -0.14269445836544037, -0.1429070234298706, 0.10887688398361206, 0.20547187328338623, 0.056251514703035355, 0.016643211245536804, -0.05918126553297043, 0.016913002356886864, -0.11840061843395233, 0.06926038861274719, 0.04077918455004692, 0.06004178896546364, -0.1290147453546524, 0.14634470641613007, 0.01732582412660122, 0.03992059826850891, -0.014602077193558216, -0.011380162090063095, -0.11204449087381363, 0.03977004438638687, -0.12899863719940186, 0.004968761000782251, -0.06649181246757507, 0.0010107652051374316, 0.003637960646301508, -0.04961981624364853, -0.06380630284547806, 0.034933269023895264, -0.11994827538728714, -0.023454628884792328, 0.0013668711762875319, 0.03702240437269211, -0.12869490683078766, -0.00937681831419468, 0.01491378154605627, -0.09351558983325958, 0.09738873690366745, 0.08695000410079956, -0.03262457251548767, 0.05093376338481903, -0.060065679252147675, -0.026180030778050423, 0.07850224524736404, -0.006546197924762964, 0.05116262659430504, -0.13098447024822235, -0.019763074815273285, 0.011079980991780758, 0.034322094172239304, 0.024183884263038635, 0.11216950416564941, -0.11596840620040894, 0.0009172951686196029, -0.027726253494620323, -0.05208310857415199, -0.06831369549036026, 0.05034910887479782, 0.10944218933582306, 0.027158264070749283, 0.16378004848957062, -0.09329521656036377, 0.02864367887377739, -0.1659409999847412, 0.006244651973247528, -0.015402473509311676, -0.12141422927379608, -0.05091831088066101, -0.031923726201057434, 0.07782353460788727, -0.06372612714767456, 0.12926429510116577, -0.0302314143627882, 0.02521517500281334, 0.03747618943452835, -0.07651915401220322, -0.05347057059407234, 0.039878156036138535, 0.20521073043346405, 0.038992080837488174, -0.04332895576953888, 0.0748397707939148, 0.020881792530417442, 0.08104509860277176, 0.12795478105545044, 0.17392674088478088, 0.16054309904575348, 0.06415445357561111, 0.11675389856100082, 0.0548175610601902, -0.05325957387685776, -0.17404964566230774, 0.09129635989665985, -0.05973295867443085, 0.1303301602602005, -0.013782957568764687, 0.2406129240989685, 0.12073571979999542, -0.15380768477916718, 0.06590574234724045, -0.019002273678779602, -0.08930869400501251, -0.11625064164400101, -0.0640975832939148, -0.08643919974565506, -0.17592790722846985, 0.009026954881846905, -0.10206138342618942, 0.06300023943185806, 0.046582844108343124, 0.037413351237773895, 0.016993701457977295, 0.1380058079957962, 0.015221303328871727, 0.0026881019584834576, 0.09175070375204086, -0.003382439725100994, -0.055894702672958374, -0.07345172762870789, -0.0844438374042511, 0.03444278612732887, -0.013464136980473995, 0.0579255074262619, -0.0041413637809455395, -0.06932219862937927, 0.04745379090309143, -0.038733821362257004, -0.09639431536197662, 0.023092305287718773, 0.02144113928079605, 0.06993499398231506, 0.050396792590618134, 0.03458376228809357, -0.041390322148799896, -0.0023561420384794474, 0.19505612552165985, -0.09454663842916489, -0.09351488947868347, -0.10949129611253738, 0.25379374623298645, 0.039379071444272995, -0.015554843470454216, 0.02151809260249138, -0.060560062527656555, -0.03180092200636864, 0.2114194929599762, 0.1723226010799408, -0.01116170920431614, 0.004614291246980429, -0.01414461899548769, -0.006181462202221155, -0.03659471869468689, 0.07935505360364914, 0.14721040427684784, 0.0624801442027092, -0.06336896121501923, -0.051964882761240005, -0.05117638781666756, -0.03481784462928772, -0.06592334061861038, 0.07547760754823685, 0.006828696001321077, -0.025172237306833267, -0.044893521815538406, 0.06380100548267365, -0.09479472041130066, -0.08201537281274796, 0.024797851219773293, -0.19570329785346985, -0.14996619522571564, 0.006833694875240326, 0.07076682895421982, 0.011772987432777882, 0.034874558448791504, 0.003135041566565633, -0.009663884527981281, 0.08166079223155975, -0.0014469854068011045, -0.08074266463518143, -0.06594680994749069, 0.08451119065284729, -0.1334533542394638, 0.1663215011358261, -0.04209939017891884, 0.04780808091163635, 0.12325333803892136, 0.08858786523342133, -0.08054462820291519, 0.08672730624675751, 0.04238315671682358, -0.10697498172521591, 0.021263642236590385, 0.1536252200603485, -0.033488329499959946, 0.09508569538593292, 0.030688641592860222, -0.11497800052165985, 0.014703071676194668, -0.08972270041704178, -0.03808770328760147, -0.04114031791687012, -0.050166599452495575, -0.044312071055173874, 0.10966888070106506, 0.1632404923439026, -0.04387403652071953, 0.003933595027774572, -0.05213035270571709, 0.011972117237746716, 0.04762331768870354, -0.0004025105736218393, -0.061575230211019516, -0.27876561880111694, 0.011589550413191319, 0.036713045090436935, 0.0030818863306194544, -0.2576640844345093, -0.09719633311033249, 0.013703498058021069, -0.04294035583734512, -0.08798902481794357, 0.08574584126472473, 0.07478064298629761, 0.04632873460650444, -0.0524776466190815, -0.057823486626148224, -0.03551657870411873, 0.18890078365802765, -0.1751941740512848, -0.05986809358000755 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bangla-command-generated-data-finetune This model is a fine-tuned version of [hrdipto/wav2vec2-xls-r-300m-bangla-command-data](https://huggingface.co/hrdipto/wav2vec2-xls-r-300m-bangla-command-data) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0099 - eval_wer: 0.0208 - eval_runtime: 2.5526 - eval_samples_per_second: 75.217 - eval_steps_per_second: 9.402 - epoch: 71.43 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-300m-bangla-command-generated-data-finetune", "results": []}]}
automatic-speech-recognition
hrdipto/wav2vec2-xls-r-300m-bangla-command-generated-data-finetune
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us
# wav2vec2-xls-r-300m-bangla-command-generated-data-finetune This model is a fine-tuned version of hrdipto/wav2vec2-xls-r-300m-bangla-command-data on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0099 - eval_wer: 0.0208 - eval_runtime: 2.5526 - eval_samples_per_second: 75.217 - eval_steps_per_second: 9.402 - epoch: 71.43 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# wav2vec2-xls-r-300m-bangla-command-generated-data-finetune\n\nThis model is a fine-tuned version of hrdipto/wav2vec2-xls-r-300m-bangla-command-data on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0099\n- eval_wer: 0.0208\n- eval_runtime: 2.5526\n- eval_samples_per_second: 75.217\n- eval_steps_per_second: 9.402\n- epoch: 71.43\n- step: 2000", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 100\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us \n", "# wav2vec2-xls-r-300m-bangla-command-generated-data-finetune\n\nThis model is a fine-tuned version of hrdipto/wav2vec2-xls-r-300m-bangla-command-data on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0099\n- eval_wer: 0.0208\n- eval_runtime: 2.5526\n- eval_samples_per_second: 75.217\n- eval_steps_per_second: 9.402\n- epoch: 71.43\n- step: 2000", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 100\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 48, 145, 6, 12, 8, 3, 117, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us \n# wav2vec2-xls-r-300m-bangla-command-generated-data-finetune\n\nThis model is a fine-tuned version of hrdipto/wav2vec2-xls-r-300m-bangla-command-data on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0099\n- eval_wer: 0.0208\n- eval_runtime: 2.5526\n- eval_samples_per_second: 75.217\n- eval_steps_per_second: 9.402\n- epoch: 71.43\n- step: 2000## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 100\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.098066046833992, 0.1494089663028717, -0.003268929896876216, 0.06826438754796982, 0.13111427426338196, 0.022174298763275146, 0.04021425545215607, 0.1452433168888092, -0.07391206175088882, 0.09603581577539444, 0.059002719819545746, 0.03360562399029732, 0.08463030308485031, 0.10883461683988571, -0.011994152329862118, -0.2062615007162094, -0.011920780874788761, -0.02238147146999836, -0.02677474543452263, 0.09471409767866135, 0.11334613710641861, -0.08197590708732605, 0.046680815517902374, -0.0002164313627872616, -0.0820002481341362, 0.020682333037257195, -0.06093890219926834, -0.05197788029909134, 0.08614788204431534, 0.011032764799892902, 0.056812722235918045, 0.0033560004085302353, 0.10216622799634933, -0.2778412997722626, -0.010114445351064205, 0.07749051600694656, 0.04539557546377182, 0.07302675396203995, 0.05221179500222206, -0.011390033178031445, 0.06608284264802933, -0.17598631978034973, 0.10981086641550064, 0.04634084179997444, -0.08056635409593582, -0.19627505540847778, -0.09750755876302719, 0.09180822223424911, 0.11376900970935822, 0.10633260756731033, -0.012204719707369804, 0.14386101067066193, -0.0375291146337986, 0.07213501632213593, 0.22409096360206604, -0.2507117688655853, -0.04860403761267662, 0.0036570129450410604, 0.0689219981431961, 0.06723519414663315, -0.10269072651863098, -0.0014719716273248196, 0.04275243729352951, 0.00914312619715929, 0.08957545459270477, 0.0017520565306767821, -0.08627064526081085, -0.0011869946029037237, -0.11249630898237228, -0.05470091849565506, 0.1937645971775055, 0.08034110814332962, -0.05227157846093178, -0.1190778836607933, -0.013427579775452614, -0.16968858242034912, -0.0023325097281485796, -0.061691995710134506, 0.026928158476948738, -0.05603363737463951, -0.05107976123690605, -0.05721397325396538, -0.08077127486467361, -0.05940905585885048, 0.05581611394882202, 0.151223286986351, 0.03692999854683876, -0.010457666590809822, 0.0012080478481948376, 0.11587228626012802, -0.002690029563382268, -0.12648005783557892, -0.06887591630220413, 0.01721986196935177, -0.1138574481010437, -0.05596844479441643, -0.03930874913930893, -0.034899890422821045, -0.027730271220207214, 0.20224004983901978, -0.029428552836179733, 0.07720240205526352, 0.03507273644208908, -0.006798604968935251, -0.02187349647283554, 0.13900186121463776, -0.021407736465334892, -0.06993257254362106, -0.0394747219979763, 0.08631689846515656, -0.018595775589346886, -0.023551147431135178, -0.04320458695292473, -0.021321183070540428, 0.08449564129114151, 0.07936342805624008, -0.021065613254904747, 0.012325964868068695, -0.06673426181077957, -0.019670000299811363, -0.0013098509516566992, -0.14382103085517883, 0.03516038507223129, -0.003086087526753545, -0.08059677481651306, -0.052205175161361694, 0.05067410692572594, 0.014420350082218647, -0.03578491136431694, 0.050484802573919296, -0.04997176304459572, -0.015955867245793343, -0.05201799422502518, -0.04405532777309418, 0.01816294528543949, -0.08088849484920502, 0.0033116391859948635, -0.06885188817977905, -0.16730137169361115, -0.050583381205797195, 0.030762555077672005, -0.0669105052947998, -0.047454994171857834, -0.03569285199046135, -0.044339731335639954, 0.013698115013539791, -0.03027454763650894, 0.15706346929073334, -0.0403936468064785, 0.07042287290096283, -0.00895435456186533, 0.02605639584362507, 0.084478460252285, 0.04693829268217087, -0.05716655030846596, 0.03803938999772072, -0.05193641409277916, 0.10981398820877075, -0.10885219275951385, -0.0013603528495877981, -0.16322313249111176, -0.08539833128452301, -0.02375294454395771, -0.024741658940911293, 0.0798582062125206, 0.11083030700683594, -0.15240293741226196, -0.025996960699558258, 0.11677280068397522, -0.03737746179103851, -0.09171205759048462, 0.0876598060131073, -0.03193732723593712, 0.07291889190673828, 0.05576416477560997, 0.1380889117717743, 0.1078236848115921, -0.17097605764865875, -0.04633687809109688, 0.0032529812306165695, 0.06032579764723778, 0.08717364072799683, 0.08281205594539642, -0.02971681021153927, 0.046827416867017746, 0.01091018971055746, -0.09037264436483383, -0.023558560758829117, -0.07273395359516144, -0.09470134228467941, -0.0372469462454319, -0.07685735821723938, 0.02359815314412117, 0.014075384475290775, 0.01795504428446293, -0.07523533701896667, -0.143583744764328, 0.07817254960536957, 0.1474626213312149, -0.05178660899400711, 0.018450886011123657, -0.08284101635217667, -0.02054041624069214, 0.0066374181769788265, -0.02771431766450405, -0.17747661471366882, -0.0725976750254631, 0.039673976600170135, -0.0895129069685936, 0.01337131205946207, 0.01152464933693409, 0.07042532414197922, 0.04790439456701279, -0.0360843650996685, -0.026008686050772667, -0.12391851097345352, 0.0065592252649366856, -0.08234058320522308, -0.1427791267633438, -0.07262866199016571, -0.024361595511436462, 0.2362557202577591, -0.21399334073066711, 0.011838086880743504, 0.03487769141793251, 0.13125862181186676, 0.019088543951511383, -0.08620437979698181, -0.0009339540265500546, 0.016094045713543892, 0.00020807275723200291, -0.10048209875822067, 0.011334571056067944, 0.0054351557046175, -0.09693057090044022, -0.05042070150375366, -0.1458662450313568, -0.018108531832695007, 0.06543021649122238, 0.0921977162361145, -0.11301301419734955, -0.028285956010222435, -0.05738071724772453, -0.05216933786869049, -0.07678146660327911, -0.03782530501484871, 0.22143444418907166, 0.040521834045648575, 0.10877251625061035, -0.045560695230960846, -0.08341269195079803, 0.00258385157212615, 0.014362422749400139, -0.014576866291463375, 0.10071557760238647, 0.022719301283359528, -0.08474384248256683, 0.05645645409822464, 0.054450441151857376, 0.0005227295914664865, 0.12475242465734482, -0.026080137118697166, -0.10739560425281525, -0.04505244269967079, 0.026983294636011124, 0.010107208974659443, 0.10168368369340897, -0.11508326232433319, 0.007892719469964504, 0.05426061525940895, -0.005691490601748228, 0.010745013132691383, -0.14541099965572357, -0.0016350488876923919, 0.062382303178310394, -0.032735150307416916, 0.014382793568074703, -0.035623129457235336, 0.004231957718729973, 0.05958620458841324, 0.026928922161459923, 0.014018242247402668, 0.0013558748178184032, -0.015174887143075466, -0.08429910987615585, 0.15228821337223053, -0.08678343147039413, -0.16969707608222961, -0.12839184701442719, 0.053102049976587296, -0.028726860880851746, -0.03218607231974602, 0.026712415739893913, -0.0843687430024147, -0.0649283155798912, -0.09537540376186371, -0.00882098637521267, -0.07800226658582687, -0.02709139697253704, 0.07867145538330078, 0.04022130370140076, 0.09442736953496933, -0.1339036226272583, 0.01783059351146221, 0.004160972777754068, -0.07501546293497086, -0.017142459750175476, 0.05167708545923233, 0.10763479769229889, 0.0891505628824234, 0.0014362101210281253, 0.027619633823633194, -0.026383398100733757, 0.2011125534772873, -0.10360685735940933, -0.015367947518825531, 0.10181834548711777, -0.0014818605268374085, 0.051468778401613235, 0.08958692103624344, 0.02016623131930828, -0.08754310756921768, 0.032604970037937164, 0.0632481798529625, -0.024661879986524582, -0.2626587748527527, -0.027770403772592545, -0.011071780696511269, -0.08060327917337418, 0.1377989947795868, 0.04987732321023941, 0.023957867175340652, 0.051705848425626755, -0.042245835065841675, 0.034466955810785294, 0.002967879641801119, 0.09572850167751312, 0.05179159343242645, 0.028671501204371452, 0.08870309591293335, -0.016521360725164413, -0.004974856972694397, 0.046185001730918884, 0.026339013129472733, 0.24625436961650848, -0.01050721574574709, 0.17700977623462677, 0.022911200299859047, 0.14842599630355835, -0.05747930705547333, 0.0282184649258852, 0.04520101100206375, 0.007377965841442347, 0.017905905842781067, -0.07021904736757278, -0.033236242830753326, 0.06953377276659012, 0.01684078760445118, 0.026563342660665512, -0.07350519299507141, 0.027221761643886566, 0.0071680727414786816, 0.28124967217445374, 0.037917610257864, -0.2739280164241791, -0.08085734397172928, 0.01709376461803913, -0.02549920044839382, -0.07060796767473221, -0.023746514692902565, 0.09941338747739792, -0.14643871784210205, 0.06650429964065552, -0.028957216069102287, 0.08675572276115417, -0.07093263417482376, -0.00786295160651207, 0.012059216387569904, 0.06317681074142456, 0.006552651058882475, 0.09041596204042435, -0.17132246494293213, 0.19359058141708374, 0.01650843396782875, 0.11752847582101822, -0.06665871292352676, 0.0473463274538517, -0.016169331967830658, -0.0005436136270873249, 0.14771229028701782, 0.000004021901986561716, -0.014602763578295708, -0.2064928114414215, -0.09509048610925674, 0.01868412271142006, 0.12738417088985443, -0.11998292058706284, 0.09203849732875824, -0.03215211257338524, 0.004333898425102234, 0.028341641649603844, -0.05577632039785385, -0.1723659783601761, -0.1391671597957611, 0.04670637473464012, 0.004244882147759199, 0.031453266739845276, -0.07257483899593353, -0.09940903633832932, -0.07068344950675964, 0.19558922946453094, -0.062271252274513245, -0.048646267503499985, -0.14032411575317383, 0.06920429319143295, 0.14198806881904602, -0.06677347421646118, 0.016635706648230553, 0.045101918280124664, 0.14501595497131348, 0.02380204387009144, -0.017461707815527916, 0.041304636746644974, -0.05890800058841705, -0.16310365498065948, -0.05309845879673958, 0.1465754210948944, 0.060250069946050644, 0.05775381252169609, 0.011332182213664055, 0.02671212889254093, 0.005517662037163973, -0.0763939693570137, 0.024745913222432137, 0.07408862560987473, 0.04659005254507065, 0.04428810253739357, -0.04743156582117081, 0.029232220724225044, -0.08149024099111557, -0.0425904206931591, 0.13808833062648773, 0.263062983751297, -0.08573437482118607, 0.08308090269565582, 0.0417756587266922, -0.08013373613357544, -0.14084036648273468, 0.035105910152196884, 0.14400452375411987, 0.015421592630445957, 0.0962878167629242, -0.1856817752122879, 0.07092753797769547, 0.13140283524990082, -0.02239154279232025, 0.032378148287534714, -0.2823062241077423, -0.13779295980930328, 0.06487811356782913, 0.08076097071170807, -0.03427225351333618, -0.12212631851434708, -0.057457175105810165, -0.034802258014678955, -0.1771387755870819, 0.06753834336996078, -0.05241842195391655, 0.10352056473493576, 0.008154504932463169, 0.048113662749528885, 0.0486033596098423, -0.03365147113800049, 0.16913962364196777, 0.06307022273540497, 0.0452527180314064, -0.046734098345041275, 0.05509147793054581, 0.07941806316375732, -0.08579464256763458, 0.09915990382432938, -0.03615766391158104, 0.0449647419154644, -0.1861059069633484, -0.03644025698304176, -0.04130897670984268, 0.06968645751476288, -0.05313064157962799, -0.05769032984972, -0.035793501883745193, 0.0383845716714859, 0.06964443624019623, -0.019901422783732414, 0.048772651702165604, 0.015435140579938889, 0.06353245675563812, 0.1217045858502388, 0.05630640685558319, 0.026188328862190247, -0.16670575737953186, -0.007136921398341656, -0.0132339121773839, 0.05276482179760933, -0.1301707923412323, 0.02946566604077816, 0.10953207314014435, 0.06161929666996002, 0.15039923787117004, -0.005448496900498867, -0.09095399081707001, 0.013474810868501663, 0.011102357879281044, -0.06354378908872604, -0.1596578061580658, -0.015386788174510002, -0.017285551875829697, -0.13750138878822327, -0.005056093912571669, 0.12155293673276901, -0.057058364152908325, -0.01151096448302269, -0.03152288869023323, 0.01869436539709568, -0.013551310636103153, 0.1831413209438324, 0.026359478011727333, 0.08744450658559799, -0.0647791400551796, 0.1153983473777771, 0.09789116680622101, -0.07919232547283173, 0.08589755743741989, 0.023570993915200233, -0.06512000411748886, -0.02306324802339077, 0.015562964603304863, 0.06535576283931732, 0.01180972345173359, -0.030785292387008667, -0.05195864662528038, -0.05826595798134804, 0.04964328184723854, 0.0017707220977172256, 0.017029037699103355, -0.014150994829833508, -0.0032586429733783007, 0.023552684113383293, -0.1368626207113266, 0.08229155093431473, 0.05523757264018059, 0.05162005126476288, -0.10510393232107162, 0.11645609885454178, 0.033945564180612564, 0.02924237959086895, 0.005832446273416281, -0.016166305169463158, -0.04900607094168663, 0.007895659655332565, -0.09783725440502167, -0.015798209235072136, -0.013791508041322231, 0.003468809649348259, -0.016106506809592247, -0.044686105102300644, -0.03295460343360901, 0.06993094831705093, -0.07107114046812057, -0.09671542793512344, 0.007128689903765917, 0.08254476636648178, -0.12797677516937256, -0.01840030401945114, 0.055521462112665176, -0.12216437608003616, 0.07826721668243408, 0.05592341348528862, 0.03094596602022648, 0.007102818228304386, -0.05491005629301071, 0.016547465696930885, 0.02117919735610485, 0.04057811573147774, 0.04155413806438446, -0.1158766821026802, -0.015370135195553303, -0.04233086109161377, 0.040572766214609146, 0.01592196151614189, 0.040446627885103226, -0.12712816894054413, -0.05654200166463852, -0.056354474276304245, -0.03252594545483589, -0.04590236395597458, 0.044054482132196426, 0.08694954216480255, 0.04145205020904541, 0.146537646651268, -0.038874551653862, 0.051300887018442154, -0.21575361490249634, -0.03365730121731758, -0.013897202908992767, -0.006447027437388897, -0.03624751791357994, -0.0403912179172039, 0.08529211580753326, -0.050787027925252914, 0.09197119623422623, -0.02686901018023491, 0.1230819970369339, 0.03814506530761719, -0.05544433742761612, -0.03380642458796501, -0.002420528093352914, 0.1762782782316208, 0.08815343677997589, 0.00201216503046453, 0.07585372030735016, -0.03986595198512077, 0.0750792920589447, 0.028920460492372513, 0.08816848695278168, 0.17324648797512054, -0.0045432220213115215, 0.052058860659599304, 0.05026315897703171, -0.13298901915550232, -0.1559043824672699, 0.12238946557044983, -0.03145699203014374, 0.10665907710790634, -0.03563921898603439, 0.13790787756443024, 0.09405899792909622, -0.17849262058734894, 0.05188068747520447, -0.048604413866996765, -0.09677481651306152, -0.0837436318397522, -0.05085030198097229, -0.08701561391353607, -0.09904774278402328, 0.04266601428389549, -0.08948022127151489, 0.03616863861680031, 0.10645007342100143, 0.011190487071871758, 0.026195084676146507, 0.14349792897701263, -0.0378989614546299, -0.016934048384428024, 0.07360761612653732, -0.00449328450486064, -0.010844642296433449, -0.09238999336957932, -0.04499710351228714, 0.08713198453187943, 0.03379260376095772, 0.10452748090028763, -0.033441513776779175, 0.003055780427530408, 0.019103936851024628, 0.01401175931096077, -0.09349226951599121, 0.005341313313692808, 0.017305102199316025, 0.028805170208215714, 0.048398811370134354, 0.06375601142644882, 0.023024752736091614, -0.046188466250896454, 0.25340700149536133, -0.05096473544836044, -0.06073868274688721, -0.13014476001262665, 0.10926280915737152, 0.06837662309408188, 0.0074129244312644005, 0.06578731536865234, -0.11764572560787201, 0.006314310245215893, 0.11683709174394608, 0.07984631508588791, -0.005423134658485651, -0.005824062507599592, -0.007309050299227238, -0.011682350188493729, -0.05958803743124008, 0.06723155826330185, 0.09301003813743591, -0.040789734572172165, -0.04670441150665283, 0.03541874513030052, 0.007307141553610563, -0.06234432011842728, -0.06637298315763474, 0.07079554349184036, -0.02335529401898384, 0.0256500244140625, -0.024794377386569977, 0.08903494477272034, 0.034162089228630066, -0.2521308362483978, 0.06218671426177025, -0.16604529321193695, -0.1824655681848526, -0.00968905258923769, 0.08654364198446274, -0.006397496443241835, 0.0437953844666481, 0.012999096885323524, -0.018554754555225372, 0.17447201907634735, -0.002644481835886836, -0.049970969557762146, -0.11513254046440125, 0.0828959047794342, -0.06095777451992035, 0.25131353735923767, -0.007172423880547285, 0.07534709572792053, 0.08697021752595901, 0.004958732053637505, -0.149287149310112, 0.035023678094148636, 0.0839218944311142, -0.03989195451140404, 0.05671415850520134, 0.1870889514684677, -0.06192475184798241, 0.12303794920444489, 0.06348288804292679, -0.1334395408630371, -0.023496676236391068, -0.013204537332057953, 0.018869176506996155, -0.09138365089893341, -0.002069182926788926, -0.04394879192113876, 0.14696940779685974, 0.1738170087337494, -0.05236386880278587, -0.01278250478208065, -0.08299519121646881, 0.01812518760561943, 0.04308062046766281, 0.1268271952867508, -0.009213418699800968, -0.1979709267616272, 0.02608715370297432, 0.010535134933888912, 0.05605803057551384, -0.23933526873588562, -0.10982687771320343, 0.07320735603570938, -0.06551720201969147, -0.0008780804928392172, 0.09902733564376831, 0.06705885380506516, 0.011579443700611591, -0.03897972032427788, -0.15363191068172455, -0.025140687823295593, 0.14247441291809082, -0.15949136018753052, -0.03194015845656395 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-tf-left-right-shuru-word-level This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0504 - Wer: 0.6859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 23.217 | 23.81 | 500 | 1.3437 | 0.6859 | | 1.1742 | 47.62 | 1000 | 1.0397 | 0.6859 | | 1.0339 | 71.43 | 1500 | 1.0155 | 0.6859 | | 0.9909 | 95.24 | 2000 | 1.0504 | 0.6859 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-shuru-word-level", "results": []}]}
automatic-speech-recognition
hrdipto/wav2vec2-xls-r-tf-left-right-shuru-word-level
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-tf-left-right-shuru-word-level ============================================= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0504 * Wer: 0.6859 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 100 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.10954299569129944, 0.09873781353235245, -0.0032914397306740284, 0.06422559171915054, 0.10840313881635666, -0.020404495298862457, 0.1281270831823349, 0.15050694346427917, -0.08948522806167603, 0.07442682236433029, 0.12633514404296875, 0.15167510509490967, 0.042937442660331726, 0.147494375705719, -0.049959663301706314, -0.2820800840854645, 0.04651576653122902, 0.03578434884548187, -0.011033759452402592, 0.12720680236816406, 0.08339891582727432, -0.12459003925323486, 0.05771542340517044, 0.03330190107226372, -0.15850941836833954, -0.004401085432618856, -0.003849382046610117, -0.10542039573192596, 0.12404133379459381, 0.004830718971788883, 0.07034512609243393, 0.048078637570142746, 0.06645245105028152, -0.21960623562335968, 0.0066198622807860374, 0.04384505748748779, 0.02912098914384842, 0.07397374510765076, 0.05658084526658058, -0.02874011918902397, 0.10129309445619583, -0.07366795092821121, 0.08070402592420578, 0.03742528334259987, -0.10602883994579315, -0.29187870025634766, -0.08709555864334106, 0.047631777822971344, 0.069968082010746, 0.08818896859884262, -0.012929998338222504, 0.1432967483997345, -0.05365323647856712, 0.11026857793331146, 0.28164875507354736, -0.3138352036476135, -0.04463854432106018, -0.038351621478796005, 0.057463955134153366, 0.0600416474044323, -0.09976568073034286, -0.016860274598002434, 0.015416222624480724, 0.04476551339030266, 0.13859786093235016, -0.016611158847808838, -0.06146911904215813, -0.007107859943062067, -0.1479564905166626, -0.05989835038781166, 0.11518239974975586, 0.0238510649651289, -0.040472157299518585, -0.0991148129105568, -0.05493372306227684, -0.21565939486026764, -0.06793393194675446, -0.01748397760093212, 0.043251726776361465, -0.0424342043697834, -0.10603396594524384, -0.01101229339838028, -0.06698963791131973, -0.07462633401155472, -0.04081804305315018, 0.1883065402507782, 0.05627438798546791, -0.0017432107124477625, -0.037408724427223206, 0.07680433988571167, -0.022072777152061462, -0.13786649703979492, -0.023677462711930275, 0.0359673835337162, -0.022386498749256134, -0.015721648931503296, -0.04241546615958214, -0.059575241059064865, 0.02209477499127388, 0.16200461983680725, -0.10040822625160217, 0.09642519056797028, -0.018587378785014153, 0.039569173008203506, -0.10244667530059814, 0.20787395536899567, -0.04140487313270569, 0.015610133297741413, -0.00963031966239214, 0.055843010544776917, 0.029491767287254333, -0.02689044363796711, -0.09504249691963196, 0.030841147527098656, 0.12314575165510178, 0.04651401937007904, -0.04924074932932854, 0.06541424244642258, -0.03411976620554924, -0.009045064449310303, -0.0020527690649032593, -0.11186003684997559, 0.0366465225815773, 0.018929392099380493, -0.06388428062200546, 0.004663754254579544, 0.013141433708369732, 0.007901394739747047, -0.05453629046678543, 0.08279645442962646, -0.06143476441502571, 0.03322938457131386, -0.05721372365951538, -0.12637211382389069, 0.025030886754393578, -0.11678270995616913, -0.004166305996477604, -0.10063190758228302, -0.09893867373466492, -0.012530773878097534, 0.037305038422346115, -0.03782259300351143, -0.025493193417787552, -0.07945683598518372, -0.09107675403356552, 0.044905539602041245, -0.03448178619146347, 0.07106243818998337, -0.0742640420794487, 0.09402590990066528, 0.032980214804410934, 0.08860070258378983, -0.014222322031855583, 0.06009787321090698, -0.07107154279947281, 0.027142338454723358, -0.19976618885993958, 0.07588707655668259, -0.08786968886852264, 0.05833371356129646, -0.12463777512311935, -0.11377465724945068, 0.02130008675158024, -0.006651066243648529, 0.09843911975622177, 0.09864544868469238, -0.17343193292617798, -0.08864743262529373, 0.2097746729850769, -0.08163071423768997, -0.08526843041181564, 0.12524977326393127, -0.025563834235072136, 0.0007085074321366847, 0.05782746896147728, 0.2578134834766388, 0.04450339451432228, -0.126304030418396, 0.007286184933036566, -0.040850430727005005, 0.04321899265050888, -0.03581277281045914, 0.05692686140537262, -0.0282380860298872, 0.06803422421216965, 0.0179448239505291, -0.0029752578120678663, 0.03754488378763199, -0.08695269376039505, -0.07732238620519638, -0.0438486747443676, -0.07849600166082382, 0.029588140547275543, 0.03242886811494827, 0.06447744369506836, -0.11712539196014404, -0.10780653357505798, 0.036879755556583405, 0.08001743257045746, -0.10422737896442413, 0.07193200290203094, -0.1206674724817276, 0.08479741960763931, -0.014803782105445862, -0.00472646439447999, -0.18997853994369507, 0.037542033940553665, 0.03895549848675728, -0.028763044625520706, 0.039093900471925735, -0.06492841988801956, 0.07831571251153946, 0.0455205962061882, -0.025972653180360794, -0.04658856615424156, -0.00902535766363144, 0.011431830935180187, -0.09100779891014099, -0.2054673284292221, -0.03821024298667908, -0.038168247789144516, 0.07931296527385712, -0.13768185675144196, 0.034569498151540756, 0.07677564769983292, 0.09135384112596512, 0.03283943608403206, -0.03209216892719269, -0.0011433346662670374, 0.08997760713100433, -0.02044878713786602, -0.06446640938520432, 0.057467252016067505, 0.019382517784833908, -0.0877213254570961, 0.037327561527490616, -0.14881162345409393, 0.1265646070241928, 0.14716987311840057, -0.014981868676841259, -0.06841389089822769, -0.0003773509815800935, -0.046610649675130844, -0.03420918062329292, -0.004915814381092787, 0.03165717050433159, 0.215254008769989, 0.015380959957838058, 0.14271073043346405, -0.08854681998491287, -0.042830370366573334, 0.05004410818219185, -0.021554579958319664, -0.005497281439602375, 0.1166505515575409, 0.04522931948304176, -0.05383561551570892, 0.11893770843744278, 0.09066524356603622, -0.07976048439741135, 0.11864036321640015, -0.060464076697826385, -0.07414653897285461, -0.020772606134414673, 0.005081075243651867, 0.023295555263757706, 0.09780607372522354, -0.1640302836894989, -0.04083320125937462, 0.02547384984791279, 0.025053782388567924, 0.01866116002202034, -0.20824767649173737, 0.013832724653184414, 0.02837979793548584, -0.08540216833353043, -0.042559292167425156, 0.00245524849742651, 0.012299752794206142, 0.0940241813659668, 0.011955509893596172, -0.09411153942346573, 0.010935957543551922, 0.0038194824010133743, -0.07323139905929565, 0.1762324869632721, -0.11563840508460999, -0.1757233738899231, -0.1042800173163414, -0.09177547693252563, -0.03876212239265442, -0.002036147750914097, 0.08858535438776016, -0.09243367612361908, -0.03852825611829758, -0.08446145057678223, -0.015602856874465942, -0.02577873505651951, 0.04237023741006851, 0.030467476695775986, -0.012013492174446583, 0.06259190291166306, -0.1164546087384224, -0.022455401718616486, -0.04039354249835014, -0.001648631994612515, 0.05531787499785423, 0.03649210184812546, 0.10873953253030777, 0.1595853567123413, -0.010676936246454716, 0.051155924797058105, -0.04613202065229416, 0.18863095343112946, -0.07514575868844986, -0.03574934974312782, 0.10947290062904358, -0.005132707301527262, 0.06845349073410034, 0.11863085627555847, 0.048924919217824936, -0.09844417124986649, -0.013117431662976742, 0.003806079737842083, -0.045474790036678314, -0.21340511739253998, -0.033113978803157806, -0.04456606134772301, -0.0018143982160836458, 0.10627160221338272, 0.04060843586921692, 0.03797546401619911, 0.02357885241508484, 0.0330607108771801, 0.005766916088759899, 0.003448293311521411, 0.09625225514173508, 0.12913210690021515, 0.03935186564922333, 0.13320937752723694, -0.036888789385557175, -0.038714535534381866, 0.029400544241070747, 0.0046701314859092236, 0.2331010401248932, 0.020757542923092842, 0.19061440229415894, 0.05574365332722664, 0.1753501147031784, 0.041200362145900726, 0.06820358335971832, -0.001597998314537108, -0.010735834017395973, 0.010841122828423977, -0.05208582058548927, -0.03968871384859085, 0.023704299703240395, 0.02439628168940544, 0.009039584547281265, -0.11376696825027466, -0.013972120359539986, 0.046557970345020294, 0.3522767424583435, 0.028853682801127434, -0.33673685789108276, -0.08915157616138458, -0.011283766478300095, -0.08630307018756866, -0.03059733472764492, 0.04531724005937576, 0.08898455649614334, -0.08186520636081696, 0.06375271081924438, -0.06276282668113708, 0.09019862860441208, -0.06527306139469147, 0.033736422657966614, 0.035415928810834885, 0.07049499452114105, 0.003382492810487747, 0.032853864133358, -0.29259711503982544, 0.2807064950466156, 0.004650570917874575, 0.0781450942158699, -0.061624206602573395, 0.008002051152288914, 0.02557320147752762, 0.01668386347591877, 0.08807667344808578, -0.025891076773405075, -0.12134092301130295, -0.1775466948747635, -0.09239742904901505, 0.011056709103286266, 0.12792247533798218, 0.012478110380470753, 0.1106824055314064, -0.010452601127326488, -0.01659495197236538, 0.049141205847263336, -0.09398899227380753, -0.06534826010465622, -0.09186127781867981, 0.010524587705731392, 0.08282053470611572, 0.03623576834797859, -0.0721360296010971, -0.10316373407840729, -0.08822479099035263, 0.14760346710681915, -0.05390321835875511, -0.04336781054735184, -0.11802789568901062, 0.007839902304112911, 0.11014439165592194, -0.07925088703632355, 0.06107473745942116, 0.009906571358442307, 0.10448598116636276, 0.010325845330953598, -0.06722518056631088, 0.11965961754322052, -0.06345878541469574, -0.16715823113918304, -0.029435785487294197, 0.14541040360927582, 0.030541667714715004, 0.06024562940001488, -0.006741285789757967, 0.03873484209179878, -0.021533163264393806, -0.0777856782078743, 0.04143873602151871, 0.027503248304128647, 0.04470732435584068, -0.014206839725375175, -0.020286962389945984, -0.005458523984998465, -0.092143215239048, -0.017812080681324005, 0.20657967031002045, 0.2433132529258728, -0.09671036899089813, 0.09242824465036392, 0.07054515182971954, -0.04207838699221611, -0.17109502851963043, -0.005364830605685711, 0.06509749591350555, 0.00029050654848106205, -0.025419609621167183, -0.19329196214675903, 0.024708323180675507, 0.07068528980016708, -0.020678779110312462, 0.08496245741844177, -0.31854888796806335, -0.14039675891399384, 0.1382562816143036, 0.11448084563016891, 0.06179714947938919, -0.14635130763053894, -0.05542339012026787, -0.011684753932058811, -0.10281585901975632, 0.09466679394245148, -0.07480227202177048, 0.13611441850662231, -0.023239154368638992, 0.09094065427780151, 0.011861932463943958, -0.05805433914065361, 0.10578307509422302, 0.014349930919706821, 0.060503460466861725, -0.04615020379424095, 0.016661815345287323, 0.04746484383940697, -0.06291206181049347, 0.05584972724318504, -0.08041075617074966, 0.02704249881207943, -0.07878268510103226, -0.033330343663692474, -0.08450663834810257, 0.014150233939290047, -0.009041558019816875, -0.03433900326490402, -0.037647053599357605, 0.0012825436424463987, 0.06266023218631744, -0.010874048806726933, 0.15425506234169006, -0.026982998475432396, 0.12771837413311005, 0.1612652689218521, 0.10134720057249069, -0.10507036000490189, -0.07794497162103653, 0.006444824859499931, -0.0353928841650486, 0.05527971312403679, -0.114251047372818, 0.036970868706703186, 0.13586045801639557, 0.0317814014852047, 0.1230761855840683, 0.07006236910820007, -0.06595906615257263, 0.03336332365870476, 0.041813239455223083, -0.13666492700576782, -0.12745165824890137, 0.014391975477337837, 0.021960584446787834, -0.07239434123039246, 0.07329856604337692, 0.11538799107074738, -0.055434390902519226, -0.014538846909999847, -0.002790429862216115, 0.01461660023778677, -0.04043827950954437, 0.19656917452812195, 0.036879219114780426, 0.061267055571079254, -0.12445112317800522, 0.08026530593633652, 0.03825094550848007, -0.13416461646556854, 0.06092957779765129, 0.10449139773845673, -0.09554275870323181, -0.028595883399248123, 0.028480472043156624, 0.11316141486167908, -0.02681661583483219, -0.07262279093265533, -0.14142650365829468, -0.14410068094730377, 0.10833471268415451, 0.20469264686107635, 0.056105438619852066, 0.01793164201080799, -0.059262488037347794, 0.016316000372171402, -0.1177837997674942, 0.06858782470226288, 0.04270758479833603, 0.059764523059129715, -0.12803928554058075, 0.14716140925884247, 0.01723911054432392, 0.03987022116780281, -0.014985362999141216, -0.011578728444874287, -0.11220239102840424, 0.04025993496179581, -0.12759321928024292, 0.0053183394484221935, -0.06666240096092224, 0.0005802881787531078, 0.004140312317758799, -0.049399010837078094, -0.06345752626657486, 0.03355974704027176, -0.12033090740442276, -0.022954951971769333, 0.0010879815090447664, 0.03561911731958389, -0.12854722142219543, -0.010034811682999134, 0.014622929506003857, -0.09445216506719589, 0.09760427474975586, 0.08662255853414536, -0.03380337730050087, 0.050895851105451584, -0.06241556629538536, -0.024912232533097267, 0.07826048880815506, -0.006731427740305662, 0.05049201846122742, -0.13120625913143158, -0.01891012117266655, 0.010861457325518131, 0.03546803444623947, 0.02475726418197155, 0.11155343800783157, -0.11613568663597107, -0.0007936620968393981, -0.027263224124908447, -0.05233846604824066, -0.06935308873653412, 0.049911659210920334, 0.11069650948047638, 0.02790077216923237, 0.16516898572444916, -0.0933993011713028, 0.028691140934824944, -0.16638906300067902, 0.006468876264989376, -0.014837069436907768, -0.12160038948059082, -0.05011274665594101, -0.032570239156484604, 0.07884865999221802, -0.0631338506937027, 0.13064607977867126, -0.03075088933110237, 0.025161447003483772, 0.036469586193561554, -0.07828015089035034, -0.0527469776570797, 0.040124084800481796, 0.20741739869117737, 0.03956456482410431, -0.044178880751132965, 0.07282374054193497, 0.021301409229636192, 0.08074010163545609, 0.12784172594547272, 0.17232707142829895, 0.15909621119499207, 0.062180954962968826, 0.11706854403018951, 0.05342555046081543, -0.05187973380088806, -0.17054444551467896, 0.09200920164585114, -0.06030571088194847, 0.12936437129974365, -0.014301195740699768, 0.24417847394943237, 0.1201138123869896, -0.15352948009967804, 0.06636855751276016, -0.018945807591080666, -0.0899410992860794, -0.11638960242271423, -0.06593874096870422, -0.08715374767780304, -0.17543204128742218, 0.009455111809074879, -0.10179425776004791, 0.06203227862715721, 0.04726257175207138, 0.038152050226926804, 0.016367249190807343, 0.13674096763134003, 0.01531605701893568, 0.0026255035772919655, 0.09254135191440582, -0.003501188475638628, -0.05687446519732475, -0.07224809378385544, -0.08517061173915863, 0.03454108536243439, -0.013258512131869793, 0.05836020037531853, -0.003164408029988408, -0.07028627395629883, 0.04676789417862892, -0.0390552394092083, -0.09649781137704849, 0.02226269245147705, 0.020778264850378036, 0.07001485675573349, 0.05092121288180351, 0.035551175475120544, -0.04264792427420616, -0.002246784046292305, 0.19426937401294708, -0.09474879503250122, -0.09459006786346436, -0.1095619946718216, 0.2517842948436737, 0.04015745967626572, -0.015760254114866257, 0.020758552476763725, -0.060395412147045135, -0.031212205067276955, 0.2123595029115677, 0.17211712896823883, -0.010134766809642315, 0.004089081659913063, -0.014844562858343124, -0.006620477419346571, -0.03648579493165016, 0.07974691689014435, 0.14597897231578827, 0.06169988587498665, -0.06308671087026596, -0.04906245321035385, -0.05028046667575836, -0.035623591393232346, -0.06767010688781738, 0.07728166878223419, 0.0058279335498809814, -0.024887727573513985, -0.04564166069030762, 0.06562773138284683, -0.09434399008750916, -0.08332283794879913, 0.0257792379707098, -0.19353632628917694, -0.1487489640712738, 0.007178751286119223, 0.06937839835882187, 0.012977039441466331, 0.03497197851538658, 0.0036974602844566107, -0.00788669940084219, 0.08064007014036179, -0.0013644119026139379, -0.08130128681659698, -0.0664898157119751, 0.08444055914878845, -0.13308702409267426, 0.16576837003231049, -0.0416889451444149, 0.0483836755156517, 0.1232990100979805, 0.08817929774522781, -0.07881080359220505, 0.08898291736841202, 0.0424179844558239, -0.10575871169567108, 0.023239770904183388, 0.15274737775325775, -0.03320731222629547, 0.09310232102870941, 0.03045591153204441, -0.11389287561178207, 0.015381242148578167, -0.0909588634967804, -0.037897828966379166, -0.04307923465967178, -0.04908560588955879, -0.04397739842534065, 0.10986648499965668, 0.16293127834796906, -0.043940071016550064, 0.004727006424218416, -0.05286566913127899, 0.010922370478510857, 0.04697117581963539, -0.004585982766002417, -0.06245831400156021, -0.27924230694770813, 0.011095499619841576, 0.03904192894697189, 0.0024522216990590096, -0.2558799386024475, -0.09656772017478943, 0.01269526593387127, -0.04261689633131027, -0.08763118088245392, 0.08571159094572067, 0.07505708187818527, 0.04689347743988037, -0.05196138471364975, -0.057690251618623734, -0.03496808931231499, 0.1900923252105713, -0.17577718198299408, -0.05937637761235237 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-tf-left-right-shuru This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0921 - Wer: 1.2628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5528 | 23.81 | 500 | 0.5509 | 1.9487 | | 0.2926 | 47.62 | 1000 | 0.1306 | 1.2756 | | 0.1171 | 71.43 | 1500 | 0.1189 | 1.2628 | | 0.0681 | 95.24 | 2000 | 0.0921 | 1.2628 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-shuru", "results": []}]}
automatic-speech-recognition
hrdipto/wav2vec2-xls-r-tf-left-right-shuru
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-tf-left-right-shuru ================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0921 * Wer: 1.2628 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 100 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.10954299569129944, 0.09873781353235245, -0.0032914397306740284, 0.06422559171915054, 0.10840313881635666, -0.020404495298862457, 0.1281270831823349, 0.15050694346427917, -0.08948522806167603, 0.07442682236433029, 0.12633514404296875, 0.15167510509490967, 0.042937442660331726, 0.147494375705719, -0.049959663301706314, -0.2820800840854645, 0.04651576653122902, 0.03578434884548187, -0.011033759452402592, 0.12720680236816406, 0.08339891582727432, -0.12459003925323486, 0.05771542340517044, 0.03330190107226372, -0.15850941836833954, -0.004401085432618856, -0.003849382046610117, -0.10542039573192596, 0.12404133379459381, 0.004830718971788883, 0.07034512609243393, 0.048078637570142746, 0.06645245105028152, -0.21960623562335968, 0.0066198622807860374, 0.04384505748748779, 0.02912098914384842, 0.07397374510765076, 0.05658084526658058, -0.02874011918902397, 0.10129309445619583, -0.07366795092821121, 0.08070402592420578, 0.03742528334259987, -0.10602883994579315, -0.29187870025634766, -0.08709555864334106, 0.047631777822971344, 0.069968082010746, 0.08818896859884262, -0.012929998338222504, 0.1432967483997345, -0.05365323647856712, 0.11026857793331146, 0.28164875507354736, -0.3138352036476135, -0.04463854432106018, -0.038351621478796005, 0.057463955134153366, 0.0600416474044323, -0.09976568073034286, -0.016860274598002434, 0.015416222624480724, 0.04476551339030266, 0.13859786093235016, -0.016611158847808838, -0.06146911904215813, -0.007107859943062067, -0.1479564905166626, -0.05989835038781166, 0.11518239974975586, 0.0238510649651289, -0.040472157299518585, -0.0991148129105568, -0.05493372306227684, -0.21565939486026764, -0.06793393194675446, -0.01748397760093212, 0.043251726776361465, -0.0424342043697834, -0.10603396594524384, -0.01101229339838028, -0.06698963791131973, -0.07462633401155472, -0.04081804305315018, 0.1883065402507782, 0.05627438798546791, -0.0017432107124477625, -0.037408724427223206, 0.07680433988571167, -0.022072777152061462, -0.13786649703979492, -0.023677462711930275, 0.0359673835337162, -0.022386498749256134, -0.015721648931503296, -0.04241546615958214, -0.059575241059064865, 0.02209477499127388, 0.16200461983680725, -0.10040822625160217, 0.09642519056797028, -0.018587378785014153, 0.039569173008203506, -0.10244667530059814, 0.20787395536899567, -0.04140487313270569, 0.015610133297741413, -0.00963031966239214, 0.055843010544776917, 0.029491767287254333, -0.02689044363796711, -0.09504249691963196, 0.030841147527098656, 0.12314575165510178, 0.04651401937007904, -0.04924074932932854, 0.06541424244642258, -0.03411976620554924, -0.009045064449310303, -0.0020527690649032593, -0.11186003684997559, 0.0366465225815773, 0.018929392099380493, -0.06388428062200546, 0.004663754254579544, 0.013141433708369732, 0.007901394739747047, -0.05453629046678543, 0.08279645442962646, -0.06143476441502571, 0.03322938457131386, -0.05721372365951538, -0.12637211382389069, 0.025030886754393578, -0.11678270995616913, -0.004166305996477604, -0.10063190758228302, -0.09893867373466492, -0.012530773878097534, 0.037305038422346115, -0.03782259300351143, -0.025493193417787552, -0.07945683598518372, -0.09107675403356552, 0.044905539602041245, -0.03448178619146347, 0.07106243818998337, -0.0742640420794487, 0.09402590990066528, 0.032980214804410934, 0.08860070258378983, -0.014222322031855583, 0.06009787321090698, -0.07107154279947281, 0.027142338454723358, -0.19976618885993958, 0.07588707655668259, -0.08786968886852264, 0.05833371356129646, -0.12463777512311935, -0.11377465724945068, 0.02130008675158024, -0.006651066243648529, 0.09843911975622177, 0.09864544868469238, -0.17343193292617798, -0.08864743262529373, 0.2097746729850769, -0.08163071423768997, -0.08526843041181564, 0.12524977326393127, -0.025563834235072136, 0.0007085074321366847, 0.05782746896147728, 0.2578134834766388, 0.04450339451432228, -0.126304030418396, 0.007286184933036566, -0.040850430727005005, 0.04321899265050888, -0.03581277281045914, 0.05692686140537262, -0.0282380860298872, 0.06803422421216965, 0.0179448239505291, -0.0029752578120678663, 0.03754488378763199, -0.08695269376039505, -0.07732238620519638, -0.0438486747443676, -0.07849600166082382, 0.029588140547275543, 0.03242886811494827, 0.06447744369506836, -0.11712539196014404, -0.10780653357505798, 0.036879755556583405, 0.08001743257045746, -0.10422737896442413, 0.07193200290203094, -0.1206674724817276, 0.08479741960763931, -0.014803782105445862, -0.00472646439447999, -0.18997853994369507, 0.037542033940553665, 0.03895549848675728, -0.028763044625520706, 0.039093900471925735, -0.06492841988801956, 0.07831571251153946, 0.0455205962061882, -0.025972653180360794, -0.04658856615424156, -0.00902535766363144, 0.011431830935180187, -0.09100779891014099, -0.2054673284292221, -0.03821024298667908, -0.038168247789144516, 0.07931296527385712, -0.13768185675144196, 0.034569498151540756, 0.07677564769983292, 0.09135384112596512, 0.03283943608403206, -0.03209216892719269, -0.0011433346662670374, 0.08997760713100433, -0.02044878713786602, -0.06446640938520432, 0.057467252016067505, 0.019382517784833908, -0.0877213254570961, 0.037327561527490616, -0.14881162345409393, 0.1265646070241928, 0.14716987311840057, -0.014981868676841259, -0.06841389089822769, -0.0003773509815800935, -0.046610649675130844, -0.03420918062329292, -0.004915814381092787, 0.03165717050433159, 0.215254008769989, 0.015380959957838058, 0.14271073043346405, -0.08854681998491287, -0.042830370366573334, 0.05004410818219185, -0.021554579958319664, -0.005497281439602375, 0.1166505515575409, 0.04522931948304176, -0.05383561551570892, 0.11893770843744278, 0.09066524356603622, -0.07976048439741135, 0.11864036321640015, -0.060464076697826385, -0.07414653897285461, -0.020772606134414673, 0.005081075243651867, 0.023295555263757706, 0.09780607372522354, -0.1640302836894989, -0.04083320125937462, 0.02547384984791279, 0.025053782388567924, 0.01866116002202034, -0.20824767649173737, 0.013832724653184414, 0.02837979793548584, -0.08540216833353043, -0.042559292167425156, 0.00245524849742651, 0.012299752794206142, 0.0940241813659668, 0.011955509893596172, -0.09411153942346573, 0.010935957543551922, 0.0038194824010133743, -0.07323139905929565, 0.1762324869632721, -0.11563840508460999, -0.1757233738899231, -0.1042800173163414, -0.09177547693252563, -0.03876212239265442, -0.002036147750914097, 0.08858535438776016, -0.09243367612361908, -0.03852825611829758, -0.08446145057678223, -0.015602856874465942, -0.02577873505651951, 0.04237023741006851, 0.030467476695775986, -0.012013492174446583, 0.06259190291166306, -0.1164546087384224, -0.022455401718616486, -0.04039354249835014, -0.001648631994612515, 0.05531787499785423, 0.03649210184812546, 0.10873953253030777, 0.1595853567123413, -0.010676936246454716, 0.051155924797058105, -0.04613202065229416, 0.18863095343112946, -0.07514575868844986, -0.03574934974312782, 0.10947290062904358, -0.005132707301527262, 0.06845349073410034, 0.11863085627555847, 0.048924919217824936, -0.09844417124986649, -0.013117431662976742, 0.003806079737842083, -0.045474790036678314, -0.21340511739253998, -0.033113978803157806, -0.04456606134772301, -0.0018143982160836458, 0.10627160221338272, 0.04060843586921692, 0.03797546401619911, 0.02357885241508484, 0.0330607108771801, 0.005766916088759899, 0.003448293311521411, 0.09625225514173508, 0.12913210690021515, 0.03935186564922333, 0.13320937752723694, -0.036888789385557175, -0.038714535534381866, 0.029400544241070747, 0.0046701314859092236, 0.2331010401248932, 0.020757542923092842, 0.19061440229415894, 0.05574365332722664, 0.1753501147031784, 0.041200362145900726, 0.06820358335971832, -0.001597998314537108, -0.010735834017395973, 0.010841122828423977, -0.05208582058548927, -0.03968871384859085, 0.023704299703240395, 0.02439628168940544, 0.009039584547281265, -0.11376696825027466, -0.013972120359539986, 0.046557970345020294, 0.3522767424583435, 0.028853682801127434, -0.33673685789108276, -0.08915157616138458, -0.011283766478300095, -0.08630307018756866, -0.03059733472764492, 0.04531724005937576, 0.08898455649614334, -0.08186520636081696, 0.06375271081924438, -0.06276282668113708, 0.09019862860441208, -0.06527306139469147, 0.033736422657966614, 0.035415928810834885, 0.07049499452114105, 0.003382492810487747, 0.032853864133358, -0.29259711503982544, 0.2807064950466156, 0.004650570917874575, 0.0781450942158699, -0.061624206602573395, 0.008002051152288914, 0.02557320147752762, 0.01668386347591877, 0.08807667344808578, -0.025891076773405075, -0.12134092301130295, -0.1775466948747635, -0.09239742904901505, 0.011056709103286266, 0.12792247533798218, 0.012478110380470753, 0.1106824055314064, -0.010452601127326488, -0.01659495197236538, 0.049141205847263336, -0.09398899227380753, -0.06534826010465622, -0.09186127781867981, 0.010524587705731392, 0.08282053470611572, 0.03623576834797859, -0.0721360296010971, -0.10316373407840729, -0.08822479099035263, 0.14760346710681915, -0.05390321835875511, -0.04336781054735184, -0.11802789568901062, 0.007839902304112911, 0.11014439165592194, -0.07925088703632355, 0.06107473745942116, 0.009906571358442307, 0.10448598116636276, 0.010325845330953598, -0.06722518056631088, 0.11965961754322052, -0.06345878541469574, -0.16715823113918304, -0.029435785487294197, 0.14541040360927582, 0.030541667714715004, 0.06024562940001488, -0.006741285789757967, 0.03873484209179878, -0.021533163264393806, -0.0777856782078743, 0.04143873602151871, 0.027503248304128647, 0.04470732435584068, -0.014206839725375175, -0.020286962389945984, -0.005458523984998465, -0.092143215239048, -0.017812080681324005, 0.20657967031002045, 0.2433132529258728, -0.09671036899089813, 0.09242824465036392, 0.07054515182971954, -0.04207838699221611, -0.17109502851963043, -0.005364830605685711, 0.06509749591350555, 0.00029050654848106205, -0.025419609621167183, -0.19329196214675903, 0.024708323180675507, 0.07068528980016708, -0.020678779110312462, 0.08496245741844177, -0.31854888796806335, -0.14039675891399384, 0.1382562816143036, 0.11448084563016891, 0.06179714947938919, -0.14635130763053894, -0.05542339012026787, -0.011684753932058811, -0.10281585901975632, 0.09466679394245148, -0.07480227202177048, 0.13611441850662231, -0.023239154368638992, 0.09094065427780151, 0.011861932463943958, -0.05805433914065361, 0.10578307509422302, 0.014349930919706821, 0.060503460466861725, -0.04615020379424095, 0.016661815345287323, 0.04746484383940697, -0.06291206181049347, 0.05584972724318504, -0.08041075617074966, 0.02704249881207943, -0.07878268510103226, -0.033330343663692474, -0.08450663834810257, 0.014150233939290047, -0.009041558019816875, -0.03433900326490402, -0.037647053599357605, 0.0012825436424463987, 0.06266023218631744, -0.010874048806726933, 0.15425506234169006, -0.026982998475432396, 0.12771837413311005, 0.1612652689218521, 0.10134720057249069, -0.10507036000490189, -0.07794497162103653, 0.006444824859499931, -0.0353928841650486, 0.05527971312403679, -0.114251047372818, 0.036970868706703186, 0.13586045801639557, 0.0317814014852047, 0.1230761855840683, 0.07006236910820007, -0.06595906615257263, 0.03336332365870476, 0.041813239455223083, -0.13666492700576782, -0.12745165824890137, 0.014391975477337837, 0.021960584446787834, -0.07239434123039246, 0.07329856604337692, 0.11538799107074738, -0.055434390902519226, -0.014538846909999847, -0.002790429862216115, 0.01461660023778677, -0.04043827950954437, 0.19656917452812195, 0.036879219114780426, 0.061267055571079254, -0.12445112317800522, 0.08026530593633652, 0.03825094550848007, -0.13416461646556854, 0.06092957779765129, 0.10449139773845673, -0.09554275870323181, -0.028595883399248123, 0.028480472043156624, 0.11316141486167908, -0.02681661583483219, -0.07262279093265533, -0.14142650365829468, -0.14410068094730377, 0.10833471268415451, 0.20469264686107635, 0.056105438619852066, 0.01793164201080799, -0.059262488037347794, 0.016316000372171402, -0.1177837997674942, 0.06858782470226288, 0.04270758479833603, 0.059764523059129715, -0.12803928554058075, 0.14716140925884247, 0.01723911054432392, 0.03987022116780281, -0.014985362999141216, -0.011578728444874287, -0.11220239102840424, 0.04025993496179581, -0.12759321928024292, 0.0053183394484221935, -0.06666240096092224, 0.0005802881787531078, 0.004140312317758799, -0.049399010837078094, -0.06345752626657486, 0.03355974704027176, -0.12033090740442276, -0.022954951971769333, 0.0010879815090447664, 0.03561911731958389, -0.12854722142219543, -0.010034811682999134, 0.014622929506003857, -0.09445216506719589, 0.09760427474975586, 0.08662255853414536, -0.03380337730050087, 0.050895851105451584, -0.06241556629538536, -0.024912232533097267, 0.07826048880815506, -0.006731427740305662, 0.05049201846122742, -0.13120625913143158, -0.01891012117266655, 0.010861457325518131, 0.03546803444623947, 0.02475726418197155, 0.11155343800783157, -0.11613568663597107, -0.0007936620968393981, -0.027263224124908447, -0.05233846604824066, -0.06935308873653412, 0.049911659210920334, 0.11069650948047638, 0.02790077216923237, 0.16516898572444916, -0.0933993011713028, 0.028691140934824944, -0.16638906300067902, 0.006468876264989376, -0.014837069436907768, -0.12160038948059082, -0.05011274665594101, -0.032570239156484604, 0.07884865999221802, -0.0631338506937027, 0.13064607977867126, -0.03075088933110237, 0.025161447003483772, 0.036469586193561554, -0.07828015089035034, -0.0527469776570797, 0.040124084800481796, 0.20741739869117737, 0.03956456482410431, -0.044178880751132965, 0.07282374054193497, 0.021301409229636192, 0.08074010163545609, 0.12784172594547272, 0.17232707142829895, 0.15909621119499207, 0.062180954962968826, 0.11706854403018951, 0.05342555046081543, -0.05187973380088806, -0.17054444551467896, 0.09200920164585114, -0.06030571088194847, 0.12936437129974365, -0.014301195740699768, 0.24417847394943237, 0.1201138123869896, -0.15352948009967804, 0.06636855751276016, -0.018945807591080666, -0.0899410992860794, -0.11638960242271423, -0.06593874096870422, -0.08715374767780304, -0.17543204128742218, 0.009455111809074879, -0.10179425776004791, 0.06203227862715721, 0.04726257175207138, 0.038152050226926804, 0.016367249190807343, 0.13674096763134003, 0.01531605701893568, 0.0026255035772919655, 0.09254135191440582, -0.003501188475638628, -0.05687446519732475, -0.07224809378385544, -0.08517061173915863, 0.03454108536243439, -0.013258512131869793, 0.05836020037531853, -0.003164408029988408, -0.07028627395629883, 0.04676789417862892, -0.0390552394092083, -0.09649781137704849, 0.02226269245147705, 0.020778264850378036, 0.07001485675573349, 0.05092121288180351, 0.035551175475120544, -0.04264792427420616, -0.002246784046292305, 0.19426937401294708, -0.09474879503250122, -0.09459006786346436, -0.1095619946718216, 0.2517842948436737, 0.04015745967626572, -0.015760254114866257, 0.020758552476763725, -0.060395412147045135, -0.031212205067276955, 0.2123595029115677, 0.17211712896823883, -0.010134766809642315, 0.004089081659913063, -0.014844562858343124, -0.006620477419346571, -0.03648579493165016, 0.07974691689014435, 0.14597897231578827, 0.06169988587498665, -0.06308671087026596, -0.04906245321035385, -0.05028046667575836, -0.035623591393232346, -0.06767010688781738, 0.07728166878223419, 0.0058279335498809814, -0.024887727573513985, -0.04564166069030762, 0.06562773138284683, -0.09434399008750916, -0.08332283794879913, 0.0257792379707098, -0.19353632628917694, -0.1487489640712738, 0.007178751286119223, 0.06937839835882187, 0.012977039441466331, 0.03497197851538658, 0.0036974602844566107, -0.00788669940084219, 0.08064007014036179, -0.0013644119026139379, -0.08130128681659698, -0.0664898157119751, 0.08444055914878845, -0.13308702409267426, 0.16576837003231049, -0.0416889451444149, 0.0483836755156517, 0.1232990100979805, 0.08817929774522781, -0.07881080359220505, 0.08898291736841202, 0.0424179844558239, -0.10575871169567108, 0.023239770904183388, 0.15274737775325775, -0.03320731222629547, 0.09310232102870941, 0.03045591153204441, -0.11389287561178207, 0.015381242148578167, -0.0909588634967804, -0.037897828966379166, -0.04307923465967178, -0.04908560588955879, -0.04397739842534065, 0.10986648499965668, 0.16293127834796906, -0.043940071016550064, 0.004727006424218416, -0.05286566913127899, 0.010922370478510857, 0.04697117581963539, -0.004585982766002417, -0.06245831400156021, -0.27924230694770813, 0.011095499619841576, 0.03904192894697189, 0.0024522216990590096, -0.2558799386024475, -0.09656772017478943, 0.01269526593387127, -0.04261689633131027, -0.08763118088245392, 0.08571159094572067, 0.07505708187818527, 0.04689347743988037, -0.05196138471364975, -0.057690251618623734, -0.03496808931231499, 0.1900923252105713, -0.17577718198299408, -0.05937637761235237 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-tf-left-right-trainer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0090 - eval_wer: 0.0037 - eval_runtime: 11.2686 - eval_samples_per_second: 71.703 - eval_steps_per_second: 8.963 - epoch: 21.05 - step: 4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-trainer", "results": []}]}
automatic-speech-recognition
hrdipto/wav2vec2-xls-r-tf-left-right-trainer
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-xls-r-tf-left-right-trainer This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0090 - eval_wer: 0.0037 - eval_runtime: 11.2686 - eval_samples_per_second: 71.703 - eval_steps_per_second: 8.963 - epoch: 21.05 - step: 4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
[ "# wav2vec2-xls-r-tf-left-right-trainer\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0090\n- eval_wer: 0.0037\n- eval_runtime: 11.2686\n- eval_samples_per_second: 71.703\n- eval_steps_per_second: 8.963\n- epoch: 21.05\n- step: 4000", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 30\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-xls-r-tf-left-right-trainer\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0090\n- eval_wer: 0.0037\n- eval_runtime: 11.2686\n- eval_samples_per_second: 71.703\n- eval_steps_per_second: 8.963\n- epoch: 21.05\n- step: 4000", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 30\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ 56, 128, 6, 12, 8, 3, 117, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n# wav2vec2-xls-r-tf-left-right-trainer\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0090\n- eval_wer: 0.0037\n- eval_runtime: 11.2686\n- eval_samples_per_second: 71.703\n- eval_steps_per_second: 8.963\n- epoch: 21.05\n- step: 4000## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 30\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ -0.08825577795505524, 0.08324992656707764, -0.003999330103397369, 0.07499989867210388, 0.134449765086174, 0.01505287829786539, 0.09599533677101135, 0.12190377712249756, -0.048422008752822876, 0.08081036806106567, 0.0598420649766922, 0.08071792125701904, 0.05978623405098915, 0.12308347970247269, -0.05633215233683586, -0.17608577013015747, 0.007873434573411942, -0.04245750978589058, -0.05211048945784569, 0.09621147066354752, 0.08918943256139755, -0.10188202559947968, 0.05949259176850319, 0.013195911422371864, -0.10976272076368332, 0.02096589095890522, 0.003398194443434477, -0.0446702279150486, 0.11688785254955292, 0.030391298234462738, 0.09106869250535965, 0.018835658207535744, 0.10894127935171127, -0.237391859292984, -0.011842532083392143, 0.1006976068019867, 0.03136515989899635, 0.06882895529270172, 0.0993465855717659, -0.004701378755271435, 0.06490414589643478, -0.14380693435668945, 0.08963479846715927, 0.034934140741825104, -0.13033843040466309, -0.16636066138744354, -0.10485219210386276, 0.039012931287288666, 0.11614750325679779, 0.11073633283376694, -0.020847145467996597, 0.13233807682991028, -0.07567255198955536, 0.0896051898598671, 0.22587932646274567, -0.28818193078041077, -0.057258062064647675, 0.018377799540758133, 0.04799243062734604, 0.032430749386548996, -0.09644129127264023, 0.006736028473824263, 0.0028933726716786623, 0.027519945055246353, 0.11344725638628006, -0.023059379309415817, -0.08937787264585495, 0.0028380288276821375, -0.11719435453414917, -0.03693358600139618, 0.07477714121341705, 0.06814730912446976, -0.04077576845884323, -0.09265376627445221, -0.07505238801240921, -0.1143246442079544, -0.004766192752867937, -0.0487879142165184, 0.04189916327595711, -0.03907845541834831, -0.05312220752239227, -0.016448838636279106, -0.06891657412052155, -0.046061206609010696, 0.0003079767047893256, 0.12080078572034836, 0.012229399755597115, 0.016612153500318527, -0.03040022775530815, 0.10576605796813965, 0.0009485266637057066, -0.13285453617572784, -0.012130548246204853, 0.011436982080340385, -0.14781327545642853, -0.05751848220825195, -0.05987953022122383, -0.07256439328193665, -0.029143260791897774, 0.18420934677124023, -0.03648070991039276, 0.09313850849866867, 0.018337327986955643, -0.00787493959069252, -0.056503377854824066, 0.18084397912025452, -0.04595506936311722, -0.10691364109516144, -0.03255264088511467, 0.08539498597383499, -0.0016159701626747847, -0.025358567014336586, -0.03679235279560089, 0.010665742680430412, 0.057462625205516815, 0.037217289209365845, -0.03337536379694939, 0.029456786811351776, -0.06685468554496765, -0.01751117780804634, 0.0074534048326313496, -0.13214576244354248, 0.04846041649580002, 0.0031044434290379286, -0.09618724882602692, -0.03638846427202225, 0.03069283440709114, 0.009975014254450798, -0.045515451580286026, 0.13929535448551178, -0.06210709735751152, 0.007283052895218134, -0.06853324919939041, -0.09146209806203842, -0.003893617307767272, -0.06053183227777481, -0.021766120567917824, -0.06233462318778038, -0.16571128368377686, -0.0631340816617012, 0.06729307770729065, -0.06533166021108627, -0.010703256353735924, -0.028247695416212082, -0.05137176439166069, 0.03363019973039627, -0.0243473369628191, 0.14944195747375488, -0.0611189641058445, 0.05765722692012787, 0.0022478688042610884, 0.045793160796165466, 0.06765695661306381, 0.035598840564489365, -0.06804077327251434, 0.033820025622844696, -0.1344018578529358, 0.09692145138978958, -0.07271712273359299, 0.013711751438677311, -0.13616862893104553, -0.07298916578292847, 0.008817912079393864, -0.016148725524544716, 0.09098301082849503, 0.09273276478052139, -0.18930990993976593, -0.04022735729813576, 0.13879147171974182, -0.05023065209388733, -0.06587591767311096, 0.09448538720607758, -0.035681307315826416, 0.005485852714627981, 0.05007543787360191, 0.1583968698978424, 0.0549234114587307, -0.1599571257829666, -0.01488501112908125, -0.030813291668891907, 0.03396698087453842, 0.07780217379331589, 0.03542381897568703, -0.02227885276079178, 0.10039021819829941, -0.007097445894032717, -0.07064186781644821, -0.000671726418659091, -0.0660843700170517, -0.07854916900396347, -0.0290802251547575, -0.08016154915094376, 0.022482367232441902, 0.015491480007767677, 0.023906389251351357, -0.06261217594146729, -0.12297229468822479, 0.08569984883069992, 0.09860698878765106, -0.03904498368501663, 0.024745821952819824, -0.09663191437721252, -0.004173811059445143, 0.028152121230959892, -0.02200545370578766, -0.2172480672597885, -0.08986380696296692, 0.012630759738385677, -0.1027318686246872, 0.01736854948103428, 0.03481799364089966, 0.07253874093294144, 0.06041926518082619, -0.030731305480003357, -0.024297388270497322, -0.09112658351659775, -0.00758494483307004, -0.09722950309515, -0.16505105793476105, -0.06483004242181778, -0.009407497942447662, 0.19941851496696472, -0.19629354774951935, -0.0012017360422760248, 0.0005127399927005172, 0.15065701305866241, 0.030962279066443443, -0.06596136093139648, -0.03356649726629257, 0.048929497599601746, 0.00749995606020093, -0.0999567061662674, 0.037714142352342606, -0.009348754771053791, -0.07602265477180481, -0.052450697869062424, -0.1550413966178894, 0.02350756525993347, 0.08423440903425217, 0.022484872490167618, -0.10404282808303833, 0.03927011042833328, -0.05124745890498161, -0.03946678712964058, -0.08351165056228638, -0.004950729664415121, 0.22048209607601166, 0.06746577471494675, 0.12296945601701736, -0.02669038437306881, -0.06425940990447998, -0.0010101611260324717, 0.01138728205114603, 0.016892168670892715, 0.08951858431100845, 0.06173516437411308, -0.11822515726089478, 0.04807444289326668, 0.08114679157733917, -0.016521329060196877, 0.10522082448005676, -0.023452846333384514, -0.08196789026260376, -0.04313381761312485, -0.0036492731887847185, 0.018979040905833244, 0.09847576171159744, -0.0622715950012207, -0.0014582087751477957, 0.03256481885910034, 0.019344044849276543, -0.0013479026965796947, -0.17491434514522552, 0.004234886262565851, 0.040041569620370865, -0.03603748977184296, -0.00486872298642993, -0.02953595481812954, 0.031165262684226036, 0.07268676906824112, 0.031953733414411545, -0.03870736435055733, -0.007334789261221886, -0.03184885159134865, -0.07729590684175491, 0.16383370757102966, -0.08984322100877762, -0.15106996893882751, -0.1128704622387886, -0.0035222829319536686, -0.06292694061994553, -0.013999111019074917, 0.03408139944076538, -0.07939563691616058, -0.0843958780169487, -0.0862988755106926, 0.00502048572525382, 0.005712450481951237, -0.01575484871864319, 0.07108035683631897, -0.006689680740237236, 0.112139992415905, -0.12932850420475006, -0.002927336608991027, -0.02051830105483532, -0.05369634926319122, 0.007229841314256191, 0.09114264696836472, 0.08124784380197525, 0.11924607306718826, 0.00408561434596777, 0.02538156695663929, -0.023487649857997894, 0.25965985655784607, -0.09257251024246216, 0.011635608039796352, 0.13825488090515137, 0.005758468993008137, 0.06905139982700348, 0.11913147568702698, 0.036608535796403885, -0.11583001911640167, 0.031740106642246246, 0.09177454560995102, -0.012779375538229942, -0.2367643415927887, -0.03109116293489933, -0.02585117518901825, -0.06603433191776276, 0.10842163860797882, 0.022037677466869354, -0.008044866845011711, 0.019152916967868805, 0.003943006042391062, 0.02860507369041443, 0.009924224577844143, 0.07049610465765, 0.09538928419351578, 0.06755688786506653, 0.11748266965150833, -0.01008102111518383, -0.0004492226871661842, 0.04921054467558861, -0.02396659553050995, 0.20596392452716827, -0.01439525093883276, 0.12376895546913147, 0.035508979111909866, 0.1320355385541916, -0.03675932064652443, 0.035421498119831085, 0.030654149129986763, -0.024393634870648384, 0.013639233075082302, -0.05735986679792404, -0.037071917206048965, 0.03672653064131737, -0.016580386087298393, -0.0037600742653012276, -0.06368386745452881, 0.0490298792719841, 0.04276975989341736, 0.30032384395599365, 0.06773700565099716, -0.2838314175605774, -0.07115092873573303, -0.0013736599357798696, -0.03984224796295166, -0.05543148145079613, -0.020717306062579155, 0.09166223555803299, -0.13407427072525024, 0.07591645419597626, -0.06506796926259995, 0.09540555626153946, -0.04078149050474167, 0.026116279885172844, 0.08148866146802902, 0.09425761550664902, 0.009559150785207748, 0.03889855742454529, -0.18740171194076538, 0.21761813759803772, 0.018299525603652, 0.10843632370233536, -0.04615698754787445, 0.041683379560709, 0.008182809688150883, 0.007691723760217428, 0.09144968539476395, 0.0041596051305532455, -0.0562497153878212, -0.1959637850522995, -0.057943955063819885, 0.0010667823953554034, 0.1232144758105278, -0.06533419340848923, 0.10037438571453094, -0.045168641954660416, -0.0151418661698699, 0.026381704956293106, 0.01629837229847908, -0.12736232578754425, -0.10840428620576859, 0.030613210052251816, 0.014258827082812786, 0.010634271427989006, -0.07034986466169357, -0.07549890875816345, -0.08647692948579788, 0.1819992959499359, -0.014519525691866875, -0.025673238560557365, -0.14648011326789856, 0.06556930392980576, 0.1072741150856018, -0.06690610200166702, 0.019312933087348938, 0.03670237958431244, 0.1020195484161377, 0.02204502746462822, -0.06451871246099472, 0.08284972608089447, -0.06599340587854385, -0.17098885774612427, -0.06948599964380264, 0.12660710513591766, 0.05428523197770119, 0.041999734938144684, -0.0011052138870581985, 0.042886883020401, 0.012987119145691395, -0.08076594024896622, 0.03503702953457832, 0.02831445075571537, 0.047963306307792664, 0.025511452928185463, -0.005375365726649761, 0.012657961808145046, -0.06596846133470535, -0.021259943023324013, 0.08352288603782654, 0.2588767409324646, -0.07926920801401138, 0.06801657378673553, 0.05206409469246864, -0.05450133606791496, -0.14349471032619476, 0.04531487077474594, 0.12119514495134354, 0.011725795455276966, 0.09985949844121933, -0.15418171882629395, 0.11914362013339996, 0.12275082617998123, -0.014221311546862125, 0.014827491715550423, -0.30914971232414246, -0.15760137140750885, 0.047034233808517456, 0.10539700835943222, 0.027682378888130188, -0.12502306699752808, -0.038798458874225616, -0.04559813067317009, -0.2062748670578003, 0.07791052013635635, -0.08338829129934311, 0.1048448458313942, 0.01641703024506569, 0.055478621274232864, 0.023673903197050095, -0.03494015708565712, 0.14823973178863525, 0.058424901217222214, 0.0850910171866417, -0.04583413898944855, 0.048043422400951385, 0.07513907551765442, -0.07232017070055008, 0.022082170471549034, -0.026906181126832962, 0.04000061750411987, -0.13365104794502258, -0.01608642004430294, -0.0710001140832901, 0.03624671325087547, -0.04975571110844612, -0.05193120613694191, -0.018770629540085793, 0.04348384961485863, 0.0755205750465393, -0.030216755345463753, 0.04361338168382645, -0.00847178976982832, 0.08498432487249374, 0.1535896211862564, 0.04304378107190132, -0.0232686884701252, -0.1516987830400467, -0.0013788884971290827, 0.005633092951029539, 0.03817128390073776, -0.08097556233406067, 0.048181962221860886, 0.13454684615135193, 0.04148101434111595, 0.14555811882019043, 0.024885063990950584, -0.056135740131139755, 0.008781244046986103, 0.02770131640136242, -0.11880012601613998, -0.11439863592386246, 0.022833650931715965, -0.0661502480506897, -0.08940201252698898, -0.01948961615562439, 0.1563778519630432, -0.011606162413954735, -0.0019805149640887976, -0.004449554719030857, 0.01609647087752819, -0.027679216116666794, 0.2110012173652649, -0.01570332981646061, 0.08429139852523804, -0.08842156082391739, 0.11172790080308914, 0.09150317311286926, -0.09467513859272003, 0.03155463561415672, 0.08032277226448059, -0.09206299483776093, -0.010117759928107262, 0.020370353013277054, 0.1265193521976471, -0.05096959322690964, -0.01903352700173855, -0.09753476083278656, -0.10408344864845276, 0.05886588618159294, 0.10257162898778915, 0.022559767588973045, -0.0077002085745334625, -0.035171959549188614, 0.005190616007894278, -0.0999758318066597, 0.05995501950383186, 0.07306180149316788, 0.047889865934848785, -0.11252888292074203, 0.16251809895038605, 0.01391500886529684, 0.008329044096171856, 0.0031199546065181494, 0.01372502464801073, -0.09079273045063019, 0.0004801213217433542, -0.14961868524551392, -0.019393227994441986, 0.001450608135201037, -0.003276197472587228, -0.015872102230787277, -0.03220471367239952, -0.039415143430233, 0.03452686965465546, -0.08647488802671432, -0.08165109157562256, 0.009523328393697739, 0.03962737321853638, -0.16209113597869873, -0.016481975093483925, 0.02765698730945587, -0.10955099016427994, 0.07334879040718079, 0.05652479827404022, 0.02149316668510437, 0.021762892603874207, -0.08229734748601913, -0.0313427671790123, 0.012178207747638226, 0.02265780232846737, 0.07610795646905899, -0.10903993993997574, -0.013692053034901619, -0.04250537231564522, 0.0398159958422184, 0.019391357898712158, 0.037887703627347946, -0.11896158009767532, 0.000580513384193182, -0.035718243569135666, -0.055370766669511795, -0.05798213556408882, 0.02526269294321537, 0.11374994367361069, 0.04228140041232109, 0.16672061383724213, -0.07416819781064987, 0.0436113104224205, -0.22042714059352875, -0.03730415180325508, 0.008635335601866245, -0.0289055947214365, -0.03837426379323006, -0.06242875009775162, 0.10130669921636581, -0.055370181798934937, 0.07390744984149933, 0.009861507453024387, 0.149628683924675, 0.05570117384195328, -0.06767991185188293, -0.07945141941308975, 0.018487626686692238, 0.09427867829799652, 0.054873351007699966, -0.006038461811840534, 0.08741031587123871, -0.014715148136019707, 0.06104760989546776, 0.08363853394985199, 0.2118854820728302, 0.1708439737558365, 0.023746276274323463, 0.06674568355083466, 0.014272374100983143, -0.12914574146270752, -0.19526240229606628, 0.08358285576105118, -0.09472045302391052, 0.14023186266422272, -0.06646163761615753, 0.13646696507930756, 0.04775303229689598, -0.1947341412305832, 0.06654804199934006, -0.07943463325500488, -0.08990028500556946, -0.09397375583648682, -0.029582876712083817, -0.06791093945503235, -0.1078198254108429, 0.028735240921378136, -0.08517688512802124, 0.08781582117080688, 0.10954412072896957, 0.015737980604171753, 0.01821509748697281, 0.13253484666347504, -0.06628761440515518, -0.006360669154673815, 0.05936931073665619, 0.015676524490118027, -0.018112991005182266, -0.04172259569168091, -0.0560583658516407, 0.024511029943823814, 0.017832575365900993, 0.07815954089164734, -0.031039629131555557, -0.019978661090135574, 0.02383165992796421, 0.006493923719972372, -0.08795225620269775, 0.03168032690882683, 0.013736015185713768, 0.026058772578835487, 0.048725325614213943, 0.059449367225170135, 0.036904897540807724, -0.04240456596016884, 0.29209741950035095, -0.08530546724796295, -0.08512192964553833, -0.13771124184131622, 0.20289772748947144, 0.05958571657538414, 0.017399301752448082, 0.043505217880010605, -0.11486434191465378, -0.020765818655490875, 0.1584147959947586, 0.09116818755865097, -0.08861992508172989, -0.013533396646380424, -0.01962587609887123, -0.010098484344780445, -0.04193343594670296, 0.09575313329696655, 0.0868869423866272, 0.03483211621642113, -0.05315162613987923, 0.02709222212433815, -0.003955142572522163, -0.06263622641563416, -0.04581025615334511, 0.08772283047437668, 0.0009562861523590982, 0.030353611335158348, -0.034532539546489716, 0.0645894706249237, 0.024001093581318855, -0.26260557770729065, 0.08398915082216263, -0.1947316974401474, -0.1795394867658615, -0.006320446729660034, 0.08195141702890396, -0.017654260620474815, 0.08549971133470535, 0.009154360741376877, -0.01853928156197071, 0.14195823669433594, -0.012671040371060371, -0.017819665372371674, -0.1187528669834137, 0.07139096409082413, -0.14385946094989777, 0.21219748258590698, -0.013888795860111713, 0.04435410723090172, 0.10785117000341415, 0.03721955046057701, -0.11164578795433044, 0.05831318348646164, 0.0666063129901886, -0.11192932724952698, 0.027903234586119652, 0.1659667193889618, -0.0489577054977417, 0.11663345247507095, 0.04959728196263313, -0.15639685094356537, 0.007289279252290726, -0.004553421400487423, 0.003656975692138076, -0.05653156340122223, -0.0388365276157856, -0.04785134643316269, 0.14364588260650635, 0.21742327511310577, -0.012401456944644451, 0.03617708012461662, -0.07194942981004715, 0.014807645231485367, 0.022301053628325462, 0.10309932380914688, -0.05501493811607361, -0.2041659951210022, 0.0623394139111042, 0.0205573458224535, 0.02782152220606804, -0.20210760831832886, -0.12263984978199005, 0.05891580134630203, -0.060964975506067276, -0.026459386572241783, 0.12214569002389908, 0.051049865782260895, 0.02573011815547943, -0.03602307289838791, -0.14126428961753845, -0.022603988647460938, 0.1666017472743988, -0.1317993700504303, -0.05802304297685623 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer-base This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0828 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.3134 | 4.03 | 500 | 3.0814 | 1.0 | | 2.9668 | 8.06 | 1000 | 3.0437 | 1.0 | | 2.9604 | 12.1 | 1500 | 3.0337 | 1.0 | | 2.9619 | 16.13 | 2000 | 3.0487 | 1.0 | | 2.9588 | 20.16 | 2500 | 3.0859 | 1.0 | | 2.957 | 24.19 | 3000 | 3.0921 | 1.0 | | 2.9555 | 28.22 | 3500 | 3.0828 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-timit-tokenizer-base", "results": []}]}
automatic-speech-recognition
hrdipto/wav2vec2-xls-r-timit-tokenizer-base
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-timit-tokenizer-base =================================== This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 3.0828 * Wer: 1.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 158, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.13006892800331116, 0.07729004323482513, -0.001969793578609824, 0.05954808369278908, 0.12145804613828659, 0.0024069463834166527, 0.12439573556184769, 0.1315283477306366, -0.10195445269346237, 0.0698397308588028, 0.1194976270198822, 0.11569254845380783, 0.044535525143146515, 0.1060384213924408, -0.031297050416469574, -0.3123490512371063, 0.012429763562977314, 0.030680187046527863, -0.15023821592330933, 0.12603455781936646, 0.10409147292375565, -0.11244010180234909, 0.05032738298177719, 0.055761564522981644, -0.15202268958091736, 0.003142560599371791, -0.017468439415097237, -0.0860467180609703, 0.11887132376432419, 0.03468502312898636, 0.09653358906507492, 0.02772720530629158, 0.08311745524406433, -0.21305975317955017, 0.009685827419161797, 0.05178215727210045, 0.03413263335824013, 0.08119498193264008, 0.07985289394855499, -0.012528839521110058, 0.15310916304588318, -0.06002139672636986, 0.08129581809043884, 0.057284269481897354, -0.1089617908000946, -0.32914063334465027, -0.08828354626893997, 0.07321296632289886, 0.10145972669124603, 0.08618052303791046, -0.01725301705300808, 0.10997362434864044, -0.0516035296022892, 0.0906982347369194, 0.24354833364486694, -0.2848224937915802, -0.08458969742059708, -0.03160274028778076, 0.057795729488134384, 0.02898668497800827, -0.11262668669223785, -0.010413186624646187, 0.03708086162805557, 0.03576362133026123, 0.11322009563446045, 0.00941045768558979, -0.00407549599185586, 0.017765244469046593, -0.14881500601768494, -0.06368044018745422, 0.14077574014663696, 0.0750119760632515, -0.05044467747211456, -0.09949962049722672, -0.029119648039340973, -0.21286410093307495, -0.047425493597984314, -0.006743223872035742, 0.03075454570353031, -0.05704685300588608, -0.1413401961326599, -0.005784714128822088, -0.08562935143709183, -0.10388270765542984, 0.004761265590786934, 0.21778398752212524, 0.04568227007985115, -0.0022157097700983286, -0.01907745935022831, 0.11413607746362686, 0.05374573543667793, -0.15427115559577942, -0.028935501351952553, 0.039934441447257996, -0.07196107506752014, -0.02515016868710518, -0.053999677300453186, -0.02284380793571472, -0.005758027546107769, 0.16873782873153687, -0.03618548810482025, 0.06949369609355927, 0.03545861318707466, 0.027802936732769012, -0.10922600328922272, 0.21750614047050476, -0.05474388971924782, -0.008941118605434895, -0.03811006620526314, 0.0950222983956337, 0.011027658358216286, -0.015318757854402065, -0.07891546934843063, 0.028847146779298782, 0.10361789911985397, 0.03904692456126213, -0.03350231796503067, 0.038563478738069534, -0.04792650789022446, -0.02709932252764702, 0.019829297438263893, -0.0867348238825798, 0.02327934093773365, 0.019067414104938507, -0.09780359268188477, -0.00866840872913599, 0.012430645525455475, 0.02557417005300522, 0.005003004334867001, 0.10845928639173508, -0.08226852864027023, -0.0011705171782523394, -0.08096349239349365, -0.09791962057352066, 0.02524363435804844, -0.038861069828271866, 0.009102833457291126, -0.08608370274305344, -0.12447575479745865, -0.01767042465507984, 0.05085970461368561, -0.03483721613883972, -0.06541859358549118, -0.04724497348070145, -0.08127444237470627, 0.04989399388432503, -0.020674744620919228, 0.14626391232013702, -0.05589993670582771, 0.10849699378013611, 0.07969580590724945, 0.06421709060668945, 0.028113503009080887, 0.050791963934898376, -0.060468193143606186, 0.036927543580532074, -0.16577620804309845, 0.07187598198652267, -0.08335911482572556, 0.07352966070175171, -0.1299343854188919, -0.12917135655879974, 0.005488288588821888, -0.0014029338490217924, 0.08767905086278915, 0.09761403501033783, -0.14841538667678833, -0.11192837357521057, 0.156582772731781, -0.077564537525177, -0.1388697773218155, 0.12246164679527283, -0.01649344153702259, 0.0027931334916502237, 0.04731963574886322, 0.1429062932729721, 0.08958175778388977, -0.09852148592472076, -0.005171321798115969, -0.04527593031525612, 0.10073765367269516, -0.007025726139545441, 0.11102380603551865, -0.032373178750276566, 0.01874067820608616, 0.009952468797564507, -0.05407185107469559, 0.05067146196961403, -0.10760031640529633, -0.09761928766965866, -0.037531349807977676, -0.09769608825445175, 0.03221775218844414, 0.05661816895008087, 0.07056296616792679, -0.10169161111116409, -0.13753995299339294, 0.043793387711048126, 0.11366024613380432, -0.0903615728020668, 0.031162740662693977, -0.10397566109895706, 0.05489426851272583, -0.03868880122900009, -0.008346573449671268, -0.17487038671970367, -0.01716676913201809, 0.018851036205887794, -0.05868754908442497, 0.024716755375266075, -0.030509769916534424, 0.09325331449508667, 0.05901740491390228, -0.048247773200273514, -0.06568437069654465, -0.08259612321853638, -0.01309414766728878, -0.0788160115480423, -0.20542213320732117, -0.1019454151391983, -0.021109407767653465, 0.1571868509054184, -0.19981326162815094, 0.0278315432369709, 0.03388996049761772, 0.12336376309394836, 0.0348738431930542, -0.04587772116065025, -0.020962968468666077, 0.0719718411564827, -0.028094671666622162, -0.0665077269077301, 0.034262143075466156, 0.006360148079693317, -0.12926851212978363, -0.00900106318295002, -0.10888885706663132, 0.1427089273929596, 0.11986333131790161, -0.020534485578536987, -0.07236147671937943, -0.01766807585954666, -0.07714740186929703, -0.04611492529511452, -0.007132268976420164, 0.003938495181500912, 0.17299498617649078, 0.025814926251769066, 0.13498516380786896, -0.080159991979599, -0.064271479845047, 0.0395641028881073, 0.00015374747454188764, -0.01701745204627514, 0.11950244754552841, 0.04435776174068451, -0.0729757621884346, 0.10408109426498413, 0.09646826982498169, -0.09143858402967453, 0.14375808835029602, -0.07190344482660294, -0.09719441086053848, -0.02902473509311676, 0.009818628430366516, 0.04537349194288254, 0.11616425216197968, -0.14377069473266602, -0.0219808891415596, 0.024218810722231865, 0.005397321656346321, 0.018940394744277, -0.21441590785980225, -0.009544947184622288, 0.05394911766052246, -0.0607762411236763, -0.04768545180559158, 0.0002486353041604161, -0.012664380483329296, 0.08052386343479156, 0.017382271587848663, -0.059930093586444855, 0.004945396911352873, 0.0006753334891982377, -0.06805195659399033, 0.19801685214042664, -0.07493733614683151, -0.13525977730751038, -0.16101619601249695, -0.03481104224920273, -0.056479133665561676, -0.0014351303689181805, 0.051342807710170746, -0.10740278661251068, -0.029631169512867928, -0.05255455896258354, 0.0483420193195343, -0.04776541516184807, 0.04660490155220032, 0.04140453413128853, 0.0055513083934783936, 0.09253919869661331, -0.12077653408050537, 0.0188759732991457, -0.03150045499205589, -0.04352874308824539, 0.017816219478845596, 0.03975585103034973, 0.1140240803360939, 0.1578490287065506, 0.018570199608802795, 0.038788750767707825, -0.02843562513589859, 0.19173108041286469, -0.10217786580324173, -0.051049716770648956, 0.1313893347978592, 0.008626271970570087, 0.0408991239964962, 0.0815669521689415, 0.06906970590353012, -0.09063766151666641, 0.016533443704247475, 0.03945718705654144, -0.02800559811294079, -0.2189369648694992, -0.017876651138067245, -0.052900198847055435, -0.017701489850878716, 0.12100754678249359, 0.03348584100604057, 0.05050405487418175, 0.045076675713062286, -0.00931475218385458, 0.018663670867681503, -0.013468533754348755, 0.08701901882886887, 0.09059009701013565, 0.06054220721125603, 0.13160979747772217, -0.03602054342627525, -0.0520872138440609, 0.02049659937620163, -0.009871664457023144, 0.2274779975414276, 0.009152872487902641, 0.18347378075122833, 0.054517172276973724, 0.1540527045726776, 0.014814993366599083, 0.08557996898889542, 0.015784382820129395, -0.042316555976867676, 0.02227150835096836, -0.05825990065932274, -0.031283147633075714, 0.04411304369568825, 0.055663689970970154, 0.0626799538731575, -0.13481371104717255, -0.020825672894716263, 0.02359205111861229, 0.3599518835544586, 0.05636140704154968, -0.34419891238212585, -0.12236525118350983, 0.0011942728888243437, -0.07470420002937317, -0.03288089856505394, 0.02043106034398079, 0.08510317653417587, -0.08839494735002518, 0.0736437663435936, -0.07903195917606354, 0.09752631932497025, -0.043523672968149185, 0.007935469038784504, 0.08368922024965286, 0.0824279859662056, -0.0017159385606646538, 0.052998293191194534, -0.24598541855812073, 0.2891269624233246, -0.009256646037101746, 0.09736278653144836, -0.0467572882771492, 0.028340861201286316, 0.036458682268857956, 0.0011855855118483305, 0.052690379321575165, -0.027701226994395256, -0.07308001816272736, -0.1986115574836731, -0.07089867442846298, 0.02266407571732998, 0.12466077506542206, -0.07461219280958176, 0.13266868889331818, -0.02375919558107853, -0.01849285140633583, 0.06317523866891861, -0.060618750751018524, -0.08706145733594894, -0.09816139936447144, 0.018336007371544838, 0.025774160400032997, 0.06464212387800217, -0.10864750295877457, -0.1198664978146553, -0.05953822284936905, 0.15151503682136536, -0.07578399032354355, -0.022709708660840988, -0.13160745799541473, 0.06802573055028915, 0.15663805603981018, -0.06687887758016586, 0.05633344501256943, 0.012358131818473339, 0.13568297028541565, 0.025627681985497475, -0.03280585631728172, 0.09622389078140259, -0.08170334994792938, -0.21222342550754547, -0.03201885521411896, 0.14787186682224274, 0.024425681680440903, 0.057366810739040375, -0.023358182981610298, 0.03453398123383522, -0.03278414160013199, -0.08652547746896744, 0.05820857360959053, -0.021961629390716553, 0.023969797417521477, 0.015295246616005898, 0.002069956623017788, 0.03897500038146973, -0.07355381548404694, -0.03747929632663727, 0.14050959050655365, 0.2905829846858978, -0.08323709666728973, -0.006829030811786652, 0.04071608930826187, -0.01999621093273163, -0.13056662678718567, 0.018167484551668167, 0.11816268414258957, 0.021023742854595184, -0.00902947410941124, -0.20892596244812012, 0.05300996080040932, 0.0794893354177475, -0.03198099881410599, 0.10044839233160019, -0.31032055616378784, -0.1465235948562622, 0.12475177645683289, 0.11227548122406006, 0.0014272555708885193, -0.1588851511478424, -0.06375232338905334, -0.019001184031367302, -0.12818369269371033, 0.0896773487329483, -0.03821129351854324, 0.1216282919049263, -0.017941927537322044, 0.06762666255235672, 0.012437881901860237, -0.053201451897621155, 0.1543060541152954, -0.011704503558576107, 0.06345760822296143, -0.004202710464596748, 0.039142508059740067, 0.0484519861638546, -0.06040389463305473, 0.014936879277229309, -0.08930713683366776, 0.02401319146156311, -0.11815331131219864, -0.03860253840684891, -0.0914759561419487, 0.04048921912908554, -0.03252727910876274, -0.03744930773973465, -0.020873529836535454, 0.02098826877772808, 0.021582981571555138, -0.010376826860010624, 0.17051957547664642, -0.021377872675657272, 0.16764992475509644, 0.11073220521211624, 0.09313507378101349, -0.021396372467279434, -0.10201609134674072, -0.0093442527577281, -0.018264297395944595, 0.07338321954011917, -0.1382240504026413, 0.015589314512908459, 0.12989415228366852, 0.0596783384680748, 0.1300256997346878, 0.07426523417234421, -0.06474962830543518, 0.027448566630482674, 0.07590167224407196, -0.09445245563983917, -0.12419097125530243, -0.03002060204744339, 0.025104263797402382, -0.13946689665317535, 0.06435635685920715, 0.09844792634248734, -0.06154536083340645, -0.009460304863750935, 0.007055831607431173, -0.005226208362728357, -0.057791534811258316, 0.2204383760690689, 0.04570847004652023, 0.08748295158147812, -0.10602555423974991, 0.07307598739862442, 0.03475995734333992, -0.13782329857349396, 0.013953858986496925, 0.06885261088609695, -0.04605920612812042, -0.011976619251072407, 0.009344340302050114, 0.0893707126379013, -0.05268368870019913, -0.0620669387280941, -0.15069016814231873, -0.13991618156433105, 0.08844584226608276, 0.1333930641412735, 0.05546136572957039, 0.03037344664335251, -0.054962530732154846, 0.059285968542099, -0.11770603060722351, 0.08495376259088516, 0.07358075678348541, 0.08168965578079224, -0.15779179334640503, 0.1573401391506195, 0.011959518305957317, 0.02601158805191517, 0.001082317321561277, -0.008420114405453205, -0.09338659048080444, 0.024775173515081406, -0.1342976689338684, -0.04762788861989975, -0.05142791569232941, 0.0026310926768928766, 0.008298384957015514, -0.06451267004013062, -0.08075074851512909, 0.02992560714483261, -0.12527404725551605, -0.046584248542785645, 0.014511500485241413, 0.04546618461608887, -0.1249312236905098, -0.010156498290598392, 0.049010079354047775, -0.12385927140712738, 0.08366966992616653, 0.07194304466247559, 0.023717001080513, 0.05169839784502983, -0.052177511155605316, 0.010846767574548721, 0.05162842944264412, -0.010148127563297749, 0.03828534856438637, -0.13541948795318604, -0.006875729653984308, -0.02215857431292534, 0.05571886524558067, -0.0003027305647265166, 0.05133764073252678, -0.12957073748111725, -0.04286310821771622, -0.016629831865429878, -0.054744653403759, -0.06443526595830917, 0.04517325758934021, 0.08894677460193634, 0.03705950081348419, 0.18152235448360443, -0.07311119139194489, 0.020337140187621117, -0.22058312594890594, 0.01070133876055479, -0.026168690994381905, -0.09796643257141113, -0.07796621322631836, -0.028882959857583046, 0.07419703155755997, -0.0670676901936531, 0.09112503379583359, -0.06768546998500824, 0.0636286735534668, 0.0439075231552124, -0.05761638656258583, 0.026958636939525604, 0.04574819281697273, 0.2454788237810135, 0.058024000376462936, -0.013910389505326748, 0.08180250227451324, 0.02215707115828991, 0.07136616110801697, 0.10840915888547897, 0.16571709513664246, 0.14713484048843384, -0.008035112172365189, 0.11230288445949554, 0.06682708859443665, -0.08181402832269669, -0.16843606531620026, 0.07240087538957596, -0.03776944428682327, 0.12818492949008942, -0.002942534862086177, 0.20731917023658752, 0.12225812673568726, -0.17639707028865814, 0.041360996663570404, -0.027626007795333862, -0.07751331478357315, -0.09853797405958176, -0.03407168388366699, -0.06952609866857529, -0.1879522055387497, 0.02386309951543808, -0.10019493848085403, 0.04569961130619049, 0.0499090813100338, 0.026428621262311935, 0.012381397187709808, 0.1540805995464325, 0.04204383119940758, 0.016138488426804543, 0.09166231006383896, 0.0022799011785537004, -0.03544513136148453, -0.05338474363088608, -0.0982859805226326, 0.03087848611176014, -0.03441892936825752, 0.05066896602511406, -0.059521015733480453, -0.1259525865316391, 0.06421322375535965, 0.016159676015377045, -0.11461999267339706, 0.024982992559671402, 0.005470600910484791, 0.08190874010324478, 0.035729724913835526, 0.017254065722227097, -0.0004721263831015676, -0.019553517922759056, 0.2379143238067627, -0.11203157901763916, -0.06405151635408401, -0.1310209482908249, 0.25977739691734314, 0.01467808336019516, -0.01971849799156189, 0.033267561346292496, -0.07295237481594086, -0.028249133378267288, 0.16956594586372375, 0.13393591344356537, -0.010709038935601711, -0.023080574348568916, 0.00258997012861073, -0.01699604094028473, -0.05568348616361618, 0.07656671851873398, 0.11821909248828888, 0.07214906066656113, -0.06670068204402924, -0.03915267810225487, -0.037576667964458466, -0.051187459379434586, -0.008910520933568478, 0.09710872173309326, 0.020655706524848938, -0.020823977887630463, -0.0352361686527729, 0.09211451560258865, -0.06177157908678055, -0.10031464695930481, 0.06639812141656876, -0.17139063775539398, -0.17836950719356537, -0.029927833005785942, 0.06768326461315155, 0.010723229497671127, 0.07085436582565308, 0.005936807487159967, -0.033798664808273315, 0.08245527744293213, 0.0011328092077746987, -0.06616675108671188, -0.12274333089590073, 0.11334734410047531, -0.07690369337797165, 0.19100430607795715, -0.05888223275542259, 0.041437018662691116, 0.12965980172157288, 0.06472662836313248, -0.08167003095149994, 0.035294052213430405, 0.06294091045856476, -0.1363840103149414, 0.03777487203478813, 0.1757582426071167, -0.031191831454634666, 0.11297404766082764, 0.023374641314148903, -0.1424483358860016, 0.012658156454563141, -0.08557455986738205, -0.03353589400649071, -0.06192026287317276, -0.031164322048425674, -0.04112519696354866, 0.12365196645259857, 0.21207210421562195, -0.06261181086301804, -0.0108278077095747, -0.05374167114496231, 0.03492928668856621, 0.07297107577323914, 0.09020373970270157, -0.046948060393333435, -0.29203367233276367, 0.00806252658367157, 0.018276071175932884, -0.01562916673719883, -0.28167691826820374, -0.09942390769720078, 0.04111960530281067, -0.06293390691280365, -0.037009112536907196, 0.08899466693401337, 0.09251882135868073, 0.049073852598667145, -0.05244305729866028, -0.060060326009988785, -0.06361690908670425, 0.1796216070652008, -0.18383800983428955, -0.0629945918917656 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4285 - Wer: 0.3662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1571 | 4.03 | 500 | 0.5235 | 0.5098 | | 0.2001 | 8.06 | 1000 | 0.4172 | 0.4375 | | 0.0968 | 12.1 | 1500 | 0.4562 | 0.4016 | | 0.0607 | 16.13 | 2000 | 0.4640 | 0.4050 | | 0.0409 | 20.16 | 2500 | 0.4688 | 0.3914 | | 0.0273 | 24.19 | 3000 | 0.4414 | 0.3763 | | 0.0181 | 28.22 | 3500 | 0.4285 | 0.3662 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-timit-tokenizer", "results": []}]}
automatic-speech-recognition
hrdipto/wav2vec2-xls-r-timit-tokenizer
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-timit-tokenizer ============================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4285 * Wer: 0.3662 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 158, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.13006892800331116, 0.07729004323482513, -0.001969793578609824, 0.05954808369278908, 0.12145804613828659, 0.0024069463834166527, 0.12439573556184769, 0.1315283477306366, -0.10195445269346237, 0.0698397308588028, 0.1194976270198822, 0.11569254845380783, 0.044535525143146515, 0.1060384213924408, -0.031297050416469574, -0.3123490512371063, 0.012429763562977314, 0.030680187046527863, -0.15023821592330933, 0.12603455781936646, 0.10409147292375565, -0.11244010180234909, 0.05032738298177719, 0.055761564522981644, -0.15202268958091736, 0.003142560599371791, -0.017468439415097237, -0.0860467180609703, 0.11887132376432419, 0.03468502312898636, 0.09653358906507492, 0.02772720530629158, 0.08311745524406433, -0.21305975317955017, 0.009685827419161797, 0.05178215727210045, 0.03413263335824013, 0.08119498193264008, 0.07985289394855499, -0.012528839521110058, 0.15310916304588318, -0.06002139672636986, 0.08129581809043884, 0.057284269481897354, -0.1089617908000946, -0.32914063334465027, -0.08828354626893997, 0.07321296632289886, 0.10145972669124603, 0.08618052303791046, -0.01725301705300808, 0.10997362434864044, -0.0516035296022892, 0.0906982347369194, 0.24354833364486694, -0.2848224937915802, -0.08458969742059708, -0.03160274028778076, 0.057795729488134384, 0.02898668497800827, -0.11262668669223785, -0.010413186624646187, 0.03708086162805557, 0.03576362133026123, 0.11322009563446045, 0.00941045768558979, -0.00407549599185586, 0.017765244469046593, -0.14881500601768494, -0.06368044018745422, 0.14077574014663696, 0.0750119760632515, -0.05044467747211456, -0.09949962049722672, -0.029119648039340973, -0.21286410093307495, -0.047425493597984314, -0.006743223872035742, 0.03075454570353031, -0.05704685300588608, -0.1413401961326599, -0.005784714128822088, -0.08562935143709183, -0.10388270765542984, 0.004761265590786934, 0.21778398752212524, 0.04568227007985115, -0.0022157097700983286, -0.01907745935022831, 0.11413607746362686, 0.05374573543667793, -0.15427115559577942, -0.028935501351952553, 0.039934441447257996, -0.07196107506752014, -0.02515016868710518, -0.053999677300453186, -0.02284380793571472, -0.005758027546107769, 0.16873782873153687, -0.03618548810482025, 0.06949369609355927, 0.03545861318707466, 0.027802936732769012, -0.10922600328922272, 0.21750614047050476, -0.05474388971924782, -0.008941118605434895, -0.03811006620526314, 0.0950222983956337, 0.011027658358216286, -0.015318757854402065, -0.07891546934843063, 0.028847146779298782, 0.10361789911985397, 0.03904692456126213, -0.03350231796503067, 0.038563478738069534, -0.04792650789022446, -0.02709932252764702, 0.019829297438263893, -0.0867348238825798, 0.02327934093773365, 0.019067414104938507, -0.09780359268188477, -0.00866840872913599, 0.012430645525455475, 0.02557417005300522, 0.005003004334867001, 0.10845928639173508, -0.08226852864027023, -0.0011705171782523394, -0.08096349239349365, -0.09791962057352066, 0.02524363435804844, -0.038861069828271866, 0.009102833457291126, -0.08608370274305344, -0.12447575479745865, -0.01767042465507984, 0.05085970461368561, -0.03483721613883972, -0.06541859358549118, -0.04724497348070145, -0.08127444237470627, 0.04989399388432503, -0.020674744620919228, 0.14626391232013702, -0.05589993670582771, 0.10849699378013611, 0.07969580590724945, 0.06421709060668945, 0.028113503009080887, 0.050791963934898376, -0.060468193143606186, 0.036927543580532074, -0.16577620804309845, 0.07187598198652267, -0.08335911482572556, 0.07352966070175171, -0.1299343854188919, -0.12917135655879974, 0.005488288588821888, -0.0014029338490217924, 0.08767905086278915, 0.09761403501033783, -0.14841538667678833, -0.11192837357521057, 0.156582772731781, -0.077564537525177, -0.1388697773218155, 0.12246164679527283, -0.01649344153702259, 0.0027931334916502237, 0.04731963574886322, 0.1429062932729721, 0.08958175778388977, -0.09852148592472076, -0.005171321798115969, -0.04527593031525612, 0.10073765367269516, -0.007025726139545441, 0.11102380603551865, -0.032373178750276566, 0.01874067820608616, 0.009952468797564507, -0.05407185107469559, 0.05067146196961403, -0.10760031640529633, -0.09761928766965866, -0.037531349807977676, -0.09769608825445175, 0.03221775218844414, 0.05661816895008087, 0.07056296616792679, -0.10169161111116409, -0.13753995299339294, 0.043793387711048126, 0.11366024613380432, -0.0903615728020668, 0.031162740662693977, -0.10397566109895706, 0.05489426851272583, -0.03868880122900009, -0.008346573449671268, -0.17487038671970367, -0.01716676913201809, 0.018851036205887794, -0.05868754908442497, 0.024716755375266075, -0.030509769916534424, 0.09325331449508667, 0.05901740491390228, -0.048247773200273514, -0.06568437069654465, -0.08259612321853638, -0.01309414766728878, -0.0788160115480423, -0.20542213320732117, -0.1019454151391983, -0.021109407767653465, 0.1571868509054184, -0.19981326162815094, 0.0278315432369709, 0.03388996049761772, 0.12336376309394836, 0.0348738431930542, -0.04587772116065025, -0.020962968468666077, 0.0719718411564827, -0.028094671666622162, -0.0665077269077301, 0.034262143075466156, 0.006360148079693317, -0.12926851212978363, -0.00900106318295002, -0.10888885706663132, 0.1427089273929596, 0.11986333131790161, -0.020534485578536987, -0.07236147671937943, -0.01766807585954666, -0.07714740186929703, -0.04611492529511452, -0.007132268976420164, 0.003938495181500912, 0.17299498617649078, 0.025814926251769066, 0.13498516380786896, -0.080159991979599, -0.064271479845047, 0.0395641028881073, 0.00015374747454188764, -0.01701745204627514, 0.11950244754552841, 0.04435776174068451, -0.0729757621884346, 0.10408109426498413, 0.09646826982498169, -0.09143858402967453, 0.14375808835029602, -0.07190344482660294, -0.09719441086053848, -0.02902473509311676, 0.009818628430366516, 0.04537349194288254, 0.11616425216197968, -0.14377069473266602, -0.0219808891415596, 0.024218810722231865, 0.005397321656346321, 0.018940394744277, -0.21441590785980225, -0.009544947184622288, 0.05394911766052246, -0.0607762411236763, -0.04768545180559158, 0.0002486353041604161, -0.012664380483329296, 0.08052386343479156, 0.017382271587848663, -0.059930093586444855, 0.004945396911352873, 0.0006753334891982377, -0.06805195659399033, 0.19801685214042664, -0.07493733614683151, -0.13525977730751038, -0.16101619601249695, -0.03481104224920273, -0.056479133665561676, -0.0014351303689181805, 0.051342807710170746, -0.10740278661251068, -0.029631169512867928, -0.05255455896258354, 0.0483420193195343, -0.04776541516184807, 0.04660490155220032, 0.04140453413128853, 0.0055513083934783936, 0.09253919869661331, -0.12077653408050537, 0.0188759732991457, -0.03150045499205589, -0.04352874308824539, 0.017816219478845596, 0.03975585103034973, 0.1140240803360939, 0.1578490287065506, 0.018570199608802795, 0.038788750767707825, -0.02843562513589859, 0.19173108041286469, -0.10217786580324173, -0.051049716770648956, 0.1313893347978592, 0.008626271970570087, 0.0408991239964962, 0.0815669521689415, 0.06906970590353012, -0.09063766151666641, 0.016533443704247475, 0.03945718705654144, -0.02800559811294079, -0.2189369648694992, -0.017876651138067245, -0.052900198847055435, -0.017701489850878716, 0.12100754678249359, 0.03348584100604057, 0.05050405487418175, 0.045076675713062286, -0.00931475218385458, 0.018663670867681503, -0.013468533754348755, 0.08701901882886887, 0.09059009701013565, 0.06054220721125603, 0.13160979747772217, -0.03602054342627525, -0.0520872138440609, 0.02049659937620163, -0.009871664457023144, 0.2274779975414276, 0.009152872487902641, 0.18347378075122833, 0.054517172276973724, 0.1540527045726776, 0.014814993366599083, 0.08557996898889542, 0.015784382820129395, -0.042316555976867676, 0.02227150835096836, -0.05825990065932274, -0.031283147633075714, 0.04411304369568825, 0.055663689970970154, 0.0626799538731575, -0.13481371104717255, -0.020825672894716263, 0.02359205111861229, 0.3599518835544586, 0.05636140704154968, -0.34419891238212585, -0.12236525118350983, 0.0011942728888243437, -0.07470420002937317, -0.03288089856505394, 0.02043106034398079, 0.08510317653417587, -0.08839494735002518, 0.0736437663435936, -0.07903195917606354, 0.09752631932497025, -0.043523672968149185, 0.007935469038784504, 0.08368922024965286, 0.0824279859662056, -0.0017159385606646538, 0.052998293191194534, -0.24598541855812073, 0.2891269624233246, -0.009256646037101746, 0.09736278653144836, -0.0467572882771492, 0.028340861201286316, 0.036458682268857956, 0.0011855855118483305, 0.052690379321575165, -0.027701226994395256, -0.07308001816272736, -0.1986115574836731, -0.07089867442846298, 0.02266407571732998, 0.12466077506542206, -0.07461219280958176, 0.13266868889331818, -0.02375919558107853, -0.01849285140633583, 0.06317523866891861, -0.060618750751018524, -0.08706145733594894, -0.09816139936447144, 0.018336007371544838, 0.025774160400032997, 0.06464212387800217, -0.10864750295877457, -0.1198664978146553, -0.05953822284936905, 0.15151503682136536, -0.07578399032354355, -0.022709708660840988, -0.13160745799541473, 0.06802573055028915, 0.15663805603981018, -0.06687887758016586, 0.05633344501256943, 0.012358131818473339, 0.13568297028541565, 0.025627681985497475, -0.03280585631728172, 0.09622389078140259, -0.08170334994792938, -0.21222342550754547, -0.03201885521411896, 0.14787186682224274, 0.024425681680440903, 0.057366810739040375, -0.023358182981610298, 0.03453398123383522, -0.03278414160013199, -0.08652547746896744, 0.05820857360959053, -0.021961629390716553, 0.023969797417521477, 0.015295246616005898, 0.002069956623017788, 0.03897500038146973, -0.07355381548404694, -0.03747929632663727, 0.14050959050655365, 0.2905829846858978, -0.08323709666728973, -0.006829030811786652, 0.04071608930826187, -0.01999621093273163, -0.13056662678718567, 0.018167484551668167, 0.11816268414258957, 0.021023742854595184, -0.00902947410941124, -0.20892596244812012, 0.05300996080040932, 0.0794893354177475, -0.03198099881410599, 0.10044839233160019, -0.31032055616378784, -0.1465235948562622, 0.12475177645683289, 0.11227548122406006, 0.0014272555708885193, -0.1588851511478424, -0.06375232338905334, -0.019001184031367302, -0.12818369269371033, 0.0896773487329483, -0.03821129351854324, 0.1216282919049263, -0.017941927537322044, 0.06762666255235672, 0.012437881901860237, -0.053201451897621155, 0.1543060541152954, -0.011704503558576107, 0.06345760822296143, -0.004202710464596748, 0.039142508059740067, 0.0484519861638546, -0.06040389463305473, 0.014936879277229309, -0.08930713683366776, 0.02401319146156311, -0.11815331131219864, -0.03860253840684891, -0.0914759561419487, 0.04048921912908554, -0.03252727910876274, -0.03744930773973465, -0.020873529836535454, 0.02098826877772808, 0.021582981571555138, -0.010376826860010624, 0.17051957547664642, -0.021377872675657272, 0.16764992475509644, 0.11073220521211624, 0.09313507378101349, -0.021396372467279434, -0.10201609134674072, -0.0093442527577281, -0.018264297395944595, 0.07338321954011917, -0.1382240504026413, 0.015589314512908459, 0.12989415228366852, 0.0596783384680748, 0.1300256997346878, 0.07426523417234421, -0.06474962830543518, 0.027448566630482674, 0.07590167224407196, -0.09445245563983917, -0.12419097125530243, -0.03002060204744339, 0.025104263797402382, -0.13946689665317535, 0.06435635685920715, 0.09844792634248734, -0.06154536083340645, -0.009460304863750935, 0.007055831607431173, -0.005226208362728357, -0.057791534811258316, 0.2204383760690689, 0.04570847004652023, 0.08748295158147812, -0.10602555423974991, 0.07307598739862442, 0.03475995734333992, -0.13782329857349396, 0.013953858986496925, 0.06885261088609695, -0.04605920612812042, -0.011976619251072407, 0.009344340302050114, 0.0893707126379013, -0.05268368870019913, -0.0620669387280941, -0.15069016814231873, -0.13991618156433105, 0.08844584226608276, 0.1333930641412735, 0.05546136572957039, 0.03037344664335251, -0.054962530732154846, 0.059285968542099, -0.11770603060722351, 0.08495376259088516, 0.07358075678348541, 0.08168965578079224, -0.15779179334640503, 0.1573401391506195, 0.011959518305957317, 0.02601158805191517, 0.001082317321561277, -0.008420114405453205, -0.09338659048080444, 0.024775173515081406, -0.1342976689338684, -0.04762788861989975, -0.05142791569232941, 0.0026310926768928766, 0.008298384957015514, -0.06451267004013062, -0.08075074851512909, 0.02992560714483261, -0.12527404725551605, -0.046584248542785645, 0.014511500485241413, 0.04546618461608887, -0.1249312236905098, -0.010156498290598392, 0.049010079354047775, -0.12385927140712738, 0.08366966992616653, 0.07194304466247559, 0.023717001080513, 0.05169839784502983, -0.052177511155605316, 0.010846767574548721, 0.05162842944264412, -0.010148127563297749, 0.03828534856438637, -0.13541948795318604, -0.006875729653984308, -0.02215857431292534, 0.05571886524558067, -0.0003027305647265166, 0.05133764073252678, -0.12957073748111725, -0.04286310821771622, -0.016629831865429878, -0.054744653403759, -0.06443526595830917, 0.04517325758934021, 0.08894677460193634, 0.03705950081348419, 0.18152235448360443, -0.07311119139194489, 0.020337140187621117, -0.22058312594890594, 0.01070133876055479, -0.026168690994381905, -0.09796643257141113, -0.07796621322631836, -0.028882959857583046, 0.07419703155755997, -0.0670676901936531, 0.09112503379583359, -0.06768546998500824, 0.0636286735534668, 0.0439075231552124, -0.05761638656258583, 0.026958636939525604, 0.04574819281697273, 0.2454788237810135, 0.058024000376462936, -0.013910389505326748, 0.08180250227451324, 0.02215707115828991, 0.07136616110801697, 0.10840915888547897, 0.16571709513664246, 0.14713484048843384, -0.008035112172365189, 0.11230288445949554, 0.06682708859443665, -0.08181402832269669, -0.16843606531620026, 0.07240087538957596, -0.03776944428682327, 0.12818492949008942, -0.002942534862086177, 0.20731917023658752, 0.12225812673568726, -0.17639707028865814, 0.041360996663570404, -0.027626007795333862, -0.07751331478357315, -0.09853797405958176, -0.03407168388366699, -0.06952609866857529, -0.1879522055387497, 0.02386309951543808, -0.10019493848085403, 0.04569961130619049, 0.0499090813100338, 0.026428621262311935, 0.012381397187709808, 0.1540805995464325, 0.04204383119940758, 0.016138488426804543, 0.09166231006383896, 0.0022799011785537004, -0.03544513136148453, -0.05338474363088608, -0.0982859805226326, 0.03087848611176014, -0.03441892936825752, 0.05066896602511406, -0.059521015733480453, -0.1259525865316391, 0.06421322375535965, 0.016159676015377045, -0.11461999267339706, 0.024982992559671402, 0.005470600910484791, 0.08190874010324478, 0.035729724913835526, 0.017254065722227097, -0.0004721263831015676, -0.019553517922759056, 0.2379143238067627, -0.11203157901763916, -0.06405151635408401, -0.1310209482908249, 0.25977739691734314, 0.01467808336019516, -0.01971849799156189, 0.033267561346292496, -0.07295237481594086, -0.028249133378267288, 0.16956594586372375, 0.13393591344356537, -0.010709038935601711, -0.023080574348568916, 0.00258997012861073, -0.01699604094028473, -0.05568348616361618, 0.07656671851873398, 0.11821909248828888, 0.07214906066656113, -0.06670068204402924, -0.03915267810225487, -0.037576667964458466, -0.051187459379434586, -0.008910520933568478, 0.09710872173309326, 0.020655706524848938, -0.020823977887630463, -0.0352361686527729, 0.09211451560258865, -0.06177157908678055, -0.10031464695930481, 0.06639812141656876, -0.17139063775539398, -0.17836950719356537, -0.029927833005785942, 0.06768326461315155, 0.010723229497671127, 0.07085436582565308, 0.005936807487159967, -0.033798664808273315, 0.08245527744293213, 0.0011328092077746987, -0.06616675108671188, -0.12274333089590073, 0.11334734410047531, -0.07690369337797165, 0.19100430607795715, -0.05888223275542259, 0.041437018662691116, 0.12965980172157288, 0.06472662836313248, -0.08167003095149994, 0.035294052213430405, 0.06294091045856476, -0.1363840103149414, 0.03777487203478813, 0.1757582426071167, -0.031191831454634666, 0.11297404766082764, 0.023374641314148903, -0.1424483358860016, 0.012658156454563141, -0.08557455986738205, -0.03353589400649071, -0.06192026287317276, -0.031164322048425674, -0.04112519696354866, 0.12365196645259857, 0.21207210421562195, -0.06261181086301804, -0.0108278077095747, -0.05374167114496231, 0.03492928668856621, 0.07297107577323914, 0.09020373970270157, -0.046948060393333435, -0.29203367233276367, 0.00806252658367157, 0.018276071175932884, -0.01562916673719883, -0.28167691826820374, -0.09942390769720078, 0.04111960530281067, -0.06293390691280365, -0.037009112536907196, 0.08899466693401337, 0.09251882135868073, 0.049073852598667145, -0.05244305729866028, -0.060060326009988785, -0.06361690908670425, 0.1796216070652008, -0.18383800983428955, -0.0629945918917656 ]
null
null
null
# Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
{"title": "First Order Motion Model", "emoji": "\ud83d\udc22", "colorFrom": "blue", "colorTo": "yellow", "sdk": "gradio", "app_file": "app.py", "pinned": false}
null
hrushikute/DanceOnTune
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# Configuration 'title': _string_ Display title for the Space 'emoji': _string_ Space emoji (emoji-only character allowed) 'colorFrom': _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) 'colorTo': _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) 'sdk': _string_ Can be either 'gradio' or 'streamlit' 'sdk_version' : _string_ Only applicable for 'streamlit' SDK. See doc for more info on supported versions. 'app_file': _string_ Path to your main application file (which contains either 'gradio' or 'streamlit' Python code). Path is relative to the root of the repository. 'pinned': _boolean_ Whether the Space stays on top of your list.
[ "# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ "TAGS\n#region-us \n", "# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ 6, 223 ]
[ "passage: TAGS\n#region-us \n# Configuration\n\n'title': _string_ \nDisplay title for the Space\n\n'emoji': _string_ \nSpace emoji (emoji-only character allowed)\n\n'colorFrom': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'colorTo': _string_ \nColor for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)\n\n'sdk': _string_ \nCan be either 'gradio' or 'streamlit'\n\n'sdk_version' : _string_ \nOnly applicable for 'streamlit' SDK. \nSee doc for more info on supported versions.\n\n'app_file': _string_ \nPath to your main application file (which contains either 'gradio' or 'streamlit' Python code). \nPath is relative to the root of the repository.\n\n'pinned': _boolean_ \nWhether the Space stays on top of your list." ]
[ 0.01188071072101593, 0.07758358120918274, -0.005383076146245003, -0.017373213544487953, 0.08687979727983475, -0.014924844726920128, 0.014434631913900375, 0.06603410094976425, 0.10808582603931427, 0.1384299099445343, 0.02763586863875389, 0.09634341299533844, 0.009154659695923328, 0.1522364765405655, 0.006923646666109562, -0.22283697128295898, 0.042200393974781036, -0.0709344744682312, 0.04902972653508186, 0.06943602859973907, 0.06273981928825378, -0.059291329234838486, 0.07202128320932388, -0.0033088354393839836, -0.14888131618499756, 0.00013695177040062845, -0.010616403073072433, -0.049460891634225845, 0.014828769490122795, -0.0402386374771595, 0.08266407251358032, -0.04675670340657234, -0.07371697574853897, -0.1268932968378067, 0.033357325941324234, 0.12697471678256989, 0.033907450735569, 0.002259220229461789, 0.12230198830366135, -0.12981177866458893, 0.21807576715946198, -0.1327449381351471, 0.05513199418783188, -0.014647294767200947, -0.018211161717772484, -0.15117362141609192, -0.0412733368575573, -0.05453411117196083, 0.14670124650001526, 0.009025073610246181, -0.008476284332573414, 0.01575237512588501, -0.12312111258506775, 0.08234678208827972, 0.06933248043060303, -0.04727475345134735, -0.002634770004078746, 0.1116911768913269, 0.08801890909671783, 0.037870731204748154, -0.12108538299798965, 0.0075067500583827496, -0.03785065934062004, -0.010196342132985592, -0.03730084374547005, -0.05277198180556297, -0.10130736231803894, 0.02550225891172886, -0.08296948671340942, -0.0009194708545692265, 0.25919461250305176, 0.012544205412268639, -0.05758257955312729, -0.11951438337564468, -0.06565803289413452, -0.045700762420892715, 0.02577689290046692, 0.060137517750263214, 0.053701069205999374, 0.06539168953895569, 0.10311403125524521, -0.0007050674175843596, -0.12313074618577957, -0.010358340106904507, -0.12153321504592896, 0.15558311343193054, -0.027887029573321342, 0.020990798249840736, -0.11456135660409927, 0.08364246785640717, -0.08822081238031387, -0.13817736506462097, 0.014043902978301048, -0.10895320028066635, 0.00031807392952032387, 0.06523092091083527, -0.0740472599864006, -0.17337968945503235, 0.0711340457201004, 0.1878124326467514, 0.055560074746608734, 0.0983857661485672, -0.0769592747092247, 0.04823235049843788, 0.10609938204288483, 0.191655695438385, -0.07476762682199478, 0.00942059326916933, 0.02892918698489666, -0.1705435961484909, 0.09933915734291077, -0.08998927474021912, -0.1121046394109726, 0.018870292231440544, -0.001934586907736957, -0.000014767882021260448, 0.10403572767972946, 0.0064650182612240314, -0.08259890973567963, -0.06819719076156616, 0.11214480549097061, -0.08646366745233536, 0.08762615919113159, 0.04516882076859474, -0.03648534417152405, 0.05987478047609329, -0.027545860037207603, 0.033786140382289886, 0.03255436569452286, 0.18013893067836761, -0.04335426539182663, -0.03640882298350334, -0.1593049317598343, -0.10343391448259354, 0.04724676534533501, -0.09820203483104706, 0.05610208958387375, -0.06877691298723221, -0.045289840549230576, -0.044973164796829224, 0.014098557643592358, -0.000728745711967349, 0.05700746551156044, 0.05061240494251251, -0.11077108979225159, 0.12225869297981262, 0.0473838746547699, -0.010428318753838539, -0.045939430594444275, 0.04395761713385582, -0.014665937051177025, 0.08389930427074432, -0.07425318658351898, 0.006531501188874245, -0.08674965053796768, 0.030134806409478188, -0.31573250889778137, 0.0038507028948515654, -0.01876232586801052, 0.10097015649080276, -0.001635766588151455, -0.00516595458611846, -0.03464873880147934, -0.03676575794816017, -0.05587775260210037, 0.046409010887145996, -0.25948604941368103, 0.011800145730376244, 0.1486954241991043, -0.00558213796466589, -0.010950867086648941, 0.039532337337732315, 0.015502169728279114, -0.19489143788814545, 0.0033431637566536665, 0.382671982049942, 0.12433561682701111, -0.15602239966392517, -0.038460731506347656, 0.002253052545711398, -0.12435132265090942, 0.05122614651918411, 0.10650063306093216, -0.028285304084420204, 0.06810537725687027, 0.06492038071155548, -0.13770891726016998, 0.03194277361035347, 0.08137232065200806, 0.07254006713628769, -0.06185802444815636, 0.03309902548789978, 0.12447807937860489, -0.001426891190931201, -0.09820882230997086, -0.12830325961112976, -0.044034551829099655, 0.05778408423066139, 0.12614697217941284, 0.010718805715441704, -0.005161978770047426, -0.08368363976478577, 0.15632237493991852, 0.046334970742464066, -0.01825164072215557, -0.11742157489061356, -0.10392706096172333, 0.039694882929325104, 0.15260495245456696, -0.04313033074140549, 0.00972882192581892, 0.02338254079222679, 0.0057436628267169, 0.06214966997504234, -0.06808450818061829, 0.005501836538314819, -0.0404035858809948, 0.07184121012687683, -0.06626638770103455, 0.0597655288875103, -0.04996529221534729, -0.07479199767112732, -0.054193515330553055, -0.01938489079475403, 0.154617577791214, 0.16577643156051636, 0.08953801542520523, -0.08143158257007599, 0.07282175868749619, -0.0971396267414093, -0.07091189175844193, -0.05644267797470093, -0.0658361092209816, -0.014500929042696953, 0.10139623284339905, 0.12220189720392227, -0.18264023959636688, 0.05132247507572174, 0.12537862360477448, 0.0016902342904359102, 0.06873060762882233, 0.0471314862370491, 0.000008568487828597426, 0.07041674107313156, -0.03394358977675438, -0.026566192507743835, 0.039171043783426285, 0.06057918071746826, -0.004764103796333075, -0.045834168791770935, -0.03129440173506737, 0.0007111160084605217, -0.08782535046339035, -0.046953946352005005, 0.01650119572877884, 0.09927795827388763, 0.021815184503793716, 0.06723066419363022, 0.07200349122285843, 0.11227423697710037, 0.23267285525798798, -0.01663021929562092, -0.04860781878232956, -0.05390782281756401, -0.0038662166334688663, -0.072230763733387, 0.05298231542110443, -0.044093791395425797, -0.013703000731766224, 0.06197461113333702, 0.02880055084824562, -0.0241240244358778, -0.07767774909734726, -0.048432767391204834, 0.015537015162408352, 0.01294061541557312, 0.058635298162698746, 0.13916529715061188, 0.03883228823542595, 0.013341385871171951, -0.03627052530646324, 0.03799179568886757, -0.08247525244951248, -0.06778591871261597, -0.009052245877683163, 0.0850275531411171, -0.2374516725540161, -0.27590590715408325, -0.06182103976607323, -0.1899542510509491, -0.05442836135625839, 0.10173444449901581, 0.06149669736623764, -0.0981135293841362, -0.06572254002094269, -0.010261597111821175, -0.017206426709890366, -0.10618901252746582, -0.030549757182598114, -0.19057513773441315, -0.00282036024145782, -0.0530216358602047, -0.08368751406669617, -0.04087941721081734, 0.07227448374032974, 0.07781261950731277, 0.13454799354076385, 0.11990272998809814, 0.13019338250160217, 0.14590215682983398, -0.04064978286623955, -0.017342550680041313, 0.030587121844291687, 0.1189412996172905, -0.11379950493574142, 0.09215140342712402, 0.15846885740756989, 0.04160125181078911, 0.10976667702198029, 0.17799557745456696, -0.01809956505894661, -0.08431658893823624, 0.09001435339450836, 0.03243125602602959, 0.002199815586209297, -0.14897596836090088, -0.09807609766721725, -0.09747834503650665, -0.024533651769161224, -0.01050117053091526, 0.08103906363248825, -0.02973933517932892, 0.00024748386931605637, 0.007691757287830114, -0.031353335827589035, -0.11500386148691177, 0.10164745151996613, 0.10783034563064575, -0.051677361130714417, 0.06240885704755783, -0.03621061518788338, 0.013111197389662266, 0.12872914969921112, -0.005574287846684456, 0.05351933091878891, 0.0009217691840603948, 0.02266230620443821, 0.07706180214881897, 0.12979085743427277, 0.05972360819578171, -0.06920131295919418, -0.012724172323942184, -0.018883759155869484, -0.02852329984307289, -0.04018702358007431, -0.051866352558135986, 0.016110291704535484, 0.07158230245113373, -0.07070600986480713, 0.007464050315320492, -0.09313590079545975, 0.04392194375395775, -0.013408638536930084, 0.040764421224594116, -0.09933379292488098, 0.11283421516418457, 0.11212150752544403, 0.06982560455799103, -0.20660647749900818, -0.0049742055125534534, 0.1760960966348648, -0.06036512181162834, 0.026148896664381027, 0.044760819524526596, 0.07438094913959503, -0.013310940004885197, -0.014131118543446064, -0.011971941217780113, 0.04165353998541832, 0.008321966044604778, 0.10816291719675064, -0.06053003668785095, -0.06731956452131271, -0.009565652348101139, -0.01802060380578041, 0.0145226139575243, -0.031234830617904663, 0.023711146786808968, 0.15951348841190338, -0.0065234447829425335, 0.05780748277902603, -0.17307095229625702, -0.08096909523010254, -0.054502543061971664, -0.021976597607135773, 0.16028445959091187, -0.09405897557735443, 0.021642018109560013, -0.017742451280355453, -0.03450736030936241, -0.029039451852440834, -0.06952325999736786, -0.0375576987862587, -0.08077406883239746, 0.022223329171538353, 0.004659013357013464, 0.04072054848074913, -0.07474403083324432, 0.03581817448139191, 0.04575775936245918, 0.07663757354021072, 0.008526667021214962, -0.027415957301855087, -0.09199786931276321, -0.1843370795249939, 0.06291311979293823, -0.049490317702293396, 0.04931570217013359, -0.0418127179145813, 0.1938740313053131, 0.06365559250116348, -0.05853547528386116, 0.05742616578936577, -0.03859667852520943, 0.03838387504220009, -0.13857907056808472, 0.07207682728767395, -0.07659886032342911, -0.016371112316846848, -0.007355353329330683, 0.11035165935754776, -0.1062881276011467, -0.15562652051448822, 0.06501084566116333, 0.16950535774230957, 0.10116761177778244, 0.000806302996352315, -0.022203318774700165, 0.0725877434015274, 0.05569668486714363, 0.0068956539034843445, 0.06090042367577553, 0.1454852670431137, -0.12914572656154633, 0.1224699541926384, -0.022552968934178352, -0.016733380034565926, -0.13407345116138458, 0.03897436335682869, -0.02403831109404564, 0.05824385955929756, 0.03790315240621567, -0.18016976118087769, 0.08470097184181213, -0.03233107551932335, 0.01641049236059189, 0.23477694392204285, -0.18917188048362732, -0.06158251315355301, 0.05588087812066078, 0.024497007951140404, -0.04277771711349487, -0.11648520082235336, -0.09813736379146576, -0.029879916459321976, -0.05052601546049118, 0.11488782614469528, -0.04573405534029007, 0.04909282177686691, -0.031638309359550476, 0.1112939864397049, 0.047230225056409836, -0.045135047286748886, 0.1427699476480484, -0.14035338163375854, 0.0977340042591095, -0.12127474695444107, 0.019972048699855804, 0.09111752361059189, -0.07159112393856049, 0.10494855046272278, -0.06665443629026413, 0.06383790075778961, -0.2465050369501114, 0.0022746575996279716, -0.008453061804175377, 0.036550372838974, 0.0271987933665514, -0.05680028721690178, -0.12901988625526428, -0.03715227171778679, -0.027381405234336853, -0.01813647337257862, -0.11713598668575287, -0.0031143249943852425, -0.14133024215698242, -0.057005152106285095, -0.08749523013830185, 0.02312685362994671, -0.21061889827251434, -0.004185882862657309, 0.008126300759613514, 0.020437484607100487, -0.17857614159584045, -0.04297766089439392, 0.03774886205792427, 0.004375527147203684, 0.08832122385501862, -0.023119816556572914, -0.04940380901098251, 0.014956346713006496, 0.13044969737529755, -0.12233772873878479, -0.0006630075513385236, -0.03437092527747154, 0.14777947962284088, -0.011739841662347317, -0.11739847809076309, 0.0032358316238969564, 0.07741342484951019, -0.032717783004045486, -0.003090545302256942, 0.04521242901682854, 0.08729007840156555, -0.016245700418949127, 0.05914886295795441, 0.0005832412862218916, -0.07385926693677902, 0.01753399521112442, 0.07166670262813568, -0.03103218413889408, 0.0253831148147583, 0.04003673419356346, -0.0640636757016182, -0.036020029336214066, 0.11157411336898804, 0.08526992052793503, 0.14425128698349, 0.0024558203294873238, 0.07784372568130493, -0.022310519590973854, 0.00008107958274194971, 0.007436560466885567, 0.06408929824829102, 0.039241448044776917, -0.06688732653856277, -0.048639725893735886, 0.0198516845703125, 0.10516323149204254, -0.026003355160355568, 0.057434793561697006, -0.12909218668937683, -0.08399637043476105, 0.037286579608917236, -0.0039027638267725706, -0.01567487232387066, -0.08358988910913467, -0.04786192625761032, -0.05242536962032318, -0.04371176287531853, 0.0586145780980587, 0.1470838487148285, -0.0020743575878441334, 0.005813091527670622, -0.01973113976418972, -0.04642482101917267, -0.025618139654397964, -0.055881984531879425, -0.07332699000835419, -0.048941005021333694, 0.06819722801446915, -0.11012738198041916, -0.07231386750936508, 0.16018956899642944, -0.03682415932416916, -0.03815343603491783, 0.024433957412838936, 0.01551902573555708, -0.00039856525836512446, -0.14088329672813416, -0.10607647895812988, 0.14317864179611206, 0.029827237129211426, 0.012417588382959366, -0.15009038150310516, 0.02611035853624344, -0.01723400130867958, 0.014754951931536198, -0.06131420657038689, 0.018221061676740646, -0.1636582612991333, -0.01831182837486267, -0.043449562042951584, -0.1960551142692566, -0.07952366024255753, -0.02105804532766342, -0.006272517144680023, 0.11141568422317505, 0.16052664816379547, 0.051811136305332184, 0.006949711591005325, 0.005004440434277058, -0.02623261883854866, -0.006475407164543867, -0.013523302972316742, 0.06349780410528183, 0.039204467087984085, 0.0024625249207019806, -0.02758321352303028, 0.0603170283138752, 0.10930006951093674, -0.12960131466388702, -0.036593466997146606, 0.15204331278800964, -0.012650004588067532, 0.031441085040569305, 0.1599513441324234, -0.011068953201174736, 0.02534940093755722, 0.08766882121562958, 0.05402905493974686, 0.06659457087516785, -0.011877855286002159, 0.022817092016339302, 0.12724968791007996, 0.02715393155813217, -0.05997871980071068, -0.08889736980199814, -0.01388144213706255, -0.2833007872104645, -0.07705571502447128, -0.03963233903050423, 0.08437919616699219, -0.036246880888938904, 0.26679450273513794, 0.12403151392936707, -0.1266176998615265, 0.0516984798014164, 0.0333801694214344, -0.04046184569597244, -0.0784478411078453, -0.15067048370838165, -0.02651614509522915, -0.1089402586221695, 0.002701305551454425, -0.10374482721090317, 0.08816846460103989, -0.03821096569299698, -0.0022927771788090467, -0.025286901742219925, 0.08528466522693634, -0.04238740727305412, -0.14017419517040253, -0.0010722818551585078, -0.005889455787837505, -0.05190213397145271, 0.08433298766613007, 0.07148399204015732, -0.01335175707936287, -0.02401786483824253, 0.07422652095556259, 0.024782950058579445, -0.004932098090648651, 0.009790784679353237, -0.14268329739570618, -0.02815517596900463, 0.03501781448721886, 0.007378872949630022, -0.05755603685975075, 0.06268104165792465, 0.07430897653102875, -0.02182610146701336, -0.0035758463200181723, 0.3859916031360626, -0.002008322160691023, -0.00420699967071414, 0.021913999691605568, -0.17859221994876862, 0.0202576145529747, 0.050627049058675766, -0.06285877525806427, -0.1814487725496292, -0.12856777012348175, 0.1440022885799408, 0.010789863765239716, 0.04751095920801163, 0.00413023354485631, 0.0036507844924926758, 0.01860237494111061, 0.024117661640048027, 0.12237895280122757, 0.05381025746464729, 0.20935729146003723, 0.02940075471997261, 0.037343814969062805, -0.013649571686983109, -0.039105575531721115, -0.1428230255842209, -0.08808896690607071, -0.041783563792705536, -0.10876533389091492, -0.06712602078914642, 0.07452433556318283, 0.03308483213186264, 0.08906224370002747, -0.017640581354498863, 0.012726355344057083, -0.047113630920648575, 0.05965685844421387, 0.17941376566886902, -0.03781856968998909, 0.06464013457298279, 0.0029464554972946644, -0.07043617963790894, 0.08819912374019623, 0.0008902386180125177, -0.12900254130363464, -0.004896699916571379, 0.0014196228003129363, -0.07022278755903244, 0.15389502048492432, -0.02325236052274704, 0.005016704089939594, 0.06732019782066345, 0.04813087359070778, -0.08010302484035492, 0.059342797845602036, 0.0013369007501751184, -0.08320751786231995, 0.03120153211057186, 0.17014345526695251, 0.010565650649368763, -0.07222873717546463, 0.12183177471160889, -0.01722615398466587, 0.013417752459645271, -0.08210001140832901, 0.16389773786067963, -0.1405809074640274, 0.08207181096076965, -0.16919106245040894, 0.029745303094387054, 0.022214224562048912, 0.012673028744757175, -0.008893320336937904, -0.06229591369628906, -0.008654721081256866, -0.01413356140255928, -0.040051933377981186, -0.010774712078273296, 0.05027569457888603, -0.026332490146160126, 0.2655848264694214, 0.013165590353310108, -0.08682727068662643, -0.07146721333265305, -0.027951331809163094, 0.04633788391947746, -0.0429544635117054, 0.09822317212820053, -0.024975966662168503, 0.008648942224681377, -0.08020338416099548, -0.11325552314519882, 0.0160344447940588, 0.07119356095790863, -0.12669649720191956, -0.05326187238097191 ]
null
null
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
text-generation
hrv/DialoGPT-small-rick-morty
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick and Morty DialoGPT Model
[ "# Rick and Morty DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick and Morty DialoGPT Model" ]
[ 51, 10 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick and Morty DialoGPT Model" ]
[ -0.01990443281829357, 0.10367733240127563, -0.006012056488543749, 0.013662099838256836, 0.1287931650876999, 0.004103946499526501, 0.13405320048332214, 0.13470496237277985, -0.029608309268951416, -0.0377325713634491, 0.1409052610397339, 0.2081032246351242, -0.009616929106414318, 0.025026321411132812, -0.08027864247560501, -0.33285143971443176, 0.04419311136007309, 0.04611847549676895, -0.04805411398410797, 0.11171722412109375, 0.09962809830904007, -0.03511058911681175, 0.07650627940893173, 0.012189619243144989, -0.11959464848041534, 0.014523470774292946, 0.01571112684905529, -0.09889741986989975, 0.11399844288825989, 0.07783890515565872, 0.031239205971360207, 0.033389654010534286, -0.042143791913986206, -0.13308840990066528, 0.04855761677026749, -0.0014628645731136203, -0.03996938467025757, 0.06519230455160141, 0.0068825362250208855, -0.09896008670330048, 0.13105708360671997, 0.11774895340204239, -0.001342291128821671, 0.030811335891485214, -0.1546017825603485, -0.03095608949661255, -0.013916928321123123, 0.04583658277988434, 0.05571185424923897, 0.1092928797006607, -0.03970988467335701, 0.11546611040830612, -0.046847838908433914, 0.11656361073255539, 0.13404695689678192, -0.27711591124534607, -0.013774634338915348, 0.14150507748126984, 0.03755388408899307, 0.031246060505509377, -0.03764049708843231, 0.09234841167926788, 0.010574371553957462, -0.009135077707469463, -0.054559025913476944, -0.07839421927928925, -0.06956472247838974, 0.03881034255027771, -0.08538595587015152, -0.0028573249001055956, 0.22309143841266632, -0.029777048155665398, 0.0931403860449791, -0.061110686510801315, -0.083645299077034, 0.0022445949725806713, -0.04396601766347885, -0.031562261283397675, -0.0995510146021843, 0.08443354815244675, -0.04024428874254227, -0.08693728595972061, -0.10731299221515656, -0.022938303649425507, -0.15873323380947113, 0.16214832663536072, 0.03501884266734123, 0.03956814110279083, -0.21219894289970398, 0.07603893429040909, -0.04213596507906914, -0.10128775984048843, 0.025763655081391335, -0.0809730738401413, 0.0031352867372334003, 0.01420458871871233, -0.034850042313337326, -0.01257789321243763, 0.09354974329471588, 0.11913833022117615, -0.002085368847474456, 0.028482265770435333, -0.03459439426660538, 0.04555915296077728, 0.04445279389619827, 0.04635937884449959, -0.030874032527208328, -0.005519113503396511, 0.024999095126986504, -0.0903957337141037, -0.010871811769902706, -0.060442280024290085, -0.1946737915277481, 0.013364237733185291, 0.05735969915986061, 0.055262304842472076, 0.030765585601329803, 0.13551434874534607, 0.0010974886827170849, -0.0475224107503891, 0.03023342229425907, -0.020769428461790085, -0.016528211534023285, 0.029149476438760757, -0.0072809201665222645, 0.1526104062795639, 0.022983204573392868, 0.05690442770719528, -0.11451500654220581, 0.012773441150784492, -0.03330712020397186, -0.006917042192071676, -0.03216493874788284, -0.061537809669971466, 0.003289242973551154, 0.0014469954185187817, 0.013694697991013527, -0.12761977314949036, -0.15719962120056152, -0.003717299085110426, 0.00613630935549736, -0.05369097366929054, -0.10004933178424835, -0.10542158782482147, -0.03153182193636894, 0.046352777630090714, -0.053748197853565216, 0.03198752924799919, -0.039340607821941376, 0.09383489936590195, -0.03441528603434563, 0.0691300630569458, -0.0863635316491127, 0.0905333161354065, -0.06098577380180359, -0.04111234471201897, -0.0643690675497055, 0.12356391549110413, 0.011561519466340542, 0.04442533850669861, -0.03781363368034363, -0.01636880449950695, -0.11087207496166229, 0.06495212018489838, -0.03516015037894249, 0.22487092018127441, -0.08996163308620453, -0.09683383256196976, 0.22284504771232605, -0.04562665522098541, -0.12769415974617004, 0.12243670970201492, -0.03600937873125076, 0.09682484716176987, 0.11536505818367004, 0.16257616877555847, 0.03866875544190407, -0.0002237519365735352, 0.10846788436174393, 0.10610917955636978, -0.07603283226490021, 0.006744202226400375, 0.0250004380941391, -0.02382737584412098, -0.09139634668827057, 0.015165179036557674, 0.07776524871587753, 0.04803644120693207, -0.05478836968541145, -0.015317765064537525, 0.015090391971170902, -0.003627530997619033, 0.06564177572727203, -0.017049036920070648, 0.11691898107528687, -0.03955721855163574, -0.07620245963335037, -0.014626736752688885, 0.028113901615142822, -0.06986767798662186, 0.026787258684635162, -0.07962338626384735, 0.02948051132261753, -0.01967560686171055, 0.06687499582767487, -0.16950036585330963, -0.09430424869060516, -0.06010226905345917, 0.23349159955978394, 0.07496993243694305, 0.11698364466428757, 0.06350064277648926, -0.056928664445877075, 0.0006459777359850705, 0.037900060415267944, 0.19767099618911743, -0.006904584355652332, -0.07503941655158997, -0.11777795851230621, 0.10312607139348984, -0.07375676929950714, 0.06138577312231064, -0.0416308231651783, 0.007855354808270931, 0.019795136526226997, 0.11127804219722748, -0.04220014438033104, 0.039965033531188965, 0.012499134056270123, -0.03696384280920029, -0.05908297002315521, 0.0004571304307319224, 0.09440597146749496, -0.0005542659782804549, -0.10514124482870102, 0.2379530370235443, -0.21215155720710754, 0.12180843949317932, 0.1799643337726593, -0.2256188690662384, 0.008836638182401657, -0.10462760180234909, -0.016665222123265266, 0.01030759233981371, 0.03996801748871803, -0.040312353521585464, 0.24249082803726196, -0.014560520648956299, 0.17035135626792908, -0.04880015179514885, -0.05010494217276573, -0.0440804697573185, -0.05291803553700447, 0.0003277618088759482, 0.12486644089221954, 0.09157522767782211, -0.18372175097465515, 0.17465431988239288, 0.06325390189886093, 0.03004654310643673, 0.1566917598247528, 0.022896459326148033, 0.020663797855377197, 0.05599488690495491, -0.0012882096925750375, -0.03033529780805111, -0.07880529016256332, -0.20945574343204498, -0.012111871503293514, 0.07547834515571594, 0.04618273675441742, 0.10363037884235382, -0.1018955409526825, -0.030724551528692245, -0.006948297843337059, -0.030821966007351875, 0.03848150745034218, 0.13554143905639648, 0.015318007208406925, 0.12024796009063721, -0.019162237644195557, -0.06668011844158173, 0.0741129145026207, 0.01461794413626194, -0.09263674914836884, 0.18050695955753326, -0.1221487745642662, -0.3382752537727356, -0.10329627990722656, -0.20327065885066986, -0.04040617123246193, 0.0422586165368557, 0.11002974957227707, -0.1460546851158142, -0.029720865190029144, 0.0010455691954120994, 0.08435780555009842, -0.1366978883743286, 0.006720550823956728, -0.017843635752797127, -0.01294276025146246, -0.1374056041240692, -0.09384968876838684, -0.04747654125094414, -0.060003772377967834, -0.03218422830104828, 0.10381519794464111, -0.1596987098455429, 0.007801016326993704, 0.230968177318573, 0.04797196388244629, 0.07053504139184952, -0.036995481699705124, 0.17910921573638916, -0.08220451325178146, 0.016473548486828804, 0.24478016793727875, -0.05610832944512367, 0.0740312784910202, 0.10560029745101929, -0.005553957540541887, -0.052998270839452744, 0.03756273165345192, 0.00788428820669651, -0.0785532221198082, -0.21784749627113342, -0.1030275970697403, -0.11046822369098663, 0.04284128174185753, 0.05120398849248886, 0.04543844982981682, 0.1585974246263504, 0.06446543335914612, -0.05187172442674637, -0.011306295171380043, 0.08315242826938629, 0.08576013147830963, 0.24794787168502808, -0.06311704963445663, 0.1473274976015091, -0.020790869370102882, -0.16434483230113983, 0.07334780693054199, 0.06416254490613937, 0.07227631658315659, 0.06913222372531891, 0.11215730756521225, 0.0020037174690514803, 0.017364054918289185, 0.12614323198795319, 0.05889604985713959, -0.011050567030906677, -0.031410302966833115, -0.04586650803685188, -0.04347039759159088, -0.020151739940047264, 0.041160233318805695, 0.05188119783997536, -0.1600257307291031, -0.02415069006383419, 0.022831739857792854, 0.046689603477716446, -0.003216250566765666, 0.08608495444059372, -0.19217506051063538, -0.018159521743655205, 0.06477150321006775, -0.0016290671192109585, -0.09313707798719406, 0.08108778297901154, -0.009849769994616508, -0.09697907418012619, 0.03780587762594223, -0.03585495799779892, 0.1301390826702118, -0.0750122219324112, 0.07286842167377472, -0.1119815781712532, -0.02080838568508625, -0.0087605444714427, 0.11860883235931396, -0.3024371266365051, 0.1707288920879364, -0.0030656929593533278, -0.04842326417565346, -0.11293680220842361, -0.015061003156006336, 0.03821004554629326, 0.08916047215461731, 0.10371578484773636, -0.030773809179663658, -0.06436607241630554, 0.0791664570569992, -0.050910793244838715, 0.03525971621274948, 0.10187692940235138, -0.04662879928946495, -0.014911266043782234, -0.05685164034366608, 0.0027524156030267477, 0.02270045317709446, -0.10804066807031631, 0.014929873868823051, -0.19113284349441528, 0.07794220000505447, 0.0811065286397934, 0.0722472071647644, 0.04095001146197319, -0.029467018321156502, -0.1261810064315796, 0.2744207978248596, 0.007417048793286085, -0.09985779225826263, -0.11269644647836685, 0.04465123638510704, 0.05646880716085434, -0.07145541161298752, -0.028514720499515533, -0.07924950867891312, 0.052012015134096146, -0.07113154232501984, -0.1981293261051178, 0.11338871717453003, -0.09873685240745544, -0.04736494645476341, -0.03962721675634384, 0.2276533544063568, -0.027753405272960663, 0.02130931057035923, 0.0393831804394722, -0.001616212772205472, -0.12734149396419525, -0.09492160379886627, 0.004517016001045704, -0.0013660878175869584, 0.02586340345442295, 0.022777099162340164, -0.04388801380991936, 0.0049570053815841675, -0.06949588656425476, -0.0037953434512019157, 0.3158918023109436, 0.10998717695474625, -0.04474896565079689, 0.1561327874660492, 0.10242960602045059, -0.06360200047492981, -0.28859275579452515, -0.11298105865716934, -0.07240703701972961, -0.05466444417834282, -0.0838940367102623, -0.18133240938186646, 0.08497140556573868, -0.042584747076034546, -0.00881777424365282, 0.042027126997709274, -0.2644155025482178, -0.09412363916635513, 0.18815293908119202, -0.01533579919487238, 0.4300551414489746, -0.11307147145271301, -0.07450833916664124, -0.05387028306722641, -0.13561248779296875, 0.18766070902347565, -0.018648525699973106, 0.0966244488954544, 0.00443116994574666, 0.20654869079589844, 0.05815155804157257, -0.0008219819865189493, 0.0747876986861229, 0.011587066575884819, -0.0452013723552227, -0.09014920890331268, -0.09217863529920578, -0.020688166841864586, 0.005974666681140661, 0.034957773983478546, -0.0941787138581276, 0.05258546397089958, -0.11336535215377808, -0.05589618906378746, -0.07209338247776031, 0.026715638116002083, 0.02418643794953823, -0.06410122662782669, -0.006407043896615505, -0.048794936388731, -0.0010418962920084596, 0.00979152973741293, 0.21295785903930664, -0.11305148899555206, 0.12096642702817917, 0.04414689913392067, 0.1508360654115677, -0.08366664499044418, -0.03614836558699608, -0.04910365119576454, -0.05565084517002106, 0.0676501989364624, -0.1319035291671753, 0.04462771117687225, 0.10053624957799911, -0.030742639675736427, 0.0898696631193161, 0.11227817088365555, -0.02972952462732792, 0.0016581144882366061, 0.07279330492019653, -0.23832836747169495, -0.08509121090173721, -0.07718803733587265, 0.05435929819941521, 0.057659514248371124, 0.09007556736469269, 0.21964938938617706, 0.011087107472121716, -0.023847850039601326, 0.027587326243519783, 0.029717741534113884, -0.01658647321164608, 0.05797221511602402, 0.008770608343183994, 0.031205764040350914, -0.14632299542427063, 0.04562913626432419, -0.010501107200980186, -0.07197817414999008, 0.03429242596030235, 0.16717956960201263, -0.10209374874830246, -0.12234743684530258, -0.04288604483008385, 0.17517046630382538, -0.13247300684452057, -0.017495078966021538, -0.05478521063923836, -0.1241658553481102, 0.07977617532014847, 0.11423204839229584, 0.05072414129972458, 0.042339734733104706, -0.09691346436738968, -0.03881148621439934, -0.05552472919225693, 0.01957569271326065, 0.018891409039497375, -0.030404040589928627, -0.037885911762714386, 0.025801094248890877, -0.04172535613179207, 0.11203933507204056, -0.087384894490242, -0.09792038798332214, -0.16838693618774414, 0.03925701230764389, -0.049022991210222244, -0.07899222522974014, -0.09344983100891113, -0.03523614630103111, 0.014231358654797077, -0.03348008170723915, -0.018664700910449028, -0.02225758694112301, -0.0958842933177948, 0.03419994190335274, -0.048781368881464005, -0.005008503329008818, -0.08496184647083282, 0.017331385985016823, 0.04781922325491905, -0.023604100570082664, 0.1431105136871338, 0.12453559041023254, -0.11789791285991669, 0.10031480342149734, -0.16611437499523163, -0.06820093840360641, 0.09455996751785278, 0.02471991442143917, 0.043245621025562286, 0.028927266597747803, 0.005174829158931971, 0.04808570072054863, 0.05950818210840225, 0.03694291412830353, 0.041101954877376556, -0.07111897319555283, 0.061451081186532974, -0.06278520077466965, -0.11226452142000198, -0.04257739707827568, -0.005422866903245449, 0.00011432790051912889, 0.07346735894680023, 0.11052975058555603, -0.05098198726773262, 0.09580544382333755, -0.050767768174409866, 0.046003878116607666, 0.0289035402238369, -0.16526201367378235, 0.008764104917645454, -0.08482556790113449, 0.05248309671878815, 0.0030253108125180006, 0.15688744187355042, 0.028536081314086914, -0.03175791725516319, 0.02630779519677162, 0.05105529725551605, 0.06318540126085281, -0.00840448122471571, 0.19050461053848267, 0.09726009517908096, -0.04487645998597145, -0.09418396651744843, 0.08849480748176575, 0.05022666975855827, 0.05143674090504646, 0.1403687596321106, -0.020687401294708252, 0.012512898072600365, 0.07724163681268692, 0.014415515586733818, 0.017872430384159088, -0.07756411284208298, -0.09487451612949371, -0.011494439095258713, 0.025514457374811172, -0.02882363088428974, 0.1138797178864479, 0.16729387640953064, -0.0008394720498472452, 0.013234704732894897, -0.01801590994000435, -0.05735309422016144, -0.20129387080669403, -0.1959676295518875, -0.09400797635316849, -0.13690303266048431, -0.0009418319095857441, -0.13835963606834412, 0.03616710752248764, 0.042394787073135376, 0.09917435795068741, -0.039446551352739334, 0.019261397421360016, 0.026794444769620895, -0.10323353111743927, 0.039175424724817276, -0.04838612675666809, 0.09421038627624512, -0.007761404849588871, 0.005773975048214197, -0.046786144375801086, 0.02436385303735733, 0.02127891033887863, 0.038409680128097534, -0.012736459262669086, 0.024856114760041237, -0.11602245271205902, -0.09478921443223953, -0.058010075241327286, 0.0558818019926548, 0.0046934462152421474, 0.18179026246070862, 0.02449701726436615, -0.03384847193956375, 0.0275272186845541, 0.19317778944969177, -0.06196035072207451, -0.09709009528160095, -0.08241496980190277, 0.2182236760854721, -0.018931716680526733, 0.09253086894750595, -0.035876765847206116, 0.012440751306712627, -0.07121489197015762, 0.33243879675865173, 0.29320472478866577, -0.10524016618728638, 0.010426074266433716, -0.0019151283195242286, 0.0405552051961422, 0.1290767937898636, 0.07575080543756485, 0.11663594841957092, 0.256552129983902, -0.06501701474189758, -0.057690393179655075, -0.014668738469481468, -0.027142031118273735, -0.06502988189458847, 0.04214107245206833, 0.04939494654536247, -0.07117093354463577, -0.00912293791770935, 0.12242040783166885, -0.24606983363628387, 0.04577518254518509, -0.13518153131008148, -0.14807558059692383, -0.0726354643702507, 0.002261551097035408, 0.09914402663707733, 0.010166509076952934, 0.08546656370162964, -0.014570544473826885, -0.0710548534989357, 0.03896206244826317, 0.021210450679063797, -0.2144380509853363, 0.021960165351629257, 0.07259857654571533, -0.028754761442542076, -0.07154250144958496, -0.013138728216290474, 0.08338925242424011, 0.09720319509506226, 0.03173141926527023, -0.009079075418412685, 0.04570826143026352, -0.0000614441087236628, -0.06747788935899734, 0.035688117146492004, 0.022403022274374962, 0.01331246830523014, -0.05491582676768303, 0.07895619422197342, -0.17176033556461334, 0.020258452743291855, -0.03599786013364792, -0.06506339460611343, -0.006352625321596861, 0.02872123196721077, -0.06236473098397255, 0.0810769721865654, 0.08681372553110123, -0.010693355463445187, -0.015406738966703415, -0.019259916618466377, -0.012411676347255707, -0.028850549831986427, -0.07069326192140579, -0.09390060603618622, -0.15529757738113403, -0.12466321885585785, 0.08110006153583527, -0.008061634376645088, -0.2096063792705536, 0.012769150547683239, -0.13104628026485443, 0.04622570425271988, -0.10809949785470963, 0.09371429681777954, 0.08394473046064377, 0.020185640081763268, -0.007141938898712397, 0.003890183288604021, 0.036074474453926086, 0.07894916087388992, -0.13067346811294556, -0.08049263805150986 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4125 - Wer: 0.3607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2018 | 7.94 | 500 | 1.3144 | 0.8508 | | 0.4671 | 15.87 | 1000 | 0.4737 | 0.4160 | | 0.1375 | 23.81 | 1500 | 0.4125 | 0.3607 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
automatic-speech-recognition
hs788/wav2vec2-base-timit-demo-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-timit-demo-colab ============================== This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4125 * Wer: 0.3607 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 64 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.10840193927288055, 0.09942979365587234, -0.0032732731197029352, 0.0639089047908783, 0.10887520760297775, -0.019640479236841202, 0.12833033502101898, 0.15100139379501343, -0.09275872260332108, 0.07423093914985657, 0.1264987289905548, 0.15020155906677246, 0.042416736483573914, 0.1458519697189331, -0.04969090223312378, -0.2825383245944977, 0.04574279859662056, 0.03541945293545723, -0.011976231820881367, 0.1270800232887268, 0.08406341820955276, -0.12452585995197296, 0.05826559662818909, 0.034275297075510025, -0.15899118781089783, -0.003669236321002245, -0.004683241248130798, -0.10435055941343307, 0.12317958474159241, 0.0064573404379189014, 0.07069429755210876, 0.0483207069337368, 0.06600438058376312, -0.21849775314331055, 0.006719421129673719, 0.04425959661602974, 0.02855605073273182, 0.07425720989704132, 0.05765978619456291, -0.028049888089299202, 0.10288064926862717, -0.07449200749397278, 0.08023011684417725, 0.03749969229102135, -0.10554177314043045, -0.29212671518325806, -0.08603860437870026, 0.04690544679760933, 0.06829395145177841, 0.08848930150270462, -0.011906549334526062, 0.14405378699302673, -0.05435881018638611, 0.11068060249090195, 0.2799336314201355, -0.3132377862930298, -0.045146841555833817, -0.03918004035949707, 0.05645136535167694, 0.06091735512018204, -0.09987223893404007, -0.01784549094736576, 0.015179495327174664, 0.04465949907898903, 0.13795247673988342, -0.015828529372811317, -0.060198623687028885, -0.0067263380624353886, -0.14862552285194397, -0.06026579439640045, 0.11518867313861847, 0.022374121472239494, -0.03954322636127472, -0.09777384996414185, -0.055425889790058136, -0.21335269510746002, -0.06749007105827332, -0.016157276928424835, 0.04333611950278282, -0.042394332587718964, -0.10477558523416519, -0.012277049943804741, -0.0672234520316124, -0.07472497969865799, -0.04086429998278618, 0.1891331970691681, 0.0566757395863533, -0.0011921821860596538, -0.03852369263768196, 0.07690025866031647, -0.021689042448997498, -0.138247549533844, -0.02397570200264454, 0.03700451925396919, -0.020956119522452354, -0.015290474519133568, -0.042231518775224686, -0.0581996776163578, 0.021151943132281303, 0.16163335740566254, -0.10255303233861923, 0.09620499610900879, -0.02057516761124134, 0.03970718011260033, -0.10276912152767181, 0.20789474248886108, -0.0418180376291275, 0.017576782032847404, -0.009529013186693192, 0.05598139017820358, 0.02954266034066677, -0.026170557364821434, -0.09537056088447571, 0.030951932072639465, 0.12193423509597778, 0.046246014535427094, -0.048178110271692276, 0.06492531299591064, -0.034047674387693405, -0.009892637841403484, 0.002084632171317935, -0.11154741048812866, 0.036412544548511505, 0.019652148708701134, -0.06569615751504898, 0.0035736383870244026, 0.014341851696372032, 0.0072896224446594715, -0.05436139926314354, 0.08275589346885681, -0.061672989279031754, 0.03320573642849922, -0.05781775340437889, -0.12572386860847473, 0.02513972669839859, -0.11487725377082825, -0.0033150711096823215, -0.099916011095047, -0.10138573497533798, -0.011766526848077774, 0.03755359351634979, -0.03871326148509979, -0.026000158861279488, -0.07775180041790009, -0.09040243178606033, 0.045780859887599945, -0.03436008468270302, 0.07266891747713089, -0.07448053359985352, 0.09425774216651917, 0.03419557586312294, 0.08770892769098282, -0.01659530960023403, 0.060401320457458496, -0.07115887105464935, 0.026651468127965927, -0.2003585249185562, 0.07499521225690842, -0.0882958397269249, 0.05715619772672653, -0.12451942265033722, -0.1148756593465805, 0.022022083401679993, -0.007351801265031099, 0.09911179542541504, 0.09700754284858704, -0.17146143317222595, -0.08826595544815063, 0.20687226951122284, -0.08204206824302673, -0.083707295358181, 0.12498222291469574, -0.025076063349843025, -0.00022820691810920835, 0.05553898587822914, 0.2581619620323181, 0.04523538798093796, -0.12530574202537537, 0.008143801242113113, -0.04025382921099663, 0.04302043840289116, -0.0359862744808197, 0.058715540915727615, -0.02759694680571556, 0.0676233172416687, 0.018036799505352974, -0.004287241958081722, 0.03732522204518318, -0.0872926339507103, -0.07719556987285614, -0.04409119114279747, -0.07841350883245468, 0.029108479619026184, 0.03302030637860298, 0.06443256884813309, -0.11678167432546616, -0.10780417919158936, 0.03901488706469536, 0.0813325047492981, -0.1034737378358841, 0.0716647133231163, -0.1204025000333786, 0.08364253491163254, -0.014879105612635612, -0.005070221610367298, -0.19012872874736786, 0.03600987419486046, 0.038029711693525314, -0.028291866183280945, 0.04005897045135498, -0.0645090788602829, 0.07783611118793488, 0.04584876075387001, -0.026543641462922096, -0.04625583812594414, -0.009465120732784271, 0.010228021070361137, -0.08988085389137268, -0.20652009546756744, -0.03812091052532196, -0.03793153166770935, 0.07917838543653488, -0.1385466307401657, 0.03419172018766403, 0.0765547826886177, 0.09213785827159882, 0.03232195973396301, -0.03142789751291275, -0.0016957769403234124, 0.09017588943243027, -0.020771650597453117, -0.06446697562932968, 0.05829201638698578, 0.020398985594511032, -0.0865570455789566, 0.03818977624177933, -0.14922857284545898, 0.12808121740818024, 0.14709283411502838, -0.015159038826823235, -0.06684043258428574, 0.00010474542796146125, -0.04736353084445, -0.03516967594623566, -0.003827969077974558, 0.03290269523859024, 0.21538689732551575, 0.013531610369682312, 0.14365656673908234, -0.08930571377277374, -0.0421011783182621, 0.04978974536061287, -0.021473588421940804, -0.006120389327406883, 0.11701664328575134, 0.045085448771715164, -0.054624710232019424, 0.11850684881210327, 0.09027540683746338, -0.07986439764499664, 0.12190937250852585, -0.06021132320165634, -0.07451378554105759, -0.020309461280703545, 0.004928208887577057, 0.023886194452643394, 0.09902336448431015, -0.16320304572582245, -0.039612188935279846, 0.025918470695614815, 0.025259938091039658, 0.020627159625291824, -0.20869190990924835, 0.014049693010747433, 0.028607629239559174, -0.08579307049512863, -0.04328200966119766, 0.002465304220095277, 0.012892539612948895, 0.0943845584988594, 0.012641347013413906, -0.09374843537807465, 0.011171546764671803, 0.004129425622522831, -0.07322510331869125, 0.17603977024555206, -0.11666613072156906, -0.17625857889652252, -0.10573778301477432, -0.09282252192497253, -0.039468951523303986, -0.0027053970843553543, 0.08880801498889923, -0.09253130108118057, -0.039298634976148605, -0.08366912603378296, -0.016318781301379204, -0.026619402691721916, 0.04205513745546341, 0.031230339780449867, -0.011865105479955673, 0.06496904045343399, -0.1169544905424118, -0.021483587101101875, -0.04010646045207977, -0.0017652381211519241, 0.05449385568499565, 0.037149347364902496, 0.10860037058591843, 0.1582314521074295, -0.010777192190289497, 0.0500609427690506, -0.045641567558050156, 0.1887023150920868, -0.07469738274812698, -0.03676736727356911, 0.11117152869701385, -0.005873518995940685, 0.06863761693239212, 0.11719900369644165, 0.04854678362607956, -0.09790899604558945, -0.012829958461225033, 0.0037898255977779627, -0.04597606509923935, -0.21459706127643585, -0.03515801206231117, -0.04487563669681549, -0.002147891791537404, 0.10576086491346359, 0.041067615151405334, 0.0373961441218853, 0.021660050377249718, 0.03248962014913559, 0.0061063640750944614, 0.002012399723753333, 0.09638699889183044, 0.130077064037323, 0.040140215307474136, 0.13330475986003876, -0.03767659142613411, -0.03711308538913727, 0.030172957107424736, 0.005699885077774525, 0.23065103590488434, 0.01923581399023533, 0.19079194962978363, 0.05599447712302208, 0.17562851309776306, 0.04188474267721176, 0.0665760338306427, -0.0023281234316527843, -0.011439934372901917, 0.01105701457709074, -0.05235996097326279, -0.0396500900387764, 0.023559488356113434, 0.023404523730278015, 0.010008291341364384, -0.11367009580135345, -0.011988941580057144, 0.04610157385468483, 0.3516078591346741, 0.027411343529820442, -0.33806726336479187, -0.09082548320293427, -0.012200694531202316, -0.08528269082307816, -0.031141338869929314, 0.045277222990989685, 0.08848176151514053, -0.08038756996393204, 0.06360291689634323, -0.06236361712217331, 0.09022822231054306, -0.06412261724472046, 0.03402787074446678, 0.03767089545726776, 0.07197225093841553, 0.004078727215528488, 0.03339843451976776, -0.2922405004501343, 0.28097084164619446, 0.005429231096059084, 0.07737204432487488, -0.06107424572110176, 0.008163461461663246, 0.025686483830213547, 0.018551770597696304, 0.08681221306324005, -0.02570568211376667, -0.12028193473815918, -0.1752546727657318, -0.0929955393075943, 0.01137358695268631, 0.12800903618335724, 0.014290926977992058, 0.11025993525981903, -0.011076635681092739, -0.016653049737215042, 0.04951779171824455, -0.09612446278333664, -0.06526286154985428, -0.09221074730157852, 0.011428373865783215, 0.08238303661346436, 0.033630140125751495, -0.07283381372690201, -0.10337041318416595, -0.08797062933444977, 0.149347722530365, -0.05281282961368561, -0.04277365654706955, -0.11878708004951477, 0.008892927318811417, 0.10931842029094696, -0.07885841280221939, 0.06090939790010452, 0.009357727132737637, 0.10454501956701279, 0.01170405000448227, -0.06780713051557541, 0.11964511126279831, -0.06433307379484177, -0.16713593900203705, -0.029247360303997993, 0.14410120248794556, 0.029984796419739723, 0.06048277020454407, -0.008046498522162437, 0.0383547767996788, -0.022522808983922005, -0.077153280377388, 0.04115656390786171, 0.02626982517540455, 0.04411570727825165, -0.013693139888346195, -0.019618984311819077, -0.006506140809506178, -0.09045520424842834, -0.01831859163939953, 0.20558883249759674, 0.24349291622638702, -0.09658609330654144, 0.09254779666662216, 0.07048435509204865, -0.04215268790721893, -0.17233753204345703, -0.003609598148614168, 0.06548202782869339, 0.0003060584713239223, -0.025631308555603027, -0.1945110559463501, 0.024103490635752678, 0.07004061341285706, -0.021416759118437767, 0.08301912248134613, -0.3171079754829407, -0.14080950617790222, 0.13653235137462616, 0.11388445645570755, 0.06106197088956833, -0.14613021910190582, -0.05506385862827301, -0.010211565531790257, -0.1025380790233612, 0.09402883052825928, -0.07439092546701431, 0.13583993911743164, -0.024395085871219635, 0.09055118262767792, 0.011085258796811104, -0.05827326700091362, 0.10640087723731995, 0.011888805776834488, 0.06008514389395714, -0.04568540304899216, 0.01824812777340412, 0.04907729849219322, -0.0632019191980362, 0.054474398493766785, -0.07996165007352829, 0.02870166301727295, -0.08069387078285217, -0.03259076178073883, -0.08501128107309341, 0.0143051752820611, -0.009704957716166973, -0.03350866585969925, -0.03708186000585556, 0.0016160530503839254, 0.06174768507480621, -0.010522176511585712, 0.1545044183731079, -0.027125265449285507, 0.12636709213256836, 0.1635395884513855, 0.1008370965719223, -0.10466770827770233, -0.07610317319631577, 0.006215882487595081, -0.034340038895606995, 0.05555565655231476, -0.1166120246052742, 0.03718842566013336, 0.13585075736045837, 0.0314721018075943, 0.12213027477264404, 0.06990715116262436, -0.06520267575979233, 0.03371967375278473, 0.04193675145506859, -0.13790380954742432, -0.12723968923091888, 0.013756118714809418, 0.023448465391993523, -0.07200626283884048, 0.0727224200963974, 0.11524808406829834, -0.05519428849220276, -0.013773572631180286, -0.0017679247539490461, 0.013635697774589062, -0.040404267609119415, 0.19558584690093994, 0.036822110414505005, 0.061562422662973404, -0.12449406087398529, 0.08033376932144165, 0.03864164650440216, -0.1335592269897461, 0.060989879071712494, 0.10572937875986099, -0.09525275230407715, -0.028561105951666832, 0.02777741104364395, 0.11242704838514328, -0.02837483584880829, -0.0740433931350708, -0.14249736070632935, -0.14226004481315613, 0.10895731300115585, 0.2047395557165146, 0.05631996691226959, 0.016582321375608444, -0.059292059391736984, 0.01703932322561741, -0.11865764111280441, 0.069403737783432, 0.04012617841362953, 0.06058439984917641, -0.12849301099777222, 0.14525172114372253, 0.017378974705934525, 0.039774760603904724, -0.015068387612700462, -0.01107021514326334, -0.11188119649887085, 0.03961029648780823, -0.12852124869823456, 0.0053679440170526505, -0.06555632501840591, 0.0008056419319473207, 0.003699701512232423, -0.050238218158483505, -0.06420663744211197, 0.0350005067884922, -0.11980230361223221, -0.023233849555253983, 0.0015139579772949219, 0.036535680294036865, -0.12821324169635773, -0.009511788375675678, 0.015172506682574749, -0.09357403218746185, 0.09747523069381714, 0.08688071370124817, -0.03260219842195511, 0.05046198144555092, -0.06034085154533386, -0.02628629468381405, 0.07778842747211456, -0.0063842604868113995, 0.051108378916978836, -0.1306200921535492, -0.019470445811748505, 0.011326364241540432, 0.03455924615263939, 0.02401355654001236, 0.11314746737480164, -0.11603404581546783, 0.0008960484410636127, -0.027594830840826035, -0.051907241344451904, -0.0684390515089035, 0.05053671449422836, 0.10958374291658401, 0.02757941372692585, 0.1637764722108841, -0.09339061379432678, 0.027703197672963142, -0.16620126366615295, 0.0064531732350587845, -0.01522138249129057, -0.12184406816959381, -0.05091356486082077, -0.03190355375409126, 0.07811766862869263, -0.06345972418785095, 0.13078901171684265, -0.030455099418759346, 0.025080401450395584, 0.03731410950422287, -0.07726695388555527, -0.05333266034722328, 0.039647504687309265, 0.20654624700546265, 0.03931599482893944, -0.04324667528271675, 0.07519874721765518, 0.020934900268912315, 0.08080600202083588, 0.1295783370733261, 0.17298473417758942, 0.1607881486415863, 0.06347686797380447, 0.11682124435901642, 0.05453762784600258, -0.05320059880614281, -0.17402292788028717, 0.09230802953243256, -0.060276709496974945, 0.1305769383907318, -0.014341930858790874, 0.24112437665462494, 0.12125487625598907, -0.15338638424873352, 0.06586644798517227, -0.01937364786863327, -0.08936231583356857, -0.11579914391040802, -0.06332032382488251, -0.0869855210185051, -0.17657700181007385, 0.00920387078076601, -0.10204344987869263, 0.06307265162467957, 0.047155868262052536, 0.037556037306785583, 0.017014650627970695, 0.13752016425132751, 0.016575932502746582, 0.0028347221668809652, 0.09153669327497482, -0.003392178798094392, -0.05593612790107727, -0.07296172529459, -0.08541002869606018, 0.034677211195230484, -0.013555123470723629, 0.05818389728665352, -0.004046916961669922, -0.06911953538656235, 0.04702029377222061, -0.03861567750573158, -0.0964185819029808, 0.023027431219816208, 0.021672777831554413, 0.06978718936443329, 0.05003747344017029, 0.0341593436896801, -0.04138512536883354, -0.0023753235582262278, 0.1956040859222412, -0.09438656270503998, -0.09315497428178787, -0.10909578204154968, 0.25362738966941833, 0.039139874279499054, -0.015677686780691147, 0.02148428186774254, -0.06038916856050491, -0.03152010217308998, 0.21176022291183472, 0.17216283082962036, -0.011390690691769123, 0.0038215206004679203, -0.013853519223630428, -0.0063662175089120865, -0.037059634923934937, 0.08023175597190857, 0.14704789221286774, 0.06169869378209114, -0.06345091015100479, -0.052421700209379196, -0.05089200288057327, -0.03470566123723984, -0.06613753736019135, 0.07537133246660233, 0.006660172250121832, -0.02515644207596779, -0.04525953531265259, 0.06324705481529236, -0.09421046078205109, -0.08264342695474625, 0.025249235332012177, -0.19519402086734772, -0.15011774003505707, 0.00714054936543107, 0.07110968232154846, 0.011370549909770489, 0.03471324220299721, 0.003075638320297003, -0.008666581474244595, 0.08035959303379059, -0.002129684668034315, -0.08053214848041534, -0.06623467057943344, 0.08440342545509338, -0.13297195732593536, 0.16674721240997314, -0.04231426492333412, 0.048181675374507904, 0.12330064922571182, 0.08834908902645111, -0.08060440421104431, 0.08698412030935287, 0.04214141517877579, -0.10697236657142639, 0.021693486720323563, 0.1540914922952652, -0.033257052302360535, 0.09497203677892685, 0.030675923451781273, -0.11471245437860489, 0.014496706426143646, -0.09043897688388824, -0.03821524605154991, -0.04121850058436394, -0.050358083099126816, -0.04437951371073723, 0.10982204973697662, 0.16341567039489746, -0.043647341430187225, 0.004043710883706808, -0.05261571705341339, 0.011974305845797062, 0.04789311811327934, -0.0006571264821104705, -0.061769306659698486, -0.2793271541595459, 0.011486247181892395, 0.03786472603678703, 0.002746510785073042, -0.25752827525138855, -0.09663747996091843, 0.01299266703426838, -0.04285489022731781, -0.08771485090255737, 0.08573777973651886, 0.07471591234207153, 0.04653165489435196, -0.05240245908498764, -0.05806141346693039, -0.035808440297842026, 0.18863575160503387, -0.17564551532268524, -0.06003304198384285 ]
null
null
null
Hi, this is Taiwan_House_Prediction.
{}
null
huang0624/Taiwan_House_Prediction
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
Hi, this is Taiwan_House_Prediction.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT). ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. [DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037). ``` @inproceedings{hou2020dynabert, title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth}, author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu}, booktitle = {Advances in Neural Information Processing Systems}, year = {2020} } ```
{}
null
huawei-noah/DynaBERT_MNLI
[ "transformers", "pytorch", "jax", "bert", "arxiv:2004.04037", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2004.04037" ]
[]
TAGS #transformers #pytorch #jax #bert #arxiv-2004.04037 #endpoints_compatible #region-us
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1, and is released in GitHub. ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. DynaBERT: Dynamic BERT with Adaptive Width and Depth.
[ "## DynaBERT: Dynamic BERT with Adaptive Width and Depth\n\n* DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and \nthe subnetworks of it have competitive performances as other similar-sized compressed models.\nThe training process of DynaBERT includes first training a width-adaptive BERT and then \nallowing both adaptive width and depth using knowledge distillation. \n\n* This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1, and is released in GitHub.", "### Reference\nLu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu.\nDynaBERT: Dynamic BERT with Adaptive Width and Depth." ]
[ "TAGS\n#transformers #pytorch #jax #bert #arxiv-2004.04037 #endpoints_compatible #region-us \n", "## DynaBERT: Dynamic BERT with Adaptive Width and Depth\n\n* DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and \nthe subnetworks of it have competitive performances as other similar-sized compressed models.\nThe training process of DynaBERT includes first training a width-adaptive BERT and then \nallowing both adaptive width and depth using knowledge distillation. \n\n* This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1, and is released in GitHub.", "### Reference\nLu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu.\nDynaBERT: Dynamic BERT with Adaptive Width and Depth." ]
[ 34, 136, 47 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #arxiv-2004.04037 #endpoints_compatible #region-us \n## DynaBERT: Dynamic BERT with Adaptive Width and Depth\n\n* DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and \nthe subnetworks of it have competitive performances as other similar-sized compressed models.\nThe training process of DynaBERT includes first training a width-adaptive BERT and then \nallowing both adaptive width and depth using knowledge distillation. \n\n* This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1, and is released in GitHub.### Reference\nLu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu.\nDynaBERT: Dynamic BERT with Adaptive Width and Depth." ]
[ -0.04640497267246246, 0.062194932252168655, -0.0024007975589483976, 0.06621027737855911, 0.13853752613067627, -0.021721696481108665, 0.09933654963970184, 0.0463455431163311, -0.032217804342508316, -0.025705797597765923, 0.03086184523999691, 0.029750535264611244, 0.03861381486058235, 0.10609053075313568, -0.02029876783490181, -0.2867789566516876, 0.03639873489737511, 0.0957026481628418, -0.1599423885345459, 0.0070722345262765884, 0.08523627370595932, -0.11427120119333267, 0.10260650515556335, 0.040353428572416306, -0.13776299357414246, 0.04648720473051071, -0.05770221725106239, -0.03340814262628555, 0.13822318613529205, 0.06742295622825623, 0.19895319640636444, 0.07370071113109589, 0.05249422788619995, -0.03890644758939743, 0.031619325280189514, 0.02753223292529583, 0.007798473350703716, 0.03959975764155388, 0.04966900497674942, 0.202104851603508, 0.13618986308574677, -0.033802181482315063, -0.011621044017374516, 0.0007954379543662071, -0.015552138909697533, -0.08973048627376556, -0.069710373878479, -0.03801281750202179, 0.07276280224323273, 0.042332086712121964, 0.029340835288167, 0.06477876752614975, -0.06322271376848221, 0.04206397756934166, 0.1570155769586563, -0.34002000093460083, 0.018114173784852028, 0.12723305821418762, 0.06801590323448181, -0.0074868639931082726, -0.09286614507436752, -0.0027618298772722483, 0.044369567185640335, 0.03978743031620979, 0.11871882528066635, -0.10354158282279968, 0.0009015402756631374, -0.006720948964357376, -0.1236073300242424, 0.09890078008174896, 0.10532891750335693, -0.010607123374938965, -0.054431986063718796, -0.07447993010282516, -0.04105202481150627, 0.03848988935351372, -0.039846718311309814, -0.13111141324043274, 0.07209114730358124, 0.0038063055835664272, -0.0691145807504654, -0.10407252609729767, -0.04718426242470741, -0.06903630495071411, -0.08260516822338104, 0.17413631081581116, 0.048464950174093246, -0.007318675518035889, -0.12049170583486557, 0.04290483146905899, 0.07104537636041641, -0.08886678516864777, -0.12050144374370575, -0.08280674368143082, 0.07457096129655838, -0.043132249265909195, -0.14055640995502472, -0.11050230264663696, 0.06348753720521927, 0.013121827505528927, -0.04219494387507439, 0.019920745864510536, 0.05438508838415146, -0.03481358289718628, 0.01243880670517683, 0.18262679874897003, -0.09830140322446823, 0.001163846580311656, 0.091972716152668, 0.007036871742457151, -0.018687298521399498, -0.060217902064323425, -0.12087764590978622, -0.08382020145654678, 0.07269434630870819, 0.0083420155569911, -0.09041920304298401, 0.133135125041008, 0.0218292698264122, -0.08256914466619492, 0.029812345281243324, -0.0817725881934166, -0.06022792309522629, -0.01235879771411419, -0.05611801892518997, 0.057974305003881454, 0.052870966494083405, -0.03244524449110031, -0.03666243702173233, 0.0935652032494545, -0.11797890067100525, -0.05904586240649223, -0.04432210326194763, -0.09175629913806915, -0.005146965850144625, -0.0481896847486496, 0.05099806934595108, -0.1619361937046051, -0.03009507618844509, 0.03676380589604378, -0.03916231915354729, 0.0847431868314743, -0.02204873599112034, -0.024049364030361176, -0.03557829186320305, -0.040001362562179565, -0.026247723028063774, -0.09007466584444046, 0.009831679984927177, 0.08477668464183807, 0.014668683521449566, 0.0321132130920887, -0.20589688420295715, 0.08646875619888306, -0.05804482102394104, 0.038303524255752563, -0.09306348115205765, 0.09058544039726257, -0.029688101261854172, 0.01658858358860016, -0.009099104441702366, -0.05957619845867157, 0.02726774662733078, 0.007929501123726368, 0.08833744376897812, 0.14044223725795746, -0.11446104198694229, -0.09034640341997147, 0.11191191524267197, -0.07956854999065399, -0.06539987772703171, 0.036691345274448395, -0.05326138809323311, -0.064402274787426, 0.11207320541143417, 0.12503032386302948, 0.19133301079273224, -0.17333711683750153, -0.040211305022239685, 0.10161904990673065, -0.0026277604047209024, -0.06416724622249603, 0.01622854731976986, 0.10280639678239822, -0.03307482600212097, 0.06815136969089508, -0.1582157015800476, 0.10361689329147339, -0.01509149745106697, -0.05536501482129097, 0.004975876305252314, -0.10453414916992188, 0.08827631175518036, 0.003398026106879115, 0.07126712799072266, 0.07265561074018478, 0.05378071591258049, 0.1622493416070938, 0.12387096881866455, -0.07077504694461823, 0.022600747644901276, -0.10322577506303787, -0.022321457043290138, 0.07743106037378311, 0.07699903100728989, -0.09612777084112167, -0.14096759259700775, 0.04892359673976898, -0.006638683378696442, -0.0244440995156765, 0.16660068929195404, 0.06161453202366829, 0.06194682419300079, -0.028753064572811127, 0.01664140820503235, -0.14625687897205353, -0.02631732076406479, -0.011470520868897438, -0.03027181327342987, -0.05517284572124481, -0.05344060808420181, 0.030407361686229706, -0.09837261587381363, -0.012341664172708988, 0.028246574103832245, 0.045115597546100616, 0.07798200100660324, -0.00845405925065279, -0.020679239183664322, 0.05588245391845703, -0.03525558114051819, -0.04333777725696564, 0.026116106659173965, 0.05513326823711395, -0.08150036633014679, 0.09329527616500854, -0.02283664606511593, 0.21133656799793243, 0.12048404663801193, -0.02482973411679268, -0.015876973047852516, -0.06216523423790932, -0.03387819975614548, -0.013945956714451313, 0.038541413843631744, -0.007977079600095749, 0.14389288425445557, -0.009595573879778385, 0.1475646048784256, -0.057301491498947144, 0.05172925442457199, -0.01764683984220028, 0.004343416541814804, 0.02865501120686531, -0.011354498565196991, -0.0019943206571042538, 0.05369481071829796, 0.06569938361644745, 0.03976869210600853, -0.07465734332799911, 0.14677157998085022, -0.08509872108697891, -0.055399857461452484, 0.009356173686683178, 0.040719859302043915, 0.01784289814531803, 0.0790150910615921, -0.029480062425136566, -0.08612371981143951, -0.012769460678100586, -0.01872495748102665, 0.0012342649279162288, -0.10648355633020401, -0.03166025131940842, 0.02577160857617855, -0.03843485936522484, -0.004281121306121349, 0.011966665275394917, -0.03339855372905731, 0.05843053013086319, 0.0776495486497879, -0.06716644763946533, 0.02576976828277111, -0.0205066055059433, -0.02622973918914795, 0.1673118621110916, -0.0801747739315033, -0.23186632990837097, -0.07670403271913528, -0.21580061316490173, -0.12562604248523712, 0.1009954959154129, 0.006469095125794411, -0.13905946910381317, -0.04756101593375206, 0.03159092739224434, 0.15860363841056824, -0.06701561063528061, 0.05206518620252609, 0.010908239521086216, 0.006474206689745188, 0.03310679644346237, -0.15169811248779297, 0.010657303035259247, -0.08146867901086807, -0.06602973490953445, 0.012529661878943443, -0.011461487971246243, 0.06577345728874207, 0.07390773296356201, 0.015142041258513927, -0.051686517894268036, -0.033998262137174606, 0.16999424993991852, -0.015814239159226418, -0.06522590667009354, 0.15283310413360596, -0.033426735550165176, 0.06997639685869217, 0.007198861334472895, 0.022611819207668304, -0.10972829908132553, 0.06207912787795067, 0.03166283294558525, -0.0473036989569664, -0.10295946896076202, -0.05805029720067978, -0.09480045735836029, 0.052229881286621094, 0.07232891023159027, 0.006471594795584679, 0.019037537276744843, 0.048064541071653366, 0.010846782475709915, 0.21173343062400818, 0.00680063059553504, 0.046051230281591415, 0.14817668497562408, -0.005354925058782101, 0.07016392052173615, -0.0224855188280344, -0.14388352632522583, 0.05727493017911911, 0.09432481974363327, 0.24052946269512177, -0.05926137790083885, 0.06343374401330948, -0.004285563714802265, 0.14680291712284088, 0.04697496071457863, 0.1168997511267662, -0.03339948505163193, -0.010999244637787342, -0.025174155831336975, -0.06012147665023804, -0.056536972522735596, 0.05566153675317764, 0.03465833142399788, -0.13225157558918, -0.0715208575129509, 0.036950912326574326, -0.07349002361297607, 0.2668358087539673, 0.02105046808719635, -0.16096282005310059, -0.019500525668263435, -0.05077173560857773, -0.019839828833937645, -0.06561882793903351, 0.06619075685739517, 0.07454272359609604, -0.06519591808319092, 0.030998192727565765, -0.05323343724012375, 0.07691895961761475, -0.11645317822694778, 0.06012483686208725, -0.07252418249845505, 0.11142729222774506, 0.07009445875883102, 0.006476127542555332, -0.28353893756866455, 0.038583122193813324, -0.01533033512532711, 0.015737924724817276, -0.028219474479556084, 0.030294140800833702, 0.11735255271196365, 0.06934113800525665, 0.039307914674282074, 0.016481002792716026, 0.2494807094335556, -0.1401493102312088, -0.03949239104986191, 0.06019750237464905, 0.10256842523813248, 0.016471518203616142, 0.0799381285905838, -0.043788593262434006, 0.009333365596830845, 0.027195656672120094, 0.05514037236571312, -0.03409945219755173, -0.08675957471132278, 0.08437453955411911, -0.029520289972424507, 0.13171923160552979, -0.06010020524263382, -0.04738997668027878, -0.043266478925943375, 0.12386363744735718, 0.011061769910156727, -0.07776936888694763, -0.10774379968643188, -0.027206668630242348, -0.02230445295572281, -0.06295763701200485, 0.08979412168264389, 0.005359678063541651, 0.08032010495662689, -0.028170602396130562, -0.20018140971660614, 0.014134060591459274, -0.005502097308635712, -0.024177080020308495, -0.042502038180828094, -0.025028638541698456, 0.04017305001616478, -0.022986596450209618, 0.01401154138147831, -0.07876207679510117, 0.019609088078141212, -0.08952602744102478, -0.10649024695158005, 0.02000868320465088, -0.07604505121707916, -0.010141554288566113, -0.08770184218883514, 0.0847863107919693, -0.0626630187034607, 0.0976627990603447, 0.07065840065479279, 0.09389322251081467, -0.030744265764951706, 0.0595380999147892, 0.11988428235054016, 0.03228098526597023, -0.3704637587070465, -0.10971255600452423, 0.07950950413942337, -0.006764227524399757, -0.03737793490290642, -0.3076312243938446, 0.12084968388080597, 0.00525685865432024, -0.008790251798927784, 0.16347965598106384, -0.09352044761180878, -0.09163077920675278, 0.11526526510715485, 0.12326756119728088, 0.3552989065647125, -0.08253563940525055, -0.04559962451457977, 0.003898794762790203, -0.12859836220741272, 0.13068582117557526, 0.018001990392804146, 0.1171310693025589, -0.04831038787961006, 0.04438461735844612, 0.0360109843313694, 0.019503310322761536, 0.08029942214488983, -0.03540505841374397, 0.05598371848464012, -0.06463521718978882, -0.011662925593554974, -0.000004127079591853544, -0.08598080277442932, 0.08330133557319641, -0.0485181026160717, 0.09618052840232849, -0.0977645292878151, -0.06019384786486626, -0.02303074486553669, 0.0895218700170517, 0.03296094760298729, -0.11422538757324219, -0.07331576943397522, 0.0622999370098114, -0.004203513730317354, 0.022123930975794792, 0.11944267153739929, 0.06547210365533829, -0.09712708741426468, 0.0376090444624424, 0.06717127561569214, -0.05456056445837021, -0.004624221008270979, -0.002754609100520611, -0.03070656955242157, 0.16198138892650604, -0.09562799334526062, 0.032063983380794525, 0.0889454111456871, 0.05425336956977844, -0.0017553610960021615, 0.08141268044710159, -0.07685723900794983, 0.009732178412377834, 0.06259002536535263, -0.16343823075294495, -0.09776203334331512, -0.09259766340255737, -0.048562340438365936, -0.02626796066761017, 0.1570354849100113, 0.15930058062076569, -0.05942223221063614, -0.0026575212832540274, 0.014097677543759346, -0.05855351686477661, -0.05703812092542648, 0.04225623980164528, 0.06302838027477264, -0.0066997637040913105, -0.10294894874095917, 0.04740869253873825, 0.02423771098256111, 0.06107557192444801, 0.03532146289944649, 0.01458766870200634, -0.12553605437278748, -0.010589071549475193, -0.15984989702701569, 0.1314873844385147, -0.07831712812185287, -0.03518327325582504, -0.04243164137005806, -0.13502970337867737, 0.015050019137561321, 0.10363214462995529, 0.07600855082273483, 0.1487775444984436, -0.0655531957745552, 0.03540092334151268, -0.0792325884103775, -0.007145324256271124, -0.048041243106126785, 0.1064949631690979, -0.16057346761226654, 0.04702514410018921, -0.02241349220275879, 0.176285982131958, -0.0872383862733841, -0.041385263204574585, -0.11600968986749649, -0.04566450044512749, -0.2594228982925415, -0.03738454356789589, -0.04076388105750084, 0.018520355224609375, -0.06020640209317207, -0.03554181382060051, -0.041393958032131195, 0.056291744112968445, -0.043615419417619705, -0.024771561846137047, -0.018793078139424324, 0.00490211695432663, -0.08474418520927429, -0.05608280003070831, -0.016676807776093483, -0.11386680603027344, 0.08938916772603989, 0.029873646795749664, 0.016332240775227547, 0.09048673510551453, 0.12422221153974533, -0.07837054878473282, 0.060328830033540726, 0.07468027621507645, 0.059655457735061646, 0.031197192147374153, -0.030596407130360603, -0.028285320848226547, 0.03294124826788902, -0.05755368992686272, 0.17998561263084412, -0.06327379494905472, -0.07138419896364212, -0.11611562222242355, -0.029478657990694046, -0.035970572382211685, -0.015780387446284294, 0.1533721685409546, 0.1497286558151245, 0.1416814774274826, -0.018352944403886795, 0.025431359186768532, -0.07882028073072433, -0.01632012613117695, -0.0065166885033249855, -0.09019210934638977, 0.026771893724799156, -0.09693150967359543, 0.026385359466075897, 0.0058989389799535275, 0.08911280333995819, -0.08601851761341095, -0.08434645086526871, -0.01853443682193756, -0.026791198179125786, -0.03264186903834343, -0.0009196512401103973, 0.27935513854026794, 0.10902122408151627, -0.02351733110845089, -0.028014101088047028, 0.1138053610920906, 0.07376734912395477, 0.1495441496372223, 0.09006064385175705, 0.073578841984272, -0.028870154172182083, 0.11132626235485077, 0.07741181552410126, 0.0019983192905783653, -0.1401698738336563, -0.09375163912773132, -0.04010002687573433, 0.01356538850814104, -0.035326723009347916, 0.07749146223068237, 0.08440474420785904, -0.04287317395210266, 0.08002535998821259, 0.04995490238070488, -0.038708776235580444, -0.07425393164157867, 0.07320893555879593, -0.049729153513908386, -0.13862177729606628, 0.013083124533295631, -0.08198001235723495, -0.07557903975248337, 0.035508885979652405, -0.009476245380938053, -0.03638670966029167, 0.14799362421035767, -0.02481812797486782, -0.10168589651584625, 0.1071527823805809, -0.007816114462912083, -0.05326656252145767, 0.08331131190061569, -0.06670229882001877, -0.002726558595895767, 0.06554297357797623, -0.0007625609869137406, -0.03185759112238884, 0.010326682589948177, 0.06136353686451912, 0.01415963377803564, -0.04374018311500549, -0.005780197214335203, 0.04662739858031273, -0.0030424126889556646, 0.15587957203388214, -0.005257509183138609, -0.0518663115799427, -0.009115650318562984, 0.09903284162282944, -0.04717279225587845, -0.029412537813186646, -0.12461579591035843, 0.2626839578151703, 0.039546068757772446, 0.0730694830417633, -0.009746531024575233, -0.0433756560087204, -0.07358971238136292, 0.28491348028182983, 0.05902813747525215, -0.1271439492702484, 0.01901930943131447, 0.0036955198738723993, 0.008659576065838337, -0.04854191839694977, 0.21019969880580902, 0.10577577352523804, 0.26513391733169556, 0.02599094994366169, -0.1083819717168808, -0.032789889723062515, 0.03681008145213127, -0.03247817978262901, 0.0713648796081543, 0.06783144176006317, -0.04383949190378189, -0.1097622960805893, -0.0875570997595787, -0.07956921309232712, -0.1599663645029068, 0.09511777758598328, -0.06002015992999077, -0.020107615739107132, -0.04315185546875, -0.12382004410028458, -0.009261160157620907, 0.09215915203094482, -0.016536179929971695, 0.11554140597581863, 0.160710409283638, -0.014718708582222462, -0.06684234738349915, 0.034627754241228104, 0.15944091975688934, 0.029348766431212425, 0.0513780377805233, -0.025952821597456932, -0.011873212642967701, 0.02325003780424595, 0.13153235614299774, -0.08085478842258453, 0.04089771956205368, -0.029285535216331482, -0.13560594618320465, -0.07493306696414948, 0.017456330358982086, -0.060766078531742096, 0.0050666299648582935, -0.01742069236934185, -0.05206599086523056, -0.03114178590476513, 0.14902596175670624, -0.019834963604807854, -0.08481678366661072, 0.045994389802217484, -0.10669994354248047, 0.050728294998407364, 0.13719171285629272, 0.00785677321255207, 0.01144135557115078, -0.03446849063038826, 0.028014881536364555, 0.06362195312976837, -0.09730465710163116, -0.08380886167287827, -0.08441989868879318, -0.08798657357692719, -0.036566346883773804, -0.03135712444782257, -0.16577649116516113, -0.02179299108684063, -0.05688011273741722, 0.016874374821782112, -0.058125317096710205, 0.05029292032122612, 0.025446085259318352, -0.014284113422036171, -0.0033927694894373417, 0.006835244130343199, -0.045133087784051895, 0.019496995955705643, -0.11683086305856705, -0.1585361361503601 ]
null
null
transformers
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT). ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. [DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037). ``` @inproceedings{hou2020dynabert, title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth}, author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu}, booktitle = {Advances in Neural Information Processing Systems}, year = {2020} } ```
{}
null
huawei-noah/DynaBERT_SST-2
[ "transformers", "pytorch", "jax", "bert", "arxiv:2004.04037", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2004.04037" ]
[]
TAGS #transformers #pytorch #jax #bert #arxiv-2004.04037 #endpoints_compatible #region-us
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1, and is released in GitHub. ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. DynaBERT: Dynamic BERT with Adaptive Width and Depth.
[ "## DynaBERT: Dynamic BERT with Adaptive Width and Depth\n\n* DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and \nthe subnetworks of it have competitive performances as other similar-sized compressed models.\nThe training process of DynaBERT includes first training a width-adaptive BERT and then \nallowing both adaptive width and depth using knowledge distillation. \n\n* This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1, and is released in GitHub.", "### Reference\nLu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu.\nDynaBERT: Dynamic BERT with Adaptive Width and Depth." ]
[ "TAGS\n#transformers #pytorch #jax #bert #arxiv-2004.04037 #endpoints_compatible #region-us \n", "## DynaBERT: Dynamic BERT with Adaptive Width and Depth\n\n* DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and \nthe subnetworks of it have competitive performances as other similar-sized compressed models.\nThe training process of DynaBERT includes first training a width-adaptive BERT and then \nallowing both adaptive width and depth using knowledge distillation. \n\n* This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1, and is released in GitHub.", "### Reference\nLu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu.\nDynaBERT: Dynamic BERT with Adaptive Width and Depth." ]
[ 34, 136, 47 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #arxiv-2004.04037 #endpoints_compatible #region-us \n## DynaBERT: Dynamic BERT with Adaptive Width and Depth\n\n* DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and \nthe subnetworks of it have competitive performances as other similar-sized compressed models.\nThe training process of DynaBERT includes first training a width-adaptive BERT and then \nallowing both adaptive width and depth using knowledge distillation. \n\n* This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1, and is released in GitHub.### Reference\nLu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu.\nDynaBERT: Dynamic BERT with Adaptive Width and Depth." ]
[ -0.04640497267246246, 0.062194932252168655, -0.0024007975589483976, 0.06621027737855911, 0.13853752613067627, -0.021721696481108665, 0.09933654963970184, 0.0463455431163311, -0.032217804342508316, -0.025705797597765923, 0.03086184523999691, 0.029750535264611244, 0.03861381486058235, 0.10609053075313568, -0.02029876783490181, -0.2867789566516876, 0.03639873489737511, 0.0957026481628418, -0.1599423885345459, 0.0070722345262765884, 0.08523627370595932, -0.11427120119333267, 0.10260650515556335, 0.040353428572416306, -0.13776299357414246, 0.04648720473051071, -0.05770221725106239, -0.03340814262628555, 0.13822318613529205, 0.06742295622825623, 0.19895319640636444, 0.07370071113109589, 0.05249422788619995, -0.03890644758939743, 0.031619325280189514, 0.02753223292529583, 0.007798473350703716, 0.03959975764155388, 0.04966900497674942, 0.202104851603508, 0.13618986308574677, -0.033802181482315063, -0.011621044017374516, 0.0007954379543662071, -0.015552138909697533, -0.08973048627376556, -0.069710373878479, -0.03801281750202179, 0.07276280224323273, 0.042332086712121964, 0.029340835288167, 0.06477876752614975, -0.06322271376848221, 0.04206397756934166, 0.1570155769586563, -0.34002000093460083, 0.018114173784852028, 0.12723305821418762, 0.06801590323448181, -0.0074868639931082726, -0.09286614507436752, -0.0027618298772722483, 0.044369567185640335, 0.03978743031620979, 0.11871882528066635, -0.10354158282279968, 0.0009015402756631374, -0.006720948964357376, -0.1236073300242424, 0.09890078008174896, 0.10532891750335693, -0.010607123374938965, -0.054431986063718796, -0.07447993010282516, -0.04105202481150627, 0.03848988935351372, -0.039846718311309814, -0.13111141324043274, 0.07209114730358124, 0.0038063055835664272, -0.0691145807504654, -0.10407252609729767, -0.04718426242470741, -0.06903630495071411, -0.08260516822338104, 0.17413631081581116, 0.048464950174093246, -0.007318675518035889, -0.12049170583486557, 0.04290483146905899, 0.07104537636041641, -0.08886678516864777, -0.12050144374370575, -0.08280674368143082, 0.07457096129655838, -0.043132249265909195, -0.14055640995502472, -0.11050230264663696, 0.06348753720521927, 0.013121827505528927, -0.04219494387507439, 0.019920745864510536, 0.05438508838415146, -0.03481358289718628, 0.01243880670517683, 0.18262679874897003, -0.09830140322446823, 0.001163846580311656, 0.091972716152668, 0.007036871742457151, -0.018687298521399498, -0.060217902064323425, -0.12087764590978622, -0.08382020145654678, 0.07269434630870819, 0.0083420155569911, -0.09041920304298401, 0.133135125041008, 0.0218292698264122, -0.08256914466619492, 0.029812345281243324, -0.0817725881934166, -0.06022792309522629, -0.01235879771411419, -0.05611801892518997, 0.057974305003881454, 0.052870966494083405, -0.03244524449110031, -0.03666243702173233, 0.0935652032494545, -0.11797890067100525, -0.05904586240649223, -0.04432210326194763, -0.09175629913806915, -0.005146965850144625, -0.0481896847486496, 0.05099806934595108, -0.1619361937046051, -0.03009507618844509, 0.03676380589604378, -0.03916231915354729, 0.0847431868314743, -0.02204873599112034, -0.024049364030361176, -0.03557829186320305, -0.040001362562179565, -0.026247723028063774, -0.09007466584444046, 0.009831679984927177, 0.08477668464183807, 0.014668683521449566, 0.0321132130920887, -0.20589688420295715, 0.08646875619888306, -0.05804482102394104, 0.038303524255752563, -0.09306348115205765, 0.09058544039726257, -0.029688101261854172, 0.01658858358860016, -0.009099104441702366, -0.05957619845867157, 0.02726774662733078, 0.007929501123726368, 0.08833744376897812, 0.14044223725795746, -0.11446104198694229, -0.09034640341997147, 0.11191191524267197, -0.07956854999065399, -0.06539987772703171, 0.036691345274448395, -0.05326138809323311, -0.064402274787426, 0.11207320541143417, 0.12503032386302948, 0.19133301079273224, -0.17333711683750153, -0.040211305022239685, 0.10161904990673065, -0.0026277604047209024, -0.06416724622249603, 0.01622854731976986, 0.10280639678239822, -0.03307482600212097, 0.06815136969089508, -0.1582157015800476, 0.10361689329147339, -0.01509149745106697, -0.05536501482129097, 0.004975876305252314, -0.10453414916992188, 0.08827631175518036, 0.003398026106879115, 0.07126712799072266, 0.07265561074018478, 0.05378071591258049, 0.1622493416070938, 0.12387096881866455, -0.07077504694461823, 0.022600747644901276, -0.10322577506303787, -0.022321457043290138, 0.07743106037378311, 0.07699903100728989, -0.09612777084112167, -0.14096759259700775, 0.04892359673976898, -0.006638683378696442, -0.0244440995156765, 0.16660068929195404, 0.06161453202366829, 0.06194682419300079, -0.028753064572811127, 0.01664140820503235, -0.14625687897205353, -0.02631732076406479, -0.011470520868897438, -0.03027181327342987, -0.05517284572124481, -0.05344060808420181, 0.030407361686229706, -0.09837261587381363, -0.012341664172708988, 0.028246574103832245, 0.045115597546100616, 0.07798200100660324, -0.00845405925065279, -0.020679239183664322, 0.05588245391845703, -0.03525558114051819, -0.04333777725696564, 0.026116106659173965, 0.05513326823711395, -0.08150036633014679, 0.09329527616500854, -0.02283664606511593, 0.21133656799793243, 0.12048404663801193, -0.02482973411679268, -0.015876973047852516, -0.06216523423790932, -0.03387819975614548, -0.013945956714451313, 0.038541413843631744, -0.007977079600095749, 0.14389288425445557, -0.009595573879778385, 0.1475646048784256, -0.057301491498947144, 0.05172925442457199, -0.01764683984220028, 0.004343416541814804, 0.02865501120686531, -0.011354498565196991, -0.0019943206571042538, 0.05369481071829796, 0.06569938361644745, 0.03976869210600853, -0.07465734332799911, 0.14677157998085022, -0.08509872108697891, -0.055399857461452484, 0.009356173686683178, 0.040719859302043915, 0.01784289814531803, 0.0790150910615921, -0.029480062425136566, -0.08612371981143951, -0.012769460678100586, -0.01872495748102665, 0.0012342649279162288, -0.10648355633020401, -0.03166025131940842, 0.02577160857617855, -0.03843485936522484, -0.004281121306121349, 0.011966665275394917, -0.03339855372905731, 0.05843053013086319, 0.0776495486497879, -0.06716644763946533, 0.02576976828277111, -0.0205066055059433, -0.02622973918914795, 0.1673118621110916, -0.0801747739315033, -0.23186632990837097, -0.07670403271913528, -0.21580061316490173, -0.12562604248523712, 0.1009954959154129, 0.006469095125794411, -0.13905946910381317, -0.04756101593375206, 0.03159092739224434, 0.15860363841056824, -0.06701561063528061, 0.05206518620252609, 0.010908239521086216, 0.006474206689745188, 0.03310679644346237, -0.15169811248779297, 0.010657303035259247, -0.08146867901086807, -0.06602973490953445, 0.012529661878943443, -0.011461487971246243, 0.06577345728874207, 0.07390773296356201, 0.015142041258513927, -0.051686517894268036, -0.033998262137174606, 0.16999424993991852, -0.015814239159226418, -0.06522590667009354, 0.15283310413360596, -0.033426735550165176, 0.06997639685869217, 0.007198861334472895, 0.022611819207668304, -0.10972829908132553, 0.06207912787795067, 0.03166283294558525, -0.0473036989569664, -0.10295946896076202, -0.05805029720067978, -0.09480045735836029, 0.052229881286621094, 0.07232891023159027, 0.006471594795584679, 0.019037537276744843, 0.048064541071653366, 0.010846782475709915, 0.21173343062400818, 0.00680063059553504, 0.046051230281591415, 0.14817668497562408, -0.005354925058782101, 0.07016392052173615, -0.0224855188280344, -0.14388352632522583, 0.05727493017911911, 0.09432481974363327, 0.24052946269512177, -0.05926137790083885, 0.06343374401330948, -0.004285563714802265, 0.14680291712284088, 0.04697496071457863, 0.1168997511267662, -0.03339948505163193, -0.010999244637787342, -0.025174155831336975, -0.06012147665023804, -0.056536972522735596, 0.05566153675317764, 0.03465833142399788, -0.13225157558918, -0.0715208575129509, 0.036950912326574326, -0.07349002361297607, 0.2668358087539673, 0.02105046808719635, -0.16096282005310059, -0.019500525668263435, -0.05077173560857773, -0.019839828833937645, -0.06561882793903351, 0.06619075685739517, 0.07454272359609604, -0.06519591808319092, 0.030998192727565765, -0.05323343724012375, 0.07691895961761475, -0.11645317822694778, 0.06012483686208725, -0.07252418249845505, 0.11142729222774506, 0.07009445875883102, 0.006476127542555332, -0.28353893756866455, 0.038583122193813324, -0.01533033512532711, 0.015737924724817276, -0.028219474479556084, 0.030294140800833702, 0.11735255271196365, 0.06934113800525665, 0.039307914674282074, 0.016481002792716026, 0.2494807094335556, -0.1401493102312088, -0.03949239104986191, 0.06019750237464905, 0.10256842523813248, 0.016471518203616142, 0.0799381285905838, -0.043788593262434006, 0.009333365596830845, 0.027195656672120094, 0.05514037236571312, -0.03409945219755173, -0.08675957471132278, 0.08437453955411911, -0.029520289972424507, 0.13171923160552979, -0.06010020524263382, -0.04738997668027878, -0.043266478925943375, 0.12386363744735718, 0.011061769910156727, -0.07776936888694763, -0.10774379968643188, -0.027206668630242348, -0.02230445295572281, -0.06295763701200485, 0.08979412168264389, 0.005359678063541651, 0.08032010495662689, -0.028170602396130562, -0.20018140971660614, 0.014134060591459274, -0.005502097308635712, -0.024177080020308495, -0.042502038180828094, -0.025028638541698456, 0.04017305001616478, -0.022986596450209618, 0.01401154138147831, -0.07876207679510117, 0.019609088078141212, -0.08952602744102478, -0.10649024695158005, 0.02000868320465088, -0.07604505121707916, -0.010141554288566113, -0.08770184218883514, 0.0847863107919693, -0.0626630187034607, 0.0976627990603447, 0.07065840065479279, 0.09389322251081467, -0.030744265764951706, 0.0595380999147892, 0.11988428235054016, 0.03228098526597023, -0.3704637587070465, -0.10971255600452423, 0.07950950413942337, -0.006764227524399757, -0.03737793490290642, -0.3076312243938446, 0.12084968388080597, 0.00525685865432024, -0.008790251798927784, 0.16347965598106384, -0.09352044761180878, -0.09163077920675278, 0.11526526510715485, 0.12326756119728088, 0.3552989065647125, -0.08253563940525055, -0.04559962451457977, 0.003898794762790203, -0.12859836220741272, 0.13068582117557526, 0.018001990392804146, 0.1171310693025589, -0.04831038787961006, 0.04438461735844612, 0.0360109843313694, 0.019503310322761536, 0.08029942214488983, -0.03540505841374397, 0.05598371848464012, -0.06463521718978882, -0.011662925593554974, -0.000004127079591853544, -0.08598080277442932, 0.08330133557319641, -0.0485181026160717, 0.09618052840232849, -0.0977645292878151, -0.06019384786486626, -0.02303074486553669, 0.0895218700170517, 0.03296094760298729, -0.11422538757324219, -0.07331576943397522, 0.0622999370098114, -0.004203513730317354, 0.022123930975794792, 0.11944267153739929, 0.06547210365533829, -0.09712708741426468, 0.0376090444624424, 0.06717127561569214, -0.05456056445837021, -0.004624221008270979, -0.002754609100520611, -0.03070656955242157, 0.16198138892650604, -0.09562799334526062, 0.032063983380794525, 0.0889454111456871, 0.05425336956977844, -0.0017553610960021615, 0.08141268044710159, -0.07685723900794983, 0.009732178412377834, 0.06259002536535263, -0.16343823075294495, -0.09776203334331512, -0.09259766340255737, -0.048562340438365936, -0.02626796066761017, 0.1570354849100113, 0.15930058062076569, -0.05942223221063614, -0.0026575212832540274, 0.014097677543759346, -0.05855351686477661, -0.05703812092542648, 0.04225623980164528, 0.06302838027477264, -0.0066997637040913105, -0.10294894874095917, 0.04740869253873825, 0.02423771098256111, 0.06107557192444801, 0.03532146289944649, 0.01458766870200634, -0.12553605437278748, -0.010589071549475193, -0.15984989702701569, 0.1314873844385147, -0.07831712812185287, -0.03518327325582504, -0.04243164137005806, -0.13502970337867737, 0.015050019137561321, 0.10363214462995529, 0.07600855082273483, 0.1487775444984436, -0.0655531957745552, 0.03540092334151268, -0.0792325884103775, -0.007145324256271124, -0.048041243106126785, 0.1064949631690979, -0.16057346761226654, 0.04702514410018921, -0.02241349220275879, 0.176285982131958, -0.0872383862733841, -0.041385263204574585, -0.11600968986749649, -0.04566450044512749, -0.2594228982925415, -0.03738454356789589, -0.04076388105750084, 0.018520355224609375, -0.06020640209317207, -0.03554181382060051, -0.041393958032131195, 0.056291744112968445, -0.043615419417619705, -0.024771561846137047, -0.018793078139424324, 0.00490211695432663, -0.08474418520927429, -0.05608280003070831, -0.016676807776093483, -0.11386680603027344, 0.08938916772603989, 0.029873646795749664, 0.016332240775227547, 0.09048673510551453, 0.12422221153974533, -0.07837054878473282, 0.060328830033540726, 0.07468027621507645, 0.059655457735061646, 0.031197192147374153, -0.030596407130360603, -0.028285320848226547, 0.03294124826788902, -0.05755368992686272, 0.17998561263084412, -0.06327379494905472, -0.07138419896364212, -0.11611562222242355, -0.029478657990694046, -0.035970572382211685, -0.015780387446284294, 0.1533721685409546, 0.1497286558151245, 0.1416814774274826, -0.018352944403886795, 0.025431359186768532, -0.07882028073072433, -0.01632012613117695, -0.0065166885033249855, -0.09019210934638977, 0.026771893724799156, -0.09693150967359543, 0.026385359466075897, 0.0058989389799535275, 0.08911280333995819, -0.08601851761341095, -0.08434645086526871, -0.01853443682193756, -0.026791198179125786, -0.03264186903834343, -0.0009196512401103973, 0.27935513854026794, 0.10902122408151627, -0.02351733110845089, -0.028014101088047028, 0.1138053610920906, 0.07376734912395477, 0.1495441496372223, 0.09006064385175705, 0.073578841984272, -0.028870154172182083, 0.11132626235485077, 0.07741181552410126, 0.0019983192905783653, -0.1401698738336563, -0.09375163912773132, -0.04010002687573433, 0.01356538850814104, -0.035326723009347916, 0.07749146223068237, 0.08440474420785904, -0.04287317395210266, 0.08002535998821259, 0.04995490238070488, -0.038708776235580444, -0.07425393164157867, 0.07320893555879593, -0.049729153513908386, -0.13862177729606628, 0.013083124533295631, -0.08198001235723495, -0.07557903975248337, 0.035508885979652405, -0.009476245380938053, -0.03638670966029167, 0.14799362421035767, -0.02481812797486782, -0.10168589651584625, 0.1071527823805809, -0.007816114462912083, -0.05326656252145767, 0.08331131190061569, -0.06670229882001877, -0.002726558595895767, 0.06554297357797623, -0.0007625609869137406, -0.03185759112238884, 0.010326682589948177, 0.06136353686451912, 0.01415963377803564, -0.04374018311500549, -0.005780197214335203, 0.04662739858031273, -0.0030424126889556646, 0.15587957203388214, -0.005257509183138609, -0.0518663115799427, -0.009115650318562984, 0.09903284162282944, -0.04717279225587845, -0.029412537813186646, -0.12461579591035843, 0.2626839578151703, 0.039546068757772446, 0.0730694830417633, -0.009746531024575233, -0.0433756560087204, -0.07358971238136292, 0.28491348028182983, 0.05902813747525215, -0.1271439492702484, 0.01901930943131447, 0.0036955198738723993, 0.008659576065838337, -0.04854191839694977, 0.21019969880580902, 0.10577577352523804, 0.26513391733169556, 0.02599094994366169, -0.1083819717168808, -0.032789889723062515, 0.03681008145213127, -0.03247817978262901, 0.0713648796081543, 0.06783144176006317, -0.04383949190378189, -0.1097622960805893, -0.0875570997595787, -0.07956921309232712, -0.1599663645029068, 0.09511777758598328, -0.06002015992999077, -0.020107615739107132, -0.04315185546875, -0.12382004410028458, -0.009261160157620907, 0.09215915203094482, -0.016536179929971695, 0.11554140597581863, 0.160710409283638, -0.014718708582222462, -0.06684234738349915, 0.034627754241228104, 0.15944091975688934, 0.029348766431212425, 0.0513780377805233, -0.025952821597456932, -0.011873212642967701, 0.02325003780424595, 0.13153235614299774, -0.08085478842258453, 0.04089771956205368, -0.029285535216331482, -0.13560594618320465, -0.07493306696414948, 0.017456330358982086, -0.060766078531742096, 0.0050666299648582935, -0.01742069236934185, -0.05206599086523056, -0.03114178590476513, 0.14902596175670624, -0.019834963604807854, -0.08481678366661072, 0.045994389802217484, -0.10669994354248047, 0.050728294998407364, 0.13719171285629272, 0.00785677321255207, 0.01144135557115078, -0.03446849063038826, 0.028014881536364555, 0.06362195312976837, -0.09730465710163116, -0.08380886167287827, -0.08441989868879318, -0.08798657357692719, -0.036566346883773804, -0.03135712444782257, -0.16577649116516113, -0.02179299108684063, -0.05688011273741722, 0.016874374821782112, -0.058125317096710205, 0.05029292032122612, 0.025446085259318352, -0.014284113422036171, -0.0033927694894373417, 0.006835244130343199, -0.045133087784051895, 0.019496995955705643, -0.11683086305856705, -0.1585361361503601 ]
null
null
null
# Overview <p align="center"> <img src="https://avatars.githubusercontent.com/u/12619994?s=200&v=4" width="150"> </p> <!-- -------------------------------------------------------------------------------- --> JABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model. JABER obtained rank one on [ALUE leaderboard](https://www.alue.org/leaderboard) at `01/09/2021`. This model is **only compatible** with the code in [this github repo](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch) (not supported by the [Transformers](https://github.com/huggingface/transformers) library) ## Citation Please cite the following [paper](https://arxiv.org/abs/2112.04329) when using our code and model: ``` bibtex @misc{ghaddar2021jaber, title={JABER: Junior Arabic BERt}, author={Abbas Ghaddar and Yimeng Wu and Ahmad Rashid and Khalil Bibi and Mehdi Rezagholizadeh and Chao Xing and Yasheng Wang and Duan Xinyu and Zhefeng Wang and Baoxing Huai and Xin Jiang and Qun Liu and Philippe Langlais}, year={2021}, eprint={2112.04329}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{}
null
huawei-noah/JABER
[ "pytorch", "arxiv:2112.04329", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2112.04329" ]
[]
TAGS #pytorch #arxiv-2112.04329 #region-us
# Overview <p align="center"> <img src="URL width="150"> </p> JABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model. JABER obtained rank one on ALUE leaderboard at '01/09/2021'. This model is only compatible with the code in this github repo (not supported by the Transformers library) Please cite the following paper when using our code and model:
[ "# Overview\n\n<p align=\"center\">\n <img src=\"URL width=\"150\">\n</p>\n\n\n\nJABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model. \nJABER obtained rank one on ALUE leaderboard at '01/09/2021'. \nThis model is only compatible with the code in this github repo (not supported by the Transformers library)\n \nPlease cite the following paper when using our code and model:" ]
[ "TAGS\n#pytorch #arxiv-2112.04329 #region-us \n", "# Overview\n\n<p align=\"center\">\n <img src=\"URL width=\"150\">\n</p>\n\n\n\nJABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model. \nJABER obtained rank one on ALUE leaderboard at '01/09/2021'. \nThis model is only compatible with the code in this github repo (not supported by the Transformers library)\n \nPlease cite the following paper when using our code and model:" ]
[ 20, 102 ]
[ "passage: TAGS\n#pytorch #arxiv-2112.04329 #region-us \n# Overview\n\n<p align=\"center\">\n <img src=\"URL width=\"150\">\n</p>\n\n\n\nJABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model. \nJABER obtained rank one on ALUE leaderboard at '01/09/2021'. \nThis model is only compatible with the code in this github repo (not supported by the Transformers library)\n \nPlease cite the following paper when using our code and model:" ]
[ -0.020132608711719513, 0.03406504541635513, -0.005926536861807108, 0.08489752560853958, 0.11396875977516174, 0.011912118643522263, 0.1786065399646759, 0.028351515531539917, -0.005057728383690119, -0.031509362161159515, 0.11660850048065186, -0.017863992601633072, 0.06022438034415245, 0.08336467295885086, 0.00415993295609951, -0.1546735018491745, 0.019501756876707077, 0.012712671421468258, 0.17943210899829865, 0.09653506428003311, 0.0824100449681282, -0.005846146959811449, 0.06729177385568619, 0.03033919632434845, -0.13519421219825745, 0.053599145263433456, -0.013195385225117207, -0.03508603200316429, 0.05980499088764191, 0.04232074320316315, 0.23976992070674896, -0.05395667627453804, -0.0481598861515522, -0.04930378496646881, 0.058217812329530716, 0.026444517076015472, -0.033341001719236374, 0.06544836610555649, 0.051322758197784424, -0.07454202324151993, -0.02763611264526844, 0.08438827097415924, -0.12066400796175003, -0.0034128285478800535, -0.16112489998340607, -0.0730317011475563, 0.05021539330482483, 0.12062860280275345, 0.036933526396751404, 0.020411521196365356, 0.008479366078972816, -0.012532631866633892, -0.08138063549995422, 0.06801944971084595, 0.1832016408443451, -0.09473564475774765, -0.07780159264802933, 0.03234495967626572, -0.0828852504491806, 0.14739324152469635, -0.010855669155716896, -0.004476467613130808, 0.06373137980699539, -0.013180235400795937, -0.08096875250339508, -0.08220236748456955, -0.10962853580713272, -0.013354330323636532, -0.056041788309812546, -0.11260075122117996, 0.19664530456066132, -0.0931723564863205, -0.05621185153722763, 0.08664613217115402, -0.10215383023023605, 0.038182333111763, -0.026872511953115463, 0.07198639214038849, 0.003467680886387825, -0.009446467272937298, 0.2323140799999237, -0.019641263410449028, -0.08660326153039932, -0.1294623166322708, -0.1592324674129486, 0.2877785265445709, 0.06640587747097015, 0.061241235584020615, -0.16765505075454712, 0.04295221343636513, -0.06690125167369843, -0.1263556182384491, 0.018856242299079895, -0.06953894346952438, 0.11971832811832428, 0.05957671254873276, -0.0050497110933065414, -0.11131972074508667, 0.1070658341050148, -0.03815609961748123, -0.01336918119341135, 0.09646794199943542, -0.06617336720228195, 0.10583128780126572, -0.0010608576703816652, 0.10353168100118637, 0.05227569490671158, 0.10816417634487152, 0.0619712769985199, 0.07151663303375244, 0.04842294752597809, 0.000764509488362819, -0.1381438821554184, -0.019674712792038918, 0.05766918882727623, 0.004974983166903257, -0.09994037449359894, 0.027931151911616325, -0.06030083820223808, -0.012291302904486656, 0.08304159343242645, -0.09945764392614365, -0.021004842594265938, 0.03525567799806595, -0.00458740396425128, -0.08720862865447998, 0.0720025971531868, -0.033252011984586716, -0.11517073959112167, -0.07233521342277527, -0.06421882659196854, 0.04333138465881348, -0.057608626782894135, -0.14165954291820526, -0.01448131911456585, -0.12976044416427612, 0.09645479172468185, -0.23032517731189728, 0.01040733978152275, 0.049140963703393936, 0.07985571026802063, 0.0037249866873025894, 0.04664401337504387, 0.0033520436845719814, 0.00020444889378268272, 0.039110638201236725, -0.06849853694438934, -0.004400223959237337, -0.06181067228317261, 0.07192859053611755, 0.1432710587978363, 0.020543452352285385, -0.12502679228782654, 0.029271740466356277, -0.05797228962182999, 0.03017517924308777, -0.1938970983028412, 0.027026239782571793, -0.06477441638708115, 0.025451596826314926, -0.10249155759811401, 0.01959487795829773, 0.12076457589864731, 0.059907518327236176, 0.09740554541349411, 0.1156269907951355, -0.09131461381912231, -0.12852329015731812, 0.10989508032798767, -0.11883752793073654, -0.09305736422538757, 0.06494828313589096, -0.023564932867884636, 0.006586078554391861, 0.06207134947180748, 0.2282194048166275, 0.004514586180448532, -0.07122621685266495, -0.042461756616830826, 0.03560500591993332, 0.0573117695748806, -0.06357338279485703, 0.10831471532583237, 0.08125252276659012, -0.19545604288578033, 0.020081568509340286, -0.0256413035094738, 0.13144615292549133, 0.026235098019242287, -0.0130265261977911, 0.02181762084364891, -0.029286835342645645, -0.04744361340999603, 0.10163994133472443, 0.0856887623667717, -0.04430966079235077, 0.008831390179693699, 0.12012044340372086, 0.05649133026599884, 0.046866241842508316, -0.024132980033755302, -0.0631769448518753, -0.007579247001558542, -0.22295530140399933, 0.05891750752925873, -0.061115823686122894, 0.09626840800046921, -0.0015033400850370526, -0.08365272730588913, 0.08354662358760834, 0.09551695734262466, 0.09657483547925949, 0.05698724463582039, 0.012432976625859737, -0.053306519985198975, -0.03363018110394478, 0.014626584015786648, -0.026129158213734627, -0.10877103358507156, -0.004199794493615627, -0.05120978504419327, -0.03973918408155441, 0.002359123434871435, 0.011916982010006905, -0.09435063600540161, 0.08390463143587112, -0.022369898855686188, 0.02858639881014824, 0.10100431740283966, 0.01950516737997532, -0.007901846431195736, 0.018490862101316452, 0.024111885577440262, -0.027103671804070473, 0.01719643548130989, 0.060370560735464096, 0.023392649367451668, 0.2517867982387543, 0.1239149197936058, 0.00460234796628356, 0.06996824592351913, 0.008368766866624355, -0.008612295612692833, -0.005741966888308525, 0.12996600568294525, 0.038875479251146317, 0.34166470170021057, 0.0032452913001179695, 0.1734543740749359, -0.1183546856045723, 0.086353600025177, 0.056523315608501434, -0.11528581380844116, -0.04042454808950424, 0.20303525030612946, -0.023896459490060806, -0.2923761308193207, 0.10348020493984222, 0.109084352850914, -0.108310766518116, 0.19562412798404694, -0.00022761145373806357, -0.011232922784984112, 0.006925377529114485, 0.0048323823139071465, 0.010168365202844143, 0.13513807952404022, -0.17556077241897583, -0.11986653506755829, 0.027967438101768494, 0.007098781410604715, 0.020848505198955536, -0.0696815773844719, -0.027172308415174484, -0.04913970082998276, 0.0032179385889321566, -0.16291019320487976, -0.03708964213728905, -0.025382468476891518, 0.07882849127054214, 0.026073215529322624, -0.08957836776971817, -0.030588675290346146, 0.030782969668507576, -0.022339506074786186, 0.138644278049469, -0.07002527266740799, -0.21869608759880066, -0.05243774503469467, -0.18247485160827637, -0.1440897136926651, 0.05485111102461815, 0.03529440239071846, -0.1496998816728592, 0.010874385014176369, 0.026796944439411163, 0.1361543834209442, -0.08282975107431412, 0.003087220247834921, -0.03451833873987198, -0.07348920404911041, 0.031505048274993896, -0.14667949080467224, -0.020205022767186165, -0.039652980864048004, -0.021217191591858864, 0.05597356706857681, -0.17432864010334015, 0.0823851227760315, 0.02553688734769821, 0.005171560682356358, 0.08618730306625366, 0.007321474142372608, 0.22504812479019165, -0.030350714921951294, -0.00888241920620203, 0.14459893107414246, 0.005231224466115236, 0.003909563645720482, 0.19016538560390472, 0.019625473767518997, -0.018812047317624092, -0.045471157878637314, -0.03633638471364975, -0.041293516755104065, -0.1274537295103073, 0.030538054183125496, -0.08399230986833572, -0.01378333568572998, 0.09074520319700241, 0.07800708711147308, -0.18033187091350555, 0.03542283922433853, -0.04197046533226967, 0.15605460107326508, -0.03396159037947655, 0.03254334256052971, -0.0444965697824955, -0.0062976498156785965, 0.03926661238074303, -0.05900672450661659, -0.05935245752334595, 0.0777711346745491, 0.20612557232379913, -0.048365313559770584, -0.010447762906551361, 0.16610637307167053, 0.06029801443219185, 0.03513788804411888, 0.14535953104496002, 0.11471473425626755, -0.0631948709487915, 0.0005069206818006933, -0.05061192810535431, -0.026075975969433784, -0.2216198593378067, 0.019874464720487595, -0.10464737564325333, 0.0871901661157608, 0.009747995063662529, -0.1232125535607338, 0.07824977487325668, -0.07337528467178345, 0.04539516940712929, -0.22431877255439758, -0.04908648133277893, 0.09852681308984756, -0.054351698607206345, -0.22408956289291382, -0.004691199399530888, -0.009022832848131657, 0.00660300999879837, 0.029821079224348068, 0.014840126037597656, 0.17792586982250214, -0.12955737113952637, 0.04789860546588898, -0.21430353820323944, -0.012760822661221027, -0.025540869683027267, 0.10507595539093018, -0.4601868987083435, 0.1819583922624588, 0.06792142242193222, 0.03526596352458, -0.002250710502266884, 0.01004051323980093, 0.01921975240111351, 0.0861082449555397, 0.04159408062696457, 0.038813672959804535, 0.2636290192604065, -0.1568240523338318, -0.1255524903535843, 0.12102710455656052, -0.014034819789230824, -0.0688336044549942, -0.029736798256635666, 0.03281724080443382, 0.07040873169898987, -0.09147024899721146, 0.07417017966508865, -0.05305302515625954, -0.022349152714014053, 0.03624975308775902, 0.01911640539765358, -0.008280634880065918, -0.014751339331269264, -0.02726936712861061, 0.06710021942853928, 0.008809690363705158, -0.13673359155654907, -0.1435704380273819, -0.0682782232761383, -0.08739583939313889, 0.0015549075324088335, -0.1166171282529831, -0.038826681673526764, -0.18226422369480133, -0.03303146734833717, -0.08995044976472855, -0.09768904000520706, 0.036290884017944336, -0.10371502488851547, 0.07194414734840393, -0.03483391925692558, 0.08146410435438156, -0.055980291217565536, 0.024195924401283264, -0.008021584711968899, -0.030037956312298775, -0.15389122068881989, -0.05293916165828705, 0.012676475569605827, -0.047344617545604706, 0.07374286651611328, 0.04621761664748192, 0.08347609639167786, 0.008676157332956791, -0.03320721164345741, 0.049991339445114136, -0.009442348033189774, 0.04989870265126228, 0.06973496079444885, 0.02894224412739277, 0.23797017335891724, -0.01670950837433338, -0.15333017706871033, -0.2187584787607193, 0.09803302586078644, 0.03379925340414047, -0.220368430018425, -0.2408539056777954, 0.043740544468164444, -0.0617285892367363, -0.033756323158741, 0.021533753722906113, -0.02790609933435917, -0.026818472892045975, 0.21489758789539337, 0.09167934954166412, 0.4205491244792938, -0.14019687473773956, -0.04367971792817116, -0.06681540608406067, -0.12358995527029037, 0.017087195068597794, -0.16610375046730042, 0.10719124227762222, -0.0674954503774643, 0.037122808396816254, 0.006859937217086554, -0.03376854956150055, 0.12229134887456894, -0.03940647095441818, 0.015062264166772366, -0.11342422664165497, -0.17988303303718567, -0.07144563645124435, -0.021614976227283478, 0.06907441467046738, -0.10013067722320557, 0.02760285697877407, -0.23338532447814941, -0.039825666695833206, -0.05523374676704407, -0.008528346195816994, 0.02478477731347084, -0.06819173693656921, 0.005097127985209227, -0.0409584566950798, -0.10714642703533173, 0.05641486495733261, 0.31359997391700745, -0.01932688057422638, 0.05034702643752098, 0.1835014522075653, 0.018092283979058266, -0.17493341863155365, 0.04125657677650452, -0.02203691378235817, -0.004172037355601788, 0.1736111342906952, -0.213469997048378, -0.0039230152033269405, 0.07318172603845596, -0.019617125391960144, 0.09069442003965378, 0.014675850979983807, -0.10801809281110764, 0.05585236847400665, 0.09230097383260727, -0.16796322166919708, -0.0054555791430175304, -0.06356894969940186, 0.11854106932878494, 0.04010709375143051, 0.10867548733949661, 0.1927330046892166, -0.07436861097812653, -0.03431084007024765, 0.039487287402153015, -0.041389912366867065, -0.04455803707242012, 0.02956811524927616, 0.09715999662876129, 0.06355682015419006, -0.14399147033691406, 0.07604095339775085, 0.11356667429208755, 0.15182387828826904, 0.005281602498143911, 0.07975872606039047, -0.04838509112596512, -0.06927881389856339, 0.021906431764364243, 0.3702313005924225, -0.004388104192912579, -0.09740125387907028, -0.11373057216405869, -0.06234884634613991, -0.008874849416315556, 0.11056601256132126, 0.07821601629257202, -0.01032513752579689, -0.050592124462127686, -0.008139059878885746, 0.052963655441999435, 0.044976238161325455, -0.08185508102178574, -0.010299824178218842, -0.11259277164936066, -0.051579054445028305, 0.03440744802355766, 0.1583324670791626, -0.05240783840417862, -0.020301764830946922, -0.19226892292499542, 0.0905691385269165, -0.1820778250694275, 0.11879796534776688, 0.01203505601733923, 0.057474054396152496, -0.01969219744205475, -0.08330632746219635, -0.04383940249681473, 0.006814897060394287, -0.05048007890582085, 0.08533578366041183, 0.020881887525320053, 0.10146898031234741, -0.06384655833244324, 0.019434407353401184, 0.04421903192996979, 0.014592936262488365, 0.07952515780925751, 0.07007073611021042, -0.014336683787405491, 0.13422799110412598, -0.04540489614009857, 0.0020689486991614103, 0.06382868438959122, -0.019507350400090218, 0.05307997763156891, 0.008060638792812824, 0.03703020140528679, -0.00426665972918272, -0.01018046960234642, -0.027876894921064377, 0.12162624299526215, -0.010583996772766113, -0.06954479962587357, 0.09302271902561188, -0.05793556943535805, -0.05924048274755478, 0.10978026688098907, 0.0964081808924675, 0.14967641234397888, -0.0011584078893065453, 0.040743302553892136, -0.011601046659052372, -0.046298086643218994, 0.0016871168045327067, -0.008838815614581108, -0.21098291873931885, -0.13670878112316132, -0.08684082329273224, -0.02529221400618553, -0.036198340356349945, 0.11264145374298096, 0.11002644896507263, 0.0021458377595990896, -0.04705372452735901, 0.11072001606225967, -0.05188218131661415, -0.002883928595110774, 0.09097468107938766, 0.009886484593153, 0.018256017938256264, -0.042735397815704346, -0.0007129900623112917, 0.03306153789162636, 0.1495128870010376, -0.04504663497209549, 0.13661302626132965, 0.0553281269967556, 0.05318608507514, 0.0104603823274374, 0.013187318108975887, -0.07537432760000229, -0.08766768127679825, 0.1149214655160904, -0.012671185657382011, -0.004225598648190498, 0.03266477957367897, 0.22720688581466675, -0.0015441509895026684, -0.008907335810363293, -0.014204665087163448, -0.007336711045354605, -0.030688973143696785, -0.11113424599170685, -0.05574061721563339, -0.05228449031710625, -0.03712814301252365, -0.1023033857345581, -0.060204144567251205, 0.13934914767742157, -0.01690049096941948, 0.0011296506272628903, 0.10918333381414413, 0.25365033745765686, -0.10973142087459564, 0.021627549082040787, -0.029928363859653473, 0.038118477910757065, -0.011048429645597935, -0.009578360244631767, 0.04428721219301224, -0.007430872414261103, 0.031207699328660965, 0.02837429754436016, 0.01798117347061634, -0.015970241278409958, -0.06085018813610077, -0.13552457094192505, -0.051762573421001434, 0.03329899534583092, -0.011903176084160805, 0.16698810458183289, 0.0020229255314916372, -0.025613876059651375, 0.019616691395640373, 0.1654542237520218, 0.09554433822631836, 0.04604800418019295, -0.009839498437941074, 0.18289898335933685, -0.09667477756738663, 0.07587545365095139, -0.019030926749110222, 0.009858822450041771, -0.09531161934137344, 0.15963266789913177, 0.02223268337547779, -0.1141417995095253, -0.0014601927250623703, -0.011244433932006359, 0.05805926024913788, 0.08542095124721527, 0.11148035526275635, -0.01941087283194065, 0.18812386691570282, -0.048729490488767624, -0.001422534347511828, -0.011101552285254002, -0.015330123715102673, 0.0034759731497615576, 0.047828033566474915, 0.056443750858306885, -0.07661721110343933, -0.13547977805137634, -0.005152607336640358, -0.1000540629029274, -0.028411928564310074, -0.11893212795257568, -0.07900626957416534, -0.06561855971813202, -0.10498087853193283, 0.19449806213378906, 0.09166977554559708, 0.006714966148138046, -0.037052933126688004, 0.018612967804074287, -0.05400505289435387, 0.0006427469197660685, -0.09961985051631927, -0.16842754185199738, 0.1223505437374115, 0.07354112714529037, 0.06291592121124268, 0.031132254749536514, 0.010618212632834911, 0.00985261332243681, -0.028304871171712875, -0.054155781865119934, 0.09689189493656158, -0.0165571216493845, -0.00531574385240674, -0.07042654603719711, 0.07353037595748901, -0.020490629598498344, -0.11920661479234695, 0.030531546100974083, -0.06910194456577301, -0.040538687258958817, 0.03643599525094032, -0.11350420117378235, -0.02969810552895069, 0.07360713928937912, -0.11003246158361435, 0.003931702114641666, 0.11572573333978653, 0.009409958496689796, -0.07244573533535004, -0.08187194913625717, 0.0890195295214653, 0.061635926365852356, -0.03934963792562485, -0.05505926534533501, -0.00023435316688846797, -0.09068022668361664, -0.008887285366654396, -0.02634109929203987, -0.09304582327604294, 0.09118390828371048, -0.09865154325962067, 0.05482121929526329, -0.06526737660169601, 0.008950677700340748, 0.07157761603593826, 0.031447380781173706, -0.03808829188346863, -0.08807411044836044, 0.02797889895737171, 0.009440302848815918, 0.0019955437164753675, -0.1455087661743164 ]
null
null
transformers
TinyBERT: Distilling BERT for Natural Language Understanding ======== TinyBERT is 7.5x smaller and 9.4x faster on inference than BERT-base and achieves competitive performances in the tasks of natural language understanding. It performs a novel transformer distillation at both the pre-training and task-specific learning stages. In general distillation, we use the original BERT-base without fine-tuning as the teacher and a large-scale text corpus as the learning data. By performing the Transformer distillation on the text from general domain, we obtain a general TinyBERT which provides a good initialization for the task-specific distillation. We here provide the general TinyBERT for your tasks at hand. For more details about the techniques of TinyBERT, refer to our paper: [TinyBERT: Distilling BERT for Natural Language Understanding](https://arxiv.org/abs/1909.10351) Citation ======== If you find TinyBERT useful in your research, please cite the following paper: ``` @article{jiao2019tinybert, title={Tinybert: Distilling bert for natural language understanding}, author={Jiao, Xiaoqi and Yin, Yichun and Shang, Lifeng and Jiang, Xin and Chen, Xiao and Li, Linlin and Wang, Fang and Liu, Qun}, journal={arXiv preprint arXiv:1909.10351}, year={2019} } ```
{}
null
huawei-noah/TinyBERT_General_4L_312D
[ "transformers", "pytorch", "jax", "bert", "arxiv:1909.10351", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1909.10351" ]
[]
TAGS #transformers #pytorch #jax #bert #arxiv-1909.10351 #endpoints_compatible #has_space #region-us
TinyBERT: Distilling BERT for Natural Language Understanding ======== TinyBERT is 7.5x smaller and 9.4x faster on inference than BERT-base and achieves competitive performances in the tasks of natural language understanding. It performs a novel transformer distillation at both the pre-training and task-specific learning stages. In general distillation, we use the original BERT-base without fine-tuning as the teacher and a large-scale text corpus as the learning data. By performing the Transformer distillation on the text from general domain, we obtain a general TinyBERT which provides a good initialization for the task-specific distillation. We here provide the general TinyBERT for your tasks at hand. For more details about the techniques of TinyBERT, refer to our paper: TinyBERT: Distilling BERT for Natural Language Understanding Citation ======== If you find TinyBERT useful in your research, please cite the following paper:
[]
[ "TAGS\n#transformers #pytorch #jax #bert #arxiv-1909.10351 #endpoints_compatible #has_space #region-us \n" ]
[ 38 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #arxiv-1909.10351 #endpoints_compatible #has_space #region-us \n" ]
[ -0.016308529302477837, 0.0752631202340126, -0.008024814538657665, -0.004149698186665773, 0.050848886370658875, 0.018873870372772217, 0.04356412962079048, 0.09436506778001785, 0.09139789640903473, 0.04240008443593979, 0.1983315795660019, 0.1446629911661148, -0.055811457335948944, 0.006584931630641222, -0.04735531285405159, -0.21810004115104675, 0.046095531433820724, 0.08386818319559097, -0.06030234321951866, 0.10566326230764389, 0.03576589375734329, -0.14170394837856293, 0.05659594386816025, -0.023042650893330574, -0.11289442330598831, 0.0492221973836422, 0.025470642372965813, -0.085634745657444, 0.12672561407089233, 0.0009151278645731509, 0.1726912260055542, 0.04124266281723976, -0.0516684390604496, -0.07780236005783081, 0.031164320185780525, -0.0002384405815973878, -0.07387880235910416, 0.06745614111423492, 0.00953275803476572, -0.06076623126864433, 0.0406680554151535, 0.01240749005228281, -0.008412960916757584, -0.001504017156548798, -0.19153374433517456, -0.22769737243652344, -0.06637176126241684, 0.05731717124581337, -0.0014848595019429922, 0.07183805853128433, 0.02071206085383892, 0.1830640733242035, -0.08703489601612091, 0.03735654056072235, 0.2651556134223938, -0.3579108715057373, -0.027102405205368996, 0.15678194165229797, 0.11765005439519882, 0.04974573105573654, -0.0482824370265007, 0.0842309445142746, 0.042814724147319794, -0.0010417706798762083, 0.08522215485572815, -0.08442667871713638, -0.06855250895023346, 0.12474920600652695, -0.11706231534481049, -0.08771311491727829, 0.22005803883075714, -0.030617231503129005, 0.0750492736697197, 0.042492788285017014, -0.09659881889820099, -0.12356825917959213, 0.01992517150938511, -0.03376911208033562, 0.016476556658744812, 0.032081831246614456, 0.02537132427096367, -0.012402708642184734, -0.14551521837711334, 0.04027697443962097, -0.17677368223667145, 0.22766287624835968, -0.023812245577573776, 0.08970708400011063, -0.1924644261598587, 0.036626122891902924, -0.0386490523815155, -0.08478222787380219, 0.07710318267345428, -0.08229623734951019, 0.05243249610066414, 0.043861743062734604, -0.09435988962650299, 0.034925784915685654, 0.011702258139848709, 0.1027049869298935, 0.016763711348176003, 0.016959229484200478, 0.11712596565485, 0.1250273436307907, 0.035668838769197464, 0.08853067457675934, -0.010615651495754719, -0.04303961619734764, 0.007986094802618027, -0.046411558985710144, 0.017845693975687027, -0.05569338798522949, -0.12108741700649261, -0.08392725884914398, 0.053989119827747345, 0.03391270712018013, 0.06015971675515175, 0.0036248238757252693, -0.0394894964993, 0.031871940940618515, 0.04357758164405823, -0.023359432816505432, 0.005210318136960268, -0.020182685926556587, 0.036544278264045715, 0.09206956624984741, -0.024552248418331146, -0.012555964291095734, 0.055803071707487106, 0.08082050085067749, -0.12089026719331741, -0.012571997940540314, -0.039337627589702606, -0.09126503020524979, 0.05087871849536896, -0.08099433034658432, 0.06241099536418915, -0.1649002581834793, 0.021877769380807877, 0.010671253316104412, 0.06879180669784546, -0.0033632603008300066, -0.006163842044770718, 0.06747078895568848, -0.04725729301571846, 0.06009405106306076, -0.05396623909473419, -0.032203804701566696, -0.06223064288496971, 0.08331820368766785, -0.02938215434551239, 0.1406940221786499, -0.0824035108089447, 0.05059818550944328, -0.06894081085920334, 0.03114018589258194, -0.10807089507579803, -0.08090516179800034, -0.03845878317952156, 0.12063539773225784, 0.024203285574913025, -0.052835170179605484, -0.12650224566459656, 0.03796340897679329, 0.012839146889746189, 0.1283995509147644, -0.10024777054786682, -0.060953717678785324, 0.13371632993221283, -0.036484312266111374, -0.15682806074619293, 0.039223045110702515, 0.01089328620582819, -0.029713185504078865, -0.009262063540518284, 0.228415846824646, -0.031213851645588875, -0.11005815863609314, -0.017717918381094933, 0.10365571081638336, -0.06433101743459702, -0.13187506794929504, 0.06878939270973206, 0.03360152244567871, -0.04213797673583031, -0.0038752006366848946, 0.009787443093955517, 0.04408102482557297, -0.07304950803518295, -0.022931048646569252, -0.012437405996024609, -0.03284550458192825, 0.08762892335653305, 0.05822739005088806, 0.10866539925336838, -0.08803950250148773, -0.04325239732861519, 0.013772217556834221, 0.011530979536473751, 0.08703804016113281, 0.04889413341879845, -0.00486110569909215, 0.12438064813613892, -0.10018135607242584, -0.01882593147456646, -0.1653074473142624, -0.0837835893034935, -0.03984803706407547, 0.08376185595989227, -0.022349873557686806, 0.2292431890964508, 0.08953523635864258, -0.10765586793422699, -0.0015392189379781485, -0.03647229075431824, 0.08430032432079315, 0.04972218722105026, -0.06275252252817154, -0.07357348501682281, -0.022648490965366364, -0.08417785167694092, -0.09376112371683121, -0.0733199417591095, 0.025510506704449654, 0.04838864132761955, 0.09890462458133698, -0.009168755263090134, 0.021786987781524658, -0.00961610209196806, 0.027009032666683197, -0.04174308478832245, 0.00731716537848115, 0.07646186649799347, -0.007602081634104252, -0.03629595413804054, 0.2003306895494461, -0.12515370547771454, 0.3559722304344177, 0.19825835525989532, -0.29323363304138184, -0.008838756941258907, 0.058176301419734955, -0.01760890707373619, 0.032460231333971024, 0.09498398751020432, -0.0321788489818573, -0.002828258089721203, -0.03916808217763901, 0.09412772208452225, -0.0254573542624712, -0.059971071779727936, -0.011104761622846127, -0.04707731679081917, -0.08189476281404495, 0.0824466124176979, 0.034319717437028885, -0.1306077241897583, 0.17340226471424103, 0.36403384804725647, -0.005487754940986633, 0.10639753937721252, 0.028109107166528702, -0.009229512885212898, -0.027938706800341606, -0.08469488471746445, -0.062427859753370285, 0.10213986039161682, -0.19016395509243011, -0.08949819207191467, 0.06882307678461075, -0.012578148394823074, 0.056479454040527344, -0.13705313205718994, -0.09115584194660187, 0.03868233412504196, 0.09530269354581833, -0.10768630355596542, 0.1281525194644928, 0.02627457119524479, 0.10347548127174377, 0.0329342782497406, -0.06026880070567131, 0.027434149757027626, 0.008241711184382439, -0.024280497804284096, 0.11624914407730103, -0.08972956240177155, -0.21016810834407806, -0.0667409896850586, -0.0920262560248375, 0.04761100560426712, -0.0003532882547006011, 0.07777281105518341, -0.06380485743284225, 0.006717015523463488, 0.05070644989609718, -0.004663462750613689, -0.1976550817489624, 0.05262209102511406, -0.0017896925564855337, 0.0010767054045572877, -0.08384804427623749, -0.07450311630964279, -0.0779329389333725, -0.08034390211105347, -0.017352590337395668, 0.11022182554006577, -0.015532685443758965, 0.0830102488398552, 0.11048544943332672, -0.0020609803032130003, 0.046172115951776505, -0.004859893582761288, 0.20229408144950867, -0.05660252273082733, -0.02450602687895298, 0.14600256085395813, 0.0075960359536111355, 0.05983555316925049, 0.0924936905503273, 0.06020185351371765, -0.04963742941617966, -0.042801935225725174, -0.045034948736429214, -0.09872528165578842, -0.13735423982143402, -0.057562462985515594, -0.12534666061401367, 0.005628121551126242, 0.022680379450321198, 0.033355794847011566, 0.0715164765715599, 0.02637360244989395, 0.04817669838666916, -0.044104211032390594, -0.10531269758939743, 0.05072321370244026, 0.20225894451141357, -0.06081314757466316, 0.10538162291049957, -0.028872711583971977, -0.06104569137096405, 0.05887670814990997, 0.02840319089591503, 0.08538581430912018, 0.1069881021976471, -0.05559942126274109, 0.04820151999592781, 0.18135647475719452, 0.13370051980018616, 0.08794017136096954, -0.0032843351364135742, -0.05988398194313049, -0.026181545108556747, -0.012504376471042633, -0.026490505784749985, 0.08367499709129333, 0.09420066326856613, -0.10788802802562714, -0.023390674963593483, -0.25921520590782166, 0.017457112669944763, 0.01989723928272724, 0.09725295007228851, -0.1672413945198059, -0.016395937651395798, 0.08021117746829987, 0.003386508207768202, -0.030131449922919273, 0.06469539552927017, 0.06661918759346008, -0.06515197455883026, 0.02892657183110714, 0.009917248971760273, 0.08653301000595093, 0.06734059751033783, 0.08119868487119675, -0.08355732262134552, -0.15813378989696503, 0.015774644911289215, 0.02596031129360199, -0.19223101437091827, 0.27198395133018494, -0.02189173549413681, -0.11966868489980698, -0.0006199841154739261, -0.060485146939754486, 0.01331083383411169, 0.1278432011604309, 0.1023331731557846, 0.0556962713599205, -0.11637371778488159, -0.08915507048368454, 0.037397678941488266, 0.00029209256172180176, 0.08259335905313492, -0.05096493288874626, -0.0011841384693980217, 0.005063670687377453, -0.010625595226883888, 0.0014867631252855062, 0.1870705932378769, 0.05287843197584152, -0.09145239740610123, 0.07542461901903152, 0.04053173214197159, -0.01104656420648098, -0.0024229518603533506, -0.05332522094249725, -0.11662249267101288, 0.06968821585178375, 0.033840347081422806, 0.0006492666434496641, -0.07976718991994858, -0.12192552536725998, 0.1435960829257965, -0.06738828867673874, 0.0622783899307251, -0.037591688334941864, -0.04285982623696327, -0.07015381008386612, -0.14274246990680695, 0.1429104506969452, -0.10738223791122437, 0.02196444198489189, -0.07018791139125824, 0.12232495844364166, -0.07468231767416, 0.06801189482212067, -0.026415636762976646, 0.09884055703878403, -0.18692883849143982, -0.06550520658493042, 0.10937388986349106, -0.05630499869585037, 0.07318365573883057, -0.06542745977640152, 0.0013391779502853751, 0.025286540389060974, 0.05261548236012459, 0.023407742381095886, 0.19917070865631104, 0.2573014795780182, -0.11493708193302155, 0.11457359045743942, 0.09471975266933441, 0.0003980575711466372, -0.259343683719635, -0.054787129163742065, -0.15685337781906128, -0.01503689493983984, 0.03145023062825203, -0.07789114117622375, 0.06349765509366989, 0.01869179680943489, -0.06805425882339478, 0.13522568345069885, -0.2476753443479538, -0.06518343091011047, 0.10870017111301422, -0.05027787387371063, 0.5427178144454956, -0.12584462761878967, -0.030247801914811134, 0.04637512192130089, -0.22081518173217773, 0.11562182009220123, 0.06089700013399124, 0.04704555496573448, -0.05669553950428963, 0.056388407945632935, 0.032314129173755646, -0.06380321830511093, 0.13112670183181763, -0.06286856532096863, 0.02072625793516636, -0.08059965819120407, -0.22846849262714386, 0.08472657948732376, -0.05212847515940666, -0.0588027760386467, 0.014658438041806221, -0.004477033857256174, -0.20173844695091248, 0.031286511570215225, -0.14839418232440948, 0.06553211808204651, 0.01608751155436039, -0.04296772554516792, -0.039111558347940445, -0.014235743321478367, -0.013721832074224949, -0.018194902688264847, 0.30317679047584534, -0.02427011728286743, 0.23322127759456635, 0.04610117897391319, -0.018797488883137703, -0.1700507253408432, -0.06010047718882561, 0.004991483874619007, -0.05829382687807083, 0.11305874586105347, -0.14598214626312256, 0.007199834566563368, 0.11673025786876678, 0.01656275801360607, -0.02819567546248436, 0.09782645851373672, -0.004209399223327637, -0.011654950678348541, 0.13098052144050598, -0.24213211238384247, -0.041783787310123444, -0.02586345188319683, 0.011562603525817394, 0.11440792679786682, 0.05294165760278702, 0.08874903619289398, -0.010928821749985218, -0.03963553532958031, -0.00481571676209569, -0.05317818373441696, -0.05888422206044197, -0.0013655353104695678, 0.06918296217918396, 0.057795025408267975, -0.06798223406076431, 0.015774551779031754, 0.030351854860782623, -0.2143317013978958, -0.03538632392883301, 0.14144538342952728, -0.053134091198444366, -0.12581098079681396, -0.09710661321878433, 0.008859495632350445, -0.13867101073265076, 0.023032698780298233, -0.010019699111580849, -0.05981556698679924, 0.053412310779094696, 0.25057312846183777, 0.08285832405090332, 0.0486249141395092, -0.004369244910776615, 0.0008407121640630066, 0.06427820771932602, -0.03780742734670639, -0.035874076187610626, 0.02106020599603653, -0.10089456290006638, 0.02437056228518486, -0.027916068211197853, 0.13594041764736176, -0.08772341161966324, -0.022349704056978226, -0.15671661496162415, 0.02077677845954895, -0.04316592589020729, -0.13060466945171356, -0.10954134911298752, -0.09718010574579239, -0.012615879066288471, -0.12493818998336792, -0.08669508993625641, -0.03719034045934677, -0.13918522000312805, 0.035855889320373535, 0.0010524268727749586, 0.02592659369111061, -0.06950120627880096, -0.042918961495161057, 0.10668893903493881, -0.026823844760656357, 0.0766250267624855, 0.15316170454025269, -0.008123042061924934, 0.07174781709909439, -0.0189838707447052, -0.1153075248003006, 0.07277946174144745, 0.006593463011085987, 0.07129790633916855, 0.055103398859500885, -0.0313635878264904, 0.0171184204518795, 0.02559797465801239, 0.04236363619565964, -0.013939385302364826, -0.06301235407590866, -0.02156710997223854, 0.045315396040678024, -0.13519692420959473, 0.007286043372005224, -0.09688195586204529, 0.1747545450925827, 0.026661785319447517, 0.052958350628614426, 0.030295297503471375, 0.05524545535445213, -0.08773773908615112, 0.024466849863529205, -0.028397927060723305, -0.18933556973934174, -0.0005596280097961426, -0.024437401443719864, 0.0350193977355957, -0.00983234029263258, 0.21188156306743622, -0.017321912571787834, -0.09161645174026489, 0.05054694786667824, 0.08478395640850067, -0.030412500724196434, 0.01149791106581688, 0.1684495210647583, 0.091544508934021, -0.07920147478580475, -0.07645127922296524, 0.1127890944480896, 0.023447558283805847, 0.02486448548734188, 0.09543365240097046, 0.13309091329574585, 0.14750123023986816, 0.09523943811655045, 0.0002936564851552248, -0.01995590142905712, -0.12990722060203552, -0.18705502152442932, -0.027986565604805946, 0.04509739205241203, -0.038133591413497925, 0.119367316365242, 0.1881268322467804, 0.0014307718956843019, 0.04275456443428993, -0.08681844174861908, 0.03301463648676872, -0.12059010565280914, -0.040784694254398346, -0.026517178863286972, -0.09323891252279282, -0.02054089866578579, -0.047451265156269073, 0.060992587357759476, 0.1645970642566681, 0.021406957879662514, 0.01412133127450943, 0.05112553387880325, 0.11411100625991821, -0.061407122761011124, 0.023709148168563843, 0.02265876531600952, 0.025899279862642288, -0.05442943051457405, 0.026835069060325623, -0.10024254769086838, -0.09484304487705231, -0.06315214931964874, -0.006711815018206835, -0.08191201835870743, -0.037139326333999634, -0.07697693258523941, -0.10781776160001755, -0.06278131902217865, 0.03649825230240822, -0.00816943496465683, 0.07771122455596924, -0.017936397343873978, 0.05368487164378166, -0.012451968155801296, 0.26470911502838135, -0.10704881697893143, 0.0584547333419323, 0.04201073199510574, 0.14059069752693176, -0.004557896871119738, 0.09454340487718582, -0.046313513070344925, 0.03581303730607033, -0.0833403617143631, 0.22576068341732025, 0.2847914397716522, -0.05624249577522278, 0.07220369577407837, 0.06950334459543228, 0.02867165394127369, 0.05147368460893631, 0.03725270926952362, 0.12451982498168945, 0.2409486323595047, -0.1335807591676712, -0.028181305155158043, -0.0723150223493576, 0.037707142531871796, -0.04479392245411873, 0.06795963644981384, 0.05061950534582138, -0.08152519911527634, -0.06414829194545746, 0.031069235876202583, -0.08663168549537659, 0.05413535609841347, 0.06593523174524307, -0.30486205220222473, -0.05380941182374954, 0.0016089315759018064, 0.1923138052225113, -0.028110947459936142, 0.13729740679264069, -0.03900745511054993, -0.11485236138105392, -0.00020474407938309014, 0.01531259249895811, -0.19838373363018036, -0.10273808240890503, 0.13922470808029175, -0.005403620656579733, 0.049625214189291, -0.06538025289773941, 0.0032722647301852703, 0.08720825612545013, 0.0672408938407898, -0.05803600326180458, -0.018590077757835388, 0.06345627456903458, -0.09190394729375839, -0.1411285400390625, -0.019239118322730064, 0.01530242245644331, -0.01702236570417881, 0.08203009516000748, -0.16959215700626373, 0.03673459589481354, 0.01395686436444521, -0.028177127242088318, 0.02438635751605034, -0.003630738938227296, -0.012998519465327263, 0.07032262533903122, 0.03834224492311478, -0.021663721650838852, -0.0665566474199295, -0.012115960009396076, -0.06960845738649368, 0.09290081262588501, -0.009013311937451363, -0.15864159166812897, -0.036508433520793915, -0.038258105516433716, 0.05892025679349899, -0.0010933337034657598, -0.07106629014015198, -0.038184963166713715, -0.027590492740273476, 0.043047066777944565, -0.057734414935112, 0.011564500629901886, 0.04115474224090576, 0.008196278475224972, 0.0017104578437283635, -0.06976033747196198, 0.06152587756514549, 0.07075255364179611, -0.12456463277339935, -0.070296511054039 ]
null
null
null
This is an Audacity wrapper for the model, forked from the repository `groadabike/ConvTasNet_DAMP-VSEP_enhboth`, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied directly from `groadabike/ConvTasNet_DAMP-VSEP_enhboth`: ### Description: This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset. ### Training config: ```yaml data: channels: 1 n_src: 2 root_path: data sample_rate: 16000 samples_per_track: 10 segment: 3.0 task: enh_both filterbank: kernel_size: 20 n_filters: 256 stride: 10 main_args: exp_dir: exp/train_convtasnet help: None masknet: bn_chan: 256 conv_kernel_size: 3 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 4 n_src: 2 norm_type: gLN skip_chan: 256 optim: lr: 0.0003 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 12 early_stop: True epochs: 50 half_lr: True num_workers: 12 ``` ### Results: ```yaml si_sdr: 14.018196157142519 si_sdr_imp: 14.017103133809577 sdr: 14.498517291333885 sdr_imp: 14.463389151567865 sir: 24.149634529133372 sir_imp: 24.11450638936735 sar: 15.338597389045935 sar_imp: -137.30634122401517 stoi: 0.7639416744417206 stoi_imp: 0.1843383526963759 ``` ### License notice: This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
{"tags": ["audacity"], "inference": false, "sample_rate": 8000}
null
hugggof/ConvTasNet-DAMP-Vocals
[ "audacity", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #audacity #region-us
This is an Audacity wrapper for the model, forked from the repository 'groadabike/ConvTasNet_DAMP-VSEP_enhboth', This model was trained using the Asteroid library: URL The following info was copied directly from 'groadabike/ConvTasNet_DAMP-VSEP_enhboth': ### Description: This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset. ### Training config: ### Results: ### License notice: This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
[ "### Description:\nThis model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.", "### Training config:", "### Results:", "### License notice:\nThis work \"ConvTasNet_DAMP-VSEP_enhboth\" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). \"ConvTasNet_DAMP-VSEP_enhboth\" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike." ]
[ "TAGS\n#audacity #region-us \n", "### Description:\nThis model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.", "### Training config:", "### Results:", "### License notice:\nThis work \"ConvTasNet_DAMP-VSEP_enhboth\" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). \"ConvTasNet_DAMP-VSEP_enhboth\" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike." ]
[ 10, 42, 6, 4, 109 ]
[ "passage: TAGS\n#audacity #region-us \n### Description:\nThis model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.### Training config:### Results:### License notice:\nThis work \"ConvTasNet_DAMP-VSEP_enhboth\" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). \"ConvTasNet_DAMP-VSEP_enhboth\" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike." ]
[ -0.05139695107936859, -0.11411935091018677, -0.0028752966318279505, 0.040572639554739, 0.06716839969158173, 0.006272376049309969, 0.1127328872680664, -0.05003158003091812, 0.03402869030833244, -0.03862382844090462, 0.09223604947328568, -0.005665054079145193, 0.021896250545978546, 0.11221813410520554, 0.0031004215124994516, -0.14669200778007507, 0.02837420254945755, -0.04881234094500542, -0.15140455961227417, 0.017144257202744484, 0.09492633491754532, -0.08249375224113464, 0.08794200420379639, -0.031052060425281525, -0.06332913786172867, 0.04844464361667633, -0.025517042726278305, -0.06875211745500565, 0.10444799810647964, -0.04334540292620659, 0.18789231777191162, 0.05945691838860512, 0.07916077226400375, -0.10878047347068787, 0.03169925883412361, -0.035703979432582855, -0.05426683649420738, 0.053875938057899475, 0.013044627383351326, 0.08572325110435486, 0.148219496011734, 0.08826510608196259, 0.013057288713753223, -0.011335043236613274, -0.10189681500196457, -0.08073927462100983, -0.09356337040662766, -0.08502495288848877, 0.07600758224725723, 0.05850859731435776, 0.03919997438788414, 0.108199343085289, -0.14120836555957794, -0.0024596231523901224, -0.0563577264547348, -0.18389666080474854, -0.011223546229302883, 0.20724771916866302, -0.0012584052747115493, 0.02441222406923771, -0.03179527819156647, 0.019978800788521767, 0.07925111800432205, 0.06459250301122665, 0.055418096482753754, -0.062171824276447296, -0.023068014532327652, 0.01601383276283741, -0.09178005158901215, -0.050062134861946106, 0.3835342228412628, -0.009006989188492298, -0.0643727108836174, 0.1336149424314499, -0.05645696446299553, 0.004390096757560968, 0.02658378891646862, -0.09196306765079498, -0.022486276924610138, 0.051159054040908813, -0.10763270407915115, -0.05248158052563667, -0.14043457806110382, -0.09952765703201294, -0.08258797228336334, 0.06078416854143143, 0.020567793399095535, 0.031825385987758636, -0.19227655231952667, 0.0816689059138298, -0.01556441280990839, -0.058063484728336334, 0.040776778012514114, -0.13458232581615448, 0.08728652447462082, -0.008718814700841904, -0.027683591470122337, -0.24571764469146729, 0.109584279358387, 0.09560216963291168, -0.016800574958324432, -0.008220270276069641, -0.0024788095615804195, 0.09978673607110977, 0.0460311658680439, 0.01682254672050476, 0.041013456881046295, 0.02617425099015236, 0.051914576441049576, -0.07138693332672119, 0.0030173957347869873, -0.009907347150146961, -0.150643989443779, 0.034793753176927567, -0.0059046195819973946, 0.019993018358945847, 0.0118485689163208, -0.030994806438684464, 0.008867744356393814, -0.007085123565047979, 0.19052308797836304, 0.030858999118208885, 0.002375435084104538, -0.05273451283574104, -0.02779649943113327, -0.06488456577062607, 0.04350954294204712, 0.04432033374905586, 0.06859635561704636, 0.09093298017978668, -0.07676271349191666, -0.0628243163228035, -0.058467548340559006, -0.06292925029993057, 0.07548780739307404, 0.0773739293217659, 0.05999203026294708, -0.2623630166053772, -0.129365473985672, 0.0006923422333784401, 0.06198953092098236, -0.025261161848902702, 0.05187227576971054, -0.035861819982528687, -0.013781283050775528, -0.003959859721362591, -0.021182794123888016, -0.058287426829338074, -0.02802773378789425, 0.01817828230559826, -0.01248712558299303, 0.057585444301366806, -0.22655551135540009, 0.020967165008187294, -0.06379964202642441, 0.0633038803935051, -0.06305567920207977, -0.04716064780950546, -0.07109619677066803, 0.10462510585784912, -0.03613865748047829, -0.009173492901027203, -0.20649223029613495, -0.0033075178507715464, 0.12216924875974655, 0.16260720789432526, -0.18851816654205322, -0.0015338992234319448, 0.08527917414903641, -0.10620708018541336, -0.13681600987911224, 0.08162885904312134, -0.060331184417009354, 0.1317870169878006, 0.023432277143001556, 0.11562302708625793, 0.024741847068071365, -0.17154890298843384, -0.015779390931129456, -0.011944251134991646, -0.04907839745283127, -0.18690448999404907, 0.06613212823867798, -0.01144125685095787, -0.12945862114429474, 0.004386637359857559, 0.024412568658590317, 0.09962955862283707, -0.020976703613996506, -0.07581182569265366, 0.012190735898911953, -0.057921797037124634, 0.027201486751437187, -0.044561274349689484, 0.1206335499882698, 0.0019984005484730005, 0.047007184475660324, -0.13129062950611115, 0.0941312238574028, 0.012293508276343346, 0.035547878593206406, -0.024234946817159653, 0.06308235973119736, -0.0773068368434906, 0.012614374980330467, -0.06861226260662079, -0.007633765693753958, 0.048990894109010696, 0.008468976244330406, 0.05655210465192795, 0.02062864974141121, 0.027229957282543182, 0.016340214759111404, -0.017076566815376282, 0.004400091245770454, -0.0958738848567009, 0.025794370099902153, 0.018554922193288803, -0.0737374946475029, 0.02465922012925148, -0.07133298367261887, 0.060553837567567825, -0.14554044604301453, -0.011264017783105373, 0.04009446129202843, -0.011007828637957573, 0.04897327348589897, 0.06819149851799011, -0.021221060305833817, 0.06970269978046417, -0.08623708784580231, 0.024730239063501358, -0.01676715724170208, 0.015988629311323166, -0.018521368503570557, -0.040987834334373474, 0.08235533535480499, -0.04549289494752884, 0.0734160840511322, -0.1496940702199936, -0.04424989968538284, -0.03884599730372429, 0.007518948521465063, -0.020001592114567757, -0.0329304076731205, 0.005899849347770214, 0.06005614250898361, -0.030686447396874428, 0.10101690888404846, -0.05062461271882057, 0.10146472603082657, 0.003055962035432458, -0.13069716095924377, -0.08595278859138489, 0.02020718902349472, 0.21755041182041168, -0.06533517688512802, 0.07450048625469208, 0.1993066668510437, -0.08539842814207077, 0.11743707209825516, 0.005947588011622429, -0.03279849514365196, -0.09043564647436142, 0.017994394525885582, 0.03371833264827728, 0.1312870979309082, -0.05426925793290138, 0.0030827627051621675, 0.0014944180147722363, 0.053454503417015076, 0.11389493942260742, -0.09339461475610733, -0.07151193171739578, 0.012125097215175629, 0.060207050293684006, -0.06148898974061012, 0.0330691933631897, -0.13135500252246857, 0.014047935605049133, -0.03400550037622452, -0.140297994017601, 0.03899451345205307, 0.0014074168866500258, -0.03388434648513794, 0.10965122282505035, -0.14215394854545593, -0.1656622290611267, -0.17566649615764618, -0.062418270856142044, -0.029161153361201286, 0.04589032754302025, 0.033510755747556686, -0.10597024857997894, -0.019319970160722733, 0.0013394012348726392, -0.059598296880722046, -0.08519486337900162, -0.014052879065275192, -0.015274593606591225, 0.08762267231941223, -0.028602123260498047, -0.06173907220363617, -0.01878274790942669, -0.07897426187992096, 0.02410334162414074, 0.14386482536792755, -0.08418936282396317, 0.16006632149219513, 0.11879101395606995, 0.041889794170856476, 0.002597124082967639, 0.0014071851037442684, 0.11677860468626022, -0.04806305095553398, -0.0017887194408103824, 0.09847105294466019, 0.0274975523352623, 0.00804413203150034, 0.14779812097549438, 0.037730373442173004, -0.07041605561971664, 0.04698804393410683, -0.15120995044708252, -0.15935198962688446, -0.1993907243013382, -0.13631097972393036, -0.08814693242311478, -0.013840451836585999, -0.026691783219575882, 0.04874587431550026, 0.15862475335597992, 0.09376677870750427, 0.09735069423913956, 0.052601221948862076, -0.04233868047595024, 0.0469936840236187, 0.058578357100486755, -0.004744809586554766, -0.0016062306240200996, -0.061991047114133835, -0.05357382446527481, 0.09216422587633133, 0.0961051657795906, 0.2678029239177704, 0.11912595480680466, -0.017726903781294823, 0.10730287432670593, 0.1480681300163269, 0.04777649790048599, 0.09514141082763672, 0.010111469775438309, 0.007044048979878426, -0.05390283092856407, -0.045529402792453766, -0.04039901867508888, 0.1349015086889267, -0.019344953820109367, -0.1256125271320343, 0.028508156538009644, 0.05250440537929535, -0.011374927125871181, -0.040122825652360916, 0.09000939875841141, -0.1588802933692932, 0.02930871583521366, 0.030936349183321, 0.12241960316896439, 0.0005467653390951455, 0.050085343420505524, 0.12461412698030472, -0.01741662621498108, -0.014399252831935883, 0.020527267828583717, 0.031890664249658585, -0.012332023121416569, 0.012163101695477962, -0.07113578170537949, -0.012213636189699173, 0.006043427158147097, 0.02439901977777481, -0.2764969766139984, 0.2356313019990921, -0.022477151826024055, 0.027438674122095108, 0.039636921137571335, 0.020778197795152664, -0.009049704298377037, 0.1394348442554474, 0.04511642083525658, 0.03692060708999634, -0.05668344721198082, -0.03964732587337494, -0.08811931312084198, 0.006149351596832275, 0.007021099794656038, 0.053151685744524, 0.002152117434889078, 0.03412145748734474, 0.0013245918089523911, 0.04433337599039078, 0.13610288500785828, -0.16657787561416626, -0.02453402802348137, -0.035432472825050354, 0.09238738566637039, 0.02548600360751152, -0.05780122056603432, 0.03371912240982056, 0.0858711451292038, -0.07555394619703293, -0.05012192949652672, 0.02229827456176281, -0.05164458975195885, -0.055032018572092056, 0.033370375633239746, -0.055159792304039, 0.07274796068668365, 0.02635011076927185, -0.06472879648208618, -0.0398661270737648, -0.06710443645715714, 0.05656236782670021, -0.12186684459447861, 0.005904768127948046, -0.0745973065495491, -0.010413911193609238, 0.0572318434715271, 0.03133171424269676, 0.031110765412449837, -0.004392640665173531, -0.08503083139657974, -0.0681157186627388, 0.011821011081337929, 0.05180481821298599, -0.03379730507731438, -0.004083461593836546, -0.024225682020187378, -0.0773078054189682, -0.009344098158180714, -0.04650220647454262, 0.1705223023891449, 0.20241688191890717, -0.03113723360002041, 0.034315068274736404, 0.2908846139907837, -0.09136853367090225, -0.2194771021604538, -0.10306454449892044, -0.016725828871130943, -0.0025046432856470346, -0.022933779284358025, -0.21110926568508148, 0.033698685467243195, 0.07547052949666977, -0.04687202721834183, 0.005207729060202837, -0.2070770114660263, -0.06102912500500679, 0.1588248610496521, -0.04681338742375374, 0.2755255103111267, -0.03396936506032944, -0.06916192173957825, -0.10875048488378525, -0.06855439394712448, 0.0185566246509552, -0.034173619002103806, 0.04800155386328697, -0.006854511797428131, 0.05472536012530327, -0.016709918156266212, -0.02449304796755314, 0.13425591588020325, 0.03555193170905113, 0.10142522305250168, -0.032857246696949005, -0.09733235836029053, 0.13205240666866302, -0.0378212071955204, 0.07752031832933426, 0.13238279521465302, 0.026725513860583305, -0.06115859001874924, -0.02222926914691925, -0.03334284946322441, 0.07783369719982147, 0.023223290219902992, -0.10866016894578934, -0.08685752749443054, 0.025233130902051926, -0.009946933947503567, 0.000324695254676044, 0.1485757976770401, 0.0826408714056015, -0.04193728044629097, 0.18879666924476624, 0.014016550965607166, -0.05309941992163658, 0.06093451753258705, 0.03641454502940178, -0.06692798435688019, 0.09194644540548325, -0.1325255036354065, -0.024422118440270424, 0.058828774839639664, -0.016919251531362534, 0.052949611097574234, 0.06573407351970673, -0.12418335676193237, 0.09763949364423752, 0.1418539136648178, -0.09555845707654953, 0.01399120595306158, -0.007321244105696678, 0.11122186481952667, 0.1066417470574379, 0.13025830686092377, 0.12553682923316956, -0.08609185367822647, 0.04088282212615013, -0.02782604657113552, 0.013752775266766548, -0.09478623420000076, 0.07446719706058502, 0.13503892719745636, -0.04088257625699043, -0.07235879451036453, 0.15246689319610596, 0.12605103850364685, 0.11783599108457565, 0.019160130992531776, -0.07252580672502518, -0.046323083341121674, -0.07381067425012589, -0.1601584255695343, 0.06787578761577606, -0.06141020357608795, -0.13233810663223267, -0.023518918082118034, -0.04816102609038353, 0.00018811346672009677, -0.04092225804924965, 0.041754286736249924, 0.0019628836307674646, -0.05469578504562378, 0.03162285313010216, -0.07236380875110626, 0.012047543190419674, -0.033074136823415756, 0.0817931666970253, -0.13843058049678802, -0.057822730392217636, -0.026976654306054115, 0.02871638722717762, -0.05973069742321968, -0.05876633897423744, -0.06505105644464493, 0.05990619584918022, -0.18000592291355133, -0.05032981187105179, -0.04664703831076622, -0.05139349400997162, 0.03462681546807289, -0.010933159850537777, -0.07818837463855743, 0.04143941029906273, -0.09122294187545776, 0.04795914888381958, -0.0001767954381648451, 0.043619364500045776, -0.048769496381282806, -0.04374563321471214, 0.007119377609342337, -0.021128743886947632, 0.012797782197594643, 0.043061934411525726, 0.028643079102039337, 0.05598842725157738, -0.10144047439098358, -0.006283777300268412, 0.1272358000278473, 0.06174647435545921, 0.04399396479129791, -0.00029269588412716985, -0.032318826764822006, 0.010357368737459183, -0.034774914383888245, -0.014038307592272758, 0.07848036289215088, -0.05394769832491875, 0.0007111121667549014, -0.03273410722613335, -0.10271260142326355, -0.017100974917411804, -0.013072468340396881, 0.07690829783678055, 0.10426879674196243, 0.13358275592327118, -0.0006835737731307745, -0.0071298908442258835, -0.04093939810991287, -0.024260155856609344, 0.0025005906354635954, -0.0495501384139061, -0.03254400193691254, -0.06858930736780167, -0.0034771605860441923, -0.029290778562426567, 0.15555340051651, 0.04720991849899292, -0.1482747197151184, -0.08197180181741714, 0.09010165184736252, -0.042448677122592926, 0.015352719463407993, 0.10777786374092102, 0.08513906598091125, -0.00512450048699975, -0.15063677728176117, 0.1079309955239296, 0.11168752610683441, 0.14304354786872864, 0.07847495377063751, 0.0297706201672554, -0.025377493351697922, 0.048542898148298264, 0.11048489809036255, -0.010216406546533108, 0.025921305641531944, -0.11609115451574326, -0.07066164165735245, 0.047605663537979126, -0.011978833936154842, 0.028669707477092743, 0.07068958133459091, -0.051437243819236755, -0.015428225509822369, 0.025857986882328987, -0.060485076159238815, -0.0757465660572052, -0.11411237716674805, -0.0626596212387085, -0.1386464536190033, 0.027015769854187965, -0.07539248466491699, -0.09176002442836761, 0.14923042058944702, -0.03905244916677475, -0.05771174654364586, 0.1111665889620781, 0.0070640952326357365, -0.06003211811184883, 0.026302171871066093, -0.016512732952833176, -0.0637640506029129, -0.047182392328977585, -0.030706433579325676, -0.06250885128974915, 0.02868957258760929, -0.020358771085739136, 0.03221284970641136, 0.011817552149295807, -0.0016148778377100825, 0.008926752023398876, -0.02275705337524414, -0.07694760710000992, 0.011382296681404114, -0.06569738686084747, 0.06570972502231598, 0.04715711623430252, -0.04576989635825157, 0.072159044444561, 0.10854002833366394, 0.001732375007122755, -0.032630909234285355, -0.05784178152680397, 0.04858899116516113, 0.04389257729053497, 0.11016342043876648, -0.030140502378344536, -0.07016754895448685, -0.053926412016153336, 0.1293380856513977, 0.2875509262084961, -0.016252320259809494, -0.00863371230661869, 0.0020152488723397255, 0.022761527448892593, -0.07585359364748001, 0.20716452598571777, 0.03907027468085289, 0.19434237480163574, -0.0064851571805775166, 0.007446396630257368, -0.08934979140758514, 0.003811142174527049, -0.04112998768687248, 0.031776491552591324, 0.04648570343852043, -0.10929343104362488, -0.08951251208782196, 0.09654662013053894, -0.12378065288066864, 0.01621411368250847, -0.013511686585843563, -0.06900326907634735, -0.042786646634340286, -0.010916242375969887, 0.058618031442165375, 0.018083296716213226, 0.07283222675323486, -0.11889896541833878, 0.023559320718050003, 0.07984945178031921, 0.006296220235526562, -0.09228865802288055, -0.0015930699883028865, 0.15333014726638794, 0.004847315140068531, 0.17304609715938568, 0.000033866872399812564, 0.09818053990602493, 0.018846338614821434, 0.02819633297622204, -0.0131651246920228, 0.1318519115447998, 0.028155015781521797, 0.055640809237957, -0.025732778012752533, -0.11417977511882782, -0.038902297616004944, 0.05665607750415802, 0.06762585043907166, -0.006903717759996653, 0.0067977337166666985, 0.1293940246105194, 0.006647065747529268, -0.08039061725139618, 0.037110015749931335, -0.08276664465665817, 0.08399617671966553, -0.003054618136957288, -0.04203157499432564, -0.003741414984688163, -0.05705317109823227, 0.05215637758374214, 0.06296184659004211, 0.01932983659207821, -0.0276905819773674, -0.06832548975944519, -0.039093174040317535, 0.0006283282418735325, 0.027616405859589577, -0.1022920310497284, -0.021400660276412964, -0.12437468022108078, -0.0190158449113369, 0.012315323576331139, 0.05065397918224335, 0.06546173244714737, 0.007118042092770338, -0.03386801481246948, 0.23972955346107483, -0.059984203428030014, 0.009655507281422615, -0.05869225040078163, -0.07555793970823288 ]
null
null
null
This is an Audacity wrapper for the model, forked from the repository `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied directly from `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`: Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"tags": ["audacity"], "inference": false}
null
hugggof/ConvTasNet_Libri3Mix_sepnoisy_16k
[ "audacity", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #audacity #region-us
This is an Audacity wrapper for the model, forked from the repository 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k', This model was trained using the Asteroid library: URL The following info was copied directly from 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k': Description: This model was trained by Joris Cosentino using the librimix recipe in Asteroid. It was trained on the 'sep_noisy' task of the Libri3Mix dataset. Training config: Results: On Libri3Mix min test set : License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov, used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures dataset by URL, used under CC BY-NC 4.0. "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino
[]
[ "TAGS\n#audacity #region-us \n" ]
[ 10 ]
[ "passage: TAGS\n#audacity #region-us \n" ]
[ -0.019914701581001282, 0.05779961124062538, -0.010926702991127968, -0.04279547929763794, 0.11446382105350494, 0.09448901563882828, 0.08029607683420181, -0.022797605022788048, 0.14681506156921387, -0.0162777379155159, 0.13710515201091766, -0.07226235419511795, -0.035463739186525345, -0.033024512231349945, 0.005356237292289734, -0.10074841976165771, 0.007150833960622549, -0.033344678580760956, 0.08124350756406784, 0.02943301387131214, -0.06437834352254868, -0.08880753070116043, 0.011320039629936218, -0.07026758790016174, 0.0007598965312354267, 0.09990371018648148, 0.02207607589662075, -0.004762526135891676, 0.13075418770313263, -0.0023671428207308054, 0.21611620485782623, -0.0013131789164617658, -0.1079963818192482, -0.2589193284511566, 0.033793505281209946, -0.0679452195763588, -0.048759639263153076, -0.004788506776094437, 0.032918594777584076, -0.07716623693704605, -0.05942558869719505, 0.1867903769016266, 0.027057260274887085, 0.057751528918743134, -0.2933948040008545, -0.1713157594203949, -0.044318027794361115, -0.11327271908521652, 0.05205332487821579, 0.06488128006458282, -0.0021672029979526997, 0.12185084074735641, -0.12281964719295502, -0.029398392885923386, -0.06945153325796127, -0.20017586648464203, 0.039045337587594986, 0.030407333746552467, 0.020608393475413322, 0.18956594169139862, -0.03880661353468895, 0.0656677708029747, 0.057296812534332275, -0.004693426191806793, -0.164091557264328, -0.09644902497529984, 0.020190980285406113, 0.13890232145786285, -0.046129148453474045, -0.10711164772510529, 0.3522171974182129, 0.033933125436306, -0.0067940689623355865, 0.17791517078876495, -0.040265437215566635, -0.05243963375687599, 0.03606535866856575, -0.01806752011179924, -0.013442175462841988, 0.13498176634311676, 0.1699664145708084, 0.005228137131780386, -0.12744294106960297, 0.08720370382070541, -0.19098959863185883, 0.15892720222473145, -0.01449578907340765, 0.1160096526145935, -0.2023066133260727, -0.06133773550391197, -0.11251486837863922, -0.02664046175777912, 0.08569790422916412, -0.04693326726555824, -0.015202969312667847, -0.029618682339787483, -0.021353373304009438, -0.037031061947345734, 0.07402480393648148, 0.19581420719623566, -0.09090454876422882, 0.05096610262989998, -0.054620373994112015, 0.15048635005950928, 0.07693548500537872, 0.12036288529634476, 0.11039042472839355, 0.011743704788386822, -0.07727596908807755, -0.11500803381204605, 0.007380517665296793, -0.039774972945451736, -0.07354630529880524, 0.013560472056269646, -0.07746995985507965, 0.11021328717470169, -0.02678333781659603, -0.15352201461791992, -0.165897935628891, 0.07333701103925705, -0.04297696426510811, -0.00013136850611772388, -0.04918977990746498, -0.056767988950014114, 0.059058595448732376, 0.11667335033416748, -0.13396702706813812, 0.040163036435842514, 0.09581905603408813, 0.1339111030101776, -0.13031519949436188, -0.033091239631175995, -0.013801677152514458, 0.05866626650094986, 0.052876412868499756, -0.03441518172621727, 0.11390253156423569, -0.12725137174129486, 0.004931151866912842, -0.022264661267399788, 0.04970357194542885, 0.007532306015491486, 0.11499388515949249, -0.010113149881362915, 0.05110105872154236, -0.000953131471760571, -0.029062580317258835, -0.17668868601322174, -0.10328592360019684, 0.04374127835035324, 0.013122226111590862, 0.009676720015704632, -0.1804816722869873, 0.009606181643903255, -0.06409380584955215, 0.12774814665317535, -0.03378288820385933, -0.08541708439588547, 0.014192468486726284, 0.22506332397460938, 0.05282241106033325, 0.1006854772567749, -0.1724855601787567, 0.003599646035581827, -0.019493067637085915, 0.21236157417297363, -0.08220423012971878, -0.08138676732778549, 0.10268660634756088, -0.07840625196695328, -0.11874464899301529, 0.07724273204803467, 0.038784634321928024, 0.025601524859666824, 0.07102761417627335, 0.29563266038894653, -0.0731085017323494, -0.15871800482273102, 0.0686788409948349, 0.13011281192302704, -0.06023421138525009, -0.12328873574733734, 0.09222980588674545, -0.10513880103826523, -0.17189328372478485, 0.010083271190524101, 0.232631117105484, 0.13491258025169373, -0.08463052660226822, -0.06943131983280182, 0.07306202501058578, -0.012712272815406322, 0.020237427204847336, 0.059156838804483414, 0.037619348615407944, -0.08038962632417679, 0.03823816403746605, -0.19657887518405914, 0.004407462663948536, 0.1697572022676468, 0.01639886386692524, -0.04909393563866615, 0.0716392993927002, -0.03402747958898544, 0.031193703413009644, -0.09878302365541458, -0.07956214994192123, -0.019728856161236763, 0.12571705877780914, -0.003956906963139772, 0.1149866133928299, 0.05289863422513008, -0.11335212737321854, -0.026068631559610367, -0.037253446877002716, 0.005051902495324612, 0.012232155539095402, 0.013084834441542625, -0.023270800709724426, 0.16632267832756042, -0.08196469396352768, 0.002268345793709159, -0.055360496044158936, -0.04146995767951012, 0.11897814273834229, -0.053218524903059006, 0.09621988981962204, -0.010789749212563038, -0.017260460183024406, 0.07674842327833176, 0.045527976006269455, 0.034035854041576385, 0.07907819002866745, -0.034830160439014435, -0.0906984955072403, 0.08063743263483047, -0.06693808734416962, 0.19321605563163757, 0.12368225306272507, -0.19652535021305084, -0.023579489439725876, -0.009180226363241673, 0.005826315376907587, -0.0018989959498867393, 0.108733631670475, -0.024737512692809105, 0.012634341605007648, 0.04265842214226723, 0.01845341920852661, 0.04411933198571205, 0.06479719281196594, -0.04094400256872177, -0.028917506337165833, -0.1058577373623848, 0.08972824364900589, 0.0709294006228447, -0.01802927441895008, 0.0899100974202156, 0.5066919922828674, 0.09791268408298492, 0.15231642127037048, -0.09199150651693344, -0.02377757988870144, 0.004111617337912321, -0.020663609728217125, -0.009413091465830803, 0.16156020760536194, -0.10640115290880203, 0.04137662798166275, 0.00969754345715046, 0.017358323559165, 0.03780204802751541, -0.12463916838169098, -0.112360380589962, -0.030478879809379578, 0.06677917391061783, -0.03942357376217842, 0.013831750489771366, -0.07615257054567337, 0.04158969596028328, 0.09013422578573227, -0.07165062427520752, 0.10189533233642578, -0.024082178249955177, -0.02381778694689274, 0.06311161816120148, -0.17908406257629395, -0.19444851577281952, -0.06752840429544449, -0.05548268184065819, 0.040680937469005585, 0.024625340476632118, -0.005136317107826471, -0.13864435255527496, -0.02908422239124775, 0.08805709332227707, 0.05729407072067261, -0.15221236646175385, 0.010241538286209106, 0.018007883802056313, 0.08447563648223877, -0.05700908228754997, 0.04972472041845322, -0.02590595744550228, -0.09138061106204987, 0.002512522740289569, 0.08773497492074966, -0.10353470593690872, 0.1390758603811264, 0.1917080581188202, 0.10454132407903671, 0.025493783876299858, 0.010675451718270779, 0.18258953094482422, -0.15105485916137695, -0.1304367035627365, 0.07714436948299408, -0.11734716594219208, 0.044962577521800995, 0.2233843058347702, 0.031684380024671555, -0.10463154315948486, -0.003469983348622918, -0.04676547273993492, -0.12693078815937042, -0.18226036429405212, -0.060958318412303925, -0.09744668006896973, 0.20076002180576324, 0.0012977890437468886, 0.056443847715854645, -0.05492844432592392, 0.002865558722987771, 0.12135601043701172, -0.08794277161359787, -0.08902571350336075, -0.03130508214235306, 0.23185576498508453, -0.07907517999410629, -0.016707219183444977, -0.0813768282532692, -0.06817937642335892, 0.10927245765924454, 0.1784239113330841, 0.042485110461711884, 0.25141242146492004, -0.01529120746999979, 0.05956966057419777, 0.032707493752241135, 0.11268060654401779, 0.03830089792609215, 0.056737031787633896, -0.05229474976658821, -0.036017950624227524, 0.033086199313402176, -0.03215155377984047, 0.06188979372382164, 0.09052561223506927, -0.22288063168525696, -0.00018355542852077633, -0.1874006688594818, 0.07674342393875122, -0.13645312190055847, 0.16382482647895813, 0.04487433284521103, 0.07254045456647873, 0.11432640254497528, -0.006908687297254801, -0.048144567757844925, 0.16749441623687744, 0.041044630110263824, -0.08392536640167236, 0.007957840338349342, 0.040108852088451385, 0.09385466575622559, -0.05542761832475662, 0.10823865979909897, -0.10375513881444931, -0.16861197352409363, 0.015666499733924866, 0.01980459690093994, -0.19648192822933197, 0.25793322920799255, -0.004483161959797144, -0.14627836644649506, 0.03969166427850723, -0.08022485673427582, 0.016199585050344467, 0.1742914468050003, 0.07198935747146606, 0.06765776872634888, -0.09778467565774918, -0.07762656360864639, 0.06099579483270645, 0.028531787917017937, 0.1277051717042923, 0.02034187503159046, -0.11804807186126709, -0.0028785166796296835, 0.05894226208329201, -0.04242273047566414, 0.11712394654750824, -0.06841699779033661, -0.09328094869852066, -0.006683433894068003, 0.09414009749889374, -0.03853561729192734, -0.0058347852900624275, 0.04749997332692146, 0.002058602636680007, -0.10418712347745895, 0.07030697166919708, 0.024848802015185356, -0.06271625310182571, -0.1682130992412567, 0.07563578337430954, -0.04838734492659569, 0.004263483453541994, -0.09165068715810776, -0.15208227932453156, -0.10194677114486694, -0.05322356894612312, 0.11349347978830338, -0.036217570304870605, 0.10298572480678558, -0.08526270091533661, 0.0755581259727478, -0.053325023502111435, 0.045333556830883026, -0.06773395091295242, 0.06607968360185623, -0.0479123480618, -0.07695187628269196, 0.13829563558101654, -0.2894185483455658, -0.055552780628204346, 0.14189426600933075, 0.016879206523299217, -0.006479946430772543, 0.018798980861902237, -0.11741306632757187, 0.19689679145812988, 0.35578593611717224, 0.03385046496987343, 0.13395942747592926, 0.2187308818101883, -0.06228160485625267, -0.30797863006591797, -0.07810231298208237, -0.2287967950105667, -0.055851470679044724, 0.1369660198688507, -0.22752989828586578, 0.07691747695207596, 0.05305289477109909, -0.08654773980379105, 0.30219292640686035, -0.17917947471141815, -0.016062403097748756, 0.17774532735347748, -0.04481431469321251, 0.5816458463668823, -0.1430119127035141, -0.09836291521787643, -0.04522782191634178, -0.04539519175887108, 0.03978416696190834, 0.03879636898636818, 0.04079165682196617, -0.006589636206626892, 0.02758682891726494, 0.03617465868592262, 0.01859908364713192, 0.18490567803382874, 0.020886186510324478, 0.03680313378572464, -0.041644684970378876, -0.13934871554374695, 0.10013005882501602, 0.004688136279582977, -0.16385233402252197, 0.03643302246928215, -0.057321518659591675, -0.15089042484760284, 0.034729450941085815, -0.0546313039958477, -0.015037068165838718, 0.05461987853050232, -0.05651901289820671, -0.0633925274014473, 0.033461444079875946, -0.12169618904590607, -0.013170113787055016, 0.24228917062282562, -0.0388687439262867, 0.1350758671760559, -0.034903425723314285, -0.008200401440262794, -0.15104445815086365, 0.12760908901691437, -0.02976180799305439, -0.02488657645881176, 0.07498238980770111, -0.10600040853023529, 0.04614400118589401, 0.13278955221176147, -0.0745481625199318, 0.06773654371500015, 0.07300273329019547, -0.05185369774699211, 0.0395653061568737, 0.1801140308380127, -0.17189538478851318, -0.09801355749368668, -0.040786437690258026, -0.023585941642522812, 0.12948420643806458, -0.039507605135440826, 0.06705755740404129, 0.15279722213745117, 0.03767872974276543, 0.0034349565394222736, -0.02973589114844799, -0.10049909353256226, -0.055739518254995346, 0.07789833098649979, -0.011081283912062645, -0.01755240373313427, 0.13556931912899017, 0.0766322985291481, -0.18439364433288574, -0.07496325671672821, 0.17362961173057556, -0.023611171171069145, -0.047512587159872055, -0.2628113627433777, 0.1377924531698227, -0.1507900506258011, -0.052750129252672195, 0.012320579029619694, -0.06474464386701584, 0.009235239587724209, 0.07726151496171951, 0.020442979410290718, 0.1039549708366394, 0.04586785286664963, -0.04472675174474716, 0.14837181568145752, -0.037746720016002655, -0.12706628441810608, -0.06064179912209511, -0.06727295368909836, -0.294737845659256, -0.005672522354871035, 0.1548699289560318, -0.08197496831417084, -0.12423773854970932, -0.24520590901374817, 0.12861491739749908, -0.21700723469257355, -0.09412039816379547, -0.012572778388857841, -0.06106030195951462, 0.0524301715195179, -0.04540259391069412, -0.04581892862915993, -0.08922511339187622, -0.1523037999868393, 0.047759898006916046, 0.08909787982702255, 0.045745931565761566, 0.04709434509277344, -0.03490961343050003, 0.16961872577667236, 0.004899878520518541, 0.13295607268810272, 0.055445946753025055, -0.00479267118498683, 0.16752395033836365, -0.14760875701904297, -0.05735689401626587, 0.07530035823583603, -0.023682797327637672, 0.0017639723373576999, 0.16693679988384247, -0.07734557241201401, -0.000007220610314107034, -0.03501299396157265, 0.06335780024528503, -0.08348127454519272, -0.06540147960186005, -0.057089708745479584, 0.07074878364801407, -0.25006598234176636, 0.025473104789853096, -0.16761502623558044, 0.08602650463581085, 0.007795935962349176, 0.07143428176641464, 0.06677111238241196, 0.08822675794363022, 0.06124147027730942, 0.007646333891898394, 0.057723771780729294, -0.12122171372175217, -0.022483740001916885, -0.07886261492967606, -0.033710844814777374, 0.023804524913430214, 0.30653688311576843, -0.07920853793621063, -0.014961563050746918, 0.05315486714243889, 0.11362864077091217, -0.06990054994821548, 0.013614371418952942, 0.092718206346035, 0.14012984931468964, -0.0909809097647667, -0.16764149069786072, 0.02885504998266697, -0.017832137644290924, -0.06434269994497299, 0.06304419785737991, 0.06157404184341431, 0.10324247181415558, 0.053672704845666885, -0.0491168387234211, 0.043900877237319946, 0.10597001016139984, -0.1515667885541916, 0.01875554956495762, 0.028657129034399986, 0.023451080545783043, 0.05253911390900612, 0.14387473464012146, 0.000058224024542141706, 0.039346564561128616, -0.15546248853206635, 0.03540085256099701, -0.10178782045841217, 0.07718528807163239, 0.03077881969511509, -0.10134410858154297, 0.062202394008636475, -0.014101392589509487, -0.055623333901166916, 0.22002260386943817, -0.0002508058096282184, -0.02086701989173889, 0.09431373327970505, -0.005971777718514204, -0.08670125156641006, 0.014523470774292946, -0.015617771074175835, 0.07089854031801224, -0.03289302811026573, -0.06309652328491211, -0.12571631371974945, -0.07492214441299438, -0.10473018884658813, 0.028465088456869125, -0.12114037573337555, -0.06409977376461029, -0.18488146364688873, -0.0567828044295311, -0.0386798121035099, 0.11850044876337051, -0.07272458076477051, 0.061199087649583817, -0.026673195883631706, 0.05379723384976387, 0.02941185235977173, 0.14421489834785461, 0.031015651300549507, 0.03114180639386177, -0.0492279939353466, 0.06219583749771118, -0.07069549709558487, 0.12538745999336243, -0.13330423831939697, -0.003643192583695054, -0.015901105478405952, 0.19567430019378662, 0.1948401927947998, -0.18277131021022797, -0.02313648723065853, 0.02438260056078434, 0.05870823189616203, 0.06896509230136871, 0.11868225038051605, 0.027844084426760674, 0.18441569805145264, -0.08691275864839554, -0.001120557775720954, -0.03341221436858177, 0.030974136665463448, -0.003978518303483725, 0.05126040428876877, 0.09393976628780365, 0.020366651937365532, -0.14858315885066986, 0.15922841429710388, -0.21365763247013092, 0.16002105176448822, 0.11827868968248367, -0.23527050018310547, -0.043867696076631546, -0.0864512100815773, 0.1468331664800644, -0.04737457260489464, 0.12037485837936401, -0.07547707110643387, -0.17954730987548828, -0.21946834027767181, 0.016171986237168312, -0.2007199376821518, -0.1921381801366806, 0.09607909619808197, 0.0865628719329834, 0.0713336318731308, -0.030302181839942932, -0.06979642063379288, 0.025887304916977882, 0.0752004012465477, 0.006023000925779343, 0.02530483342707157, 0.055240485817193985, 0.057483311742544174, -0.24160082638263702, -0.04059159755706787, 0.03847852349281311, -0.048469554632902145, 0.08004598319530487, 0.04327286407351494, -0.004299846012145281, 0.004393884912133217, -0.05251950025558472, 0.08323945105075836, 0.06287918239831924, -0.13486455380916595, 0.04133152216672897, 0.00035113628837279975, 0.05223225802183151, -0.017445862293243408, 0.015243667177855968, -0.06019064411520958, 0.03403530269861221, -0.113582544028759, -0.11144260317087173, 0.14682872593402863, -0.03460019454360008, 0.21851785480976105, -0.05222781375050545, -0.13789592683315277, 0.05361998453736305, -0.06828869879245758, 0.19617073237895966, -0.09600894153118134, 0.06534767895936966, 0.0801374763250351, -0.0034332021605223417, 0.013789433054625988, -0.25245577096939087, 0.10257025063037872, -0.02069946750998497, 0.03494172915816307, -0.06150796636939049 ]
null
null
null
This is an Audacity wrapper for the model, forked from the repository mpariente/ConvTasNet_WHAM_sepclean, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied from `mpariente/ConvTasNet_WHAM_sepclean`: ### Description: This model was trained by Manuel Pariente using the wham/ConvTasNet recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the WHAM! dataset. ### Training config: ```yaml data: n_src: 2 mode: min nondefault_nsrc: None sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/tr/ valid_dir: data/wav8k/min/cv/ filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/wham gpus: -1 help: None masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 2 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` ### Results: ```yaml si_sdr: 16.21326632846293 si_sdr_imp: 16.21441705664987 sdr: 16.615180021738933 sdr_imp: 16.464137807433435 sir: 26.860503975131923 sir_imp: 26.709461760826414 sar: 17.18312813480803 sar_imp: -131.99332048277296 stoi: 0.9619940905157323 stoi_imp: 0.2239480672473015 ``` ### License notice: This work "ConvTasNet_WHAM!_sepclean" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "ConvTasNet_WHAM!_sepclean" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
{"tags": ["audacity"], "inference": false}
null
hugggof/ConvTasNet_WHAM_sepclean
[ "audacity", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #audacity #region-us
This is an Audacity wrapper for the model, forked from the repository mpariente/ConvTasNet_WHAM_sepclean, This model was trained using the Asteroid library: URL The following info was copied from 'mpariente/ConvTasNet_WHAM_sepclean': ### Description: This model was trained by Manuel Pariente using the wham/ConvTasNet recipe in Asteroid. It was trained on the 'sep_clean' task of the WHAM! dataset. ### Training config: ### Results: ### License notice: This work "ConvTasNet_WHAM!_sepclean" is a derivative of CSR-I (WSJ0) Complete by LDC, used under LDC User Agreement for Non-Members (Research only). "ConvTasNet_WHAM!_sepclean" is licensed under Attribution-ShareAlike 3.0 Unported by Manuel Pariente.
[ "### Description:\nThis model was trained by Manuel Pariente \nusing the wham/ConvTasNet recipe in Asteroid.\nIt was trained on the 'sep_clean' task of the WHAM! dataset.", "### Training config:", "### Results:", "### License notice:\nThis work \"ConvTasNet_WHAM!_sepclean\" is a derivative of CSR-I (WSJ0) Complete\nby LDC, used under LDC User Agreement for \nNon-Members (Research only). \n\"ConvTasNet_WHAM!_sepclean\" is licensed under Attribution-ShareAlike 3.0 Unported\nby Manuel Pariente." ]
[ "TAGS\n#audacity #region-us \n", "### Description:\nThis model was trained by Manuel Pariente \nusing the wham/ConvTasNet recipe in Asteroid.\nIt was trained on the 'sep_clean' task of the WHAM! dataset.", "### Training config:", "### Results:", "### License notice:\nThis work \"ConvTasNet_WHAM!_sepclean\" is a derivative of CSR-I (WSJ0) Complete\nby LDC, used under LDC User Agreement for \nNon-Members (Research only). \n\"ConvTasNet_WHAM!_sepclean\" is licensed under Attribution-ShareAlike 3.0 Unported\nby Manuel Pariente." ]
[ 10, 49, 6, 4, 85 ]
[ "passage: TAGS\n#audacity #region-us \n### Description:\nThis model was trained by Manuel Pariente \nusing the wham/ConvTasNet recipe in Asteroid.\nIt was trained on the 'sep_clean' task of the WHAM! dataset.### Training config:### Results:### License notice:\nThis work \"ConvTasNet_WHAM!_sepclean\" is a derivative of CSR-I (WSJ0) Complete\nby LDC, used under LDC User Agreement for \nNon-Members (Research only). \n\"ConvTasNet_WHAM!_sepclean\" is licensed under Attribution-ShareAlike 3.0 Unported\nby Manuel Pariente." ]
[ -0.028535686433315277, 0.04354986548423767, -0.0022126073017716408, 0.05914982035756111, 0.05470456928014755, -0.014612616039812565, 0.0833859071135521, -0.03743501380085945, -0.04361344128847122, -0.0453924685716629, 0.07727338373661041, 0.03065570443868637, -0.012689745053648949, -0.004231524653732777, -0.007826106622815132, -0.0856328085064888, 0.05369402840733528, -0.06387270241975784, -0.08888506889343262, 0.02162902057170868, 0.008600348606705666, -0.09807249158620834, 0.0642460286617279, -0.010655258782207966, -0.08046283572912216, 0.033288970589637756, -0.012587372213602066, -0.09757792949676514, 0.10622967034578323, -0.037286996841430664, 0.20157065987586975, 0.11256682872772217, 0.06670292466878891, -0.11351408064365387, 0.022612228989601135, -0.10139311850070953, -0.0497891828417778, 0.04789964482188225, 0.005780242849141359, 0.08093800395727158, 0.1318502128124237, 0.0988389253616333, -0.00960101280361414, 0.01437082327902317, -0.15925879776477814, 0.01579897105693817, -0.13400398194789886, 0.012150187976658344, 0.067515529692173, 0.02883654646575451, 0.04197552427649498, 0.08661139011383057, -0.14391078054904938, -0.0226316899061203, -0.04325438290834427, -0.2914634346961975, 0.012288026511669159, 0.12870945036411285, -0.06273030489683151, -0.014157482422888279, 0.02660367451608181, 0.02234046906232834, 0.12658601999282837, 0.006913141347467899, 0.035668835043907166, -0.0913025364279747, -0.10129458457231522, 0.041961442679166794, -0.08429088443517685, -0.10003875941038132, 0.34591588377952576, 0.02629004791378975, -0.08806581050157547, 0.12934161722660065, -0.058760348707437515, -0.044075485318899155, 0.023863060399889946, 0.017975499853491783, -0.002106265164911747, 0.025751736015081406, -0.004446829669177532, -0.012546218000352383, -0.12834355235099792, -0.0940704271197319, -0.04271789267659187, 0.1913672238588333, -0.009941433556377888, 0.037035368382930756, -0.1052059531211853, 0.12586809694766998, -0.02491786889731884, -0.09068455547094345, 0.02433590777218342, -0.11975663900375366, 0.0915602296590805, -0.008735760115087032, -0.025038432329893112, -0.15888698399066925, 0.1104206070303917, 0.026079455390572548, -0.02314203791320324, -0.013144860975444317, 0.06807781010866165, 0.10009898245334625, 0.07799132913351059, 0.021181251853704453, 0.07872080057859421, 0.002344086766242981, 0.048641953617334366, 0.008119916543364525, 0.019780075177550316, 0.016355562955141068, -0.10828462243080139, -0.04849689453840256, -0.02973182685673237, 0.009234747849404812, 0.0012875553220510483, -0.02479909546673298, 0.015325237065553665, -0.0003837970725726336, 0.2517165541648865, -0.012728201225399971, -0.04612936079502106, -0.02167738601565361, -0.04986567422747612, -0.04229568690061569, 0.07494889199733734, 0.045982662588357925, 0.09331765025854111, 0.015358216129243374, -0.07591031491756439, -0.016138669103384018, -0.09511719644069672, -0.0395624004304409, 0.029532497748732567, 0.1053515300154686, 0.01751112751662731, -0.2088826596736908, -0.14293891191482544, -0.06237925961613655, 0.01991790346801281, 0.055610913783311844, -0.03730430454015732, -0.04227215051651001, -0.010593234561383724, -0.013609298504889011, -0.029049154371023178, -0.13293717801570892, -0.04868580028414726, 0.051671918481588364, 0.009207839146256447, 0.04584106430411339, -0.21723312139511108, 0.00921799335628748, -0.13002368807792664, 0.10549955070018768, -0.13248637318611145, -0.05088840425014496, -0.062050167471170425, 0.16062718629837036, -0.01069286372512579, -0.018216179683804512, -0.13681064546108246, -0.0036667378153651953, 0.06349296867847443, 0.19611378014087677, -0.18201947212219238, 0.008050384931266308, 0.09282945096492767, -0.0921408161520958, -0.13394638895988464, 0.026873566210269928, -0.06321696192026138, 0.12527859210968018, 0.019341813400387764, 0.12550801038742065, 0.06122376769781113, 0.04056267440319061, -0.0543501153588295, -0.10085432231426239, 0.009676419198513031, -0.15568310022354126, 0.06342130899429321, -0.05708322301506996, -0.18318532407283783, -0.01360008679330349, -0.037208836525678635, 0.06858986616134644, 0.007855353876948357, -0.10659608244895935, -0.0210903137922287, -0.09615859389305115, 0.057045187801122665, -0.07553108781576157, 0.08989450335502625, -0.021291373297572136, 0.07298344373703003, 0.007968306541442871, 0.1151764988899231, -0.03755846247076988, 0.03365204483270645, -0.023959297686815262, 0.10126291960477829, -0.07603275030851364, -0.037621378898620605, -0.07467070966959, 0.005412573926150799, 0.01978399232029915, 0.11743783205747604, 0.10466968268156052, 0.04870910197496414, 0.023448152467608452, 0.06295392662286758, 0.03964174911379814, -0.07510210573673248, -0.12704382836818695, 0.05229676142334938, 0.05234280973672867, -0.06105044111609459, -0.02732851542532444, -0.07615231722593307, 0.11288631707429886, -0.16629131138324738, 0.017461398616433144, -0.01926528476178646, -0.09607934206724167, 0.04128078371286392, 0.04563160985708237, 0.034842293709516525, 0.09763564169406891, -0.07476874440908432, 0.046686697751283646, 0.015483351424336433, -0.002248851815238595, -0.09414751827716827, -0.09366856515407562, -0.04097525775432587, -0.010164416395127773, 0.11575428396463394, -0.19452902674674988, -0.058247197419404984, 0.005635246634483337, -0.014064042828977108, -0.005261112004518509, -0.02505546621978283, 0.05449135601520538, 0.09613348543643951, -0.057410553097724915, 0.09307079762220383, -0.017213836312294006, 0.13692452013492584, -0.04556526616215706, -0.13005156815052032, -0.0489511601626873, 0.009057578630745411, 0.20172405242919922, -0.005089568439871073, 0.043810613453388214, 0.2508389949798584, -0.10249853134155273, 0.07326346635818481, -0.019049623981118202, -0.020433491095900536, -0.0222493764013052, 0.037726860493421555, 0.020597925409674644, 0.13660137355327606, -0.04894259199500084, -0.00016204657731577754, 0.011136556975543499, -0.04126643389463425, 0.07064211368560791, -0.15671105682849884, -0.1053914725780487, 0.056990545243024826, 0.021758131682872772, -0.08986496180295944, -0.034657008945941925, -0.1314939558506012, 0.022945966571569443, -0.021761493757367134, -0.18093405663967133, -0.0032626716420054436, 0.01895017921924591, -0.04469158500432968, 0.10838816314935684, -0.04551176726818085, 0.006041509564965963, -0.1749698966741562, 0.008108973503112793, 0.006533705163747072, 0.08170520514249802, 0.04374881833791733, -0.07222454249858856, -0.038487426936626434, -0.05347912013530731, -0.0790998786687851, -0.016831645742058754, -0.026006057858467102, 0.03634614497423172, 0.03336447477340698, -0.0310505460947752, -0.037926118820905685, -0.03374061360955238, -0.026326019316911697, -0.03238384798169136, 0.11689269542694092, -0.050735652446746826, 0.2195848971605301, 0.2115897834300995, 0.004943582694977522, -0.019483657553792, -0.0012178143952041864, 0.15565519034862518, -0.03506752476096153, -0.039119504392147064, 0.1834738403558731, -0.0271717868745327, -0.0020568568725138903, 0.11159493029117584, 0.09154163300991058, -0.03517748787999153, 0.053548235446214676, -0.16393733024597168, -0.14359597861766815, -0.17346593737602234, -0.10531844198703766, -0.005352567881345749, 0.020106801763176918, -0.048009369522333145, 0.028164027258753777, 0.13514988124370575, 0.15547005832195282, 0.06050141900777817, 0.058487989008426666, -0.07623205333948135, 0.03954414278268814, 0.09145909547805786, 0.019456611946225166, 0.017412198707461357, -0.09247229993343353, -0.07576138526201248, 0.045644063502550125, 0.05539780855178833, 0.1450820118188858, 0.1663421392440796, 0.029446838423609734, 0.07887855917215347, 0.08288763463497162, 0.04148261994123459, 0.0705748125910759, 0.019063927233219147, 0.007222681771963835, -0.0446372851729393, -0.09359889477491379, -0.10843785107135773, 0.117416150867939, -0.027290279045701027, -0.053545933216810226, -0.04476284608244896, 0.008041427470743656, 0.029960716143250465, -0.017724918201565742, 0.07420873641967773, -0.1620163917541504, -0.017639772966504097, 0.09992586821317673, 0.1184578537940979, 0.047411274164915085, 0.04400220513343811, 0.05074864625930786, -0.016290953382849693, -0.01838327758014202, 0.06659701466560364, 0.042558152228593826, -0.053023602813482285, 0.03162693977355957, -0.06468226760625839, -0.10026337951421738, -0.009996926411986351, -0.010252832435071468, -0.12907172739505768, 0.1776675283908844, -0.022240711376070976, -0.032700128853321075, 0.083132304251194, -0.008272780105471611, -0.0028091217391192913, 0.23002730309963226, 0.05916691944003105, -0.024022389203310013, -0.007421916350722313, -0.05205133557319641, -0.11211482435464859, 0.025130130350589752, -0.05906950309872627, -0.027592040598392487, 0.0929107815027237, 0.04754962772130966, 0.030660880729556084, 0.020930152386426926, 0.15838146209716797, -0.21235474944114685, 0.03341042995452881, -0.05533559247851372, 0.014120043255388737, 0.10729184001684189, -0.0541113018989563, -0.014119839295744896, -0.1662239134311676, 0.038969144225120544, -0.022336682304739952, -0.01894078217446804, -0.044316742569208145, -0.12183783948421478, 0.02179485373198986, -0.023616980761289597, 0.06450098752975464, 0.04921797290444374, -0.1690230518579483, -0.030310219153761864, -0.08488374203443527, 0.07016010582447052, -0.040291547775268555, -0.018149973824620247, -0.03247829154133797, -0.0031118434853851795, 0.01032361388206482, 0.10433738678693771, 0.01734290085732937, 0.010483141988515854, -0.0326155461370945, -0.11212974041700363, -0.03972271457314491, 0.0738702118396759, 0.02487519569694996, 0.02139383926987648, -0.022991567850112915, -0.13148050010204315, -0.022672146558761597, -0.007933706976473331, 0.19373415410518646, 0.24793994426727295, -0.058128856122493744, 0.010182271711528301, 0.10737583786249161, -0.05426487326622009, -0.17462079226970673, -0.048003409057855606, -0.09848224371671677, 0.026878220960497856, 0.033639565110206604, -0.1961280107498169, 0.031235501170158386, 0.10479173064231873, -0.0598042830824852, 0.02731054648756981, -0.3289063572883606, -0.05538851395249367, 0.12587633728981018, 0.06712834537029266, 0.2947027385234833, -0.10384280234575272, -0.066923126578331, -0.08495642989873886, -0.1632157564163208, 0.07485200464725494, -0.09556134790182114, 0.04024558886885643, -0.03299926593899727, 0.08738895505666733, 0.022282950580120087, -0.040203530341386795, 0.1748700588941574, 0.030409526079893112, 0.10452799499034882, -0.03685365989804268, -0.10082363337278366, 0.11215338110923767, -0.019803930073976517, 0.10886169970035553, 0.13030710816383362, 0.005608216859400272, -0.14963583648204803, -0.009627840481698513, -0.03858990967273712, 0.07420794665813446, -0.021956492215394974, -0.08832836896181107, -0.04077301546931267, -0.01564440317451954, -0.015967553481459618, 0.05016006529331207, 0.21361155807971954, 0.020030830055475235, -0.02352551557123661, 0.14891210198402405, 0.10287504643201828, 0.05594347044825554, 0.0877954512834549, 0.037690166383981705, -0.04610631242394447, 0.057029157876968384, -0.21153207123279572, -0.04326876997947693, 0.0493856780230999, 0.03002075105905533, 0.02737601101398468, 0.0796632319688797, -0.07444792985916138, 0.09500306844711304, 0.13285018503665924, -0.2088470757007599, -0.014690089970827103, -0.008299828507006168, 0.07060515880584717, 0.08992696553468704, 0.10987699031829834, 0.09092980623245239, -0.14643239974975586, 0.022235123440623283, -0.004441533703356981, -0.07275965064764023, -0.09144353866577148, 0.03787277638912201, 0.19788996875286102, -0.04250754788517952, -0.046006638556718826, 0.07488536089658737, 0.12872345745563507, 0.06542641669511795, -0.026276130229234695, -0.09123121201992035, -0.008317919448018074, -0.105471171438694, -0.12129387259483337, 0.04658415541052818, -0.18442955613136292, -0.13859598338603973, -0.08844044059515, -0.06147787719964981, -0.024931486696004868, 0.061198506504297256, 0.0984153151512146, 0.026296932250261307, -0.019706306979060173, 0.0199956763535738, 0.018887342885136604, -0.03769877925515175, -0.10070051997900009, 0.11611524969339371, -0.139809712767601, 0.09656790643930435, -0.06935182958841324, 0.040935590863227844, -0.04425640031695366, -0.04225096106529236, -0.038050659000873566, 0.06311065703630447, -0.1688886135816574, -0.03811614215373993, -0.09895165264606476, -0.01643005572259426, 0.001590158324688673, 0.057526908814907074, -0.02697405032813549, 0.02096696011722088, -0.08597125858068466, 0.0520717017352581, 0.0020779240876436234, 0.03420976549386978, -0.059033602476119995, 0.02698967233300209, 0.03140581026673317, -0.029369480907917023, 0.00892416387796402, -0.015255208127200603, 0.03139297291636467, 0.046772170811891556, -0.045403577387332916, 0.0286637581884861, 0.10043143481016159, 0.03300842270255089, 0.06266307830810547, 0.05550511181354523, -0.043087247759103775, -0.04181094095110893, -0.07288980484008789, -0.015275634825229645, 0.150539368391037, -0.03400561213493347, -0.04479123279452324, 0.09480290859937668, -0.07703623175621033, -0.005064740777015686, -0.02731912024319172, 0.08190061151981354, 0.05110333114862442, 0.13593409955501556, 0.01768188551068306, -0.03104228898882866, -0.08674228936433792, -0.02574653923511505, 0.01257680170238018, -0.0257803276181221, -0.11020484566688538, -0.034576017409563065, 0.0036025159060955048, 0.0013711251085624099, 0.08337587118148804, 0.00135800801217556, -0.04883548244833946, -0.08732111752033234, 0.06771128624677658, 0.10213258117437363, 0.02761104330420494, 0.24987994134426117, 0.09747033566236496, -0.008237474597990513, -0.06363545358181, 0.0807308703660965, 0.0885079875588417, 0.021105170249938965, 0.1651238203048706, -0.016108719632029533, -0.0800880640745163, 0.045709189027547836, 0.059363968670368195, 0.005179421976208687, 0.054593078792095184, -0.15867459774017334, -0.002952614100649953, 0.012539317831397057, -0.04372416436672211, 0.05461004748940468, 0.08970040082931519, -0.02864394709467888, 0.0022534795571118593, 0.032379548996686935, -0.034199342131614685, -0.07014678418636322, -0.07852404564619064, -0.04844200983643532, -0.08897384256124496, 0.03554564714431763, -0.0733514055609703, -0.10210759192705154, 0.12099029868841171, -0.09120429307222366, -0.05839518830180168, 0.15761619806289673, 0.005658267065882683, -0.015379025600850582, 0.021613508462905884, -0.018313884735107422, -0.06998008489608765, -0.09043469280004501, -0.025265786796808243, -0.05581969767808914, -0.00034481287002563477, -0.022754119709134102, 0.05407267063856125, 0.003097068751230836, 0.0012711652088910341, 0.01943155936896801, -0.025430506095290184, -0.07713954895734787, 0.038080595433712006, 0.012721071019768715, 0.005436737090349197, 0.05713331326842308, 0.00028081517666578293, 0.05059444159269333, 0.13043241202831268, -0.01290036365389824, -0.03613324463367462, -0.057751890271902084, 0.083071269094944, 0.056389883160591125, 0.08640839904546738, 0.013671409338712692, -0.12091672420501709, 0.032301951199769974, 0.07919038087129593, 0.22164171934127808, -0.1431424915790558, 0.06439877301454544, -0.0405237078666687, 0.02471749670803547, -0.06479497253894806, 0.1593046933412552, -0.017333529889583588, 0.07570979744195938, -0.049160826951265335, -0.07985491305589676, -0.15105730295181274, 0.0176090020686388, -0.06273580342531204, 0.05261151120066643, 0.011236591264605522, -0.09485503286123276, -0.07914233207702637, 0.1116572842001915, -0.1430240422487259, 0.08569955825805664, -0.035742953419685364, -0.07468204945325851, -0.0538196861743927, 0.007416931446641684, 0.09041373431682587, 0.024070262908935547, 0.02531118132174015, -0.13092362880706787, -0.026169881224632263, 0.027605939656496048, 0.033367056399583817, -0.07398702204227448, 0.0391792468726635, 0.13899986445903778, 0.009495166130363941, 0.153911292552948, 0.054592568427324295, 0.07061776518821716, -0.008473500609397888, 0.06071953475475311, -0.046108637005090714, 0.18738283216953278, 0.06291120499372482, 0.05297958478331566, -0.057445138692855835, -0.10057613253593445, 0.029919458553195, 0.08281884342432022, 0.003813024377450347, -0.020148636773228645, 0.059738293290138245, 0.20949958264827728, 0.05428796634078026, -0.06807390600442886, 0.0007859329925850034, -0.08345988392829895, 0.1066650003194809, 0.02822888270020485, -0.06648648530244827, 0.027108725160360336, -0.032934535294771194, 0.04416755214333534, 0.03486025333404541, -0.01618511974811554, -0.0956811010837555, -0.027692638337612152, -0.013055350631475449, -0.07047244906425476, 0.011390740051865578, -0.08850529789924622, -0.0391521193087101, -0.09493311494588852, 0.03537774831056595, -0.010473043657839298, 0.006325382739305496, 0.10618453472852707, -0.00744493305683136, -0.02083033137023449, 0.21777939796447754, -0.026796529069542885, 0.06863440573215485, -0.08914057910442352, -0.10602302849292755 ]
null
null
null
## Music Source Separation in the Waveform Domain This is the Demucs model, serialized from Facebook Research's pretrained models. From Facebook research: Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder. This is the `demucs_extra` version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. See [facebookresearch's repository](https://github.com/facebookresearch/demucs) for more information on Demucs.
{"tags": "audacity"}
null
hugggof/demucs_extra
[ "audacity", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #audacity #region-us
## Music Source Separation in the Waveform Domain This is the Demucs model, serialized from Facebook Research's pretrained models. From Facebook research: Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder. This is the 'demucs_extra' version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. See facebookresearch's repository for more information on Demucs.
[ "## Music Source Separation in the Waveform Domain\n\nThis is the Demucs model, serialized from Facebook Research's pretrained models. \n\nFrom Facebook research:\n\n Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder.\n\n\nThis is the 'demucs_extra' version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. \n\nSee facebookresearch's repository for more information on Demucs." ]
[ "TAGS\n#audacity #region-us \n", "## Music Source Separation in the Waveform Domain\n\nThis is the Demucs model, serialized from Facebook Research's pretrained models. \n\nFrom Facebook research:\n\n Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder.\n\n\nThis is the 'demucs_extra' version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. \n\nSee facebookresearch's repository for more information on Demucs." ]
[ 10, 147 ]
[ "passage: TAGS\n#audacity #region-us \n## Music Source Separation in the Waveform Domain\n\nThis is the Demucs model, serialized from Facebook Research's pretrained models. \n\nFrom Facebook research:\n\n Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder.\n\n\nThis is the 'demucs_extra' version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. \n\nSee facebookresearch's repository for more information on Demucs." ]
[ -0.0984254851937294, 0.11051095277070999, -0.0036050330381840467, 0.006045943591743708, 0.07251926511526108, -0.08850971609354019, 0.12860839068889618, -0.1260506957769394, -0.09716453403234482, 0.0719556212425232, -0.059320662170648575, -0.09073952585458755, 0.02789967693388462, 0.11035822331905365, -0.08522844314575195, -0.12327053397893906, 0.10861693322658539, -0.06748563796281815, -0.09746930748224258, -0.020924536511301994, 0.046000611037015915, -0.05249878764152527, 0.035554539412260056, -0.09113292396068573, -0.08299572765827179, -0.01002824492752552, -0.06052923575043678, 0.013304353691637516, -0.003731825388967991, 0.08585608005523682, 0.08530444651842117, 0.038281407207250595, 0.00033467059256508946, -0.03964163735508919, 0.062261663377285004, 0.06954625248908997, -0.0338096097111702, -0.016680138185620308, 0.052178625017404556, 0.0068933311849832535, -0.0022053478751331568, 0.13928088545799255, -0.02989039570093155, -0.00453580217435956, -0.08578896522521973, -0.05896621197462082, -0.1794430911540985, -0.09491106867790222, 0.09249408543109894, 0.06579923629760742, -0.06430996209383011, -0.056158870458602905, -0.11766819655895233, 0.0534934401512146, -0.036730311810970306, -0.13497096300125122, -0.006370102521032095, 0.19609364867210388, 0.03113451413810253, 0.06727851182222366, 0.024140723049640656, 0.1004834994673729, 0.07858597487211227, 0.05589380860328674, -0.05035271868109703, -0.05640767514705658, 0.12144464254379272, -0.08055379241704941, -0.14330710470676422, 0.030325356870889664, 0.28894540667533875, 0.04391150549054146, -0.04722191020846367, 0.0931529626250267, -0.041835181415081024, 0.10746963322162628, -0.03343968093395233, -0.029907967895269394, -0.02274254523217678, 0.09941544383764267, -0.022843610495328903, -0.013700587674975395, 0.0027054641395807266, -0.029522674158215523, -0.16087424755096436, 0.05813288688659668, -0.005472056567668915, 0.04199574887752533, -0.10288447141647339, -0.028613382950425148, -0.020785896107554436, -0.08845612406730652, 0.03931684419512749, -0.1066790521144867, -0.038521066308021545, 0.026306703686714172, -0.16186359524726868, -0.2764608561992645, 0.1254165768623352, 0.13995866477489471, -0.1545744687318802, -0.01910500042140484, -0.11567003279924393, 0.06556206196546555, 0.22442056238651276, -0.010423751547932625, -0.17200149595737457, -0.09960819035768509, 0.0986093133687973, -0.04790283739566803, 0.021417828276753426, -0.08278940618038177, -0.1581125557422638, 0.02696804888546467, 0.062148477882146835, -0.00596094923093915, 0.020473815500736237, -0.023518884554505348, -0.07145234942436218, -0.09664677083492279, 0.08280033618211746, -0.06485799700021744, -0.006337923463433981, -0.011428061872720718, 0.06745970994234085, 0.0800149217247963, -0.0174886304885149, 0.12971189618110657, 0.07830356806516647, 0.02090667560696602, -0.040101729333400726, -0.09846826642751694, -0.014873722568154335, -0.07788527011871338, 0.08891217410564423, -0.13302332162857056, 0.05172630026936531, -0.12352089583873749, -0.0024025102611631155, -0.06331660598516464, 0.06366491317749023, -0.011966883204877377, -0.016327839344739914, -0.02570476569235325, -0.008533501997590065, -0.03004765696823597, -0.04935407638549805, -0.10523593425750732, -0.0354885533452034, -0.02933238260447979, -0.10319141298532486, 0.03789672628045082, -0.2942942678928375, 0.12787406146526337, 0.029706522822380066, 0.0996650755405426, -0.209195077419281, 0.06873147189617157, -0.13774847984313965, -0.011133700609207153, 0.0026211002841591835, 0.03177595138549805, -0.08186653256416321, 0.011623703874647617, 0.1056135818362236, -0.00020005424448754638, -0.2727729380130768, -0.08421549201011658, 0.07217937707901001, -0.1566835194826126, 0.05948839709162712, 0.14945638179779053, -0.04204999655485153, -0.1288738250732422, 0.04874207079410553, 0.10737820714712143, 0.10795653611421585, -0.0413970872759819, -0.046339455991983414, 0.009042586199939251, 0.030279748141765594, -0.02271769568324089, 0.06207374855875969, -0.025366611778736115, -0.12130764871835709, 0.027701914310455322, 0.1579856425523758, 0.12716539204120636, -0.02406640350818634, -0.019072894006967545, 0.043925635516643524, -0.11557097733020782, -0.0032160719856619835, 0.022358955815434456, 0.00960633996874094, 0.09208310395479202, 0.0697568878531456, 0.03393423929810524, 0.05379744991660118, 0.006455971393734217, 0.008441505953669548, -0.08741337060928345, 0.2439771145582199, -0.13628792762756348, 0.0715826004743576, -0.24770186841487885, 0.005742948967963457, 0.04613962396979332, 0.04241098836064339, 0.04227655753493309, 0.07052308320999146, -0.045439667999744415, 0.007819079793989658, -0.02134288102388382, 0.05346928909420967, -0.05130886286497116, 0.016123544424772263, -0.007042242214083672, -0.13650521636009216, 0.059913020581007004, -0.12015294283628464, -0.022309310734272003, 0.04078306630253792, -0.058575861155986786, 0.13438084721565247, 0.056869037449359894, 0.06039608642458916, -0.02069809101521969, 0.0615801066160202, 0.13595722615718842, -0.021434053778648376, 0.023558178916573524, -0.05071302875876427, 0.029796143993735313, 0.026831571012735367, -0.028687352314591408, -0.011773766949772835, 0.14730097353458405, 0.11542661488056183, 0.11344332993030548, 0.0335749015212059, -0.028218742460012436, 0.00031848542857915163, -0.026733694598078728, 0.05698832497000694, 0.006329831201583147, 0.07482113689184189, 0.02104845643043518, 0.042964596301317215, -0.06160668656229973, 0.12043051421642303, 0.08042293787002563, 0.053338151425123215, -0.07970892637968063, -0.008432148024439812, 0.10005926340818405, -0.10209258645772934, 0.06709666550159454, 0.19676633179187775, 0.07225626707077026, 0.14743317663669586, -0.146858811378479, -0.012434447184205055, -0.08895740658044815, -0.09614753723144531, -0.032020747661590576, 0.1434505134820938, 0.011378311552107334, 0.025325894355773926, -0.04922667145729065, 0.08800777792930603, 0.08146785199642181, 0.0256052166223526, -0.013954794965684414, -0.014690213836729527, 0.05999378487467766, -0.06825948506593704, 0.06181831657886505, -0.03244772180914879, -0.024597635492682457, 0.030486082658171654, -0.12005998194217682, -0.0014369155978783965, -0.05877319350838661, -0.010666929185390472, 0.07631231099367142, -0.23421631753444672, -0.165174663066864, -0.03831997513771057, -0.042315635830163956, -0.179552361369133, 0.03318701684474945, 0.017213456332683563, -0.10378463566303253, -0.004299539607018232, -0.025180062279105186, 0.05392482876777649, -0.004749849904328585, 0.014719259925186634, 0.08294569700956345, -0.009693427011370659, -0.06091507151722908, -0.05766920745372772, 0.022637585178017616, -0.06589538604021072, 0.09369078278541565, -0.03297708183526993, -0.049511075019836426, 0.12937092781066895, 0.2265757918357849, 0.14319145679473877, -0.0010242338757961988, 0.06500605493783951, 0.24675343930721283, -0.04107438027858734, 0.022672081366181374, 0.09558217227458954, -0.07844647020101547, -0.009549189358949661, 0.12007208913564682, -0.005483218468725681, -0.07778231054544449, 0.034775909036397934, 0.05580909177660942, -0.0854572132229805, -0.17723813652992249, -0.15613165497779846, -0.06332800537347794, -0.026980947703123093, -0.15250742435455322, -0.009803470224142075, 0.12748406827449799, 0.015102745965123177, 0.09506511688232422, 0.11553476750850677, 0.058699626475572586, -0.10522141307592392, 0.02281198464334011, -0.0825154259800911, 0.06381526589393616, -0.04743935167789459, 0.02032189816236496, 0.12486475706100464, 0.009531349875032902, 0.2655128538608551, 0.12400183826684952, -0.12751680612564087, 0.10317637771368027, 0.004235494881868362, 0.02601170726120472, 0.08456536382436752, -0.045065149664878845, 0.060959525406360626, -0.04740152880549431, -0.03805002570152283, 0.03413933515548706, 0.026083996519446373, 0.09058920294046402, -0.17709960043430328, -0.08141490817070007, 0.09888279438018799, -0.036640238016843796, 0.17037996649742126, 0.036091431975364685, 0.002797152614220977, -0.06749226897954941, 0.03861244395375252, 0.13200508058071136, -0.02139023132622242, 0.14845208823680878, 0.1739177405834198, 0.1046161875128746, -0.014624773524701595, 0.026970794424414635, 0.10775377601385117, -0.07116547971963882, 0.016289157792925835, -0.008849507197737694, 0.08179923892021179, 0.034085750579833984, -0.09432489424943924, -0.13192589581012726, 0.06140252947807312, 0.03535807132720947, 0.013069795444607735, 0.06213928014039993, 0.04259536415338516, 0.036825742572546005, 0.23726558685302734, 0.004954407457262278, 0.05647313967347145, -0.18298238515853882, 0.03994264453649521, -0.1306331753730774, 0.05651390925049782, 0.09466419368982315, -0.034990210086107254, -0.037020184099674225, 0.025663059204816818, 0.013035310432314873, 0.049606334418058395, 0.12544426321983337, -0.2666390538215637, -0.09161331504583359, 0.019038354977965355, 0.08895724266767502, 0.005490568932145834, -0.025957848876714706, -0.034650832414627075, -0.11832897365093231, -0.02186417393386364, -0.06509732455015182, -0.0056512667797505856, -0.05556543171405792, -0.05232706293463707, 0.11042412370443344, 0.009904718957841396, 0.05140898749232292, -0.05507173016667366, 0.0026972955092787743, -0.054768018424510956, -0.18704286217689514, 0.07622304558753967, -0.06386454403400421, -0.019205419346690178, -0.03376197814941406, 0.005093995947390795, 0.14990803599357605, -0.054035596549510956, 0.030909257009625435, 0.005731901619583368, 0.06720616668462753, -0.08025289326906204, 0.06560802459716797, 0.13445481657981873, 0.040986575186252594, 0.12480498850345612, -0.01995663344860077, -0.17239297926425934, 0.08178786188364029, 0.004098046105355024, 0.06075083091855049, 0.04241108521819115, -0.023704279214143753, 0.06836014240980148, 0.31932947039604187, -0.033890970051288605, -0.286073237657547, 0.030191628262400627, -0.02901158109307289, 0.002335210796445608, -0.05560445412993431, -0.3495447039604187, 0.023434780538082123, -0.011049911379814148, -0.020955000072717667, 0.08325118571519852, -0.1099502220749855, -0.03982491046190262, 0.2123277336359024, -0.08620263636112213, 0.4563305377960205, -0.05764986574649811, -0.08344469964504242, -0.0798477828502655, -0.10497302561998367, 0.11247462779283524, -0.2590191066265106, 0.05089731886982918, 0.09166215360164642, -0.07373958826065063, -0.00762568786740303, 0.0034638328943401575, 0.03885031118988991, 0.12862499058246613, 0.10797363519668579, -0.008880236186087132, -0.04672218859195709, 0.09418384730815887, -0.007900015451014042, -0.032260581851005554, 0.09544503688812256, 0.06798213720321655, 0.053519126027822495, -0.06857284903526306, -0.030034346505999565, -0.01402990985661745, -0.003967273980379105, -0.06131896749138832, -0.08825316280126572, 0.1363583654165268, 0.00417021568864584, 0.02044738084077835, 0.12035008519887924, 0.043070536106824875, -0.08180688321590424, 0.1253424882888794, 0.02452230080962181, -0.04747417941689491, 0.12682296335697174, 0.00427387747913599, -0.08135872334241867, 0.15098388493061066, -0.043728057295084, 0.041795216500759125, 0.04692096635699272, -0.03474003076553345, 0.044259678572416306, 0.07086393237113953, -0.1550169587135315, 0.03162568807601929, 0.07055824995040894, -0.09102218598127365, -0.1908915787935257, -0.03823896497488022, -0.10222160071134567, 0.13976556062698364, 0.16492167115211487, 0.1624106466770172, 0.056336209177970886, 0.02964153327047825, -0.012256993912160397, 0.06563686579465866, -0.07104195654392242, -0.019043806940317154, 0.03503834456205368, -0.06398896127939224, -0.1200665533542633, 0.14166274666786194, 0.07298050075769424, -0.05349982529878616, 0.05294365435838699, -0.0996924489736557, -0.08015742897987366, -0.09790229052305222, -0.1217314675450325, 0.14451567828655243, 0.03513782098889351, -0.0980423167347908, 0.02330661192536354, -0.15034599602222443, 0.042145274579524994, 0.2251821905374527, -0.014267854392528534, 0.11876256763935089, -0.041557442396879196, 0.017164718359708786, 0.021014608442783356, 0.04444205015897751, -0.08455436676740646, 0.003914275206625462, -0.103535495698452, -0.19526024162769318, -0.05767256021499634, 0.05926940217614174, -0.08561358600854874, -0.05717528238892555, -0.11202998459339142, -0.0171333197504282, -0.40642693638801575, -0.09220243245363235, -0.03316734358668327, -0.03259893134236336, -0.03742014989256859, -0.01080884225666523, -0.01079822238534689, 0.059302881360054016, -0.002716044196859002, 0.023007091134786606, -0.02089136838912964, 0.0151566406711936, -0.07927072793245316, -0.01873483508825302, -0.061599601060152054, 0.013943037018179893, 0.11627840250730515, 0.048462290316820145, 0.010946320369839668, 0.02570340596139431, -0.14311043918132782, -0.07661770284175873, 0.013731914572417736, 0.054790567606687546, 0.02604222670197487, -0.003779560560360551, -0.03083694912493229, -0.03328651562333107, -0.02291017211973667, -0.022694822400808334, 0.14713920652866364, -0.01943664625287056, -0.04146181046962738, -0.06773171573877335, -0.019417323172092438, -0.015625031664967537, -0.025943832471966743, 0.1135106310248375, 0.1872452199459076, 0.05227990448474884, 0.007213601376861334, 0.0442255400121212, 0.031776491552591324, 0.001160785206593573, 0.05739358812570572, -0.06270278990268707, 0.02334754168987274, -0.09137222170829773, 0.007464520633220673, -0.010481334291398525, 0.22068440914154053, 0.0731603354215622, -0.03027505800127983, -0.06679899245500565, -0.023336464539170265, -0.06460975855588913, 0.07459346204996109, 0.016986655071377754, 0.08929593861103058, -0.058818716555833817, -0.11988690495491028, 0.008997536264359951, 0.03958269953727722, 0.08971432596445084, 0.021981023252010345, 0.0653097927570343, 0.13276788592338562, -0.020252978429198265, 0.1698632538318634, -0.05028338357806206, 0.025272777304053307, 0.0484582856297493, -0.07149339467287064, 0.07091361284255981, -0.024766523391008377, -0.08030541241168976, -0.10918400436639786, -0.021104857325553894, 0.11935756355524063, -0.02643369883298874, -0.010887732729315758, -0.07190991938114166, -0.052854910492897034, -0.04940885305404663, -0.07677581161260605, 0.0023730911780148745, -0.128541961312294, -0.11715088039636612, -0.08740036934614182, -0.007373051717877388, -0.02164641208946705, 0.055207159370183945, -0.11804715543985367, 0.00035759806632995605, 0.130796417593956, -0.034745603799819946, -0.12292823195457458, 0.10494808852672577, -0.05099385976791382, 0.09980740398168564, 0.035134945064783096, -0.011486525647342205, 0.012310569174587727, -0.06720423698425293, 0.13044145703315735, 0.0362943671643734, -0.03387879580259323, -0.025060322135686874, 0.015797343105077744, -0.07932209223508835, 0.13205914199352264, 0.08355264365673065, -0.0331016480922699, 0.06455827504396439, -0.02202746272087097, 0.04714246839284897, 0.03155713155865669, -0.1697293519973755, -0.04791245236992836, -0.08054816722869873, 0.17317238450050354, -0.013558685779571533, -0.043667539954185486, -0.0912189930677414, 0.10773228853940964, 0.16276322305202484, -0.12683606147766113, -0.025872766971588135, 0.10589508712291718, 0.0068242233246564865, -0.10611388087272644, 0.10692187398672104, 0.09822621196508408, 0.29894161224365234, 0.08696286380290985, -0.07664337754249573, -0.09684017300605774, -0.0960930734872818, 0.02245800755918026, -0.030624819919466972, 0.05352722108364105, -0.03415026143193245, 0.007793406490236521, 0.12585453689098358, -0.2553997039794922, -0.04223945736885071, -0.010647390969097614, -0.05775701627135277, -0.10206619650125504, -0.08978589624166489, -0.02309618890285492, 0.06025676801800728, 0.012106244452297688, -0.10855475813150406, 0.018848566338419914, 0.13564006984233856, -0.027759401127696037, 0.04150335118174553, 0.005497797857969999, 0.06278321892023087, 0.0961226373910904, -0.08053169399499893, -0.030960986390709877, 0.016862893477082253, 0.014751696027815342, 0.12211859226226807, 0.010645265690982342, 0.011129957623779774, -0.01864597573876381, 0.01953298971056938, -0.1206325963139534, 0.03090134635567665, -0.05246696248650551, 0.0905231311917305, 0.059266913682222366, 0.15306776762008667, 0.03210970386862755, 0.009286152198910713, -0.12441185116767883, -0.04317324608564377, 0.07079322636127472, -0.13444466888904572, 0.0675542876124382, -0.03643158823251724, 0.014971575699746609, -0.0026903017424046993, -0.013660537078976631, 0.08748278021812439, -0.030714938417077065, 0.026586422696709633, -0.07996036857366562, 0.006993372458964586, 0.027406608685851097, 0.0615178644657135, 0.05597847327589989, -0.13751129806041718, 0.0656125396490097, -0.050306618213653564, 0.07311392575502396, -0.017649415880441666, 0.009766277857124805, 0.08063667267560959, 0.011566836386919022, -0.03926575183868408, -0.03390324115753174, -0.016789628192782402, -0.04050784930586815, -0.05390946939587593, -0.08715096116065979 ]
null
null
null
# Labeler With Timestamps ## Being used for the `Audio Labeler` effect in Audacity This is a audio labeler model which is used in Audacity's labeler effect. metadata: ``` { "sample_rate": 48000, "domain_tags": ["Music"], "tags": ["Audio Labeler"], "effect_type": "waveform-to-labels", "multichannel": false, "labels": ["Acoustic Guitar", "Auxiliary Percussion", "Brass", "Clean Electric Guitar", "Distorted Electric Guitar", "Double Bass", "Drum Set", "Electric Bass", "Flute", "piano", "Reeds", "Saxophone", "Strings", "Trumpet", "Voice"], "short_description": "Use me to label some instruments!", "long_description": "An audio labeler, which outputs label predictions and time ranges for the labels. This model can label various instruments listed in the labels section." } ```
{"tags": ["audacity"], "inference": false}
null
hugggof/openl3-labeler-w-timestamps
[ "audacity", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #audacity #region-us
# Labeler With Timestamps ## Being used for the 'Audio Labeler' effect in Audacity This is a audio labeler model which is used in Audacity's labeler effect. metadata:
[ "# Labeler With Timestamps", "## Being used for the 'Audio Labeler' effect in Audacity\n\nThis is a audio labeler model which is used in Audacity's labeler effect. \n\nmetadata:" ]
[ "TAGS\n#audacity #region-us \n", "# Labeler With Timestamps", "## Being used for the 'Audio Labeler' effect in Audacity\n\nThis is a audio labeler model which is used in Audacity's labeler effect. \n\nmetadata:" ]
[ 10, 7, 40 ]
[ "passage: TAGS\n#audacity #region-us \n# Labeler With Timestamps## Being used for the 'Audio Labeler' effect in Audacity\n\nThis is a audio labeler model which is used in Audacity's labeler effect. \n\nmetadata:" ]
[ -0.021484505385160446, -0.0006438632844947278, -0.005067161750048399, 0.018337098881602287, 0.05285165458917618, 0.051790207624435425, 0.22809752821922302, -0.02128700539469719, 0.07179230451583862, 0.04418132081627846, 0.00492812180891633, -0.04134761542081833, 0.0004073689051438123, 0.014410305768251419, -0.05807766690850258, -0.11423502117395401, 0.05318465456366539, 0.0027831371407955885, 0.14243218302726746, 0.10906808078289032, 0.037421125918626785, -0.03748791292309761, 0.015337055549025536, 0.02590627409517765, -0.07439304888248444, -0.01827181689441204, 0.07663801312446594, -0.1162421703338623, 0.10875940322875977, -0.024547215551137924, 0.1139574870467186, 0.011637337505817413, 0.0004541972593870014, -0.14214883744716644, 0.013121322728693485, 0.015870077535510063, 0.024494854733347893, -0.02153090201318264, -0.023856857791543007, 0.009746860712766647, -0.083816297352314, 0.23894289135932922, 0.0664057582616806, -0.00969631690531969, -0.20188815891742706, -0.22404679656028748, -0.09084179252386093, -0.10739291459321976, 0.004756412468850613, 0.0490371398627758, -0.0543861947953701, 0.09276431053876877, -0.043161772191524506, 0.031687818467617035, 0.08228517323732376, -0.2126762717962265, 0.01638895832002163, 0.07198253273963928, 0.1466739922761917, 0.18836431205272675, -0.05098732188344002, 0.08834094554185867, 0.08505135029554367, -0.014379620552062988, -0.016056768596172333, -0.08335728943347931, 0.13410186767578125, -0.011556998826563358, -0.09106345474720001, -0.05527634918689728, 0.5256308913230896, 0.008073483593761921, -0.07996555417776108, 0.01653292588889599, -0.03708580136299133, 0.009111994877457619, -0.057205505669116974, -0.07035591453313828, 0.014127888716757298, 0.0312060434371233, 0.09739303588867188, 0.12827852368354797, -0.06300453841686249, -0.004282607231289148, -0.0353289432823658, 0.3585406541824341, -0.015461822971701622, 0.06933444738388062, -0.14780087769031525, -0.11841633915901184, -0.00484044011682272, -0.06330302357673645, 0.06329280138015747, -0.01707923226058483, -0.015314407646656036, -0.07428644597530365, -0.030275540426373482, -0.19959770143032074, 0.0239147637039423, 0.1922265887260437, -0.10960890352725983, 0.01757093146443367, -0.11754702031612396, 0.10381396859884262, 0.1550574153661728, 0.1755087971687317, 0.01399944443255663, -0.09360602498054504, -0.03711871802806854, -0.05178084596991539, 0.018119335174560547, -0.07467194646596909, -0.1203484907746315, 0.003606916405260563, 0.08772862702608109, -0.005448746029287577, -0.12272675335407257, -0.10438061505556107, -0.14663578569889069, -0.0401589497923851, 0.0037264458369463682, -0.03471369668841362, 0.015775229781866074, -0.07291935384273529, 0.06292800605297089, 0.05641881376504898, -0.028370194137096405, 0.061318203806877136, 0.09652682393789291, 0.2034740447998047, -0.06862051784992218, -0.04358157142996788, 0.013286505825817585, -0.0944499522447586, -0.007912985980510712, 0.05450157821178436, 0.1130652129650116, -0.06443953514099121, 0.012059970758855343, -0.08191393315792084, 0.03745824471116066, 0.07213488221168518, -0.05025411397218704, 0.00242071645334363, 0.060772620141506195, 0.09258454293012619, -0.024805467575788498, -0.17067119479179382, -0.1252039074897766, 0.03164743632078171, -0.08342541754245758, 0.15662729740142822, -0.11623119562864304, 0.09062706679105759, -0.0650658905506134, 0.04718049243092537, -0.1104879230260849, -0.055287592113018036, -0.014869136735796928, 0.004122885875403881, -0.002884294604882598, 0.017479922622442245, -0.08286096900701523, 0.08338399976491928, -0.04309766739606857, 0.05989504233002663, -0.19367079436779022, -0.1260310709476471, 0.17534612119197845, -0.14640302956104279, -0.045514341443777084, 0.12003584951162338, 0.002150110434740782, 0.08241105824708939, 0.09046270698308945, 0.09736472368240356, 0.058002058416604996, -0.19176232814788818, 0.09319666028022766, -0.01988665759563446, -0.043303538113832474, 0.0070592244155704975, 0.08272061496973038, -0.02439957857131958, -0.04209648445248604, -0.025481626391410828, 0.2435605823993683, 0.036264386028051376, -0.06420319527387619, -0.042213212698698044, 0.04024505615234375, 0.015946930274367332, 0.07790469378232956, -0.01035181526094675, -0.04128796607255936, -0.015576517209410667, -0.010334626771509647, 0.0368223637342453, -0.046076949685811996, 0.13618651032447815, 0.053620100021362305, -0.04193887859582901, 0.051555268466472626, 0.01616564206779003, 0.011450044810771942, -0.1377691924571991, 0.11049740016460419, 0.02333139069378376, 0.09019296616315842, 0.057246554642915726, -0.0050320872105658054, -0.004398754332214594, -0.11768411099910736, -0.008046472445130348, 0.03624694421887398, -0.03705732524394989, 0.0075672161765396595, 0.005749550648033619, -0.04319573938846588, 0.19982707500457764, -0.05833710357546806, -0.016767514869570732, 0.14189119637012482, -0.06242610514163971, 0.094996377825737, -0.1271081119775772, 0.09056445956230164, -0.027975162491202354, 0.008967814967036247, 0.09832466393709183, -0.031396448612213135, 0.08509203791618347, -0.004561265464872122, -0.0584564208984375, -0.05204380303621292, 0.14304734766483307, -0.14863286912441254, 0.13474692404270172, 0.09811428189277649, 0.02335822395980358, -0.11332233995199203, 0.06877093762159348, 0.0314069464802742, -0.04998651146888733, -0.04519324004650116, -0.023626601323485374, 0.1721908301115036, 0.015140045434236526, 0.04786427691578865, -0.0074551720172166824, 0.09076029807329178, 0.04407624900341034, -0.012242430821061134, -0.05969199910759926, -0.047708459198474884, -0.12668460607528687, 0.10573811829090118, 0.0010336339473724365, 0.350055068731308, 0.05134793370962143, 0.17534898221492767, -0.04449750855565071, -0.05920090898871422, 0.012056415900588036, -0.12444210052490234, -0.004740368574857712, 0.10270487517118454, -0.11464513093233109, 0.024277957156300545, 0.03619319573044777, 0.08212264627218246, -0.06898751109838486, -0.09334809333086014, 0.009126500226557255, -0.019483700394630432, 0.05287101864814758, -0.05913432314991951, 0.022474166005849838, -0.01992453634738922, 0.03406579792499542, 0.08350486308336258, -0.14223431050777435, 0.05789046734571457, -0.014491894282400608, -0.012532847933471203, 0.10257723927497864, -0.14472141861915588, -0.2891426980495453, -0.19624750316143036, -0.08518832176923752, 0.034790050238370895, 0.028780968859791756, 0.07209110260009766, 0.036252766847610474, -0.011335141025483608, 0.07293584197759628, 0.16482123732566833, -0.005761728622019291, -0.028893698006868362, 0.0007436582236550748, -0.013605151325464249, -0.058115795254707336, -0.0649532824754715, 0.026550473645329475, -0.0562545508146286, 0.07952843606472015, 0.09646628051996231, -0.05103760212659836, 0.1036817654967308, 0.2728244960308075, 0.05923086032271385, -0.025361625477671623, 0.03125392645597458, 0.17647133767604828, -0.19338639080524445, 0.006980955135077238, 0.12757015228271484, -0.12372341752052307, 0.01010411698371172, 0.2134244292974472, 0.03452664986252785, -0.08430557698011398, 0.01494095753878355, 0.025962108746170998, -0.15896068513393402, -0.08445219695568085, -0.1227358803153038, -0.10085370391607285, 0.05185725539922714, -0.03441533073782921, 0.018296627327799797, -0.033048637211322784, -0.014218373224139214, 0.08099888265132904, -0.0143593680113554, 0.024497278034687042, -0.05483734980225563, 0.15062864124774933, -0.09468375146389008, 0.0772961750626564, 0.020381903275847435, -0.09199268370866776, 0.10506660491228104, 0.20482592284679413, 0.10585767030715942, 0.21446315944194794, -0.0016521638026461005, 0.11428239941596985, -0.15044303238391876, 0.14183612167835236, 0.04478134587407112, 0.05431683734059334, -0.026906060054898262, -0.0862727239727974, -0.047132477164268494, 0.012507380917668343, 0.06577476114034653, -0.026141580194234848, -0.10212116688489914, 0.034652505069971085, 0.008729012683033943, -0.017680905759334564, 0.0036890241317451, 0.15594594180583954, -0.08333175629377365, 0.030340585857629776, 0.04300851747393608, 0.04005967080593109, -0.10001058131456375, 0.21149621903896332, -0.02823803387582302, -0.03222974017262459, -0.003745042020455003, 0.04110971838235855, 0.08343156427145004, -0.14952799677848816, -0.0018625571392476559, -0.025877583771944046, -0.09708667546510696, -0.06843140721321106, -0.0680423304438591, -0.08458024263381958, 0.1322202980518341, -0.009345171973109245, -0.053615421056747437, 0.06041434779763222, -0.01025574654340744, 0.0110896285623312, 0.17080256342887878, 0.09851231426000595, 0.034868720918893814, -0.10945840179920197, 0.014785755425691605, -0.014660876244306564, -0.044587261974811554, 0.09216324239969254, 0.11667495965957642, -0.09419670701026917, -0.005596071947365999, 0.06717099249362946, 0.04681786522269249, 0.0641000047326088, -0.09002681076526642, -0.016234586015343666, 0.04291970655322075, 0.2629513144493103, -0.007236740086227655, -0.004813991021364927, -0.05849563330411911, -0.18254528939723969, -0.16057088971138, 0.2357768714427948, 0.00551609368994832, -0.049157872796058655, -0.24055224657058716, 0.12458933144807816, 0.03016638569533825, 0.06019039452075958, -0.05400712788105011, 0.05368025228381157, -0.052789971232414246, 0.012589472346007824, 0.11660688370466232, 0.0023232242092490196, 0.0999569445848465, -0.09381167590618134, 0.13038797676563263, 0.01847541518509388, 0.012302043847739697, -0.020896652713418007, 0.02948508970439434, 0.004276649560779333, -0.06764915585517883, 0.08325237035751343, -0.26703161001205444, -0.18711677193641663, 0.14760367572307587, -0.017820335924625397, -0.19044965505599976, 0.03098556026816368, -0.05834845453500748, 0.05085662007331848, 0.1423172652721405, 0.009495090693235397, 0.20603500306606293, 0.1399824172258377, -0.025159304961562157, -0.33388087153434753, -0.05143028870224953, -0.045972324907779694, 0.015732472762465477, 0.04291923716664314, -0.16003818809986115, 0.12336684763431549, 0.016799015924334526, -0.05440633371472359, 0.23861414194107056, -0.23513120412826538, -0.12660576403141022, 0.2122175395488739, -0.06457522511482239, 0.2644694745540619, -0.06212148070335388, -0.04672051966190338, -0.03514842316508293, -0.1799527257680893, 0.012854089960455894, -0.003894312772899866, 0.06716112047433853, 0.00604367908090353, 0.10770870000123978, 0.013084123842418194, 0.05448165535926819, 0.03274652361869812, 0.15878601372241974, 0.03369911387562752, 0.018853850662708282, -0.13668116927146912, 0.18280509114265442, 0.05741563439369202, -0.10356690734624863, 0.14527180790901184, -0.008830551989376545, -0.035573579370975494, -0.030047202482819557, -0.010649016126990318, -0.008924041874706745, -0.009016573429107666, -0.06948252022266388, -0.0672823116183281, 0.015485942363739014, -0.08117838948965073, -0.048946596682071686, 0.20216596126556396, -0.05159614235162735, 0.011027611792087555, 0.12403208017349243, -0.011435006745159626, -0.26176539063453674, 0.028023652732372284, -0.011821278370916843, -0.058301571756601334, 0.14020512998104095, -0.09313308447599411, 0.11063060909509659, 0.04986250400543213, 0.03896137326955795, 0.07439582049846649, 0.07209175825119019, -0.009818561375141144, 0.08371114730834961, 0.09869398921728134, -0.09444840252399445, -0.027821596711874008, 0.0011558390688151121, -0.13931778073310852, 0.03972447291016579, -0.08768053352832794, 0.10970877856016159, 0.06300700455904007, 0.014435716904699802, 0.02541528269648552, -0.026219038292765617, -0.051854196935892105, 0.03441007807850838, -0.06393726170063019, 0.033102672547101974, -0.05841590091586113, 0.11295750737190247, 0.0365445539355278, -0.06363508850336075, -0.06558698415756226, -0.0705740749835968, -0.037514086812734604, 0.019596023485064507, -0.14307817816734314, 0.08929405361413956, -0.23767414689064026, -0.0584879145026207, 0.04094400256872177, -0.19466911256313324, 0.0029014800675213337, 0.024716651067137718, 0.03797433525323868, 0.11869176477193832, -0.018185090273618698, -0.059497933834791183, 0.010908928699791431, 0.06400460004806519, -0.1176125556230545, -0.003620689967647195, -0.1001986414194107, -0.14130334556102753, -0.05868416652083397, 0.029526878148317337, -0.10568644851446152, -0.11890694499015808, -0.14850857853889465, 0.1059892326593399, -0.08497946709394455, 0.03201470524072647, 0.08367466181516647, -0.00280367280356586, 0.02105284482240677, 0.021649803966283798, -0.05931747704744339, -0.025826692581176758, -0.06417136639356613, 0.025843366980552673, 0.008523713797330856, 0.07865966856479645, 0.0352700799703598, -0.04719173535704613, 0.09318393468856812, -0.002589520998299122, 0.07731382548809052, 0.010508579201996326, -0.059428587555885315, 0.010786592960357666, -0.2688494026660919, -0.0012296898057684302, 0.08465216308832169, -0.01340681966394186, -0.015460592694580555, -0.035417817533016205, -0.022898469120264053, -0.009045785292983055, -0.0924508348107338, 0.022860487923026085, -0.16531339287757874, -0.04812479764223099, -0.03044496849179268, -0.1157197654247284, -0.1271408200263977, -0.004615178797394037, -0.04251336678862572, 0.10755633562803268, 0.062401071190834045, 0.039347585290670395, -0.012389088049530983, -0.0043200175277888775, 0.06835009902715683, 0.018591677770018578, 0.032895367592573166, -0.12574823200702667, -0.11910491436719894, -0.04357936233282089, -0.046493496745824814, -0.00045691151171922684, 0.29997023940086365, 0.05617842078208923, 0.05909380689263344, 0.040856510400772095, 0.11521424353122711, -0.18266475200653076, -0.0018162823980674148, 0.17294585704803467, 0.07575566321611404, -0.05981313809752464, -0.05247589573264122, 0.03960612416267395, 0.016241108998656273, 0.006442406680434942, 0.02243826724588871, 0.03410492464900017, 0.06481055915355682, 0.020537616685032845, -0.019840165972709656, 0.038949351757764816, -0.08548671007156372, 0.013296794146299362, -0.0007909836713224649, 0.08623629063367844, 0.07151569426059723, 0.007140942383557558, 0.0016894114669412374, 0.0022441933397203684, 0.13880868256092072, -0.09242458641529083, 0.0023987730965018272, -0.09070748090744019, 0.22647464275360107, -0.04325670748949051, -0.12169764190912247, 0.038826365023851395, -0.10475980490446091, 0.006399885285645723, 0.021193863824009895, -0.041773345321416855, 0.001963880844414234, 0.13854971528053284, -0.319352388381958, -0.01908038556575775, 0.10468185693025589, -0.05477023124694824, -0.026111433282494545, 0.01109049841761589, -0.06028540059924126, 0.008812285028398037, -0.03588986396789551, -0.011119775474071503, -0.06035342067480087, -0.006628931500017643, -0.03466998413205147, -0.211971715092659, -0.041656192392110825, 0.009380905888974667, 0.016507409512996674, 0.04839109256863594, -0.14962239563465118, 0.036059118807315826, -0.015684083104133606, 0.016732703894376755, 0.12131481617689133, 0.040341634303331375, -0.04087461903691292, -0.0879555270075798, -0.04029614105820656, -0.016562217846512794, 0.1649085283279419, -0.06949940323829651, -0.021617960184812546, -0.06810110062360764, 0.05687868595123291, 0.05716446042060852, -0.09010352939367294, -0.04603949189186096, 0.05267687141895294, 0.048909034579992294, -0.002316117286682129, 0.11230386048555374, 0.005894436035305262, 0.19003604352474213, 0.048014890402555466, -0.06532235443592072, -0.12203668802976608, -0.016009889543056488, -0.019967423751950264, -0.026607157662510872, 0.12088795751333237, -0.015542862936854362, -0.0735861286520958, 0.164265975356102, -0.23197025060653687, -0.03211001306772232, 0.05905170366168022, -0.1742759644985199, -0.061509229242801666, -0.09256364405155182, 0.02207442931830883, 0.0020379936322569847, 0.06619436293840408, -0.050982385873794556, -0.12229273468255997, -0.1578919142484665, -0.010168825276196003, -0.01863432116806507, 0.01847742684185505, -0.026376839727163315, -0.017067529261112213, 0.11589868366718292, -0.01960325613617897, 0.03148339316248894, -0.0004135226190555841, 0.08781499415636063, 0.07510780543088913, 0.06403015553951263, -0.05204116180539131, -0.05012733116745949, -0.1063343957066536, 0.07812801003456116, -0.04503290727734566, 0.046771563589572906, 0.03632231801748276, 0.06484950333833694, 0.013368056155741215, -0.10554923862218857, -0.06601636856794357, 0.017392858862876892, 0.017682379111647606, -0.05966072529554367, 0.11206098645925522, -0.04563582316040993, 0.06506180763244629, -0.051277030259370804, -0.007694774307310581, 0.012419302016496658, 0.033992357552051544, 0.011566379107534885, -0.02209188975393772, 0.02886912412941456, -0.03064168244600296, 0.0551360547542572, -0.12101724743843079, -0.2759518325328827, 0.017512356862425804, -0.047146447002887726, 0.10899578779935837, -0.02772471494972706, 0.019445661455392838, 0.07968158274888992, 0.02958609163761139, 0.01568187028169632, -0.2527823746204376, 0.08299526572227478, 0.07532165944576263, -0.03713420778512955, -0.07192482799291611 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9fd98af9a817af8cd78636f71895b6ad.500x500x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">100 gecs</div> <a href="https://genius.com/artists/100-gecs"> <div style="text-align: center; font-size: 14px;">@100-gecs</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 100 gecs. Dataset is available [here](https://huggingface.co/datasets/huggingartists/100-gecs). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/100-gecs") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3c9j4tvq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 100 gecs's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/100-gecs') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/100-gecs") model = AutoModelWithLMHead.from_pretrained("huggingartists/100-gecs") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/100-gecs"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/100-gecs
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/100-gecs", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/100-gecs #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">100 gecs</div> <a href="URL <div style="text-align: center; font-size: 14px;">@100-gecs</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from 100 gecs. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on 100 gecs's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 100 gecs.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 100 gecs's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/100-gecs #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 100 gecs.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 100 gecs's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/100-gecs #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from 100 gecs.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 100 gecs's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.019570520147681236, 0.15389300882816315, -0.0029379157349467278, 0.0361320823431015, 0.09259985387325287, 0.013033458031713963, 0.09170754253864288, 0.10089016705751419, 0.008573542349040508, 0.07388892024755478, 0.06937157362699509, 0.003072721417993307, 0.07499302178621292, 0.1113818883895874, 0.08011804521083832, -0.2602207660675049, 0.03473461791872978, -0.0923895612359047, 0.00794751662760973, 0.11649320274591446, 0.09617827832698822, -0.06035357713699341, 0.08769302070140839, 0.041789181530475616, -0.07356778532266617, 0.019433552399277687, 0.00428116274997592, -0.06816013157367706, 0.09165368974208832, 0.06165403500199318, 0.04014461487531662, 0.021325619891285896, 0.07131606340408325, -0.18260309100151062, 0.029979437589645386, 0.12292951345443726, 0.03873763605952263, 0.07524245977401733, 0.04396466165781021, -0.08080165833234787, 0.1599917709827423, -0.01681140996515751, 0.09696562588214874, 0.04902483895421028, -0.12249184399843216, -0.14806169271469116, -0.12860523164272308, 0.08640483766794205, 0.09591863304376602, 0.09040632098913193, -0.032157231122255325, 0.03628725931048393, -0.024841545149683952, 0.03921470418572426, 0.24555476009845734, -0.2377968728542328, -0.015932781621813774, 0.09424906224012375, 0.042556535452604294, 0.029306989163160324, -0.08087923377752304, 0.015368984080851078, 0.04280158877372742, 0.01782420091331005, 0.050770584493875504, -0.016366060823202133, 0.19373473525047302, 0.027755429968237877, -0.10156191140413284, -0.08304677903652191, 0.1205921620130539, -0.02342197299003601, -0.06997042149305344, -0.13629032671451569, -0.0033035604283213615, -0.02682414837181568, 0.03575018048286438, -0.005174858029931784, -0.002814944600686431, 0.005681846756488085, -0.0399453304708004, -0.10539166629314423, -0.08750240504741669, -0.03631461039185524, -0.031638652086257935, 0.0728391483426094, 0.029436491429805756, 0.03338121250271797, -0.07624418288469315, 0.23327408730983734, -0.024939626455307007, -0.09857635945081711, -0.050787303596735, -0.0919354259967804, -0.09839983284473419, -0.05648023635149002, 0.006278965622186661, 0.014153470285236835, -0.05547775328159332, 0.15479092299938202, -0.02909715473651886, 0.03011699579656124, 0.0006826407625339925, -0.014042637310922146, 0.14740028977394104, 0.13884305953979492, -0.10575133562088013, -0.03628223016858101, 0.052122440189123154, -0.015762589871883392, -0.06625489145517349, -0.055223070085048676, -0.014563828706741333, -0.023687729611992836, 0.036122556775808334, 0.08278448134660721, 0.05263746157288551, 0.061603009700775146, 0.015340358018875122, -0.06346900016069412, 0.08364934474229813, -0.1388486623764038, 0.015729308128356934, -0.00407295161858201, -0.04287903010845184, 0.01936512626707554, 0.04452049732208252, 0.01572449319064617, -0.10511678457260132, 0.11278674006462097, -0.06576068699359894, -0.04544636607170105, -0.0833049863576889, -0.08926466852426529, -0.00849905051290989, -0.02089875005185604, -0.04490406811237335, -0.06732750684022903, -0.17051251232624054, -0.04098280891776085, 0.03445187583565712, -0.04914218187332153, -0.03837300464510918, 0.031045041978359222, -0.020986175164580345, 0.012963437475264072, -0.017598554491996765, -0.034883707761764526, -0.029614130035042763, 0.025083066895604134, -0.058379288762807846, 0.027640188112854958, 0.08112580329179764, 0.04468001797795296, -0.11332648247480392, 0.07015188783407211, -0.16315768659114838, 0.12693756818771362, -0.012510406784713268, 0.017985733225941658, -0.09875216335058212, -0.09125155955553055, -0.024560919031500816, -0.03200170397758484, -0.002627215115353465, 0.09767050296068192, -0.16904449462890625, -0.036798976361751556, 0.2082061767578125, -0.07406625151634216, -0.07950042933225632, 0.06625382602214813, -0.0766303762793541, 0.031116239726543427, 0.1316177099943161, 0.0672246590256691, 0.15893493592739105, -0.11738625913858414, -0.058590784668922424, -0.043604541569948196, -0.059073179960250854, 0.20011015236377716, 0.05320218950510025, -0.02113959565758705, 0.018423637375235558, 0.007251886185258627, -0.04335671663284302, -0.021228114143013954, -0.020364029332995415, -0.03674808889627457, -0.017615120857954025, 0.015311756171286106, -0.0018715596524998546, -0.0446193590760231, -0.0655033141374588, -0.027067136019468307, -0.10517284274101257, 0.04747093468904495, 0.10097402334213257, -0.07488503307104111, 0.00667883874848485, -0.09795013815164566, 0.004337025340646505, -0.03373999521136284, 0.010848557576537132, -0.16937099397182465, -0.05739584192633629, 0.023088881745934486, -0.07104558497667313, 0.08272211253643036, 0.04404515027999878, 0.03918338567018509, 0.05455993488430977, -0.017003638669848442, 0.015053195878863335, -0.048018742352724075, -0.01940090022981167, -0.0204151663929224, -0.14744488894939423, -0.05836674943566322, -0.04378141835331917, 0.08572212606668472, -0.12036304175853729, 0.00881350226700306, 0.09958156198263168, 0.1195707693696022, 0.018269658088684082, -0.06718997657299042, 0.01793038845062256, -0.04717738553881645, -0.031731050461530685, -0.11138641089200974, -0.05499821528792381, 0.011504204012453556, -0.020406527444720268, 0.15111207962036133, -0.17300726473331451, -0.07662871479988098, 0.10490212589502335, 0.13953666388988495, -0.09564968198537827, 0.033879440277814865, -0.08082625269889832, -0.012907284311950207, -0.05130140855908394, -0.04491793364286423, 0.2670785188674927, 0.03631986677646637, 0.08046609908342361, -0.10587088018655777, -0.10083005577325821, -0.005236852448433638, -0.042717255651950836, -0.0248181764036417, 0.019851213321089745, 0.02463707886636257, -0.1743561327457428, 0.03629877045750618, -0.01349119283258915, 0.09947476536035538, 0.20079241693019867, 0.04516327381134033, -0.08646543323993683, -0.06297324597835541, -0.07539305835962296, -0.005509307608008385, 0.06614264100790024, 0.0009284709230996668, 0.023289140313863754, 0.04202121123671532, 0.05934816226363182, 0.04090256243944168, -0.11512519419193268, 0.01354300044476986, 0.07345421612262726, -0.04733521491289139, -0.053885407745838165, 0.012466668151319027, 0.019356846809387207, 0.08023935556411743, 0.09218344837427139, 0.13734909892082214, -0.06546013802289963, -0.04780438542366028, -0.1431412398815155, 0.13613465428352356, -0.07972680777311325, -0.23696251213550568, -0.1342787891626358, -0.08151161670684814, 0.018810806795954704, 0.013143332675099373, 0.026882609352469444, -0.050784945487976074, -0.044917523860931396, -0.09074717015028, 0.09780929237604141, -0.0556301586329937, -0.02210175059735775, 0.018321339040994644, 0.018792521208524704, -0.025871533900499344, -0.1132277175784111, -0.03323199227452278, 0.03716704249382019, -0.10115209221839905, -0.013620785437524319, 0.030461501330137253, 0.03639204427599907, 0.16944126784801483, -0.010369673371315002, 0.006903863977640867, -0.02433834969997406, 0.27971336245536804, -0.11974435299634933, 0.0716785416007042, 0.16012971103191376, -0.00804954394698143, 0.05398399755358696, 0.07698502391576767, 0.007829030975699425, -0.06289023905992508, 0.07183761149644852, 0.07320888340473175, -0.07674305140972137, -0.2170819640159607, -0.032192789018154144, -0.013775653205811977, 0.009014640934765339, 0.12417259812355042, 0.0481402762234211, 0.046058960258960724, 0.012599442154169083, -0.1048223227262497, 0.043310169130563736, 0.03333340212702751, 0.1021939292550087, -0.05559190362691879, -0.007155439350754023, 0.046172983944416046, -0.054277315735816956, 0.02943221852183342, 0.13201408088207245, 0.03628688305616379, 0.20949919521808624, -0.06302443891763687, 0.10022719204425812, 0.07473406195640564, 0.09317637234926224, 0.03023602068424225, 0.02096957340836525, -0.017016220837831497, 0.01651149056851864, 0.002466914476826787, -0.08827947825193405, -0.0093329893425107, 0.03896704316139221, 0.029175201430916786, -0.018965834751725197, -0.03908434882760048, -0.06861260533332825, 0.0438259020447731, 0.23445023596286774, 0.01684568263590336, -0.17523467540740967, -0.10600118339061737, 0.05467652529478073, -0.07299903780221939, -0.0649581104516983, -0.017674272879958153, 0.06952539831399918, -0.2167731374502182, 0.06806913018226624, -0.03231564536690712, 0.10913046449422836, -0.12154629081487656, -0.002958155469968915, 0.08077187091112137, 0.04854721575975418, -0.06637047976255417, 0.09937188029289246, -0.16564296185970306, 0.06343955546617508, -0.010622004978358746, 0.07633954286575317, -0.06940197199583054, 0.02926502376794815, 0.007592353969812393, 0.05382721498608589, 0.08001076430082321, 0.0218827985227108, 0.024325525388121605, -0.006017791572958231, -0.043274860829114914, 0.006631523370742798, 0.059837114065885544, -0.12753956019878387, 0.12481856346130371, -0.03736910596489906, 0.03470918536186218, -0.03289647772908211, -0.09181936085224152, -0.08737944811582565, -0.1570383459329605, 0.08768387138843536, -0.12360263615846634, 0.015092370100319386, -0.06911597400903702, -0.017822129651904106, 0.020713170990347862, 0.2542303204536438, -0.06993746757507324, -0.08069794625043869, -0.1373530626296997, 0.010197343304753304, 0.14132122695446014, -0.08105982840061188, 0.009713156148791313, -0.012971554882824421, 0.20139451324939728, 0.004426519852131605, -0.1295166015625, -0.010349448770284653, -0.06354037672281265, -0.1728813648223877, -0.01129499077796936, 0.1670333445072174, 0.06816770136356354, 0.030933791771531105, 0.004730571061372757, 0.0006036505219526589, -0.0527120977640152, -0.17647325992584229, 0.024099310860037804, 0.15880186855793, -0.00609594164416194, 0.018178556114435196, 0.04600643739104271, 0.023890068754553795, -0.1244698241353035, 0.019871260970830917, 0.05141006410121918, 0.16747649013996124, -0.0751585140824318, 0.17476648092269897, 0.026219690218567848, -0.08838120102882385, -0.1555882841348648, 0.023393049836158752, 0.02146751992404461, 0.035238005220890045, 0.021751146763563156, -0.20426155626773834, 0.04306592047214508, 0.0356936976313591, -0.0036841491237282753, 0.05236814543604851, -0.3273993730545044, -0.15027347207069397, 0.006949977483600378, 0.004933180287480354, -0.10954083502292633, -0.03393901139497757, -0.036618318408727646, -0.08198214322328568, -0.26045605540275574, 0.1013084426522255, -0.10815039277076721, 0.07754870504140854, 0.019299155101180077, 0.09766046702861786, 0.04422587528824806, -0.05129742622375488, 0.13062354922294617, -0.023437928408384323, 0.06318848580121994, -0.09913076460361481, -0.06020062416791916, 0.09132274240255356, -0.0674562156200409, 0.10362246632575989, 0.03689198940992355, 0.08861669152975082, -0.0952594056725502, -0.08739528805017471, -0.07625209540128708, 0.00732850469648838, -0.05563374608755112, -0.09513695538043976, -0.10334610193967819, 0.08572342991828918, 0.12138906866312027, -0.04470677673816681, -0.09001586586236954, -0.05734600871801376, -0.004710350185632706, 0.04128812253475189, 0.11592907458543777, 0.07096622884273529, -0.07679165154695511, 0.004968368913978338, 0.021419690921902657, 0.0195301566272974, -0.16447968780994415, 0.04643727466464043, 0.08889040350914001, 0.04148533195257187, 0.108250692486763, 0.010547686368227005, -0.16843043267726898, 0.0023148111067712307, 0.04696536809206009, -0.16571734845638275, -0.12335550040006638, -0.047828905284404755, 0.012828635983169079, -0.11098910123109818, -0.04576238989830017, 0.131124809384346, -0.030382096767425537, -0.03743359073996544, 0.0055448757484555244, 0.04439663887023926, -0.04438181594014168, 0.09124602377414703, 0.004291117656975985, 0.044366851449012756, -0.07089371234178543, 0.11086413264274597, 0.07026279717683792, 0.015329075045883656, 0.03551913797855377, 0.0651460513472557, -0.09411675482988358, 0.01026185229420662, -0.09406256675720215, 0.021259794011712074, -0.03374854847788811, -0.010321224108338356, 0.014982257969677448, -0.04591618478298187, 0.0414552316069603, 0.08144015073776245, -0.012709788046777248, 0.11359872668981552, -0.04110563173890114, 0.014398682862520218, -0.12661977112293243, 0.06848183274269104, 0.03658653050661087, 0.02303086593747139, -0.1156923919916153, 0.19661100208759308, 0.030035322532057762, 0.09558238834142685, -0.037216752767562866, -0.06246999651193619, -0.06004013121128082, -0.008951189927756786, -0.08393820375204086, -0.04571090638637543, -0.09680812805891037, -0.025603538379073143, -0.0044809505343437195, -0.043221455067396164, -0.027696313336491585, 0.044822756201028824, -0.03416502848267555, -0.05557164177298546, -0.07352679967880249, 0.04488116502761841, -0.13310828804969788, 0.042243488132953644, 0.12059001624584198, -0.05852552503347397, 0.12419603765010834, 0.057910434901714325, -0.0329647995531559, 0.02572507970035076, -0.12737378478050232, 0.04182305932044983, -0.019377928227186203, 0.015062408521771431, 0.02135719172656536, -0.15732428431510925, 0.008441797457635403, -0.041537873446941376, -0.06025739759206772, 0.00417062733322382, -0.011767699383199215, -0.12947721779346466, -0.003945694305002689, 0.08226332813501358, -0.020319025963544846, -0.07142165303230286, 0.06957504898309708, 0.06035234034061432, 0.02265174686908722, 0.05846596136689186, -0.019489074125885963, 0.07516438513994217, -0.1700916588306427, -0.05202333629131317, 0.005980797111988068, 0.03511640429496765, 0.046876586973667145, -0.016873374581336975, 0.03886289522051811, -0.017190884798765182, 0.20527708530426025, 0.016832444816827774, -0.023891005665063858, 0.035600725561380386, -0.05943360552191734, 0.0023340785410255194, 0.04555584490299225, 0.083575539290905, -0.03206360340118408, -0.04059900343418121, 0.0014584632590413094, -0.02014623023569584, -0.09225170314311981, -0.04629833996295929, 0.11594317108392715, 0.03028835356235504, 0.18753516674041748, -0.05452568456530571, 0.061866939067840576, -0.023639550432562828, -0.1179061233997345, -0.011573215946555138, -0.04929623007774353, 0.03269261121749878, -0.05915452912449837, 0.0653897374868393, 0.18289826810359955, -0.16304349899291992, 0.12047034502029419, 0.026790261268615723, -0.061498794704675674, -0.11218348145484924, -0.19679416716098785, -0.01808151602745056, -0.050707392394542694, 0.031098727136850357, -0.1409202665090561, 0.09067175537347794, 0.030206207185983658, 0.03628617525100708, -0.06811585277318954, 0.13849399983882904, -0.07019031047821045, -0.12855584919452667, 0.03452090173959732, 0.027544258162379265, 0.029621446505188942, 0.046613216400146484, 0.07775668799877167, 0.031094733625650406, 0.012751133181154728, 0.07664936035871506, 0.03907812014222145, 0.027566885575652122, 0.030016645789146423, -0.024999186396598816, -0.04090730473399162, 0.030549967661499977, -0.0026051185559481382, 0.02476537600159645, 0.08664780110120773, 0.05863557010889053, -0.01956329308450222, -0.023837944492697716, 0.3067028224468231, -0.03919883072376251, -0.045638713985681534, -0.1836782842874527, 0.1620139330625534, 0.011680398136377335, -0.006106525659561157, 0.02543887123465538, -0.12251807749271393, 0.007899441756308079, 0.1311672031879425, 0.15684592723846436, -0.017188508063554764, 0.020207848399877548, -0.030593328177928925, 0.016683602705597878, 0.03799043223261833, 0.09192318469285965, 0.056668609380722046, 0.1974203884601593, -0.03135399892926216, 0.05053715035319328, -0.003976864740252495, -0.01966368965804577, 0.0032770198304206133, 0.10306375473737717, -0.03522642329335213, 0.00895459670573473, -0.06033560633659363, 0.10341747105121613, -0.04243311658501625, -0.2755779027938843, -0.028326546773314476, -0.021541433408856392, -0.08922062069177628, 0.06598547101020813, -0.030063102021813393, -0.024536535143852234, 0.08557440340518951, 0.03073565475642681, -0.046523772180080414, 0.1418129950761795, 0.05163555592298508, -0.05309680104255676, -0.013633769936859608, 0.108831487596035, -0.02319372072815895, 0.17895357310771942, -0.02916872315108776, 0.002599072176963091, 0.08298146724700928, 0.015159453265368938, -0.12353500723838806, 0.01033081766217947, 0.03834132105112076, -0.05977035313844681, -0.022276200354099274, 0.19548781216144562, 0.01297443825751543, 0.021953202784061432, 0.06734873354434967, -0.06289628148078918, 0.021113893017172813, -0.050449468195438385, 0.0598420575261116, -0.15201927721500397, 0.059372223913669586, -0.08293979614973068, 0.13104940950870514, 0.18537397682666779, -0.06773752719163895, 0.029585085809230804, -0.05905789136886597, 0.007330885156989098, -0.02587190270423889, 0.08228794485330582, -0.01982863061130047, -0.11413886398077011, 0.0074261571280658245, 0.03669334948062897, 0.024720387533307076, -0.17659281194210052, -0.06940698623657227, 0.07117308676242828, -0.04802786558866501, 0.02377116121351719, 0.17519383132457733, 0.022887809202075005, 0.06453417241573334, -0.036662276834249496, -0.00913651566952467, -0.010568409226834774, 0.11902983486652374, -0.17095468938350677, -0.08236490935087204 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/aa32202cc20d1dde62e57940a8b278b2.770x770x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">21 Savage</div> <a href="https://genius.com/artists/21-savage"> <div style="text-align: center; font-size: 14px;">@21-savage</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 21 Savage. Dataset is available [here](https://huggingface.co/datasets/huggingartists/21-savage). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/21-savage") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3lbkznnf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 21 Savage's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1fw9b6m4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1fw9b6m4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/21-savage') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/21-savage") model = AutoModelWithLMHead.from_pretrained("huggingartists/21-savage") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/21-savage"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/21-savage
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/21-savage", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/21-savage #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">21 Savage</div> <a href="URL <div style="text-align: center; font-size: 14px;">@21-savage</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from 21 Savage. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on 21 Savage's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 21 Savage.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 21 Savage's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/21-savage #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 21 Savage.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 21 Savage's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/21-savage #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from 21 Savage.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 21 Savage's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.018255535513162613, 0.16247791051864624, -0.0028910445980727673, 0.04675023630261421, 0.09099844098091125, 0.012459860183298588, 0.09578841179609299, 0.10638169199228287, 0.0033570085652172565, 0.07374821603298187, 0.0714859738945961, 0.019503934308886528, 0.07011982798576355, 0.10598689317703247, 0.07799084484577179, -0.2460748702287674, 0.03741208836436272, -0.09534645825624466, -0.016963567584753036, 0.11245045065879822, 0.10057409852743149, -0.0619710236787796, 0.07693099230527878, 0.038347065448760986, -0.07702652364969254, 0.013868634589016438, 0.005135681945830584, -0.0527307391166687, 0.09143300354480743, 0.05458664521574974, 0.041983190923929214, 0.020941458642482758, 0.0743054449558258, -0.18528151512145996, 0.03139902278780937, 0.12101323157548904, 0.03453061357140541, 0.07339868694543839, 0.048842642456293106, -0.0758390799164772, 0.13804064691066742, -0.018135199323296547, 0.09588366746902466, 0.05238422378897667, -0.1233922615647316, -0.15310095250606537, -0.13482239842414856, 0.10168534517288208, 0.08643531054258347, 0.0861370638012886, -0.03097955696284771, 0.04948482662439346, -0.02206271141767502, 0.044099897146224976, 0.2280179262161255, -0.24672278761863708, -0.020175503566861153, 0.07927953451871872, 0.04814343526959419, 0.03448575362563133, -0.08139112591743469, 0.015076091513037682, 0.04030241817235947, 0.024947166442871094, 0.0518764965236187, -0.016534456983208656, 0.17287500202655792, 0.027198374271392822, -0.10545700043439865, -0.08468299359083176, 0.12239545583724976, -0.01829214207828045, -0.07158569246530533, -0.13358215987682343, -0.007242859806865454, -0.03599938005208969, 0.0368044413626194, -0.004820531699806452, -0.0031837858259677887, 0.010487006977200508, -0.03610766679048538, -0.10437873750925064, -0.08333015441894531, -0.03788858279585838, -0.021818606182932854, 0.06899382919073105, 0.03467757627367973, 0.042312826961278915, -0.07687439024448395, 0.2162998616695404, -0.023326002061367035, -0.09900087118148804, -0.04239826276898384, -0.09108082205057144, -0.10222576558589935, -0.049317050725221634, 0.004730199929326773, -0.0030379288364201784, -0.04349512234330177, 0.16313444077968597, -0.03181254491209984, 0.027600478380918503, -0.016301661729812622, -0.008159201592206955, 0.14241518080234528, 0.13520599901676178, -0.11075157672166824, -0.025326615199446678, 0.06382228434085846, -0.007436784449964762, -0.06479477137327194, -0.05319556966423988, -0.012101270258426666, -0.014905995689332485, 0.04793012887239456, 0.08003789186477661, 0.06140601262450218, 0.05602912977337837, 0.012230089865624905, -0.07101406157016754, 0.08059019595384598, -0.13084931671619415, 0.01341785117983818, -0.00289114355109632, -0.04263535887002945, 0.007921073585748672, 0.0440787672996521, 0.017507655546069145, -0.0990479364991188, 0.10496660321950912, -0.06461560726165771, -0.04632546752691269, -0.0802154466509819, -0.09838006645441055, -0.005136996041983366, -0.02254810929298401, -0.04684874787926674, -0.07234063744544983, -0.18250590562820435, -0.03794822096824646, 0.03837917372584343, -0.04641677066683769, -0.04408358410000801, 0.03340926766395569, -0.02172095514833927, 0.016580337658524513, -0.016305990517139435, -0.03799803927540779, -0.028856925666332245, 0.03432108834385872, -0.05870703235268593, 0.03044082224369049, 0.07081153988838196, 0.04707518219947815, -0.10637126863002777, 0.071805439889431, -0.14977413415908813, 0.11743126064538956, -0.020101744681596756, 0.014834895730018616, -0.09695423394441605, -0.08134042471647263, -0.02800413779914379, -0.03547685593366623, 0.004310649819672108, 0.09372541308403015, -0.16923727095127106, -0.03183405101299286, 0.2071249783039093, -0.07288346439599991, -0.07666851580142975, 0.08075859397649765, -0.07673567533493042, 0.02394813857972622, 0.12070175260305405, 0.08272010087966919, 0.16277998685836792, -0.11131628602743149, -0.0512082502245903, -0.050615094602108, -0.06581650674343109, 0.1882612109184265, 0.05030859634280205, -0.020867519080638885, 0.02202500030398369, 0.006745817139744759, -0.030829621478915215, -0.014376355335116386, -0.019470205530524254, -0.04065338522195816, -0.022279683500528336, 0.0011279600439593196, 0.0027063735760748386, -0.04163070395588875, -0.06135023385286331, -0.03365212306380272, -0.10765676200389862, 0.03454214334487915, 0.1056337058544159, -0.06439061462879181, 0.008580819703638554, -0.09452355653047562, 0.019579891115427017, -0.042623016983270645, 0.009636621922254562, -0.171342670917511, -0.04590949788689613, 0.026000851765275, -0.058330029249191284, 0.08438239246606827, 0.04690870642662048, 0.04245809093117714, 0.056969985365867615, -0.014711130410432816, 0.0012830732157453895, -0.046366263180971146, -0.017375439405441284, -0.026299428194761276, -0.15440815687179565, -0.053446266800165176, -0.046005405485630035, 0.09425993263721466, -0.11733383685350418, 0.006224907469004393, 0.0859813466668129, 0.1221461370587349, 0.01677696406841278, -0.06789401173591614, 0.022118115797638893, -0.04529702663421631, -0.028142474591732025, -0.10517843812704086, -0.04462754353880882, 0.009998217225074768, -0.014766919426620007, 0.1517932415008545, -0.1680772751569748, -0.0689031183719635, 0.11255235970020294, 0.11926224082708359, -0.087493896484375, 0.05566883087158203, -0.07635997235774994, -0.012021387927234173, -0.04560001939535141, -0.047541677951812744, 0.24723242223262787, 0.03471805527806282, 0.08454883098602295, -0.10297693312168121, -0.09653451293706894, -0.004943779669702053, -0.04752104729413986, -0.024266337975859642, 0.02844066731631756, 0.00975005328655243, -0.1728179007768631, 0.0437738411128521, -0.006861216854304075, 0.08792779594659805, 0.19787749648094177, 0.03527648001909256, -0.07924513518810272, -0.06596357375383377, -0.05934784188866615, 0.00039600004674866796, 0.08015048503875732, 0.010210367850959301, 0.028873560950160027, 0.04146604984998703, 0.059165943413972855, 0.03825646638870239, -0.12369165569543839, 0.010070961900055408, 0.06765594333410263, -0.042785536497831345, -0.045715007930994034, 0.01729772239923477, 0.02486632950603962, 0.08444896340370178, 0.09147915244102478, 0.13528497517108917, -0.059298641979694366, -0.05263252183794975, -0.13979479670524597, 0.13191445171833038, -0.09192617982625961, -0.23123322427272797, -0.13575078547000885, -0.07970132678747177, 0.006557658780366182, 0.010894755832850933, 0.03308148309588432, -0.05874884873628616, -0.04575055092573166, -0.08334070444107056, 0.09026914834976196, -0.060007546097040176, -0.023874258622527122, 0.02640334889292717, 0.016334418207406998, -0.012473293580114841, -0.11621452867984772, -0.036184877157211304, 0.03186557814478874, -0.08760341256856918, -0.0026029262226074934, 0.029695093631744385, 0.04248405247926712, 0.16384105384349823, -0.011929386295378208, 0.012894228100776672, -0.016078099608421326, 0.2831440567970276, -0.10733116418123245, 0.06407006084918976, 0.17127682268619537, -0.010611527599394321, 0.062336742877960205, 0.07324562966823578, 0.009154529310762882, -0.057880666106939316, 0.06743671745061874, 0.07490220665931702, -0.06867997348308563, -0.2124425619840622, -0.04031496122479439, -0.016286173835396767, 0.008175977505743504, 0.11324916034936905, 0.046683844178915024, 0.051133666187524796, 0.006800428964197636, -0.10163704305887222, 0.04818902537226677, 0.03374125808477402, 0.10428433865308762, -0.053381722420454025, -0.0062952470034360886, 0.048624053597450256, -0.04991019144654274, 0.02825985662639141, 0.12936553359031677, 0.04194887354969978, 0.20645983517169952, -0.05509180948138237, 0.1055237203836441, 0.07947095483541489, 0.1048128604888916, 0.024388020858168602, 0.021472563967108727, -0.01991381123661995, 0.019562238827347755, 0.004687943495810032, -0.08762823790311813, -0.01403038203716278, 0.03262766823172569, 0.03184939920902252, -0.0038631078787148, -0.03904806450009346, -0.059996478259563446, 0.0519130565226078, 0.23696069419384003, 0.02077743411064148, -0.1672562211751938, -0.10284310579299927, 0.061427973210811615, -0.06896449625492096, -0.06461343914270401, -0.01754642091691494, 0.05701599270105362, -0.2127353698015213, 0.050113413482904434, -0.03745101019740105, 0.11149156093597412, -0.11426713317632675, 0.00020617415430024266, 0.07298758625984192, 0.047392863780260086, -0.06279746443033218, 0.09302644431591034, -0.16262409090995789, 0.07336140424013138, -0.004588947631418705, 0.07463133335113525, -0.06676231324672699, 0.025544442236423492, 0.017274921759963036, 0.04449554160237312, 0.08182159066200256, 0.02149997092783451, 0.024820499122142792, -0.021825673058629036, -0.0385090634226799, -0.0005797526682727039, 0.0643509179353714, -0.11115184426307678, 0.12719623744487762, -0.042029302567243576, 0.03870268538594246, -0.026890616863965988, -0.0674467608332634, -0.09208526462316513, -0.14701777696609497, 0.08220924437046051, -0.11618512868881226, 0.007336266804486513, -0.06979187577962875, -0.014120160602033138, 0.006935766898095608, 0.24321120977401733, -0.07411453127861023, -0.07854635268449783, -0.14372006058692932, 0.0036704828962683678, 0.13741549849510193, -0.07971679419279099, 0.0007106408593244851, -0.022063370794057846, 0.18932200968265533, -0.011558775790035725, -0.1310649812221527, -0.010088056325912476, -0.06286054104566574, -0.17472265660762787, -0.020880870521068573, 0.15921500325202942, 0.06892917305231094, 0.03551970422267914, 0.004572893492877483, 0.004274335224181414, -0.05904034525156021, -0.1710718274116516, 0.027746884152293205, 0.13869589567184448, -0.010181890800595284, 0.0215905848890543, 0.03679269179701805, 0.020288880914449692, -0.1263347864151001, 0.01990058273077011, 0.05913598835468292, 0.1853640377521515, -0.0755356103181839, 0.17588654160499573, 0.022350704297423363, -0.08733585476875305, -0.16614976525306702, 0.0181045550853014, 0.011829709634184837, 0.029401745647192, 0.015303703024983406, -0.1801723837852478, 0.040552835911512375, 0.027062803506851196, -0.009537587873637676, 0.05329196900129318, -0.3201470971107483, -0.14785747230052948, 0.010250698775053024, 0.013060915283858776, -0.08791369199752808, -0.04383787140250206, -0.03490313142538071, -0.08228848874568939, -0.26849961280822754, 0.0982309877872467, -0.10941649228334427, 0.08039741218090057, 0.00963897630572319, 0.09369953721761703, 0.041490353643894196, -0.054852720350027084, 0.12949246168136597, -0.025726819410920143, 0.06673094630241394, -0.09325792640447617, -0.05099369212985039, 0.10904305428266525, -0.06647513806819916, 0.10380803793668747, 0.023455053567886353, 0.08524174243211746, -0.12122809886932373, -0.07643122225999832, -0.08155125379562378, 0.007107432931661606, -0.05772368609905243, -0.0971822664141655, -0.09132465720176697, 0.09241440147161484, 0.1240352913737297, -0.042558833956718445, -0.08609941601753235, -0.046863675117492676, 0.005892854183912277, 0.052886657416820526, 0.10428790748119354, 0.08307602256536484, -0.08225521445274353, 0.008233903907239437, 0.01654021441936493, 0.02097797952592373, -0.16464926302433014, 0.046109866350889206, 0.0867164134979248, 0.03993888571858406, 0.1094067394733429, 0.011192451231181622, -0.16691535711288452, 0.008157624863088131, 0.04301232844591141, -0.16883747279644012, -0.11845976114273071, -0.039370615035295486, 0.0168362595140934, -0.10322234779596329, -0.050282496958971024, 0.1334725320339203, -0.029899749904870987, -0.03914614021778107, 0.006055235397070646, 0.047916948795318604, -0.05153040587902069, 0.08921127766370773, 0.022209273651242256, 0.04914213344454765, -0.06745925545692444, 0.1139269545674324, 0.06569910794496536, 0.02460278943181038, 0.038825567811727524, 0.0733942836523056, -0.09063243120908737, 0.004937459714710712, -0.07429365068674088, 0.027044052258133888, -0.02670297957956791, -0.01132612582296133, 0.009443356655538082, -0.04861639812588692, 0.03465600311756134, 0.09017498046159744, -0.010451882146298885, 0.10293154418468475, -0.03683370351791382, 0.00663659255951643, -0.13147546350955963, 0.08094553649425507, 0.04002049192786217, 0.0202954038977623, -0.11576022952795029, 0.1895097941160202, 0.019665027037262917, 0.09486676007509232, -0.0381937250494957, -0.06185363605618477, -0.07304461300373077, -0.0073023950681090355, -0.11318239569664001, -0.0513199083507061, -0.0922362357378006, -0.026177553460001945, -0.012242523953318596, -0.04088609293103218, -0.018826952204108238, 0.048592135310173035, -0.036071013659238815, -0.06054138019680977, -0.06482687592506409, 0.03819657862186432, -0.14203780889511108, 0.022472042590379715, 0.11584431678056717, -0.053589217364788055, 0.1196998730301857, 0.06197688356041908, -0.03124287724494934, 0.025310182943940163, -0.11261019855737686, 0.03448702022433281, -0.03364352509379387, 0.01611398719251156, 0.02653329446911812, -0.16035068035125732, 0.007035078480839729, -0.04810478165745735, -0.062140192836523056, 0.010471460409462452, 0.007905887439846992, -0.12363136559724808, -0.0006142439669929445, 0.06657427549362183, -0.018302900716662407, -0.07109063863754272, 0.06903940439224243, 0.06285148113965988, 0.025348739698529243, 0.06278327852487564, -0.026809802278876305, 0.08034881949424744, -0.17860162258148193, -0.050203580409288406, 0.01110996212810278, 0.023879926651716232, 0.01961970329284668, -0.010110865347087383, 0.03489464521408081, -0.024230264127254486, 0.18588317930698395, 0.013915488496422768, -0.020050011575222015, 0.03708914294838905, -0.05298200249671936, -0.015353213995695114, 0.04035094007849693, 0.07189904898405075, -0.04241853952407837, -0.0383906327188015, -0.004075750708580017, -0.025807462632656097, -0.08617229759693146, -0.04965689778327942, 0.11041834205389023, 0.052416082471609116, 0.18944726884365082, -0.053663503378629684, 0.06560580432415009, -0.020023051649332047, -0.131141796708107, -0.009986517950892448, -0.04767260700464249, 0.031703658401966095, -0.06149153411388397, 0.06531161814928055, 0.17694595456123352, -0.16427595913410187, 0.12128590047359467, 0.01923365890979767, -0.057750020176172256, -0.10933343321084976, -0.19886022806167603, -0.018247410655021667, -0.047232735902071, 0.03500448167324066, -0.13904930651187897, 0.09052126854658127, 0.02891271561384201, 0.03326328471302986, -0.06762180477380753, 0.12201502174139023, -0.06798448413610458, -0.11197882890701294, 0.03282242268323898, 0.025406524538993835, 0.027031458914279938, 0.05402902141213417, 0.08356568962335587, 0.027691733092069626, 0.002943634055554867, 0.07477176189422607, 0.040849719196558, 0.024678923189640045, 0.030023088678717613, -0.027913948521018028, -0.05366574227809906, 0.033362239599227905, 0.0036349922884255648, 0.025112144649028778, 0.10230883210897446, 0.06255771964788437, -0.019188271835446358, -0.027974244207143784, 0.2883460521697998, -0.03763505071401596, -0.04915403574705124, -0.18116730451583862, 0.17402005195617676, 0.0035156195517629385, -0.009791688993573189, 0.029582109302282333, -0.1213507279753685, 0.011321689933538437, 0.141549751162529, 0.16668662428855896, -0.036124877631664276, 0.020590443164110184, -0.031740620732307434, 0.012295532040297985, 0.028682563453912735, 0.08785832673311234, 0.06560547649860382, 0.1908458173274994, -0.042739804834127426, 0.0506095215678215, -0.01142688374966383, -0.022880254313349724, -0.005867856089025736, 0.09708371013402939, -0.03234727680683136, 0.008687245659530163, -0.06129315868020058, 0.09792211651802063, -0.05390222370624542, -0.2565706670284271, -0.024853261187672615, -0.03316348046064377, -0.0930774137377739, 0.05571829527616501, -0.033137042075395584, -0.032820720225572586, 0.08515918254852295, 0.020948011428117752, -0.04036717861890793, 0.13998284935951233, 0.03946049138903618, -0.04398110508918762, -0.012417827732861042, 0.10419578105211258, -0.01666930317878723, 0.17610697448253632, -0.0226886048913002, 0.005308619700372219, 0.0899818167090416, 0.01546449027955532, -0.12032615393400192, 0.010308251716196537, 0.04032604396343231, -0.06214173138141632, -0.03656895458698273, 0.19960413873195648, 0.013762926682829857, 0.030018121004104614, 0.07058531045913696, -0.059964776039123535, 0.02268396131694317, -0.05129392817616463, 0.05863426625728607, -0.1471165120601654, 0.06462937593460083, -0.08330906182527542, 0.13827630877494812, 0.1877538561820984, -0.06680352985858917, 0.027420589700341225, -0.060787711292505264, 0.0023891611490398645, -0.020127853378653526, 0.08687469363212585, -0.023439744487404823, -0.1115657165646553, 0.011390486732125282, 0.04324419051408768, 0.020865101367235184, -0.20035792887210846, -0.08311018347740173, 0.0544264130294323, -0.048510607331991196, 0.026417024433612823, 0.17917345464229584, 0.036654215306043625, 0.06434255093336105, -0.031643711030483246, 0.006589686963707209, -0.018788957968354225, 0.11832895874977112, -0.15880097448825836, -0.07996958494186401 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4fedc5dd2830a874a5274bf1cac62002.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">25/17</div> <a href="https://genius.com/artists/25-17"> <div style="text-align: center; font-size: 14px;">@25-17</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 25/17. Dataset is available [here](https://huggingface.co/datasets/huggingartists/25-17). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/25-17") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1iuytbjp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 25/17's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/25-17') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/25-17") model = AutoModelWithLMHead.from_pretrained("huggingartists/25-17") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/25-17"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/25-17
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/25-17", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/25-17 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">25/17</div> <a href="URL <div style="text-align: center; font-size: 14px;">@25-17</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from 25/17. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on 25/17's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 25/17.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 25/17's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/25-17 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 25/17.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 25/17's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 81, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/25-17 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from 25/17.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 25/17's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03176397457718849, 0.14909781515598297, -0.0024772051256150007, 0.03387941047549248, 0.08467169106006622, -0.005081497132778168, 0.09276927262544632, 0.10574138909578323, -0.0059613920748233795, 0.07404094189405441, 0.08939260989427567, 0.015820348635315895, 0.06712475419044495, 0.14117920398712158, 0.09287373721599579, -0.2701299786567688, 0.03196672350168228, -0.10782129317522049, 0.029241973534226418, 0.13047796487808228, 0.0861172005534172, -0.05812276527285576, 0.08195566385984421, 0.03501296415925026, -0.07197277992963791, 0.027772916480898857, -0.016043316572904587, -0.07225196808576584, 0.09682510048151016, 0.08363918215036392, 0.0254892036318779, 0.037830423563718796, 0.07158070057630539, -0.18763910233974457, 0.03685715049505234, 0.12261392921209335, 0.031455982476472855, 0.07346109300851822, 0.03770916536450386, -0.06681963801383972, 0.17686450481414795, -0.021821124479174614, 0.0845567062497139, 0.04512353986501694, -0.10487063974142075, -0.18407531082630157, -0.12034161388874054, 0.08237583935260773, 0.10004331171512604, 0.08070538938045502, -0.03448512405157089, 0.055611204355955124, 0.007164798676967621, 0.047802072018384933, 0.2492288500070572, -0.2472173571586609, -0.013803616166114807, 0.10272885859012604, 0.03422584384679794, 0.049909040331840515, -0.07057105749845505, 0.017263159155845642, 0.05142584443092346, 0.019534597173333168, 0.04819541424512863, -0.014038661494851112, 0.21807026863098145, 0.019273480400443077, -0.09629824012517929, -0.0947747528553009, 0.11222925037145615, -0.027686038985848427, -0.08415606617927551, -0.16097350418567657, 0.0012577277375385165, -0.03663939610123634, 0.03902311250567436, -0.0181114599108696, -0.006956913508474827, -0.003159811021760106, -0.03879019245505333, -0.09759023785591125, -0.09460283070802689, -0.029905976727604866, -0.027741463854908943, 0.08212622255086899, 0.02348824217915535, 0.03392605483531952, -0.07302449643611908, 0.2318131923675537, 0.005284357815980911, -0.10593905299901962, -0.052492424845695496, -0.09549611806869507, -0.09507614374160767, -0.0509476475417614, 0.013871456496417522, 0.020195933058857918, -0.0648205578327179, 0.16027230024337769, -0.033965446054935455, 0.03338076174259186, 0.005343788303434849, -0.0220728050917387, 0.1541510969400406, 0.1304118037223816, -0.1001976951956749, -0.018984530121088028, 0.04290797933936119, -0.006506687495857477, -0.06184862181544304, -0.06868695467710495, -0.015785615891218185, -0.02327984757721424, 0.0279371477663517, 0.09721625596284866, 0.04293974116444588, 0.056474391371011734, 0.03701072186231613, -0.058020588010549545, 0.10974863916635513, -0.14482733607292175, 0.0018127965740859509, -0.010689924471080303, -0.035837601870298386, 0.016136858612298965, 0.04271765798330307, 0.012764767743647099, -0.09482143819332123, 0.1045253649353981, -0.05263425037264824, -0.06056441366672516, -0.06491594016551971, -0.08972794562578201, -0.009081747382879257, -0.0032332988921552896, -0.04948854073882103, -0.08853331953287125, -0.16134220361709595, -0.031206421554088593, 0.015137306414544582, -0.033872734755277634, -0.04563263803720474, 0.047169920057058334, -0.03623872622847557, -0.0067021711729466915, -0.02164354734122753, -0.023439081385731697, -0.03349502012133598, 0.024763913825154305, -0.05818340927362442, 0.037211332470178604, 0.08154872804880142, 0.031268998980522156, -0.10938940197229385, 0.06942009180784225, -0.15799805521965027, 0.1444861739873886, -0.013578436337411404, 0.012606886215507984, -0.10680888593196869, -0.10627200454473495, -0.030821753665804863, -0.027645094320178032, -0.00589771568775177, 0.0955948755145073, -0.19308437407016754, -0.04245632514357567, 0.19919425249099731, -0.07723771780729294, -0.08708364516496658, 0.06504702568054199, -0.0749022513628006, 0.034238051623106, 0.14152176678180695, 0.060137249529361725, 0.1724148541688919, -0.12089317291975021, -0.07259194552898407, -0.03436552360653877, -0.05689363181591034, 0.22228655219078064, 0.05674223601818085, -0.003424780908972025, 0.012852688319981098, 0.01927192695438862, -0.02486039698123932, -0.03227200359106064, -0.027538735419511795, -0.04636822268366814, -0.012662060558795929, 0.01539074070751667, -0.008338069543242455, -0.049943793565034866, -0.07356718182563782, -0.014141120947897434, -0.110137939453125, 0.026673873886466026, 0.11437888443470001, -0.0786525309085846, 0.005895326845347881, -0.09216852486133575, 0.0032119140960276127, -0.031012877821922302, 0.024390805512666702, -0.19872766733169556, -0.06256528943777084, 0.02471381239593029, -0.07019542902708054, 0.08564513176679611, 0.03843684494495392, 0.03795640170574188, 0.06774473190307617, 0.002386481501162052, 0.023682976141572, -0.051669131964445114, -0.027560705319046974, -0.029148107394576073, -0.14130418002605438, -0.07700298726558685, -0.05123858526349068, 0.08856602758169174, -0.13554461300373077, 0.00864472333341837, 0.10296645760536194, 0.1054515615105629, 0.017233071848750114, -0.05912940949201584, 0.009062351658940315, -0.0397397056221962, -0.038923002779483795, -0.11171896010637283, -0.06246522068977356, 0.0035476256161928177, -0.04113447666168213, 0.15099593997001648, -0.18440406024456024, -0.06297405809164047, 0.09572149813175201, 0.17732946574687958, -0.09818628430366516, 0.002867680974304676, -0.0990358367562294, -0.004617050755769014, -0.048002224415540695, -0.037870872765779495, 0.26644980907440186, 0.04472324252128601, 0.0773656889796257, -0.11769961565732956, -0.0961742177605629, 0.00699667539447546, -0.034415580332279205, -0.025127416476607323, 0.031694281846284866, 0.014957305043935776, -0.15810446441173553, 0.021393146365880966, -0.00752184959128499, 0.13285784423351288, 0.20900274813175201, 0.05294559895992279, -0.09790042787790298, -0.06403575092554092, -0.08895711600780487, -0.004075254313647747, 0.05274815112352371, 0.04336075857281685, 0.028597038239240646, 0.044899992644786835, 0.047799669206142426, 0.032571468502283096, -0.11369197070598602, 0.005316474940627813, 0.08095879852771759, -0.051036346703767776, -0.05546221882104874, 0.01914137229323387, 0.016054606065154076, 0.08378881961107254, 0.07580302655696869, 0.13865607976913452, -0.0793096199631691, -0.050322312861680984, -0.14058543741703033, 0.14242641627788544, -0.07254999130964279, -0.28133052587509155, -0.1426161676645279, -0.06675296276807785, 0.009727523662149906, 0.0018583760829642415, 0.03865134343504906, -0.06631428003311157, -0.039117105305194855, -0.10588300973176956, 0.09087871760129929, -0.05358109995722771, -0.012113205157220364, 0.00419019116088748, 0.016763346269726753, -0.03412304446101189, -0.11582327634096146, -0.02752634324133396, 0.03619569167494774, -0.10855161398649216, -0.017533257603645325, 0.03472943603992462, 0.03899892419576645, 0.1580456793308258, -0.009997539222240448, -0.0034314116928726435, -0.03749360516667366, 0.29183757305145264, -0.12262358516454697, 0.05370241776108742, 0.17414021492004395, -0.02334137260913849, 0.05324103310704231, 0.07671591639518738, 0.009715236723423004, -0.07374139875173569, 0.07816756516695023, 0.06599166989326477, -0.09478757530450821, -0.21627919375896454, -0.03061547502875328, -0.001030199695378542, 0.03574798256158829, 0.1337137222290039, 0.060947347432374954, 0.05169449746608734, -0.0027655530720949173, -0.10627337545156479, 0.04700549691915512, 0.024211378768086433, 0.1065569669008255, -0.06244806945323944, -0.01718534529209137, 0.05440676212310791, -0.06276768445968628, 0.024107856675982475, 0.14402303099632263, 0.035454560071229935, 0.20354339480400085, -0.06522499024868011, 0.09629490226507187, 0.07888658344745636, 0.10861685872077942, 0.039934586733579636, 0.010489877313375473, 0.007553225848823786, 0.011019001714885235, -0.0006004808819852769, -0.10295598953962326, -0.022047892212867737, 0.04595386981964111, 0.02744188718497753, -0.021117964759469032, -0.038472723215818405, -0.03880280628800392, 0.03749153017997742, 0.23407544195652008, -0.02377993054687977, -0.18456776440143585, -0.11843422055244446, 0.03238127380609512, -0.07895238697528839, -0.049232397228479385, -0.025072576478123665, 0.07892396301031113, -0.21904827654361725, 0.06970591098070145, -0.034230221062898636, 0.11036907881498337, -0.12226007878780365, 0.00943010300397873, 0.07565970718860626, 0.050268616527318954, -0.06360345333814621, 0.10251890122890472, -0.16017280519008636, 0.07071951031684875, -0.008651691488921642, 0.05696333572268486, -0.08610833436250687, 0.024877747520804405, -0.00392768532037735, 0.04438965022563934, 0.08864738792181015, 0.01119906734675169, 0.035212863236665726, -0.012968478724360466, -0.060563527047634125, 0.01641860231757164, 0.05980853736400604, -0.12423712015151978, 0.12449374794960022, -0.021812792867422104, 0.03955085575580597, -0.04859326779842377, -0.0979476347565651, -0.09302957355976105, -0.16610589623451233, 0.09638173133134842, -0.12704826891422272, -0.003932839725166559, -0.07321266084909439, -0.0376436784863472, 0.03363099321722984, 0.26358622312545776, -0.054053302854299545, -0.06818258762359619, -0.13750232756137848, 0.036850474774837494, 0.15024793148040771, -0.08779818564653397, 0.007179856766015291, -0.01294718962162733, 0.22254791855812073, -0.002767939120531082, -0.12717391550540924, -0.026689868420362473, -0.059103675186634064, -0.16810637712478638, 0.0023082958068698645, 0.16677840054035187, 0.06341283023357391, 0.02630074881017208, 0.008192291483283043, -0.025382986292243004, -0.045935310423374176, -0.17851251363754272, 0.02001485787332058, 0.16297300159931183, -0.017822671681642532, -0.005175283178687096, 0.0558319091796875, 0.019452862441539764, -0.13683190941810608, 0.018238205462694168, 0.04755914583802223, 0.18410931527614594, -0.08136288821697235, 0.1906295120716095, 0.0390094518661499, -0.08510448038578033, -0.14815592765808105, 0.005807891488075256, 0.045660413801670074, 0.04203033819794655, 0.06250797212123871, -0.21523533761501312, 0.03579995408654213, 0.047197844833135605, 0.006633664481341839, 0.025380564853549004, -0.34160539507865906, -0.16030368208885193, 0.00298820692114532, 0.009179949760437012, -0.14976294338703156, -0.03764741122722626, -0.03835030272603035, -0.09841000288724899, -0.2390882968902588, 0.10445224493741989, -0.11339797079563141, 0.07389538735151291, 0.029669057577848434, 0.09966901689767838, 0.04963589459657669, -0.04056254401803017, 0.1365230530500412, -0.020596487447619438, 0.07275766134262085, -0.09120715409517288, -0.05342106148600578, 0.07986385375261307, -0.07093298435211182, 0.09697428345680237, 0.03686513751745224, 0.08944211900234222, -0.09207355231046677, -0.09025396406650543, -0.0596238374710083, -0.0043815248645842075, -0.04832735285162926, -0.08939430117607117, -0.09242869168519974, 0.07936438918113708, 0.11267796158790588, -0.047967005521059036, -0.09658168256282806, -0.07093098759651184, 0.007904822938144207, 0.03701215237379074, 0.1270439773797989, 0.07483901083469391, -0.05944446846842766, 0.00008994916424853727, 0.020750733092427254, 0.007444463204592466, -0.1845528483390808, 0.04267088323831558, 0.09624526649713516, 0.0397426001727581, 0.10078699886798859, 0.003834824077785015, -0.17159432172775269, 0.004794101696461439, 0.0513143315911293, -0.16958819329738617, -0.1348111778497696, -0.040647394955158234, 0.038531992584466934, -0.10273807495832443, -0.04902730509638786, 0.1375443935394287, -0.03575463593006134, -0.03757873550057411, 0.0025176256895065308, 0.030565928667783737, -0.030908608809113503, 0.09063069522380829, -0.008413286879658699, 0.045597273856401443, -0.07313865423202515, 0.1143086850643158, 0.06808654963970184, 0.006796188186854124, 0.040399327874183655, 0.05601606145501137, -0.09347380697727203, 0.018631910905241966, -0.10959294438362122, 0.00009282201790483668, -0.021761562675237656, -0.015754496678709984, 0.027764955535531044, -0.028927039355039597, 0.04782414808869362, 0.09149734675884247, -0.014275330118834972, 0.10600090771913528, -0.04777226224541664, 0.024511132389307022, -0.12407686561346054, 0.07017087936401367, 0.02683090977370739, 0.018267525359988213, -0.11078641563653946, 0.20312513411045074, 0.04165897145867348, 0.11761905252933502, -0.039362337440252304, -0.07126334309577942, -0.04587697237730026, -0.01148808654397726, -0.07067956775426865, -0.039257775992155075, -0.08560758084058762, -0.024347418919205666, -0.0033943839371204376, -0.026916760951280594, -0.0357813723385334, 0.04429527744650841, -0.03409827500581741, -0.057084351778030396, -0.07441607862710953, 0.04458834230899811, -0.14854098856449127, 0.039002589881420135, 0.1177072748541832, -0.0521853081882, 0.13109421730041504, 0.05557674169540405, -0.033730246126651764, 0.026303114369511604, -0.134179949760437, 0.055537331849336624, 0.0024614320136606693, 0.03194309398531914, 0.014209866523742676, -0.13993076980113983, 0.00799094419926405, -0.0314314030110836, -0.07314350455999374, 0.005773437209427357, -0.01782863400876522, -0.1316554844379425, -0.013242888264358044, 0.09675085544586182, -0.0065857102163136005, -0.06558307260274887, 0.0733722448348999, 0.05268128961324692, 0.02806280553340912, 0.054136160761117935, -0.0059286728501319885, 0.06597832590341568, -0.18470065295696259, -0.06882172077894211, -0.0072414749301970005, 0.029636632651090622, 0.04871238023042679, -0.03216945007443428, 0.03893034905195236, -0.017295971512794495, 0.224202960729599, 0.03009057603776455, 0.005626107100397348, 0.03194501996040344, -0.057549849152565, -0.00156583939678967, 0.034752584993839264, 0.07884425669908524, -0.006910881958901882, -0.019793525338172913, 0.01369639951735735, -0.021735671907663345, -0.10029613971710205, -0.023305289447307587, 0.09066729992628098, -0.0021005510352551937, 0.21316364407539368, -0.06802396476268768, 0.07343992590904236, -0.0206830445677042, -0.09822686016559601, -0.034523893147706985, -0.0513559952378273, 0.029459990561008453, -0.05890319496393204, 0.050808172672986984, 0.18973755836486816, -0.14413025975227356, 0.12179987877607346, 0.050412967801094055, -0.05744618922472, -0.13054868578910828, -0.19772474467754364, -0.008996487595140934, -0.04461539909243584, 0.02510218136012554, -0.14202360808849335, 0.0941111221909523, 0.02130630426108837, 0.04043859615921974, -0.057829730212688446, 0.13553789258003235, -0.08677265793085098, -0.14130856096744537, 0.04286244139075279, 0.016629839316010475, 0.028731368482112885, 0.030310075730085373, 0.08742643892765045, 0.045728377997875214, 0.0003730875614564866, 0.0743412971496582, 0.03932865709066391, 0.03411346673965454, 0.03822121024131775, -0.03149928152561188, -0.043023720383644104, 0.025347333401441574, -0.01396183017641306, 0.018287520855665207, 0.09990224242210388, 0.07007122784852982, -0.018961546942591667, -0.01893046498298645, 0.31385016441345215, -0.015477573499083519, -0.026356687769293785, -0.179317444562912, 0.16036243736743927, 0.008173118345439434, 0.004945146851241589, 0.018537800759077072, -0.11480790376663208, 0.011118952184915543, 0.12276337295770645, 0.14821791648864746, -0.024346504360437393, 0.02621038630604744, -0.025552980601787567, 0.017259547486901283, 0.03524878993630409, 0.1178136095404625, 0.061018332839012146, 0.1954488754272461, -0.02426435798406601, 0.05200755223631859, -0.01849249005317688, -0.022636989131569862, 0.021754322573542595, 0.10199637711048126, -0.03875092789530754, 0.0034365453757345676, -0.051268190145492554, 0.10455480962991714, -0.05837666615843773, -0.30116575956344604, -0.04418523982167244, -0.01580086722970009, -0.0879732221364975, 0.07868658006191254, -0.029874000698328018, -0.013098468072712421, 0.07884608954191208, 0.024353953078389168, -0.04709232226014137, 0.1625954508781433, 0.04974087327718735, -0.05362951382994652, -0.014700115658342838, 0.11250095814466476, -0.038377795368433, 0.15619060397148132, -0.03990697115659714, 0.021914644166827202, 0.06940770149230957, 0.009192696772515774, -0.12483866512775421, 0.006504964083433151, 0.03967360407114029, -0.05192947015166283, -0.027966223657131195, 0.2005857676267624, 0.016960645094513893, 0.027966804802417755, 0.07230337709188461, -0.058712977916002274, 0.014935980550944805, -0.023018699139356613, 0.06609281152486801, -0.13081656396389008, 0.06626293808221817, -0.0744795948266983, 0.11619876325130463, 0.1681976467370987, -0.0655222162604332, 0.03866066038608551, -0.06281952559947968, 0.008045594207942486, -0.03389734402298927, 0.0735076516866684, -0.011302823200821877, -0.1218351349234581, 0.0014833034947514534, 0.03119318000972271, 0.008747794665396214, -0.17601804435253143, -0.08247992396354675, 0.08487032353878021, -0.05491729453206062, 0.027963001281023026, 0.17711350321769714, 0.0031782444566488266, 0.05684599280357361, -0.03799354285001755, -0.004068337380886078, -0.003168068826198578, 0.11530406773090363, -0.18248702585697174, -0.07867243140935898 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/10f98dca7bcd1a31222e36374544cad5.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">50 Cent</div> <a href="https://genius.com/artists/50-cent"> <div style="text-align: center; font-size: 14px;">@50-cent</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 50 Cent. Dataset is available [here](https://huggingface.co/datasets/huggingartists/50-cent). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/50-cent") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1291qx5n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 50 Cent's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1igwpphq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1igwpphq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/50-cent') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/50-cent") model = AutoModelWithLMHead.from_pretrained("huggingartists/50-cent") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/50-cent"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/50-cent
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/50-cent", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/50-cent #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">50 Cent</div> <a href="URL <div style="text-align: center; font-size: 14px;">@50-cent</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from 50 Cent. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on 50 Cent's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 50 Cent.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 50 Cent's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/50-cent #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 50 Cent.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 50 Cent's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/50-cent #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from 50 Cent.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 50 Cent's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.025599071756005287, 0.1499050408601761, -0.0025470589753240347, 0.03293909505009651, 0.08557698875665665, 0.0012077525025233626, 0.08846528083086014, 0.10527542233467102, -0.01385276485234499, 0.07074971497058868, 0.07792747765779495, 0.012151149101555347, 0.06881356984376907, 0.14166933298110962, 0.08960703760385513, -0.26344460248947144, 0.030964987352490425, -0.10249984264373779, 0.026436351239681244, 0.12386345863342285, 0.08660425990819931, -0.05660494789481163, 0.08392903953790665, 0.0333750881254673, -0.0814589262008667, 0.028742721304297447, -0.012353875674307346, -0.07306542992591858, 0.09081318229436874, 0.07754959911108017, 0.03113117814064026, 0.03266071155667305, 0.06866825371980667, -0.18879389762878418, 0.034912992268800735, 0.12533962726593018, 0.02664765529334545, 0.07176920771598816, 0.0384596586227417, -0.07543443143367767, 0.17411215603351593, -0.023000231012701988, 0.09092527627944946, 0.04578279331326485, -0.10640212893486023, -0.17629657685756683, -0.1227172240614891, 0.09284316748380661, 0.10262003540992737, 0.0770331397652626, -0.031264033168554306, 0.04643310606479645, -0.0011669636005535722, 0.04466851428151131, 0.24152684211730957, -0.24484628438949585, -0.012585802935063839, 0.09821026772260666, 0.03321636840701103, 0.044277969747781754, -0.07460028678178787, 0.017951900139451027, 0.05133439972996712, 0.02407783269882202, 0.05016408488154411, -0.01492727268487215, 0.2212556153535843, 0.018653504550457, -0.09498739242553711, -0.08772552013397217, 0.1072252094745636, -0.025039898231625557, -0.08353740721940994, -0.15542666614055634, 0.0018952201353386045, -0.03787599876523018, 0.03413105756044388, -0.01150606106966734, -0.003529030829668045, 0.0003294969501439482, -0.04710723087191582, -0.09164825081825256, -0.09059865027666092, -0.029553594067692757, -0.027579432353377342, 0.07409597188234329, 0.02422155626118183, 0.030238911509513855, -0.07512330263853073, 0.23139135539531708, 0.0018002912402153015, -0.0999474748969078, -0.05657317116856575, -0.09133201837539673, -0.09752977639436722, -0.058162108063697815, 0.01105773076415062, 0.018858281895518303, -0.06396100670099258, 0.1694190949201584, -0.02951614372432232, 0.03217419609427452, 0.004154772963374853, -0.022685207426548004, 0.15003086626529694, 0.12573553621768951, -0.09411121159791946, -0.02920510806143284, 0.04780329763889313, -0.016413621604442596, -0.06430080533027649, -0.061938077211380005, -0.01786128245294094, -0.021563462913036346, 0.03572985902428627, 0.09423088282346725, 0.040316659957170486, 0.056460410356521606, 0.03472127020359039, -0.05730392411351204, 0.10963699966669083, -0.14441822469234467, 0.010716810822486877, -0.011348682455718517, -0.027780702337622643, 0.0240743700414896, 0.045415088534355164, 0.013973341323435307, -0.1002093032002449, 0.11419034004211426, -0.05095231160521507, -0.05419754609465599, -0.06994350254535675, -0.08436363190412521, -0.004657301586121321, -0.00878326129168272, -0.04868540167808533, -0.08774217218160629, -0.15703211724758148, -0.03378397971391678, 0.024893714115023613, -0.036992818117141724, -0.04107511043548584, 0.042593181133270264, -0.036552537232637405, 0.00239520613104105, -0.01808169297873974, -0.013361449353396893, -0.03263898566365242, 0.024766257032752037, -0.061307769268751144, 0.035006988793611526, 0.08515509217977524, 0.03489978611469269, -0.10739067196846008, 0.0667470172047615, -0.16107285022735596, 0.1435839980840683, -0.005227910820394754, 0.016647307202219963, -0.10911998897790909, -0.09830459207296371, -0.034118279814720154, -0.028665795922279358, -0.00857426505535841, 0.09567507356405258, -0.18867696821689606, -0.044338833540678024, 0.20367926359176636, -0.07563779503107071, -0.08370542526245117, 0.0678558498620987, -0.07568932324647903, 0.028431719169020653, 0.14147605001926422, 0.055282965302467346, 0.1614200621843338, -0.11851760745048523, -0.06932096928358078, -0.04071493074297905, -0.054831232875585556, 0.21194078028202057, 0.05149184539914131, -0.006246704608201981, 0.017125582322478294, 0.012811039574444294, -0.023307794705033302, -0.028395989909768105, -0.02235284261405468, -0.041490375995635986, -0.012587056495249271, 0.013945943675935268, -0.014761853963136673, -0.050324197858572006, -0.06800130009651184, -0.018776873126626015, -0.11199792474508286, 0.037039078772068024, 0.1057894229888916, -0.0752534344792366, 0.010270141996443272, -0.09494482725858688, -0.00010961107909679413, -0.03831055387854576, 0.0234511848539114, -0.19567394256591797, -0.053046923130750656, 0.02434786967933178, -0.06760574877262115, 0.08648354560136795, 0.024803712964057922, 0.03851056471467018, 0.06038312986493111, -0.007005048915743828, 0.02051730267703533, -0.04941560700535774, -0.02324034832417965, -0.035093288868665695, -0.13922901451587677, -0.07442975044250488, -0.05203870311379433, 0.08288656920194626, -0.127145454287529, 0.006843897048383951, 0.10581900924444199, 0.11353500932455063, 0.0242311954498291, -0.0599357895553112, 0.007496798876672983, -0.036121997982263565, -0.03873100504279137, -0.11513594537973404, -0.06259730458259583, 0.006979537662118673, -0.041706185787916183, 0.14951646327972412, -0.1753896027803421, -0.062115639448165894, 0.10028201341629028, 0.16773205995559692, -0.10728377848863602, 0.010762020945549011, -0.09230789542198181, -0.005871299654245377, -0.05197790265083313, -0.03869440406560898, 0.2702416479587555, 0.04256431385874748, 0.07714438438415527, -0.11239620298147202, -0.1030205488204956, 0.0005997639382258058, -0.03154967725276947, -0.02700839377939701, 0.026349609717726707, 0.020067423582077026, -0.16670244932174683, 0.02356705255806446, 0.001570341526530683, 0.12556298077106476, 0.20228247344493866, 0.04891544207930565, -0.09782681614160538, -0.06098705157637596, -0.09027151018381119, 0.001959932269528508, 0.04985668137669563, 0.036953154951334, 0.023824885487556458, 0.042501870542764664, 0.051749855279922485, 0.0340026319026947, -0.11296200007200241, 0.009471342898905277, 0.08014936000108719, -0.04672792926430702, -0.05661119893193245, 0.016668425872921944, 0.014546570368111134, 0.0832018032670021, 0.080315500497818, 0.13829976320266724, -0.07173293083906174, -0.048630233854055405, -0.14269457757472992, 0.1396273970603943, -0.07252170890569687, -0.2650686204433441, -0.13415545225143433, -0.07049059867858887, 0.025067225098609924, 0.004117107018828392, 0.03603024408221245, -0.0631103441119194, -0.041899342089891434, -0.10475658625364304, 0.07907790690660477, -0.051417335867881775, -0.00887345802038908, 0.006153551395982504, 0.01965380273759365, -0.03679005056619644, -0.10684195905923843, -0.030784262344241142, 0.03767382726073265, -0.10671170800924301, -0.016345705837011337, 0.026886051520705223, 0.035301294177770615, 0.16240590810775757, -0.009265273809432983, 0.000028040260076522827, -0.033147137612104416, 0.2820498049259186, -0.123131662607193, 0.06384899467229843, 0.1623329371213913, -0.01571672223508358, 0.053452279418706894, 0.0799069032073021, 0.00891359243541956, -0.07044555991888046, 0.07630886137485504, 0.06870213896036148, -0.09264633059501648, -0.21272094547748566, -0.024724269285798073, -0.0063005052506923676, 0.018883835524320602, 0.1283598244190216, 0.059712719172239304, 0.05612218379974365, -0.0036473239306360483, -0.1076655387878418, 0.053639817982912064, 0.030962025746703148, 0.10770491510629654, -0.07493891566991806, -0.007805468514561653, 0.047975584864616394, -0.06466002017259598, 0.028016015887260437, 0.1420261710882187, 0.036880627274513245, 0.20099276304244995, -0.05812968313694, 0.0990053191781044, 0.07185247540473938, 0.10315823554992676, 0.038190845400094986, 0.013937954790890217, -0.0020685719791799784, 0.012884646654129028, -0.0015207258984446526, -0.09557082504034042, -0.012691319920122623, 0.04583265259861946, 0.030069462954998016, -0.025146836414933205, -0.04100557789206505, -0.05279333516955376, 0.04326791688799858, 0.24074721336364746, -0.0179213285446167, -0.1812145859003067, -0.11609586328268051, 0.04053268954157829, -0.08041689544916153, -0.048086415976285934, -0.025098897516727448, 0.07558666169643402, -0.2163822203874588, 0.07424113154411316, -0.03357677534222603, 0.10825202614068985, -0.11652185767889023, 0.002611147938296199, 0.07810665667057037, 0.04678278788924217, -0.06405626237392426, 0.09523207694292068, -0.16879981756210327, 0.05600962042808533, -0.00954802893102169, 0.06741683930158615, -0.07829111814498901, 0.027009308338165283, -0.0017629176145419478, 0.057293083518743515, 0.08495620638132095, 0.011622595600783825, 0.020134925842285156, -0.004618356004357338, -0.0510709285736084, 0.013458008877933025, 0.059342045336961746, -0.12987078726291656, 0.12476196140050888, -0.026364833116531372, 0.033393919467926025, -0.04468497633934021, -0.09732446074485779, -0.08999387174844742, -0.1664953976869583, 0.09230557829141617, -0.13129408657550812, 0.0038990199100226164, -0.07184866815805435, -0.03230429068207741, 0.0333138182759285, 0.26713812351226807, -0.06486453860998154, -0.07225766032934189, -0.13987505435943604, 0.02236008085310459, 0.14344216883182526, -0.08369332551956177, 0.009815745055675507, -0.008750705048441887, 0.22003291547298431, -0.00033114865073002875, -0.12970933318138123, -0.020870139822363853, -0.06000136211514473, -0.16699819266796112, -0.0036863184068351984, 0.16648776829242706, 0.05995061993598938, 0.027510806918144226, 0.012122916989028454, -0.019353434443473816, -0.044010769575834274, -0.1736660748720169, 0.022503167390823364, 0.16585205495357513, -0.01080988347530365, -0.004414974246174097, 0.04861001670360565, 0.016311438754200935, -0.13123826682567596, 0.01672566495835781, 0.0468103289604187, 0.17731823027133942, -0.07867547869682312, 0.1883871704339981, 0.039505209773778915, -0.08731862157583237, -0.14838072657585144, 0.006969934795051813, 0.03348812088370323, 0.03965378180146217, 0.04441839084029198, -0.2082962840795517, 0.03972112014889717, 0.03923812881112099, 0.008172218687832355, 0.03624240681529045, -0.33804798126220703, -0.15853676199913025, -0.004963189363479614, 0.00756795285269618, -0.1435127705335617, -0.04133248329162598, -0.035148780792951584, -0.10190767049789429, -0.24237553775310516, 0.10652297735214233, -0.11239302903413773, 0.0754205510020256, 0.031190624460577965, 0.09913644939661026, 0.046885665506124496, -0.04312124848365784, 0.125467911362648, -0.015189825557172298, 0.07392212003469467, -0.09233537316322327, -0.058817241340875626, 0.07434001564979553, -0.07345627248287201, 0.09052535146474838, 0.03069821000099182, 0.08016552776098251, -0.08551305532455444, -0.09015121310949326, -0.05838640406727791, -0.00020197429694235325, -0.04983605816960335, -0.0878981351852417, -0.09105680137872696, 0.08273150771856308, 0.1201082095503807, -0.04878872260451317, -0.09207290410995483, -0.06726189702749252, 0.0024253043811768293, 0.03501233831048012, 0.12785731256008148, 0.06654754281044006, -0.05988382175564766, 0.00040042432374320924, 0.016328057274222374, 0.0115359490737319, -0.18217921257019043, 0.04745607450604439, 0.09325990825891495, 0.04177085682749748, 0.10490944236516953, 0.004594386089593172, -0.16879725456237793, 0.002332699717953801, 0.0524093359708786, -0.16082678735256195, -0.1286115050315857, -0.036998290568590164, 0.02814667485654354, -0.10209404677152634, -0.045417916029691696, 0.13076309859752655, -0.03508054092526436, -0.039654240012168884, 0.0038152311462908983, 0.035702552646398544, -0.03700276464223862, 0.08748870342969894, -0.009087611921131611, 0.040110647678375244, -0.07221216708421707, 0.1180509701371193, 0.0691017284989357, 0.003559548407793045, 0.03860325738787651, 0.060216981917619705, -0.09505126625299454, 0.01704181730747223, -0.09475504606962204, 0.0053338841535151005, -0.023561693727970123, -0.011308752000331879, 0.029313771054148674, -0.03192664310336113, 0.050754088908433914, 0.09261558204889297, -0.015952927991747856, 0.10645043849945068, -0.045814137905836105, 0.02287728525698185, -0.12554813921451569, 0.06656584143638611, 0.02926279418170452, 0.020535660907626152, -0.10959416627883911, 0.2124762088060379, 0.03800096735358238, 0.10407435894012451, -0.038496118038892746, -0.06280102580785751, -0.04784172773361206, -0.011469858698546886, -0.07209443300962448, -0.0364040732383728, -0.08686462789773941, -0.022480985149741173, -0.005095170810818672, -0.02821374125778675, -0.03358330950140953, 0.04369090124964714, -0.03550410643219948, -0.060924459248781204, -0.07654880732297897, 0.042766839265823364, -0.14054597914218903, 0.03848351165652275, 0.11630759388208389, -0.05657372996211052, 0.1276935189962387, 0.054561909288167953, -0.03405781462788582, 0.02741924487054348, -0.1433962732553482, 0.05083136633038521, -0.002265404909849167, 0.025694340467453003, 0.01761285401880741, -0.14729756116867065, 0.008021645247936249, -0.0314629003405571, -0.07142900675535202, 0.006992521230131388, -0.019877681508660316, -0.13137364387512207, -0.016210585832595825, 0.08660784363746643, -0.012808679603040218, -0.06828520447015762, 0.07274580001831055, 0.06120571494102478, 0.025949841365218163, 0.059535011649131775, -0.00945348758250475, 0.06429937481880188, -0.17774845659732819, -0.062105122953653336, -0.002785932505503297, 0.030666835606098175, 0.03953962028026581, -0.02553556300699711, 0.0378083698451519, -0.014586924575269222, 0.21353860199451447, 0.022043632343411446, 0.00003085324351559393, 0.035505954176187515, -0.06708496809005737, -0.007459780666977167, 0.04109380766749382, 0.08386573940515518, -0.01167729776352644, -0.028092408552765846, 0.006087205838412046, -0.02551734633743763, -0.0940558910369873, -0.021395498886704445, 0.0989244282245636, 0.009347466751933098, 0.20561416447162628, -0.059052567929029465, 0.06051826849579811, -0.01866898499429226, -0.10230634361505508, -0.028736038133502007, -0.0511055551469326, 0.031943097710609436, -0.05812065303325653, 0.0654277428984642, 0.1861209273338318, -0.1523137241601944, 0.11628475040197372, 0.0466575026512146, -0.0563289038836956, -0.12167058140039444, -0.19874179363250732, -0.013388596475124359, -0.037970561534166336, 0.024545997381210327, -0.13783706724643707, 0.09449639171361923, 0.01950523443520069, 0.03999222442507744, -0.05821828544139862, 0.130422905087471, -0.09161456674337387, -0.1354558765888214, 0.04750741645693779, 0.017214370891451836, 0.02252974547445774, 0.04271618649363518, 0.08482489734888077, 0.0387488417327404, 0.0011564044980332255, 0.07522713392972946, 0.039270199835300446, 0.03455867990851402, 0.03989158570766449, -0.030391769483685493, -0.039845556020736694, 0.029013434424996376, -0.011030309833586216, 0.021029865369200706, 0.09400316327810287, 0.06865314394235611, -0.019975127652287483, -0.016793932765722275, 0.30514830350875854, -0.021162109449505806, -0.030262863263487816, -0.18690507113933563, 0.15406650304794312, 0.010958191007375717, -0.00020843262609560043, 0.022370243445038795, -0.11713290214538574, 0.01496102660894394, 0.12176651507616043, 0.14076457917690277, -0.019204137846827507, 0.02612191252410412, -0.024839283898472786, 0.016456805169582367, 0.035976093262434006, 0.11004935950040817, 0.06207020580768585, 0.18594026565551758, -0.02259131707251072, 0.0578705258667469, -0.010780946351587772, -0.02525678090751171, 0.016148341819643974, 0.10334673523902893, -0.043825745582580566, 0.0046792407520115376, -0.05226809158921242, 0.10375165939331055, -0.05462751165032387, -0.3069119453430176, -0.032491233199834824, -0.010265394113957882, -0.08675874024629593, 0.07812712341547012, -0.03688130900263786, -0.01931838132441044, 0.0780736580491066, 0.02998451143503189, -0.04730325564742088, 0.16337822377681732, 0.050403546541929245, -0.04739703610539436, -0.010821480304002762, 0.11253869533538818, -0.037709034979343414, 0.15863768756389618, -0.0345146618783474, 0.01379139069467783, 0.07402310520410538, 0.015173203311860561, -0.12568961083889008, 0.006657016929239035, 0.037384212017059326, -0.050143662840127945, -0.019236071035265923, 0.20335233211517334, 0.010797202587127686, 0.025084033608436584, 0.07029227912425995, -0.05140618607401848, 0.018752021715044975, -0.04423263669013977, 0.06346625089645386, -0.13577570021152496, 0.0671127587556839, -0.07436651736497879, 0.12091604620218277, 0.1746048480272293, -0.06671322882175446, 0.03834722936153412, -0.06107648089528084, 0.006590174976736307, -0.031563758850097656, 0.07019972056150436, -0.018206018954515457, -0.11470184475183487, 0.007202790584415197, 0.03451938554644585, 0.01509037148207426, -0.16728438436985016, -0.07931818068027496, 0.07733267545700073, -0.052673470228910446, 0.017976364120841026, 0.1793581247329712, 0.014495165087282658, 0.05640265345573425, -0.040611233562231064, -0.006292745005339384, -0.002311466494575143, 0.1143743097782135, -0.1779230833053589, -0.0759204551577568 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/289ded19d51d41798be99217d6059eb3.458x458x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">5’Nizza</div> <a href="https://genius.com/artists/5nizza"> <div style="text-align: center; font-size: 14px;">@5nizza</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 5’Nizza. Dataset is available [here](https://huggingface.co/datasets/huggingartists/5nizza). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/5nizza") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1zcp1grf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 5’Nizza's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2zg6pzw7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2zg6pzw7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/5nizza') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/5nizza") model = AutoModelWithLMHead.from_pretrained("huggingartists/5nizza") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/5nizza"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/5nizza
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/5nizza", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/5nizza #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">5’Nizza</div> <a href="URL <div style="text-align: center; font-size: 14px;">@5nizza</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from 5’Nizza. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on 5’Nizza's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 5’Nizza.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 5’Nizza's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/5nizza #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 5’Nizza.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 5’Nizza's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/5nizza #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from 5’Nizza.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 5’Nizza's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02395620569586754, 0.16265882551670074, -0.0029372209683060646, 0.04628627002239227, 0.09834498167037964, 0.014806577004492283, 0.092640221118927, 0.10926800966262817, 0.008353839628398418, 0.07694009691476822, 0.07325667887926102, 0.02969713881611824, 0.06941460818052292, 0.10776166617870331, 0.07692468911409378, -0.2465546727180481, 0.033341631293296814, -0.08847501128911972, 0.0015125586651265621, 0.11446947604417801, 0.09773173928260803, -0.05841314047574997, 0.0806240364909172, 0.03566668555140495, -0.07907643169164658, 0.0154600003734231, 0.00665690191090107, -0.06267772614955902, 0.09173583984375, 0.058464206755161285, 0.03604720160365105, 0.029896069318056107, 0.07144176959991455, -0.18419475853443146, 0.029248066246509552, 0.12561334669589996, 0.0352131612598896, 0.0773942619562149, 0.050406381487846375, -0.07368186116218567, 0.14147615432739258, -0.01251170039176941, 0.09382525086402893, 0.0547647662460804, -0.1177421435713768, -0.1370982527732849, -0.1323430985212326, 0.09821879863739014, 0.09941509366035461, 0.08425293862819672, -0.0279458649456501, 0.054259490221738815, -0.030127957463264465, 0.042907971888780594, 0.22988659143447876, -0.2487858235836029, -0.014584729447960854, 0.0885767862200737, 0.047321077436208725, 0.025356540456414223, -0.0798371434211731, 0.01607399247586727, 0.04440675303339958, 0.020685898140072823, 0.045668475329875946, -0.02046823874115944, 0.1799582690000534, 0.018575606867671013, -0.1028524860739708, -0.0817328467965126, 0.12137167155742645, -0.018139729276299477, -0.07602153718471527, -0.13541270792484283, -0.002769183600321412, -0.021436069160699844, 0.03609296306967735, -0.007096966728568077, -0.003285803832113743, 0.0059689804911613464, -0.03693551942706108, -0.1110754907131195, -0.08573704957962036, -0.03642180189490318, -0.013926894403994083, 0.06005796417593956, 0.037216201424598694, 0.035795100033283234, -0.07748039066791534, 0.22553575038909912, -0.02169405110180378, -0.09373471140861511, -0.045584943145513535, -0.09480644762516022, -0.09110026061534882, -0.05144160985946655, 0.00988281611353159, -0.00008680295286467299, -0.04263419657945633, 0.1577184796333313, -0.028824536129832268, 0.026618309319019318, -0.013268629088997841, -0.004922991618514061, 0.1482030302286148, 0.12909254431724548, -0.11114136129617691, -0.039101891219615936, 0.06449573487043381, -0.005391192156821489, -0.06864527612924576, -0.05430198833346367, -0.011601006612181664, -0.018731696531176567, 0.04202957823872566, 0.0814337432384491, 0.07118481397628784, 0.06014096736907959, 0.014539558440446854, -0.06957916170358658, 0.07603918015956879, -0.13027215003967285, 0.01453821174800396, -0.004633212927728891, -0.048963841050863266, 0.02043922245502472, 0.04711889103055, 0.018219009041786194, -0.10432840138673782, 0.10890233516693115, -0.06557377427816391, -0.05304567515850067, -0.07680270820856094, -0.08864988386631012, -0.003830838482826948, -0.03463520109653473, -0.04032319039106369, -0.07490465044975281, -0.17761175334453583, -0.041138458997011185, 0.034184858202934265, -0.05037437379360199, -0.0396273247897625, 0.02829841524362564, -0.0185726135969162, 0.01070952694863081, -0.022373106330633163, -0.037533462047576904, -0.027101121842861176, 0.033014927059412, -0.06287386268377304, 0.029409941285848618, 0.06769771873950958, 0.04565158858895302, -0.11071013659238815, 0.0719309076666832, -0.14448535442352295, 0.11728852987289429, -0.01426772028207779, 0.014532811008393764, -0.10651252418756485, -0.08598390221595764, -0.023738155141472816, -0.03469763696193695, 0.008485729806125164, 0.10407558083534241, -0.16253307461738586, -0.032198403030633926, 0.19674228131771088, -0.07067593932151794, -0.07763341814279556, 0.0705975666642189, -0.07149287313222885, 0.044976260513067245, 0.12129011005163193, 0.08860886842012405, 0.1587805598974228, -0.10799524188041687, -0.06143676117062569, -0.046418387442827225, -0.06841135770082474, 0.18185965716838837, 0.0416601300239563, -0.01790684461593628, 0.02167408913373947, 0.007783766370266676, -0.03691152110695839, -0.01610981486737728, -0.02336939424276352, -0.04006686806678772, -0.02040005661547184, -0.0033515070099383593, 0.0012463668826967478, -0.038966499269008636, -0.05638016387820244, -0.02183132991194725, -0.09925224632024765, 0.04982892423868179, 0.1054651290178299, -0.0651271864771843, 0.009606103412806988, -0.09421373158693314, 0.02198781445622444, -0.04100006818771362, 0.010198458097875118, -0.1676653027534485, -0.04744210094213486, 0.024182109162211418, -0.06706564128398895, 0.08006898313760757, 0.03459253907203674, 0.03776850551366806, 0.06324736028909683, -0.014941872097551823, 0.0019146483391523361, -0.04291732981801033, -0.01418743934482336, -0.02700331248342991, -0.15876421332359314, -0.06014794483780861, -0.04309791699051857, 0.09064822643995285, -0.12100164592266083, 0.007502894848585129, 0.0765276849269867, 0.126276433467865, 0.01838626153767109, -0.06784623116254807, 0.021669209003448486, -0.04421001300215721, -0.031165117397904396, -0.10641913115978241, -0.04601907730102539, 0.009690744802355766, -0.01449329312890768, 0.14230118691921234, -0.15961913764476776, -0.07535158097743988, 0.10600589215755463, 0.11649031192064285, -0.0897260457277298, 0.04573167860507965, -0.0797099769115448, -0.017202021554112434, -0.04001209884881973, -0.04203696548938751, 0.2454250007867813, 0.029993459582328796, 0.08597718924283981, -0.09842736274003983, -0.0878104567527771, -0.0007437005988322198, -0.045931123197078705, -0.029726451262831688, 0.02290390431880951, 0.031771156936883926, -0.17451347410678864, 0.038291219621896744, -0.0059226504527032375, 0.09544073045253754, 0.20548148453235626, 0.040980786085128784, -0.08481942117214203, -0.06231497600674629, -0.062389928847551346, -0.003136456711217761, 0.07484521716833115, 0.0025317079853266478, 0.02983992174267769, 0.04156222939491272, 0.057972364127635956, 0.0419294610619545, -0.11403148621320724, 0.009623260237276554, 0.06582508236169815, -0.040314506739377975, -0.05455808714032173, 0.01463107205927372, 0.017188582569360733, 0.08592135459184647, 0.09119680523872375, 0.12530769407749176, -0.059326112270355225, -0.048434723168611526, -0.13973653316497803, 0.13072198629379272, -0.08365050703287125, -0.23362256586551666, -0.13146917521953583, -0.07260408252477646, 0.006755035370588303, 0.010618091560900211, 0.03385394439101219, -0.05303807929158211, -0.037268735468387604, -0.08890339732170105, 0.08915442228317261, -0.05311964824795723, -0.019290048629045486, 0.010949220508337021, 0.019572606310248375, -0.017146334052085876, -0.11664008349180222, -0.02991514839231968, 0.02725633978843689, -0.09420343488454819, -0.008182307705283165, 0.025089602917432785, 0.03986050561070442, 0.1672438383102417, -0.007215287070721388, 0.011931749992072582, -0.02061980590224266, 0.27730706334114075, -0.11637137085199356, 0.07042072713375092, 0.17033569514751434, 0.0008138565463013947, 0.05423225834965706, 0.07505680620670319, 0.00420093210414052, -0.05961747467517853, 0.06522099673748016, 0.07449883222579956, -0.07146705687046051, -0.21425320208072662, -0.03580142557621002, -0.011273565702140331, 0.018868759274482727, 0.11521391570568085, 0.04334760084748268, 0.06069127470254898, 0.011291064321994781, -0.099128857254982, 0.046070147305727005, 0.027069538831710815, 0.10178377479314804, -0.06607276946306229, -0.010090028867125511, 0.049257997423410416, -0.048591259866952896, 0.032435230910778046, 0.12891337275505066, 0.045217715203762054, 0.20767074823379517, -0.06592360138893127, 0.08841713517904282, 0.0808529332280159, 0.11326263099908829, 0.0169781856238842, 0.020747937262058258, -0.015872014686465263, 0.0205067228525877, 0.006346074398607016, -0.08891964703798294, -0.008638967759907246, 0.0350097194314003, 0.03148782253265381, -0.01392432488501072, -0.05160330608487129, -0.06585727632045746, 0.04631016030907631, 0.24059651792049408, 0.023532474413514137, -0.167312890291214, -0.10174674540758133, 0.05471864715218544, -0.06181567162275314, -0.06286133080720901, -0.01685812510550022, 0.064300037920475, -0.21623021364212036, 0.05024552717804909, -0.035240378230810165, 0.10869895666837692, -0.1212720200419426, 0.002347297500818968, 0.07596299052238464, 0.04353989660739899, -0.06492654234170914, 0.09082070738077164, -0.1590948849916458, 0.0688592940568924, -0.0031718339305371046, 0.0794471949338913, -0.06640425324440002, 0.02400508150458336, 0.010536241345107555, 0.050267163664102554, 0.08437921851873398, 0.01808997243642807, 0.03081672266125679, -0.027854491025209427, -0.041047099977731705, -0.0002472770866006613, 0.0641607940196991, -0.10963248461484909, 0.1202966570854187, -0.03631321340799332, 0.03398982435464859, -0.02808685414493084, -0.08083810657262802, -0.0999462902545929, -0.14336919784545898, 0.08958923071622849, -0.11138515174388885, -0.0025780601426959038, -0.06775868684053421, -0.01532355509698391, 0.028052423149347305, 0.244407057762146, -0.07063957303762436, -0.07371167838573456, -0.13989196717739105, 0.005185723304748535, 0.1384986937046051, -0.07690688967704773, 0.005899234674870968, -0.013808077201247215, 0.1767115592956543, -0.0018317126668989658, -0.13411694765090942, -0.005498768296092749, -0.06825811415910721, -0.17234843969345093, -0.019980568438768387, 0.16107822954654694, 0.06367122381925583, 0.029320677742362022, 0.011501426808536053, -0.00617738114669919, -0.046938713639974594, -0.17115862667560577, 0.02861260622739792, 0.14018303155899048, -0.007970962673425674, 0.018270883709192276, 0.034786198288202286, 0.019478345289826393, -0.12545789778232574, 0.019669443368911743, 0.05244668573141098, 0.18323564529418945, -0.07557240128517151, 0.17791198194026947, 0.024701924994587898, -0.09007886797189713, -0.15849581360816956, 0.027703460305929184, 0.014065136201679707, 0.024282634258270264, 0.021362079307436943, -0.18680615723133087, 0.03406306356191635, 0.029672956094145775, -0.009626333601772785, 0.05774657428264618, -0.3471425771713257, -0.146638885140419, 0.00769193097949028, 0.015444179065525532, -0.08981691300868988, -0.03929351642727852, -0.03414049744606018, -0.07643409818410873, -0.25746870040893555, 0.09446092694997787, -0.11102643609046936, 0.08380317687988281, 0.01219144556671381, 0.08517227321863174, 0.046729303896427155, -0.055359747260808945, 0.12492908537387848, -0.023845532909035683, 0.060701966285705566, -0.09333552420139313, -0.05492851510643959, 0.08929488807916641, -0.06467526406049728, 0.1052737906575203, 0.030046118423342705, 0.0894399881362915, -0.11644779145717621, -0.07786263525485992, -0.08355645835399628, 0.010720980353653431, -0.06097012013196945, -0.10107254981994629, -0.08716124296188354, 0.09212049841880798, 0.12280567735433578, -0.03595452755689621, -0.10053347796201706, -0.05011884495615959, -0.0011940501863136888, 0.06758177280426025, 0.10079075396060944, 0.08099231868982315, -0.08536799997091293, 0.007961662486195564, 0.014498572796583176, 0.021216947585344315, -0.17016716301441193, 0.04380111023783684, 0.08615289628505707, 0.04109376296401024, 0.10510751605033875, 0.012692124582827091, -0.16494685411453247, 0.005092662759125233, 0.04595479369163513, -0.16540047526359558, -0.11559439450502396, -0.04172375798225403, 0.0080160703510046, -0.09832902997732162, -0.03723055124282837, 0.13752856850624084, -0.0336834080517292, -0.03617652505636215, 0.004718510899692774, 0.04921206831932068, -0.05207693949341774, 0.09626130759716034, 0.015505488030612469, 0.045564915984869, -0.06539158523082733, 0.11650409549474716, 0.06861161440610886, 0.027630722150206566, 0.03686797618865967, 0.06349437683820724, -0.08839896321296692, 0.0012398511171340942, -0.08733909577131271, 0.010735499672591686, -0.037675123661756516, -0.011761507019400597, 0.009035242721438408, -0.040002722293138504, 0.03389282897114754, 0.07722411304712296, -0.0165387112647295, 0.10363492369651794, -0.038681212812662125, 0.0026700785383582115, -0.13697518408298492, 0.0689910426735878, 0.04439857229590416, 0.021681392565369606, -0.115953728556633, 0.19583949446678162, 0.02542254887521267, 0.09844127297401428, -0.03852921351790428, -0.06105446442961693, -0.07173730432987213, -0.008344222791492939, -0.09993761777877808, -0.05191702023148537, -0.09096013754606247, -0.029593683779239655, -0.008706803433597088, -0.041218556463718414, -0.02306356467306614, 0.04587110877037048, -0.034586261957883835, -0.060262665152549744, -0.06310112774372101, 0.04519683122634888, -0.1389899104833603, 0.027326853945851326, 0.11441511660814285, -0.057123493403196335, 0.12147553265094757, 0.055698804557323456, -0.030961405485868454, 0.023249570280313492, -0.1188412681221962, 0.03627508133649826, -0.02923683263361454, 0.013338243588805199, 0.02483382262289524, -0.1470683217048645, 0.007402380928397179, -0.048628535121679306, -0.06037198007106781, 0.006964001338928938, -0.002302031498402357, -0.12920606136322021, -0.0010060836793854833, 0.06633627414703369, -0.017595523968338966, -0.07185913622379303, 0.0700170174241066, 0.05751491338014603, 0.0217286329716444, 0.05852663889527321, -0.027396969497203827, 0.07902286946773529, -0.1702016294002533, -0.05088024586439133, 0.009430641308426857, 0.025737326592206955, 0.04066520929336548, -0.010136213153600693, 0.036089129745960236, -0.022214557975530624, 0.18424946069717407, 0.008416911587119102, -0.014936705119907856, 0.03339839354157448, -0.06188557669520378, -0.0021412959322333336, 0.04073876887559891, 0.07195454090833664, -0.039195746183395386, -0.03470697999000549, -0.008378371596336365, -0.012331463396549225, -0.08690010011196136, -0.03027438558638096, 0.1051834374666214, 0.04994284361600876, 0.173516184091568, -0.043857086449861526, 0.06309762597084045, -0.026707865297794342, -0.12598706781864166, -0.006144600920379162, -0.04657703638076782, 0.041126251220703125, -0.0663764625787735, 0.05988065153360367, 0.17748668789863586, -0.16182585060596466, 0.11516927182674408, 0.022697769105434418, -0.06042170897126198, -0.10707754641771317, -0.18882019817829132, -0.01356479898095131, -0.04441171884536743, 0.035657159984111786, -0.13428406417369843, 0.08845649659633636, 0.024534501135349274, 0.03415362536907196, -0.06967581063508987, 0.12657490372657776, -0.06035678833723068, -0.1140904575586319, 0.03551339730620384, 0.023098232224583626, 0.02543400041759014, 0.036479294300079346, 0.07684151083230972, 0.019955158233642578, 0.0076169660314917564, 0.07170182466506958, 0.03683892637491226, 0.024790726602077484, 0.03566810116171837, -0.019959012046456337, -0.04979657009243965, 0.0302690751850605, 0.0033410019241273403, 0.03229677304625511, 0.0947585180401802, 0.06415155529975891, -0.024718699976801872, -0.0281935203820467, 0.30417782068252563, -0.035569775849580765, -0.037359826266765594, -0.1761910319328308, 0.1698780208826065, 0.012622333131730556, -0.012756689451634884, 0.024199562147259712, -0.12534576654434204, 0.005846505984663963, 0.14450886845588684, 0.171245276927948, -0.030666306614875793, 0.01549613755196333, -0.03216720372438431, 0.014240319840610027, 0.0358111634850502, 0.09657619893550873, 0.06149979308247566, 0.19491474330425262, -0.040207430720329285, 0.05315915495157242, -0.005213114432990551, -0.01742776483297348, -0.004671549890190363, 0.11197766661643982, -0.029003413394093513, 0.0072479331865906715, -0.060729313641786575, 0.10270832479000092, -0.05467285215854645, -0.2663811445236206, -0.01744532585144043, -0.03206286579370499, -0.09479878842830658, 0.05719713866710663, -0.03128054738044739, -0.028788050636649132, 0.09264254570007324, 0.018090203404426575, -0.03976037725806236, 0.1306343674659729, 0.042799025774002075, -0.04665306955575943, -0.018804624676704407, 0.09868661314249039, -0.02071109227836132, 0.19251850247383118, -0.026557831093668938, 0.0033708172850310802, 0.08497712761163712, 0.017517568543553352, -0.12172596901655197, 0.004449787549674511, 0.04078802466392517, -0.06830098479986191, -0.025820376351475716, 0.1955164074897766, 0.00978318601846695, 0.03617588058114052, 0.06405868381261826, -0.07090352475643158, 0.021829165518283844, -0.051094695925712585, 0.058648206293582916, -0.14666838943958282, 0.060115352272987366, -0.08110453188419342, 0.13950665295124054, 0.18101470172405243, -0.07136405259370804, 0.02379368059337139, -0.06349225342273712, 0.008249536156654358, -0.022797686979174614, 0.07505851238965988, -0.024325232952833176, -0.11089210957288742, 0.015059947967529297, 0.020189128816127777, 0.02437604032456875, -0.18632008135318756, -0.0738857090473175, 0.05991455540060997, -0.049706947058439255, 0.014730431139469147, 0.17741523683071136, 0.03555203229188919, 0.0610051304101944, -0.031556885689496994, -0.010227612219750881, -0.017947357147932053, 0.116437628865242, -0.15668891370296478, -0.08540423959493637 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c56dce03a151e17a9626e55e6c295bb1.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">5opka</div> <a href="https://genius.com/artists/5opka"> <div style="text-align: center; font-size: 14px;">@5opka</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 5opka. Dataset is available [here](https://huggingface.co/datasets/huggingartists/5opka). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/5opka") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1o2s4fw8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 5opka's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3vitposx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3vitposx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/5opka') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/5opka") model = AutoModelWithLMHead.from_pretrained("huggingartists/5opka") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/5opka"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/5opka
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/5opka", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/5opka #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">5opka</div> <a href="URL <div style="text-align: center; font-size: 14px;">@5opka</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from 5opka. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on 5opka's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 5opka.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 5opka's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/5opka #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 5opka.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 5opka's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/5opka #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from 5opka.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 5opka's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01624351739883423, 0.15917514264583588, -0.002932946663349867, 0.03881147876381874, 0.09610405564308167, 0.008735251612961292, 0.09072903543710709, 0.1005370169878006, -0.009102143347263336, 0.07462597638368607, 0.07627878338098526, 0.005186198744922876, 0.07124637067317963, 0.11462953686714172, 0.08048665523529053, -0.26336467266082764, 0.02869967743754387, -0.09093699604272842, 0.003856227733194828, 0.11776742339134216, 0.10082171857357025, -0.053953446447849274, 0.0837094634771347, 0.039303991943597794, -0.06950870901346207, 0.022250168025493622, 0.002489310223609209, -0.07003693282604218, 0.08537859469652176, 0.06857389956712723, 0.03370947018265724, 0.020218946039676666, 0.06334010511636734, -0.18567238748073578, 0.030045440420508385, 0.1252061426639557, 0.03177991881966591, 0.06996381282806396, 0.0457717627286911, -0.0772121399641037, 0.1755349338054657, -0.019816163927316666, 0.09710106998682022, 0.042660243809223175, -0.11403090506792068, -0.14821581542491913, -0.12513047456741333, 0.09519314020872116, 0.10487698018550873, 0.0915304571390152, -0.02997482381761074, 0.04635685309767723, -0.01739008165895939, 0.04631340131163597, 0.23803342878818512, -0.24242423474788666, -0.01952744834125042, 0.0852154940366745, 0.0316845178604126, 0.03368573263287544, -0.07331662625074387, 0.015151428058743477, 0.047645267099142075, 0.023723632097244263, 0.046039652079343796, -0.017928719520568848, 0.20182211697101593, 0.02042769081890583, -0.09871989488601685, -0.08738880604505539, 0.12762413918972015, -0.02759149856865406, -0.0737529918551445, -0.14032553136348724, 0.0015344605781137943, -0.02097310870885849, 0.03786946088075638, -0.005949017126113176, -0.006720703560858965, 0.0031835935078561306, -0.03436242789030075, -0.10181901603937149, -0.0933636799454689, -0.026489023119211197, -0.015182188712060452, 0.07110849022865295, 0.029458340257406235, 0.03687433525919914, -0.0846288725733757, 0.2272200882434845, -0.025959083810448647, -0.10167625546455383, -0.05098440870642662, -0.09418904781341553, -0.0853569358587265, -0.056060947477817535, 0.006890640128403902, 0.007205728441476822, -0.05861430987715721, 0.15378542244434357, -0.03216201066970825, 0.03551478311419487, -0.001000264543108642, -0.01577465794980526, 0.14667212963104248, 0.13010981678962708, -0.10008924454450607, -0.026479212567210197, 0.05363672971725464, -0.014917802065610886, -0.06358722597360611, -0.05644174665212631, -0.008797090500593185, -0.022067075595259666, 0.0344519279897213, 0.08600351959466934, 0.05274135246872902, 0.05715341493487358, 0.024077771231532097, -0.060760557651519775, 0.08267317712306976, -0.14200380444526672, 0.00995787512511015, -0.009350926615297794, -0.03951293230056763, 0.025273708626627922, 0.04582272842526436, 0.01058407872915268, -0.1089211106300354, 0.12320718169212341, -0.055811140686273575, -0.04835090786218643, -0.07747641950845718, -0.07963091880083084, -0.004158664960414171, -0.020389994606375694, -0.04095805436372757, -0.07279934734106064, -0.16808496415615082, -0.0406918041408062, 0.0327472984790802, -0.04516345635056496, -0.04740522801876068, 0.035509999841451645, -0.026062728837132454, 0.008193375542759895, -0.01706909015774727, -0.02271314710378647, -0.029891323298215866, 0.026501186192035675, -0.060338094830513, 0.026996923610568047, 0.07540354132652283, 0.041213732212781906, -0.10986465215682983, 0.07172445207834244, -0.1646045446395874, 0.12793242931365967, -0.008815600536763668, 0.012502462603151798, -0.10002656280994415, -0.0958600640296936, -0.02669016271829605, -0.03266521170735359, -0.002449135761708021, 0.0975194051861763, -0.17755480110645294, -0.03533456102013588, 0.19593259692192078, -0.07965879142284393, -0.07646232843399048, 0.06615015119314194, -0.07489268481731415, 0.032379940152168274, 0.13219548761844635, 0.0664723590016365, 0.17048166692256927, -0.10588844865560532, -0.06618880480527878, -0.043770477175712585, -0.05905303731560707, 0.20541761815547943, 0.04726986587047577, -0.01299442257732153, 0.011198350228369236, 0.012271386571228504, -0.04228382557630539, -0.027998169884085655, -0.016404159367084503, -0.041807133704423904, -0.018559353426098824, 0.010396570898592472, -0.008230295032262802, -0.04381934180855751, -0.06448725610971451, -0.028137963265180588, -0.1040140837430954, 0.03608943149447441, 0.10293140262365341, -0.07050509005784988, 0.008488113060593605, -0.09192212671041489, 0.008849667385220528, -0.028954816982150078, 0.013026725500822067, -0.17964251339435577, -0.04754743352532387, 0.018913226202130318, -0.06285721808671951, 0.08348873257637024, 0.0320301428437233, 0.038765184581279755, 0.05615048483014107, -0.017244253307580948, 0.017669478431344032, -0.04784424975514412, -0.02214060164988041, -0.02459593489766121, -0.14522667229175568, -0.058165691792964935, -0.045070234686136246, 0.08454550802707672, -0.12623904645442963, 0.00495158089324832, 0.09684757143259048, 0.12371674180030823, 0.019209833815693855, -0.06309579312801361, 0.014058755710721016, -0.03872405365109444, -0.03069751150906086, -0.1090007871389389, -0.05723629146814346, 0.012299023568630219, -0.026785966008901596, 0.14942485094070435, -0.17273035645484924, -0.07754798978567123, 0.10029955208301544, 0.14475929737091064, -0.10172885656356812, 0.03562556952238083, -0.07962847501039505, -0.01287049800157547, -0.05432821065187454, -0.033917106688022614, 0.2647113502025604, 0.03201037645339966, 0.07866320013999939, -0.1055794432759285, -0.09562122076749802, -0.0018524876795709133, -0.04555121436715126, -0.02751101925969124, 0.02520156279206276, 0.02640293352305889, -0.17672616243362427, 0.033702168613672256, -0.00553318252786994, 0.09871483594179153, 0.20946307480335236, 0.04307883232831955, -0.09123639762401581, -0.060849204659461975, -0.07123924046754837, -0.0017804396338760853, 0.06306660175323486, 0.010485930368304253, 0.03079446777701378, 0.042044926434755325, 0.0560007207095623, 0.03985268995165825, -0.11464491486549377, 0.012707320041954517, 0.07601073384284973, -0.042811863124370575, -0.05098253861069679, 0.014463995583355427, 0.02089458517730236, 0.08260110020637512, 0.08534719794988632, 0.14032688736915588, -0.06432214379310608, -0.04752064123749733, -0.14685913920402527, 0.13664481043815613, -0.07686188071966171, -0.2521829605102539, -0.13482947647571564, -0.07131964713335037, 0.016493432223796844, 0.007406848482787609, 0.033811990171670914, -0.053976502269506454, -0.04369637742638588, -0.09333928674459457, 0.0818285197019577, -0.056754086166620255, -0.017030471935868263, 0.011408335529267788, 0.02346259169280529, -0.021043550223112106, -0.10444843769073486, -0.029905207455158234, 0.039041634649038315, -0.10016296803951263, -0.012292260304093361, 0.03298099339008331, 0.027534963563084602, 0.1606362909078598, -0.014099348336458206, 0.005782292224466801, -0.02406720258295536, 0.2814263701438904, -0.12027852982282639, 0.06354954838752747, 0.16268758475780487, -0.017630556598305702, 0.056106410920619965, 0.07697984576225281, 0.0024208631366491318, -0.06178997829556465, 0.07200435549020767, 0.07200241833925247, -0.08548421412706375, -0.21829816699028015, -0.03033609129488468, -0.012794291600584984, 0.020151643082499504, 0.1262354701757431, 0.05141269043087959, 0.04425084590911865, 0.012715199030935764, -0.10662774741649628, 0.04541828855872154, 0.029131019487977028, 0.10188449919223785, -0.06012280285358429, -0.01045208889991045, 0.048839643597602844, -0.059857502579689026, 0.030607720836997032, 0.13197530806064606, 0.034269195050001144, 0.20962512493133545, -0.06911659240722656, 0.08121880143880844, 0.07353173941373825, 0.10402822494506836, 0.030733773484826088, 0.019785184413194656, -0.01375217642635107, 0.016514170914888382, 0.0031198894139379263, -0.09392835944890976, -0.014112785458564758, 0.04253222048282623, 0.031219862401485443, -0.02334221825003624, -0.04509624466300011, -0.05285581946372986, 0.037654418498277664, 0.24049672484397888, 0.006910765077918768, -0.16664989292621613, -0.10517199337482452, 0.04973243549466133, -0.07246443629264832, -0.061758626252412796, -0.01560470461845398, 0.07439320534467697, -0.21913813054561615, 0.07529148459434509, -0.029845330864191055, 0.1086757704615593, -0.11634580790996552, -0.0028598648495972157, 0.08371582627296448, 0.03947174921631813, -0.06210964545607567, 0.09871090203523636, -0.17243768274784088, 0.06186925992369652, -0.009580472484230995, 0.07663726806640625, -0.0754920020699501, 0.029872030019760132, 0.0034393116366118193, 0.04914691299200058, 0.08186426013708115, 0.01991243287920952, 0.008698051795363426, 0.004638614133000374, -0.04325323551893234, 0.008175517432391644, 0.05907300487160683, -0.11664233356714249, 0.12194529920816422, -0.03171020373702049, 0.03717667981982231, -0.038629624992609024, -0.09410470724105835, -0.08677645772695541, -0.16247421503067017, 0.0884573832154274, -0.12074849754571915, -0.005098859779536724, -0.07037670910358429, -0.02122878096997738, 0.03859541192650795, 0.24665693938732147, -0.054866962134838104, -0.08025112003087997, -0.13301968574523926, 0.007721809670329094, 0.14003673195838928, -0.08094518631696701, 0.009172608144581318, -0.01130018662661314, 0.19976375997066498, 0.004651722032576799, -0.128220796585083, -0.02369779348373413, -0.06185044348239899, -0.169923335313797, -0.002131627406924963, 0.17521540820598602, 0.060676395893096924, 0.027709364891052246, 0.00718888221308589, -0.005956597160547972, -0.04593396931886673, -0.17491523921489716, 0.021954551339149475, 0.1535501778125763, -0.009442402049899101, 0.01822565495967865, 0.051250260323286057, 0.019727664068341255, -0.13070066273212433, 0.014695817604660988, 0.050524286925792694, 0.1715543270111084, -0.07349938154220581, 0.18338696658611298, 0.019301127642393112, -0.0912669375538826, -0.15230180323123932, 0.018781239166855812, 0.029129942879080772, 0.03519553691148758, 0.03617674112319946, -0.20007148385047913, 0.0388987734913826, 0.031966399401426315, -0.0008771498105488718, 0.05522756651043892, -0.3294193744659424, -0.15308275818824768, 0.0027263350784778595, 0.004791301675140858, -0.11037995666265488, -0.03363083302974701, -0.033093053847551346, -0.08675412833690643, -0.2514970898628235, 0.09793087095022202, -0.10698753595352173, 0.07734262198209763, 0.019577549770474434, 0.09949728846549988, 0.04770589619874954, -0.04994778707623482, 0.13042844831943512, -0.029150230810046196, 0.0608166866004467, -0.10027754306793213, -0.05287379026412964, 0.07592757791280746, -0.06914867460727692, 0.0989617258310318, 0.026377752423286438, 0.08650796860456467, -0.10625016689300537, -0.08650383353233337, -0.07271011173725128, 0.004068790003657341, -0.05877913907170296, -0.08835297077894211, -0.0971207469701767, 0.08288134634494781, 0.1210334450006485, -0.04237668216228485, -0.10041098296642303, -0.056854795664548874, -0.0013035295996814966, 0.051418546587228775, 0.11700020730495453, 0.07616517692804337, -0.08380284160375595, 0.0030136713758111, 0.02017858810722828, 0.01944645494222641, -0.17719534039497375, 0.046031199395656586, 0.08768846839666367, 0.04129840061068535, 0.10332771390676498, 0.00755710294470191, -0.16402442753314972, 0.0005584022146649659, 0.050756391137838364, -0.17231491208076477, -0.12429302930831909, -0.04725243151187897, 0.021096009761095047, -0.1068948432803154, -0.05375588312745094, 0.1348772644996643, -0.04130605235695839, -0.036128684878349304, 0.0034031704999506474, 0.04425900802016258, -0.048794228583574295, 0.09490552544593811, -0.0014218162978067994, 0.04416609928011894, -0.06906445324420929, 0.11576273292303085, 0.0676380842924118, 0.014998072758316994, 0.04227277636528015, 0.06575530767440796, -0.08829713612794876, 0.01120529044419527, -0.09121439605951309, 0.00857708603143692, -0.024716367945075035, -0.01797086000442505, 0.019331080839037895, -0.04220320284366608, 0.04477152228355408, 0.07765637338161469, -0.014371261931955814, 0.11005432158708572, -0.040700215846300125, 0.011004595085978508, -0.13257023692131042, 0.06532283872365952, 0.043379802256822586, 0.020681830123066902, -0.11868207156658173, 0.19790281355381012, 0.031706199049949646, 0.10109824687242508, -0.035073328763246536, -0.05979738011956215, -0.05930730700492859, -0.007292402908205986, -0.08415228128433228, -0.041939619928598404, -0.09606501460075378, -0.025659531354904175, -0.0028233954217284918, -0.03292384743690491, -0.0308125838637352, 0.0471537709236145, -0.03358509764075279, -0.05750124529004097, -0.0762743204832077, 0.04112665727734566, -0.1309017539024353, 0.04181951284408569, 0.11860472708940506, -0.05956796184182167, 0.12128227204084396, 0.06035112962126732, -0.03850552812218666, 0.029724273830652237, -0.11721023172140121, 0.04280246049165726, -0.014565860852599144, 0.015762541443109512, 0.01569403149187565, -0.15895187854766846, 0.010180694051086903, -0.037873975932598114, -0.061022259294986725, 0.006063274573534727, -0.011838908307254314, -0.13370618224143982, -0.005134134087711573, 0.0845724493265152, -0.020960012450814247, -0.07045499980449677, 0.06789977848529816, 0.056210849434137344, 0.024471912533044815, 0.06341958045959473, -0.020483357831835747, 0.07840723544359207, -0.1684129536151886, -0.05283260717988014, 0.003419202286750078, 0.03303936496376991, 0.047194864600896835, -0.014237006194889545, 0.03855421021580696, -0.02308773808181286, 0.19556985795497894, 0.018828004598617554, -0.019209301099181175, 0.03929230198264122, -0.06650903075933456, 0.0052682082168757915, 0.04533693194389343, 0.07834435254335403, -0.03238317370414734, -0.041089631617069244, -0.0022628868464380503, -0.02208774909377098, -0.09422892332077026, -0.03015313856303692, 0.11478202790021896, 0.027949629351496696, 0.1887422800064087, -0.05060436204075813, 0.05944792181253433, -0.016658972948789597, -0.11623647063970566, -0.016383778303861618, -0.04308988153934479, 0.039122894406318665, -0.05743410810828209, 0.05173492431640625, 0.18874463438987732, -0.16255085170269012, 0.11952187865972519, 0.020439179614186287, -0.06134643033146858, -0.11858075112104416, -0.19713345170021057, -0.019689975306391716, -0.04255612567067146, 0.03161890059709549, -0.1401711255311966, 0.09285064041614532, 0.03008246049284935, 0.03600579872727394, -0.06974271684885025, 0.13356995582580566, -0.07707436382770538, -0.12509235739707947, 0.04050324112176895, 0.024928851053118706, 0.03248915076255798, 0.049977682530879974, 0.08515346050262451, 0.024467216804623604, 0.0028677163645625114, 0.07115981727838516, 0.03936988115310669, 0.030158616602420807, 0.03280619904398918, -0.02278873883187771, -0.03770199418067932, 0.032101720571517944, -0.005780290346592665, 0.035084258764982224, 0.09894753247499466, 0.0598694384098053, -0.019116271287202835, -0.024562396109104156, 0.3083067536354065, -0.03555035963654518, -0.043920181691646576, -0.1899656355381012, 0.15700089931488037, 0.008118885569274426, -0.013017156161367893, 0.02713252790272236, -0.11711837351322174, 0.013509954325854778, 0.1290861815214157, 0.15398237109184265, -0.010655402205884457, 0.023377880454063416, -0.03438748046755791, 0.018562274053692818, 0.03641374036669731, 0.10157596319913864, 0.0633682906627655, 0.19942660629749298, -0.033866990357637405, 0.050418246537446976, -0.012977809645235538, -0.016816405579447746, -0.004391769878566265, 0.10440563410520554, -0.034838877618312836, 0.003575349925085902, -0.05268072709441185, 0.10548938810825348, -0.050730522722005844, -0.2747289538383484, -0.02998819574713707, -0.025063445791602135, -0.09601786732673645, 0.07012082636356354, -0.025957757607102394, -0.02385035902261734, 0.087716244161129, 0.02560632862150669, -0.05123276263475418, 0.1428796797990799, 0.05349299684166908, -0.047145772725343704, -0.014211932197213173, 0.1083943247795105, -0.01451443787664175, 0.1716873049736023, -0.02361922152340412, 0.009009975008666515, 0.07675685733556747, 0.019696898758411407, -0.12226689606904984, 0.0033800769597291946, 0.03874211385846138, -0.06363234668970108, -0.024544743821024895, 0.20228956639766693, 0.008044994436204433, 0.022847628220915794, 0.06754499673843384, -0.056674472987651825, 0.016180500388145447, -0.039335232228040695, 0.07193756848573685, -0.14356453716754913, 0.06636528670787811, -0.08737077564001083, 0.12594884634017944, 0.18898488581180573, -0.06879797577857971, 0.026290182024240494, -0.060689423233270645, 0.011003054678440094, -0.02752753719687462, 0.07661759853363037, -0.016932398080825806, -0.11481551826000214, 0.005767727270722389, 0.03269073739647865, 0.01898665726184845, -0.1758265346288681, -0.07032252848148346, 0.07422240823507309, -0.05213392525911331, 0.020956063643097878, 0.17390255630016327, 0.017646415159106255, 0.06067587435245514, -0.03806375712156296, -0.010069094598293304, -0.012795370072126389, 0.11454042792320251, -0.16597965359687805, -0.08349763602018356 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b2b164a7c6c02dd0843ad597df5dbf4b.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">6ix9ine</div> <a href="https://genius.com/artists/6ix9ine"> <div style="text-align: center; font-size: 14px;">@6ix9ine</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 6ix9ine. Dataset is available [here](https://huggingface.co/datasets/huggingartists/6ix9ine). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/6ix9ine") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/eqmcaj0r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 6ix9ine's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/s5dpg3h2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/s5dpg3h2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/6ix9ine') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/6ix9ine") model = AutoModelWithLMHead.from_pretrained("huggingartists/6ix9ine") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/6ix9ine"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/6ix9ine
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/6ix9ine", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/6ix9ine #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">6ix9ine</div> <a href="URL <div style="text-align: center; font-size: 14px;">@6ix9ine</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from 6ix9ine. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on 6ix9ine's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 6ix9ine.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 6ix9ine's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/6ix9ine #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from 6ix9ine.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 6ix9ine's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/6ix9ine #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from 6ix9ine.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on 6ix9ine's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03459798917174339, 0.14935903251171112, -0.0023226668126881123, 0.045344118028879166, 0.10635260492563248, 0.013518325053155422, 0.09017656743526459, 0.11513058096170425, 0.017073074355721474, 0.07827988266944885, 0.07746138423681259, 0.03628626465797424, 0.06775037944316864, 0.09604495018720627, 0.07280506938695908, -0.2340620756149292, 0.037061210721731186, -0.08137861639261246, 0.00878642126917839, 0.10646402090787888, 0.09183429926633835, -0.06032044067978859, 0.0805949792265892, 0.026196330785751343, -0.0813862532377243, 0.0131307914853096, 0.009565816260874271, -0.05988122895359993, 0.098533496260643, 0.06227108836174011, 0.03154558315873146, 0.029690833762288094, 0.06788689643144608, -0.1796048879623413, 0.029647216200828552, 0.12773244082927704, 0.031938955187797546, 0.08046594262123108, 0.041059236973524094, -0.07569802552461624, 0.13527578115463257, -0.016904136165976524, 0.08902044594287872, 0.05777248740196228, -0.11926326155662537, -0.12873752415180206, -0.13912487030029297, 0.10119485855102539, 0.09420038014650345, 0.086615189909935, -0.02694566175341606, 0.07661640644073486, -0.024086717516183853, 0.04509326070547104, 0.23500186204910278, -0.24661937355995178, -0.009915266185998917, 0.09410686790943146, 0.06072701886296272, 0.021877100691199303, -0.08280598372220993, 0.01792149245738983, 0.04851825162768364, 0.030023636296391487, 0.035364024341106415, -0.024839168414473534, 0.16069184243679047, 0.015539792366325855, -0.09964441508054733, -0.07727422565221786, 0.11527208983898163, -0.01771465316414833, -0.08026912808418274, -0.12825366854667664, -0.003914819564670324, -0.03229594975709915, 0.035878706723451614, 0.006462995894253254, -0.0036942949518561363, 0.003880696836858988, -0.03875305503606796, -0.11436086148023605, -0.07928378880023956, -0.04110527038574219, -0.005031795706599951, 0.05839318782091141, 0.04107214882969856, 0.03429450839757919, -0.08506027609109879, 0.22511987388134003, -0.032761674374341965, -0.09391818195581436, -0.054385535418987274, -0.09898003935813904, -0.08670369535684586, -0.042392998933792114, 0.005866160616278648, -0.0011260909959673882, -0.04501185566186905, 0.1505119949579239, -0.04429859295487404, 0.027930796146392822, -0.019584039226174355, 0.00613761181011796, 0.13637319207191467, 0.12879449129104614, -0.11280880868434906, -0.03364647924900055, 0.07005177438259125, 0.0027653039433062077, -0.06632692366838455, -0.05304177850484848, -0.011244362220168114, -0.018003154546022415, 0.0458306148648262, 0.07957480847835541, 0.0716838389635086, 0.06562962383031845, 0.01220675464719534, -0.06157257780432701, 0.0779552087187767, -0.12264057248830795, 0.010792119428515434, -0.011188945733010769, -0.05192623287439346, 0.016140595078468323, 0.06944719702005386, 0.00988707784563303, -0.1043321043252945, 0.10594581067562103, -0.07015445083379745, -0.05453465133905411, -0.07922755181789398, -0.09971064329147339, -0.005792563781142235, -0.05772325024008751, -0.033256202936172485, -0.07695852965116501, -0.17977061867713928, -0.0436457060277462, 0.024588793516159058, -0.048660758882761, -0.03119843080639839, 0.03003053180873394, -0.034042973071336746, 0.011773957870900631, -0.021593697369098663, -0.03825150057673454, -0.028393708169460297, 0.031038928776979446, -0.06398963183164597, 0.03366033360362053, 0.04848809540271759, 0.044998571276664734, -0.11552385985851288, 0.07461307942867279, -0.14078770577907562, 0.10875208675861359, -0.016153717413544655, 0.013321655802428722, -0.09964609891176224, -0.08420348167419434, -0.024720167741179466, -0.02813025936484337, 0.022948598489165306, 0.10634094476699829, -0.16613571345806122, -0.028525540605187416, 0.2009059637784958, -0.07004480063915253, -0.08405859023332596, 0.06373251974582672, -0.06644796580076218, 0.04819242283701897, 0.11413513123989105, 0.08660774677991867, 0.15600749850273132, -0.11159636825323105, -0.07641543447971344, -0.04878430813550949, -0.06812438368797302, 0.16464629769325256, 0.030193127691745758, -0.022999746724963188, 0.03353918716311455, 0.005761656444519758, -0.024553688243031502, -0.011536012403666973, -0.027790889143943787, -0.03251828998327255, -0.02596687711775303, -0.008761314675211906, -0.00448210071772337, -0.036529261618852615, -0.05541621893644333, -0.02595740370452404, -0.09808021783828735, 0.06186244636774063, 0.10439694672822952, -0.06640587747097015, 0.015985282137989998, -0.09346150606870651, 0.029195599257946014, -0.04481806606054306, 0.014078451320528984, -0.17315426468849182, -0.04404490813612938, 0.021596428006887436, -0.05981380119919777, 0.07883810251951218, 0.03490766882896423, 0.03938539698719978, 0.06827891618013382, -0.013936332426965237, -0.006609895266592503, -0.0433838814496994, -0.007241162471473217, -0.038369931280612946, -0.16751410067081451, -0.05504002422094345, -0.04676063731312752, 0.07984951138496399, -0.11466947942972183, 0.0065710898488759995, 0.07395370304584503, 0.13077299296855927, 0.01933414861559868, -0.06966846436262131, 0.03208664432168007, -0.03555051237344742, -0.03349846601486206, -0.10719633847475052, -0.03822140023112297, 0.008709371089935303, -0.018611202016472816, 0.15567627549171448, -0.16342514753341675, -0.09443015605211258, 0.11601802706718445, 0.11733972281217575, -0.09525685757398605, 0.054893817752599716, -0.07498364895582199, -0.021109264343976974, -0.03800330311059952, -0.0506695955991745, 0.2578487694263458, 0.029287777841091156, 0.09480269253253937, -0.09065427631139755, -0.07954832166433334, 0.004051931668072939, -0.041393011808395386, -0.02862212061882019, 0.031205981969833374, 0.030381308868527412, -0.1636974811553955, 0.041049372404813766, -0.006898034363985062, 0.0941285490989685, 0.19819386303424835, 0.04248775914311409, -0.08520985394716263, -0.05687133967876434, -0.06809284538030624, 0.0011960213305428624, 0.08983460068702698, -0.001857991679571569, 0.02594686672091484, 0.0372060164809227, 0.05462329834699631, 0.04347927123308182, -0.115086629986763, 0.010888472199440002, 0.06194106489419937, -0.03118818998336792, -0.05370236560702324, 0.020192813128232956, 0.01927229017019272, 0.08908979594707489, 0.08225730061531067, 0.11432865262031555, -0.05662884563207626, -0.04939226061105728, -0.13972775638103485, 0.13916510343551636, -0.08877403289079666, -0.21818752586841583, -0.13079971075057983, -0.06067214161157608, 0.005648284684866667, 0.01134276483207941, 0.04012758657336235, -0.05376718193292618, -0.03707936406135559, -0.09454485774040222, 0.0828259140253067, -0.048682719469070435, -0.014221834018826485, 0.0023354387376457453, 0.01572512276470661, -0.010927029885351658, -0.12279271334409714, -0.0330849327147007, 0.02352043241262436, -0.08733455091714859, 0.000069016357883811, 0.028785720467567444, 0.04139552637934685, 0.1587648093700409, -0.010324868373572826, 0.009664898738265038, -0.019500335678458214, 0.2704305052757263, -0.10743645578622818, 0.06550752371549606, 0.17278887331485748, 0.001689800526946783, 0.052986204624176025, 0.06720538437366486, 0.00022305958555079997, -0.06323497742414474, 0.061684511601924896, 0.07124419510364532, -0.07548817247152328, -0.21083945035934448, -0.03515888378024101, -0.01301325298845768, 0.01969895139336586, 0.11727502942085266, 0.03824342042207718, 0.05983160436153412, 0.013772270642220974, -0.10005072504281998, 0.054963137954473495, 0.01112350169569254, 0.10436487942934036, -0.07185406237840652, -0.012203630059957504, 0.04900650307536125, -0.049283403903245926, 0.04046773165464401, 0.11838512122631073, 0.04421485215425491, 0.21537527441978455, -0.07260377705097198, 0.07544446736574173, 0.08481130003929138, 0.10864416509866714, 0.01998891867697239, 0.028606941923499107, -0.024311933666467667, 0.01764737442135811, 0.006225431337952614, -0.09097166359424591, -0.011694171465933323, 0.03900042921304703, 0.024906594306230545, -0.007615836337208748, -0.06431128829717636, -0.06335944682359695, 0.04402327910065651, 0.23435713350772858, 0.03428748622536659, -0.16887477040290833, -0.10898900032043457, 0.05199883133172989, -0.04564613848924637, -0.06244978308677673, -0.014548071660101414, 0.07076874375343323, -0.20937827229499817, 0.0380055196583271, -0.034254781901836395, 0.11146862804889679, -0.11598735302686691, 0.006327775772660971, 0.06450683623552322, 0.04041833430528641, -0.06691480427980423, 0.07887224107980728, -0.15161359310150146, 0.08586353063583374, -0.0001924203388625756, 0.07903806865215302, -0.06391046196222305, 0.018657663837075233, 0.01952395588159561, 0.0424535796046257, 0.08623722195625305, 0.019768767058849335, 0.027066543698310852, -0.04484977945685387, -0.033212728798389435, -0.0016794921830296516, 0.060716282576322556, -0.08874807506799698, 0.1264420747756958, -0.033553943037986755, 0.03247147426009178, -0.022206727415323257, -0.08514988422393799, -0.10445788502693176, -0.13627293705940247, 0.08083397895097733, -0.09947473555803299, -0.004535887856036425, -0.06806279718875885, -0.015457937493920326, 0.027308369055390358, 0.23791567981243134, -0.07817205041646957, -0.07121792435646057, -0.13530997931957245, 0.006125269923359156, 0.14100001752376556, -0.07618140429258347, 0.0013075779424980283, -0.01299652922898531, 0.16328150033950806, -0.00405592517927289, -0.13381189107894897, 0.0022276202216744423, -0.07264452427625656, -0.17409542202949524, -0.027755770832300186, 0.1537467986345291, 0.05650027096271515, 0.032700635492801666, 0.00658777728676796, 0.0002724845544435084, -0.04511408507823944, -0.16987547278404236, 0.03709902986884117, 0.14083236455917358, 0.008064639754593372, 0.025088470429182053, 0.0251552015542984, 0.026462245732545853, -0.12067944556474686, 0.01687859185039997, 0.05376891419291496, 0.1995680183172226, -0.0790352076292038, 0.1706186980009079, 0.020000537857413292, -0.09080701321363449, -0.17367962002754211, 0.03678189590573311, 0.0040670945309102535, 0.023714639246463776, 0.018787644803524017, -0.1753755807876587, 0.029111767187714577, 0.01741492934525013, -0.004739217925816774, 0.058710239827632904, -0.34847840666770935, -0.152274951338768, 0.016061877831816673, 0.01963057741522789, -0.07581464946269989, -0.043275136500597, -0.033667970448732376, -0.07285353541374207, -0.24808917939662933, 0.08657268434762955, -0.12174414843320847, 0.09138689190149307, 0.003294360125437379, 0.07596881687641144, 0.0489240400493145, -0.06320788711309433, 0.12386045604944229, -0.026471400633454323, 0.06281943619251251, -0.09106665849685669, -0.051652245223522186, 0.0919274315237999, -0.06630697846412659, 0.10746045410633087, 0.026614034548401833, 0.09701173007488251, -0.12062803655862808, -0.06591623276472092, -0.08402057737112045, 0.012859074398875237, -0.057761743664741516, -0.0986587405204773, -0.08298647403717041, 0.09299156814813614, 0.11772751808166504, -0.035297177731990814, -0.09582065790891647, -0.05032810568809509, 0.009217984974384308, 0.07693430036306381, 0.09326494485139847, 0.07699956744909286, -0.09168005734682083, 0.017027903348207474, 0.010835705325007439, 0.026881715282797813, -0.17126770317554474, 0.03376371040940285, 0.08792545646429062, 0.04268588498234749, 0.10718115419149399, 0.01589476503431797, -0.1639663279056549, 0.017235498875379562, 0.04103364050388336, -0.16623881459236145, -0.10483990609645844, -0.03800908476114273, 0.01199313998222351, -0.08849424123764038, -0.0347568653523922, 0.1438070684671402, -0.047305501997470856, -0.03009936772286892, -0.0018359385430812836, 0.049250319600105286, -0.05474245175719261, 0.09971973299980164, 0.01993327960371971, 0.04908347502350807, -0.06513669341802597, 0.11515306681394577, 0.05788559839129448, 0.01902272365987301, 0.04593256488442421, 0.06179896369576454, -0.08794277906417847, -0.0022097788751125336, -0.08841169625520706, 0.011624426580965519, -0.05178996920585632, -0.01210362371057272, -0.0014051086036488414, -0.03868919238448143, 0.030012400820851326, 0.0972696915268898, -0.0200925525277853, 0.09861397743225098, -0.03684186935424805, -0.007246971130371094, -0.14466065168380737, 0.06317945569753647, 0.03239604830741882, 0.02218896895647049, -0.11391617357730865, 0.20009255409240723, 0.02731907367706299, 0.10324235260486603, -0.038020502775907516, -0.05813462659716606, -0.08088476955890656, -0.007945193909108639, -0.12632523477077484, -0.05179309472441673, -0.08147916942834854, -0.03783498331904411, -0.012276644818484783, -0.0388578437268734, -0.015334732830524445, 0.051269885152578354, -0.031416334211826324, -0.06400690227746964, -0.05670609697699547, 0.04832074046134949, -0.14262744784355164, 0.018891997635364532, 0.11136236786842346, -0.05528039485216141, 0.11428692936897278, 0.05912283435463905, -0.032946571707725525, 0.020403018221259117, -0.114143505692482, 0.03220012038946152, -0.026465604081749916, 0.007869232445955276, 0.02598731406033039, -0.13900144398212433, 0.004594737198203802, -0.054496295750141144, -0.05756371468305588, 0.009016498923301697, 0.006701494101434946, -0.12662844359874725, -0.00568538811057806, 0.06566184759140015, -0.005545190069824457, -0.07159887999296188, 0.07194754481315613, 0.06407111883163452, 0.030685272067785263, 0.052959997206926346, -0.03715270385146141, 0.07759169489145279, -0.17070963978767395, -0.05026181414723396, 0.005886177998036146, 0.01812923513352871, 0.04628796502947807, -0.006748438347131014, 0.03815079852938652, -0.02087714709341526, 0.1811128854751587, -0.0017358697950839996, -0.009566799737513065, 0.03907211124897003, -0.0615999661386013, -0.019045386463403702, 0.04243720695376396, 0.062170181423425674, -0.04280136525630951, -0.026927627623081207, -0.018848152831196785, 0.0006264637922868133, -0.07707539200782776, -0.02709529735147953, 0.11198192834854126, 0.04760817065834999, 0.1764025241136551, -0.033442992717027664, 0.05760437622666359, -0.03240102902054787, -0.11629696190357208, -0.01555023342370987, -0.03849954903125763, 0.04437558352947235, -0.07178093492984772, 0.06420889496803284, 0.17117999494075775, -0.1501907855272293, 0.11425367742776871, 0.010758530348539352, -0.05876212567090988, -0.09828456491231918, -0.15561950206756592, -0.009866508655250072, -0.039955902844667435, 0.03403130918741226, -0.13170433044433594, 0.08905009925365448, 0.021843159571290016, 0.03418876975774765, -0.06422027945518494, 0.13049156963825226, -0.06354082375764847, -0.10767630487680435, 0.02736775204539299, 0.023179328069090843, 0.021633347496390343, 0.032261453568935394, 0.0754590779542923, 0.02967260777950287, 0.0026106154546141624, 0.06362929940223694, 0.04214071109890938, 0.025727789849042892, 0.038491763174533844, -0.014286956749856472, -0.05454250052571297, 0.028447119519114494, 0.008299787528812885, 0.03566356003284454, 0.0997302383184433, 0.07186577469110489, -0.02316489815711975, -0.03306446596980095, 0.30240318179130554, -0.03901880607008934, -0.03787783905863762, -0.16674213111400604, 0.18287156522274017, 0.025223711505532265, -0.021037770435214043, 0.021870730444788933, -0.13252368569374084, 0.010153984650969505, 0.1503722220659256, 0.18311509490013123, -0.038681868463754654, 0.01797347143292427, -0.04100177809596062, 0.011834328062832355, 0.035628657788038254, 0.09180205315351486, 0.06846775859594345, 0.19246956706047058, -0.04252881929278374, 0.055646151304244995, -0.004781693685799837, -0.01526737678796053, -0.005520262289792299, 0.10780195891857147, -0.02825775556266308, 0.004002350848168135, -0.056744083762168884, 0.09367774426937103, -0.06230035051703453, -0.27423956990242004, -0.008732757531106472, -0.056762371212244034, -0.0912863165140152, 0.050104379653930664, -0.03561913222074509, -0.02261361852288246, 0.09761383384466171, 0.011540091596543789, -0.031626876443624496, 0.1272733211517334, 0.03418697416782379, -0.0492289774119854, -0.025698315352201462, 0.08484447747468948, -0.02333187311887741, 0.19388119876384735, -0.029709916561841965, -0.0029936786741018295, 0.08831261843442917, 0.02091079019010067, -0.12425194680690765, 0.0027111719828099012, 0.03733382374048233, -0.07773574441671371, -0.027658594772219658, 0.1975589543581009, 0.005964415147900581, 0.03990788385272026, 0.055895544588565826, -0.07518688589334488, 0.024096636101603508, -0.053678616881370544, 0.05357641726732254, -0.14033900201320648, 0.05430837720632553, -0.07449865341186523, 0.14989764988422394, 0.18156959116458893, -0.07430940121412277, 0.0163996871560812, -0.06088520586490631, -0.0021715923212468624, -0.016723712906241417, 0.0629674643278122, -0.02498280070722103, -0.11183580011129379, 0.02973218262195587, 0.02206818014383316, 0.023577751591801643, -0.20940646529197693, -0.07412506639957428, 0.05894645303487778, -0.04943158105015755, 0.013188773766160011, 0.17606854438781738, 0.03755137696862221, 0.06449717283248901, -0.03197786211967468, -0.0014289398677647114, -0.016166280955076218, 0.11834906786680222, -0.15056608617305756, -0.09738664329051971 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/894021d09a748eef8c6d63ad898b814b.650x430x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aaron Watson</div> <a href="https://genius.com/artists/aaron-watson"> <div style="text-align: center; font-size: 14px;">@aaron-watson</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Aaron Watson. Dataset is available [here](https://huggingface.co/datasets/huggingartists/aaron-watson). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aaron-watson") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14ha1tnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Aaron Watson's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/aaron-watson') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/aaron-watson") model = AutoModelWithLMHead.from_pretrained("huggingartists/aaron-watson") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/aaron-watson"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/aaron-watson
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/aaron-watson", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aaron-watson #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aaron Watson</div> <a href="URL <div style="text-align: center; font-size: 14px;">@aaron-watson</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Aaron Watson. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Aaron Watson's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Aaron Watson.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Aaron Watson's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aaron-watson #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Aaron Watson.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Aaron Watson's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aaron-watson #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Aaron Watson.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Aaron Watson's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02018505148589611, 0.1680864691734314, -0.0026088228914886713, 0.03866872191429138, 0.08884771913290024, 0.006548524368554354, 0.09822552651166916, 0.10378989577293396, 0.013381276279687881, 0.06550221890211105, 0.07239342480897903, 0.02099420875310898, 0.06917968392372131, 0.09525896608829498, 0.07747349143028259, -0.2509176433086395, 0.02853458561003208, -0.09007095545530319, 0.0056667635217309, 0.11527921259403229, 0.09889613837003708, -0.06716421991586685, 0.09062810242176056, 0.0392925925552845, -0.07051389664411545, 0.020136205479502678, 0.0012569599784910679, -0.0667521134018898, 0.09002981334924698, 0.060474809259176254, 0.04055889695882797, 0.03176414221525192, 0.06502532958984375, -0.1806708574295044, 0.03099788725376129, 0.12391488999128342, 0.04755113273859024, 0.07809252291917801, 0.040450215339660645, -0.08365616947412491, 0.1458636373281479, -0.01815853640437126, 0.10177157819271088, 0.044526368379592896, -0.11478151381015778, -0.1444811224937439, -0.12757088243961334, 0.08245477825403214, 0.09096541255712509, 0.08071322739124298, -0.030407415702939034, 0.05261337757110596, -0.017370019108057022, 0.04339705407619476, 0.2352110594511032, -0.23512579500675201, -0.014593775384128094, 0.07230303436517715, 0.05796923488378525, 0.0365833155810833, -0.07961022108793259, 0.010592699982225895, 0.044999126344919205, 0.020994067192077637, 0.05950511619448662, -0.014346504583954811, 0.1836816370487213, 0.03619111329317093, -0.10090935975313187, -0.07397249341011047, 0.12851493060588837, -0.027258744463324547, -0.0767071545124054, -0.1388862133026123, 0.0014007932040840387, -0.00997360423207283, 0.0457443967461586, -0.0061926101334393024, -0.002948525594547391, -0.0005427689757198095, -0.03524674102663994, -0.09966817498207092, -0.09046685695648193, -0.032064881175756454, -0.03242195025086403, 0.07507414370775223, 0.03208840638399124, 0.040984682738780975, -0.08086802810430527, 0.22371861338615417, 0.004032622091472149, -0.10074044018983841, -0.04252041503787041, -0.10071270912885666, -0.09285549074411392, -0.05832911282777786, 0.002059388440102339, 0.0091681107878685, -0.061300065368413925, 0.15691906213760376, -0.018291432410478592, 0.025252077728509903, 0.006926099769771099, -0.01255075540393591, 0.15132983028888702, 0.14731822907924652, -0.10889337211847305, -0.03239750489592552, 0.05288571119308472, -0.006863315589725971, -0.07170363515615463, -0.05517519637942314, -0.01527172140777111, -0.014943879097700119, 0.0298492182046175, 0.07817479223012924, 0.05971098318696022, 0.06120875105261803, 0.01040958147495985, -0.06931903958320618, 0.1048157587647438, -0.1340724676847458, 0.013819005340337753, -0.0008821813971735537, -0.042180757969617844, 0.021565528586506844, 0.046167585998773575, 0.02109023928642273, -0.09981676936149597, 0.10576378554105759, -0.06335988640785217, -0.053270310163497925, -0.0808262899518013, -0.09554041177034378, -0.005342368967831135, -0.017552422359585762, -0.038411159068346024, -0.07206141203641891, -0.1703130602836609, -0.042506180703639984, 0.03540435805916786, -0.04084974527359009, -0.040874138474464417, 0.03143155574798584, -0.016746515408158302, 0.009657385759055614, -0.013765698298811913, -0.027633696794509888, -0.02657228708267212, 0.031962670385837555, -0.06344054639339447, 0.03617091104388237, 0.07942436635494232, 0.04610900580883026, -0.11412166804075241, 0.061323415488004684, -0.1524006575345993, 0.13087676465511322, -0.013021937571465969, 0.028286095708608627, -0.09880612045526505, -0.08116559684276581, -0.013202854432165623, -0.02710111252963543, -0.008583023212850094, 0.0964532271027565, -0.1753479540348053, -0.0340646393597126, 0.18875285983085632, -0.06381881237030029, -0.08549686521291733, 0.0744655653834343, -0.08302478492259979, 0.03795242682099342, 0.1332620084285736, 0.0690356120467186, 0.16427387297153473, -0.11490277200937271, -0.053864985704422, -0.04436840862035751, -0.06217346712946892, 0.19812121987342834, 0.058453965932130814, -0.007538156118243933, 0.00035774492425844073, 0.006339279003441334, -0.042177628725767136, -0.03157849237322807, -0.019644079729914665, -0.03858707845211029, -0.011930249631404877, 0.0016218870878219604, 0.0002021608524955809, -0.045151352882385254, -0.06562931090593338, -0.02694747969508171, -0.1084432303905487, 0.03957829996943474, 0.09797846525907516, -0.07154621183872223, 0.0017498057568445802, -0.09929738938808441, -0.0029764834325760603, -0.03653879836201668, 0.0067879087291657925, -0.16940851509571075, -0.053461939096450806, 0.028295107185840607, -0.06640160828828812, 0.08515600115060806, 0.0353088341653347, 0.032182689756155014, 0.06007196009159088, -0.011720343492925167, 0.012787333689630032, -0.03173205256462097, -0.01800406165421009, -0.027526535093784332, -0.1497282087802887, -0.0617428719997406, -0.04961567372083664, 0.07204554229974747, -0.11846442520618439, 0.008004126138985157, 0.07988709956407547, 0.11067944765090942, 0.023907609283924103, -0.059351690113544464, 0.019326956942677498, -0.04267137497663498, -0.03343500196933746, -0.10328344255685806, -0.04935199022293091, 0.011236489750444889, -0.024540849030017853, 0.16734038293361664, -0.16849610209465027, -0.0809108167886734, 0.10300220549106598, 0.1316671222448349, -0.09023188054561615, 0.04663393646478653, -0.07871785759925842, -0.012063294649124146, -0.058611415326595306, -0.04357446730136871, 0.26686808466911316, 0.03536510840058327, 0.07592213153839111, -0.11309951543807983, -0.10541369765996933, -0.01196538656949997, -0.044028427451848984, -0.023081786930561066, 0.02977735735476017, 0.029354020953178406, -0.18425896763801575, 0.03280485421419144, -0.011602189391851425, 0.09635916352272034, 0.20216277241706848, 0.04664727672934532, -0.08360382169485092, -0.060364775359630585, -0.08347948640584946, -0.007782316301018, 0.05815573409199715, 0.011204181239008904, 0.02774769812822342, 0.043672531843185425, 0.05368424579501152, 0.03937187418341637, -0.11794155836105347, 0.007210853043943644, 0.07704102247953415, -0.034627046436071396, -0.07450465857982635, 0.016491418704390526, 0.02232835441827774, 0.07962268590927124, 0.08651392161846161, 0.14349421858787537, -0.06306314468383789, -0.050640642642974854, -0.1442546844482422, 0.13465043902397156, -0.08188483119010925, -0.23606006801128387, -0.1367986500263214, -0.07207141816616058, 0.02945326827466488, 0.013845332898199558, 0.03241199254989624, -0.051074426621198654, -0.04745863750576973, -0.09649331122636795, 0.08341223001480103, -0.0460946224629879, -0.02174317091703415, 0.013473349623382092, 0.019242940470576286, -0.03085772693157196, -0.11284329742193222, -0.03371664136648178, 0.03723295405507088, -0.08913934975862503, -0.012439890764653683, 0.023212524130940437, 0.03560063987970352, 0.16199693083763123, -0.00952849630266428, 0.00023731551482342184, -0.022459086030721664, 0.27610188722610474, -0.11598513275384903, 0.07458087801933289, 0.16185584664344788, -0.021053824573755264, 0.056163955479860306, 0.0725271999835968, 0.004837301559746265, -0.055044449865818024, 0.07601863890886307, 0.06610725820064545, -0.0714338943362236, -0.2320176362991333, -0.026753446087241173, -0.0043145944364368916, 0.018480779603123665, 0.1214873269200325, 0.039362046867609024, 0.033638857305049896, 0.010164191946387291, -0.09911811351776123, 0.04714573174715042, 0.03024180792272091, 0.10186892002820969, -0.06999622285366058, -0.007711468264460564, 0.0502743273973465, -0.05787530913949013, 0.02942008338868618, 0.1316782385110855, 0.04396452382206917, 0.19407258927822113, -0.06549609452486038, 0.09691280871629715, 0.07609619945287704, 0.09709128737449646, 0.030717069283127785, 0.022225884720683098, -0.022396689280867577, 0.020701918751001358, -0.007753956131637096, -0.08701284974813461, -0.010755776427686214, 0.039809346199035645, 0.03889571875333786, -0.02129877731204033, -0.03774667903780937, -0.05955711752176285, 0.044996701180934906, 0.2373359203338623, 0.015500563196837902, -0.1795388162136078, -0.11268996447324753, 0.05743897706270218, -0.07758776843547821, -0.06013534963130951, -0.010143248364329338, 0.0784546509385109, -0.21192778646945953, 0.06272699683904648, -0.020482098683714867, 0.10803504288196564, -0.11601503938436508, -0.0016379104927182198, 0.08767132461071014, 0.041225582361221313, -0.06408341228961945, 0.0980752632021904, -0.16381202638149261, 0.058279234915971756, -0.00794101320207119, 0.07036431133747101, -0.07251405715942383, 0.02348477765917778, 0.011697779409587383, 0.05562017858028412, 0.07628259807825089, 0.018546447157859802, 0.027554292231798172, -0.0002928690519183874, -0.04128948599100113, 0.00939147174358368, 0.05001121386885643, -0.126797616481781, 0.12646520137786865, -0.03669879585504532, 0.02904125489294529, -0.034590743482112885, -0.08709688484668732, -0.07981829345226288, -0.15406933426856995, 0.08129370957612991, -0.12534229457378387, 0.005320311989635229, -0.06676782667636871, -0.021115807816386223, 0.02332155406475067, 0.23516236245632172, -0.06354761868715286, -0.07983356714248657, -0.13247475028038025, -0.004823759663850069, 0.14174270629882812, -0.0804230347275734, -0.004171804990619421, -0.010549631901085377, 0.20160196721553802, -0.0023597374092787504, -0.13017109036445618, -0.009283454157412052, -0.06833750754594803, -0.17146864533424377, -0.02095051482319832, 0.16607922315597534, 0.07187820225954056, 0.03386637941002846, 0.004881397821009159, -0.004110231995582581, -0.06676870584487915, -0.17107971012592316, 0.030690908432006836, 0.15508534014225006, -0.0008353919256478548, 0.02473987452685833, 0.03758494183421135, 0.011250114999711514, -0.13060860335826874, 0.014897193759679794, 0.04936911165714264, 0.16532836854457855, -0.07596927136182785, 0.17830690741539001, 0.03755952790379524, -0.09149520844221115, -0.16148170828819275, 0.01749992184340954, 0.01881375163793564, 0.03373270854353905, 0.031712230294942856, -0.19171306490898132, 0.04679841920733452, 0.017295576632022858, 0.0007171414326876402, 0.045371998101472855, -0.3090817928314209, -0.15098316967487335, 0.006828422658145428, 0.006552553735673428, -0.10268735885620117, -0.03597597777843475, -0.03450359031558037, -0.08505673706531525, -0.2611694037914276, 0.11671463400125504, -0.1070081889629364, 0.07502855360507965, 0.022360503673553467, 0.10556542873382568, 0.04273958131670952, -0.05562487617135048, 0.12587574124336243, -0.022654876112937927, 0.06152787432074547, -0.09090729802846909, -0.07273954153060913, 0.09409084171056747, -0.06593629717826843, 0.10235458612442017, 0.02454269304871559, 0.09101678431034088, -0.09510525315999985, -0.089025117456913, -0.08080478012561798, -0.0018473860109224916, -0.057666242122650146, -0.0882439911365509, -0.09588447958230972, 0.08778649568557739, 0.1259562224149704, -0.044400304555892944, -0.10221386700868607, -0.05970340967178345, -0.006029436830431223, 0.04587069898843765, 0.13121765851974487, 0.0681639090180397, -0.06114771589636803, 0.005666597280651331, 0.014203582890331745, 0.026240307837724686, -0.17902246117591858, 0.048758722841739655, 0.08901576697826385, 0.036035094410181046, 0.10620187968015671, 0.010050921700894833, -0.16832542419433594, -0.00007710912177572027, 0.04260067641735077, -0.17281590402126312, -0.1120743602514267, -0.048059482127428055, 0.020799439400434494, -0.108150415122509, -0.04997952654957771, 0.12603764235973358, -0.03202928230166435, -0.04673250392079353, 0.004221389535814524, 0.047612257301807404, -0.045728810131549835, 0.08852231502532959, 0.012348157353699207, 0.04708131030201912, -0.06487803161144257, 0.1130879744887352, 0.06816891580820084, 0.008327827788889408, 0.032667066901922226, 0.06314914673566818, -0.09260712563991547, 0.004851324483752251, -0.0883001908659935, 0.020431730896234512, -0.028876077383756638, -0.012072703801095486, 0.010974125005304813, -0.04305658116936684, 0.04391559213399887, 0.08898427337408066, -0.013429935090243816, 0.11507498472929001, -0.045665714889764786, 0.012521065771579742, -0.12646159529685974, 0.07809368520975113, 0.041169796139001846, 0.021844541653990746, -0.10817588120698929, 0.19391490519046783, 0.023559944704174995, 0.09994793683290482, -0.03556390851736069, -0.054312821477651596, -0.05909137427806854, -0.009810714982450008, -0.10398013144731522, -0.04282499849796295, -0.08971487730741501, -0.02204230986535549, -0.00854149367660284, -0.0465380884706974, -0.02543993480503559, 0.04426718130707741, -0.034344546496868134, -0.05091038718819618, -0.06648723781108856, 0.043395690619945526, -0.1364212930202484, 0.03418847545981407, 0.12556231021881104, -0.05748730152845383, 0.12102105468511581, 0.05022888630628586, -0.04127049818634987, 0.019348841160535812, -0.10995505005121231, 0.03378971293568611, -0.026752034202218056, 0.01721150055527687, 0.019266072660684586, -0.17101971805095673, 0.0032070293091237545, -0.03961216285824776, -0.06241525709629059, 0.002832208527252078, 0.00666055828332901, -0.11810711026191711, 0.0025400652084499598, 0.09758368134498596, -0.023021718487143517, -0.07700296491384506, 0.06069954112172127, 0.055928584188222885, 0.022448325529694557, 0.06424346566200256, -0.016286054626107216, 0.07477711141109467, -0.1659490466117859, -0.05062459781765938, 0.006864219903945923, 0.026460425928235054, 0.03187593072652817, -0.015150555409491062, 0.03984380140900612, -0.02310318686068058, 0.20709051191806793, 0.013921774923801422, -0.031608566641807556, 0.03425399586558342, -0.04931904748082161, -0.011504030786454678, 0.04797011986374855, 0.07108054310083389, -0.0452740341424942, -0.039393894374370575, -0.002450349275022745, -0.02649693191051483, -0.09199284762144089, -0.030778447166085243, 0.12241007387638092, 0.034954819828271866, 0.21279789507389069, -0.05518556386232376, 0.06455834209918976, -0.005737676750868559, -0.13351428508758545, -0.029104184359312057, -0.04487469047307968, 0.03388496860861778, -0.06113096699118614, 0.06142276152968407, 0.18019671738147736, -0.16365963220596313, 0.12247920781373978, 0.017113128677010536, -0.062276117503643036, -0.11932781338691711, -0.19655723869800568, -0.018975481390953064, -0.03690449520945549, 0.02505595237016678, -0.1402186155319214, 0.09218203276395798, 0.007730623707175255, 0.03418997675180435, -0.07166732102632523, 0.12719573080539703, -0.0693843886256218, -0.12426461279392242, 0.040152113884687424, 0.022894956171512604, 0.024886159226298332, 0.05660080909729004, 0.08682280778884888, 0.026870183646678925, 0.017953356727957726, 0.07257913798093796, 0.037030257284641266, 0.019309507682919502, 0.03614567965269089, -0.02905786968767643, -0.04910799860954285, 0.022865088656544685, -0.0032177790999412537, 0.030010268092155457, 0.07881420850753784, 0.05999816581606865, -0.012800301425158978, -0.016007576137781143, 0.3109486997127533, -0.037199005484580994, -0.0482913963496685, -0.19102132320404053, 0.16335943341255188, 0.006908210460096598, -0.010357250459492207, 0.035233158618211746, -0.11736559867858887, 0.008114987052977085, 0.13906297087669373, 0.1660027652978897, -0.03278469294309616, 0.018122339621186256, -0.028965791687369347, 0.017273979261517525, 0.033918000757694244, 0.09389232844114304, 0.06080383434891701, 0.19560420513153076, -0.03557483106851578, 0.045890212059020996, -0.0031099976040422916, -0.01986365020275116, 0.009282633662223816, 0.10734735429286957, -0.03495251014828682, 0.005408430006355047, -0.054668229073286057, 0.09427985548973083, -0.051666662096977234, -0.28704696893692017, -0.03587515279650688, -0.02854158543050289, -0.08831409364938736, 0.06440402567386627, -0.02225063182413578, -0.027309134602546692, 0.08641581237316132, 0.030849259346723557, -0.04852820187807083, 0.15206323564052582, 0.04788238927721977, -0.04567763954401016, -0.0008779993513599038, 0.11139876395463943, -0.027254896238446236, 0.17038914561271667, -0.02525857463479042, 0.008651819080114365, 0.0814494714140892, 0.021440032869577408, -0.12842261791229248, 0.006331057287752628, 0.03467743471264839, -0.05812377482652664, -0.02512517385184765, 0.19384874403476715, 0.012857562862336636, 0.03614247217774391, 0.07035010308027267, -0.0620272234082222, 0.024439023807644844, -0.05920834839344025, 0.054349854588508606, -0.147480309009552, 0.060497164726257324, -0.08558265119791031, 0.13375315070152283, 0.18259108066558838, -0.06949734687805176, 0.028726035729050636, -0.053347762674093246, 0.0061038583517074585, -0.025594433769583702, 0.08082655817270279, -0.022251661866903305, -0.11166229844093323, 0.008845592848956585, 0.03605718910694122, 0.03593529760837555, -0.18903383612632751, -0.06439463049173355, 0.06537245959043503, -0.05377617105841637, 0.02787468023598194, 0.1703394204378128, 0.02710338868200779, 0.061587143689394, -0.038236163556575775, -0.007623820565640926, -0.009768185205757618, 0.11906621605157852, -0.17445185780525208, -0.08370763063430786 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2fa03267661cbc8112b4ef31685e2721.220x220x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ABBA</div> <a href="https://genius.com/artists/abba"> <div style="text-align: center; font-size: 14px;">@abba</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ABBA. Dataset is available [here](https://huggingface.co/datasets/huggingartists/abba). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/abba") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3pc6wfre/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ABBA's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3b7wqd1w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3b7wqd1w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/abba') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/abba") model = AutoModelWithLMHead.from_pretrained("huggingartists/abba") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/abba"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/abba
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/abba", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/abba #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">ABBA</div> <a href="URL <div style="text-align: center; font-size: 14px;">@abba</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ABBA. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ABBA's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ABBA.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ABBA's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/abba #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ABBA.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ABBA's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/abba #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ABBA.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ABBA's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.024453354999423027, 0.1443946212530136, -0.0026695572305470705, 0.032747190445661545, 0.08716879040002823, -0.0020958108361810446, 0.08746129274368286, 0.10760226845741272, -0.00751268258318305, 0.0691288635134697, 0.07800628244876862, 0.005871258210390806, 0.066557377576828, 0.14002518355846405, 0.08852096647024155, -0.265434592962265, 0.030906306579709053, -0.103811115026474, 0.023997226729989052, 0.12208224087953568, 0.09039292484521866, -0.05369172617793083, 0.08447142690420151, 0.03625860437750816, -0.07095488905906677, 0.03401637822389603, -0.01432186271995306, -0.07640152424573898, 0.0948701873421669, 0.08255203813314438, 0.03133769333362579, 0.032878924161195755, 0.06599041074514389, -0.19247578084468842, 0.0347907729446888, 0.12368738651275635, 0.027494436129927635, 0.0712641254067421, 0.03941287472844124, -0.07716377824544907, 0.1812439113855362, -0.021359210833907127, 0.08825752884149551, 0.04813789203763008, -0.11034375429153442, -0.1799072027206421, -0.11796307563781738, 0.08661127090454102, 0.10331043601036072, 0.08158522099256516, -0.03280220553278923, 0.04017848148941994, 0.0028060514014214277, 0.0452016182243824, 0.2354905754327774, -0.24395860731601715, -0.013718442060053349, 0.09339942783117294, 0.03910081461071968, 0.04630047455430031, -0.07550033926963806, 0.01659696362912655, 0.05209071561694145, 0.024235131219029427, 0.0477956086397171, -0.015612800605595112, 0.21636725962162018, 0.021667322143912315, -0.0928967073559761, -0.08887946605682373, 0.10990476608276367, -0.030346840620040894, -0.08403105288743973, -0.15183059871196747, 0.00322107900865376, -0.03264878690242767, 0.03899224475026131, -0.011210210621356964, -0.0069615100510418415, 0.0024829816538840532, -0.04249432682991028, -0.09696086496114731, -0.09498106688261032, -0.027006929740309715, -0.026432214304804802, 0.06823177635669708, 0.02506408654153347, 0.032314565032720566, -0.07676051557064056, 0.23498354852199554, 0.0019230637699365616, -0.10561350733041763, -0.05450086668133736, -0.09093073010444641, -0.09619692713022232, -0.056470174342393875, 0.011874417774379253, 0.022736748680472374, -0.06535813212394714, 0.1725439578294754, -0.029972894117236137, 0.03175434097647667, -0.0007718552369624376, -0.023399226367473602, 0.15207147598266602, 0.129635289311409, -0.09546244144439697, -0.029607350006699562, 0.046957310289144516, -0.01365948747843504, -0.06953098624944687, -0.05948035046458244, -0.014551575295627117, -0.0237154271453619, 0.030570954084396362, 0.09557759761810303, 0.041974153369665146, 0.055768221616744995, 0.030897410586476326, -0.05632820725440979, 0.107810378074646, -0.14579129219055176, 0.007073827553540468, -0.0109408525750041, -0.031926292926073074, 0.01275265496224165, 0.052038151770830154, 0.015991317108273506, -0.09639837592840195, 0.11297034472227097, -0.05006849393248558, -0.055625755339860916, -0.06603949517011642, -0.08185137063264847, -0.007071636151522398, -0.01008850708603859, -0.04637357220053673, -0.08725783228874207, -0.15920434892177582, -0.029891615733504295, 0.022482916712760925, -0.04027846083045006, -0.038024019449949265, 0.043226707726716995, -0.033285725861787796, 0.0008316067978739738, -0.01947881281375885, -0.015619687736034393, -0.032870352268218994, 0.02208084613084793, -0.05146598815917969, 0.03582017868757248, 0.0820547416806221, 0.034564193338155746, -0.1113160029053688, 0.0694294199347496, -0.1604895144701004, 0.14572744071483612, -0.009940790943801403, 0.015716297551989555, -0.11447691172361374, -0.09337940067052841, -0.027095839381217957, -0.024927228689193726, -0.006739323493093252, 0.09443243592977524, -0.18681271374225616, -0.041965872049331665, 0.20230837166309357, -0.0759778842329979, -0.08663824945688248, 0.07018734514713287, -0.0793953612446785, 0.04173164442181587, 0.13877291977405548, 0.05633934959769249, 0.15183037519454956, -0.11417392641305923, -0.06996042281389236, -0.04477791115641594, -0.0553462915122509, 0.21884828805923462, 0.05488898977637291, -0.004848357755690813, 0.01900966465473175, 0.011653396300971508, -0.020772213116288185, -0.025921812281012535, -0.021594032645225525, -0.045752231031656265, -0.009411453269422054, 0.01661902666091919, -0.015243870206177235, -0.05021510645747185, -0.06704138964414597, -0.016901835799217224, -0.11389365047216415, 0.03737373650074005, 0.10443207621574402, -0.07309048622846603, 0.009251286275684834, -0.09420398622751236, -0.008280154317617416, -0.04135126248002052, 0.021553650498390198, -0.19217753410339355, -0.05526291951537132, 0.01907920092344284, -0.06366781890392303, 0.09004364162683487, 0.024929972365498543, 0.038696300238370895, 0.06330211460590363, -0.009960977360606194, 0.02094416879117489, -0.04886026307940483, -0.022373119369149208, -0.03515169769525528, -0.14094065129756927, -0.07326392084360123, -0.053405795246362686, 0.0869964137673378, -0.1373339295387268, 0.007697538938373327, 0.10216011852025986, 0.11280649900436401, 0.023800574243068695, -0.056336503475904465, 0.009676742367446423, -0.03588300198316574, -0.04248039796948433, -0.11287983506917953, -0.06271355599164963, 0.004188808146864176, -0.04569225385785103, 0.15538795292377472, -0.1770060509443283, -0.06500200182199478, 0.09760099649429321, 0.1706557273864746, -0.10584905743598938, 0.011983935721218586, -0.09483226388692856, -0.010190359316766262, -0.04537500441074371, -0.03865658864378929, 0.2771635949611664, 0.0412122942507267, 0.0796569287776947, -0.11139354854822159, -0.09730442613363266, -0.00007677054964005947, -0.03831006586551666, -0.027684273198246956, 0.029101252555847168, 0.017424240708351135, -0.17413072288036346, 0.02569057047367096, -0.000664946623146534, 0.12237163633108139, 0.21380507946014404, 0.051034510135650635, -0.09812840074300766, -0.058360785245895386, -0.08724257349967957, 0.003867356339469552, 0.051534924656152725, 0.03374301269650459, 0.026504190638661385, 0.04273117706179619, 0.05048585310578346, 0.03819258138537407, -0.11086773127317429, 0.009573363699018955, 0.08048749715089798, -0.045476216822862625, -0.05345262959599495, 0.016000675037503242, 0.015200521796941757, 0.08344322443008423, 0.07856656610965729, 0.13903594017028809, -0.07173588126897812, -0.04511536285281181, -0.14320118725299835, 0.14025598764419556, -0.07351948320865631, -0.26189738512039185, -0.14182086288928986, -0.07505781203508377, 0.02469116449356079, 0.007069140672683716, 0.04191053286194801, -0.06190798059105873, -0.04076347500085831, -0.10438302904367447, 0.09158434718847275, -0.049427349120378494, -0.016049860045313835, 0.005169263109564781, 0.020535564050078392, -0.02966499887406826, -0.10907528549432755, -0.02942523919045925, 0.042410507798194885, -0.11048106104135513, -0.014529959298670292, 0.025746479630470276, 0.039013493806123734, 0.1545192450284958, -0.009076722897589207, -0.00582924485206604, -0.03489944711327553, 0.27696284651756287, -0.12223687022924423, 0.06525992602109909, 0.16285067796707153, -0.025854328647255898, 0.05088480934500694, 0.08013277500867844, 0.004852940794080496, -0.069627545773983, 0.07648035883903503, 0.07116176933050156, -0.09348923712968826, -0.2167619913816452, -0.02619214355945587, -0.005296288523823023, 0.027267366647720337, 0.130004420876503, 0.05985036492347717, 0.05851088836789131, -0.0021811944898217916, -0.10623759776353836, 0.04866483435034752, 0.02873733639717102, 0.10930604487657547, -0.07190299779176712, -0.010588341392576694, 0.051798585802316666, -0.06656359881162643, 0.026090657338500023, 0.14078636467456818, 0.04631491005420685, 0.1988028734922409, -0.06165778636932373, 0.0963100790977478, 0.07632181793451309, 0.09685271233320236, 0.038699921220541, 0.011904274113476276, -0.0035189723130315542, 0.01026876363903284, -0.004667795728892088, -0.09731730073690414, -0.011731348931789398, 0.05085454881191254, 0.022234387695789337, -0.024775944650173187, -0.03949154540896416, -0.0496780090034008, 0.041974347084760666, 0.23251360654830933, -0.014019555412232876, -0.1837782859802246, -0.11892441660165787, 0.04125206917524338, -0.0826699286699295, -0.05123424902558327, -0.026259595528244972, 0.07506978511810303, -0.2176220864057541, 0.07003585249185562, -0.03278613090515137, 0.10946998745203018, -0.10952336341142654, 0.004689155612140894, 0.08017104119062424, 0.041405387222766876, -0.06638481467962265, 0.0987938866019249, -0.17235367000102997, 0.06286663562059402, -0.01033217366784811, 0.06729522347450256, -0.07774858921766281, 0.028914520516991615, -0.00040208487189374864, 0.04725790023803711, 0.08849891275167465, 0.009052383713424206, 0.02264195680618286, -0.008589673787355423, -0.051426783204078674, 0.01616186648607254, 0.05425981804728508, -0.12939608097076416, 0.12617529928684235, -0.022940462455153465, 0.03664502501487732, -0.04345385357737541, -0.0909305289387703, -0.08638688921928406, -0.16851066052913666, 0.09042999148368835, -0.12699049711227417, 0.0008463896811008453, -0.07169332355260849, -0.030178919434547424, 0.044837307184934616, 0.26491808891296387, -0.05950695648789406, -0.07408811897039413, -0.13782884180545807, 0.022006116807460785, 0.14582780003547668, -0.0860869511961937, 0.008688564412295818, -0.009488090872764587, 0.20934122800827026, -0.003849489614367485, -0.12975911796092987, -0.016796397045254707, -0.06044299528002739, -0.16840554773807526, -0.004935447592288256, 0.16740524768829346, 0.062195729464292526, 0.02690291404724121, 0.010538321919739246, -0.016868026927113533, -0.04321308061480522, -0.1691533774137497, 0.021461552008986473, 0.15904943645000458, -0.011230501346290112, -0.0036422787234187126, 0.047902002930641174, 0.010751434601843357, -0.13490720093250275, 0.011749784462153912, 0.04590221121907234, 0.18154190480709076, -0.07735346257686615, 0.19140766561031342, 0.0359022431075573, -0.08986993879079819, -0.14717735350131989, 0.004598519299179316, 0.03642577305436134, 0.04085380584001541, 0.04507648944854736, -0.2122567892074585, 0.043390270322561264, 0.041772034019231796, 0.0050162156112492085, 0.039678554981946945, -0.33000504970550537, -0.16051319241523743, -0.00009851498907664791, 0.003319848095998168, -0.14872866868972778, -0.04533739015460014, -0.03335800766944885, -0.09901127964258194, -0.24394355714321136, 0.0984589233994484, -0.10852887481451035, 0.07454957813024521, 0.028841545805335045, 0.10253989696502686, 0.04554302990436554, -0.04341128468513489, 0.13438943028450012, -0.01755574904382229, 0.06837265193462372, -0.09320724010467529, -0.057573024183511734, 0.0796155259013176, -0.07249579578638077, 0.09113036841154099, 0.025545500218868256, 0.07943735271692276, -0.09977775812149048, -0.09133132547140121, -0.05843975022435188, 0.0003110619727522135, -0.0510794036090374, -0.08991674333810806, -0.08925098925828934, 0.08276951313018799, 0.11637268215417862, -0.047849882394075394, -0.08840448409318924, -0.07381277531385422, 0.005758358631283045, 0.04644313454627991, 0.12587372958660126, 0.077260322868824, -0.053513962775468826, 0.0008697528392076492, 0.017355073243379593, 0.01211517583578825, -0.18793225288391113, 0.04904196038842201, 0.0943530797958374, 0.03652500733733177, 0.10600397735834122, 0.004003662616014481, -0.1701546460390091, 0.00931017566472292, 0.05541115626692772, -0.16257452964782715, -0.12382978200912476, -0.038428228348493576, 0.03352465108036995, -0.10199295729398727, -0.04541238024830818, 0.13526903092861176, -0.03771701082587242, -0.04016704857349396, 0.0027376615907996893, 0.03685713931918144, -0.04132559895515442, 0.08957953006029129, -0.013022725470364094, 0.04313775897026062, -0.06770211458206177, 0.11962812393903732, 0.0699177011847496, 0.0051479400135576725, 0.04322788491845131, 0.06412550806999207, -0.08997601270675659, 0.015845483168959618, -0.10643372684717178, 0.006443182472139597, -0.03220279887318611, -0.01264921110123396, 0.027815723791718483, -0.030127758160233498, 0.04828670620918274, 0.09223419427871704, -0.017376841977238655, 0.10421117395162582, -0.04856409132480621, 0.021500304341316223, -0.12777213752269745, 0.06804504245519638, 0.03456449881196022, 0.021244369447231293, -0.10624318569898605, 0.20725159347057343, 0.0358702577650547, 0.10348442941904068, -0.038397375494241714, -0.06521344929933548, -0.049504879862070084, -0.010320947505533695, -0.0882478654384613, -0.034809935837984085, -0.088746577501297, -0.024399859830737114, -0.004723964259028435, -0.030031800270080566, -0.03223295137286186, 0.04389096423983574, -0.03300983086228371, -0.058739516884088516, -0.07768386602401733, 0.04731506109237671, -0.143416628241539, 0.03626193478703499, 0.11740884184837341, -0.05546979978680611, 0.12834297120571136, 0.05641469359397888, -0.033705342561006546, 0.023627176880836487, -0.13525553047657013, 0.051433999091386795, -0.0011224497575312853, 0.018780367448925972, 0.015220582485198975, -0.14605779945850372, 0.0072907954454422, -0.03384527936577797, -0.06964762508869171, 0.00656157499179244, -0.014266420155763626, -0.13053245842456818, -0.01211769599467516, 0.09246942400932312, -0.011486335657536983, -0.06657680869102478, 0.07260586321353912, 0.05788567289710045, 0.02583598904311657, 0.05357155203819275, -0.014060047455132008, 0.06815602630376816, -0.1777176707983017, -0.06326012313365936, -0.006019596476107836, 0.0313057042658329, 0.045186061412096024, -0.028686920180916786, 0.03452875092625618, -0.0208753552287817, 0.21371006965637207, 0.01917213387787342, -0.002287756185978651, 0.03621380031108856, -0.07643959671258926, -0.0007321200682781637, 0.042792413383722305, 0.08962758630514145, -0.014003057964146137, -0.026957347989082336, 0.0034419631119817495, -0.02402988076210022, -0.09753308445215225, -0.01592858135700226, 0.09287610650062561, 0.019855057820677757, 0.20134304463863373, -0.05860825255513191, 0.06414134055376053, -0.021689845249056816, -0.1034696027636528, -0.034859105944633484, -0.04747110605239868, 0.028815805912017822, -0.05646015703678131, 0.053975921124219894, 0.19609405100345612, -0.15431660413742065, 0.11572588235139847, 0.0410902239382267, -0.05517972633242607, -0.12040873616933823, -0.19489331543445587, -0.013221322558820248, -0.033204201608896255, 0.026483992114663124, -0.13879482448101044, 0.09446883946657181, 0.02189158834517002, 0.04002053290605545, -0.05945005640387535, 0.13745276629924774, -0.08746729046106339, -0.13809145987033844, 0.045013558119535446, 0.019711298868060112, 0.028968840837478638, 0.04501032829284668, 0.09096736460924149, 0.04039458930492401, 0.005333966109901667, 0.07092051953077316, 0.04049231484532356, 0.034152060747146606, 0.03975849226117134, -0.03341156244277954, -0.04028039798140526, 0.02560538612306118, -0.006638217717409134, 0.022350745275616646, 0.0975022092461586, 0.06654499471187592, -0.019909245893359184, -0.015878571197390556, 0.3162911832332611, -0.019234301522374153, -0.03094553016126156, -0.18488629162311554, 0.16931121051311493, 0.010782424360513687, 0.00023216987028717995, 0.01614338345825672, -0.11611492186784744, 0.01704332046210766, 0.11442301422357559, 0.1494329422712326, -0.02274198643863201, 0.02354375831782818, -0.027768583968281746, 0.018309151753783226, 0.03701179847121239, 0.10938423871994019, 0.06238347291946411, 0.19394230842590332, -0.026570947840809822, 0.05355999991297722, -0.010325010865926743, -0.022923333570361137, 0.015908343717455864, 0.10688359290361404, -0.04253121092915535, 0.0049131629057228565, -0.05128849670290947, 0.10003264993429184, -0.05497351288795471, -0.3042689561843872, -0.039027050137519836, -0.01597622036933899, -0.08988706022500992, 0.07560466229915619, -0.03285990655422211, -0.01701417751610279, 0.07773615419864655, 0.030376801267266273, -0.04719794914126396, 0.1570018082857132, 0.05424656346440315, -0.04655800387263298, -0.0028499960899353027, 0.11041275411844254, -0.03774605318903923, 0.16142499446868896, -0.037493109703063965, 0.007678333204239607, 0.0732617974281311, 0.013781349174678326, -0.12744025886058807, 0.006903452333062887, 0.037191007286310196, -0.04990771412849426, -0.020405035465955734, 0.20313386619091034, 0.012413072399795055, 0.02649969421327114, 0.07418074458837509, -0.0576329343020916, 0.019173404201865196, -0.03674808517098427, 0.05794699490070343, -0.13235175609588623, 0.06580198556184769, -0.07687178999185562, 0.1184253916144371, 0.1766277700662613, -0.06871623545885086, 0.03897497057914734, -0.06070472672581673, 0.010333603248000145, -0.02767355926334858, 0.07337004691362381, -0.016582932323217392, -0.11150599271059036, 0.004308565054088831, 0.029639780521392822, 0.011799618601799011, -0.1798122376203537, -0.07845159620046616, 0.0769909992814064, -0.05270138010382652, 0.02183046005666256, 0.18070633709430695, 0.017071286216378212, 0.05893781781196594, -0.03845597058534622, -0.02141731232404709, -0.002821950940415263, 0.11517495661973953, -0.17543292045593262, -0.07769866287708282 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4c3ac1f1d845d251671a892309b5f9b5.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adele</div> <a href="https://genius.com/artists/adele"> <div style="text-align: center; font-size: 14px;">@adele</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Adele. Dataset is available [here](https://huggingface.co/datasets/huggingartists/adele). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/adele") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1yyqw6ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Adele's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/adele') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/adele") model = AutoModelWithLMHead.from_pretrained("huggingartists/adele") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/adele"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/adele
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/adele", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/adele #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adele</div> <a href="URL <div style="text-align: center; font-size: 14px;">@adele</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Adele. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Adele's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Adele.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Adele's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/adele #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Adele.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Adele's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/adele #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Adele.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Adele's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02193347178399563, 0.1589750051498413, -0.0027533627580851316, 0.035379547625780106, 0.09356234222650528, -0.006160674151033163, 0.08375433087348938, 0.104178287088871, -0.005454278085380793, 0.07102973759174347, 0.07824297249317169, 0.009675075300037861, 0.057263344526290894, 0.13040675222873688, 0.09379538148641586, -0.26532870531082153, 0.02716119773685932, -0.10723515599966049, 0.03203503414988518, 0.12096165865659714, 0.08810341358184814, -0.05360843613743782, 0.08650047332048416, 0.0408269502222538, -0.07116327434778214, 0.03214804455637932, -0.01732364483177662, -0.07115835696458817, 0.08766051381826401, 0.07981333881616592, 0.02642103284597397, 0.036721792072057724, 0.06506669521331787, -0.19811563193798065, 0.03141409903764725, 0.12318643182516098, 0.02689882554113865, 0.06733293831348419, 0.03815658390522003, -0.08107113838195801, 0.1739070564508438, -0.023675257340073586, 0.0890510082244873, 0.049358487129211426, -0.10484704375267029, -0.1718282550573349, -0.11761105060577393, 0.0759374275803566, 0.09741052240133286, 0.08672725409269333, -0.03464541584253311, 0.03765837848186493, 0.0039805262349545956, 0.04542990028858185, 0.24168217182159424, -0.2513795793056488, -0.01018171664327383, 0.08576368540525436, 0.03983038663864136, 0.03625873103737831, -0.07155809551477432, 0.02237066626548767, 0.053804557770490646, 0.025774523615837097, 0.04585463926196098, -0.011076022870838642, 0.22772717475891113, 0.016952000558376312, -0.09537461400032043, -0.0886608436703682, 0.11075937747955322, -0.024367094039916992, -0.08920828253030777, -0.1517891138792038, 0.006023912224918604, -0.027448149397969246, 0.037320852279663086, -0.012461584061384201, -0.003149711759760976, 0.002649749396368861, -0.04697145149111748, -0.10097646713256836, -0.0866757407784462, -0.023991430178284645, -0.022407030686736107, 0.07170204818248749, 0.022806907072663307, 0.023542826995253563, -0.06889698654413223, 0.23479831218719482, 0.006581597030162811, -0.10509876161813736, -0.05772208049893379, -0.0900455042719841, -0.09282839298248291, -0.058592211455106735, 0.00872382428497076, 0.022603483870625496, -0.06979075074195862, 0.1707516759634018, -0.018011655658483505, 0.025532877072691917, 0.0016085061943158507, -0.02618507854640484, 0.1539924442768097, 0.13203729689121246, -0.09354523569345474, -0.0304377730935812, 0.047628458589315414, -0.019933069124817848, -0.06573248654603958, -0.06031307578086853, -0.014070555567741394, -0.023889750242233276, 0.025053679943084717, 0.09314035624265671, 0.04574643447995186, 0.05271456763148308, 0.021620020270347595, -0.05553559958934784, 0.11334934830665588, -0.14388255774974823, 0.01454764325171709, -0.01489697303622961, -0.02719232439994812, 0.008666749112308025, 0.05311105027794838, 0.020173965021967888, -0.09690848737955093, 0.11347264051437378, -0.051494523882865906, -0.056532859802246094, -0.06405562907457352, -0.07956475764513016, -0.007210094947367907, -0.003929405938833952, -0.04702433943748474, -0.0842212662100792, -0.16801203787326813, -0.033966321498155594, 0.019328048452734947, -0.04416922107338905, -0.046479228883981705, 0.0357397235929966, -0.034512680023908615, 0.004159808624535799, -0.01748325489461422, -0.031774718314409256, -0.03231281787157059, 0.01715371385216713, -0.05694812536239624, 0.03198491036891937, 0.08985719829797745, 0.039649154990911484, -0.11402042955160141, 0.0678783431649208, -0.1567283719778061, 0.1525573879480362, -0.01168897096067667, 0.015105010010302067, -0.1074678897857666, -0.09694980829954147, -0.028628798201680183, -0.024574505165219307, -0.0034772821236401796, 0.09613338112831116, -0.19435088336467743, -0.045735880732536316, 0.1938319206237793, -0.07018440961837769, -0.0839168056845665, 0.07134900242090225, -0.07410687208175659, 0.032716840505599976, 0.1403055340051651, 0.052985306829214096, 0.15579797327518463, -0.10833678394556046, -0.07093574106693268, -0.04491235688328743, -0.054582055658102036, 0.2215988039970398, 0.05082528665661812, -0.012782159261405468, 0.018651286140084267, 0.008913551457226276, -0.017611229792237282, -0.027176111936569214, -0.02218213677406311, -0.04188781604170799, -0.01130145788192749, 0.020652035251259804, -0.009620207361876965, -0.04533161595463753, -0.07712813466787338, -0.019984440878033638, -0.11942840367555618, 0.04632094129920006, 0.09942615032196045, -0.07128582149744034, 0.010579422116279602, -0.09034325927495956, -0.0037993902806192636, -0.0325322225689888, 0.015238692052662373, -0.19119210541248322, -0.051706939935684204, 0.020758941769599915, -0.06814397126436234, 0.08968836814165115, 0.025449128821492195, 0.03554976359009743, 0.06715395301580429, -0.006009651813656092, 0.019332638010382652, -0.05385274067521095, -0.01947300136089325, -0.03071441315114498, -0.13799668848514557, -0.06908777356147766, -0.05304411053657532, 0.08876535296440125, -0.1366419494152069, 0.002408818108960986, 0.10788976401090622, 0.11854669451713562, 0.031143955886363983, -0.06310606747865677, 0.009679210372269154, -0.030437616631388664, -0.03977449610829353, -0.11217236518859863, -0.06288841366767883, 0.00960946548730135, -0.03627176210284233, 0.1562252640724182, -0.16934247314929962, -0.07277002185583115, 0.09566903859376907, 0.1659499555826187, -0.10258793830871582, 0.02174934186041355, -0.09339934587478638, -0.007413661573082209, -0.04877874255180359, -0.038757652044296265, 0.2786431312561035, 0.04142235219478607, 0.07934653013944626, -0.10850923508405685, -0.10185230523347855, -0.0027040450368076563, -0.03626289963722229, -0.031344618648290634, 0.027976518496870995, 0.016360774636268616, -0.1690998077392578, 0.02055470086634159, 0.006475906819105148, 0.12221785634756088, 0.21810495853424072, 0.05436611548066139, -0.09609860181808472, -0.05975665524601936, -0.09866643697023392, -0.0000756025910959579, 0.03961687535047531, 0.027874184772372246, 0.030739953741431236, 0.0425969697535038, 0.05055786669254303, 0.031509917229413986, -0.10847418755292892, 0.007625409867614508, 0.088169626891613, -0.044997189193964005, -0.05647628381848335, 0.01664379984140396, 0.015785345807671547, 0.07588399201631546, 0.07742541283369064, 0.1357758492231369, -0.0704767182469368, -0.0453810878098011, -0.14217622578144073, 0.13463358581066132, -0.07524507492780685, -0.2546831965446472, -0.1388259381055832, -0.07603006809949875, 0.02274726890027523, 0.01058149803429842, 0.04862593486905098, -0.057967137545347214, -0.04359303042292595, -0.11007093638181686, 0.0897633507847786, -0.048853907734155655, -0.018075112253427505, 0.00872210692614317, 0.01679573766887188, -0.032157305628061295, -0.10759421437978745, -0.03024493157863617, 0.043637216091156006, -0.1062059998512268, -0.024575188755989075, 0.02802135981619358, 0.04102691635489464, 0.15341736376285553, -0.010470625944435596, -0.005647335201501846, -0.029434138908982277, 0.28884613513946533, -0.12425664812326431, 0.0605795793235302, 0.15497949719429016, -0.015317283570766449, 0.05419495701789856, 0.07885781675577164, 0.006221013143658638, -0.06994109600782394, 0.07622139900922775, 0.07377291470766068, -0.08901842683553696, -0.21730013191699982, -0.036845073103904724, -0.0005945852026343346, 0.026780569925904274, 0.12488767504692078, 0.05878341197967529, 0.05902644619345665, -0.006649466697126627, -0.10777267068624496, 0.04344357177615166, 0.0251704603433609, 0.1075570210814476, -0.0624426007270813, -0.010978825390338898, 0.050026874989271164, -0.062063273042440414, 0.028491320088505745, 0.14091600477695465, 0.03126009181141853, 0.19706375896930695, -0.06173178553581238, 0.09722045809030533, 0.07537533342838287, 0.08700936287641525, 0.03697621822357178, 0.008584856986999512, 0.0032590096816420555, 0.010287144221365452, -0.002112603047862649, -0.09674788266420364, -0.00865234900265932, 0.04744349420070648, 0.02781861089169979, -0.03165888413786888, -0.04551037773489952, -0.04252191260457039, 0.03981975466012955, 0.23172704875469208, -0.008364628069102764, -0.1803465634584427, -0.11257735639810562, 0.037942420691251755, -0.08320572227239609, -0.0487050823867321, -0.02116081304848194, 0.07709804177284241, -0.21742482483386993, 0.07199219614267349, -0.028209000825881958, 0.10718750953674316, -0.11764877289533615, 0.0024853565264493227, 0.09147254377603531, 0.04120301827788353, -0.06686726957559586, 0.09958311170339584, -0.15970556437969208, 0.06288056820631027, -0.011520304717123508, 0.06681392341852188, -0.07206618785858154, 0.02669883705675602, -0.0024136139545589685, 0.04971415922045708, 0.09323015064001083, 0.012544375844299793, 0.028297126293182373, 0.0008916364167816937, -0.04736608266830444, 0.011339046061038971, 0.05302208662033081, -0.13016970455646515, 0.12224794179201126, -0.024541186168789864, 0.030448997393250465, -0.04525439441204071, -0.0901663675904274, -0.10157576203346252, -0.16869385540485382, 0.08591785281896591, -0.12483767420053482, -0.0004445208760444075, -0.06871271878480911, -0.03768270090222359, 0.040956560522317886, 0.26533958315849304, -0.050226349383592606, -0.06912808865308762, -0.1319548338651657, 0.01783692091703415, 0.14128845930099487, -0.08487599343061447, 0.016594702377915382, -0.004747404251247644, 0.214769646525383, 0.002851434051990509, -0.12240216881036758, -0.018820075318217278, -0.05958603322505951, -0.16632552444934845, -0.007139777764678001, 0.16596578061580658, 0.06114570423960686, 0.02905590832233429, 0.013106384314596653, -0.00970007199794054, -0.04333013296127319, -0.16798770427703857, 0.02309093438088894, 0.16113144159317017, -0.012142780236899853, -0.0006343743880279362, 0.04952697828412056, 0.024832531809806824, -0.13134144246578217, 0.015241030603647232, 0.05358042195439339, 0.17936307191848755, -0.08035758137702942, 0.18803484737873077, 0.026449628174304962, -0.09030040353536606, -0.15339359641075134, 0.002718809060752392, 0.037036482244729996, 0.040130097419023514, 0.05132737383246422, -0.21375906467437744, 0.04338742420077324, 0.042605236172676086, 0.004414278548210859, 0.026342561468482018, -0.3298373520374298, -0.16100986301898956, -0.0037820348516106606, 0.0016716932877898216, -0.1519610434770584, -0.030158691108226776, -0.03692900016903877, -0.1023644208908081, -0.2433147430419922, 0.09519926458597183, -0.10367501527070999, 0.07394425570964813, 0.03177070990204811, 0.08717148751020432, 0.04636814072728157, -0.03807472810149193, 0.1253501921892166, -0.005994606297463179, 0.0673384889960289, -0.09525606781244278, -0.04752812907099724, 0.07179880887269974, -0.07115811854600906, 0.09154310077428818, 0.023609071969985962, 0.08293004333972931, -0.10223076492547989, -0.0914551392197609, -0.056563738733530045, -0.001765516004525125, -0.04911896586418152, -0.08698471635580063, -0.08515313267707825, 0.07990319281816483, 0.11959236860275269, -0.04474407806992531, -0.09447527676820755, -0.07125905156135559, -0.011609495617449284, 0.04369712248444557, 0.13258761167526245, 0.07200301438570023, -0.055080801248550415, 0.0020444903057068586, 0.017999615520238876, 0.007260501850396395, -0.1809215545654297, 0.0517602376639843, 0.09240526705980301, 0.04277126118540764, 0.1033298596739769, 0.0018794828793033957, -0.16312813758850098, 0.004282742273062468, 0.05738469958305359, -0.16526253521442413, -0.14168541133403778, -0.04732830822467804, 0.02296600677073002, -0.09591412544250488, -0.05309899151325226, 0.13394777476787567, -0.03211374208331108, -0.04023462161421776, 0.0030407763551920652, 0.03309965506196022, -0.041458502411842346, 0.08727665990591049, -0.014861207455396652, 0.039458081126213074, -0.0669424831867218, 0.11890003830194473, 0.07122134417295456, 0.008323459886014462, 0.0442950576543808, 0.06101521849632263, -0.08795726299285889, 0.014458832331001759, -0.1032896563410759, 0.011971980333328247, -0.03120393119752407, -0.006172234658151865, 0.03014819324016571, -0.022723650559782982, 0.04949655011296272, 0.08701477199792862, -0.0152813121676445, 0.10864865034818649, -0.05172400549054146, 0.015087264589965343, -0.12597714364528656, 0.07563676685094833, 0.0397254154086113, 0.02352064847946167, -0.11575136333703995, 0.1980433613061905, 0.03263504430651665, 0.10399162024259567, -0.03833410143852234, -0.0636843591928482, -0.03878873586654663, -0.01367612648755312, -0.08494231104850769, -0.04023318737745285, -0.08465298265218735, -0.025542842224240303, -0.004518669098615646, -0.026383066549897194, -0.03115791827440262, 0.044506754726171494, -0.031138718128204346, -0.06578675657510757, -0.07246185094118118, 0.053120214492082596, -0.14468945562839508, 0.03863959386944771, 0.11834845691919327, -0.056249797344207764, 0.1297154277563095, 0.05328510329127312, -0.03306885063648224, 0.015326880849897861, -0.1305968165397644, 0.04598194733262062, -0.0006675305776298046, 0.018122265115380287, 0.020334817469120026, -0.14840425550937653, 0.005522158462554216, -0.032303035259246826, -0.06959161907434464, 0.0021723886020481586, -0.016591425985097885, -0.1320718377828598, -0.009099041111767292, 0.09911972284317017, -0.019574908539652824, -0.06744557619094849, 0.06847817450761795, 0.057332467287778854, 0.020236482843756676, 0.061871569603681564, -0.012552128173410892, 0.06810343265533447, -0.1754772663116455, -0.05921772122383118, -0.0026713779661804438, 0.0382012240588665, 0.037763215601444244, -0.027989810332655907, 0.03345354273915291, -0.017474597319960594, 0.20969633758068085, 0.027835987508296967, -0.003347985679283738, 0.03755997493863106, -0.07564076781272888, 0.0038883343804627657, 0.039435964077711105, 0.07989992946386337, -0.01802687533199787, -0.029713863506913185, 0.003128395415842533, -0.027531972154974937, -0.09348011016845703, -0.007140264380723238, 0.08798482269048691, 0.0166842732578516, 0.2086213231086731, -0.061759721487760544, 0.06747295707464218, -0.01631821133196354, -0.12198413163423538, -0.03444056212902069, -0.03873869776725769, 0.03940582647919655, -0.05556843802332878, 0.05186202749609947, 0.18120861053466797, -0.1550808995962143, 0.11676274985074997, 0.04103923216462135, -0.05548645183444023, -0.12064468115568161, -0.19919860363006592, -0.01674737222492695, -0.04522062465548515, 0.02984359860420227, -0.1426563411951065, 0.09420514851808548, 0.017684433609247208, 0.03386889025568962, -0.06147332116961479, 0.13542772829532623, -0.09783744812011719, -0.13382603228092194, 0.04549327492713928, 0.01341394055634737, 0.03065446764230728, 0.03909630700945854, 0.09324894100427628, 0.0370953232049942, 0.006063323002308607, 0.06753310561180115, 0.044544994831085205, 0.031363073736429214, 0.041410982608795166, -0.03165772929787636, -0.04396935924887657, 0.028851812705397606, -0.004434290342032909, 0.022520557045936584, 0.09750255197286606, 0.06943286210298538, -0.017559723928570747, -0.011615482158958912, 0.3124503791332245, -0.019892139360308647, -0.02152949757874012, -0.18606477975845337, 0.16740162670612335, 0.01854991354048252, 0.006725470069795847, 0.022721530869603157, -0.11950121074914932, 0.015020261518657207, 0.10382970422506332, 0.1429523378610611, -0.02112526260316372, 0.022480381652712822, -0.02440771460533142, 0.0173425804823637, 0.03556298837065697, 0.09686990827322006, 0.06652332842350006, 0.19037137925624847, -0.024521509185433388, 0.0464288629591465, -0.015309314243495464, -0.023869549855589867, 0.015493884682655334, 0.10580607503652573, -0.043539393693208694, -0.00019374613475520164, -0.04873174428939819, 0.10644636303186417, -0.05462289974093437, -0.2934701442718506, -0.044884730130434036, -0.015311598777770996, -0.08973944187164307, 0.07562272250652313, -0.03660113736987114, -0.012368510477244854, 0.08445161581039429, 0.029738999903202057, -0.054799024015665054, 0.16535429656505585, 0.050747890025377274, -0.048268016427755356, 0.0030923429876565933, 0.10312002897262573, -0.04453945532441139, 0.17144398391246796, -0.035543594509363174, 0.008597848005592823, 0.07228390127420425, 0.01926025003194809, -0.13088886439800262, 0.0017648441717028618, 0.037170954048633575, -0.04266178607940674, -0.017842167988419533, 0.20804524421691895, 0.011050112545490265, 0.026233142241835594, 0.0741896703839302, -0.05523590371012688, 0.023987701162695885, -0.030547117814421654, 0.06205993890762329, -0.1327080875635147, 0.06772219389677048, -0.08009503036737442, 0.11456050723791122, 0.17433714866638184, -0.06594002991914749, 0.0381423719227314, -0.05439627170562744, 0.006259165704250336, -0.02967073582112789, 0.07339677959680557, -0.014714174903929234, -0.10592454671859741, 0.00803324207663536, 0.03516829013824463, 0.011487157084047794, -0.1780911684036255, -0.08128135651350021, 0.07839411497116089, -0.05355922505259514, 0.022207872942090034, 0.180975079536438, 0.018044456839561462, 0.052308276295661926, -0.03864284232258797, -0.012851464562118053, -0.0023849077988415956, 0.11459782719612122, -0.17547626793384552, -0.07854434102773666 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/61b6b0a0b7f6587d1b33542d5c18ad3c.489x489x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Агата Кристи (Agata Christie)</div> <a href="https://genius.com/artists/agata-christie"> <div style="text-align: center; font-size: 14px;">@agata-christie</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Агата Кристи (Agata Christie). Dataset is available [here](https://huggingface.co/datasets/huggingartists/agata-christie). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/agata-christie") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1dtf6ia5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Агата Кристи (Agata Christie)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/q27fvz1h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/q27fvz1h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/agata-christie') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/agata-christie") model = AutoModelWithLMHead.from_pretrained("huggingartists/agata-christie") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/agata-christie"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/agata-christie
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/agata-christie", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/agata-christie #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Агата Кристи (Agata Christie)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@agata-christie</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Агата Кристи (Agata Christie). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Агата Кристи (Agata Christie)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Агата Кристи (Agata Christie).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Агата Кристи (Agata Christie)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/agata-christie #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Агата Кристи (Agata Christie).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Агата Кристи (Agata Christie)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 57, 80, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/agata-christie #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Агата Кристи (Agata Christie).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Агата Кристи (Agata Christie)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.037026841193437576, 0.18036743998527527, -0.005582812242209911, 0.08373687416315079, 0.06394807249307632, 0.013920661062002182, 0.07732729613780975, 0.11367616057395935, 0.002806538948789239, 0.05796045437455177, 0.05826999619603157, 0.031682949513196945, 0.0691196620464325, 0.10101594030857086, 0.02266586385667324, -0.2378361076116562, 0.015379720367491245, -0.055050235241651535, -0.03110487572848797, 0.09159112721681595, 0.09885423630475998, -0.07061925530433655, 0.05366259440779686, 0.0010040649212896824, -0.04831506684422493, -0.001019723480567336, 0.003060648450627923, -0.05595138669013977, 0.06377550959587097, 0.09220138192176819, 0.061093125492334366, 0.042870089411735535, 0.05222315713763237, -0.17489458620548248, 0.02981538698077202, 0.11259733140468597, 0.0271888617426157, 0.08381203562021255, 0.056417014449834824, -0.059844136238098145, 0.09927549958229065, -0.04118682071566582, 0.09254495054483414, 0.04318460822105408, -0.10670448839664459, -0.12993116676807404, -0.10122119635343552, 0.03289776295423508, 0.03317571058869362, 0.042889662086963654, -0.016261303797364235, 0.08310791105031967, -0.06039150431752205, 0.07215990126132965, 0.21945008635520935, -0.24475014209747314, -0.007032424211502075, 0.028842167928814888, 0.04897642880678177, 0.060867175459861755, -0.08569445461034775, -0.0018921272130683064, 0.0230430755764246, 0.05010487884283066, 0.0630958303809166, -0.03634492680430412, 0.08897560089826584, -0.0255089420825243, -0.10221194475889206, -0.06921258568763733, 0.09780816733837128, -0.033425480127334595, -0.08650936186313629, -0.10482661426067352, -0.0378292091190815, -0.039420150220394135, 0.028043832629919052, 0.015386966988444328, 0.009487571194767952, 0.00289759854786098, -0.0722498819231987, -0.12439392507076263, -0.0584307499229908, -0.0667366310954094, -0.04000568762421608, 0.10803978890180588, 0.050489991903305054, 0.03415900096297264, -0.056384168565273285, 0.19544938206672668, 0.06339973211288452, -0.11087110638618469, -0.07976396381855011, -0.0997530147433281, -0.09925811737775803, -0.03447222337126732, -0.012228310108184814, 0.032602954655885696, -0.007015320472419262, 0.166127011179924, -0.026800962164998055, 0.004632533527910709, -0.07259710133075714, 0.03051723726093769, 0.10833526402711868, 0.10928530246019363, -0.0993635281920433, -0.02474876120686531, 0.09955985844135284, -0.0368460938334465, -0.03601035475730896, -0.05064775422215462, -0.01774468831717968, -0.08170276880264282, 0.04866597056388855, 0.10855124890804291, 0.06163405999541283, 0.04326312988996506, -0.04161572456359863, -0.05996564030647278, 0.04027240350842476, -0.15369608998298645, 0.02856067568063736, 0.020364902913570404, -0.05627899989485741, -0.00986455101519823, 0.07131347060203552, -0.035206325352191925, -0.11459575593471527, 0.05844583734869957, -0.0666271299123764, -0.029849417507648468, -0.07893118262290955, -0.11238584667444229, 0.006992764305323362, -0.023298630490899086, -0.02314501814544201, -0.08502199500799179, -0.1625489592552185, -0.022349460050463676, 0.016118919476866722, -0.07322557270526886, -0.007766581140458584, 0.013264596462249756, -0.01724134385585785, -0.0016413901466876268, -0.00943917129188776, 0.037875138223171234, -0.02338678203523159, 0.07585818320512772, -0.07912354916334152, 0.06814932823181152, 0.04602881893515587, 0.03993895277380943, -0.1108384057879448, 0.07389288395643234, -0.12713581323623657, 0.18392105400562286, -0.03416835516691208, -0.05422607436776161, -0.08236082643270493, -0.09455280750989914, -0.0231497623026371, -0.029075900092720985, 0.04198784381151199, 0.10294836014509201, -0.17019003629684448, -0.009922780096530914, 0.24902692437171936, -0.07265570014715195, -0.0442052036523819, 0.10996431857347488, -0.08598670363426208, 0.06407265365123749, 0.104546919465065, 0.04894396662712097, 0.12454748153686523, -0.04582284390926361, -0.04598649591207504, -0.021758688613772392, -0.04473688453435898, 0.16658078134059906, 0.05196135491132736, -0.009396787732839584, 0.04045325890183449, -0.015085002407431602, -0.031458329409360886, -0.007971743121743202, -0.030725838616490364, -0.04450886696577072, -0.015819817781448364, -0.027698295190930367, 0.025596879422664642, -0.040755562484264374, -0.024631386622786522, -0.015350439585745335, -0.11223258078098297, 0.06317885220050812, 0.10582195222377777, -0.09227776527404785, 0.04479945823550224, -0.11344078928232193, 0.0229558777064085, -0.05282554030418396, 0.013189070858061314, -0.18012674152851105, -0.018497169017791748, 0.03426824510097504, -0.07113207131624222, 0.058465711772441864, 0.02041454426944256, 0.045791640877723694, 0.08869406580924988, -0.03838803246617317, 0.019556924700737, -0.037078745663166046, -0.0008372343727387488, -0.05338397994637489, -0.17185387015342712, -0.04964357241988182, -0.051445215940475464, 0.04464060813188553, -0.12041130661964417, -0.0004370314709376544, 0.12002462893724442, 0.13152989745140076, 0.039301950484514236, -0.05129208043217659, 0.03260241076350212, -0.016286134719848633, -0.01789642684161663, -0.09870239347219467, -0.036994677037000656, 0.02062726765871048, -0.057296931743621826, 0.12759944796562195, -0.1589454710483551, -0.049235615879297256, 0.10235230624675751, 0.08738912642002106, -0.08712263405323029, 0.03160962462425232, -0.044256821274757385, -0.019533682614564896, -0.05817429721355438, -0.04544910416007042, 0.19947336614131927, 0.037075821310281754, 0.09541335701942444, -0.11222361028194427, -0.07139428704977036, -0.02021189033985138, -0.03116597793996334, 0.024840518832206726, 0.06761093437671661, -0.004100956954061985, -0.22437454760074615, 0.04087650775909424, 0.007520977407693863, 0.012443848885595798, 0.20081478357315063, 0.016418127343058586, -0.10135957598686218, -0.06953115016222, -0.030281340703368187, 0.025236211717128754, 0.07572022825479507, -0.016284974291920662, 0.05374056100845337, 0.03543820604681969, 0.03615415468811989, 0.02481025643646717, -0.11163534224033356, 0.02440241165459156, 0.05630140006542206, -0.0489654541015625, -0.052599240094423294, -0.01169813796877861, 0.018807044252753258, 0.09165124595165253, 0.06156429275870323, 0.0813373252749443, -0.018208427354693413, -0.05466395989060402, -0.10710802674293518, 0.13624350726604462, -0.09263881295919418, -0.173770934343338, -0.11667846888303757, -0.07021269202232361, 0.04215337336063385, 0.02491503581404686, 0.021625060588121414, 0.014661735855042934, -0.03268574923276901, -0.08193089067935944, 0.044211454689502716, -0.01674702949821949, -0.021574240177869797, -0.008231442421674728, 0.04753130301833153, -0.0030529038049280643, -0.13820108771324158, -0.010117732919752598, 0.031248750165104866, -0.10152176767587662, -0.010792138986289501, 0.03368724137544632, 0.03125997260212898, 0.12111981213092804, -0.017788616940379143, 0.0024078430142253637, -0.020200876519083977, 0.23483745753765106, -0.10983549058437347, 0.04622062295675278, 0.1325993835926056, -0.0773002877831459, 0.05244762822985649, 0.07950475811958313, 0.014806142076849937, -0.05812397971749306, 0.039540428668260574, 0.025668635964393616, -0.0629308745265007, -0.20702829957008362, -0.010254987515509129, -0.04094960168004036, 0.008096477016806602, 0.10159134119749069, 0.04312792047858238, -0.014596151188015938, 0.029580170288681984, -0.08794938027858734, 0.07328250259160995, 0.07171403616666794, 0.09078337997198105, -0.021078068763017654, 0.0005625436315312982, 0.07131001353263855, -0.06077316403388977, 0.03020538203418255, 0.10026606917381287, 0.05336490646004677, 0.23153910040855408, -0.10476092994213104, 0.12777695059776306, 0.08283790200948715, 0.06537218391895294, 0.057379841804504395, 0.024901920929551125, -0.032161954790353775, 0.05899665132164955, -0.007164195645600557, -0.09537474066019058, -0.03648897260427475, 0.03118826448917389, 0.027190078049898148, -0.01940339431166649, -0.007268638350069523, -0.10067851096391678, 0.04507382959127426, 0.19692599773406982, 0.07789919525384903, -0.15743741393089294, -0.10342924296855927, 0.08057361096143723, -0.052043091505765915, -0.0654449462890625, -0.017136497423052788, 0.11072677373886108, -0.19130124151706696, -0.017848746851086617, -0.008093013428151608, 0.1174452155828476, -0.19542178511619568, -0.025267863646149635, -0.01776769757270813, 0.07848504930734634, -0.06645146757364273, 0.06872095912694931, -0.2113717943429947, 0.05489804223179817, 0.014956175349652767, 0.10694295167922974, -0.05606734752655029, 0.024390611797571182, 0.06012806296348572, 0.02336464263498783, 0.09104663878679276, 0.012964462861418724, 0.034674737602472305, -0.0933852344751358, -0.059362057596445084, 0.02165021002292633, 0.0483013316988945, -0.06514569371938705, 0.10277530550956726, -0.03278826177120209, 0.01612536981701851, -0.0064710634760558605, -0.07304783165454865, -0.09292186051607132, -0.1449926346540451, 0.05609084293246269, -0.11900351941585541, 0.03376591578125954, -0.049164023250341415, -0.027791354805231094, 0.04381657391786575, 0.18850472569465637, -0.11018221080303192, -0.10992231965065002, -0.09416663646697998, 0.034449778497219086, 0.12786759436130524, -0.08037912845611572, 0.03879491239786148, 0.019507987424731255, 0.14192388951778412, 0.009071285836398602, -0.10234986245632172, 0.016165992245078087, -0.0487665981054306, -0.19142886996269226, -0.022711699828505516, 0.09754110872745514, 0.08180180191993713, 0.06499931961297989, 0.023113420233130455, 0.010456047020852566, -0.02546258643269539, -0.13571207225322723, 0.009961269795894623, 0.10145797580480576, 0.028157414868474007, 0.05442018806934357, -0.011522906832396984, 0.02663332223892212, -0.10282920300960541, 0.016204748302698135, 0.08904693275690079, 0.2534893751144409, -0.07752582430839539, 0.13673953711986542, 0.0663529708981514, -0.1035725325345993, -0.1768009066581726, 0.0012421554420143366, 0.0028849730733782053, 0.03739956021308899, 0.00867391750216484, -0.20721815526485443, -0.009860110469162464, 0.06007619574666023, -0.006557943765074015, 0.13838931918144226, -0.3148118257522583, -0.12926587462425232, 0.06698016822338104, 0.04661877080798149, -0.044797688722610474, -0.048746298998594284, -0.053178101778030396, -0.08877328783273697, -0.19773302972316742, 0.13922904431819916, -0.10197703540325165, 0.10866725444793701, 0.022760145366191864, -0.012600860558450222, 0.032798316329717636, -0.04098784178495407, 0.13641861081123352, -0.06580214947462082, 0.060348622500896454, -0.08429888635873795, -0.008345942944288254, 0.08735091984272003, -0.03894466534256935, 0.04970435053110123, 0.024095121771097183, 0.08014681190252304, -0.03086264058947563, -0.07629421353340149, -0.07270557433366776, 0.0144248828291893, -0.06130608543753624, -0.09803425520658493, -0.08327183127403259, 0.10025221109390259, 0.10853232443332672, -0.026188237592577934, -0.11995220184326172, -0.06109755113720894, -0.04428904876112938, 0.08895499259233475, 0.12141775339841843, 0.11148449778556824, -0.057822439819574356, -0.000228238757699728, -0.018774043768644333, 0.06945635378360748, -0.09260569512844086, 0.07294468581676483, 0.07409720122814178, 0.0346003919839859, 0.11289112269878387, 0.03142724186182022, -0.14408764243125916, 0.038501426577568054, 0.02173434942960739, -0.11510929465293884, -0.12616509199142456, -0.008591944351792336, -0.025455191731452942, -0.07456967234611511, -0.06199229508638382, 0.14151784777641296, -0.01823689229786396, -0.04358235374093056, 0.03451918438076973, 0.043361809104681015, -0.03520439192652702, 0.11808174103498459, 0.06927256286144257, 0.03825068101286888, -0.07903813570737839, 0.08764931559562683, 0.07332095503807068, 0.0455157645046711, 0.04089188948273659, 0.06405945122241974, -0.09906785935163498, -0.0005266116349957883, -0.09559597074985504, 0.01367446593940258, -0.010830695740878582, -0.006743722129613161, -0.027317281812429428, -0.03995976224541664, 0.028504714369773865, 0.1175825223326683, 0.0035219669807702303, 0.12638437747955322, -0.0395919568836689, 0.019486449658870697, -0.10631654411554337, 0.09969466924667358, 0.03886210545897484, 0.029718978330492973, -0.051895786076784134, 0.17847773432731628, 0.021975725889205933, 0.07292459160089493, -0.040058817714452744, -0.054361261427402496, -0.07528755813837051, 0.00531340017914772, -0.20218724012374878, -0.006977671757340431, -0.07228938490152359, -0.023491239175200462, -0.023055093362927437, -0.0320398211479187, -0.03298107162117958, 0.04458475112915039, -0.04166433587670326, -0.047665901482105255, -0.03957656770944595, 0.024774570018053055, -0.16248998045921326, -0.029259007424116135, 0.1127125471830368, -0.09566749632358551, 0.11474873125553131, 0.05539068207144737, -0.04845578968524933, -0.007957780733704567, -0.1010352224111557, 0.01185064110904932, -0.041475750505924225, 0.008935585618019104, 0.018619036301970482, -0.14336836338043213, 0.031827062368392944, -0.04793290048837662, -0.037939075380563736, 0.016240552067756653, 0.07190825790166855, -0.11222100257873535, 0.03534717112779617, 0.04659377783536911, 0.006504083517938852, -0.06774646788835526, 0.08148346096277237, 0.031079990789294243, 0.05993279069662094, 0.06592483073472977, -0.02612888440489769, 0.09096869826316833, -0.1499541848897934, -0.03601940721273422, 0.02703794464468956, -0.004195332992821932, 0.052459467202425, -0.0161806158721447, 0.0581640750169754, -0.030544104054570198, 0.19922493398189545, -0.02944898046553135, -0.045558441430330276, 0.026035744696855545, -0.03547130897641182, 0.00025633821496739984, 0.03181362897157669, 0.10503801703453064, -0.015837905928492546, -0.039535656571388245, -0.026681402698159218, -0.01063214149326086, -0.045953914523124695, -0.017737675458192825, 0.12877698242664337, 0.06482179462909698, 0.1638040542602539, -0.031113283708691597, 0.046407561749219894, -0.006448525004088879, -0.10813332349061966, -0.031117677688598633, 0.02677888423204422, 0.022851016372442245, -0.06425157189369202, 0.06750327348709106, 0.13432221114635468, -0.1597357839345932, 0.12999781966209412, 0.020413663238286972, -0.07580521702766418, -0.1248326450586319, -0.2002255618572235, -0.03010300174355507, 0.0082481000572443, 0.017337922006845474, -0.1335427314043045, 0.06132457032799721, 0.06779353320598602, 0.036121681332588196, -0.051542263478040695, 0.09295826405286789, -0.04122225195169449, -0.11120777577161789, 0.01882348582148552, 0.019995156675577164, 0.0448453389108181, 0.041938416659832, 0.019343024119734764, 0.04806143790483475, 0.04174422100186348, 0.061488617211580276, 0.05105746537446976, 0.04099741205573082, -0.0026772057171911, -0.025489939376711845, -0.055236589163541794, 0.00361187313683331, 0.03084685280919075, 0.022974861785769463, 0.1495886743068695, 0.06982830166816711, -0.016926363110542297, -0.013434812426567078, 0.2894571125507355, -0.03156456723809242, -0.08884355425834656, -0.17502105236053467, 0.15663397312164307, 0.0021268983837217093, -0.00042915003723464906, 0.04718954861164093, -0.1307145655155182, 0.020277319476008415, 0.1133284866809845, 0.16512347757816315, -0.08146930485963821, 0.027936944738030434, 0.024562248960137367, 0.010195564478635788, 0.030274247750639915, 0.07961954921483994, 0.03503778949379921, 0.2073555439710617, -0.06244543939828873, 0.06821416318416595, 0.022595100104808807, -0.008284825831651688, -0.025350095704197884, 0.12923480570316315, -0.03745650127530098, 0.020889639854431152, -0.08903651684522629, 0.056719742715358734, -0.06960206478834152, -0.25786975026130676, 0.015399538911879063, -0.025073735043406487, -0.11149025708436966, 0.031558308750391006, -0.07159943133592606, -0.021503105759620667, 0.06042918562889099, 0.008209113962948322, 0.0020396618638187647, 0.10800236463546753, 0.03259794041514397, -0.019446348771452904, -0.01679990254342556, 0.10344065725803375, -0.017641646787524223, 0.19395796954631805, -0.007357570342719555, 0.05508137121796608, 0.09322060644626617, 0.032507237046957016, -0.11331719905138016, 0.017591146752238274, 0.03948850557208061, -0.049916885793209076, -0.0019912777934223413, 0.20271159708499908, -0.012237885035574436, 0.02329617366194725, 0.07606470584869385, -0.00736361974850297, 0.03864596411585808, -0.06050977110862732, 0.0031543499790132046, -0.11822233349084854, 0.0011943522840738297, -0.07934152334928513, 0.11110827326774597, 0.17728710174560547, -0.056200336664915085, 0.021717984229326248, -0.04931766167283058, 0.004957176744937897, 0.018476488068699837, 0.020429110154509544, -0.024828428402543068, -0.08209969103336334, 0.011318028904497623, 0.10462561994791031, 0.05500825121998787, -0.19638025760650635, -0.07735829055309296, 0.03870667144656181, -0.05967719107866287, -0.010717816650867462, 0.14025884866714478, 0.014036258682608604, 0.07468711584806442, -0.027668271213769913, -0.04920247942209244, -0.026014529168605804, 0.06088521331548691, -0.13847394287586212, -0.06608649343252182 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a1a40316d1405fa83df2a21923d64168.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">⁣aikko</div> <a href="https://genius.com/artists/aikko"> <div style="text-align: center; font-size: 14px;">@aikko</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ⁣aikko. Dataset is available [here](https://huggingface.co/datasets/huggingartists/aikko). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aikko") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1cfdpsrg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ⁣aikko's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/aikko') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/aikko") model = AutoModelWithLMHead.from_pretrained("huggingartists/aikko") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/aikko"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/aikko
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/aikko", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aikko #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">⁣aikko</div> <a href="URL <div style="text-align: center; font-size: 14px;">@aikko</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ⁣aikko. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ⁣aikko's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ⁣aikko.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ⁣aikko's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aikko #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ⁣aikko.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ⁣aikko's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aikko #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ⁣aikko.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ⁣aikko's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.021474014967679977, 0.14674529433250427, -0.0029135800432413816, 0.044045884162187576, 0.10170692950487137, 0.013469061814248562, 0.0931873545050621, 0.10972617566585541, 0.009684600867331028, 0.07551460713148117, 0.07514652609825134, 0.025634171441197395, 0.07131797075271606, 0.10488463938236237, 0.07471955567598343, -0.25139516592025757, 0.03577069193124771, -0.08761408925056458, 0.0061635822057724, 0.11184463649988174, 0.09656122326850891, -0.05839649215340614, 0.08428075164556503, 0.03856654837727547, -0.07625094056129456, 0.013307790271937847, 0.00825514830648899, -0.06519503146409988, 0.09066439419984818, 0.057065267115831375, 0.03665033355355263, 0.024355921894311905, 0.06657605618238449, -0.1739259660243988, 0.030062496662139893, 0.1242871955037117, 0.03384857997298241, 0.07684917747974396, 0.046097513288259506, -0.07234478741884232, 0.14444628357887268, -0.016565890982747078, 0.09184093773365021, 0.050738606601953506, -0.12016786634922028, -0.13187409937381744, -0.13377827405929565, 0.09801170229911804, 0.10726126283407211, 0.08898007869720459, -0.02984011359512806, 0.057481057941913605, -0.02755003422498703, 0.04416930302977562, 0.22762168943881989, -0.24777260422706604, -0.01399520505219698, 0.09008333832025528, 0.047638095915317535, 0.024783045053482056, -0.0812300518155098, 0.014726324006915092, 0.043610189110040665, 0.02474059723317623, 0.04034915193915367, -0.02401265874505043, 0.17407073080539703, 0.02076292224228382, -0.10010750591754913, -0.07903620600700378, 0.12490750104188919, -0.021091070026159286, -0.07597094774246216, -0.13047365844249725, -0.0008753963047638535, -0.027917340397834778, 0.039859525859355927, -0.002985452301800251, -0.005451888311654329, 0.0060547590255737305, -0.03491107374429703, -0.11108598858118057, -0.0860142856836319, -0.03564939275383949, -0.018824733793735504, 0.06903574615716934, 0.0366348922252655, 0.0372842475771904, -0.07964517176151276, 0.22915010154247284, -0.02810971438884735, -0.09643123298883438, -0.04996970668435097, -0.09358341991901398, -0.08910021930932999, -0.046890001744031906, 0.010534513741731644, -0.009388741105794907, -0.04902856796979904, 0.14947840571403503, -0.03282902389764786, 0.02428288385272026, -0.013467132113873959, -0.002717477735131979, 0.14779552817344666, 0.13505882024765015, -0.11381737887859344, -0.029353493824601173, 0.0668119341135025, -0.004952428862452507, -0.06762427091598511, -0.05614509806036949, -0.00973912887275219, -0.01896088570356369, 0.042817890644073486, 0.07999829202890396, 0.06899137794971466, 0.0660046637058258, 0.0139559805393219, -0.06732825934886932, 0.0772242620587349, -0.1298125982284546, 0.010416137985885143, -0.012389036826789379, -0.050628818571567535, 0.019648980349302292, 0.054874785244464874, 0.0184447281062603, -0.10325247049331665, 0.11449790000915527, -0.06209489330649376, -0.049648597836494446, -0.0779542550444603, -0.08881676197052002, -0.006032431032508612, -0.034890495240688324, -0.04039304330945015, -0.07642186433076859, -0.18052932620048523, -0.042602863162755966, 0.03038848377764225, -0.04592813923954964, -0.039793580770492554, 0.03359241411089897, -0.024225683882832527, 0.011413190513849258, -0.02342902310192585, -0.04437822103500366, -0.029280129820108414, 0.029576163738965988, -0.069118931889534, 0.027781957760453224, 0.06802630424499512, 0.04559919983148575, -0.11413509398698807, 0.07320614159107208, -0.15620112419128418, 0.11531652510166168, -0.013004190288484097, 0.012367688119411469, -0.1003064289689064, -0.08345258980989456, -0.024275802075862885, -0.03378501534461975, 0.011421095579862595, 0.10573089122772217, -0.1627611219882965, -0.030207108706235886, 0.19558978080749512, -0.07038528472185135, -0.0799657478928566, 0.07214134931564331, -0.07211912423372269, 0.04515950754284859, 0.11993023008108139, 0.08708929270505905, 0.1480478048324585, -0.10918768495321274, -0.06844191253185272, -0.04870132729411125, -0.07430906593799591, 0.18488366901874542, 0.041707731783390045, -0.01898024044930935, 0.020529218018054962, 0.007784528657793999, -0.03726954758167267, -0.01600109040737152, -0.02323921024799347, -0.039608243852853775, -0.0189308300614357, 0.0012662330409511924, -0.004380457103252411, -0.04070277884602547, -0.05450465902686119, -0.02313442900776863, -0.09968520700931549, 0.05337884649634361, 0.10440853983163834, -0.06380635499954224, 0.012715005315840244, -0.0928066074848175, 0.020232615992426872, -0.046959180384874344, 0.011243073269724846, -0.1649789661169052, -0.0487925261259079, 0.021779784932732582, -0.059178754687309265, 0.0787520632147789, 0.031188536435365677, 0.0393267497420311, 0.06179169565439224, -0.01696162298321724, -0.001806165324524045, -0.04421929270029068, -0.013862932100892067, -0.03135303035378456, -0.15898677706718445, -0.052296511828899384, -0.04289444535970688, 0.08556472510099411, -0.11585814505815506, 0.007691957056522369, 0.07915376126766205, 0.12634290754795074, 0.020534975454211235, -0.06591011583805084, 0.026814421638846397, -0.04094883054494858, -0.031050648540258408, -0.10611157864332199, -0.04783092439174652, 0.010216804221272469, -0.01814340241253376, 0.15988177061080933, -0.16237492859363556, -0.08265494555234909, 0.1100371927022934, 0.12179715931415558, -0.09593912214040756, 0.053507667034864426, -0.07877758890390396, -0.019630039110779762, -0.039383988827466965, -0.04212113097310066, 0.25845497846603394, 0.03207661956548691, 0.08710717409849167, -0.09654579311609268, -0.0845380499958992, 0.00042554314131848514, -0.05197424069046974, -0.0265461727976799, 0.024835512042045593, 0.02739732526242733, -0.16879381239414215, 0.04051189497113228, -0.008727720938622952, 0.09151645749807358, 0.21004559099674225, 0.040478337556123734, -0.08352647721767426, -0.06413581967353821, -0.06576430797576904, -0.0009522853069938719, 0.081147201359272, 0.003739774925634265, 0.028809478506445885, 0.04209436848759651, 0.05928860604763031, 0.040984541177749634, -0.1142963171005249, 0.00810860563069582, 0.0637645348906517, -0.038767095655202866, -0.04888691380620003, 0.01867016777396202, 0.02184571884572506, 0.08595199137926102, 0.08995000272989273, 0.13028353452682495, -0.05920477584004402, -0.04581074044108391, -0.1393951177597046, 0.13437701761722565, -0.08680710196495056, -0.23004624247550964, -0.13294412195682526, -0.06846214830875397, 0.003628907725214958, 0.009249413385987282, 0.03563350811600685, -0.05503217130899429, -0.0391027107834816, -0.09031813591718674, 0.09439120441675186, -0.04700141027569771, -0.01824021153151989, 0.006148353684693575, 0.01638231799006462, -0.0195463877171278, -0.11478300392627716, -0.03399510309100151, 0.029879001900553703, -0.09396374225616455, -0.001151506439782679, 0.029836714267730713, 0.04009685665369034, 0.16523408889770508, -0.011194086633622646, 0.010489790700376034, -0.020744744688272476, 0.2705938518047333, -0.11801531910896301, 0.07142821699380875, 0.16560135781764984, -0.003206924069672823, 0.054857224225997925, 0.07629857957363129, 0.0005324229714460671, -0.05946582183241844, 0.06696659326553345, 0.07371209561824799, -0.07364813983440399, -0.2146027535200119, -0.032703980803489685, -0.013035928830504417, 0.02735084667801857, 0.11128389835357666, 0.041715510189533234, 0.05716833099722862, 0.013730665668845177, -0.09799807518720627, 0.04866043105721474, 0.020764419808983803, 0.10491316765546799, -0.07018917798995972, -0.008881911635398865, 0.049378082156181335, -0.04831409081816673, 0.03205616772174835, 0.13029663264751434, 0.04300714284181595, 0.20830851793289185, -0.07307595014572144, 0.0795966237783432, 0.08344164490699768, 0.11200428754091263, 0.019219692796468735, 0.019228778779506683, -0.019936837255954742, 0.019741825759410858, 0.00626765564084053, -0.08965971320867538, -0.00731450691819191, 0.03774189576506615, 0.027689658105373383, -0.014173480682075024, -0.052428942173719406, -0.058742787688970566, 0.046612534672021866, 0.2403697371482849, 0.022747870534658432, -0.1660369336605072, -0.10714352130889893, 0.05213987082242966, -0.05869369953870773, -0.06508596241474152, -0.017887912690639496, 0.06450899690389633, -0.22110110521316528, 0.0492873452603817, -0.03541376069188118, 0.10833791643381119, -0.11930622905492783, 0.001095360261388123, 0.07230648398399353, 0.04115866497159004, -0.0701843723654747, 0.08736400306224823, -0.15536269545555115, 0.077049620449543, -0.004707969259470701, 0.07808635383844376, -0.06867288053035736, 0.02152545005083084, 0.01728825829923153, 0.04798493906855583, 0.08357976377010345, 0.0223045963793993, 0.026972303166985512, -0.031731631606817245, -0.04084131866693497, 0.00021267351985443383, 0.060906846076250076, -0.1085573062300682, 0.1204540804028511, -0.03127826750278473, 0.03881203383207321, -0.028635174036026, -0.08348624408245087, -0.09754350036382675, -0.13695693016052246, 0.08737721294164658, -0.1061699166893959, 0.003268613014370203, -0.06561807543039322, -0.016510434448719025, 0.03321686014533043, 0.24436073005199432, -0.06479664146900177, -0.07398656010627747, -0.13738588988780975, -0.0030956005211919546, 0.13980576395988464, -0.08187377452850342, 0.0020165827590972185, -0.014799879863858223, 0.1714051067829132, 0.00013509500422514975, -0.13155493140220642, -0.004575645085424185, -0.06812941282987595, -0.17318977415561676, -0.016757845878601074, 0.1559644341468811, 0.061170466244220734, 0.028478873893618584, 0.006446797866374254, -0.0024536934215575457, -0.047470539808273315, -0.17156341671943665, 0.029437324032187462, 0.14202021062374115, 0.0009652491426095366, 0.0272968802601099, 0.03902757912874222, 0.02017618715763092, -0.12660686671733856, 0.012510313652455807, 0.04924125224351883, 0.1905374675989151, -0.07447978109121323, 0.1787545382976532, 0.018673010170459747, -0.08867073059082031, -0.16224074363708496, 0.028230972588062286, 0.01439934503287077, 0.029765911400318146, 0.020230932161211967, -0.18040890991687775, 0.03825647011399269, 0.0269915834069252, -0.008607476018369198, 0.05464258790016174, -0.33397427201271057, -0.15325012803077698, 0.009093866683542728, 0.013212754391133785, -0.0828649178147316, -0.03792161867022514, -0.030739258974790573, -0.07332442700862885, -0.25917109847068787, 0.08831686526536942, -0.11192154884338379, 0.08638136088848114, 0.010014791041612625, 0.09394232928752899, 0.04629570245742798, -0.05551933869719505, 0.13074499368667603, -0.025434454903006554, 0.06100712716579437, -0.0987468808889389, -0.058783188462257385, 0.09116897732019424, -0.0677957534790039, 0.11231182515621185, 0.03149430826306343, 0.08823762834072113, -0.12611447274684906, -0.07385555654764175, -0.08357665687799454, 0.013641058467328548, -0.05547363683581352, -0.10407662391662598, -0.09165674448013306, 0.09372158348560333, 0.12057823687791824, -0.036808863282203674, -0.09339482337236404, -0.04866344481706619, -0.0016428963281214237, 0.06375337392091751, 0.09987376630306244, 0.08257073163986206, -0.0828821212053299, 0.011137086898088455, 0.013140316121280193, 0.023866673931479454, -0.17147640883922577, 0.0402715764939785, 0.08541899919509888, 0.037849023938179016, 0.1065131425857544, 0.010273708961904049, -0.16665078699588776, 0.012507850304245949, 0.046217795461416245, -0.17007754743099213, -0.1059219092130661, -0.041448332369327545, 0.010780741460621357, -0.09327613562345505, -0.0392778106033802, 0.1390022486448288, -0.040931880474090576, -0.032594483345746994, 0.003854802343994379, 0.049030087888240814, -0.05482712388038635, 0.09312109649181366, 0.01572663150727749, 0.04483344405889511, -0.06431281566619873, 0.11793643981218338, 0.06500772386789322, 0.023339463397860527, 0.04694605991244316, 0.06243015453219414, -0.08770784735679626, 0.002382568782195449, -0.08324084430932999, 0.018546586856245995, -0.041463132947683334, -0.012575642205774784, 0.005091766361147165, -0.03876372054219246, 0.030687883496284485, 0.07932741194963455, -0.016770455986261368, 0.1042126715183258, -0.036398909986019135, 0.000872341450303793, -0.14090871810913086, 0.0672568529844284, 0.04849259555339813, 0.020470473915338516, -0.11661848425865173, 0.1982165277004242, 0.02702999673783779, 0.10682681202888489, -0.03904762864112854, -0.06060677394270897, -0.07167457044124603, -0.009838500991463661, -0.10132032632827759, -0.05102265626192093, -0.0924646407365799, -0.03234052285552025, -0.009697722271084785, -0.04203103110194206, -0.024628063663840294, 0.046914875507354736, -0.034656211733818054, -0.05876995250582695, -0.06404735893011093, 0.043978139758110046, -0.1366289258003235, 0.02310127019882202, 0.11682308465242386, -0.05358889326453209, 0.11880040168762207, 0.06132505461573601, -0.03195849806070328, 0.020093508064746857, -0.11275535076856613, 0.04249107837677002, -0.02723637782037258, 0.010525254532694817, 0.025291983038187027, -0.14640972018241882, 0.0075657726265490055, -0.050620775669813156, -0.05646152049303055, 0.010800712741911411, 0.005178642459213734, -0.12960073351860046, -0.0009989661630243063, 0.06759489327669144, -0.014782020822167397, -0.0740196481347084, 0.07420491427183151, 0.05608919635415077, 0.02689194679260254, 0.056464627385139465, -0.03103940561413765, 0.08258087933063507, -0.16918402910232544, -0.052511245012283325, 0.007873726077377796, 0.021517891436815262, 0.04662815481424332, -0.009550612419843674, 0.03725716844201088, -0.022248229011893272, 0.18545500934123993, 0.015505061484873295, -0.01899551786482334, 0.03452242910861969, -0.06561889499425888, -0.0022317133843898773, 0.03962375596165657, 0.06671322137117386, -0.04296061396598816, -0.03623467683792114, -0.01488089095801115, -0.01088768057525158, -0.08738918602466583, -0.03928200900554657, 0.10600970685482025, 0.04565564543008804, 0.17947976291179657, -0.0429181270301342, 0.05861398205161095, -0.02676321379840374, -0.12596720457077026, -0.02397703379392624, -0.05270399898290634, 0.04228788986802101, -0.06150933727622032, 0.06041501834988594, 0.17746013402938843, -0.16285483539104462, 0.11699046939611435, 0.020278198644518852, -0.061476875096559525, -0.10674639791250229, -0.18625788390636444, -0.012710283510386944, -0.046680960804224014, 0.03698582574725151, -0.13428355753421783, 0.08882604539394379, 0.027775872498750687, 0.0353861078619957, -0.06806094199419022, 0.1386438012123108, -0.06628742814064026, -0.11324909329414368, 0.03680987283587456, 0.024200262501835823, 0.024899043142795563, 0.03654421865940094, 0.07725411653518677, 0.02187819592654705, 0.0038587460294365883, 0.06716202199459076, 0.038757290691137314, 0.023416632786393166, 0.03672046214342117, -0.017336834222078323, -0.05361885949969292, 0.03075697459280491, 0.0032866070978343487, 0.03566664457321167, 0.09437406808137894, 0.06643736362457275, -0.020928392186760902, -0.029694026336073875, 0.30492767691612244, -0.0340239442884922, -0.03798709437251091, -0.17670106887817383, 0.17357085645198822, 0.014012813568115234, -0.021232467144727707, 0.020560670644044876, -0.1285819411277771, 0.007636086083948612, 0.14247891306877136, 0.1700046956539154, -0.03079795278608799, 0.0152570316568017, -0.039489444345235825, 0.01466902531683445, 0.03467072173953056, 0.1002172976732254, 0.06132562831044197, 0.19237229228019714, -0.04059057682752609, 0.05297034606337547, -0.00983971543610096, -0.01769169420003891, -0.006280885078012943, 0.10380562394857407, -0.02660973370075226, 0.0024295449256896973, -0.05866827070713043, 0.10018456727266312, -0.05804414674639702, -0.2681141495704651, -0.020699363201856613, -0.04118825122714043, -0.0942097082734108, 0.056390926241874695, -0.02870299108326435, -0.026347007602453232, 0.09304256737232208, 0.018413120880723, -0.036112986505031586, 0.1308514028787613, 0.04494718834757805, -0.042620014399290085, -0.014881978742778301, 0.09404142946004868, -0.01700352318584919, 0.1870701164007187, -0.02575141377747059, 0.004666072316467762, 0.08489064872264862, 0.017730606719851494, -0.12161184102296829, 0.005929791834205389, 0.03887868672609329, -0.06607762724161148, -0.029330844059586525, 0.198775053024292, 0.008746613748371601, 0.027727965265512466, 0.06325151771306992, -0.068745918571949, 0.02157609909772873, -0.05121757462620735, 0.06066406890749931, -0.1458732634782791, 0.06002241000533104, -0.08117935061454773, 0.14123333990573883, 0.18705682456493378, -0.07084338366985321, 0.023602571338415146, -0.063297338783741, 0.006977979559451342, -0.022464144974946976, 0.06647644191980362, -0.02343027852475643, -0.1043880507349968, 0.016106583178043365, 0.025988833978772163, 0.022900640964508057, -0.19393286108970642, -0.0753093734383583, 0.05989406630396843, -0.053591739386320114, 0.015196786262094975, 0.1767944097518921, 0.028220919892191887, 0.06163671240210533, -0.02936161868274212, -0.00397420534864068, -0.01630467176437378, 0.11586210131645203, -0.1538890153169632, -0.08890607953071594 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/123a0b2ef09a25207b610c5bd7b21d0f.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aimer</div> <a href="https://genius.com/artists/aimer"> <div style="text-align: center; font-size: 14px;">@aimer</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Aimer. Dataset is available [here](https://huggingface.co/datasets/huggingartists/aimer). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aimer") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1rtjxc8q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Aimer's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2rguugmg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2rguugmg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/aimer') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/aimer") model = AutoModelWithLMHead.from_pretrained("huggingartists/aimer") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/aimer"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/aimer
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/aimer", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aimer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aimer</div> <a href="URL <div style="text-align: center; font-size: 14px;">@aimer</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Aimer. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Aimer's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Aimer.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Aimer's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aimer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Aimer.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Aimer's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/aimer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Aimer.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Aimer's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.023401081562042236, 0.1463528871536255, -0.0027962748426944017, 0.03264981508255005, 0.08890967816114426, -0.0033301946241408587, 0.08388578146696091, 0.1072087287902832, -0.01122999470680952, 0.06983864307403564, 0.07764077186584473, 0.01244110893458128, 0.06546670198440552, 0.13206994533538818, 0.0906238779425621, -0.2662758231163025, 0.03082045167684555, -0.1048940047621727, 0.02321835793554783, 0.12271346896886826, 0.09173712134361267, -0.0538499653339386, 0.08467191457748413, 0.03841331973671913, -0.07454870641231537, 0.029747923836112022, -0.012699362821877003, -0.0734725371003151, 0.09355580806732178, 0.08102244883775711, 0.03205542638897896, 0.03037201426923275, 0.0663045197725296, -0.1905422955751419, 0.03438208997249603, 0.12547282874584198, 0.02812323160469532, 0.06966183334589005, 0.04030046984553337, -0.07933203130960464, 0.17390094697475433, -0.026511752977967262, 0.0898796021938324, 0.04647132381796837, -0.10784351825714111, -0.17590034008026123, -0.11929351091384888, 0.0831558033823967, 0.10193508863449097, 0.0833677425980568, -0.031155766919255257, 0.04312840476632118, 0.001848837360739708, 0.046091705560684204, 0.23624058067798615, -0.2442903369665146, -0.015033185482025146, 0.09190606325864792, 0.03648989275097847, 0.046333808451890945, -0.07719690352678299, 0.01811237819492817, 0.05106136202812195, 0.0257857795804739, 0.050368666648864746, -0.015823394060134888, 0.21935606002807617, 0.020958488807082176, -0.09369602054357529, -0.08790165930986404, 0.10847606509923935, -0.028717026114463806, -0.08358065038919449, -0.15618813037872314, 0.004427342209964991, -0.029545575380325317, 0.03942332789301872, -0.01127094030380249, -0.004464178811758757, 0.000571053009480238, -0.04088965058326721, -0.09708303213119507, -0.09533081203699112, -0.026979587972164154, -0.02686498872935772, 0.07242987304925919, 0.023346751928329468, 0.031750116497278214, -0.0758434310555458, 0.23325376212596893, 0.0060396515764296055, -0.10324551910161972, -0.057216983288526535, -0.09055477380752563, -0.09933265298604965, -0.058027151972055435, 0.008949036709964275, 0.016226420179009438, -0.06683177500963211, 0.1659933626651764, -0.031207650899887085, 0.032857105135917664, 0.0014219713630154729, -0.022094903513789177, 0.15456388890743256, 0.13169407844543457, -0.0922161340713501, -0.02829580567777157, 0.045349761843681335, -0.014629889279603958, -0.06763719767332077, -0.06020638719201088, -0.013855854980647564, -0.022821471095085144, 0.030063852667808533, 0.09473323822021484, 0.04426908865571022, 0.05528700351715088, 0.032442424446344376, -0.05701625347137451, 0.10905730724334717, -0.14688727259635925, 0.008705999702215195, -0.012143331579864025, -0.03126579523086548, 0.02125801332294941, 0.047938909381628036, 0.015076090581715107, -0.09840437769889832, 0.11257141083478928, -0.04962063953280449, -0.05282588675618172, -0.06799454987049103, -0.08301062136888504, -0.0064125037752091885, -0.0054042949341237545, -0.0481799878180027, -0.08855852484703064, -0.15785790979862213, -0.034338634461164474, 0.025887181982398033, -0.03909797593951225, -0.038274914026260376, 0.04106425121426582, -0.03312639519572258, 0.001706272247247398, -0.015566647052764893, -0.021281374618411064, -0.03204381465911865, 0.020793147385120392, -0.05840718746185303, 0.03269875422120094, 0.08373848348855972, 0.033623334020376205, -0.10985246300697327, 0.06891702860593796, -0.16208630800247192, 0.1460748165845871, -0.010257880203425884, 0.01833602972328663, -0.10694906860589981, -0.09691810607910156, -0.025848673656582832, -0.02673034928739071, -0.009196359664201736, 0.09194177389144897, -0.18562953174114227, -0.041139569133520126, 0.19828224182128906, -0.07521292567253113, -0.08627229928970337, 0.06904260069131851, -0.07780624181032181, 0.03614012524485588, 0.13931740820407867, 0.054999787360429764, 0.1617487668991089, -0.11697417497634888, -0.06895533949136734, -0.04215812683105469, -0.06256615370512009, 0.21884633600711823, 0.0537649542093277, -0.006705082952976227, 0.020310280844569206, 0.012608836404979229, -0.024266378954052925, -0.027421630918979645, -0.022139040753245354, -0.0449366457760334, -0.011627435684204102, 0.017855564132332802, -0.01643546298146248, -0.05194045975804329, -0.06849000602960587, -0.01947450451552868, -0.11273982375860214, 0.03819052502512932, 0.10370945930480957, -0.0728219598531723, 0.011645733378827572, -0.0929790511727333, -0.007509510964155197, -0.03867436945438385, 0.021463364362716675, -0.19397534430027008, -0.05970415100455284, 0.020552976056933403, -0.06820844858884811, 0.08658996969461441, 0.023533722385764122, 0.037851329892873764, 0.0632474422454834, -0.00825383048504591, 0.02019198052585125, -0.05048093572258949, -0.022640177980065346, -0.03316296264529228, -0.140666201710701, -0.07185222953557968, -0.05258643999695778, 0.08473020792007446, -0.1343516707420349, 0.007343469653278589, 0.10294124484062195, 0.1131252646446228, 0.02477859891951084, -0.05704602971673012, 0.006871657911688089, -0.03558258339762688, -0.040095433592796326, -0.1123853549361229, -0.061359208077192307, 0.00695823272690177, -0.04236261546611786, 0.15758834779262543, -0.17408211529254913, -0.06826207041740417, 0.09750931710004807, 0.16197635233402252, -0.106643907725811, 0.010809335857629776, -0.09454723447561264, -0.009226616472005844, -0.04954703524708748, -0.037553951144218445, 0.27305102348327637, 0.041107550263404846, 0.0794706717133522, -0.11083445698022842, -0.09811314195394516, 0.000001428648829460144, -0.03719194978475571, -0.028481265529990196, 0.026024959981441498, 0.011070671491324902, -0.17240484058856964, 0.02336953580379486, 0.001265956088900566, 0.12092200666666031, 0.2112676352262497, 0.05152804031968117, -0.0971219539642334, -0.06009947136044502, -0.08733776956796646, 0.002225056989118457, 0.04930883273482323, 0.0371159128844738, 0.026996083557605743, 0.04301388934254646, 0.05284347012639046, 0.03615965321660042, -0.11040887981653214, 0.010424047708511353, 0.08269405364990234, -0.045784324407577515, -0.05222113057971001, 0.015895046293735504, 0.016592053696513176, 0.08221226185560226, 0.07962727546691895, 0.1426754593849182, -0.07029563933610916, -0.047144606709480286, -0.14234991371631622, 0.13948757946491241, -0.07528472691774368, -0.2681908905506134, -0.1408296823501587, -0.0722796618938446, 0.023514876142144203, 0.005739584565162659, 0.03864374756813049, -0.06026880815625191, -0.03939700499176979, -0.1041296124458313, 0.08287926763296127, -0.04889959096908569, -0.015220130793750286, 0.00638596760109067, 0.021421262994408607, -0.030970832332968712, -0.10804646462202072, -0.029743432998657227, 0.04103006422519684, -0.10744462162256241, -0.014656017534434795, 0.030239561572670937, 0.04099220037460327, 0.1566343754529953, -0.010713244788348675, -0.004123745020478964, -0.033637791872024536, 0.2797388732433319, -0.12446993589401245, 0.06575673818588257, 0.16088300943374634, -0.020782597362995148, 0.05446185544133186, 0.07761752605438232, 0.006069054827094078, -0.06679045408964157, 0.07719703763723373, 0.07136055082082748, -0.0918443575501442, -0.21484172344207764, -0.0274615827947855, -0.00631312420591712, 0.02417760156095028, 0.1264994740486145, 0.059568751603364944, 0.05664120241999626, -0.00298154610209167, -0.10402890294790268, 0.04468926414847374, 0.027014290913939476, 0.1103072389960289, -0.06927361339330673, -0.010399549268186092, 0.048866380006074905, -0.0659470334649086, 0.02844770811498165, 0.14068256318569183, 0.04246693477034569, 0.19998395442962646, -0.06290625035762787, 0.09538474678993225, 0.07635769248008728, 0.09816496819257736, 0.038289736956357956, 0.007764720823615789, -0.002060362370684743, 0.009389740414917469, -0.002808115677908063, -0.09802034497261047, -0.01122856792062521, 0.04981829598546028, 0.025407107546925545, -0.022486021742224693, -0.04040739685297012, -0.04596558213233948, 0.044951509684324265, 0.23575438559055328, -0.01525881141424179, -0.18059904873371124, -0.11767888069152832, 0.04141931235790253, -0.08062422275543213, -0.05006812885403633, -0.0247470885515213, 0.07868799567222595, -0.22034965455532074, 0.07244237512350082, -0.032934367656707764, 0.10879882425069809, -0.11228447407484055, 0.0035542675759643316, 0.0846056118607521, 0.04507436230778694, -0.0655452162027359, 0.09951969236135483, -0.16648517549037933, 0.061190471053123474, -0.011698531918227673, 0.06729993224143982, -0.07620330154895782, 0.028661249205470085, -0.00040538515895605087, 0.051951225847005844, 0.08916793018579483, 0.012240927666425705, 0.020989254117012024, -0.0035351577680557966, -0.04861555993556976, 0.014019372873008251, 0.05822397768497467, -0.12431389093399048, 0.12557131052017212, -0.024144509807229042, 0.03336075693368912, -0.045147281140089035, -0.09665446728467941, -0.08968937397003174, -0.1696178913116455, 0.090015709400177, -0.12530092895030975, 0.002897108206525445, -0.07221145182847977, -0.03050301969051361, 0.039182666689157486, 0.2695275545120239, -0.05515130236744881, -0.07273629307746887, -0.13749919831752777, 0.017824796959757805, 0.14176219701766968, -0.08528947085142136, 0.00928384717553854, -0.010908170603215694, 0.21550162136554718, 0.00012057088315486908, -0.1261650174856186, -0.020558925345540047, -0.060960665345191956, -0.16448436677455902, -0.004617652390152216, 0.16890724003314972, 0.06110895052552223, 0.026787815615534782, 0.010560276918113232, -0.0175858773291111, -0.04218129441142082, -0.1723352074623108, 0.02360464073717594, 0.16190959513187408, -0.013288307934999466, 0.00042188854422420263, 0.048614125698804855, 0.011879787780344486, -0.13399285078048706, 0.012469717301428318, 0.05070137977600098, 0.17515581846237183, -0.07871521264314651, 0.19169341027736664, 0.03474942594766617, -0.09071394056081772, -0.1463204175233841, 0.008105942979454994, 0.03776128962635994, 0.03937878459692001, 0.045853789895772934, -0.20955781638622284, 0.04181380942463875, 0.040297817438840866, 0.006674678530544043, 0.03648960590362549, -0.33386778831481934, -0.1589941382408142, -0.007582316640764475, 0.00543540483340621, -0.1542188674211502, -0.0403626523911953, -0.03423887491226196, -0.09702222794294357, -0.2489326000213623, 0.10114247351884842, -0.10946983844041824, 0.07394638657569885, 0.029369322583079338, 0.09896939992904663, 0.04502158239483833, -0.04386625066399574, 0.13174064457416534, -0.017672689631581306, 0.06975366175174713, -0.0944242775440216, -0.055935878306627274, 0.07905865460634232, -0.07295086979866028, 0.09292419999837875, 0.03309717774391174, 0.08030352741479874, -0.0965353474020958, -0.08983536809682846, -0.06315886229276657, -0.0031530584674328566, -0.049818724393844604, -0.08988567441701889, -0.08919376134872437, 0.08513057231903076, 0.12051689624786377, -0.04817153513431549, -0.09085424989461899, -0.07259316742420197, 0.0017171171493828297, 0.039912570267915726, 0.12535612285137177, 0.07036653161048889, -0.06317602843046188, -0.001729263924062252, 0.018422627821564674, 0.010798213072121143, -0.18204163014888763, 0.04902239516377449, 0.09489189833402634, 0.03867262974381447, 0.10478997230529785, 0.004709436092525721, -0.1660834401845932, 0.007850836031138897, 0.05448057875037193, -0.1621217578649521, -0.127263143658638, -0.03986634314060211, 0.032561928033828735, -0.10120203346014023, -0.049292732030153275, 0.1338614821434021, -0.035338614135980606, -0.03711455687880516, 0.0024764200206846, 0.034568823873996735, -0.040106166154146194, 0.08360403031110764, -0.011534233577549458, 0.04159645736217499, -0.06775925308465958, 0.11905717104673386, 0.06811793893575668, -0.0011549625778570771, 0.04128282889723778, 0.06552664190530777, -0.09199332445859909, 0.016204310581088066, -0.10450413078069687, 0.004224132746458054, -0.031580280512571335, -0.013363339938223362, 0.02976081520318985, -0.03175852820277214, 0.05037045106291771, 0.08903124183416367, -0.014451841823756695, 0.10531055927276611, -0.047477249056100845, 0.020972231402993202, -0.12710519134998322, 0.06786395609378815, 0.033335912972688675, 0.020797165110707283, -0.1112118735909462, 0.20519347488880157, 0.036532577127218246, 0.10759256035089493, -0.03752119094133377, -0.068453848361969, -0.04595339670777321, -0.010484390892088413, -0.08360878378152847, -0.036904919892549515, -0.0885208249092102, -0.0238572359085083, -0.004624654073268175, -0.02754058875143528, -0.032601743936538696, 0.04397239908576012, -0.03245420381426811, -0.06109871342778206, -0.07488107681274414, 0.04503174498677254, -0.14236044883728027, 0.03584560379385948, 0.11716648936271667, -0.05619421973824501, 0.1264020800590515, 0.056432753801345825, -0.03599834069609642, 0.022569676861166954, -0.13779468834400177, 0.04753937944769859, -0.0024248871486634016, 0.02034016326069832, 0.017566358670592308, -0.14826543629169464, 0.007136879954487085, -0.032834138721227646, -0.07064925879240036, 0.00710064684972167, -0.017721189185976982, -0.13254551589488983, -0.0097403759136796, 0.0934775173664093, -0.012530889362096786, -0.06905896961688995, 0.07158329337835312, 0.05639175698161125, 0.023158805444836617, 0.056666016578674316, -0.012926864437758923, 0.0700334683060646, -0.1783076971769333, -0.06264517456293106, -0.002823751652613282, 0.033548954874277115, 0.04471824690699577, -0.026578636839985847, 0.03387629985809326, -0.01912267506122589, 0.20855073630809784, 0.020067056640982628, -0.0015758631052449346, 0.039080411195755005, -0.07286438345909119, -0.0057250685058534145, 0.041385699063539505, 0.07987397909164429, -0.013800539076328278, -0.0287520419806242, 0.008010495454072952, -0.025373538956046104, -0.09534827619791031, -0.018069006502628326, 0.09620558470487595, 0.01627134345471859, 0.20904940366744995, -0.05753329396247864, 0.06317954510450363, -0.016854191198945045, -0.1082611083984375, -0.033513251692056656, -0.04873238131403923, 0.031175248324871063, -0.05656738579273224, 0.05296240374445915, 0.19192124903202057, -0.15309423208236694, 0.11803114414215088, 0.04263130947947502, -0.05684031546115875, -0.11851552128791809, -0.19584675133228302, -0.01221687626093626, -0.03379922732710838, 0.025224944576621056, -0.13756854832172394, 0.09683135896921158, 0.020366137847304344, 0.04063858091831207, -0.059631749987602234, 0.1378791481256485, -0.09046771377325058, -0.13690440356731415, 0.04706640914082527, 0.01771097630262375, 0.03206606209278107, 0.047032494097948074, 0.09133128076791763, 0.03883565589785576, 0.0035157331731170416, 0.07132381200790405, 0.04292808100581169, 0.03653945401310921, 0.03943873569369316, -0.03164068982005119, -0.04020869731903076, 0.02757892943918705, -0.006505155935883522, 0.02038518339395523, 0.09145975112915039, 0.06804569065570831, -0.017743242904543877, -0.01730082742869854, 0.3165217936038971, -0.020359231159090996, -0.03344622626900673, -0.18744690716266632, 0.1657949984073639, 0.011080849915742874, -0.00004615006037056446, 0.01874466799199581, -0.11702481657266617, 0.015291261486709118, 0.11615642160177231, 0.1472454071044922, -0.023513734340667725, 0.023887375369668007, -0.026791540905833244, 0.018107755109667778, 0.03713727369904518, 0.10905341058969498, 0.062157709151506424, 0.19412636756896973, -0.026585886254906654, 0.05492781475186348, -0.015134262852370739, -0.021599693223834038, 0.014351232908666134, 0.10477682203054428, -0.042421068996191025, 0.00685298815369606, -0.051214929670095444, 0.10134782642126083, -0.05411933735013008, -0.2976278066635132, -0.03726048767566681, -0.013263576664030552, -0.08955764770507812, 0.07726848125457764, -0.030325090512633324, -0.018548855558037758, 0.08084703236818314, 0.03109058551490307, -0.048898279666900635, 0.1633014976978302, 0.05210927128791809, -0.04389495030045509, -0.0057152677327394485, 0.11141416430473328, -0.038305435329675674, 0.16191677749156952, -0.03612992540001869, 0.012878884561359882, 0.07391391694545746, 0.014682318083941936, -0.12738807499408722, 0.005581088364124298, 0.037304434925317764, -0.05137467384338379, -0.020956112071871758, 0.20506751537322998, 0.013836837373673916, 0.027154000476002693, 0.0729219913482666, -0.054826751351356506, 0.019536124542355537, -0.037759169936180115, 0.06124357506632805, -0.13284847140312195, 0.06480275839567184, -0.07525309920310974, 0.11838120967149734, 0.1779101938009262, -0.06576621532440186, 0.03887108340859413, -0.059542134404182434, 0.007865933701395988, -0.02762077935039997, 0.07098235934972763, -0.018524600192904472, -0.11010923981666565, 0.006386937107890844, 0.03258727490901947, 0.011805322952568531, -0.17517094314098358, -0.08283167332410812, 0.08047564327716827, -0.05295217037200928, 0.025339484214782715, 0.17783981561660767, 0.012183040380477905, 0.05954119190573692, -0.0385153703391552, -0.00996040552854538, -0.002025680150836706, 0.11513859033584595, -0.17351286113262177, -0.07741659134626389 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/70b44d7b5a4be028e87b865dd425a4cc.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alan Walker</div> <a href="https://genius.com/artists/alan-walker"> <div style="text-align: center; font-size: 14px;">@alan-walker</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Alan Walker. Dataset is available [here](https://huggingface.co/datasets/huggingartists/alan-walker). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/alan-walker") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3oyxxcos/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Alan Walker's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/huoxll6m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/huoxll6m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/alan-walker') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/alan-walker") model = AutoModelWithLMHead.from_pretrained("huggingartists/alan-walker") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/alan-walker"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/alan-walker
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/alan-walker", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/alan-walker #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alan Walker</div> <a href="URL <div style="text-align: center; font-size: 14px;">@alan-walker</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Alan Walker. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Alan Walker's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Alan Walker.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Alan Walker's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/alan-walker #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Alan Walker.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Alan Walker's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/alan-walker #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Alan Walker.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Alan Walker's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.015794798731803894, 0.15879084169864655, -0.0027945919428020716, 0.041247278451919556, 0.08513536304235458, 0.001373560051433742, 0.08453691005706787, 0.09953548014163971, 0.00013718179252464324, 0.06866476684808731, 0.07965153455734253, 0.010267774574458599, 0.0643562451004982, 0.10052045434713364, 0.07941132038831711, -0.2636663317680359, 0.02785659395158291, -0.08807414770126343, 0.011209468357264996, 0.11670620739459991, 0.0965217798948288, -0.059338558465242386, 0.08691494166851044, 0.04351910948753357, -0.07583533227443695, 0.02897021919488907, 0.0014483293052762747, -0.07114327698945999, 0.09281440824270248, 0.07059318572282791, 0.0403556302189827, 0.02717996947467327, 0.07154293358325958, -0.17931553721427917, 0.02973427250981331, 0.12588009238243103, 0.03781527653336525, 0.07299279421567917, 0.04347176104784012, -0.08004457503557205, 0.16854724287986755, -0.01602112129330635, 0.09970132261514664, 0.04347996786236763, -0.11369713395833969, -0.16240377724170685, -0.11859240382909775, 0.08677177131175995, 0.0971364751458168, 0.0888502299785614, -0.03105117194354534, 0.04336833953857422, -0.012990460731089115, 0.043369583785533905, 0.23072707653045654, -0.2402598261833191, -0.016021426767110825, 0.08214503526687622, 0.04090885445475578, 0.027919990941882133, -0.07888508588075638, 0.01554176863282919, 0.04483899101614952, 0.02096121571958065, 0.05769684165716171, -0.019328134134411812, 0.20082515478134155, 0.029113097116351128, -0.09555647522211075, -0.07846593111753464, 0.11792582273483276, -0.026071131229400635, -0.07179944217205048, -0.13884642720222473, 0.0008876760839484632, -0.01096318755298853, 0.04499766603112221, -0.005577537696808577, -0.006637923885136843, 0.0028655650094151497, -0.04805654659867287, -0.10354582965373993, -0.09420158714056015, -0.023875927552580833, -0.035350315272808075, 0.0830574631690979, 0.03079938143491745, 0.038150571286678314, -0.08124031871557236, 0.2289017140865326, -0.01141489576548338, -0.0994635671377182, -0.05018382519483566, -0.0937366709113121, -0.09364378452301025, -0.05312309041619301, 0.003877711948007345, 0.02023276314139366, -0.0637955442070961, 0.15757526457309723, -0.027635151520371437, 0.034562040120363235, -0.0003077722794841975, -0.01493050530552864, 0.1432511955499649, 0.1427396982908249, -0.10175120085477829, -0.020207474008202553, 0.05233735963702202, -0.01688922569155693, -0.06238970905542374, -0.05626615136861801, -0.016736075282096863, -0.016542375087738037, 0.02298595756292343, 0.07659950852394104, 0.04940599203109741, 0.06205503270030022, 0.02548942342400551, -0.06512395292520523, 0.09154198318719864, -0.13968753814697266, 0.013173844665288925, -0.001744819455780089, -0.04083205386996269, 0.01738245040178299, 0.046207599341869354, 0.02037305198609829, -0.1003691628575325, 0.12102344632148743, -0.052343834191560745, -0.051815081387758255, -0.0794544592499733, -0.08916667848825455, -0.007279037963598967, -0.015510819852352142, -0.03807652369141579, -0.0768754780292511, -0.16606487333774567, -0.04085962474346161, 0.031643711030483246, -0.0414138026535511, -0.04630434513092041, 0.028485462069511414, -0.016238732263445854, 0.008280121721327305, -0.01775467023253441, -0.02924395352602005, -0.02652174048125744, 0.026135332882404327, -0.05902712792158127, 0.03134405240416527, 0.06725089251995087, 0.04223339632153511, -0.10863816738128662, 0.06503542512655258, -0.14427517354488373, 0.13599692285060883, -0.005251550115644932, 0.017863506451249123, -0.0992138534784317, -0.09242596477270126, -0.02586805261671543, -0.027882995083928108, -0.008206807076931, 0.08808499574661255, -0.17758455872535706, -0.03800570219755173, 0.20050552487373352, -0.07026582956314087, -0.07713183015584946, 0.07321082800626755, -0.08350515365600586, 0.0321974940598011, 0.1333344429731369, 0.06674786657094955, 0.16564206779003143, -0.11571355164051056, -0.05469091981649399, -0.04264495149254799, -0.06544273346662521, 0.2038637101650238, 0.052973560988903046, -0.011315981857478619, 0.011959144845604897, 0.009653379209339619, -0.03621356934309006, -0.02522687427699566, -0.013279415667057037, -0.03623909503221512, -0.01347754243761301, 0.011670911684632301, -0.0012312432518228889, -0.04427243396639824, -0.06462915241718292, -0.026538865640759468, -0.11182846128940582, 0.04525705799460411, 0.098762147128582, -0.07780072093009949, 0.008638887666165829, -0.09966742247343063, -0.012310142628848553, -0.029686037451028824, 0.009429597295820713, -0.17284788191318512, -0.05368165671825409, 0.017409490421414375, -0.05805934965610504, 0.0916501060128212, 0.04419279843568802, 0.036770500242710114, 0.052541643381118774, -0.013244655914604664, 0.021148432046175003, -0.03872961178421974, -0.022288989275693893, -0.023939799517393112, -0.13629063963890076, -0.059297606348991394, -0.047340333461761475, 0.0753096342086792, -0.1288856416940689, 0.006950566079467535, 0.09820966422557831, 0.11540162563323975, 0.021595682948827744, -0.06155380606651306, 0.008654044941067696, -0.0367879681289196, -0.031133048236370087, -0.10918150097131729, -0.052372563630342484, 0.011411991901695728, -0.03956368938088417, 0.157244473695755, -0.17580018937587738, -0.08269338309764862, 0.10179685801267624, 0.14100705087184906, -0.09170743823051453, 0.03565718233585358, -0.0825623869895935, -0.011758258566260338, -0.059169039130210876, -0.04535364732146263, 0.28733882308006287, 0.03908941149711609, 0.08044985681772232, -0.1072637140750885, -0.10619582235813141, -0.010526037774980068, -0.037891875952482224, -0.027063626796007156, 0.02700619213283062, 0.019584976136684418, -0.1730610877275467, 0.024859512224793434, -0.008414462208747864, 0.09760524332523346, 0.20044945180416107, 0.04497232660651207, -0.08362451195716858, -0.05765637755393982, -0.08131767064332962, -0.002571145072579384, 0.05401601269841194, 0.027442924678325653, 0.030100662261247635, 0.04079604148864746, 0.05424755439162254, 0.038085754960775375, -0.1211436539888382, 0.008513672277331352, 0.08217567205429077, -0.03765035420656204, -0.06398924440145493, 0.014415044337511063, 0.022511404007673264, 0.07592342048883438, 0.08782496303319931, 0.13360358774662018, -0.06255044043064117, -0.048394132405519485, -0.144557386636734, 0.13452662527561188, -0.07612182945013046, -0.2595960795879364, -0.13816627860069275, -0.07621202617883682, 0.0208699069917202, 0.009765524417161942, 0.03616829589009285, -0.05226455628871918, -0.04534909129142761, -0.09884367138147354, 0.08541794866323471, -0.05993088707327843, -0.02542571909725666, 0.015902187675237656, 0.018755368888378143, -0.02439805492758751, -0.1105303019285202, -0.029828140512108803, 0.033766619861125946, -0.0994880422949791, -0.014165776781737804, 0.02810952067375183, 0.03233545273542404, 0.1633518487215042, -0.013084832578897476, 0.00427996227517724, -0.029383797198534012, 0.27512452006340027, -0.11784374713897705, 0.06796563416719437, 0.16368213295936584, -0.020946018397808075, 0.05596975237131119, 0.07640726119279861, 0.009957539848983288, -0.05993575230240822, 0.07323478907346725, 0.07578276842832565, -0.08323473483324051, -0.2122328132390976, -0.027862414717674255, -0.007240117993205786, 0.009531411342322826, 0.13458192348480225, 0.05112302675843239, 0.03360630199313164, 0.011676122434437275, -0.09885334968566895, 0.04134615883231163, 0.031300246715545654, 0.10325756669044495, -0.04820026084780693, -0.011572214774787426, 0.05246966332197189, -0.05874575302004814, 0.02378777600824833, 0.13244006037712097, 0.0444689579308033, 0.1995415985584259, -0.06450130045413971, 0.0907190814614296, 0.0722159817814827, 0.09665074944496155, 0.03157705441117287, 0.014760074205696583, -0.0183041300624609, 0.013408001512289047, 0.0015512874815613031, -0.08942094445228577, -0.010364485904574394, 0.041262682527303696, 0.03140324354171753, -0.024341963231563568, -0.03809492662549019, -0.05569043383002281, 0.036573510617017746, 0.22970561683177948, 0.006178025621920824, -0.17558670043945312, -0.10597769916057587, 0.052285101264715195, -0.07640320807695389, -0.06048231199383736, -0.007253111805766821, 0.08143911510705948, -0.20925253629684448, 0.07320434600114822, -0.030064567923545837, 0.11301980167627335, -0.12106753885746002, 0.0016554304165765643, 0.08436106890439987, 0.04176999628543854, -0.06022680923342705, 0.09886009246110916, -0.1602885127067566, 0.060705460608005524, -0.011431407183408737, 0.07329641282558441, -0.06955961138010025, 0.027643905952572823, 0.0019696669187396765, 0.05801989510655403, 0.0807429850101471, 0.015386546961963177, 0.003847347339615226, 0.005434637889266014, -0.045812323689460754, 0.01505791675299406, 0.050511572510004044, -0.1255713701248169, 0.12290375679731369, -0.03164858743548393, 0.03609596565365791, -0.034654658287763596, -0.09205783903598785, -0.08186642080545425, -0.1667032539844513, 0.08365274965763092, -0.11011357605457306, 0.0036472147330641747, -0.06674652546644211, -0.021768253296613693, 0.020542262122035027, 0.2503111958503723, -0.06325381249189377, -0.07935736328363419, -0.13816304504871368, 0.011107576079666615, 0.1342613399028778, -0.08073323220014572, -0.0031307311728596687, -0.00793074443936348, 0.20196202397346497, -0.0017310865223407745, -0.13337567448616028, -0.01775859110057354, -0.058953311294317245, -0.1604272723197937, -0.007910494692623615, 0.16972090303897858, 0.06783194839954376, 0.028312668204307556, 0.00843394361436367, -0.006033799611032009, -0.05476665124297142, -0.17676421999931335, 0.025830315425992012, 0.15380768477916718, -0.016302844509482384, 0.0007709352648817003, 0.047067899256944656, 0.025136476382613182, -0.12738053500652313, 0.017102621495723724, 0.0547993928194046, 0.1604859083890915, -0.08107911795377731, 0.1860998272895813, 0.02095066010951996, -0.08881943672895432, -0.15670892596244812, 0.0174483060836792, 0.02614235319197178, 0.034616511315107346, 0.03398820012807846, -0.19926124811172485, 0.041748885065317154, 0.033322058618068695, 0.0004140324017498642, 0.039003998041152954, -0.322237491607666, -0.157175675034523, 0.012968594208359718, 0.00371015933342278, -0.11001096665859222, -0.031376417726278305, -0.030523063614964485, -0.08757380396127701, -0.26148438453674316, 0.1055704653263092, -0.10341296344995499, 0.07286453992128372, 0.02400590293109417, 0.11191298067569733, 0.04885244742035866, -0.04692018777132034, 0.12471915781497955, -0.02848265878856182, 0.06445609033107758, -0.09424269199371338, -0.06237638741731644, 0.07447080314159393, -0.06880960613489151, 0.09447275847196579, 0.022445019334554672, 0.08374329656362534, -0.10042458027601242, -0.08832769095897675, -0.0711737796664238, 0.003919062204658985, -0.05896610766649246, -0.08747563511133194, -0.09521344304084778, 0.08140689134597778, 0.12649056315422058, -0.04441165551543236, -0.09126390516757965, -0.06922738999128342, -0.004167503677308559, 0.0519523061811924, 0.1268356442451477, 0.06880772858858109, -0.07583560049533844, 0.003922284580767155, 0.01921190321445465, 0.02062661573290825, -0.18141156435012817, 0.048719622194767, 0.09532462060451508, 0.03754715994000435, 0.10328786820173264, 0.009416041895747185, -0.16242259740829468, 0.0028127680998295546, 0.047057073563337326, -0.16546671092510223, -0.12701281905174255, -0.05020473152399063, 0.023876523599028587, -0.10329008102416992, -0.05321979150176048, 0.13219644129276276, -0.03685809299349785, -0.03903408348560333, 0.004090595059096813, 0.0415293388068676, -0.04319598525762558, 0.08152978867292404, -0.002920967061072588, 0.043404582887887955, -0.06694896519184113, 0.10916879028081894, 0.07122907042503357, 0.000822418718598783, 0.039002466946840286, 0.0623980350792408, -0.08618966490030289, 0.012095456011593342, -0.09739118814468384, 0.00989646278321743, -0.03910267353057861, -0.01686430163681507, 0.022259747609496117, -0.04637743905186653, 0.0439443439245224, 0.08320962637662888, -0.01620805636048317, 0.11085417121648788, -0.04587583988904953, 0.012911796569824219, -0.13237516582012177, 0.07075537741184235, 0.03490966185927391, 0.01820164918899536, -0.11342638731002808, 0.20211036503314972, 0.029990173876285553, 0.10055088251829147, -0.035788435488939285, -0.060254957526922226, -0.056173812597990036, -0.006979102268815041, -0.09442504495382309, -0.03976427763700485, -0.0895211398601532, -0.01863526739180088, -0.0030779046937823296, -0.034438975155353546, -0.027445118874311447, 0.047612324357032776, -0.033664852380752563, -0.052713338285684586, -0.06879681348800659, 0.03402997925877571, -0.13307824730873108, 0.03859436884522438, 0.11952207237482071, -0.05339619144797325, 0.12180551886558533, 0.048434026539325714, -0.04371664673089981, 0.02066880278289318, -0.11992445588111877, 0.04353996738791466, -0.01679874397814274, 0.01785406470298767, 0.01866537518799305, -0.15889964997768402, 0.00524704996496439, -0.036940041929483414, -0.06674554944038391, 0.002777137327939272, -0.004615848418325186, -0.1265096664428711, 0.0013774121180176735, 0.09986723214387894, -0.02000778540968895, -0.07543186098337173, 0.0641278550028801, 0.04835781455039978, 0.02545284666121006, 0.054866187274456024, -0.021162057295441628, 0.07303979992866516, -0.1630772203207016, -0.05464499443769455, 0.011438283137977123, 0.03307519853115082, 0.045074187219142914, -0.016244521364569664, 0.038169264793395996, -0.021047918125987053, 0.2018250823020935, 0.017549730837345123, -0.027630573138594627, 0.03730562701821327, -0.06911993026733398, -0.005212336778640747, 0.0425238274037838, 0.07991164177656174, -0.03991175815463066, -0.038553446531295776, 0.006061243824660778, -0.027457885444164276, -0.09246200323104858, -0.02336122654378414, 0.12219376862049103, 0.030468707904219627, 0.19603697955608368, -0.05837959423661232, 0.06497755646705627, -0.00801174994558096, -0.12575754523277283, -0.022083204239606857, -0.03967186436057091, 0.03629831224679947, -0.06000383943319321, 0.04721426963806152, 0.1845213919878006, -0.155888170003891, 0.11796589940786362, 0.024845795705914497, -0.05920683965086937, -0.12393875420093536, -0.19827178120613098, -0.01764860190451145, -0.04044979065656662, 0.03058895468711853, -0.1403411477804184, 0.09059726446866989, 0.007931116037070751, 0.037508368492126465, -0.06861653923988342, 0.12981046736240387, -0.0885002613067627, -0.1258816123008728, 0.037830106914043427, 0.022715365514159203, 0.03247056528925896, 0.052082836627960205, 0.09079360961914062, 0.02846415340900421, 0.010979948565363884, 0.07104822248220444, 0.0387021005153656, 0.03755348548293114, 0.03117435798048973, -0.030343366786837578, -0.03427201136946678, 0.026450548321008682, 0.0008241803152486682, 0.03811528533697128, 0.08715741336345673, 0.06198807433247566, -0.01810946874320507, -0.025910314172506332, 0.311226487159729, -0.03472661226987839, -0.043783798813819885, -0.18819956481456757, 0.1676759421825409, 0.006499292328953743, -0.011942374520003796, 0.025356415659189224, -0.11782966554164886, 0.009246486239135265, 0.14200693368911743, 0.15517863631248474, -0.017993586137890816, 0.023484231904149055, -0.03576882183551788, 0.0193254966288805, 0.040044188499450684, 0.09899496287107468, 0.06005336716771126, 0.2068382054567337, -0.03415023162961006, 0.033977068960666656, -0.003262839512899518, -0.014166396111249924, -0.0010397358564659953, 0.10793805122375488, -0.039150919765233994, 0.004098454490303993, -0.05886264517903328, 0.09620417654514313, -0.04614613205194473, -0.27087029814720154, -0.02909664995968342, -0.022672465071082115, -0.08250650018453598, 0.0723738893866539, -0.022871660068631172, -0.03162982314825058, 0.08542034029960632, 0.02741670049726963, -0.05159909650683403, 0.1470911055803299, 0.05032717436552048, -0.04942845180630684, 0.004573256243020296, 0.10672862082719803, -0.02735196240246296, 0.1711173802614212, -0.02667292393743992, 0.008820283226668835, 0.07791078090667725, 0.021312259137630463, -0.12682202458381653, 0.011298439465463161, 0.03339599817991257, -0.06370236724615097, -0.024063661694526672, 0.19994446635246277, 0.01138565968722105, 0.037310998886823654, 0.06881473958492279, -0.059532713145017624, 0.022047359496355057, -0.05166858062148094, 0.06552059203386307, -0.14221026003360748, 0.06207695230841637, -0.08605960011482239, 0.12859483063220978, 0.18321111798286438, -0.06436866521835327, 0.026490168645977974, -0.05735626444220543, 0.006767174694687128, -0.03054455853998661, 0.07820337265729904, -0.018508780747652054, -0.10785536468029022, 0.007666205987334251, 0.03584104776382446, 0.01769932545721531, -0.18937969207763672, -0.0713237076997757, 0.07177025824785233, -0.05327105149626732, 0.03573187440633774, 0.1749582439661026, 0.024263417348265648, 0.06027869135141373, -0.039977893233299255, -0.015420365147292614, -0.0067192185670137405, 0.1137215718626976, -0.1672346442937851, -0.08056075870990753 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/64b15c9489c65f5bf8f6577334347404.434x434x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">André 3000</div> <a href="https://genius.com/artists/andre-3000"> <div style="text-align: center; font-size: 14px;">@andre-3000</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from André 3000. Dataset is available [here](https://huggingface.co/datasets/huggingartists/andre-3000). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/andre-3000") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2hnhboqf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on André 3000's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1mydp6nh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1mydp6nh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/andre-3000') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/andre-3000") model = AutoModelWithLMHead.from_pretrained("huggingartists/andre-3000") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/andre-3000"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/andre-3000
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/andre-3000", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/andre-3000 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">André 3000</div> <a href="URL <div style="text-align: center; font-size: 14px;">@andre-3000</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from André 3000. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on André 3000's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from André 3000.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on André 3000's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/andre-3000 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from André 3000.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on André 3000's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/andre-3000 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from André 3000.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on André 3000's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.025563178583979607, 0.15426160395145416, -0.0025561749935150146, 0.04474489763379097, 0.09206803888082504, 0.001654113526456058, 0.09333603829145432, 0.09994037449359894, -0.006613176316022873, 0.06833140552043915, 0.09016416221857071, -0.0032514266204088926, 0.0572768859565258, 0.13531361520290375, 0.08691049367189407, -0.26380401849746704, 0.02507789246737957, -0.09482443332672119, 0.00234533310867846, 0.12027458846569061, 0.09589278697967529, -0.059514954686164856, 0.08743324875831604, 0.03866636008024216, -0.07123252749443054, 0.030608652159571648, -0.0007994154584594071, -0.07575471699237823, 0.09014759957790375, 0.07475950568914413, 0.030714284628629684, 0.02972022444009781, 0.07046394050121307, -0.19453611969947815, 0.03207468241453171, 0.1231084018945694, 0.030017584562301636, 0.06753674149513245, 0.03945693373680115, -0.08204764127731323, 0.16578209400177002, -0.02542220987379551, 0.09550046920776367, 0.047569066286087036, -0.11646012961864471, -0.16664418578147888, -0.12023085355758667, 0.08256880193948746, 0.09191342443227768, 0.08886808902025223, -0.030834926292300224, 0.04447847977280617, -0.005162028130143881, 0.04638881981372833, 0.25088462233543396, -0.25140488147735596, -0.019561396911740303, 0.08544371277093887, 0.040770404040813446, 0.04258519038558006, -0.07390304654836655, 0.020784595981240273, 0.05144679918885231, 0.022801529616117477, 0.07125920057296753, -0.018609292805194855, 0.2125924676656723, 0.02164018712937832, -0.09636463969945908, -0.08356650173664093, 0.11325481534004211, -0.024303315207362175, -0.08082866668701172, -0.1482154279947281, 0.007488461211323738, -0.03673690930008888, 0.03396150842308998, -0.006905972957611084, 0.0005639370647259057, -0.001733729150146246, -0.050690483301877975, -0.09982014447450638, -0.08993734419345856, -0.029596373438835144, -0.0249125137925148, 0.0923430398106575, 0.023409459739923477, 0.03317662328481674, -0.08219999819993973, 0.22508706152439117, -0.019283629953861237, -0.10690440237522125, -0.0534614659845829, -0.0914851576089859, -0.09395436942577362, -0.05908220633864403, 0.0098543930798769, 0.019570037722587585, -0.06234590709209442, 0.17243637144565582, -0.04352398216724396, 0.03572047874331474, 0.01336453016847372, -0.023911183699965477, 0.14106911420822144, 0.13531279563903809, -0.09953750669956207, -0.04627428948879242, 0.04982990399003029, -0.013355916365981102, -0.06717632710933685, -0.05692651867866516, -0.01071524154394865, -0.019464783370494843, 0.01841881312429905, 0.08670539408922195, 0.04328809306025505, 0.05799595266580582, 0.025645218789577484, -0.054338302463293076, 0.08663278818130493, -0.14142829179763794, 0.016127638518810272, -0.011845332570374012, -0.03398643434047699, 0.01569531485438347, 0.03980576992034912, 0.011455983854830265, -0.09983084350824356, 0.11489445716142654, -0.05588480830192566, -0.05449949949979782, -0.07571351528167725, -0.08579409867525101, -0.005276113282889128, -0.00859840027987957, -0.04568080976605415, -0.08077322691679001, -0.15930847823619843, -0.03905410319566727, 0.033045049756765366, -0.04363727942109108, -0.04025932401418686, 0.03836524859070778, -0.02872517518699169, 0.013021341525018215, -0.015591990202665329, -0.023273829370737076, -0.033180687576532364, 0.02427004836499691, -0.048985112458467484, 0.03947705030441284, 0.07611341774463654, 0.03913136199116707, -0.10345441102981567, 0.06764551252126694, -0.14925755560398102, 0.13708046078681946, -0.011395913548767567, 0.01972503587603569, -0.10633493214845657, -0.09661036729812622, -0.03459993377327919, -0.024546843022108078, 0.005712265148758888, 0.09866021573543549, -0.18114259839057922, -0.03875486180186272, 0.20571526885032654, -0.06842662394046783, -0.09200726449489594, 0.07182388007640839, -0.08016949146986008, 0.031163334846496582, 0.13206739723682404, 0.04874685779213905, 0.14767132699489594, -0.11686587333679199, -0.06151602789759636, -0.044562481343746185, -0.05135650187730789, 0.1963672786951065, 0.059638235718011856, -0.005404920782893896, 0.019231999292969704, 0.007998310960829258, -0.036161571741104126, -0.023070160299539566, -0.024807652458548546, -0.04315389692783356, -0.007962188683450222, 0.014686847105622292, -0.01749076135456562, -0.04920654371380806, -0.06352067738771439, -0.029234591871500015, -0.11097656190395355, 0.03727435693144798, 0.0958387702703476, -0.07598169147968292, 0.010861247777938843, -0.09222598373889923, 0.0007427717209793627, -0.03281176835298538, 0.0156853049993515, -0.19428960978984833, -0.059544410556554794, 0.019733594730496407, -0.0733247846364975, 0.08833207190036774, 0.013200492598116398, 0.042265284806489944, 0.05701502040028572, -0.017053531482815742, 0.0209818035364151, -0.050709132105112076, -0.02329709380865097, -0.03137849643826485, -0.13966122269630432, -0.06086478754878044, -0.05427668243646622, 0.0794219970703125, -0.13874416053295135, 0.00685677956789732, 0.1027262881398201, 0.11163699626922607, 0.026159511879086494, -0.061311982572078705, 0.002651709131896496, -0.03226093575358391, -0.03622389957308769, -0.11461852490901947, -0.05235685780644417, 0.015906501561403275, -0.039960213005542755, 0.1519225686788559, -0.17094512283802032, -0.06488552689552307, 0.10273148119449615, 0.1465740203857422, -0.10681996494531631, 0.02180587314069271, -0.08454233407974243, -0.005530092865228653, -0.05978713557124138, -0.035955458879470825, 0.2708927392959595, 0.03893192484974861, 0.08804211020469666, -0.11143539100885391, -0.10052596032619476, 0.0018831708002835512, -0.04012752324342728, -0.02997773140668869, 0.027146629989147186, 0.024635106325149536, -0.16868062317371368, 0.02724016271531582, -0.00004228771649650298, 0.10207349061965942, 0.20636191964149475, 0.04803721606731415, -0.09210062026977539, -0.06067006662487984, -0.08384975790977478, 0.004942091181874275, 0.05119146406650543, 0.0307609960436821, 0.021045338362455368, 0.04251250624656677, 0.05166088417172432, 0.03725534304976463, -0.11756964027881622, 0.010017815977334976, 0.08289989829063416, -0.04229189455509186, -0.06447368860244751, 0.019993651658296585, 0.006255288142710924, 0.08344392478466034, 0.08727619051933289, 0.13742627203464508, -0.0663018748164177, -0.04626946523785591, -0.14078743755817413, 0.14407037198543549, -0.06897400319576263, -0.25719112157821655, -0.13660156726837158, -0.08428826928138733, 0.016792461276054382, 0.007738291285932064, 0.036672141402959824, -0.05740948021411896, -0.04457518830895424, -0.09995600581169128, 0.07190506160259247, -0.04986543208360672, -0.012262857519090176, 0.01981435716152191, 0.018405791372060776, -0.026119569316506386, -0.10794184356927872, -0.035933077335357666, 0.036883749067783356, -0.0940682515501976, -0.013142429292201996, 0.026611145585775375, 0.04243505746126175, 0.15541048347949982, -0.015105021186172962, 0.006287172436714172, -0.028139937669038773, 0.287690132856369, -0.12173037976026535, 0.058896373957395554, 0.16083380579948425, -0.008135621435940266, 0.05614302679896355, 0.07514823973178864, 0.011411882005631924, -0.07082712650299072, 0.07763294130563736, 0.07301722466945648, -0.09396864473819733, -0.219130277633667, -0.026535365730524063, -0.015013113617897034, 0.00880798976868391, 0.13701823353767395, 0.05329865962266922, 0.05219467356801033, 0.0016088200500234962, -0.09667529910802841, 0.05107813701033592, 0.029536036774516106, 0.11308502405881882, -0.06492378562688828, -0.004106718115508556, 0.04960530251264572, -0.061148662120103836, 0.02262011356651783, 0.1400013417005539, 0.03103458322584629, 0.20544719696044922, -0.05881402641534805, 0.1015925332903862, 0.07626774162054062, 0.0813881978392601, 0.0348651297390461, 0.019080569967627525, -0.008837832137942314, 0.011006919667124748, -0.003696923376992345, -0.09666267782449722, -0.004476505797356367, 0.04308700934052467, 0.0186321958899498, -0.02884160354733467, -0.04411657899618149, -0.046202003955841064, 0.04337242245674133, 0.24097314476966858, -0.006270609796047211, -0.18755002319812775, -0.10565320402383804, 0.04438082128763199, -0.0744578093290329, -0.05882763862609863, -0.01706213504076004, 0.07441171258687973, -0.21158906817436218, 0.07827841490507126, -0.02853161282837391, 0.11147190630435944, -0.09733022749423981, 0.0008844105177558959, 0.09720523655414581, 0.047853242605924606, -0.06625234335660934, 0.09170998632907867, -0.17279072105884552, 0.07855867594480515, -0.011633563786745071, 0.07103503495454788, -0.07093826681375504, 0.02645934373140335, 0.004225580487400293, 0.05195428431034088, 0.0925273522734642, 0.015678085386753082, 0.024484792724251747, 0.0038176632951945066, -0.03784293308854103, 0.009355989284813404, 0.058587536215782166, -0.12038540840148926, 0.12679274380207062, -0.0267017912119627, 0.03115163743495941, -0.03650684282183647, -0.08800523728132248, -0.09196370095014572, -0.17192870378494263, 0.08396188169717789, -0.11267153173685074, -0.00808984786272049, -0.0730556845664978, -0.032879456877708435, 0.03227371722459793, 0.24892905354499817, -0.03927028551697731, -0.07161916792392731, -0.14451389014720917, 0.0247101541608572, 0.13725066184997559, -0.08694475889205933, 0.01050131767988205, -0.009351196698844433, 0.21228905022144318, -0.0005816148477606475, -0.11955709755420685, -0.013414462096989155, -0.06332041323184967, -0.1633610874414444, -0.006783843506127596, 0.16717492043972015, 0.05786119028925896, 0.02961632050573826, 0.004630861803889275, -0.008327117189764977, -0.044039852917194366, -0.17885176837444305, 0.01684040017426014, 0.14536549150943756, -0.00622056657448411, -0.0007499600178562105, 0.04884560778737068, 0.019280098378658295, -0.12500660121440887, 0.01600641757249832, 0.0575384758412838, 0.17978063225746155, -0.08089081197977066, 0.17765602469444275, 0.03606950119137764, -0.0884782001376152, -0.1576768010854721, 0.012730900198221207, 0.03809705376625061, 0.037960100919008255, 0.039190344512462616, -0.2037849873304367, 0.04410434886813164, 0.027768930420279503, 0.004131810739636421, 0.025211846455931664, -0.3112165629863739, -0.15973283350467682, -0.0047624437138438225, 0.009428344666957855, -0.11305660754442215, -0.04027321934700012, -0.0320981964468956, -0.1012675017118454, -0.2524552345275879, 0.10784460604190826, -0.11164401471614838, 0.07898717373609543, 0.02733171544969082, 0.08437169343233109, 0.04110987111926079, -0.049655161798000336, 0.13230495154857635, -0.013873337768018246, 0.06847991794347763, -0.08787770569324493, -0.06797441840171814, 0.08088608086109161, -0.07272351533174515, 0.09138496965169907, 0.02731921151280403, 0.08216148614883423, -0.09558011591434479, -0.09389906376600266, -0.06292063742876053, 0.0036398782394826412, -0.05510110780596733, -0.08678624778985977, -0.08695143461227417, 0.08864379674196243, 0.1250910609960556, -0.04992011934518814, -0.08784189820289612, -0.06856033205986023, -0.006585595663636923, 0.0439627468585968, 0.127578005194664, 0.0621253177523613, -0.06773897260427475, 0.005379778333008289, 0.017739681527018547, 0.013498448766767979, -0.1927078664302826, 0.05087382346391678, 0.0942242443561554, 0.043439194560050964, 0.10609127581119537, 0.012024063616991043, -0.16042134165763855, 0.0036829812452197075, 0.05842407047748566, -0.1590217649936676, -0.12196000665426254, -0.048771366477012634, 0.017483605071902275, -0.10853340476751328, -0.057049334049224854, 0.1283511519432068, -0.0367986224591732, -0.03644672408699989, -0.000969173910561949, 0.032055310904979706, -0.04512232914566994, 0.09167531132698059, -0.005390529986470938, 0.040055278688669205, -0.06979357451200485, 0.10781371593475342, 0.06689266115427017, 0.009326166473329067, 0.03520343080163002, 0.07323611527681351, -0.09444042295217514, 0.01626434177160263, -0.08871892094612122, 0.006419184152036905, -0.03930918872356415, -0.013194369152188301, 0.018218087032437325, -0.03427734971046448, 0.04925892502069473, 0.08579059690237045, -0.010650461539626122, 0.09689208120107651, -0.046700481325387955, 0.014833980239927769, -0.12547138333320618, 0.06962553411722183, 0.04422254115343094, 0.01861625723540783, -0.10832281410694122, 0.19572268426418304, 0.03464001044631004, 0.0970439687371254, -0.036294661462306976, -0.060879893600940704, -0.059424467384815216, -0.010224230587482452, -0.08404111117124557, -0.040087223052978516, -0.0890437439084053, -0.019596947357058525, -0.00916668027639389, -0.03504079952836037, -0.03984173387289047, 0.04653418809175491, -0.034459132701158524, -0.057568397372961044, -0.07004299759864807, 0.04625314474105835, -0.13032843172550201, 0.0385243222117424, 0.11516931653022766, -0.05869691073894501, 0.12385119497776031, 0.049394309520721436, -0.03499608114361763, 0.022887784987688065, -0.13006100058555603, 0.045596640557050705, -0.013930229470133781, 0.022754916921257973, 0.020567119121551514, -0.15573370456695557, 0.012435429729521275, -0.03409085050225258, -0.061395421624183655, 0.0063978624530136585, -0.029677294194698334, -0.12871287763118744, -0.001678568311035633, 0.08406613022089005, -0.019427336752414703, -0.0709276869893074, 0.07124710828065872, 0.06591881066560745, 0.03228118643164635, 0.06327331066131592, -0.014164358377456665, 0.06742390990257263, -0.17405912280082703, -0.05253434553742409, 0.00028057501185685396, 0.03146840259432793, 0.033183347433805466, -0.02273811213672161, 0.04314640536904335, -0.017018696293234825, 0.21207277476787567, 0.022965453565120697, -0.010208426974713802, 0.04067065566778183, -0.06896650791168213, 0.0016035109292715788, 0.04066379740834236, 0.08092369139194489, -0.019886603578925133, -0.03561616688966751, 0.006969908252358437, -0.019582146778702736, -0.0834028571844101, -0.0024143317714333534, 0.11727578192949295, 0.025592690333724022, 0.20523162186145782, -0.05219697952270508, 0.059122297912836075, -0.01319609023630619, -0.10990885645151138, -0.028400002047419548, -0.03953910991549492, 0.03274507820606232, -0.061001215130090714, 0.050687700510025024, 0.18861635029315948, -0.16008831560611725, 0.1194974035024643, 0.032266613095998764, -0.06005150452256203, -0.12508796155452728, -0.19134946167469025, -0.019135557115077972, -0.03764708340167999, 0.0278839860111475, -0.1426437646150589, 0.09445997327566147, 0.012237447313964367, 0.041557177901268005, -0.05941230431199074, 0.13287630677223206, -0.09854111820459366, -0.12858614325523376, 0.047307904809713364, 0.01874951273202896, 0.03580354154109955, 0.046896081417798996, 0.08886659145355225, 0.02474018931388855, 0.0013254716759547591, 0.06986076384782791, 0.0414649061858654, 0.030422473326325417, 0.03866732865571976, -0.02863367274403572, -0.03841393068432808, 0.02611442655324936, -0.004263988230377436, 0.03526339307427406, 0.09967783838510513, 0.061548877507448196, -0.021290486678481102, -0.015594108030200005, 0.3097477853298187, -0.030063755810260773, -0.04339073598384857, -0.19624558091163635, 0.15169161558151245, 0.02020947076380253, -0.0015113570261746645, 0.01855001039803028, -0.11456543207168579, 0.010053043253719807, 0.13058412075042725, 0.15230435132980347, -0.020959464833140373, 0.023332515731453896, -0.02520076185464859, 0.01894340291619301, 0.03877708315849304, 0.10041655600070953, 0.0603901669383049, 0.20331765711307526, -0.026679828763008118, 0.04825256019830704, -0.013040192425251007, -0.02024032548069954, 0.013440927490592003, 0.11863350123167038, -0.0286653321236372, 0.005425926297903061, -0.05608433857560158, 0.10232797265052795, -0.04568967968225479, -0.2860269248485565, -0.036257751286029816, -0.021512700244784355, -0.08960645645856857, 0.0753105878829956, -0.04702794551849365, -0.017751123756170273, 0.08528128266334534, 0.033777397125959396, -0.05256858468055725, 0.14239199459552765, 0.054661430418491364, -0.04804419353604317, -0.005998545326292515, 0.115471251308918, -0.023735061287879944, 0.1748439073562622, -0.030132165178656578, 0.016314957290887833, 0.0831480622291565, 0.013585553504526615, -0.12888604402542114, 0.008129545487463474, 0.03592707961797714, -0.05047587677836418, -0.019801964983344078, 0.18924275040626526, 0.005210407078266144, 0.014427578076720238, 0.06432811915874481, -0.047610893845558167, 0.022596899420022964, -0.03891756758093834, 0.05725286528468132, -0.14744910597801208, 0.06105361878871918, -0.08156642317771912, 0.12640494108200073, 0.18157707154750824, -0.06700771301984787, 0.030122477561235428, -0.05392555147409439, 0.013120079413056374, -0.026119807735085487, 0.07559226453304291, -0.015860483050346375, -0.11978448927402496, 0.01318369247019291, 0.025102565065026283, 0.014140786603093147, -0.18216513097286224, -0.07671671360731125, 0.07627783715724945, -0.04959031194448471, 0.028234809637069702, 0.17485354840755463, 0.025339383631944656, 0.05595749616622925, -0.04087908938527107, -0.019412891939282417, -0.008018400520086288, 0.11754970997571945, -0.16891421377658844, -0.08099880814552307 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/de78420433126e9e426443d10bf22edf.600x600x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Arash</div> <a href="https://genius.com/artists/arash"> <div style="text-align: center; font-size: 14px;">@arash</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Arash. Dataset is available [here](https://huggingface.co/datasets/huggingartists/arash). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/arash") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/27u6df87/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Arash's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3eav8xpf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3eav8xpf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/arash') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/arash") model = AutoModelWithLMHead.from_pretrained("huggingartists/arash") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/arash"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/arash
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/arash", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/arash #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Arash</div> <a href="URL <div style="text-align: center; font-size: 14px;">@arash</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Arash. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Arash's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Arash.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Arash's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/arash #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Arash.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Arash's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/arash #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Arash.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Arash's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.025320015847682953, 0.14625971019268036, -0.0027934026438742876, 0.03425128385424614, 0.08888781070709229, -0.0031312278006225824, 0.08513227105140686, 0.10734724998474121, -0.009645270183682442, 0.06817448884248734, 0.07847815752029419, 0.009389382787048817, 0.06604927033185959, 0.13178370893001556, 0.09165555238723755, -0.2656753957271576, 0.02897188998758793, -0.1085670068860054, 0.020058125257492065, 0.1219056248664856, 0.09160884469747543, -0.05479849502444267, 0.08556131273508072, 0.03871547803282738, -0.07179132103919983, 0.030589034780859947, -0.012870121747255325, -0.07316496968269348, 0.09576497226953506, 0.08079581707715988, 0.03096391074359417, 0.028668127954006195, 0.06690571457147598, -0.1922968178987503, 0.03506666421890259, 0.12531328201293945, 0.028961578384041786, 0.07080454379320145, 0.04312563315033913, -0.07889419794082642, 0.17465950548648834, -0.027999361976981163, 0.08859899640083313, 0.045956507325172424, -0.10678166896104813, -0.17779433727264404, -0.12012213468551636, 0.08042493462562561, 0.1018339991569519, 0.08169297128915787, -0.03108956478536129, 0.04321947693824768, 0.0017560917185619473, 0.047721173614263535, 0.23851065337657928, -0.24339890480041504, -0.014662988483905792, 0.09170658141374588, 0.035390064120292664, 0.04519147053360939, -0.07649872452020645, 0.017634572461247444, 0.05012965202331543, 0.024562492966651917, 0.04846696928143501, -0.01420657616108656, 0.21661551296710968, 0.023049620911478996, -0.09488948434591293, -0.08828812092542648, 0.10669871419668198, -0.029588719829916954, -0.08210844546556473, -0.1507035344839096, 0.0013969382271170616, -0.03152389079332352, 0.040035247802734375, -0.010601483285427094, -0.006089916918426752, 0.0003471061063464731, -0.044117271900177, -0.09791561216115952, -0.09540271013975143, -0.02464151941239834, -0.02705283649265766, 0.0710488110780716, 0.025119667872786522, 0.0326218418776989, -0.07340265065431595, 0.23247742652893066, 0.005172292236238718, -0.10236883163452148, -0.05508225038647652, -0.09168171137571335, -0.09986653178930283, -0.05611434206366539, 0.00887996144592762, 0.01640128344297409, -0.0625455304980278, 0.16605810821056366, -0.03161880746483803, 0.03223126009106636, 0.004105766769498587, -0.024281488731503487, 0.15197233855724335, 0.13066254556179047, -0.09330660104751587, -0.031052643433213234, 0.04584388807415962, -0.016514500603079796, -0.0671023353934288, -0.05946750566363335, -0.01297982782125473, -0.020078154280781746, 0.03268733620643616, 0.09543164819478989, 0.045203834772109985, 0.05603643134236336, 0.03322489559650421, -0.055496979504823685, 0.10721047967672348, -0.14705336093902588, 0.006501125171780586, -0.011797835119068623, -0.032145727425813675, 0.012844678945839405, 0.04934033751487732, 0.01586848311126232, -0.0986778736114502, 0.11366292089223862, -0.04949633777141571, -0.05491511896252632, -0.06714814156293869, -0.08241640776395798, -0.007525922730565071, -0.005950338672846556, -0.048156846314668655, -0.08800803869962692, -0.15930788218975067, -0.031499605625867844, 0.026170343160629272, -0.038948968052864075, -0.037147607654333115, 0.04278459772467613, -0.03413696214556694, 0.0015413513174280524, -0.016658751294016838, -0.015910034999251366, -0.031615566462278366, 0.021448908373713493, -0.05637725070118904, 0.03327721729874611, 0.08538822084665298, 0.03432464972138405, -0.10900726169347763, 0.06894633919000626, -0.15738286077976227, 0.14606179296970367, -0.010492277331650257, 0.01784820295870304, -0.11015354841947556, -0.09740056842565536, -0.026793276891112328, -0.02729143388569355, -0.007181475404649973, 0.09327039867639542, -0.186628058552742, -0.039831746369600296, 0.19646024703979492, -0.07409047335386276, -0.08564677834510803, 0.07298599928617477, -0.07935748249292374, 0.034174103289842606, 0.1389688402414322, 0.055741116404533386, 0.15734803676605225, -0.11570800095796585, -0.07003594934940338, -0.039990007877349854, -0.0596214197576046, 0.22013342380523682, 0.05466202273964882, -0.006839919835329056, 0.020916692912578583, 0.012649917043745518, -0.02109159529209137, -0.02696249447762966, -0.022983627393841743, -0.0463237464427948, -0.011313038878142834, 0.015259717591106892, -0.013246700167655945, -0.052174314856529236, -0.06818574666976929, -0.02006024308502674, -0.11534139513969421, 0.03687934949994087, 0.10493756085634232, -0.07177487760782242, 0.010224350728094578, -0.09435615688562393, -0.005664899479597807, -0.03853173181414604, 0.021303607150912285, -0.19380348920822144, -0.06098567321896553, 0.019824707880616188, -0.06648857146501541, 0.0861162319779396, 0.023025935515761375, 0.037753794342279434, 0.06458092480897903, -0.00794401578605175, 0.022817956283688545, -0.04615979269146919, -0.02242538519203663, -0.0333191342651844, -0.1395527720451355, -0.07104158401489258, -0.05181277170777321, 0.08603609353303909, -0.13670861721038818, 0.006223633885383606, 0.10685020685195923, 0.11266928911209106, 0.02413644827902317, -0.05712999030947685, 0.006061304826289415, -0.03800235316157341, -0.04102298617362976, -0.11385923624038696, -0.06102518364787102, 0.007754889782518148, -0.038630928844213486, 0.15591253340244293, -0.17729716002941132, -0.06807831674814224, 0.09764599800109863, 0.1619562953710556, -0.1051785871386528, 0.013711902312934399, -0.09420604258775711, -0.009452170692384243, -0.0488586388528347, -0.03853215277194977, 0.27077755331993103, 0.04161256551742554, 0.07986512780189514, -0.11046993732452393, -0.09751125425100327, 0.0004897451144643128, -0.03845422342419624, -0.02704629860818386, 0.026778245344758034, 0.009010045789182186, -0.17223145067691803, 0.02314154990017414, -0.001525015220977366, 0.12074300646781921, 0.20815987884998322, 0.050877492874860764, -0.09580740332603455, -0.061964452266693115, -0.08668866008520126, 0.002019754145294428, 0.04922502115368843, 0.03438935801386833, 0.025602390989661217, 0.043958116322755814, 0.05082876980304718, 0.03673011437058449, -0.11201509088277817, 0.011045418679714203, 0.08207406103610992, -0.04549167677760124, -0.052408214658498764, 0.016926832497119904, 0.015573788434267044, 0.08052953332662582, 0.07888545840978622, 0.14189647138118744, -0.07044028490781784, -0.04723265767097473, -0.14236481487751007, 0.1406378597021103, -0.07534273713827133, -0.2651153802871704, -0.14193880558013916, -0.07759272307157516, 0.023242324590682983, 0.006073088850826025, 0.04138127341866493, -0.06317151337862015, -0.040625207126140594, -0.10319145768880844, 0.08319620043039322, -0.04967106506228447, -0.014824792742729187, 0.0034265026915818453, 0.0206222515553236, -0.031098103150725365, -0.10911909490823746, -0.029057681560516357, 0.04140515625476837, -0.10723060369491577, -0.014622341841459274, 0.03005385585129261, 0.03831629082560539, 0.15399904549121857, -0.011464410461485386, -0.004612497985363007, -0.034490156918764114, 0.2813887894153595, -0.12209368497133255, 0.06430890411138535, 0.16211117804050446, -0.026026656851172447, 0.055184900760650635, 0.0775921419262886, 0.005519802216440439, -0.06719186156988144, 0.0781886950135231, 0.07110907137393951, -0.09376966208219528, -0.22018402814865112, -0.02712995372712612, -0.005570080131292343, 0.02277379482984543, 0.12601876258850098, 0.06052969768643379, 0.057677239179611206, -0.002854696474969387, -0.10382318496704102, 0.04424567148089409, 0.024584904313087463, 0.1086239442229271, -0.06686324626207352, -0.01133906189352274, 0.0497264564037323, -0.06618887931108475, 0.028355548158288002, 0.14164818823337555, 0.04164857044816017, 0.2068469524383545, -0.0641447976231575, 0.09693803638219833, 0.07656752318143845, 0.10062628239393234, 0.037319693714380264, 0.007264358457177877, -0.0016906112432479858, 0.012402216903865337, -0.0031363314483314753, -0.09810951352119446, -0.013312716968357563, 0.05159302428364754, 0.02591765485703945, -0.024248488247394562, -0.037357211112976074, -0.04217204451560974, 0.044146984815597534, 0.23991437256336212, -0.01701572723686695, -0.1819107085466385, -0.11864402145147324, 0.03911559283733368, -0.08186089247465134, -0.049085069447755814, -0.02602539025247097, 0.07411152869462967, -0.2194838970899582, 0.06964784115552902, -0.03433462977409363, 0.10712640732526779, -0.11501794308423996, 0.004113699775189161, 0.0836535170674324, 0.046456146985292435, -0.06563971191644669, 0.09990295767784119, -0.16512390971183777, 0.06515968590974808, -0.011782142333686352, 0.06569451838731766, -0.07736225426197052, 0.029653994366526604, 0.00047506982809863985, 0.04717351868748665, 0.08853080868721008, 0.012865846045315266, 0.020522495731711388, -0.0023845818359404802, -0.04870469868183136, 0.01463385671377182, 0.060895901173353195, -0.12308893352746964, 0.12495968490839005, -0.02690930664539337, 0.033591385930776596, -0.04391622543334961, -0.09528172016143799, -0.0872805044054985, -0.16911865770816803, 0.09051088243722916, -0.13105009496212006, 0.0008351920987479389, -0.07298214733600616, -0.03186863660812378, 0.036636874079704285, 0.267240434885025, -0.05386154726147652, -0.07407686859369278, -0.1368565708398819, 0.0181241724640131, 0.1436987668275833, -0.08590193837881088, 0.01183070708066225, -0.011408474296331406, 0.2127414494752884, 0.0012150320690125227, -0.12392210960388184, -0.019597066566348076, -0.06173510476946831, -0.16500701010227203, -0.004559290129691362, 0.16755886375904083, 0.06367195397615433, 0.026415271684527397, 0.01039867103099823, -0.015030297450721264, -0.04552452638745308, -0.17050373554229736, 0.021192051470279694, 0.1589653044939041, -0.012739035300910473, -0.00042209471575915813, 0.051146551966667175, 0.01180968526750803, -0.13520881533622742, 0.011543701402842999, 0.05200117453932762, 0.1788412183523178, -0.07878998667001724, 0.1905316561460495, 0.034772396087646484, -0.09022170305252075, -0.147426038980484, 0.00575477397069335, 0.03853268548846245, 0.037945572286844254, 0.04540504515171051, -0.20893263816833496, 0.04329349473118782, 0.03977235406637192, 0.005560314282774925, 0.034678488969802856, -0.32705822587013245, -0.16000626981258392, -0.003741638967767358, 0.004116934258490801, -0.15046483278274536, -0.042998433113098145, -0.034555960446596146, -0.09794497489929199, -0.24146372079849243, 0.10001952201128006, -0.10917509347200394, 0.07433082908391953, 0.03108455240726471, 0.0989423394203186, 0.04544730857014656, -0.04441414400935173, 0.1329241245985031, -0.01867138408124447, 0.06762021034955978, -0.09474711865186691, -0.057702988386154175, 0.07976903021335602, -0.07314758747816086, 0.09052305668592453, 0.032556451857089996, 0.0823814868927002, -0.09641721099615097, -0.08935286849737167, -0.05993683263659477, -0.002993033267557621, -0.04965008795261383, -0.09037705510854721, -0.09016042947769165, 0.08444168418645859, 0.12026914954185486, -0.04760297015309334, -0.09175603836774826, -0.07053384929895401, 0.001380163710564375, 0.0480506606400013, 0.12308484315872192, 0.0729689821600914, -0.06227028742432594, -0.0003464650362730026, 0.018462901934981346, 0.008839269168674946, -0.18487006425857544, 0.04913977161049843, 0.09397193044424057, 0.038880690932273865, 0.10365241765975952, 0.0035634145606309175, -0.16834352910518646, 0.008315644226968288, 0.055058810859918594, -0.16115105152130127, -0.12951666116714478, -0.03864343836903572, 0.029201840981841087, -0.10290207713842392, -0.04894324764609337, 0.1361391395330429, -0.034528445452451706, -0.03707369044423103, 0.002386348554864526, 0.03636858984827995, -0.03969842568039894, 0.08665087074041367, -0.009256328456103802, 0.04257597401738167, -0.06750581413507462, 0.11904717236757278, 0.07048302888870239, 0.003672608407214284, 0.04076312482357025, 0.06392174959182739, -0.09250336140394211, 0.01678314246237278, -0.10820861905813217, -0.00014839631330687553, -0.03150254115462303, -0.014428039081394672, 0.02751619555056095, -0.02817687951028347, 0.04928341507911682, 0.08888209611177444, -0.014966696500778198, 0.1042519211769104, -0.049351636320352554, 0.022340616211295128, -0.1239636167883873, 0.07156799733638763, 0.03556607663631439, 0.020675988867878914, -0.10879018157720566, 0.20558792352676392, 0.035663098096847534, 0.10860556364059448, -0.03775458782911301, -0.06718716770410538, -0.04509575292468071, -0.01081181038171053, -0.08909618854522705, -0.03521588817238808, -0.08675897121429443, -0.02334522269666195, -0.004288350697606802, -0.02953093685209751, -0.03279798850417137, 0.0456678532063961, -0.0321170948445797, -0.06041819229722023, -0.07508733123540878, 0.04530425742268562, -0.14243805408477783, 0.035672809928655624, 0.11728992313146591, -0.054988425225019455, 0.12696701288223267, 0.0557551346719265, -0.03716916963458061, 0.02383890002965927, -0.13412775099277496, 0.0482008159160614, -0.0033940523862838745, 0.022177785634994507, 0.017129402607679367, -0.15212824940681458, 0.006728405598551035, -0.03341974318027496, -0.06851793825626373, 0.006761915981769562, -0.012809370644390583, -0.1323525756597519, -0.008230766281485558, 0.09191631525754929, -0.010221184231340885, -0.06679946184158325, 0.0702243223786354, 0.05432359501719475, 0.024670502170920372, 0.0584871768951416, -0.01144151296466589, 0.06956933438777924, -0.1782657951116562, -0.06289007514715195, -0.004790773149579763, 0.03193415328860283, 0.04484371468424797, -0.026811083778738976, 0.034579694271087646, -0.01992199942469597, 0.2131175994873047, 0.021348578855395317, -0.001038264948874712, 0.03758397698402405, -0.06953013688325882, -0.0047343154437839985, 0.041146084666252136, 0.08269820362329483, -0.01529872789978981, -0.026954522356390953, 0.0054149623028934, -0.025126343593001366, -0.09540033340454102, -0.019467532634735107, 0.09534948319196701, 0.01729501597583294, 0.20957602560520172, -0.05963154137134552, 0.06322706490755081, -0.019339846447110176, -0.10777116566896439, -0.035744547843933105, -0.049270424991846085, 0.031330302357673645, -0.05737970769405365, 0.05124939605593681, 0.1957138329744339, -0.1523614227771759, 0.11736049503087997, 0.04055706039071083, -0.05739882215857506, -0.12084686756134033, -0.19121034443378448, -0.013289344497025013, -0.0340878926217556, 0.025436492636799812, -0.13752715289592743, 0.09664645045995712, 0.027476364746689796, 0.040902215987443924, -0.05826546251773834, 0.13796599209308624, -0.09126905351877213, -0.13660116493701935, 0.043241798877716064, 0.01758657395839691, 0.030628839507699013, 0.04897351190447807, 0.08955425769090652, 0.037421226501464844, 0.004408554639667273, 0.07184655964374542, 0.041932206600904465, 0.03668174147605896, 0.04153630509972572, -0.032340992242097855, -0.03936810418963432, 0.026820609346032143, -0.005144017282873392, 0.020630158483982086, 0.09668617695569992, 0.06794332712888718, -0.0181107334792614, -0.016101496294140816, 0.31700724363327026, -0.021814269945025444, -0.03477732837200165, -0.1859651356935501, 0.1649056077003479, 0.010779681615531445, 0.001461779698729515, 0.018956569954752922, -0.11699744313955307, 0.016096683219075203, 0.11428775638341904, 0.15294881165027618, -0.021095916628837585, 0.023119382560253143, -0.025527402758598328, 0.01817740872502327, 0.03422423079609871, 0.11030086129903793, 0.06345921009778976, 0.19302766025066376, -0.026917757466435432, 0.055354055017232895, -0.012521854601800442, -0.021588407456874847, 0.011987379752099514, 0.10548210144042969, -0.042309802025556564, 0.006852435413748026, -0.04888864979147911, 0.10203296691179276, -0.05521057918667793, -0.3061397075653076, -0.04176197946071625, -0.014333680272102356, -0.09156014770269394, 0.07943331450223923, -0.03212933614850044, -0.016653520986437798, 0.0790451392531395, 0.030368372797966003, -0.047333478927612305, 0.16167859733104706, 0.05257180705666542, -0.04599208012223244, -0.004932764917612076, 0.11278766393661499, -0.0396626852452755, 0.16183699667453766, -0.03689965233206749, 0.013277601450681686, 0.07556664198637009, 0.013352017849683762, -0.12792469561100006, 0.004778899252414703, 0.03862541541457176, -0.051652874797582626, -0.01795857399702072, 0.2024446278810501, 0.01366735715419054, 0.025935424491763115, 0.0734940767288208, -0.049086958169937134, 0.020023219287395477, -0.03440685197710991, 0.061517175287008286, -0.1344316601753235, 0.06449698656797409, -0.07758963853120804, 0.11728621274232864, 0.17692232131958008, -0.06752807646989822, 0.040039218962192535, -0.06001413241028786, 0.005894537549465895, -0.028360793367028236, 0.06997843831777573, -0.017874963581562042, -0.11221776157617569, 0.007265161722898483, 0.03262341395020485, 0.012677647173404694, -0.17515034973621368, -0.08159434795379639, 0.07854071259498596, -0.05230891704559326, 0.024562515318393707, 0.17929156124591827, 0.012017931789159775, 0.058842699974775314, -0.03805315122008324, -0.009473088197410107, -0.005261097103357315, 0.11381524801254272, -0.17620587348937988, -0.07844854146242142 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d2cd8787bdf913fc1518987f971c6bd3.960x960x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Architects</div> <a href="https://genius.com/artists/architects"> <div style="text-align: center; font-size: 14px;">@architects</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Architects. Dataset is available [here](https://huggingface.co/datasets/huggingartists/architects). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/architects") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/licizuue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Architects's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1a9mrzf8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1a9mrzf8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/architects') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/architects") model = AutoModelWithLMHead.from_pretrained("huggingartists/architects") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/architects"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/architects
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/architects", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/architects #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Architects</div> <a href="URL <div style="text-align: center; font-size: 14px;">@architects</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Architects. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Architects's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Architects.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Architects's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/architects #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Architects.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Architects's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/architects #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Architects.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Architects's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.027656802907586098, 0.16675105690956116, -0.002652615075930953, 0.04034620150923729, 0.09287834912538528, -0.0025317934341728687, 0.08648765832185745, 0.09921195358037949, 0.0011113615473732352, 0.08398985117673874, 0.06414617598056793, 0.015430002473294735, 0.06497104465961456, 0.11847040802240372, 0.08951295167207718, -0.2632237374782562, 0.021773459389805794, -0.09847822040319443, 0.009181969799101353, 0.11161872744560242, 0.09596266597509384, -0.05618804320693016, 0.08846058696508408, 0.04994812607765198, -0.07697179168462753, 0.02925354428589344, -0.008068066090345383, -0.07053017616271973, 0.09048862010240555, 0.07195336371660233, 0.03185752406716347, 0.020198561251163483, 0.060618720948696136, -0.18499837815761566, 0.02946450375020504, 0.13924796879291534, 0.020519757643342018, 0.06748296320438385, 0.05136273801326752, -0.08432621508836746, 0.16866469383239746, -0.021947134286165237, 0.08368919044733047, 0.044019412249326706, -0.1127399429678917, -0.17310532927513123, -0.11394668370485306, 0.09372842311859131, 0.10001073777675629, 0.08667076379060745, -0.023322047665715218, 0.03103197179734707, 0.00596876535564661, 0.05443209037184715, 0.22434918582439423, -0.24901027977466583, -0.026310013607144356, 0.07462266832590103, 0.04644027724862099, 0.0553111769258976, -0.08044756948947906, 0.022111300379037857, 0.044913433492183685, 0.035853829234838486, 0.05700400099158287, -0.014953420497477055, 0.20415279269218445, 0.02240768074989319, -0.09459752589464188, -0.07769186794757843, 0.1280975341796875, -0.028292616829276085, -0.06864001601934433, -0.15501119196414948, -0.010264337994158268, -0.02928956225514412, 0.036288339644670486, -0.01197123620659113, -0.003450970631092787, 0.008252594619989395, -0.045848965644836426, -0.10550229996442795, -0.09459426999092102, -0.024627355858683586, -0.019443821161985397, 0.0679301917552948, 0.021497514098882675, 0.03414377570152283, -0.09137677401304245, 0.2413497269153595, -0.0011879890225827694, -0.1155395582318306, -0.0580412931740284, -0.08969993889331818, -0.08360269665718079, -0.057693079113960266, 0.01968461647629738, 0.01892651803791523, -0.06310728192329407, 0.16037051379680634, -0.030161216855049133, 0.033105846494436264, 0.005779017228633165, -0.017791742458939552, 0.1391448974609375, 0.14251892268657684, -0.08702672272920609, -0.03369581699371338, 0.04126864671707153, -0.01261254120618105, -0.06611593812704086, -0.05507407709956169, -0.005436925683170557, -0.025113273411989212, 0.01984385773539543, 0.09097898751497269, 0.05102505907416344, 0.05786431208252907, 0.03080689162015915, -0.05204999819397926, 0.09824241697788239, -0.14426574110984802, 0.0207364521920681, -0.014116425067186356, -0.022767359390854836, 0.0006361713749356568, 0.05236849933862686, 0.00273571303114295, -0.10415662080049515, 0.10459056496620178, -0.05889105051755905, -0.055748350918293, -0.0748690515756607, -0.07964864373207092, -0.01298947911709547, -0.016987569630146027, -0.048626527190208435, -0.08231458067893982, -0.14889472723007202, -0.041348837316036224, 0.03583574295043945, -0.03977636247873306, -0.035882558673620224, 0.049302395433187485, -0.04409787058830261, 0.002590734278783202, -0.01659071259200573, -0.02849677950143814, -0.030228570103645325, 0.01900091953575611, -0.059356432408094406, 0.028791550546884537, 0.05994604900479317, 0.04645617678761482, -0.10383235663175583, 0.07935947924852371, -0.1655493825674057, 0.1404256969690323, -0.006269475910812616, 0.020819664001464844, -0.09834421426057816, -0.07958289980888367, -0.03531049191951752, -0.027659298852086067, -0.0024367214646190405, 0.09753330796957016, -0.17419829964637756, -0.032821305096149445, 0.20142340660095215, -0.07468849420547485, -0.0907963365316391, 0.06430941820144653, -0.0723167359828949, 0.04857043921947479, 0.13940803706645966, 0.055721767246723175, 0.16208107769489288, -0.10127324610948563, -0.07294219732284546, -0.038436125963926315, -0.05457090586423874, 0.2014893740415573, 0.03783370554447174, -0.010172401554882526, 0.024467946961522102, 0.01497128140181303, -0.04171212762594223, -0.024187518283724785, -0.017775077372789383, -0.041682008653879166, -0.012919564731419086, 0.01499799732118845, -0.023918434977531433, -0.041650399565696716, -0.06813890486955643, -0.01848563365638256, -0.1095680445432663, 0.03920382261276245, 0.09479762613773346, -0.07829075306653976, 0.004540097899734974, -0.08487693220376968, 0.008786692284047604, -0.03335925564169884, 0.009333489462733269, -0.19806011021137238, -0.05732780694961548, 0.02572968788444996, -0.07233694195747375, 0.07321882992982864, 0.03023248165845871, 0.04677683487534523, 0.06862382590770721, -0.001412709942087531, 0.021067289635539055, -0.05209783464670181, -0.019165312871336937, -0.042452454566955566, -0.14415033161640167, -0.0718565434217453, -0.054584771394729614, 0.07515771687030792, -0.14959417283535004, 0.012796368449926376, 0.106219582259655, 0.12718014419078827, 0.02617453970015049, -0.06282363831996918, -0.012745937332510948, -0.04251156002283096, -0.03870728611946106, -0.11331459879875183, -0.0526861809194088, 0.01313115656375885, -0.03562638908624649, 0.16356809437274933, -0.19208593666553497, -0.07752485573291779, 0.09196990728378296, 0.15116289258003235, -0.10275248438119888, 0.026899192482233047, -0.08998651057481766, -0.011538750492036343, -0.05255839228630066, -0.050136882811784744, 0.27424871921539307, 0.032742347568273544, 0.08207222819328308, -0.10589788109064102, -0.11232444643974304, -0.0037472567055374384, -0.03599550202488899, -0.034395989030599594, 0.035730600357055664, 0.01630072481930256, -0.17439544200897217, 0.03600442036986351, 0.021207695826888084, 0.0937587171792984, 0.2125176191329956, 0.04854422062635422, -0.09215804189443588, -0.05601431056857109, -0.06408610939979553, 0.0025335957761853933, 0.0679701566696167, 0.002990082371979952, 0.016252195462584496, 0.03688303381204605, 0.048502326011657715, 0.04513660818338394, -0.12109820544719696, 0.01806647516787052, 0.07820452004671097, -0.039991144090890884, -0.039256855845451355, 0.019398944452404976, 0.016127457842230797, 0.08292706310749054, 0.06732379645109177, 0.13660752773284912, -0.06739812344312668, -0.05603257194161415, -0.14093691110610962, 0.14141182601451874, -0.06833572685718536, -0.2452792525291443, -0.14210836589336395, -0.07841434329748154, 0.023039722815155983, 0.0028114584274590015, 0.03698737546801567, -0.0618785098195076, -0.04146422818303108, -0.10226753354072571, 0.0805802270770073, -0.0570378303527832, -0.023494036868214607, 0.008053270168602467, 0.01602466218173504, -0.029240526258945465, -0.11571846157312393, -0.03637222573161125, 0.042549122124910355, -0.09716351330280304, -0.025104079395532608, 0.037548817694187164, 0.04073050990700722, 0.15510518848896027, -0.022128816694021225, 0.0017827072879299521, -0.022420603781938553, 0.2833014130592346, -0.12130667269229889, 0.06842238456010818, 0.17317642271518707, -0.024758636951446533, 0.06954563409090042, 0.08566325902938843, 0.010570012964308262, -0.06361200660467148, 0.06831560283899307, 0.07058502733707428, -0.08808314055204391, -0.2064417451620102, -0.02390521578490734, -0.031096896156668663, 0.010480746626853943, 0.13038291037082672, 0.0636560395359993, 0.061297014355659485, 0.008259950205683708, -0.10389939695596695, 0.049986593425273895, 0.03228982165455818, 0.11077283322811127, -0.06194176524877548, -0.010975541546940804, 0.0437631793320179, -0.06859344244003296, 0.01398107223212719, 0.1355835199356079, 0.050483278930187225, 0.20129074156284332, -0.06685630232095718, 0.09606723487377167, 0.08214662224054337, 0.0945572480559349, 0.03919663280248642, -0.0011883326806128025, -0.014585362747311592, 0.009571107104420662, -0.0005347719416022301, -0.10202741622924805, 0.002321443986147642, 0.05569589138031006, 0.028796445578336716, -0.026528824120759964, -0.040358733385801315, -0.05490166321396828, 0.04137769713997841, 0.23850104212760925, -0.002057834528386593, -0.19690614938735962, -0.10046038776636124, 0.05665547773241997, -0.07638652622699738, -0.07274641841650009, -0.026009567081928253, 0.08531803637742996, -0.2093980461359024, 0.06848382204771042, -0.04126521572470665, 0.1130748763680458, -0.10470061749219894, -0.0035741571336984634, 0.10218153893947601, 0.055759310722351074, -0.05985856428742409, 0.09033288061618805, -0.15456564724445343, 0.05622059106826782, -0.008250575512647629, 0.0756545439362526, -0.08429720252752304, 0.03909631818532944, 0.008596467785537243, 0.05500142648816109, 0.08980617672204971, 0.011689772829413414, 0.021788183599710464, 0.009880528785288334, -0.03516708314418793, 0.014820906333625317, 0.06495951861143112, -0.14172688126564026, 0.11923305690288544, -0.02430669032037258, 0.03686502203345299, -0.04039524868130684, -0.10576491057872772, -0.08304353058338165, -0.17483876645565033, 0.07991404086351395, -0.11041183769702911, 0.0010640649124979973, -0.07223834842443466, -0.017996273934841156, 0.03394320234656334, 0.2651640772819519, -0.04776415228843689, -0.07371248304843903, -0.14071665704250336, -0.000594009121414274, 0.13692007958889008, -0.07944921404123306, 0.015629032626748085, -0.02319372072815895, 0.19367703795433044, 0.00902822706848383, -0.12525589764118195, -0.015864694491028786, -0.06227387115359306, -0.1538964807987213, -0.012552720494568348, 0.16403566300868988, 0.07023893296718597, 0.01267221663147211, 0.002730597974732518, -0.00865867454558611, -0.05244319885969162, -0.17426028847694397, 0.020120739936828613, 0.15801887214183807, -0.0020363759249448776, 0.002317397389560938, 0.03498519957065582, 0.018180035054683685, -0.12932386994361877, 0.021770499646663666, 0.036786917597055435, 0.17597758769989014, -0.08273732662200928, 0.17520134150981903, 0.033073700964450836, -0.0907156690955162, -0.15614114701747894, 0.01276671513915062, 0.0250113382935524, 0.05406633019447327, 0.05033494159579277, -0.19168852269649506, 0.059928350150585175, 0.025063002482056618, -0.0015473852399736643, 0.06358061730861664, -0.3226376473903656, -0.15427841246128082, 0.0007384661003015935, 0.01762913353741169, -0.14672720432281494, -0.038282472640275955, -0.034953270107507706, -0.08256576210260391, -0.25074303150177, 0.08455405384302139, -0.12378253042697906, 0.07353740930557251, 0.02832707017660141, 0.08252601325511932, 0.0423230305314064, -0.04667872190475464, 0.13774900138378143, -0.014765853062272072, 0.07352051883935928, -0.09604573249816895, -0.05162062123417854, 0.09429574757814407, -0.07654829323291779, 0.0938069149851799, 0.024260085076093674, 0.08746040612459183, -0.09114455431699753, -0.08108040690422058, -0.06318806111812592, 0.008504703640937805, -0.05179322138428688, -0.08857828378677368, -0.0839119479060173, 0.08313287794589996, 0.11626989394426346, -0.04524630680680275, -0.0852448120713234, -0.06336267292499542, 0.019755132496356964, 0.05718323960900307, 0.12723371386528015, 0.08448725193738937, -0.07414458692073822, 0.0002417601499473676, 0.020331067964434624, 0.023172616958618164, -0.16581222414970398, 0.05361119657754898, 0.08673230558633804, 0.04211978614330292, 0.09573142230510712, 0.010345629416406155, -0.16089442372322083, 0.0014284023782238364, 0.054000791162252426, -0.16539636254310608, -0.13095252215862274, -0.0478903129696846, 0.015025188215076923, -0.10572683811187744, -0.028792792931199074, 0.12429896742105484, -0.03641930967569351, -0.025364940986037254, -0.00011765059025492519, 0.028560906648635864, -0.04465414583683014, 0.07751356065273285, -0.011938771232962608, 0.03654107823967934, -0.05987712740898132, 0.11308059841394424, 0.07012190669775009, 0.007425146177411079, 0.031446658074855804, 0.06724696606397629, -0.09258891642093658, 0.01849883608520031, -0.09851193428039551, -0.004874027334153652, -0.010874411091208458, -0.014535347931087017, 0.020237958058714867, -0.03597366064786911, 0.047440432012081146, 0.09071001410484314, -0.018379317596554756, 0.10676658153533936, -0.058708615601062775, 0.02061145007610321, -0.12409661710262299, 0.07389931380748749, 0.03222555294632912, 0.0257695484906435, -0.12014161050319672, 0.1941671371459961, 0.039686303585767746, 0.10714630782604218, -0.03748799487948418, -0.06064628064632416, -0.06045866012573242, -0.010810262523591518, -0.08573249727487564, -0.04448635131120682, -0.09726095199584961, -0.023712648078799248, -0.012001853436231613, -0.030022237449884415, -0.048261113464832306, 0.04606683924794197, -0.034903474152088165, -0.05927606672048569, -0.0751631110906601, 0.058324553072452545, -0.13255666196346283, 0.04532156512141228, 0.11724764108657837, -0.06658156961202621, 0.1255096048116684, 0.039252400398254395, -0.0425373874604702, 0.012080272659659386, -0.12263761460781097, 0.04643974453210831, -0.011737184599041939, 0.020775554701685905, 0.013504504226148129, -0.1366020292043686, -0.0001606498408364132, -0.03699348866939545, -0.06389673054218292, -0.00007220839324872941, -0.018246132880449295, -0.12979066371917725, -0.002684839768335223, 0.07794805616140366, -0.017122061923146248, -0.07080918550491333, 0.07778848707675934, 0.05961649492383003, 0.020058272406458855, 0.052439723163843155, -0.009964315220713615, 0.06485678255558014, -0.18887071311473846, -0.053528886288404465, 0.008989731781184673, 0.03415762260556221, 0.052054040133953094, -0.033554475754499435, 0.03907174989581108, -0.026525773108005524, 0.21509499847888947, 0.019848620519042015, -0.025153474882245064, 0.04378105327486992, -0.06215768679976463, -0.004889398347586393, 0.040600501000881195, 0.08275981992483139, -0.02990943193435669, -0.030950423330068588, -0.000155365007231012, -0.029740450903773308, -0.1014191061258316, -0.01025818008929491, 0.11517076194286346, 0.03124759905040264, 0.18786516785621643, -0.04644748568534851, 0.06955274939537048, -0.0205690898001194, -0.11783187836408615, -0.023639680817723274, -0.04484734311699867, 0.036630552262067795, -0.06725489348173141, 0.04596829041838646, 0.19764819741249084, -0.1496589630842209, 0.11756433546543121, 0.03771725669503212, -0.05665576457977295, -0.12188748270273209, -0.20718185603618622, -0.009085012599825859, -0.030520888045430183, 0.026036126539111137, -0.126982182264328, 0.10367406159639359, 0.027548067271709442, 0.03316034749150276, -0.06256436556577682, 0.1387113630771637, -0.08796636760234833, -0.1408744752407074, 0.044191330671310425, 0.014562828466296196, 0.06103925406932831, 0.03965296968817711, 0.08834709227085114, 0.027864772826433182, 0.012563307769596577, 0.0676233246922493, 0.04061751440167427, 0.031124813482165337, 0.037198957055807114, -0.024082724004983902, -0.03799140080809593, 0.026081033051013947, -0.0037961401976644993, 0.017944177612662315, 0.0875718742609024, 0.061135873198509216, -0.023907547816634178, -0.01596793159842491, 0.297057181596756, -0.037729933857917786, -0.023417914286255836, -0.1883302927017212, 0.15144269168376923, 0.0026002456434071064, -0.008648298680782318, 0.026170805096626282, -0.12802754342556, 0.019433269277215004, 0.11135876923799515, 0.15315264463424683, -0.028568897396326065, 0.027472389861941338, -0.020548421889543533, 0.016948863863945007, 0.025767145678400993, 0.10676776617765427, 0.05186385661363602, 0.22106210887432098, -0.034156858921051025, 0.052888888865709305, -0.012465675361454487, -0.019207710400223732, 0.00419909181073308, 0.1166815459728241, -0.036666762083768845, 0.0011970815248787403, -0.051838673651218414, 0.10658319294452667, -0.05273042991757393, -0.27207204699516296, -0.03420339524745941, -0.020667070522904396, -0.10107406228780746, 0.07708796858787537, -0.023495687171816826, -0.03460047394037247, 0.07506822794675827, 0.022241530939936638, -0.04963619261980057, 0.1608404517173767, 0.044948726892471313, -0.04206490144133568, 0.006705494597554207, 0.11298582702875137, -0.0245260838419199, 0.16860000789165497, -0.03641679510474205, 0.003148498246446252, 0.08106597512960434, 0.010617375373840332, -0.1138850748538971, -0.0025164445396512747, 0.0365561917424202, -0.06237402185797691, -0.020253481343388557, 0.18679983913898468, 0.009701314382255077, 0.02046964131295681, 0.07063297182321548, -0.04358100891113281, 0.0260852612555027, -0.04129151999950409, 0.05701541528105736, -0.15140323340892792, 0.049433425068855286, -0.07320203632116318, 0.1276845633983612, 0.1811167597770691, -0.05981840565800667, 0.026543302461504936, -0.05594253167510033, 0.0010152650065720081, -0.015543298795819283, 0.0709356814622879, -0.018210826441645622, -0.1113068237900734, 0.0011064097052440047, 0.03384851664304733, 0.010405679233372211, -0.16926729679107666, -0.0875176340341568, 0.07967369258403778, -0.055348120629787445, 0.015295539982616901, 0.1637144535779953, 0.037073764950037, 0.06362921744585037, -0.037898577749729156, -0.020828748121857643, -0.005512681789696217, 0.11068723350763321, -0.18051274120807648, -0.07756417989730835 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/12c27f4fbb06ef32dc1c1e432098f447.570x570x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Arctic Monkeys</div> <a href="https://genius.com/artists/arctic-monkeys"> <div style="text-align: center; font-size: 14px;">@arctic-monkeys</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Arctic Monkeys. Dataset is available [here](https://huggingface.co/datasets/huggingartists/arctic-monkeys). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/arctic-monkeys") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1x4ii6qz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Arctic Monkeys's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/bmnqvn53) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/bmnqvn53/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/arctic-monkeys') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/arctic-monkeys") model = AutoModelWithLMHead.from_pretrained("huggingartists/arctic-monkeys") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/arctic-monkeys"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/arctic-monkeys
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/arctic-monkeys", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/arctic-monkeys #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Arctic Monkeys</div> <a href="URL <div style="text-align: center; font-size: 14px;">@arctic-monkeys</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Arctic Monkeys. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Arctic Monkeys's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Arctic Monkeys.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Arctic Monkeys's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/arctic-monkeys #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Arctic Monkeys.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Arctic Monkeys's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/arctic-monkeys #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Arctic Monkeys.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Arctic Monkeys's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02582968957722187, 0.182766392827034, -0.003046909812837839, 0.046614259481430054, 0.1119070053100586, 0.016345245763659477, 0.05874485522508621, 0.11946399509906769, 0.004761552903801203, 0.0750497579574585, 0.06160891801118851, 0.0716795027256012, 0.08130753040313721, 0.08089228719472885, 0.059588924050331116, -0.24525335431098938, 0.05156521499156952, -0.07159549742937088, 0.04062254726886749, 0.08894497901201248, 0.07472352683544159, -0.06894136220216751, 0.08205613493919373, 0.02885117381811142, -0.04722781106829643, -0.008787808008491993, 0.0026149433106184006, -0.05445214360952377, 0.07498686015605927, 0.06717929989099503, 0.03440777584910393, 0.02451779693365097, 0.07415171712636948, -0.16672059893608093, 0.025873025879263878, 0.11944784224033356, 0.04048861190676689, 0.08647830784320831, 0.06470954418182373, -0.07148879766464233, 0.14456674456596375, -0.026282167062163353, 0.09196542948484421, 0.05828048661351204, -0.10875546187162399, -0.12799988687038422, -0.1486382782459259, 0.0573696568608284, 0.08137320727109909, 0.09030517935752869, -0.03154344484210014, 0.11054900288581848, -0.01027280930429697, 0.04796843230724335, 0.24917536973953247, -0.2398882955312729, -0.004569953307509422, 0.07955081760883331, 0.06560386717319489, 0.027485480532050133, -0.08994820713996887, 0.004797606263309717, 0.05825863033533096, 0.026629971340298653, 0.03275876119732857, -0.023318687453866005, 0.15152542293071747, 0.005696447566151619, -0.12224666774272919, -0.08011042326688766, 0.08380905538797379, -0.020144885405898094, -0.08873014152050018, -0.1389247179031372, 0.0017451620660722256, -0.02977406419813633, 0.030535653233528137, 0.03135395422577858, -0.005063493736088276, -0.005065985023975372, -0.038853682577610016, -0.09805958718061447, -0.06115070730447769, -0.032925497740507126, -0.023430829867720604, 0.04736272990703583, 0.04554411396384239, 0.03546416759490967, -0.07074817270040512, 0.21903884410858154, 0.043367598205804825, -0.09244538098573685, -0.05691755563020706, -0.10645688325166702, -0.09690653532743454, -0.04275286942720413, 0.004925791639834642, 0.01199331320822239, -0.0239639263600111, 0.1497027724981308, -0.02459428459405899, 0.020760077983140945, -0.05507892370223999, 0.00021168756939005107, 0.12795592844486237, 0.14854931831359863, -0.14895302057266235, -0.02564573846757412, 0.06758767366409302, -0.006514288950711489, -0.06386519223451614, -0.054166920483112335, -0.0047442009672522545, -0.020807499065995216, 0.04220801964402199, 0.09022853523492813, 0.08866288512945175, 0.06824789941310883, 0.006390839349478483, -0.07665812969207764, 0.04991215467453003, -0.12030179053544998, 0.0107539938762784, -0.011067218147218227, -0.060441259294748306, 0.03519458323717117, 0.054208070039749146, 0.013991319574415684, -0.0983024537563324, 0.08558815717697144, -0.08776433020830154, -0.04796832427382469, -0.09198401123285294, -0.12068811058998108, -0.006259049754589796, -0.020919054746627808, -0.021179232746362686, -0.07560837268829346, -0.17367154359817505, -0.043189335614442825, 0.015376054681837559, -0.066008061170578, -0.033396076411008835, 0.027582908049225807, -0.036664675921201706, 0.014612969942390919, -0.016878874972462654, 0.021965391933918, -0.025469252839684486, 0.03646734356880188, -0.08155713975429535, 0.03623184189200401, 0.07894772291183472, 0.0366477333009243, -0.12202959507703781, 0.07048496603965759, -0.13824863731861115, 0.11777463555335999, -0.03318987414240837, 0.023571422323584557, -0.0890418067574501, -0.07948284596204758, -0.014598075300455093, -0.044576168060302734, 0.0281737819314003, 0.1193513497710228, -0.16567623615264893, -0.0024941519368439913, 0.21171949803829193, -0.06445711106061935, -0.06459661573171616, 0.07569173723459244, -0.08302462100982666, 0.04254072159528732, 0.1117696762084961, 0.0535980649292469, 0.1409865766763687, -0.10730934143066406, -0.0737682357430458, -0.05544792860746384, -0.07887765765190125, 0.1776912808418274, 0.03369825705885887, -0.03122611716389656, 0.008894569240510464, 0.0022335185203701258, -0.04311972111463547, 0.012259524315595627, -0.03199139982461929, -0.02775554545223713, -0.013573061674833298, -0.011546222493052483, 0.012131964787840843, -0.03987373784184456, -0.04384848475456238, -0.012546868994832039, -0.09301167726516724, 0.03785179927945137, 0.11215420067310333, -0.07664304971694946, 0.01403816882520914, -0.09146296232938766, 0.04405290633440018, -0.06230191886425018, 0.011070509441196918, -0.1714567095041275, -0.04772466421127319, 0.03173040971159935, -0.08290552347898483, 0.06669541448354721, 0.010179995559155941, 0.03890834376215935, 0.06813756376504898, -0.005108431912958622, 0.000609508715569973, -0.018406158313155174, 0.0033001936972141266, -0.05258898437023163, -0.15511326491832733, -0.0372542068362236, -0.043713316321372986, 0.09035572409629822, -0.12243463844060898, 0.0036282562650740147, 0.05995795130729675, 0.1420915573835373, 0.02334532141685486, -0.06254862993955612, 0.05100426450371742, -0.03536955267190933, -0.03276408091187477, -0.10826241970062256, -0.03727858513593674, 0.015664173290133476, -0.029682086780667305, 0.1644519567489624, -0.1567007303237915, -0.11671562492847443, 0.12687398493289948, 0.10617666691541672, -0.07434672117233276, 0.0426904559135437, -0.05691295117139816, -0.01815522462129593, -0.0526888333261013, -0.059132516384124756, 0.2358999252319336, 0.04323239251971245, 0.08580245077610016, -0.09284603595733643, -0.085431769490242, -0.0046167755499482155, -0.029153497889637947, -0.025481317192316055, 0.04263022914528847, 0.035258181393146515, -0.16599038243293762, 0.04991380497813225, -0.036140915006399155, 0.08744698762893677, 0.18446923792362213, 0.027105389162898064, -0.1036175936460495, -0.052892934530973434, -0.06530154496431351, 0.014710807241499424, 0.07548072189092636, 0.01593918167054653, 0.04314020648598671, 0.05203275755047798, 0.04259829595685005, 0.04246608167886734, -0.1032935157418251, 0.01016045082360506, 0.052636731415987015, -0.028440430760383606, -0.05856752395629883, 0.019875777885317802, 0.03227837756276131, 0.08855938166379929, 0.06015492603182793, 0.10019513219594955, -0.05478202924132347, -0.04945075139403343, -0.1392805427312851, 0.12601634860038757, -0.08956003934144974, -0.18804997205734253, -0.13562341034412384, -0.07641671597957611, 0.01337493397295475, -0.00007096913759596646, 0.027580274268984795, -0.029346130788326263, -0.03997085988521576, -0.08839398622512817, 0.06617017835378647, -0.032626088708639145, -0.012205603532493114, 0.00604425510391593, 0.017032278701663017, -0.017116958275437355, -0.12232005596160889, -0.02320173569023609, 0.02164202742278576, -0.07687104493379593, 0.0015425097662955523, 0.019552432000637054, 0.07102944701910019, 0.1457972675561905, 0.005381246097385883, 0.0011970644118264318, -0.024215659126639366, 0.27801135182380676, -0.10201088339090347, 0.035371433943510056, 0.15797683596611023, -0.012891214340925217, 0.054354920983314514, 0.057096343487501144, -0.008839325979351997, -0.05872976407408714, 0.0673026442527771, 0.06455719470977783, -0.07016763091087341, -0.20043161511421204, -0.031517986208200455, -0.01869111694395542, 0.01732403226196766, 0.1062512993812561, 0.021336616948246956, 0.03819698467850685, 0.020852508023381233, -0.0922909528017044, 0.04594304785132408, 0.037008531391620636, 0.11118873953819275, -0.09681685268878937, -0.0012097943108528852, 0.05425870791077614, -0.05069240927696228, 0.026816971600055695, 0.1160019263625145, 0.0266692154109478, 0.2565656900405884, -0.07158974558115005, 0.08953367173671722, 0.0807376578450203, 0.09692554175853729, 0.022594904527068138, 0.06411552429199219, -0.03359703719615936, 0.03210863843560219, -0.0010059408377856016, -0.08528322726488113, -0.009107568301260471, 0.029368584975600243, 0.04248708114027977, -0.0008801037911325693, -0.05993732064962387, -0.07779529690742493, 0.04850870743393898, 0.2162894606590271, 0.03228088840842247, -0.17569352686405182, -0.07916425913572311, 0.06850026547908783, -0.04265197366476059, -0.05265036225318909, -0.026217272505164146, 0.05097915604710579, -0.22210097312927246, 0.03162722289562225, -0.04725422337651253, 0.1117226630449295, -0.14316335320472717, -0.0022059979382902384, 0.01731025241315365, 0.039129141718149185, -0.07512175291776657, 0.0805780217051506, -0.17206718027591705, 0.08384708315134048, -0.007311226334422827, 0.07454239577054977, -0.06790652871131897, 0.01641017757356167, 0.05048316717147827, 0.012767823413014412, 0.09981632977724075, 0.010426267981529236, -0.003961326088756323, -0.07013662904500961, -0.05201132968068123, -0.0055518988519907, 0.035615891218185425, -0.08214157819747925, 0.15100137889385223, -0.031771980226039886, 0.029339522123336792, -0.027893541380763054, -0.04739958420395851, -0.1067676842212677, -0.15210074186325073, 0.07285600155591965, -0.12427494674921036, 0.0037876407150179148, -0.055372320115566254, -0.025904903188347816, 0.010679814033210278, 0.17375728487968445, -0.10578100383281708, -0.08837476372718811, -0.13090947270393372, -0.0040773870423436165, 0.1576111763715744, -0.08384434133768082, 0.0035098176449537277, 0.0036805125419050455, 0.16081112623214722, 0.008917526341974735, -0.13668714463710785, -0.010896166786551476, -0.06712685525417328, -0.18160776793956757, -0.024600259959697723, 0.1030735895037651, 0.07553888112306595, 0.056351736187934875, 0.014872848056256771, 0.012699044309556484, -0.041653554886579514, -0.17026874423027039, 0.009679417125880718, 0.15120962262153625, 0.03982169181108475, 0.0352618582546711, -0.00017546968592796475, 0.010606182739138603, -0.1535698026418686, 0.017604662105441093, 0.06256189942359924, 0.180808886885643, -0.07935396581888199, 0.1352812647819519, 0.01721891388297081, -0.09954826533794403, -0.15040850639343262, 0.01851217821240425, 0.004596830811351538, 0.02501826174557209, 0.02706272341310978, -0.1629256010055542, 0.01570878177881241, 0.038868606090545654, -0.0014624580508098006, 0.04840322583913803, -0.33118873834609985, -0.1446237564086914, 0.037118617445230484, 0.023659564554691315, -0.08001714944839478, -0.05065540224313736, -0.04016796872019768, -0.07111134380102158, -0.24654598534107208, 0.10413257777690887, -0.12393394112586975, 0.08519569039344788, 0.020587369799613953, 0.07361727952957153, 0.04971916973590851, -0.06530508399009705, 0.1387118548154831, -0.01749979890882969, 0.06611181795597076, -0.08708474040031433, -0.0519547201693058, 0.07298524677753448, -0.0609707236289978, 0.10374364256858826, 0.034839753061532974, 0.07700633257627487, -0.12541942298412323, -0.06509615480899811, -0.08007853478193283, 0.005147733259946108, -0.049260079860687256, -0.09126978367567062, -0.08418350666761398, 0.10463705658912659, 0.14076870679855347, -0.03317834809422493, -0.10047489404678345, -0.04327183961868286, -0.02233935333788395, 0.0681372657418251, 0.10324429720640182, 0.09754529595375061, -0.06396043300628662, 0.0037539186887443066, 0.014124480076134205, 0.016557298600673676, -0.0950617790222168, 0.037171825766563416, 0.09085557609796524, 0.028075048699975014, 0.10218697041273117, 0.021377380937337875, -0.17058277130126953, 0.038328833878040314, 0.026026176288723946, -0.13849228620529175, -0.09927930682897568, -0.0255472119897604, -0.016513952985405922, -0.08758462220430374, -0.05748548358678818, 0.1301388442516327, -0.01915658824145794, -0.04736223444342613, -0.004146959166973829, 0.05837101489305496, -0.039409905672073364, 0.11348354816436768, 0.018659530207514763, 0.04409295693039894, -0.07827829569578171, 0.09490718692541122, 0.07178427278995514, 0.02736615389585495, 0.02573421038687229, 0.05415937304496765, -0.0863032266497612, 0.002433459274470806, -0.07730540633201599, 0.04781605303287506, -0.07281701266765594, 0.0012199279153719544, -0.006779523100703955, -0.0392332598567009, 0.0255203265696764, 0.09902042895555496, -0.004980238154530525, 0.10536489635705948, -0.024141453206539154, -0.017440328374505043, -0.13495862483978271, 0.07952991127967834, 0.0598565898835659, 0.025796977803111076, -0.10642959922552109, 0.18798986077308655, 0.02931305393576622, 0.0675932839512825, -0.040638457983732224, -0.04697372391819954, -0.08468620479106903, -0.008381511084735394, -0.13997416198253632, -0.029026828706264496, -0.0953180193901062, -0.03592893108725548, -0.014784010127186775, -0.04634173586964607, -0.018314247950911522, 0.05391304939985275, -0.033658429980278015, -0.06868074089288712, -0.05271308869123459, 0.06146254017949104, -0.13152657449245453, -0.004852704703807831, 0.11492404341697693, -0.06712984293699265, 0.09850048273801804, 0.055097099393606186, -0.027227314189076424, 0.016837550327181816, -0.08639530092477798, 0.0215023010969162, -0.03590141609311104, 0.009722676128149033, 0.03907007724046707, -0.17537268996238708, 0.011691786348819733, -0.04964224994182587, -0.05703485384583473, 0.01324448175728321, 0.016108820214867592, -0.12497292459011078, -0.020753001794219017, 0.07793702930212021, 0.0012609560508280993, -0.06094368174672127, 0.0668000876903534, 0.06798942387104034, 0.02979251742362976, 0.0881204679608345, -0.028018051758408546, 0.08676400780677795, -0.1649538278579712, -0.0495976023375988, -0.0020942518021911383, 0.008734715171158314, 0.07684514671564102, -0.008697639219462872, 0.045918721705675125, -0.01352075207978487, 0.19740837812423706, -0.00016761646838858724, -0.01034579612314701, 0.025039520114660263, -0.011716891080141068, -0.0015223390655592084, 0.04528851434588432, 0.07949916273355484, -0.036009885370731354, -0.027761342003941536, -0.010567105375230312, 0.0073339915834367275, -0.06598484516143799, -0.033921267837285995, 0.11666854470968246, 0.05364437401294708, 0.18507660925388336, -0.035375628620386124, 0.06843414157629013, -0.021162718534469604, -0.11910877376794815, -0.037094052881002426, -0.013996933586895466, 0.031214116141200066, -0.05940144881606102, 0.09336506575345993, 0.16630947589874268, -0.15962910652160645, 0.12175194919109344, 0.020077461376786232, -0.05918606370687485, -0.10448430478572845, -0.18716537952423096, -0.016117118299007416, -0.020742081105709076, 0.02898438088595867, -0.12962906062602997, 0.07316901534795761, 0.04555041342973709, 0.027440013363957405, -0.06248166784644127, 0.09691905975341797, -0.055893171578645706, -0.1199067160487175, 0.02155831642448902, 0.02840372547507286, 0.013436755165457726, 0.022534258663654327, 0.06713517010211945, 0.026042325422167778, 0.011254660785198212, 0.06242150068283081, 0.029573284089565277, 0.019815292209386826, 0.038670863956213, -0.02169802226126194, -0.05371272936463356, 0.027682097628712654, -0.001049628248438239, 0.03779610991477966, 0.13628019392490387, 0.08206139504909515, -0.017826944589614868, -0.03311247378587723, 0.2866344451904297, -0.04089335352182388, -0.02607913315296173, -0.1872747242450714, 0.18146830797195435, 0.017439832910895348, -0.006902203429490328, 0.03348137065768242, -0.1388113796710968, 0.021606577560305595, 0.16886508464813232, 0.15571023523807526, -0.06103113666176796, 0.0033102764282375574, -0.04008505120873451, 0.008047899231314659, 0.025683507323265076, 0.09065873920917511, 0.08035033196210861, 0.19763411581516266, -0.04275338351726532, 0.06654774397611618, -0.007300581783056259, -0.01532553881406784, -0.025516865774989128, 0.1053372174501419, -0.03179769590497017, 0.010390155017375946, -0.05284205079078674, 0.09553932398557663, -0.0849871039390564, -0.2435365468263626, -0.04942544549703598, -0.03290610760450363, -0.09305808693170547, 0.042816683650016785, -0.06913091987371445, -0.01266510784626007, 0.0869104266166687, 0.017538191750645638, -0.020887169986963272, 0.12822391092777252, 0.03989690542221069, -0.03542865440249443, -0.028414851054549217, 0.08097293972969055, -0.020378146320581436, 0.21883641183376312, -0.021449565887451172, -0.013305476866662502, 0.10104558616876602, 0.017493722960352898, -0.13734999299049377, 0.008984241634607315, 0.032735675573349, -0.05813025310635567, 0.006342669483274221, 0.1945970356464386, 0.007932092063128948, 0.02940646931529045, 0.05252121761441231, -0.05776651203632355, 0.04548525810241699, -0.07404603064060211, 0.052765555679798126, -0.13044096529483795, 0.050881240516901016, -0.0898469015955925, 0.14712826907634735, 0.17994675040245056, -0.07469834387302399, 0.034573376178741455, -0.044841401278972626, -0.013810123316943645, -0.027298109605908394, 0.06275560706853867, -0.027555324137210846, -0.10306165367364883, 0.014416985213756561, 0.028917882591485977, 0.0244999248534441, -0.20712856948375702, -0.06522192060947418, 0.040367964655160904, -0.06638365238904953, 0.015204831026494503, 0.15802881121635437, 0.033879976719617844, 0.046107057482004166, -0.032052330672740936, -0.00734252855181694, -0.03161867335438728, 0.11259174346923828, -0.15207646787166595, -0.08155971020460129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d36a47955ac0ddb12748c5e7c2bd4b4b.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ariana Grande</div> <a href="https://genius.com/artists/ariana-grande"> <div style="text-align: center; font-size: 14px;">@ariana-grande</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ariana Grande. Dataset is available [here](https://huggingface.co/datasets/huggingartists/ariana-grande). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ariana-grande") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2nfg7v7i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ariana Grande's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3u3sn1bx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3u3sn1bx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ariana-grande') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ariana-grande") model = AutoModelWithLMHead.from_pretrained("huggingartists/ariana-grande") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/ariana-grande"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/ariana-grande
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ariana-grande", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ariana-grande #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ariana Grande</div> <a href="URL <div style="text-align: center; font-size: 14px;">@ariana-grande</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Ariana Grande. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Ariana Grande's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ariana Grande.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ariana Grande's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ariana-grande #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ariana Grande.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ariana Grande's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 89, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ariana-grande #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Ariana Grande.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ariana Grande's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03391848877072334, 0.19856202602386475, -0.0032818287145346403, 0.05865208059549332, 0.10605931282043457, 0.008157998323440552, 0.061297088861465454, 0.10909153521060944, 0.0013820570893585682, 0.07728836685419083, 0.058140967041254044, 0.03152424469590187, 0.08116964995861053, 0.07940299808979034, 0.06342042982578278, -0.25335609912872314, 0.036709465086460114, -0.07464168220758438, 0.02077988162636757, 0.09413188695907593, 0.08883113414049149, -0.07621459662914276, 0.08413433283567429, 0.04785295948386192, -0.05394170060753822, 0.005272023379802704, -0.0037728375755250454, -0.06219113618135452, 0.08168460428714752, 0.07319948077201843, 0.04016481339931488, 0.04170870780944824, 0.06854885071516037, -0.17478102445602417, 0.023046880960464478, 0.11819859594106674, 0.027032865211367607, 0.07694169878959656, 0.07832729816436768, -0.07994158565998077, 0.13356024026870728, -0.026851575821638107, 0.08713144063949585, 0.06324693560600281, -0.11113366484642029, -0.10890970379114151, -0.1482226699590683, 0.04871756583452225, 0.0772828683257103, 0.084361732006073, -0.030458852648735046, 0.08514019846916199, -0.03377995640039444, 0.04120049625635147, 0.25950947403907776, -0.27650773525238037, -0.008918062783777714, 0.06505216658115387, 0.06587706506252289, 0.01668383739888668, -0.08129212260246277, 0.027699479833245277, 0.04379461333155632, 0.026559339836239815, 0.05644566938281059, -0.019482970237731934, 0.14538177847862244, 0.013237004168331623, -0.10833986103534698, -0.07243505120277405, 0.1033850684762001, -0.016157040372490883, -0.08254674822092056, -0.14103823900222778, 0.004825771786272526, -0.025953268632292747, 0.02375497855246067, 0.005925863049924374, 0.001971240621060133, -0.005394745618104935, -0.04565180093050003, -0.11843317747116089, -0.0741289034485817, -0.03395884484052658, -0.014935929328203201, 0.03581741452217102, 0.04315084591507912, 0.026858147233724594, -0.05569484084844589, 0.20974498987197876, 0.0018829887267202139, -0.10725826025009155, -0.06514096260070801, -0.11380843818187714, -0.10139366239309311, -0.047050006687641144, -0.019874824211001396, -0.01065529603511095, -0.025052448734641075, 0.14840532839298248, -0.00042009566095657647, 0.02295512519776821, -0.04664251580834389, 0.004627035930752754, 0.12390251457691193, 0.1522631198167801, -0.13417673110961914, -0.07184827327728271, 0.06688489019870758, -0.011882653459906578, -0.05436773598194122, -0.055901914834976196, -0.005871475674211979, -0.03734748810529709, 0.04468053579330444, 0.07476678490638733, 0.07621367275714874, 0.060312286019325256, -0.0012143307831138372, -0.05023505911231041, 0.0622745007276535, -0.1379770189523697, 0.010229931212961674, -0.017101269215345383, -0.055299337953329086, 0.025745060294866562, 0.054663147777318954, 0.015943074598908424, -0.10228793323040009, 0.08201424032449722, -0.08714144676923752, -0.048587504774332047, -0.08335956186056137, -0.10085339099168777, -0.0010412309784442186, -0.05697106570005417, -0.02390005812048912, -0.08072841912508011, -0.15422771871089935, -0.036177825182676315, 0.02070329152047634, -0.07098428905010223, -0.022678934037685394, 0.027743658050894737, -0.032326459884643555, 0.010946718044579029, -0.013842007145285606, -0.016591450199484825, -0.019579924643039703, 0.03792203962802887, -0.07630856335163116, 0.045191291719675064, 0.07686272263526917, 0.04424847289919853, -0.12260527163743973, 0.0712633952498436, -0.15123263001441956, 0.1287950873374939, -0.025815924629569054, -0.008463995531201363, -0.09523523598909378, -0.09286737442016602, -0.019268346950411797, -0.03706568479537964, 0.03657335042953491, 0.11936653405427933, -0.1686006486415863, -0.017136046662926674, 0.2131045013666153, -0.07242512702941895, -0.06323173642158508, 0.08048796653747559, -0.06786846369504929, 0.025257905945181847, 0.10934320092201233, 0.06885968148708344, 0.13374166190624237, -0.10286688059568405, -0.0842529758810997, -0.04881586506962776, -0.07368136197328568, 0.18323852121829987, 0.031229989603161812, -0.01859947293996811, 0.0492842011153698, 0.013629897497594357, -0.020488645881414413, -0.0012541617034003139, -0.024564320221543312, -0.041618186980485916, -0.018761571496725082, -0.011201292276382446, -0.00002602918175398372, -0.039208367466926575, -0.044353190809488297, -0.006234255153685808, -0.1070294976234436, 0.024117043241858482, 0.091096892952919, -0.07499568909406662, 0.01719902828335762, -0.1037830263376236, 0.0546792596578598, -0.05038173496723175, 0.007588288281112909, -0.1787160485982895, -0.03660276159644127, 0.018732663244009018, -0.07967996597290039, 0.06252797693014145, 0.02732027880847454, 0.03396107628941536, 0.06812133640050888, -0.015526026487350464, 0.008001166395843029, -0.042498815804719925, 0.004439327400177717, -0.03880149871110916, -0.1503658890724182, -0.058079466223716736, -0.04424785450100899, 0.0919007807970047, -0.11191799491643906, 0.0016208356246352196, 0.08945420384407043, 0.1463012844324112, 0.0345207042992115, -0.06500416994094849, 0.026468997821211815, -0.027188720181584358, -0.036659013479948044, -0.10179667174816132, -0.04596038535237312, 0.012380643747746944, -0.026899712160229683, 0.16051797568798065, -0.14471435546875, -0.09182648360729218, 0.1224331334233284, 0.08533808588981628, -0.08295108377933502, 0.03146306797862053, -0.059956666082143784, -0.019950976595282555, -0.03954165801405907, -0.05628197640180588, 0.214973583817482, 0.047803349792957306, 0.09463600069284439, -0.09480229020118713, -0.06800038367509842, 0.009666536003351212, -0.03803171589970589, -0.038872312754392624, 0.024561520665884018, 0.03444703668355942, -0.18775229156017303, 0.044153936207294464, -0.002589046722277999, 0.07691709697246552, 0.18311817944049835, 0.037698522210121155, -0.10180365294218063, -0.05713308975100517, -0.07717982679605484, 0.010792202316224575, 0.07864800840616226, 0.008656319230794907, 0.04298532009124756, 0.045852962881326675, 0.04603945091366768, 0.04464753344655037, -0.10005591809749603, 0.004664252046495676, 0.060025252401828766, -0.020807312801480293, -0.05018963664770126, 0.023360220715403557, 0.02472507767379284, 0.08866860717535019, 0.06418208032846451, 0.08947660028934479, -0.049087416380643845, -0.05624435842037201, -0.11966569721698761, 0.1266745626926422, -0.08328960835933685, -0.2108728289604187, -0.1275615394115448, -0.08735761791467667, 0.005105158779770136, 0.011097135953605175, 0.036630697548389435, -0.028477661311626434, -0.04220271483063698, -0.09900686889886856, 0.05545124039053917, -0.03837922215461731, -0.020099757239222527, -0.013062641024589539, 0.030173132196068764, -0.012869684025645256, -0.11571596562862396, -0.022879088297486305, 0.026379752904176712, -0.09351298213005066, 0.003898626659065485, 0.023251570761203766, 0.07353376597166061, 0.13269615173339844, -0.001264982740394771, 0.0028743937145918608, -0.019338838756084442, 0.2716005742549896, -0.11606044322252274, 0.05177568644285202, 0.16483421623706818, -0.016155162826180458, 0.06727991998195648, 0.05945393070578575, -0.0011513164499774575, -0.053128961473703384, 0.048328351229429245, 0.062005069106817245, -0.06919563561677933, -0.2031279057264328, -0.038282837718725204, -0.026969194412231445, -0.007813564501702785, 0.09890110045671463, 0.027896301820874214, 0.03942754119634628, 0.022078929468989372, -0.09240629523992538, 0.03864039480686188, 0.04245077446103096, 0.09651155769824982, -0.031124232336878777, -0.00906163826584816, 0.06151280552148819, -0.05462929978966713, 0.02425931766629219, 0.10268045961856842, 0.04274564981460571, 0.2551572024822235, -0.07247265428304672, 0.06841300427913666, 0.08042789250612259, 0.09901193529367447, 0.016443636268377304, 0.042249809950590134, -0.017644548788666725, 0.026522759348154068, -0.0054443650878965855, -0.09021700918674469, 0.0023113435599952936, 0.03915562108159065, 0.035937272012233734, -0.03238087147474289, -0.05773380398750305, -0.07061881572008133, 0.04662436619400978, 0.22855724394321442, 0.044283341616392136, -0.1715213507413864, -0.06590529531240463, 0.06537919491529465, -0.03703651577234268, -0.05969979986548424, -0.010080820880830288, 0.060951970517635345, -0.20673736929893494, 0.05113833770155907, -0.04384144768118858, 0.10879868268966675, -0.12603560090065002, -0.004010569304227829, 0.04171792417764664, 0.04019872099161148, -0.05845660716295242, 0.08446808159351349, -0.16796407103538513, 0.08359554409980774, 0.009435874409973621, 0.07380035519599915, -0.06745920330286026, 0.021780535578727722, 0.03335997834801674, 0.030778702348470688, 0.1119968518614769, 0.003475962206721306, 0.008242776617407799, -0.07110216468572617, -0.04567866027355194, 0.005154015962034464, 0.05455610528588295, -0.06897178292274475, 0.12991726398468018, -0.03412262350320816, 0.0287388414144516, -0.024122215807437897, -0.029347697272896767, -0.11990445852279663, -0.1769888550043106, 0.08307211846113205, -0.1143212765455246, -0.010794457979500294, -0.05556207150220871, -0.028735697269439697, -0.01219053752720356, 0.20247484743595123, -0.0800321027636528, -0.07711603492498398, -0.12556546926498413, 0.012252090498805046, 0.1557096689939499, -0.07449189573526382, 0.023610396310687065, 0.006651999894529581, 0.1610470414161682, -0.003354170359671116, -0.12011398375034332, -0.005465940106660128, -0.05773742496967316, -0.1804005652666092, -0.01991765946149826, 0.11482551693916321, 0.08030462265014648, 0.038370613008737564, 0.026635706424713135, 0.014871923252940178, -0.027213947847485542, -0.16060830652713776, 0.020189180970191956, 0.14096762239933014, 0.03228925168514252, 0.025118587538599968, 0.018251661211252213, 0.006820969749242067, -0.13176855444908142, 0.028597364202141762, 0.066656194627285, 0.1937226802110672, -0.08691047877073288, 0.15308500826358795, 0.01265422161668539, -0.09315234422683716, -0.16849780082702637, 0.02384350076317787, -0.0010419904720038176, 0.0314168743789196, 0.06288030743598938, -0.17649295926094055, 0.007062416989356279, 0.03955145552754402, -0.012323598377406597, 0.05509241297841072, -0.3160456418991089, -0.12699413299560547, 0.024082453921437263, 0.010772221721708775, -0.07137172669172287, -0.037389907985925674, -0.03348859027028084, -0.08070322126150131, -0.2542671859264374, 0.07143320888280869, -0.10086815804243088, 0.08816570788621902, 0.017540689557790756, 0.03824024647474289, 0.05449466407299042, -0.06268423795700073, 0.1350557953119278, -0.029541661962866783, 0.06619980931282043, -0.08608286827802658, -0.02088254503905773, 0.0986049547791481, -0.049664534628391266, 0.08588310331106186, 0.007836767472326756, 0.07078974694013596, -0.08373407274484634, -0.06998207420110703, -0.06925366073846817, 0.023435313254594803, -0.05632315203547478, -0.08663546293973923, -0.08298319578170776, 0.10351802408695221, 0.13486909866333008, -0.029481150209903717, -0.10169631242752075, -0.06237810477614403, -0.036165930330753326, 0.07329770177602768, 0.10829021036624908, 0.08260980248451233, -0.06514325737953186, 0.01325895544141531, 0.009230139665305614, 0.02879839763045311, -0.11924845725297928, 0.05061210319399834, 0.08846328407526016, 0.021909456700086594, 0.09112522006034851, 0.02035955898463726, -0.17520153522491455, 0.04018794000148773, 0.042573243379592896, -0.14113375544548035, -0.10280933231115341, -0.03801804780960083, -0.006066716741770506, -0.07467810809612274, -0.04325903207063675, 0.13932326436042786, -0.02540963515639305, -0.04103020951151848, -0.005040362477302551, 0.06268561631441116, -0.04085555300116539, 0.0937293991446495, 0.014795594848692417, 0.03748828545212746, -0.06428079307079315, 0.10097800940275192, 0.08085659146308899, -0.0025150205474346876, 0.03293866291642189, 0.032167673110961914, -0.08377082645893097, -0.00455170264467597, -0.10079166293144226, 0.006426967680454254, -0.0464252233505249, -0.008005205541849136, -0.0018692256417125463, -0.033163443207740784, 0.018257588148117065, 0.0851716697216034, -0.005003965925425291, 0.11561684310436249, -0.025788068771362305, -0.01600298471748829, -0.13201342523097992, 0.0779591053724289, 0.05066217854619026, 0.019967807456851006, -0.10886858403682709, 0.15847308933734894, 0.0245791207998991, 0.08082351833581924, -0.043661683797836304, -0.04980700835585594, -0.06630443781614304, -0.012416363693773746, -0.1343536376953125, -0.041277170181274414, -0.09471610188484192, -0.03757470101118088, -0.029773078858852386, -0.030250975862145424, -0.03073653019964695, 0.04700668901205063, -0.026495013386011124, -0.06811577826738358, -0.056520555168390274, 0.057841185480356216, -0.14606809616088867, 0.008729448541998863, 0.12150731682777405, -0.07485222071409225, 0.1185346394777298, 0.0334148108959198, -0.03723995387554169, 0.010255876928567886, -0.08294325321912766, 0.018918797373771667, -0.03680335357785225, 0.01528832409530878, 0.029918350279331207, -0.13961777091026306, 0.016693290323019028, -0.051495179533958435, -0.061864953488111496, 0.008652846328914165, 0.007521537132561207, -0.12424516677856445, -0.004070562776178122, 0.06697705388069153, -0.007131868973374367, -0.07222238928079605, 0.06706404685974121, 0.07970357686281204, 0.03177277743816376, 0.06780815869569778, -0.021415837109088898, 0.08456216007471085, -0.1680516004562378, -0.04186341166496277, 0.0005529309273697436, 0.017228083685040474, 0.0729011818766594, -0.013205495662987232, 0.05039285495877266, -0.02000153437256813, 0.21931201219558716, 0.015181857161223888, -0.01922358199954033, 0.03415865823626518, -0.02748464234173298, 0.0029930423479527235, 0.04808169603347778, 0.06490758806467056, -0.02991393394768238, -0.03697989508509636, -0.013652848079800606, -0.004088642541319132, -0.08089183270931244, -0.014481938444077969, 0.10410193353891373, 0.06651341915130615, 0.168638676404953, -0.03372578322887421, 0.06236797198653221, -0.03266150504350662, -0.12327246367931366, -0.026978110894560814, -0.008606269024312496, 0.03767262026667595, -0.06432216614484787, 0.05794180929660797, 0.16816549003124237, -0.15267953276634216, 0.11835261434316635, 0.001849062624387443, -0.05566759034991264, -0.10795164108276367, -0.19697000086307526, -0.025438126176595688, -0.016331329941749573, 0.035674259066581726, -0.1244102269411087, 0.09049193561077118, 0.0448809377849102, 0.01634647324681282, -0.06929156184196472, 0.09917498379945755, -0.06112058833241463, -0.11115850508213043, 0.02814408950507641, 0.029968103393912315, 0.024778587743639946, 0.042776625603437424, 0.07360851019620895, 0.029169613495469093, 0.022966602817177773, 0.053845178335905075, 0.03224203363060951, 0.03793292120099068, 0.041038475930690765, -0.03079412505030632, -0.05444377660751343, 0.014569634571671486, 0.00859095063060522, 0.044401660561561584, 0.10302866250276566, 0.06353814154863358, -0.01331111416220665, -0.03914181888103485, 0.29932790994644165, -0.03348126262426376, -0.013561632484197617, -0.17534483969211578, 0.1564520001411438, 0.03815275803208351, -0.00477686058729887, 0.02252151630818844, -0.14012138545513153, 0.02347707562148571, 0.1531141847372055, 0.17836952209472656, -0.058771003037691116, 0.00917850248515606, -0.03459836542606354, 0.009477928280830383, 0.028682557865977287, 0.07409170269966125, 0.06476359814405441, 0.20999057590961456, -0.05082765594124794, 0.06216520816087723, -0.018907414749264717, -0.009500534273684025, -0.01579086296260357, 0.12999653816223145, -0.03441987186670303, 0.008553808555006981, -0.06310329586267471, 0.0985153466463089, -0.05414354056119919, -0.23202604055404663, -0.0178252961486578, -0.039286985993385315, -0.09843318909406662, 0.05968104675412178, -0.044471535831689835, -0.01854587346315384, 0.09080818295478821, 0.01380204875022173, -0.026191486045718193, 0.13783256709575653, 0.03959469497203827, -0.022969232872128487, -0.013188371434807777, 0.08476828038692474, -0.019139772281050682, 0.21037672460079193, -0.01737924851477146, 0.009081512689590454, 0.09382764250040054, 0.04356115311384201, -0.12288405746221542, 0.0011283074272796512, 0.04080299288034439, -0.062484487891197205, -0.0030228248797357082, 0.19058001041412354, 0.00985539797693491, 0.019819309934973717, 0.06770694255828857, -0.0415763184428215, 0.05171242356300354, -0.08235310018062592, 0.04601554945111275, -0.12368541210889816, 0.048480432480573654, -0.08121024817228317, 0.14552602171897888, 0.1682792454957962, -0.07052338123321533, 0.02591536194086075, -0.045142464339733124, -0.00878127571195364, -0.017757123336195946, 0.07376019656658173, -0.025128839537501335, -0.10653337091207504, 0.019293423742055893, 0.024817386642098427, 0.01603703759610653, -0.17782825231552124, -0.0691731795668602, 0.05074675753712654, -0.0627644881606102, 0.014866501092910767, 0.15793289244174957, 0.041068583726882935, 0.0396079421043396, -0.038437701761722565, -0.0010661390842869878, -0.024374069646000862, 0.10285980999469757, -0.15676043927669525, -0.08339504152536392 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/975b03ba317602498bed5321f12caebe.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ария (Ariya)</div> <a href="https://genius.com/artists/ariya"> <div style="text-align: center; font-size: 14px;">@ariya</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ария (Ariya). Dataset is available [here](https://huggingface.co/datasets/huggingartists/ariya). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ariya") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/uo73s5z1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ария (Ariya)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/69c1r7ea) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/69c1r7ea/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ariya') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ariya") model = AutoModelWithLMHead.from_pretrained("huggingartists/ariya") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/ariya"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/ariya
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ariya", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ariya #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ария (Ariya)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@ariya</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Ария (Ariya). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Ария (Ariya)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ария (Ariya).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ария (Ariya)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ariya #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ария (Ariya).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ария (Ariya)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 53, 76, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ariya #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Ария (Ariya).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ария (Ariya)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04151400551199913, 0.16026219725608826, -0.002915440360084176, 0.0534786619246006, 0.11097357422113419, 0.012731591239571571, 0.0799938440322876, 0.11538514494895935, 0.012833308428525925, 0.07916989177465439, 0.07464584708213806, 0.05153031647205353, 0.07302749156951904, 0.09187427908182144, 0.06433150172233582, -0.23210880160331726, 0.03814047574996948, -0.07491259276866913, 0.010656166821718216, 0.09908553957939148, 0.09064492583274841, -0.06767436861991882, 0.07811062037944794, 0.024644751101732254, -0.07118537276983261, 0.004504402633756399, 0.005433468148112297, -0.0639641284942627, 0.08690684288740158, 0.06497755646705627, 0.03947146236896515, 0.024027278646826744, 0.06405992805957794, -0.17417168617248535, 0.027293736115098, 0.12168440222740173, 0.032004453241825104, 0.08073265105485916, 0.05757284536957741, -0.08126700669527054, 0.13450612127780914, -0.024981459602713585, 0.08391926437616348, 0.05368727818131447, -0.1146794781088829, -0.11918505281209946, -0.14689390361309052, 0.08677826821804047, 0.10317610949277878, 0.08951057493686676, -0.028318926692008972, 0.09436864405870438, -0.022812996059656143, 0.05210217088460922, 0.23215055465698242, -0.2517073452472687, -0.009023591876029968, 0.07133810222148895, 0.05591325834393501, 0.026261024177074432, -0.08528529107570648, 0.020798642188310623, 0.04849361255764961, 0.0369550995528698, 0.0332188718020916, -0.02798345871269703, 0.14269781112670898, 0.017087319865822792, -0.11037250608205795, -0.07922320067882538, 0.10842560976743698, -0.017357541248202324, -0.08345682173967361, -0.12421596795320511, 0.0031688616145402193, -0.047300074249506, 0.026591287925839424, 0.02084191143512726, -0.0021417203824967146, -0.00635396596044302, -0.04027353599667549, -0.1089714840054512, -0.07416335493326187, -0.04298276826739311, -0.007466468494385481, 0.06168658286333084, 0.04744766652584076, 0.03792605176568031, -0.0855870470404625, 0.22174318134784698, 0.00497247651219368, -0.09966004639863968, -0.06243986263871193, -0.10066623240709305, -0.08221571892499924, -0.04477742314338684, -0.0004505427205003798, -0.009269262664020061, -0.028276482596993446, 0.146797314286232, -0.03895769268274307, 0.02531355619430542, -0.02736649662256241, 0.005228167399764061, 0.13535082340240479, 0.14912959933280945, -0.12912636995315552, -0.03518247604370117, 0.07543938606977463, 0.00013779221626464278, -0.06869947910308838, -0.050965603440999985, -0.004606079775840044, -0.010802986100316048, 0.04855726286768913, 0.08988622575998306, 0.07406344264745712, 0.06660185754299164, 0.004287296440452337, -0.05884182080626488, 0.05458039417862892, -0.13046616315841675, 0.009877512231469154, -0.01517493650317192, -0.06164180859923363, 0.023699752986431122, 0.06380586326122284, 0.005665822420269251, -0.11038016527891159, 0.09232517331838608, -0.07818525284528732, -0.048853520303964615, -0.0805436223745346, -0.10431249439716339, -0.006011838559061289, -0.058818135410547256, -0.02482857182621956, -0.07973417639732361, -0.17721383273601532, -0.04578111693263054, 0.019142458215355873, -0.06158166378736496, -0.021906180307269096, 0.02511085383594036, -0.03786909952759743, 0.010617353953421116, -0.01919534243643284, -0.015466406010091305, -0.028968434780836105, 0.03750980645418167, -0.08014561235904694, 0.03390740230679512, 0.0674193724989891, 0.04487885907292366, -0.11672493815422058, 0.07707066088914871, -0.12739905714988708, 0.12116008251905441, -0.0260334350168705, 0.0071202609688043594, -0.09637023508548737, -0.07425958663225174, -0.007180076092481613, -0.031303346157073975, 0.03337370231747627, 0.12037819623947144, -0.15978160500526428, -0.01772444136440754, 0.20465807616710663, -0.06355679035186768, -0.0797758549451828, 0.06856512278318405, -0.06878633797168732, 0.04556702822446823, 0.11519962549209595, 0.07483197003602982, 0.1364843249320984, -0.10379873961210251, -0.0890658050775528, -0.04560199752449989, -0.0706370547413826, 0.1645713448524475, 0.03014819696545601, -0.018706951290369034, 0.029147375375032425, 0.0022421826142817736, -0.03538324311375618, 0.0022505316883325577, -0.03385661542415619, -0.03580979257822037, -0.018674127757549286, -0.02041594311594963, -0.008776510134339333, -0.04008596017956734, -0.03925842046737671, -0.017926033586263657, -0.09770128130912781, 0.06574798375368118, 0.10231857001781464, -0.07256793975830078, 0.017665652558207512, -0.09925524145364761, 0.04363725706934929, -0.06254616379737854, 0.011963521130383015, -0.1774769276380539, -0.04223795235157013, 0.02048274129629135, -0.06720787286758423, 0.06564462929964066, 0.004510042257606983, 0.04147103428840637, 0.07501919567584991, -0.010860500857234001, -0.007298131939023733, -0.041684914380311966, 0.0062108468264341354, -0.05380312353372574, -0.16947238147258759, -0.04576987028121948, -0.04680972173810005, 0.0877457708120346, -0.11039071530103683, -0.0009911643574014306, 0.07802566885948181, 0.1452382653951645, 0.021211016923189163, -0.061763469129800797, 0.043706756085157394, -0.028177782893180847, -0.029913848266005516, -0.10738731920719147, -0.03907952085137367, 0.006246399600058794, -0.022824734449386597, 0.1533767580986023, -0.14773118495941162, -0.10491117089986801, 0.12252633273601532, 0.10959411412477493, -0.0900626927614212, 0.05026990547776222, -0.06867756694555283, -0.02191455475986004, -0.03885618969798088, -0.05143274366855621, 0.2412504255771637, 0.03592417389154434, 0.09732626378536224, -0.08696021884679794, -0.0753852054476738, 0.0044317664578557014, -0.04461686685681343, -0.036631230264902115, 0.044577717781066895, 0.024866564199328423, -0.17074871063232422, 0.051862575113773346, -0.008413256146013737, 0.08146877586841583, 0.1934671550989151, 0.027360396459698677, -0.09395899623632431, -0.05786353349685669, -0.07023217529058456, 0.005724897608160973, 0.09261094778776169, 0.0011366615071892738, 0.029791412875056267, 0.04331623390316963, 0.04284987598657608, 0.043345775455236435, -0.10864150524139404, 0.010217181406915188, 0.05606478452682495, -0.029986651614308357, -0.05306180566549301, 0.021677445620298386, 0.021451937034726143, 0.09471999853849411, 0.07200347632169724, 0.10219381749629974, -0.05040403828024864, -0.04413915425539017, -0.13323692977428436, 0.14198553562164307, -0.09346532821655273, -0.1979757696390152, -0.13385072350502014, -0.07810699939727783, 0.00726773776113987, 0.004347898997366428, 0.03265932574868202, -0.04772884026169777, -0.04033884033560753, -0.09222695976495743, 0.07638926059007645, -0.03045845218002796, -0.009055932983756065, -0.0019176194909960032, 0.014575682580471039, -0.018208101391792297, -0.12081291526556015, -0.03142261132597923, 0.02143753319978714, -0.07552742213010788, 0.009959124960005283, 0.025660308077931404, 0.057507239282131195, 0.1490102857351303, -0.004346679896116257, 0.012772370129823685, -0.0200030617415905, 0.2804398238658905, -0.11442890018224716, 0.061332494020462036, 0.16177313029766083, -0.010001851245760918, 0.05209038406610489, 0.06460599601268768, -0.0011921769473701715, -0.05993913486599922, 0.05394488200545311, 0.06529447436332703, -0.06874017417430878, -0.21243691444396973, -0.032369282096624374, -0.015563065186142921, 0.01181276235729456, 0.10495767742395401, 0.034400202333927155, 0.061204276978969574, 0.014840032905340195, -0.09449782967567444, 0.05033797770738602, 0.012198323383927345, 0.09814603626728058, -0.07580400258302689, -0.00510391965508461, 0.04694171994924545, -0.052474237978458405, 0.03711305186152458, 0.11796731501817703, 0.03607017919421196, 0.2412976175546646, -0.07575301826000214, 0.0646539181470871, 0.0925486832857132, 0.09763412922620773, 0.021065136417746544, 0.0355151891708374, -0.03216796740889549, 0.024783503264188766, 0.009699057787656784, -0.09434445202350616, 0.0013063170481473207, 0.03670781850814819, 0.01948205940425396, -0.012168046087026596, -0.06192604824900627, -0.07837317138910294, 0.05176309868693352, 0.23308788239955902, 0.043233007192611694, -0.1716630905866623, -0.09306616336107254, 0.06202968582510948, -0.03551171347498894, -0.05944325029850006, -0.022368859499692917, 0.05728619173169136, -0.20911861956119537, 0.03297625109553337, -0.042631328105926514, 0.10862667858600616, -0.13025464117527008, -0.001032516360282898, 0.05363812297582626, 0.040690306574106216, -0.07025868445634842, 0.07311601936817169, -0.16993467509746552, 0.09319961071014404, 0.004697473254054785, 0.08833559602499008, -0.06292551010847092, 0.016047656536102295, 0.03243446722626686, 0.0303591750562191, 0.09500594437122345, 0.016096949577331543, 0.02920897677540779, -0.08032765239477158, -0.04345317929983139, -0.0014726544031873345, 0.05307002365589142, -0.07526969164609909, 0.1342642605304718, -0.025512799620628357, 0.02800164930522442, -0.025741256773471832, -0.08024924248456955, -0.1049816757440567, -0.1408717781305313, 0.0746757835149765, -0.10707593709230423, -0.0006123195635154843, -0.0595371276140213, -0.021294504404067993, 0.019458720460534096, 0.1941358745098114, -0.08851229399442673, -0.08619954437017441, -0.1326141506433487, 0.012100132182240486, 0.14338847994804382, -0.0798453539609909, 0.006450362969189882, -0.00445273844525218, 0.1415126919746399, 0.004885574337095022, -0.13114450871944427, -0.005391508806496859, -0.06488674879074097, -0.17603838443756104, -0.02535601519048214, 0.12313348054885864, 0.07133717834949493, 0.03795737028121948, 0.007851115427911282, 0.010329806245863438, -0.03647174686193466, -0.1677713543176651, 0.025510471314191818, 0.14536020159721375, 0.02803693525493145, 0.0285948496311903, 0.014358697459101677, 0.025469491258263588, -0.13889893889427185, 0.015283467248082161, 0.05380662530660629, 0.20217415690422058, -0.07629813253879547, 0.15535828471183777, 0.01703494042158127, -0.0937960296869278, -0.17211417853832245, 0.024018768221139908, 0.0038001006469130516, 0.03190464526414871, 0.019883345812559128, -0.16709265112876892, 0.024900292977690697, 0.025494372472167015, -0.0023582137655466795, 0.05996968597173691, -0.3485557734966278, -0.14668993651866913, 0.03426836431026459, 0.0301853995770216, -0.07254908978939056, -0.044150255620479584, -0.03479102626442909, -0.06487766653299332, -0.23264142870903015, 0.08678965270519257, -0.12239307165145874, 0.09386419504880905, 0.008096916601061821, 0.06187969818711281, 0.04808477684855461, -0.06289295107126236, 0.13657385110855103, -0.02765263244509697, 0.06552000343799591, -0.08360734581947327, -0.05011162906885147, 0.08536573499441147, -0.06332200765609741, 0.10323676466941833, 0.02511163428425789, 0.09151182323694229, -0.12092031538486481, -0.06403540074825287, -0.08110406994819641, 0.015154343098402023, -0.05485197901725769, -0.09553900361061096, -0.07887265831232071, 0.10042285174131393, 0.11680354923009872, -0.03844470530748367, -0.09564314037561417, -0.042556557804346085, -0.019973691552877426, 0.07617787271738052, 0.08770640939474106, 0.08700647205114365, -0.08810500055551529, 0.011433112435042858, 0.006481484044343233, 0.02910333313047886, -0.1501178741455078, 0.03149661049246788, 0.0864756628870964, 0.03562505915760994, 0.10683025419712067, 0.012540020048618317, -0.16772808134555817, 0.026271475479006767, 0.039311885833740234, -0.1492459625005722, -0.10162847489118576, -0.031604401767253876, -0.007942582480609417, -0.07691555470228195, -0.044246818870306015, 0.14288848638534546, -0.04348728433251381, -0.030930044129490852, -0.0037145016249269247, 0.050622787326574326, -0.05376831814646721, 0.11761587858200073, 0.030495870858430862, 0.04563451185822487, -0.07025029510259628, 0.11274952441453934, 0.065066397190094, 0.021860318258404732, 0.04604269191622734, 0.05295208469033241, -0.09012632817029953, -0.003424170659855008, -0.08120308816432953, 0.0283147431910038, -0.05685219541192055, -0.012850746512413025, -0.013696927577257156, -0.03927385061979294, 0.0277650635689497, 0.10319818556308746, -0.011082058772444725, 0.1118164137005806, -0.03665819764137268, -0.017164697870612144, -0.13862323760986328, 0.0776229202747345, 0.05529176443815231, 0.018276097252964973, -0.11499341577291489, 0.19142556190490723, 0.027798855677247047, 0.10392370074987411, -0.042691994458436966, -0.05502115562558174, -0.08489828556776047, -0.006234337110072374, -0.15050628781318665, -0.042527973651885986, -0.07713218778371811, -0.037950750440359116, -0.017695464193820953, -0.041565313935279846, -0.021996237337589264, 0.05478135868906975, -0.026823492720723152, -0.06401778757572174, -0.051377445459365845, 0.051934849470853806, -0.14279629290103912, -0.003036887152120471, 0.10848693549633026, -0.06366760283708572, 0.10645022243261337, 0.06157524138689041, -0.032699864357709885, 0.015862345695495605, -0.09448126703500748, 0.03246130421757698, -0.034486524760723114, 0.006234539672732353, 0.03699962794780731, -0.14341960847377777, 0.01071580033749342, -0.05839123576879501, -0.05692538619041443, 0.016967453062534332, 0.018948879092931747, -0.12222301959991455, -0.004932411480695009, 0.05773553624749184, 0.00802090484648943, -0.07210051268339157, 0.07605407387018204, 0.07183916121721268, 0.031076574698090553, 0.06720095872879028, -0.03645286709070206, 0.08219076693058014, -0.16627943515777588, -0.047938499599695206, 0.0017276592552661896, 0.005385130178183317, 0.05335085466504097, -0.006772524211555719, 0.04443102702498436, -0.023920264095067978, 0.1853988915681839, 0.008149632252752781, -0.016506953164935112, 0.040020767599344254, -0.03578399121761322, -0.012323911301791668, 0.04483216628432274, 0.06056514382362366, -0.039033763110637665, -0.025485821068286896, -0.02691955678164959, 0.006831286009401083, -0.07058624923229218, -0.021503251045942307, 0.1046857014298439, 0.05616940185427666, 0.17282912135124207, -0.02682173252105713, 0.052318889647722244, -0.02954358421266079, -0.11861833184957504, -0.03188716992735863, -0.030563071370124817, 0.04199173301458359, -0.07132311165332794, 0.07412410527467728, 0.1691444218158722, -0.15478593111038208, 0.11345821619033813, 0.01657036878168583, -0.06486062705516815, -0.09426029771566391, -0.16501300036907196, -0.012160273268818855, -0.021104896441102028, 0.0327117033302784, -0.12623319029808044, 0.08494646847248077, 0.03783004730939865, 0.035044822841882706, -0.06414317339658737, 0.12309703230857849, -0.06052751839160919, -0.1027061939239502, 0.03337656334042549, 0.025317296385765076, 0.02263685315847397, 0.029980115592479706, 0.07877059280872345, 0.02519228495657444, 0.000771809252910316, 0.056794364005327225, 0.0393105186522007, 0.024463213980197906, 0.04310464486479759, -0.018341118469834328, -0.0633341521024704, 0.028006039559841156, 0.011348634026944637, 0.03924331068992615, 0.1105831190943718, 0.07643716037273407, -0.020425649359822273, -0.03481367230415344, 0.29993370175361633, -0.03295557573437691, -0.03029864840209484, -0.17244167625904083, 0.18158255517482758, 0.026129139587283134, -0.01801418885588646, 0.026648806408047676, -0.1418842077255249, 0.011250622570514679, 0.16223707795143127, 0.17116409540176392, -0.051744550466537476, 0.007470770739018917, -0.04421604424715042, 0.012265615165233612, 0.022350482642650604, 0.09229808300733566, 0.06909006088972092, 0.19762586057186127, -0.04846932739019394, 0.06449098140001297, -0.011824329383671284, -0.018109554424881935, -0.01866820827126503, 0.11754245311021805, -0.0202679093927145, 0.0028160877991467714, -0.05953555926680565, 0.09446495771408081, -0.07372700423002243, -0.2530158460140228, -0.009546308778226376, -0.048982780426740646, -0.10018442571163177, 0.050726886838674545, -0.04647275060415268, -0.013841799460351467, 0.09330982714891434, 0.014524309895932674, -0.022062666714191437, 0.13092641532421112, 0.03540409356355667, -0.03743651881814003, -0.02489970065653324, 0.0905953049659729, -0.021466320380568504, 0.20076343417167664, -0.025705771520733833, 0.005935984663665295, 0.09338574856519699, 0.021173113957047462, -0.12648646533489227, 0.006725932005792856, 0.042345382273197174, -0.07611650973558426, -0.008656442165374756, 0.1884215772151947, 0.0062040844932198524, 0.019827770069241524, 0.05228772386908531, -0.05379480868577957, 0.0306237805634737, -0.07416286319494247, 0.04108194634318352, -0.13460016250610352, 0.05024193972349167, -0.07303975522518158, 0.148647278547287, 0.1846943497657776, -0.07780693471431732, 0.025065550580620766, -0.05329012870788574, -0.0044085620902478695, -0.013989603146910667, 0.05016670748591423, -0.020804082974791527, -0.10865666717290878, 0.02746746502816677, 0.022080618888139725, 0.023057086393237114, -0.1949925720691681, -0.06713369488716125, 0.049273643642663956, -0.05525559186935425, 0.010920515283942223, 0.1707916259765625, 0.04365722835063934, 0.057957012206315994, -0.03231409192085266, 0.0036373899783939123, -0.01894030161201954, 0.10524982213973999, -0.14031144976615906, -0.09390810877084732 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b1a35069a1a44927425ef26c0bbda4a4.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Armin van Buuren</div> <a href="https://genius.com/artists/armin-van-buuren"> <div style="text-align: center; font-size: 14px;">@armin-van-buuren</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Armin van Buuren. Dataset is available [here](https://huggingface.co/datasets/huggingartists/armin-van-buuren). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/armin-van-buuren") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/hrrfc55y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Armin van Buuren's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3q93rwo8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3q93rwo8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/armin-van-buuren') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/armin-van-buuren") model = AutoModelWithLMHead.from_pretrained("huggingartists/armin-van-buuren") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/armin-van-buuren"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/armin-van-buuren
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/armin-van-buuren", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/armin-van-buuren #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Armin van Buuren</div> <a href="URL <div style="text-align: center; font-size: 14px;">@armin-van-buuren</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Armin van Buuren. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Armin van Buuren's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Armin van Buuren.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Armin van Buuren's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/armin-van-buuren #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Armin van Buuren.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Armin van Buuren's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 87, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/armin-van-buuren #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Armin van Buuren.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Armin van Buuren's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.027476472780108452, 0.18395669758319855, -0.0036452740896493196, 0.0585469976067543, 0.091038279235363, -0.0020019959192723036, 0.06383670121431351, 0.10525056719779968, -0.0034097495954483747, 0.0743580162525177, 0.07158264517784119, 0.05215620994567871, 0.08526274561882019, 0.06103838235139847, 0.04979027807712555, -0.25273141264915466, 0.03746050223708153, -0.05921674147248268, -0.0015304568223655224, 0.09435297548770905, 0.08125311136245728, -0.08806587755680084, 0.08781241625547409, 0.03577364981174469, -0.03772563859820366, 0.0001286796323256567, 0.008801219053566456, -0.0625743716955185, 0.07961062341928482, 0.0878153145313263, 0.03724251687526703, 0.03553937375545502, 0.05977318063378334, -0.17308296263217926, 0.02270943857729435, 0.12152281403541565, 0.022774655371904373, 0.09354279190301895, 0.06494555622339249, -0.05028196796774864, 0.1347585767507553, -0.03547044098377228, 0.08378143608570099, 0.06169906631112099, -0.10860495269298553, -0.0837220698595047, -0.13921642303466797, 0.05645358934998512, 0.06447316706180573, 0.07993375509977341, -0.028449269011616707, 0.10784221440553665, -0.031000789254903793, 0.05162382125854492, 0.24531234800815582, -0.27424195408821106, -0.011974812485277653, 0.04082237556576729, 0.07921180874109268, 0.012878545559942722, -0.1023322269320488, 0.026063110679388046, 0.041225504130125046, 0.03812529146671295, 0.05655624344944954, -0.03851371631026268, 0.14020037651062012, -0.0007609856547787786, -0.09859253466129303, -0.0692116916179657, 0.0895082950592041, -0.008346395567059517, -0.0826035737991333, -0.11272671073675156, 0.005639534443616867, -0.0017587022157385945, 0.017934883013367653, 0.006017416249960661, -0.0012178793549537659, -0.010056815110147, -0.08465421944856644, -0.12339618802070618, -0.0763167142868042, -0.02779676765203476, -0.021061711013317108, 0.0432271733880043, 0.04879819601774216, 0.034033019095659256, -0.06229827553033829, 0.18975229561328888, 0.02117799036204815, -0.10288793593645096, -0.0735616385936737, -0.1251661330461502, -0.07997661083936691, -0.040773000568151474, -0.006476000417023897, -0.0011116317473351955, -0.022076399996876717, 0.14142686128616333, -0.04532230645418167, 0.030466170981526375, -0.06269703060388565, 0.010728311724960804, 0.10602210462093353, 0.13756436109542847, -0.13522011041641235, -0.05265897884964943, 0.07248137146234512, -0.023638250306248665, -0.05687090381979942, -0.04464596509933472, -0.0011357442708685994, -0.042433660477399826, 0.04941100999712944, 0.06935221701860428, 0.0778433233499527, 0.06434500962495804, 0.005905971862375736, -0.04781356826424599, 0.04167211055755615, -0.12697885930538177, 0.023640181869268417, -0.020379185676574707, -0.05699357017874718, 0.006532192230224609, 0.055665936321020126, -0.0010517697082832456, -0.11549185961484909, 0.07802881300449371, -0.09267253428697586, -0.042528342455625534, -0.08268620073795319, -0.12558256089687347, 0.009479669854044914, -0.04016811400651932, -0.02115567773580551, -0.08370427042245865, -0.1464942991733551, -0.035896722227334976, 0.0134438993409276, -0.06998204439878464, -0.006433234550058842, 0.027626777067780495, -0.046287015080451965, 0.008380962535738945, -0.012430092319846153, 0.00366014102473855, -0.008573131635785103, 0.044826529920101166, -0.09207331389188766, 0.04891221225261688, 0.060808878391981125, 0.03712712600827217, -0.12239522486925125, 0.07212255150079727, -0.14877474308013916, 0.1327563226222992, -0.03244393691420555, -0.01839732564985752, -0.09717051684856415, -0.10855044424533844, -0.029010973870754242, -0.039271414279937744, 0.04974935203790665, 0.12314555794000626, -0.1545391082763672, -0.01579645462334156, 0.22780433297157288, -0.07648476213216782, -0.056730810552835464, 0.07010968029499054, -0.06954140961170197, 0.03129902482032776, 0.11956439167261124, 0.036213912069797516, 0.1286696493625641, -0.09430716186761856, -0.10324468463659286, -0.029628535732626915, -0.08016952127218246, 0.17609961330890656, 0.021476352587342262, -0.010418074205517769, 0.035532090812921524, 0.005694505292922258, 0.007868949323892593, -0.0050909859128296375, -0.0388159453868866, -0.03194184973835945, -0.008863583207130432, -0.005835422780364752, 0.017197122797369957, -0.043836742639541626, -0.028301721438765526, -0.010523034259676933, -0.10385691374540329, 0.05345222353935242, 0.07997339218854904, -0.07241418957710266, 0.024805180728435516, -0.10604632645845413, 0.0297247301787138, -0.06310631334781647, 0.020727509632706642, -0.18160195648670197, -0.016484921798110008, 0.012210404500365257, -0.055083151906728745, 0.05557458475232124, 0.029974056407809258, 0.04900364950299263, 0.07269418239593506, -0.029176443815231323, 0.014412819407880306, -0.044805727899074554, 0.005730331875383854, -0.05511276051402092, -0.16264945268630981, -0.04988337680697441, -0.04120287671685219, 0.05983535200357437, -0.11451541632413864, -0.0036574022378772497, 0.08651091158390045, 0.15545764565467834, 0.03849201276898384, -0.05549235641956329, 0.02336880937218666, -0.015586466528475285, -0.028357911854982376, -0.09479181468486786, -0.044246606528759, 0.013025805354118347, -0.03490930795669556, 0.17150890827178955, -0.141238734126091, -0.1096852496266365, 0.12693627178668976, 0.06533607095479965, -0.08556120842695236, 0.024639014154672623, -0.06043238565325737, -0.02550363913178444, -0.031356196850538254, -0.07104714959859848, 0.2079274207353592, 0.051671914756298065, 0.0976007804274559, -0.08864486962556839, -0.07538112998008728, 0.009865366853773594, -0.03324757516384125, -0.026902664452791214, 0.043714769184589386, 0.03085087612271309, -0.20888817310333252, 0.04847512021660805, -0.007020586170256138, 0.07873401045799255, 0.15690822899341583, 0.03263688459992409, -0.09915535151958466, -0.056176863610744476, -0.07394813746213913, 0.018768005073070526, 0.07765627652406693, 0.01650475710630417, 0.05115968734025955, 0.037722501903772354, 0.03967249393463135, 0.031874191015958786, -0.10128030925989151, 0.017072197049856186, 0.04720011353492737, -0.015132969245314598, -0.05380472540855408, 0.013841327279806137, 0.03420713543891907, 0.08785074949264526, 0.06559664756059647, 0.10409779846668243, -0.043910909444093704, -0.04905390739440918, -0.1206657662987709, 0.13816656172275543, -0.09903133660554886, -0.23570466041564941, -0.1245834082365036, -0.09079242497682571, 0.024490615352988243, 0.014366239309310913, 0.03481036424636841, -0.034728895872831345, -0.045567531138658524, -0.09352412074804306, 0.05770646408200264, -0.04507607966661453, -0.005459415260702372, -0.009441359899938107, 0.04122282564640045, 0.003370090154930949, -0.1112111434340477, -0.02133433148264885, 0.019072897732257843, -0.07601794600486755, 0.012579412199556828, 0.042967021465301514, 0.05395111069083214, 0.10629086941480637, -0.006988896057009697, -0.0012895343825221062, -0.02833910658955574, 0.27354976534843445, -0.09946689754724503, 0.05048924311995506, 0.1512298583984375, -0.039326637983322144, 0.06920083612203598, 0.05838415399193764, -0.0024819697719067335, -0.04924556240439415, 0.05065077170729637, 0.05753163620829582, -0.0646900162100792, -0.19852140545845032, -0.01950131729245186, -0.03745223954319954, 0.0017146245809271932, 0.11851149797439575, 0.02571367658674717, 0.03454353287816048, 0.028011266142129898, -0.08851606398820877, 0.07317663729190826, 0.054601192474365234, 0.10669659078121185, -0.001913019921630621, -0.01804121397435665, 0.06329632550477982, -0.05094501003623009, 0.013026034459471703, 0.09917482733726501, 0.023805202916264534, 0.2610848844051361, -0.0788726881146431, 0.04868433624505997, 0.08669721335172653, 0.06559398770332336, 0.017656870186328888, 0.05548469349741936, -0.02961786650121212, 0.026789454743266106, -0.0014055361971259117, -0.09255128353834152, -0.0058428156189620495, 0.03752388432621956, 0.018144767731428146, -0.022889738902449608, -0.05273903161287308, -0.05744021385908127, 0.036609262228012085, 0.18913795053958893, 0.07316270470619202, -0.1690189391374588, -0.08784008771181107, 0.06393972039222717, -0.04213767871260643, -0.061584554612636566, -0.02158983238041401, 0.09955405443906784, -0.20254933834075928, 0.02640673890709877, -0.042988408356904984, 0.11978189647197723, -0.1384812891483307, -0.0008742516511119902, 0.0009130777907557786, 0.06407592445611954, -0.06242140382528305, 0.0717196986079216, -0.1732206642627716, 0.08266041427850723, 0.01316593773663044, 0.08255597949028015, -0.06740500032901764, 0.021372688934206963, 0.04124653339385986, 0.012632705271244049, 0.10497348755598068, 0.010957213118672371, -0.00002242704067612067, -0.08633027225732803, -0.061876799911260605, 0.006380939390510321, 0.05142257735133171, -0.042888522148132324, 0.12435281276702881, -0.03353404998779297, 0.02386120706796646, -0.014181441627442837, -0.045504894107580185, -0.13348311185836792, -0.1700112670660019, 0.06856442242860794, -0.10756751149892807, 0.0038734327536076307, -0.05333297327160835, -0.028547517955303192, 0.026982447132468224, 0.19660499691963196, -0.09095508605241776, -0.0753759890794754, -0.11111538857221603, 0.05708112195134163, 0.16157166659832, -0.07729237526655197, 0.02073926292359829, 0.011226390488445759, 0.1421123892068863, 0.00613796804100275, -0.11701716482639313, -0.0168076790869236, -0.05890744552016258, -0.1694539189338684, -0.025645067915320396, 0.10538169741630554, 0.08371567726135254, 0.049717068672180176, 0.026046356186270714, 0.014507057145237923, -0.02191007137298584, -0.1607416421175003, 0.0037866474594920874, 0.11717714369297028, 0.06647861003875732, 0.01714278571307659, 0.00709757674485445, 0.03934776410460472, -0.12491463124752045, 0.03451396897435188, 0.06987256556749344, 0.18725183606147766, -0.08508165925741196, 0.14318861067295074, 0.01424373872578144, -0.08690834790468216, -0.17574788630008698, 0.01813080906867981, 0.0021127918735146523, 0.031289611011743546, 0.03236520662903786, -0.1645258665084839, 0.009443177841603756, 0.018001656979322433, -0.002169486600905657, 0.07330910861492157, -0.2860865592956543, -0.13536436855793, 0.0365343876183033, 0.02504943124949932, -0.04628048092126846, -0.021137189120054245, -0.04509192332625389, -0.07881724089384079, -0.23247718811035156, 0.08310211449861526, -0.09273751825094223, 0.0874621719121933, 0.014853761531412601, 0.022587522864341736, 0.04319913685321808, -0.06101386249065399, 0.13137875497341156, -0.05323965474963188, 0.055180132389068604, -0.09596043080091476, -0.01658145897090435, 0.0914958044886589, -0.04155248776078224, 0.07266799360513687, 0.001460346975363791, 0.07134898751974106, -0.06070903688669205, -0.06253795325756073, -0.07902152091264725, 0.022530220448970795, -0.06060786545276642, -0.0859624370932579, -0.07804672420024872, 0.1084226593375206, 0.12470169365406036, -0.024358686059713364, -0.10927118360996246, -0.054248373955488205, -0.030358891934156418, 0.08942390233278275, 0.11874628067016602, 0.0895194336771965, -0.04526335373520851, 0.02204107865691185, 0.0039016150403767824, 0.04447125270962715, -0.10297892242670059, 0.04940159618854523, 0.0877641886472702, 0.01481146551668644, 0.10628027468919754, 0.026037409901618958, -0.16039299964904785, 0.034475721418857574, 0.03840221092104912, -0.12674908339977264, -0.10236900299787521, -0.025775166228413582, -0.0036396291106939316, -0.08364587277173996, -0.05270756408572197, 0.14836040139198303, -0.03898102045059204, -0.03616034612059593, 0.0005775502067990601, 0.061368800699710846, -0.03993001580238342, 0.11150696873664856, 0.02412993460893631, 0.041328608989715576, -0.06927507370710373, 0.08106426894664764, 0.06718467175960541, 0.0028450917452573776, 0.04011859744787216, 0.04150454327464104, -0.08660869300365448, -0.0057884142734110355, -0.0981539785861969, -0.00437533762305975, -0.026146987453103065, -0.008945239707827568, -0.0006208870909176767, -0.04159346595406532, 0.04071597009897232, 0.09653580188751221, -0.01831086352467537, 0.11831595748662949, -0.025987543165683746, -0.0061317868530750275, -0.12769471108913422, 0.07729144394397736, 0.04616101086139679, 0.015631329268217087, -0.0897286906838417, 0.15205666422843933, 0.026352297514677048, 0.08176377415657043, -0.042930882424116135, -0.04357201233506203, -0.08735467493534088, -0.02031050994992256, -0.16799595952033997, -0.028737425804138184, -0.09829282015562057, -0.0476166196167469, -0.02339831553399563, -0.03968174755573273, -0.03577372059226036, 0.052403524518013, -0.023787694051861763, -0.06940949708223343, -0.052015211433172226, 0.054649468511343, -0.154166579246521, -0.0008316170424222946, 0.1294311285018921, -0.07470568269491196, 0.10903375595808029, 0.037046268582344055, -0.04215910658240318, 0.007544541731476784, -0.07481670379638672, 0.014148874208331108, -0.031084220856428146, 0.013752109371125698, 0.03316568210721016, -0.12991081178188324, 0.020702816545963287, -0.051791101694107056, -0.04883244261145592, 0.011104779317975044, 0.018535826355218887, -0.113666832447052, -0.006541743408888578, 0.04707268998026848, -0.0032011624425649643, -0.07080905884504318, 0.07347439229488373, 0.05617786943912506, 0.026288039982318878, 0.06549900025129318, -0.029916951432824135, 0.08839680254459381, -0.17468026280403137, -0.03530019149184227, 0.008595920167863369, 0.005080344621092081, 0.11135359853506088, -0.024556469172239304, 0.06086895987391472, -0.015974244102835655, 0.1893852949142456, 0.00294731417670846, -0.019481200724840164, 0.03829028084874153, -0.025641677901148796, -0.02430844120681286, 0.05068855360150337, 0.07223143428564072, -0.023191947489976883, -0.050767768174409866, -0.03546950966119766, 0.006007265765219927, -0.06549075245857239, -0.04144050180912018, 0.12031443417072296, 0.08064577728509903, 0.16039299964904785, -0.03535012900829315, 0.07089056819677353, -0.007597057148814201, -0.10727755725383759, -0.013460706919431686, -0.011295191943645477, 0.032689884305000305, -0.060831520706415176, 0.07633329182863235, 0.15403930842876434, -0.1469540297985077, 0.11829677224159241, 0.007132609374821186, -0.05890194699168205, -0.10964413732290268, -0.18783006072044373, -0.031084738671779633, -0.013786038383841515, 0.03819230571389198, -0.12766310572624207, 0.06963436305522919, 0.026547513902187347, 0.029546907171607018, -0.058440156280994415, 0.0977979451417923, -0.04182806238532066, -0.11691891402006149, 0.020486749708652496, 0.03520384803414345, 0.026945462450385094, 0.03834765404462814, 0.06453141570091248, 0.030094537883996964, 0.035114023834466934, 0.06018621847033501, 0.03313013166189194, 0.04299750179052353, 0.03179128095507622, -0.01992393471300602, -0.0536792129278183, 0.01379014365375042, 0.01975114271044731, 0.04815483093261719, 0.1255483478307724, 0.06776303797960281, -0.013380683027207851, -0.0471777617931366, 0.2983359098434448, -0.04663967341184616, -0.039848316460847855, -0.17703630030155182, 0.16381263732910156, 0.03328673914074898, -0.006489293649792671, 0.02018088847398758, -0.13999605178833008, 0.01796114444732666, 0.1652337908744812, 0.18048730492591858, -0.06210621818900108, 0.01115855947136879, -0.02748103067278862, 0.008105949498713017, 0.036325372755527496, 0.08099667727947235, 0.06606955826282501, 0.21200409531593323, -0.05831500515341759, 0.05715730041265488, -0.008192107081413269, -0.0008381088846363127, -0.01921064220368862, 0.10923711210489273, -0.031583577394485474, 0.011387879028916359, -0.06650716066360474, 0.08387410640716553, -0.05736787989735603, -0.25413668155670166, -0.006487919948995113, -0.0418851375579834, -0.08482182770967484, 0.060981571674346924, -0.05507238954305649, -0.012491201981902122, 0.0785786435008049, 0.018614808097481728, -0.006945875007659197, 0.12114907056093216, 0.037118345499038696, -0.014587115496397018, -0.00826188176870346, 0.08829116076231003, -0.014626086689531803, 0.19691094756126404, -0.022358933463692665, 0.019428161904215813, 0.1038728728890419, 0.041489310562610626, -0.11512742936611176, -0.0162067674100399, 0.03503246232867241, -0.07242631167173386, -0.003498354461044073, 0.18924811482429504, 0.014744220301508904, 0.016582030802965164, 0.06410221010446548, -0.03700748831033707, 0.035682741552591324, -0.0853600725531578, 0.03974072262644768, -0.10577239096164703, 0.04497547820210457, -0.08228622376918793, 0.14510391652584076, 0.17435769736766815, -0.06768817454576492, 0.026426369324326515, -0.05048564821481705, -0.019026758149266243, -0.01870694011449814, 0.03387357294559479, -0.02651837468147278, -0.09783263504505157, 0.016933603212237358, 0.044546451419591904, 0.020997561514377594, -0.21393992006778717, -0.0750264972448349, 0.051381245255470276, -0.06066650524735451, 0.004366539418697357, 0.149369478225708, 0.028621304780244827, 0.047674860805273056, -0.03700857609510422, -0.034649960696697235, -0.024331524968147278, 0.0885627269744873, -0.13575029373168945, -0.07230397313833237 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1584118378f9cfa83c281027ef8b2141.528x528x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">As I Lay Dying</div> <a href="https://genius.com/artists/as-i-lay-dying"> <div style="text-align: center; font-size: 14px;">@as-i-lay-dying</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from As I Lay Dying. Dataset is available [here](https://huggingface.co/datasets/huggingartists/as-i-lay-dying). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/as-i-lay-dying") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2zq9ub8b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on As I Lay Dying's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/cjg5ac7f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/cjg5ac7f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/as-i-lay-dying') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/as-i-lay-dying") model = AutoModelWithLMHead.from_pretrained("huggingartists/as-i-lay-dying") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/as-i-lay-dying"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/as-i-lay-dying
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/as-i-lay-dying", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/as-i-lay-dying #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">As I Lay Dying</div> <a href="URL <div style="text-align: center; font-size: 14px;">@as-i-lay-dying</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from As I Lay Dying. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on As I Lay Dying's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from As I Lay Dying.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on As I Lay Dying's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/as-i-lay-dying #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from As I Lay Dying.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on As I Lay Dying's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 54, 76, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/as-i-lay-dying #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from As I Lay Dying.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on As I Lay Dying's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02733658254146576, 0.17292234301567078, -0.00544330570846796, 0.07179032266139984, 0.08535879105329514, -0.0003730160533450544, 0.05676864832639694, 0.128731831908226, -0.01644357666373253, 0.07230769842863083, 0.05809859186410904, 0.04529659077525139, 0.07290522754192352, 0.07620742172002792, 0.0329836905002594, -0.2427012175321579, 0.01912238821387291, -0.06212903931736946, -0.027282733470201492, 0.09021473675966263, 0.08763962239027023, -0.070998415350914, 0.07586346566677094, 0.006053530611097813, -0.036072131246328354, -0.0053601013496518135, 0.009259378537535667, -0.058262284845113754, 0.06812433153390884, 0.08067256957292557, 0.03643474727869034, 0.0417117178440094, 0.061389002948999405, -0.1677365005016327, 0.0254011582583189, 0.12308789789676666, 0.019984504207968712, 0.0824493020772934, 0.06530517339706421, -0.04571190103888512, 0.11603382974863052, -0.05275699496269226, 0.08244793117046356, 0.04999130964279175, -0.10841406881809235, -0.09015253186225891, -0.1315135508775711, 0.04214813932776451, 0.08480116724967957, 0.06450814753770828, -0.017062487080693245, 0.0710097998380661, -0.05391164869070053, 0.061121176928281784, 0.2290993481874466, -0.266534686088562, -0.01055118627846241, 0.04200269281864166, 0.06053613871335983, 0.019860094413161278, -0.0819464847445488, 0.008076854050159454, 0.02386903576552868, 0.04804493486881256, 0.057548340409994125, -0.04709811136126518, 0.1255589723587036, -0.01370280608534813, -0.10475300252437592, -0.06347616016864777, 0.08688555657863617, -0.029925135895609856, -0.07698336243629456, -0.10180283337831497, -0.018305260688066483, -0.008910737000405788, 0.015541457571089268, 0.011549890041351318, 0.005079875234514475, -0.004059168975800276, -0.07474085688591003, -0.12957413494586945, -0.07443072646856308, -0.05211519077420235, -0.022147897630929947, 0.039731238037347794, 0.05895638465881348, 0.03093852289021015, -0.06034569814801216, 0.19744162261486053, 0.020790403708815575, -0.09884876757860184, -0.09074712544679642, -0.10495952516794205, -0.0931791290640831, -0.037398289889097214, -0.006191536784172058, 0.0025717769749462605, -0.0053155007772147655, 0.1403261423110962, -0.029570957645773888, 0.027038512751460075, -0.05129310116171837, 0.023994607850909233, 0.09620488435029984, 0.12395061552524567, -0.1015973910689354, -0.04767991229891777, 0.09281716495752335, -0.02370412088930607, -0.039570532739162445, -0.04026596620678902, -0.011167485266923904, -0.05079979449510574, 0.0484306626021862, 0.08947446197271347, 0.07280882447957993, 0.050314366817474365, -0.012497267685830593, -0.04652687534689903, 0.02483765035867691, -0.14285928010940552, 0.03348798304796219, -0.0024770465679466724, -0.048200495541095734, -0.007945268414914608, 0.06278249621391296, -0.022570300847291946, -0.12592008709907532, 0.06414027512073517, -0.06104179844260216, -0.017055412754416466, -0.08718138188123703, -0.10392991453409195, 0.0162949375808239, -0.025828760117292404, -0.028071552515029907, -0.08647670596837997, -0.15399420261383057, -0.039152294397354126, 0.0159592442214489, -0.0724668949842453, -0.01261015236377716, 0.013075538910925388, -0.04345390573143959, -0.0027743789833039045, -0.008389497175812721, 0.013068566098809242, -0.017264053225517273, 0.059122707694768906, -0.078085757791996, 0.04788012057542801, 0.061985645443201065, 0.03826547786593437, -0.10853449255228043, 0.07820228487253189, -0.1425076723098755, 0.158295139670372, -0.030154995620250702, -0.045855939388275146, -0.09180091321468353, -0.10550840198993683, -0.011407389305531979, -0.03908584639430046, 0.05042237043380737, 0.1202467754483223, -0.16847635805606842, -0.004997619427740574, 0.23580805957317352, -0.06916336715221405, -0.04179074242711067, 0.08822059631347656, -0.06777668744325638, 0.037365224212408066, 0.11127506196498871, 0.04033473879098892, 0.1536952704191208, -0.06833825260400772, -0.0756320208311081, -0.022464105859398842, -0.08141595125198364, 0.15699857473373413, 0.0327908881008625, -0.01625891774892807, 0.048813775181770325, -0.007308734580874443, -0.010006014257669449, -0.026991043239831924, -0.029738551005721092, -0.033515121787786484, -0.012475869618356228, -0.006364599335938692, 0.01514358352869749, -0.04646012932062149, -0.022332100197672844, -0.017550969496369362, -0.0919591635465622, 0.05396774783730507, 0.08819114416837692, -0.07809163630008698, 0.046664778143167496, -0.10191302001476288, 0.04697967320680618, -0.06329585611820221, 0.025327246636152267, -0.17973998188972473, -0.023721100762486458, 0.015378865413367748, -0.05088859051465988, 0.06413046270608902, 0.014503941871225834, 0.05585212633013725, 0.07701599597930908, -0.03603532537817955, 0.01030243095010519, -0.05447982996702194, -0.0013214567443355918, -0.06751160323619843, -0.14796335995197296, -0.05157973989844322, -0.0460255891084671, 0.038848042488098145, -0.10890891402959824, -0.0013775019906461239, 0.09082064032554626, 0.14311954379081726, 0.03646431118249893, -0.05247849225997925, 0.033858269453048706, -0.013766858726739883, -0.012784084305167198, -0.10269422084093094, -0.033734552562236786, 0.01750112883746624, -0.03742001950740814, 0.15588337182998657, -0.13919568061828613, -0.08438733220100403, 0.10288110375404358, 0.0764641985297203, -0.08465034514665604, 0.030868129804730415, -0.05005528777837753, -0.02688666433095932, -0.06386861205101013, -0.05142083391547203, 0.22235655784606934, 0.04754514992237091, 0.09446020424365997, -0.08833958953619003, -0.06944028288125992, -0.008221014402806759, -0.03590668737888336, 0.006195454858243465, 0.06215701624751091, 0.02601502276957035, -0.22355563938617706, 0.04555586725473404, 0.013270260766148567, 0.035626109689474106, 0.14834506809711456, 0.01362962368875742, -0.10033544898033142, -0.05632442235946655, -0.028289008885622025, 0.021434128284454346, 0.07758859544992447, 0.01794731430709362, 0.04954024776816368, 0.03309375420212746, 0.04910895228385925, 0.02555605210363865, -0.11743958294391632, 0.02810033969581127, 0.04597902670502663, -0.040943801403045654, -0.04437084123492241, -0.0034690324682742357, 0.03408315032720566, 0.08769737184047699, 0.07016420364379883, 0.08799976855516434, -0.017038773745298386, -0.0472077876329422, -0.11200330406427383, 0.14044077694416046, -0.10015899688005447, -0.1897808462381363, -0.11607466638088226, -0.05957913026213646, 0.032475098967552185, 0.014798210002481937, 0.03304722160100937, -0.006041319575160742, -0.03516273573040962, -0.0849761962890625, 0.039295364171266556, -0.041057098656892776, -0.01583569496870041, -0.01261772122234106, 0.05397779494524002, 0.00879270676523447, -0.11110846698284149, -0.01658051460981369, 0.023328829556703568, -0.08990785479545593, 0.015840210020542145, 0.04514649137854576, 0.025499552488327026, 0.11420822888612747, -0.006283072289079428, 0.005361515562981367, -0.02869144082069397, 0.2286120504140854, -0.1007787436246872, 0.051398761570453644, 0.14607684314250946, -0.041789259761571884, 0.07527206838130951, 0.06820403039455414, -0.0011403231183066964, -0.044961195439100266, 0.04499433934688568, 0.05085921287536621, -0.06449022889137268, -0.19419105350971222, -0.0020596403628587723, -0.04372639209032059, 0.020675064995884895, 0.10457798093557358, 0.03324000537395477, -0.015169707126915455, 0.021623535081744194, -0.08160725235939026, 0.07516971230506897, 0.07609120011329651, 0.09200610220432281, -0.006942657753825188, -0.015072906389832497, 0.061887625604867935, -0.05348135158419609, 0.021476738154888153, 0.10228146612644196, 0.04518313333392143, 0.2667086720466614, -0.10095947980880737, 0.05709449574351311, 0.08013763278722763, 0.06631007045507431, 0.030345676466822624, 0.043092504143714905, -0.026947738602757454, 0.05570351332426071, -0.0011262751650065184, -0.0902160108089447, -0.007838265039026737, 0.034817203879356384, 0.03596166521310806, -0.035417743027210236, -0.03200934827327728, -0.051212213933467865, 0.0436490923166275, 0.1871456503868103, 0.1021634116768837, -0.14171037077903748, -0.07905177026987076, 0.0700492411851883, -0.051254693418741226, -0.0692385882139206, -0.010103859938681126, 0.0998821035027504, -0.20998717844486237, 0.00597233884036541, -0.036555562168359756, 0.11759213358163834, -0.16426536440849304, -0.022521862760186195, -0.0039025209844112396, 0.07162823528051376, -0.05561792850494385, 0.07395770400762558, -0.20184358954429626, 0.06160684674978256, 0.012291046790778637, 0.10015711933374405, -0.0507342703640461, 0.02986491471529007, 0.05972115695476532, 0.02218557521700859, 0.1015780046582222, 0.01885860599577427, -0.00007004294457146898, -0.07602249085903168, -0.08714213222265244, 0.015505249612033367, 0.060097597539424896, -0.048195257782936096, 0.11770771443843842, -0.029970580711960793, 0.01619059406220913, -0.02269214391708374, -0.06426005065441132, -0.10646943002939224, -0.1512279063463211, 0.07085153460502625, -0.11733631789684296, 0.013201240450143814, -0.05500226095318794, -0.025052474811673164, 0.04323335364460945, 0.20068006217479706, -0.10000632703304291, -0.10393504798412323, -0.10854781419038773, 0.030064040794968605, 0.14244771003723145, -0.0794747993350029, 0.024523679167032242, 0.02032412216067314, 0.12188208848237991, 0.015028920024633408, -0.12304390221834183, -0.0068051861599087715, -0.0510382242500782, -0.18940962851047516, -0.016165418550372124, 0.12322387844324112, 0.061764635145664215, 0.056293439120054245, 0.02277413010597229, 0.017009861767292023, -0.01523552741855383, -0.14679475128650665, 0.011424612253904343, 0.11399857699871063, 0.06970764696598053, 0.038528911769390106, 0.001254432718269527, 0.04900721460580826, -0.11383223533630371, 0.029835926368832588, 0.08141794800758362, 0.20307353138923645, -0.07602905482053757, 0.15253157913684845, 0.010910464450716972, -0.09654082357883453, -0.18765684962272644, -0.012070907279849052, 0.010339397937059402, 0.035708874464035034, 0.012235418893396854, -0.18166767060756683, -0.0046358914114534855, 0.03156551346182823, -0.011877527460455894, 0.11773370951414108, -0.3118879497051239, -0.1285940259695053, 0.028089316561818123, 0.03548264130949974, -0.02552018128335476, -0.025999564677476883, -0.05356466770172119, -0.05728371441364288, -0.21421855688095093, 0.09670629352331161, -0.12966886162757874, 0.106204554438591, 0.00785743910819292, 0.014561614021658897, 0.03827418014407158, -0.05086221545934677, 0.12822985649108887, -0.06937817484140396, 0.04793583229184151, -0.0898781269788742, -0.005935120861977339, 0.06425514817237854, -0.06095166504383087, 0.06691286712884903, 0.004923219792544842, 0.07779262959957123, -0.06587927788496017, -0.057522911578416824, -0.07665708661079407, 0.012957029975950718, -0.05908577889204025, -0.07945775985717773, -0.0768447071313858, 0.0931515246629715, 0.11549994349479675, -0.02742844447493553, -0.0887460857629776, -0.04140947014093399, -0.05980246141552925, 0.08137427270412445, 0.11972326040267944, 0.09654389321804047, -0.08223222941160202, 0.005471930839121342, -0.0052683353424072266, 0.050326503813266754, -0.10636329650878906, 0.06626614183187485, 0.0851137563586235, 0.024740835651755333, 0.10206369310617447, 0.03837422654032707, -0.1518494337797165, 0.04305018112063408, 0.0339045450091362, -0.1110130101442337, -0.114358089864254, -0.02078566700220108, -0.020639760419726372, -0.08373906463384628, -0.04021654278039932, 0.15613020956516266, -0.03823103755712509, -0.03799699246883392, 0.015643315389752388, 0.0657460018992424, -0.044685374945402145, 0.11984079331159592, 0.036483071744441986, 0.03946072608232498, -0.0714208260178566, 0.09299489855766296, 0.06323076784610748, 0.029369259253144264, 0.039191171526908875, 0.08459063619375229, -0.09544393420219421, -0.016402142122387886, -0.06772147119045258, 0.0053449636325240135, 0.0007260807324200869, -0.011391949839890003, -0.010844472795724869, -0.04282824322581291, 0.042549017816782, 0.10224791616201401, -0.00794814620167017, 0.11737518757581711, -0.029163174331188202, 0.0003481092571746558, -0.11247380077838898, 0.08267486095428467, 0.05256947502493858, 0.023676762357354164, -0.07697225362062454, 0.15885940194129944, 0.016277063637971878, 0.09957627207040787, -0.04207345098257065, -0.045926760882139206, -0.07623793929815292, -0.004156189970672131, -0.17251618206501007, -0.016845762729644775, -0.08732780069112778, -0.04092486947774887, -0.01681339740753174, -0.021560385823249817, -0.02427736110985279, 0.06319840997457504, -0.02966005727648735, -0.07438302785158157, -0.06983797252178192, 0.03240326792001724, -0.15258309245109558, -0.02349904552102089, 0.1111624538898468, -0.09467673301696777, 0.11163138598203659, 0.04812037572264671, -0.04081691429018974, 0.004135163966566324, -0.05557440593838692, -0.0019158882787451148, -0.026146581396460533, 0.015792375430464745, 0.026647092774510384, -0.14536243677139282, 0.023525698110461235, -0.057721637189388275, -0.043933045119047165, 0.01427730917930603, 0.042764585465192795, -0.1136726513504982, 0.007694955449551344, 0.014627339318394661, 0.002361725317314267, -0.06900515407323837, 0.07595109194517136, 0.024980157613754272, 0.05506503954529762, 0.07188241928815842, -0.03834939002990723, 0.10606370866298676, -0.1512533724308014, -0.03465170040726662, 0.022196998819708824, 0.0010839281603693962, 0.09185276925563812, -0.016963748261332512, 0.06856624782085419, -0.020755643025040627, 0.15699830651283264, -0.018010476604104042, -0.025828873738646507, 0.028240352869033813, -0.04248172417283058, -0.014104306697845459, 0.04515143856406212, 0.057983074337244034, -0.0190297681838274, -0.055023275315761566, -0.030885018408298492, 0.005155977793037891, -0.047291100025177, -0.058373935520648956, 0.13203178346157074, 0.06442665308713913, 0.15144018828868866, -0.01508385967463255, 0.043526820838451385, -0.0129565903916955, -0.1218789666891098, -0.02076270990073681, -0.0055370149202644825, 0.027643688023090363, -0.061385512351989746, 0.06575669348239899, 0.1402384638786316, -0.1431935727596283, 0.1194261908531189, 0.0024397450033575296, -0.06886942684650421, -0.10851044207811356, -0.17622815072536469, -0.03697168081998825, -0.010205594822764397, 0.027643050998449326, -0.12063854187726974, 0.07050227373838425, 0.040745336562395096, 0.03216918185353279, -0.04848957434296608, 0.0960913822054863, -0.030710162594914436, -0.11048731207847595, 0.022372068837285042, 0.02576594054698944, 0.05261225253343582, 0.07140573859214783, 0.04541826993227005, 0.025068506598472595, 0.020254796370863914, 0.0695655420422554, 0.046375811100006104, 0.047769345343112946, 0.017443249002099037, -0.02068455144762993, -0.05068909004330635, 0.007715499494224787, 0.030731551349163055, 0.038173120468854904, 0.1417597085237503, 0.07510054111480713, -0.019041502848267555, -0.03234361484646797, 0.29326602816581726, -0.053702760487794876, -0.07297538965940475, -0.17321045696735382, 0.19212974607944489, 0.02641269937157631, -0.016258127987384796, 0.029816610738635063, -0.14393334090709686, 0.015632087364792824, 0.14665605127811432, 0.15747033059597015, -0.06973396986722946, 0.016675269231200218, -0.004112184979021549, 0.008556848391890526, 0.03894490748643875, 0.07664258033037186, 0.05381208285689354, 0.21021157503128052, -0.06594778597354889, 0.04576260223984718, 0.014179711230099201, -0.0030952768865972757, -0.05468929558992386, 0.11570927500724792, -0.04674021154642105, 0.01948735862970352, -0.06988076120615005, 0.06654854863882065, -0.05466580018401146, -0.24726653099060059, 0.012034324929118156, -0.030452700331807137, -0.09541668742895126, 0.05186373367905617, -0.04727214202284813, -0.025112586095929146, 0.07389082759618759, 0.020986974239349365, 0.007021300029009581, 0.11571462452411652, 0.03561261296272278, -0.02260073460638523, 0.009243876673281193, 0.08447371423244476, -0.02744581736624241, 0.18894946575164795, -0.0026525785215198994, 0.03773481398820877, 0.09504964202642441, 0.03832199051976204, -0.12568528950214386, 0.008762982673943043, 0.03582361340522766, -0.07095557451248169, -0.003338156035169959, 0.19821876287460327, 0.0007311793160624802, -0.009255458600819111, 0.06442749500274658, -0.005347799509763718, 0.01967019960284233, -0.052186716347932816, 0.024137672036886215, -0.11919399350881577, 0.01975882612168789, -0.08551760762929916, 0.12400545924901962, 0.17555275559425354, -0.05944047495722771, 0.03479649871587753, -0.05276333913207054, -0.013692354783415794, -0.007064206060022116, 0.020966632291674614, -0.02750822715461254, -0.07063965499401093, 0.011347892694175243, 0.054296091198921204, 0.036108702421188354, -0.1967068463563919, -0.07494758069515228, 0.05704405903816223, -0.053723130375146866, -0.017439255490899086, 0.14797185361385345, 0.02351273037493229, 0.047801170498132706, -0.029947908595204353, -0.05473138391971588, -0.025738868862390518, 0.07378365099430084, -0.13822640478610992, -0.07245717197656631 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/7cfde2abc36913387855f84724ec55d0.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BAKLAN</div> <a href="https://genius.com/artists/baklan"> <div style="text-align: center; font-size: 14px;">@baklan</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from BAKLAN. Dataset is available [here](https://huggingface.co/datasets/huggingartists/baklan). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/baklan") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2k5w5yhe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on BAKLAN's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28fvfef4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28fvfef4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/baklan') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/baklan") model = AutoModelWithLMHead.from_pretrained("huggingartists/baklan") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/baklan"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/baklan
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/baklan", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/baklan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">BAKLAN</div> <a href="URL <div style="text-align: center; font-size: 14px;">@baklan</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from BAKLAN. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on BAKLAN's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from BAKLAN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BAKLAN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/baklan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from BAKLAN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BAKLAN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/baklan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from BAKLAN.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BAKLAN's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.017891019582748413, 0.15094628930091858, -0.002764149336144328, 0.036412615329027176, 0.08434325456619263, 0.007830432616174221, 0.09163393080234528, 0.10103219747543335, 0.0007415299769490957, 0.07273620367050171, 0.07428931444883347, 0.0021532922983169556, 0.07159183919429779, 0.11631908267736435, 0.08300986886024475, -0.26368093490600586, 0.028241030871868134, -0.09209088981151581, 0.0151690524071455, 0.11729595065116882, 0.09934276342391968, -0.05167889595031738, 0.08308367431163788, 0.03828610107302666, -0.06463727355003357, 0.022678911685943604, -0.00028255535289645195, -0.0707712396979332, 0.09085899591445923, 0.06685487926006317, 0.03750945255160332, 0.02066151611506939, 0.06327413767576218, -0.18780887126922607, 0.031404271721839905, 0.12449871003627777, 0.03444654494524002, 0.07177466154098511, 0.04130979999899864, -0.07499541342258453, 0.18385301530361176, -0.014522983692586422, 0.09531386941671371, 0.042626310139894485, -0.1152762696146965, -0.15189851820468903, -0.12773889303207397, 0.0975680872797966, 0.09786125272512436, 0.08566153794527054, -0.02883879467844963, 0.04457467794418335, -0.015727059915661812, 0.04451965168118477, 0.23598983883857727, -0.23937976360321045, -0.018139660358428955, 0.09023585170507431, 0.040032919496297836, 0.03295416012406349, -0.07650095969438553, 0.014319869689643383, 0.04524701461195946, 0.025357581675052643, 0.04622882977128029, -0.01609734259545803, 0.19645710289478302, 0.0227719284594059, -0.09672359377145767, -0.08850808441638947, 0.11521118879318237, -0.031980205327272415, -0.07413160055875778, -0.14044229686260223, -0.0009631789289414883, -0.019440656527876854, 0.03748321160674095, -0.0051443614065647125, -0.008772117085754871, 0.005211560986936092, -0.03719082102179527, -0.10271911323070526, -0.09018927812576294, -0.028966382145881653, -0.021825745701789856, 0.06952086091041565, 0.030637674033641815, 0.03560539707541466, -0.0861106812953949, 0.23443196713924408, -0.020830262452363968, -0.1037219911813736, -0.05242634192109108, -0.09379984438419342, -0.0855756476521492, -0.05617731809616089, 0.011715241707861423, 0.01862158812582493, -0.06075350195169449, 0.1655367761850357, -0.03459220007061958, 0.03531055152416229, -0.003384379204362631, -0.01573965698480606, 0.14369629323482513, 0.13044776022434235, -0.0973048210144043, -0.02667906880378723, 0.05591706931591034, -0.014759918674826622, -0.06371233612298965, -0.054847776889801025, -0.006410540547221899, -0.021826935932040215, 0.03304339200258255, 0.08526326715946198, 0.05593639984726906, 0.05654904246330261, 0.022708985954523087, -0.06053151562809944, 0.09332028031349182, -0.14015524089336395, 0.012959200888872147, -0.008520703762769699, -0.03928930684924126, 0.01283379178494215, 0.050190337002277374, 0.014870178885757923, -0.1038859635591507, 0.12283924221992493, -0.05475449562072754, -0.050692033022642136, -0.07674472033977509, -0.07970753312110901, -0.001715680118650198, -0.017212798818945885, -0.044662266969680786, -0.06953878700733185, -0.17454329133033752, -0.037766627967357635, 0.03307371586561203, -0.04727669805288315, -0.046597808599472046, 0.038693834096193314, -0.023112703114748, 0.010233908891677856, -0.02010452002286911, -0.021137341856956482, -0.03037836216390133, 0.026576420292258263, -0.05807631462812424, 0.02939050830900669, 0.07267257571220398, 0.03978285938501358, -0.10936631262302399, 0.07402223348617554, -0.16422350704669952, 0.13069714605808258, -0.011616937816143036, 0.00999167189002037, -0.10064709931612015, -0.09209417551755905, -0.03200264275074005, -0.031006773933768272, -0.0016355784609913826, 0.09338923543691635, -0.1826784610748291, -0.03550783917307854, 0.20135419070720673, -0.07549433410167694, -0.07918309420347214, 0.06835803389549255, -0.07762712240219116, 0.035336725413799286, 0.13290639221668243, 0.0671783983707428, 0.165750190615654, -0.111294224858284, -0.06187007203698158, -0.04107244312763214, -0.05325079336762428, 0.20655198395252228, 0.047706712037324905, -0.014383689500391483, 0.013852591626346111, 0.01006687618792057, -0.03415972739458084, -0.025449754670262337, -0.01561516709625721, -0.04157835245132446, -0.0162672009319067, 0.01318451575934887, -0.007159715052694082, -0.04480445757508278, -0.06502178311347961, -0.026888027787208557, -0.10388752073049545, 0.037794794887304306, 0.101200170814991, -0.07033500075340271, 0.00931587629020214, -0.0903172641992569, 0.004145915154367685, -0.026464687660336494, 0.012753142975270748, -0.17683157324790955, -0.05333610251545906, 0.02085205353796482, -0.061730850487947464, 0.08687012642621994, 0.030392490327358246, 0.036882977932691574, 0.05750928819179535, -0.018535370007157326, 0.019172070547938347, -0.043597299605607986, -0.02151903510093689, -0.026608610525727272, -0.14179839193820953, -0.06194691359996796, -0.04545336216688156, 0.08081275969743729, -0.12855742871761322, 0.005349677987396717, 0.09976513683795929, 0.1226499080657959, 0.018053216859698296, -0.0627456083893776, 0.015124301426112652, -0.03810970485210419, -0.03200359642505646, -0.10960037261247635, -0.05791441351175308, 0.0099622942507267, -0.02912207506597042, 0.15175938606262207, -0.17177964746952057, -0.08524298667907715, 0.09888684749603271, 0.15075428783893585, -0.0966329425573349, 0.03358760476112366, -0.08362363278865814, -0.016309894621372223, -0.05254141986370087, -0.037422992289066315, 0.2687421441078186, 0.036091286689043045, 0.07841215282678604, -0.10937058180570602, -0.10264015197753906, -0.00814167968928814, -0.0441352017223835, -0.025165436789393425, 0.02316168323159218, 0.02155136689543724, -0.17007406055927277, 0.03260961174964905, -0.007565731182694435, 0.10081744939088821, 0.20844534039497375, 0.043261557817459106, -0.0878441259264946, -0.05772810056805611, -0.07289963215589523, -0.0025505467783659697, 0.06281431019306183, 0.015042752027511597, 0.031500887125730515, 0.04132451117038727, 0.057272884994745255, 0.04019300267100334, -0.11777222901582718, 0.014099017716944218, 0.07544209063053131, -0.04556819051504135, -0.0526261143386364, 0.017975138500332832, 0.02053266391158104, 0.08215751498937607, 0.08427329361438751, 0.13776859641075134, -0.06675459444522858, -0.04796696826815605, -0.14724984765052795, 0.13757920265197754, -0.07732703536748886, -0.24322965741157532, -0.13392776250839233, -0.07629730552434921, 0.01832023449242115, 0.009210580959916115, 0.03239896148443222, -0.04954594001173973, -0.04211911931633949, -0.09477845579385757, 0.0841917097568512, -0.04996123164892197, -0.019833995029330254, 0.01052139699459076, 0.015796808525919914, -0.02298298291862011, -0.10888442397117615, -0.03263286128640175, 0.04278089106082916, -0.09947121888399124, -0.013115053065121174, 0.031567275524139404, 0.027854073792696, 0.16090404987335205, -0.012881881557404995, 0.0014912184560671449, -0.026970332488417625, 0.2830601632595062, -0.1175590455532074, 0.07158473879098892, 0.15852808952331543, -0.021146275103092194, 0.05798077955842018, 0.07737614214420319, 0.004505078308284283, -0.062314052134752274, 0.0722954049706459, 0.07142679393291473, -0.08605794608592987, -0.2139456570148468, -0.03164876997470856, -0.013134283944964409, 0.017191138118505478, 0.126396045088768, 0.05277805030345917, 0.04584161564707756, 0.010673274286091328, -0.11012483388185501, 0.04794783517718315, 0.03169654682278633, 0.10286631435155869, -0.06294102221727371, -0.011138861998915672, 0.04626847803592682, -0.059845633804798126, 0.03187098354101181, 0.13537165522575378, 0.04891784116625786, 0.20257048308849335, -0.06878925859928131, 0.08942601829767227, 0.07830104976892471, 0.1016688272356987, 0.03089727833867073, 0.018628885969519615, -0.02274118736386299, 0.016613701358437538, 0.0029408400878310204, -0.09342759102582932, -0.014309175312519073, 0.04040245711803436, 0.024080928415060043, -0.02242708019912243, -0.03885796293616295, -0.05849306657910347, 0.03736555203795433, 0.2345089167356491, 0.007071126252412796, -0.16974098980426788, -0.10715363919734955, 0.05351943150162697, -0.07581435143947601, -0.06232617422938347, -0.01638367958366871, 0.07418282330036163, -0.219282865524292, 0.07500924170017242, -0.028018347918987274, 0.10864092409610748, -0.11623663455247879, -0.002864942653104663, 0.08284701406955719, 0.038057226687669754, -0.0625118613243103, 0.09771755337715149, -0.167631596326828, 0.06440988183021545, -0.011647528037428856, 0.07315805554389954, -0.07658809423446655, 0.031135443598031998, 0.005414281971752644, 0.045216821134090424, 0.0764959454536438, 0.018370892852544785, 0.008227298967540264, 0.005419100634753704, -0.041143689304590225, 0.008795374073088169, 0.05233791843056679, -0.12107854336500168, 0.12139549851417542, -0.03002680093050003, 0.03774256631731987, -0.03627532348036766, -0.09340671449899673, -0.08592580258846283, -0.16122667491436005, 0.08566495776176453, -0.11720449477434158, -0.003275021445006132, -0.07312940806150436, -0.020054705440998077, 0.0401635505259037, 0.24555741250514984, -0.0583462156355381, -0.08215341717004776, -0.13115547597408295, 0.006363287568092346, 0.14199469983577728, -0.08097406476736069, 0.0069205970503389835, -0.012426507659256458, 0.19606459140777588, -0.0011152969673275948, -0.1291760504245758, -0.02019410766661167, -0.06333433836698532, -0.16983021795749664, -0.0071684690192341805, 0.17350347340106964, 0.06446774303913116, 0.02909301035106182, 0.006578132975846529, -0.005730666685849428, -0.04997213929891586, -0.17439116537570953, 0.014005222357809544, 0.1493811309337616, -0.008715852163732052, 0.013092164881527424, 0.04913617670536041, 0.02189793810248375, -0.12689507007598877, 0.01559341512620449, 0.046585794538259506, 0.17281274497509003, -0.07336615025997162, 0.18810679018497467, 0.026836298406124115, -0.0903748944401741, -0.15330618619918823, 0.010970032773911953, 0.025672975927591324, 0.03486404940485954, 0.031590890139341354, -0.19998973608016968, 0.04089527949690819, 0.031491052359342575, -0.002586937276646495, 0.05253905430436134, -0.3299287259578705, -0.15620234608650208, 0.008032462559640408, 0.002313483040779829, -0.11803159862756729, -0.036202359944581985, -0.035065971314907074, -0.08937713503837585, -0.24837809801101685, 0.09468087553977966, -0.10526326298713684, 0.07411856949329376, 0.019536005333065987, 0.1073157787322998, 0.044628895819187164, -0.049377381801605225, 0.1336408257484436, -0.025603270158171654, 0.06104325130581856, -0.10192667692899704, -0.050088442862033844, 0.07935492694377899, -0.07141329348087311, 0.09804495424032211, 0.02186603657901287, 0.08715980499982834, -0.10973448306322098, -0.08651899546384811, -0.07267704606056213, 0.004997757263481617, -0.060709789395332336, -0.0873749777674675, -0.0991223007440567, 0.0828520655632019, 0.11956413835287094, -0.043651364743709564, -0.10257509350776672, -0.05638422816991806, 0.004994198214262724, 0.05004195123910904, 0.11972905695438385, 0.07131218910217285, -0.07497258484363556, 0.004868227988481522, 0.022335978224873543, 0.01853625848889351, -0.1726897805929184, 0.04458243027329445, 0.08836636692285538, 0.04207422211766243, 0.1020645797252655, 0.0065400321036577225, -0.1654001921415329, 0.0004941645893268287, 0.05116284266114235, -0.16966703534126282, -0.11957917362451553, -0.044049106538295746, 0.026946160942316055, -0.10810206085443497, -0.056429967284202576, 0.13029511272907257, -0.03673246502876282, -0.038519375026226044, 0.004980652593076229, 0.044531773775815964, -0.049619145691394806, 0.09404321014881134, -0.0012384353904053569, 0.04597638174891472, -0.0678565502166748, 0.11306195706129074, 0.06945399194955826, 0.016927316784858704, 0.03983566164970398, 0.06902498751878738, -0.08850639313459396, 0.012124491855502129, -0.09521796554327011, 0.007627040613442659, -0.02768763154745102, -0.014809200540184975, 0.026061449199914932, -0.04046228528022766, 0.04442193731665611, 0.08487077057361603, -0.01523675862699747, 0.112276591360569, -0.043575920164585114, 0.013615964911878109, -0.125371053814888, 0.06875314563512802, 0.041822247207164764, 0.02409493550658226, -0.11336041241884232, 0.19419556856155396, 0.030843235552310944, 0.10058387368917465, -0.03461889550089836, -0.05897948890924454, -0.059995464980602264, -0.006774330511689186, -0.09324157983064651, -0.04052085429430008, -0.09577418118715286, -0.023803332820534706, -0.0034851382952183485, -0.03519095852971077, -0.026026364415884018, 0.04634365439414978, -0.03292147442698479, -0.05653505027294159, -0.07650395482778549, 0.046420659869909286, -0.13607847690582275, 0.04146210849285126, 0.12317819893360138, -0.057130999863147736, 0.1233355849981308, 0.058306578546762466, -0.0367945097386837, 0.027591193094849586, -0.1202244833111763, 0.042716074734926224, -0.016269197687506676, 0.017291486263275146, 0.015576728619635105, -0.15887561440467834, 0.008452611975371838, -0.03783237934112549, -0.06036857143044472, 0.006233788561075926, -0.0064040860161185265, -0.13152605295181274, -0.00639360910281539, 0.08917757868766785, -0.02187025174498558, -0.06792955100536346, 0.06751620024442673, 0.05615917220711708, 0.02120380289852619, 0.0557471364736557, -0.02105368673801422, 0.07240273803472519, -0.17086263000965118, -0.0550403892993927, 0.0030961923766881227, 0.034092340618371964, 0.04672646522521973, -0.017563413828611374, 0.037849824875593185, -0.01962915249168873, 0.19956377148628235, 0.015617717988789082, -0.024379299953579903, 0.036522310227155685, -0.06667765974998474, 0.0027508018538355827, 0.044855885207653046, 0.08742477744817734, -0.03273139148950577, -0.039169859141111374, -0.0026148860342800617, -0.02384534664452076, -0.09848218411207199, -0.031028272584080696, 0.11619602143764496, 0.031415943056344986, 0.1887957751750946, -0.057594604790210724, 0.06489744782447815, -0.0166905727237463, -0.11754157394170761, -0.026021409779787064, -0.0452667735517025, 0.034402620047330856, -0.06012871116399765, 0.05451497435569763, 0.18633726239204407, -0.16563887894153595, 0.11986338347196579, 0.02399032935500145, -0.06168748438358307, -0.11838099360466003, -0.20327268540859222, -0.01600492000579834, -0.03796946629881859, 0.031245317310094833, -0.1387743055820465, 0.09168820828199387, 0.029048312455415726, 0.03794245421886444, -0.0677197128534317, 0.14048288762569427, -0.08388161659240723, -0.1270609349012375, 0.03716665133833885, 0.029702873900532722, 0.031538043171167374, 0.04838564991950989, 0.08556995540857315, 0.024936996400356293, 0.008874704129993916, 0.070595882833004, 0.03882351890206337, 0.030653346329927444, 0.031485892832279205, -0.02214229106903076, -0.03572558984160423, 0.03098916821181774, -0.005665916018188, 0.035851627588272095, 0.09914588183164597, 0.05862642079591751, -0.01833142712712288, -0.02255450189113617, 0.3055870532989502, -0.03535958379507065, -0.05288090929389, -0.18653716146945953, 0.16822774708271027, 0.0021838827524334192, -0.015053098089993, 0.02471216209232807, -0.11619877815246582, 0.010271417908370495, 0.12281157821416855, 0.15789221227169037, -0.015980329364538193, 0.02299531176686287, -0.03329028561711311, 0.018968652933835983, 0.03609587252140045, 0.10361868143081665, 0.0671483650803566, 0.20680423080921173, -0.032905835658311844, 0.04783812165260315, -0.006494796369224787, -0.018494118005037308, -0.004059536382555962, 0.1072537899017334, -0.03989855945110321, 0.003980283159762621, -0.05506817251443863, 0.10346360504627228, -0.05095861479640007, -0.2817499339580536, -0.03349514305591583, -0.024794641882181168, -0.09125421941280365, 0.07136201858520508, -0.02680198848247528, -0.02899101749062538, 0.08019886910915375, 0.02704712748527527, -0.04884077608585358, 0.14310027658939362, 0.05160126835107803, -0.04561295732855797, -0.007437285967171192, 0.11124235391616821, -0.014765700325369835, 0.1736471951007843, -0.028549905866384506, 0.010141084901988506, 0.07780371606349945, 0.017600929364562035, -0.12227364629507065, 0.004794454202055931, 0.04157515615224838, -0.06211123615503311, -0.027201374992728233, 0.19936421513557434, 0.011399548500776291, 0.019819103181362152, 0.07007881253957748, -0.056915801018476486, 0.017412127926945686, -0.03910473361611366, 0.06991995871067047, -0.1457645446062088, 0.06444455683231354, -0.08594395220279694, 0.12838731706142426, 0.18381516635417938, -0.06871198117733002, 0.02921655960381031, -0.060723740607500076, 0.009396511130034924, -0.02893199399113655, 0.07713956385850906, -0.017651362344622612, -0.11327838152647018, 0.006441918201744556, 0.0300031416118145, 0.018536027520895004, -0.18167908489704132, -0.07204465568065643, 0.07389476895332336, -0.04960466921329498, 0.02356025204062462, 0.17885012924671173, 0.01840885728597641, 0.06147504597902298, -0.03705019876360893, -0.01982085034251213, -0.014364111237227917, 0.1129961833357811, -0.17002491652965546, -0.08142335712909698 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d3fc4853f74c35383ec68670bbd292eb.709x709x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Big Baby Tape</div> <a href="https://genius.com/artists/big-baby-tape"> <div style="text-align: center; font-size: 14px;">@big-baby-tape</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Big Baby Tape. Dataset is available [here](https://huggingface.co/datasets/huggingartists/big-baby-tape). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/big-baby-tape") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1mu9ki6z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Big Baby Tape's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/30qklxvh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/30qklxvh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/big-baby-tape') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/big-baby-tape") model = AutoModelWithLMHead.from_pretrained("huggingartists/big-baby-tape") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/big-baby-tape"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/big-baby-tape
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/big-baby-tape", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/big-baby-tape #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Big Baby Tape</div> <a href="URL <div style="text-align: center; font-size: 14px;">@big-baby-tape</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Big Baby Tape. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Big Baby Tape's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Big Baby Tape.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Big Baby Tape's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/big-baby-tape #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Big Baby Tape.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Big Baby Tape's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/big-baby-tape #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Big Baby Tape.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Big Baby Tape's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03543834388256073, 0.15295512974262238, -0.002877551829442382, 0.04212907329201698, 0.10411345958709717, 0.02438970096409321, 0.09017156064510345, 0.12398277223110199, 0.004335172940045595, 0.07492683827877045, 0.0653306394815445, 0.01331434864550829, 0.07587649673223495, 0.09658264368772507, 0.06828386336565018, -0.2419428527355194, 0.026349451392889023, -0.07644384354352951, 0.022846223786473274, 0.10541360825300217, 0.08161958307027817, -0.07032585889101028, 0.07549118250608444, 0.021427437663078308, -0.08572979271411896, 0.004569089040160179, 0.00890987366437912, -0.0554872490465641, 0.0728054791688919, 0.051691289991140366, 0.0475858636200428, 0.033664438873529434, 0.06132318079471588, -0.15557144582271576, 0.02450321428477764, 0.12395668774843216, 0.02570611611008644, 0.08116868138313293, 0.05070760101079941, -0.09397844225168228, 0.13337595760822296, -0.03171751648187637, 0.07484586536884308, 0.07192885130643845, -0.10985075682401657, -0.12383607774972916, -0.1278112530708313, 0.09555087983608246, 0.08144565671682358, 0.07649213075637817, -0.028288928791880608, 0.08249872177839279, -0.02581489458680153, 0.04236150532960892, 0.2517026960849762, -0.22240573167800903, -0.016034824773669243, 0.0804593488574028, 0.07321334630250931, 0.01474009733647108, -0.08146372437477112, 0.018240951001644135, 0.05838904529809952, 0.030366897583007812, 0.019564110785722733, -0.036296360194683075, 0.1908320188522339, -0.002041188068687916, -0.10762667655944824, -0.06787774711847305, 0.1057329848408699, -0.019796662032604218, -0.0882648378610611, -0.13954365253448486, -0.011571316048502922, -0.04722413420677185, 0.011087026447057724, 0.03707776591181755, 0.01013227179646492, -0.008102498948574066, -0.041861243546009064, -0.12771666049957275, -0.07349169254302979, -0.038097068667411804, -0.001889128820039332, 0.05401492118835449, 0.04241161420941353, 0.028676491230726242, -0.09324796497821808, 0.21788239479064941, 0.01564299501478672, -0.10148103535175323, -0.05237996578216553, -0.10738785564899445, -0.0752478688955307, -0.0379536896944046, -0.009245696477591991, 0.01163041964173317, -0.029057063162326813, 0.1364581286907196, -0.028177227824926376, 0.020671913400292397, -0.046981848776340485, 0.007562304846942425, 0.15589061379432678, 0.14031393826007843, -0.11678553372621536, -0.056410595774650574, 0.07169041782617569, 0.020508836954832077, -0.06679481267929077, -0.03885902464389801, -0.005919326562434435, -0.009034538641571999, 0.04636986553668976, 0.08504975587129593, 0.07950980216264725, 0.05176975578069687, -0.00801730714738369, -0.06392867118120193, 0.07273852825164795, -0.13110288977622986, 0.020582083612680435, -0.0011416689958423376, -0.06111747398972511, 0.032156795263290405, 0.054239824414253235, -0.0012413235381245613, -0.11400112509727478, 0.08476067334413528, -0.07131139189004898, -0.04445541277527809, -0.07791704684495926, -0.07306922972202301, -0.007205497939139605, -0.053824856877326965, -0.026940099895000458, -0.07348616421222687, -0.16859567165374756, -0.04621884226799011, 0.015518712811172009, -0.07100175321102142, -0.013374091126024723, 0.02667643129825592, -0.047262053936719894, 0.010276423767209053, -0.019754068925976753, -0.030052470043301582, -0.01193298865109682, 0.03848470374941826, -0.06764407455921173, 0.019429871812462807, 0.08360658586025238, 0.03815003111958504, -0.1234276220202446, 0.08276373893022537, -0.14602287113666534, 0.14711938798427582, -0.009485572576522827, -0.01130168978124857, -0.09730993956327438, -0.084185391664505, -0.025625184178352356, -0.013518535532057285, 0.012676672078669071, 0.11912132799625397, -0.16777409613132477, -0.03750920295715332, 0.2115340381860733, -0.06363359093666077, -0.08107537776231766, 0.06072228401899338, -0.06804756820201874, 0.053001414984464645, 0.1256149858236313, 0.06737048178911209, 0.12244715541601181, -0.10468430817127228, -0.08762504160404205, -0.056334804743528366, -0.06702148914337158, 0.16482700407505035, 0.03996250405907631, -0.025526637211441994, 0.02948276326060295, -0.010608873330056667, -0.025786327198147774, -0.0008420630474574864, -0.022846393287181854, -0.03196115046739578, -0.02206505835056305, -0.01431382354348898, -0.005818480625748634, -0.033245351165533066, -0.053339309990406036, -0.015164553187787533, -0.10456451028585434, 0.0866561159491539, 0.1062079593539238, -0.06456618756055832, 0.011068533174693584, -0.10183467715978622, 0.03213757649064064, -0.06770526617765427, 0.011397586204111576, -0.1673242449760437, -0.042743876576423645, 0.01999450847506523, -0.07191258668899536, 0.07248955965042114, -0.008089411072432995, 0.04709825664758682, 0.06046045944094658, -0.015268291346728802, -0.013531625270843506, -0.03191855177283287, -0.0022635245695710182, -0.03887471556663513, -0.15772226452827454, -0.05519002676010132, -0.04621999338269234, 0.09473063796758652, -0.08857285976409912, 0.0056080929934978485, 0.06554453819990158, 0.1463782638311386, 0.04228650778532028, -0.06180930510163307, 0.057563260197639465, -0.03942094370722771, -0.022294869646430016, -0.10330666601657867, -0.034089766442775726, 0.0016943106893450022, -0.00580286979675293, 0.15051484107971191, -0.13963331282138824, -0.12358223646879196, 0.12246417254209518, 0.11530915647745132, -0.09525506943464279, 0.049868907779455185, -0.07600615173578262, -0.013870085589587688, -0.04017709195613861, -0.06970518827438354, 0.2444300353527069, 0.04266716539859772, 0.10373303294181824, -0.10363127291202545, -0.08834183216094971, 0.008478892967104912, -0.03897963464260101, -0.04033437743782997, 0.041016723960638046, 0.019773824140429497, -0.16445493698120117, 0.045932356268167496, -0.006115665193647146, 0.09775254130363464, 0.19522415101528168, 0.02396409958600998, -0.09746459871530533, -0.06058316305279732, -0.06918776780366898, 0.004792650230228901, 0.08422494679689407, 0.002512912265956402, 0.03358791768550873, 0.042606186121702194, 0.04304330796003342, 0.04748053103685379, -0.10612193495035172, 0.02061893232166767, 0.05918922275304794, -0.019784031435847282, -0.034035615622997284, 0.00005329706982593052, 0.03275375813245773, 0.09885577857494354, 0.0638737604022026, 0.10409199446439743, -0.04514448717236519, -0.04785482585430145, -0.13766947388648987, 0.13739518821239471, -0.09205891191959381, -0.18439267575740814, -0.12103302031755447, -0.06939007341861725, 0.009725447744131088, 0.009697528555989265, 0.01863599568605423, -0.03621592000126839, -0.02129618637263775, -0.09895437210798264, 0.08623621612787247, -0.014445120468735695, -0.02472207322716713, -0.004899853840470314, 0.014001119881868362, -0.02044384367763996, -0.12154211103916168, -0.03200242668390274, 0.03092152811586857, -0.08200367540121078, 0.009754697792232037, 0.030860906466841698, 0.025440439581871033, 0.16388195753097534, -0.0003586741513572633, -0.010959259234368801, -0.018941599875688553, 0.26942479610443115, -0.12131824344396591, 0.08080442994832993, 0.16395260393619537, -0.013940736651420593, 0.0468231663107872, 0.06636330485343933, 0.006221623159945011, -0.06897741556167603, 0.046557359397411346, 0.06932216882705688, -0.06742268800735474, -0.2115820199251175, -0.044946059584617615, -0.01779801957309246, 0.022569773718714714, 0.10745474696159363, 0.036769259721040726, 0.026517590507864952, 0.014769399538636208, -0.11226146668195724, 0.05924788862466812, 0.012777918949723244, 0.08984339982271194, -0.10356869548559189, -0.017901824787259102, 0.03232003375887871, -0.050818152725696564, 0.019354969263076782, 0.12044812738895416, 0.03785005956888199, 0.20709718763828278, -0.08003968745470047, 0.0929521694779396, 0.08295758068561554, 0.07241809368133545, 0.02468603290617466, 0.03011336922645569, -0.045928291976451874, 0.03305113688111305, 0.011762870475649834, -0.09769609570503235, -0.0104447640478611, 0.031211838126182556, 0.02417730540037155, 0.005786299239844084, -0.07311798632144928, -0.09199722111225128, 0.05611464008688927, 0.21700531244277954, 0.04848628491163254, -0.1697506308555603, -0.08032935112714767, 0.06965519487857819, -0.038826484233140945, -0.06483310461044312, -0.01620061881840229, 0.07174341380596161, -0.2122698724269867, 0.041239239275455475, -0.04832718148827553, 0.10083349049091339, -0.12587372958660126, -0.01251150667667389, 0.050950974225997925, 0.045476529747247696, -0.07131451368331909, 0.06449086219072342, -0.1561935544013977, 0.05434054881334305, 0.011733259074389935, 0.08150598406791687, -0.07201074063777924, 0.016242941841483116, 0.03334685042500496, 0.014852005057036877, 0.09493598341941833, 0.013121725991368294, 0.032739169895648956, -0.05817532539367676, -0.04660753160715103, -0.0006976406439207494, 0.06349118053913116, -0.08518720418214798, 0.1323508322238922, -0.034600257873535156, 0.01949344389140606, -0.027846306562423706, -0.08847790211439133, -0.10788667947053909, -0.13143795728683472, 0.06427297741174698, -0.11657455563545227, -0.014595982618629932, -0.06767053157091141, -0.015699749812483788, 0.026587162166833878, 0.2027580440044403, -0.1021411269903183, -0.10673351585865021, -0.136024609208107, -0.010149436071515083, 0.14232243597507477, -0.07412535697221756, -0.0038662885781377554, 0.0006254446343518794, 0.1698017716407776, 0.0008126664906740189, -0.14178484678268433, -0.00012840608542319387, -0.06540948897600174, -0.20565813779830933, -0.032782651484012604, 0.1581028699874878, 0.0763922855257988, 0.051135364919900894, 0.002838845830410719, -0.009291550144553185, -0.030834563076496124, -0.14297045767307281, 0.04206414893269539, 0.17080707848072052, 0.027111366391181946, 0.0379471555352211, 0.015043789520859718, 0.013219449669122696, -0.12332449108362198, 0.046552956104278564, 0.06378930062055588, 0.19515568017959595, -0.06284776329994202, 0.15148378908634186, 0.035728879272937775, -0.08891841769218445, -0.17947949469089508, 0.03751303628087044, 0.021554356440901756, 0.019323483109474182, 0.006817331071943045, -0.18500454723834991, 0.03695668652653694, 0.03749312087893486, -0.008079319261014462, 0.0778580754995346, -0.3581412136554718, -0.13756687939167023, 0.010671159252524376, 0.014701339416205883, -0.0801975354552269, -0.05400644615292549, -0.038379967212677, -0.060029011219739914, -0.22267132997512817, 0.11965134739875793, -0.12462622672319412, 0.09655513614416122, 0.01331001054495573, 0.056857574731111526, 0.04938293993473053, -0.06300576776266098, 0.11825255304574966, -0.026701483875513077, 0.06319962441921234, -0.07817699015140533, -0.07058196514844894, 0.09028863906860352, -0.07329357415437698, 0.07938110828399658, 0.028552420437335968, 0.08742273598909378, -0.13273486495018005, -0.07058141380548477, -0.087618388235569, 0.0198352187871933, -0.054823171347379684, -0.09918981790542603, -0.08211387693881989, 0.10596990585327148, 0.11414089053869247, -0.041325148195028305, -0.08541640639305115, -0.05145340412855148, -0.03881864622235298, 0.09270196408033371, 0.10622361302375793, 0.08752088248729706, -0.08276048302650452, -0.009644325822591782, 0.009607674553990364, 0.030831720679998398, -0.15270060300827026, 0.04171174019575119, 0.08065637946128845, 0.03277909383177757, 0.1150975450873375, 0.003002922283485532, -0.17595620453357697, 0.029286859557032585, 0.03954539820551872, -0.11274157464504242, -0.10273066908121109, -0.045404791831970215, -0.013452603481709957, -0.11236435920000076, -0.04708365350961685, 0.13865245878696442, -0.03737722709774971, -0.0432400144636631, -0.004426177125424147, 0.039183761924505234, -0.05397799611091614, 0.12253393977880478, 0.034054260700941086, 0.041971590369939804, -0.08626607805490494, 0.1253383308649063, 0.0498943068087101, 0.02450440637767315, 0.059921614825725555, 0.06018305569887161, -0.07515452802181244, -0.0010477949399501085, -0.060803692787885666, 0.042986419051885605, -0.045557279139757156, 0.006981957703828812, 0.009514222852885723, -0.04746264964342117, 0.036432426422834396, 0.07629191130399704, -0.01942365989089012, 0.10469243675470352, -0.017774006351828575, -0.007600291632115841, -0.14271390438079834, 0.09098204225301743, 0.029505105689167976, 0.02265804260969162, -0.10931424796581268, 0.19196955859661102, 0.02999497391283512, 0.0977834016084671, -0.047597359865903854, -0.04956238716840744, -0.07910629361867905, -0.002225362230092287, -0.15415284037590027, -0.025414444506168365, -0.07388485223054886, -0.035287607461214066, -0.011651556007564068, -0.02775496616959572, -0.021266670897603035, 0.04226965457201004, -0.03893071785569191, -0.07104121148586273, -0.044020816683769226, 0.056627657264471054, -0.13978862762451172, 0.016789255663752556, 0.09980407357215881, -0.05454475060105324, 0.11044185608625412, 0.04881308227777481, -0.03737297281622887, 0.014126155525445938, -0.08655663579702377, 0.007566342130303383, -0.034266237169504166, 0.0008105224114842713, 0.04163825139403343, -0.12200521677732468, 0.036353807896375656, -0.05753352865576744, -0.07897753268480301, 0.006736686918884516, 0.008267057128250599, -0.1317790001630783, 0.011785750277340412, 0.0445512980222702, 0.019648795947432518, -0.073699451982975, 0.05253640189766884, 0.04362881928682327, 0.019806496798992157, 0.08001349866390228, -0.028291862457990646, 0.08236671984195709, -0.18197479844093323, -0.05110161751508713, -0.0024567318614572287, 0.002639883430674672, 0.05498988926410675, -0.003254868555814028, 0.04180919751524925, -0.027009349316358566, 0.18061092495918274, 0.008190752938389778, -0.035826001316308975, 0.02942216768860817, -0.04957541450858116, -0.0009804049041122198, 0.047646187245845795, 0.07613962143659592, -0.035001490265131, -0.03535521775484085, -0.041169051080942154, 0.004118042066693306, -0.056589238345623016, -0.03685630112886429, 0.11855145543813705, 0.062433481216430664, 0.16845083236694336, -0.020403875038027763, 0.06771189719438553, -0.035412587225437164, -0.11993913352489471, -0.021508239209651947, -0.018544530496001244, 0.03416449576616287, -0.07513728737831116, 0.0634954422712326, 0.17558690905570984, -0.14964598417282104, 0.11485663056373596, 0.018152907490730286, -0.04366748034954071, -0.09738166630268097, -0.17447912693023682, -0.01023909728974104, -0.016869815066456795, 0.029178624972701073, -0.12781670689582825, 0.054376695305109024, 0.03569193556904793, 0.02985280379652977, -0.06461109220981598, 0.12226550281047821, -0.08275475353002548, -0.10164573788642883, 0.04789139702916145, 0.04259178414940834, 0.020724894478917122, 0.05189688876271248, 0.058179836720228195, 0.04569907858967781, 0.005059972871094942, 0.07212528586387634, 0.041382137686014175, 0.024933993816375732, 0.03699178248643875, -0.03504429757595062, -0.07575065642595291, 0.029461238533258438, 0.00646052835509181, 0.041192676872015, 0.08574549853801727, 0.06854385137557983, -0.02212965115904808, -0.03165630251169205, 0.28847330808639526, -0.03618192672729492, -0.015135709196329117, -0.16412052512168884, 0.1823979765176773, 0.019060930237174034, -0.023600326851010323, 0.020221680402755737, -0.1498010903596878, 0.008489680476486683, 0.17513222992420197, 0.18824170529842377, -0.04340023547410965, 0.008571308106184006, -0.024159705266356468, 0.01520702987909317, 0.021603303030133247, 0.12666398286819458, 0.058070432394742966, 0.20175442099571228, -0.03007926419377327, 0.07344120740890503, 0.0026075528003275394, -0.029860731214284897, -0.0016767223132774234, 0.12885186076164246, -0.022792629897594452, 0.0003024339384865016, -0.04882718250155449, 0.08943627029657364, -0.08876989781856537, -0.27115389704704285, 0.013824009336531162, -0.037976521998643875, -0.10516391694545746, 0.047693852335214615, -0.040143005549907684, 0.012445454485714436, 0.09325354546308517, 0.023219328373670578, -0.022781142964959145, 0.13132141530513763, 0.025763636454939842, -0.05144724249839783, -0.008907937444746494, 0.06207510456442833, -0.050300050526857376, 0.21639534831047058, -0.018893294036388397, -0.017609162256121635, 0.09516551345586777, 0.009288717061281204, -0.14040431380271912, 0.007126286160200834, 0.03977879136800766, -0.07984740287065506, -0.002302891341969371, 0.21863630414009094, 0.0035946897696703672, 0.01683308742940426, 0.06978075206279755, -0.03453705087304115, 0.022338582202792168, -0.07371309399604797, 0.04837717488408089, -0.16217157244682312, 0.062192533165216446, -0.0721718892455101, 0.13993415236473083, 0.19335071742534637, -0.07716567814350128, 0.021640317514538765, -0.05962713435292244, 0.0027321891393512487, 0.010082137770950794, 0.08337462693452835, -0.017021777108311653, -0.11232084035873413, 0.027960073202848434, 0.035642534494400024, 0.02149084396660328, -0.1994437277317047, -0.05281631276011467, 0.04214158654212952, -0.054022181779146194, -0.001120113767683506, 0.17047615349292755, 0.03711942955851555, 0.0763719230890274, -0.02538357675075531, 0.024004103615880013, -0.019340571016073227, 0.11275210976600647, -0.14808259904384613, -0.08044517785310745 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d66eeeef006738708df1e52b84c34c14.403x403x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Big Russian Boss</div> <a href="https://genius.com/artists/big-russian-boss"> <div style="text-align: center; font-size: 14px;">@big-russian-boss</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Big Russian Boss. Dataset is available [here](https://huggingface.co/datasets/huggingartists/big-russian-boss). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/big-russian-boss") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1ju9bqqi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Big Russian Boss's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3820n7qx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3820n7qx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/big-russian-boss') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/big-russian-boss") model = AutoModelWithLMHead.from_pretrained("huggingartists/big-russian-boss") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/big-russian-boss"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/big-russian-boss
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/big-russian-boss", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/big-russian-boss #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Big Russian Boss</div> <a href="URL <div style="text-align: center; font-size: 14px;">@big-russian-boss</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Big Russian Boss. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Big Russian Boss's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Big Russian Boss.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Big Russian Boss's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/big-russian-boss #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Big Russian Boss.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Big Russian Boss's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 87, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/big-russian-boss #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Big Russian Boss.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Big Russian Boss's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.030668793246150017, 0.12949882447719574, -0.0036138943396508694, 0.058666639029979706, 0.11871286481618881, 0.00789103377610445, 0.09917976707220078, 0.10492842644453049, 0.04543423652648926, 0.08230938762426376, 0.06593569368124008, 0.008415699936449528, 0.06208684295415878, 0.10160281509160995, 0.07771258056163788, -0.22288958728313446, 0.03441692143678665, -0.09916472434997559, -0.015349927358329296, 0.0937051996588707, 0.1083575189113617, -0.0714152604341507, 0.07247819751501083, 0.02372552640736103, -0.05449632555246353, 0.028458058834075928, 0.018532777205109596, -0.05814424157142639, 0.0796828418970108, 0.07241546362638474, 0.03767429292201996, 0.018522610887885094, 0.05691966414451599, -0.15024206042289734, 0.02718796767294407, 0.1155058890581131, 0.012135994620621204, 0.07182104140520096, 0.08401838690042496, -0.08751984685659409, 0.1478533148765564, -0.06611768901348114, 0.06339746713638306, 0.051296912133693695, -0.09608787298202515, -0.10982219129800797, -0.1487375795841217, 0.1160610020160675, 0.0805015042424202, 0.10870612412691116, -0.031210463494062424, 0.07855076342821121, -0.03177647665143013, 0.05550529807806015, 0.2408987581729889, -0.2547979950904846, -0.010204209014773369, 0.07821580767631531, 0.03484084829688072, 0.033349718898534775, -0.07400307804346085, 0.02204512245953083, 0.03540526703000069, 0.019257869571447372, 0.02640603855252266, -0.014400111511349678, 0.1598913073539734, 0.02488592453300953, -0.1136038675904274, -0.07823194563388824, 0.09251870959997177, -0.013158963993191719, -0.06508871912956238, -0.13445472717285156, -0.0007407872471958399, -0.05411505699157715, 0.030868323519825935, 0.031305067241191864, -0.005286045838147402, -0.007563499733805656, -0.03957422450184822, -0.12512913346290588, -0.08300049602985382, -0.04051574692130089, -0.015622788108885288, 0.07591752707958221, 0.034770507365465164, 0.05225616693496704, -0.07308071106672287, 0.1980225294828415, -0.0049494793638587, -0.0942724272608757, -0.04615440219640732, -0.10552426427602768, -0.10523750633001328, -0.03291888162493706, -0.012321137823164463, 0.009995406493544579, -0.017898309975862503, 0.1275058388710022, -0.0387846902012825, 0.02427038736641407, -0.013604070991277695, 0.008593877777457237, 0.12371482700109482, 0.15512506663799286, -0.1284542828798294, -0.03257005661725998, 0.0674041286110878, -0.023030798882246017, -0.06404843926429749, -0.034409213811159134, -0.020351750776171684, -0.049583595246076584, 0.04934897646307945, 0.0912059098482132, 0.06053394451737404, 0.059074390679597855, 0.017386484891176224, -0.049993108958005905, 0.06771950423717499, -0.14076447486877441, 0.02355150133371353, -0.012422147206962109, -0.06638576835393906, 0.03159294277429581, 0.03049730882048607, -0.007347972597926855, -0.11338761448860168, 0.08931110054254532, -0.05387912690639496, -0.03096155636012554, -0.08461305499076843, -0.11772329360246658, -0.0043574851006269455, -0.06157069653272629, -0.025228580459952354, -0.08160346746444702, -0.17145073413848877, -0.04379159212112427, 0.017917271703481674, -0.06768288463354111, -0.009055237285792828, 0.034571435302495956, -0.04735562577843666, 0.004862241912633181, -0.01977018639445305, -0.01789662428200245, -0.03494400903582573, 0.027827832847833633, -0.09204398095607758, 0.0391804538667202, 0.092581607401371, 0.027270184829831123, -0.11568357050418854, 0.05383773148059845, -0.13033869862556458, 0.14022207260131836, -0.03838789835572243, 0.0020897951908409595, -0.09368187934160233, -0.0722087100148201, -0.008001036942005157, -0.027632659301161766, 0.029661191627383232, 0.12490614503622055, -0.16646479070186615, -0.022995034232735634, 0.2227270007133484, -0.06645900011062622, -0.0628206804394722, 0.08008068799972534, -0.06965415179729462, 0.03193264454603195, 0.13266083598136902, 0.058531396090984344, 0.1397435963153839, -0.10801970213651657, -0.09696841239929199, -0.05482299625873566, -0.08900414407253265, 0.16442067921161652, 0.035659465938806534, -0.014962430112063885, 0.024526020511984825, 0.0055260625667870045, -0.03882782533764839, -0.0010548860300332308, -0.02398737333714962, -0.0382227897644043, -0.01714176870882511, -0.008885927498340607, -0.001395402243360877, -0.05155663937330246, -0.028774984180927277, -0.03837721422314644, -0.10636557638645172, 0.04046430438756943, 0.09854238480329514, -0.04956408962607384, 0.02084866166114807, -0.09725373238325119, 0.035663872957229614, -0.050598807632923126, 0.016932513564825058, -0.1706792563199997, -0.029215440154075623, 0.023778213188052177, -0.0644378587603569, 0.06904193013906479, 0.00801054947078228, 0.058386556804180145, 0.05775744467973709, -0.022495875135064125, -0.0065726013854146, -0.045951325446367264, -0.006269500590860844, -0.044990960508584976, -0.18030108511447906, -0.0392073355615139, -0.04023676738142967, 0.06268558651208878, -0.08335012942552567, -0.005014061462134123, 0.08862882107496262, 0.13232477009296417, 0.02539425902068615, -0.041845232248306274, 0.021376773715019226, -0.03024183213710785, -0.03492356464266777, -0.09424525499343872, -0.045932818204164505, -0.00797512661665678, -0.030215762555599213, 0.16026999056339264, -0.11015445739030838, -0.1016678586602211, 0.12661443650722504, 0.13026359677314758, -0.08852408081293106, 0.035200439393520355, -0.06543713808059692, -0.011300437152385712, -0.02744114212691784, -0.05077742412686348, 0.22585390508174896, 0.040581706911325455, 0.07852344214916229, -0.08801986277103424, -0.06830448657274246, 0.004674586001783609, -0.0449397973716259, -0.04779474064707756, 0.053276319056749344, 0.030769022181630135, -0.1824359893798828, 0.06483490765094757, -0.0263174157589674, 0.07258494943380356, 0.2339341789484024, 0.023484930396080017, -0.10076740384101868, -0.05571259558200836, -0.06225883588194847, 0.006978100165724754, 0.10490269958972931, 0.01004866510629654, 0.028820838779211044, 0.041242413222789764, 0.04129379615187645, 0.05042415112257004, -0.09408584982156754, 0.011036396957933903, 0.048389874398708344, -0.049727827310562134, -0.05224213749170303, 0.025883790105581284, 0.025388333946466446, 0.09715639799833298, 0.07622376084327698, 0.1115230917930603, -0.052448809146881104, -0.05767909437417984, -0.12261246889829636, 0.11563163995742798, -0.10281820595264435, -0.19110308587551117, -0.13942022621631622, -0.05690218508243561, -0.012339855544269085, 0.01375056803226471, 0.03484911844134331, -0.07935233414173126, -0.04131438210606575, -0.09056661278009415, 0.10213208198547363, -0.012671458534896374, -0.007441652938723564, -0.001703802845440805, 0.043633006513118744, -0.024071456864476204, -0.10406600683927536, -0.040544625371694565, 0.022786449640989304, -0.0786985531449318, 0.011501315049827099, 0.02692550979554653, 0.044281356036663055, 0.12248760461807251, -0.0021029780618846416, 0.013828478753566742, -0.02775026671588421, 0.2590465843677521, -0.12271896749734879, 0.0628213956952095, 0.1617853045463562, 0.017768211662769318, 0.04691658169031143, 0.060702018439769745, -0.00400674669072032, -0.04174688085913658, 0.06261532753705978, 0.06065673381090164, -0.06893125921487808, -0.21129654347896576, -0.06020144373178482, -0.019983042031526566, 0.021017340943217278, 0.09433018416166306, 0.03497752919793129, 0.02101980708539486, 0.010911181569099426, -0.1135866791009903, 0.023937445133924484, 0.033541854470968246, 0.09258941560983658, -0.0898737907409668, 0.00537743978202343, 0.0445975624024868, -0.06159832328557968, 0.040724024176597595, 0.1335730254650116, 0.029299812391400337, 0.23267942667007446, -0.07530466467142105, 0.09750702977180481, 0.07285937666893005, 0.09862758219242096, 0.022734103724360466, 0.05165466293692589, -0.013934743590652943, 0.02970006689429283, 0.02262541651725769, -0.10332810878753662, -0.005878227297216654, 0.046291399747133255, 0.032097309827804565, -0.02099657990038395, -0.053587816655635834, -0.06078730896115303, 0.07287581264972687, 0.2525274157524109, 0.024265484884381294, -0.15109916031360626, -0.11938714981079102, 0.058759983628988266, -0.035298481583595276, -0.05003532022237778, -0.027162667363882065, 0.06359989196062088, -0.21411196887493134, 0.04023883491754532, -0.03122275322675705, 0.10803443193435669, -0.08289992809295654, 0.0000050628887038328685, 0.04162061586976051, 0.050042614340782166, -0.06476683914661407, 0.09002300351858139, -0.1727958470582962, 0.07862301915884018, -0.00298390188254416, 0.0754818543791771, -0.08011070638895035, 0.013779020868241787, 0.03202630206942558, 0.019224559888243675, 0.08822358399629593, 0.018134573474526405, 0.010094000957906246, -0.07323358952999115, -0.05623233690857887, -0.00756752397865057, 0.053044844418764114, -0.08685530722141266, 0.14047524333000183, -0.03197501227259636, 0.0233912356197834, -0.02769853174686432, -0.08269637078046799, -0.09839987009763718, -0.15130093693733215, 0.054722148925065994, -0.12523570656776428, -0.0008860804955475032, -0.06552625447511673, -0.02629491128027439, 0.011435283347964287, 0.1874445080757141, -0.10598691552877426, -0.09565290063619614, -0.1257554143667221, 0.0024899307172745466, 0.16062156856060028, -0.09111133217811584, 0.01467877347022295, -0.0014289760729297996, 0.16843658685684204, -0.0027259935159236193, -0.13644292950630188, -0.00890625361353159, -0.07119638472795486, -0.18724004924297333, -0.0052698166109621525, 0.14948132634162903, 0.0845014750957489, 0.03975424915552139, 0.0033522588200867176, 0.010068866424262524, -0.04571760445833206, -0.1550961136817932, 0.02765350230038166, 0.15141227841377258, 0.012221528217196465, 0.06597216427326202, 0.010453768074512482, 0.009517068974673748, -0.14222054183483124, 0.0036878243554383516, 0.07037495821714401, 0.1903204619884491, -0.09295389801263809, 0.18355917930603027, -0.004141100682318211, -0.08202388137578964, -0.1822507083415985, 0.0291301216930151, 0.02641763724386692, 0.05326031148433685, 0.013298031874001026, -0.17185966670513153, 0.0016328520141541958, 0.01904047094285488, -0.0038896887563169003, 0.06082919239997864, -0.32830289006233215, -0.14632315933704376, 0.012685022316873074, -0.003695467486977577, -0.08975383639335632, -0.042518965899944305, -0.01849384792149067, -0.09009075909852982, -0.19055499136447906, 0.09476228058338165, -0.1183694526553154, 0.0876379981637001, 0.01269926130771637, 0.06994219869375229, 0.05275120958685875, -0.061455145478248596, 0.12765288352966309, -0.037049293518066406, 0.0630420371890068, -0.08988587558269501, -0.03088073618710041, 0.11428480595350266, -0.06630163639783859, 0.09930533915758133, 0.021538609638810158, 0.07938161492347717, -0.10245703905820847, -0.078535296022892, -0.07939321547746658, 0.026926156133413315, -0.04952968284487724, -0.09602892398834229, -0.0884360522031784, 0.10653632134199142, 0.12691092491149902, -0.046730831265449524, -0.06999237090349197, -0.037039272487163544, -0.04668322205543518, 0.0795479491353035, 0.08752043545246124, 0.09676670283079147, -0.08277296274900436, 0.029881605878472328, 0.009852871298789978, 0.028874419629573822, -0.1358294039964676, 0.043369706720113754, 0.08145786821842194, 0.026670098304748535, 0.09041000157594681, 0.001964390045031905, -0.1732029765844345, 0.01470832247287035, 0.04455065727233887, -0.16429920494556427, -0.11176852881908417, -0.036913011223077774, -0.02720382809638977, -0.059198975563049316, -0.054082076996564865, 0.1418984979391098, -0.05272869020700455, -0.02618493139743805, -0.003843550570309162, 0.056297048926353455, -0.05089113861322403, 0.11704360693693161, 0.020124396309256554, 0.041630275547504425, -0.06786784529685974, 0.11349377781152725, 0.056841302663087845, 0.016684185713529587, 0.04891439527273178, 0.05563250184059143, -0.09505520015954971, -0.009609167464077473, -0.06338771432638168, 0.033301059156656265, -0.058691464364528656, -0.01843063347041607, -0.00994077417999506, -0.04977825656533241, 0.03395884111523628, 0.07804247736930847, 0.0014967810129746795, 0.09405135363340378, -0.01984078623354435, -0.00894604716449976, -0.12999215722084045, 0.08433613926172256, 0.060726627707481384, -0.004899432882666588, -0.11908062547445297, 0.18078970909118652, 0.010027921758592129, 0.09207955002784729, -0.04535693675279617, -0.03788263350725174, -0.07609202712774277, -0.0028601852245628834, -0.17876148223876953, -0.04223298281431198, -0.08444780856370926, -0.03713538870215416, -0.023847423493862152, -0.03673984110355377, -0.017693007364869118, 0.06135448440909386, -0.03694745898246765, -0.06390660256147385, -0.07166489958763123, 0.05499434471130371, -0.13993941247463226, 0.009600391611456871, 0.09961801022291183, -0.06208235025405884, 0.12110336869955063, 0.0915379598736763, -0.01905473694205284, 0.03358219936490059, -0.08564276248216629, 0.037447214126586914, -0.03404516354203224, 0.010313459672033787, 0.0378800705075264, -0.14084342122077942, 0.017942974343895912, -0.05352604016661644, -0.060564447194337845, 0.01376508641988039, 0.019358165562152863, -0.11799640953540802, -0.0009857480181381106, 0.06506270915269852, 0.02354106679558754, -0.06512932479381561, 0.08949138969182968, 0.0695108026266098, 0.04906907677650452, 0.08953586220741272, -0.053479183465242386, 0.09357429295778275, -0.1557609736919403, -0.04428999125957489, -0.005609781015664339, 0.005724943708628416, 0.04392737150192261, -0.006108333822339773, 0.05617135763168335, -0.026220006868243217, 0.20720085501670837, 0.034476179629564285, -0.008888504467904568, 0.03764742985367775, -0.05913792923092842, -0.0015789478784427047, 0.0550338551402092, 0.06291776895523071, -0.041251491755247116, -0.024412794038653374, -0.023256205022335052, -0.00800336990505457, -0.06346899271011353, -0.030415430665016174, 0.11234907060861588, 0.07366882264614105, 0.17204003036022186, -0.024687238037586212, 0.07512642443180084, -0.04833858460187912, -0.09316179156303406, -0.05418802797794342, -0.05398162826895714, 0.035442836582660675, -0.08935285359621048, 0.0854833647608757, 0.1645338386297226, -0.16334855556488037, 0.12355268001556396, 0.009796698577702045, -0.05824218690395355, -0.08368802070617676, -0.17790549993515015, -0.021551385521888733, -0.03316985443234444, 0.03312768414616585, -0.12587901949882507, 0.07328679412603378, 0.017777996137738228, 0.040305811911821365, -0.07410075515508652, 0.12274610996246338, -0.07266020774841309, -0.12102842330932617, 0.04604777693748474, 0.03623208403587341, 0.00782527681440115, 0.05806518346071243, 0.06083330884575844, 0.0229785218834877, -0.008828254416584969, 0.04331614449620247, 0.055448390543460846, 0.016107965260744095, 0.030323492363095284, -0.012390724383294582, -0.05366768687963486, 0.026153555139899254, 0.019301585853099823, 0.04379581660032272, 0.10969603806734085, 0.0668259859085083, -0.02573041059076786, -0.04504897817969322, 0.3091697096824646, -0.028458742424845695, -0.0454394556581974, -0.1536632925271988, 0.16032421588897705, 0.03269583731889725, 0.0007234156364575028, 0.019520316272974014, -0.14120644330978394, -0.006333116441965103, 0.1484304964542389, 0.2175566554069519, -0.04054760932922363, 0.019680459052324295, -0.05550271272659302, 0.017507227137684822, 0.027604293078184128, 0.09926625341176987, 0.05418344959616661, 0.19779297709465027, -0.03953701630234718, 0.08668922632932663, -0.018068639561533928, -0.006874728947877884, -0.0318673774600029, 0.12517236173152924, -0.028020404279232025, -0.006920054089277983, -0.05436317250132561, 0.09609680622816086, -0.0714266449213028, -0.2750360667705536, -0.01757122576236725, -0.05474799871444702, -0.09993734955787659, 0.059481680393218994, -0.022525912150740623, 0.003042071359232068, 0.10547507554292679, 0.024427594617009163, -0.013635051436722279, 0.11506801098585129, 0.04013083502650261, -0.044116485863924026, -0.020867208018898964, 0.08745301514863968, -0.020379500463604927, 0.18348076939582825, -0.018716715276241302, 0.020227540284395218, 0.09473712742328644, 0.022666361182928085, -0.13065175712108612, 0.0033816948998719454, 0.047102004289627075, -0.08341314643621445, -0.009087839163839817, 0.17412760853767395, -0.0013846000656485558, 0.007279977668076754, 0.06894245743751526, -0.052333347499370575, 0.02329443022608757, -0.06265220791101456, 0.06176435947418213, -0.14126472175121307, 0.07893325388431549, -0.08964125066995621, 0.13133597373962402, 0.21035374701023102, -0.08151713758707047, 0.0244737658649683, -0.05605359002947807, 0.01469646766781807, -0.012685353867709637, 0.057748667895793915, -0.021023700013756752, -0.11468971520662308, 0.01934576965868473, 0.035901788622140884, 0.025251127779483795, -0.17646081745624542, -0.07065869122743607, 0.03786465525627136, -0.0446375235915184, 0.01683005876839161, 0.1666400283575058, 0.03369786962866783, 0.06277929246425629, -0.0227663591504097, 0.016763687133789062, -0.010199944488704205, 0.10161703824996948, -0.14801278710365295, -0.09228500723838806 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/0d4b35ed37091d5f6fd59806810e14ca.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bill Wurtz</div> <a href="https://genius.com/artists/bill-wurtz"> <div style="text-align: center; font-size: 14px;">@bill-wurtz</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bill Wurtz. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bill-wurtz). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bill-wurtz") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/27ysbe74/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bill Wurtz's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2f8oa51l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2f8oa51l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bill-wurtz') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bill-wurtz") model = AutoModelWithLMHead.from_pretrained("huggingartists/bill-wurtz") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/bill-wurtz"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/bill-wurtz
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bill-wurtz", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bill-wurtz #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bill Wurtz</div> <a href="URL <div style="text-align: center; font-size: 14px;">@bill-wurtz</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Bill Wurtz. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Bill Wurtz's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bill Wurtz.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bill Wurtz's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bill-wurtz #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bill Wurtz.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bill Wurtz's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bill-wurtz #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Bill Wurtz.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bill Wurtz's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.05157754570245743, 0.17106746137142181, -0.0025879242457449436, 0.05393867939710617, 0.09977129846811295, 0.01871604658663273, 0.08008391410112381, 0.1140379086136818, 0.03210284933447838, 0.08089838922023773, 0.07431655377149582, 0.03822612017393112, 0.07036444544792175, 0.09156833589076996, 0.06389384716749191, -0.225701704621315, 0.03421676158905029, -0.07934856414794922, 0.008327372372150421, 0.09437189251184464, 0.08362210541963577, -0.06972868740558624, 0.07384151220321655, 0.02319265715777874, -0.0726737231016159, 0.007356048561632633, 0.008006737567484379, -0.05338791757822037, 0.08748377114534378, 0.06994960457086563, 0.045151107013225555, 0.027252230793237686, 0.06601645797491074, -0.17904339730739594, 0.030023621395230293, 0.12359285354614258, 0.0255692470818758, 0.08150359988212585, 0.05467096343636513, -0.08614256978034973, 0.11365984380245209, -0.019886305555701256, 0.08025385439395905, 0.05796271190047264, -0.11214710772037506, -0.10879155248403549, -0.15239450335502625, 0.09581086039543152, 0.08326034992933273, 0.08574051409959793, -0.026530921459197998, 0.08219954371452332, -0.016578838229179382, 0.04114478826522827, 0.24468834698200226, -0.23862303793430328, -0.006907187402248383, 0.07734578847885132, 0.048659566789865494, 0.00711126159876585, -0.09637927263975143, 0.016664454713463783, 0.0508265383541584, 0.03467683121562004, 0.03181421756744385, -0.0229270551353693, 0.15737895667552948, 0.026247061789035797, -0.11185622960329056, -0.07675246149301529, 0.08633560687303543, -0.019254012033343315, -0.07900086045265198, -0.130102276802063, -0.001518150558695197, -0.03874930739402771, 0.029256610199809074, 0.024045156314969063, -0.002471495885401964, -0.006028030067682266, -0.04343440756201744, -0.10919199883937836, -0.0730777382850647, -0.038867540657520294, -0.012552645057439804, 0.0602010041475296, 0.03624988719820976, 0.035621970891952515, -0.09008564054965973, 0.22168581187725067, 0.007110463455319405, -0.09504532068967819, -0.05234028398990631, -0.10241472721099854, -0.09090933203697205, -0.0343814454972744, -0.002416111994534731, -0.005483494605869055, -0.021380756050348282, 0.1444588452577591, -0.035916782915592194, 0.02511090785264969, -0.03052714839577675, 0.0030053406953811646, 0.13419736921787262, 0.14218133687973022, -0.1275082379579544, -0.04679591581225395, 0.06535423547029495, 0.005168947856873274, -0.06575583666563034, -0.04383006691932678, 0.0016463393112644553, -0.005253929179161787, 0.04847138747572899, 0.08193250000476837, 0.08394023776054382, 0.05842314660549164, -0.0008215263951569796, -0.06398957967758179, 0.0683199018239975, -0.1313919574022293, 0.01567937806248665, -0.0065203262493014336, -0.055494263768196106, 0.03718705102801323, 0.06700410693883896, -0.00217713532038033, -0.11247666925191879, 0.11364182084798813, -0.07712321728467941, -0.05144258961081505, -0.07847026735544205, -0.10614661127328873, 0.004811550956219435, -0.06559468805789948, -0.0281669944524765, -0.0712810754776001, -0.17331592738628387, -0.049264099448919296, 0.021383482962846756, -0.04955785721540451, -0.02244102954864502, 0.021298453211784363, -0.032904304563999176, 0.0146178612485528, -0.01916729472577572, -0.001265239785425365, -0.023159481585025787, 0.028122924268245697, -0.0941278338432312, 0.03099682554602623, 0.07129208743572235, 0.040397729724645615, -0.10802124440670013, 0.0730227679014206, -0.11941982805728912, 0.11488580703735352, -0.03965362533926964, 0.006933338474482298, -0.09815779328346252, -0.06971804797649384, -0.022415215149521828, -0.02997497469186783, 0.02998989447951317, 0.1263892948627472, -0.1574646532535553, -0.023247765377163887, 0.20877662301063538, -0.0653049647808075, -0.0675099715590477, 0.0661410391330719, -0.07520980387926102, 0.03931932896375656, 0.1146923303604126, 0.0715867429971695, 0.15597261488437653, -0.1289839744567871, -0.08672672510147095, -0.0429992713034153, -0.0596538782119751, 0.16634249687194824, 0.02195453643798828, -0.030660174787044525, 0.020902011543512344, 0.002344896085560322, -0.0343235544860363, -0.007195803336799145, -0.02565966174006462, -0.03132516145706177, -0.019156193360686302, -0.02534795179963112, 0.010355578735470772, -0.04500178247690201, -0.043563906103372574, -0.01928255893290043, -0.10347072780132294, 0.07124688476324081, 0.10629735887050629, -0.07070615887641907, 0.015541722998023033, -0.10207587480545044, 0.028265301138162613, -0.0461113303899765, 0.014733243733644485, -0.1771320104598999, -0.04703684523701668, 0.01766987331211567, -0.07622018456459045, 0.0647771880030632, 0.02215469814836979, 0.046918127685785294, 0.06422122567892075, -0.012320423498749733, -0.00497483741492033, -0.03936014696955681, 0.0014867496211081743, -0.04750801622867584, -0.1670880764722824, -0.054508551955223083, -0.05043423920869827, 0.08674640953540802, -0.1098337396979332, 0.001561826909892261, 0.08577888458967209, 0.13988958299160004, 0.027067726477980614, -0.06653372198343277, 0.040797606110572815, -0.03672286868095398, -0.02293129824101925, -0.10659171640872955, -0.04261983558535576, 0.010973622091114521, -0.013142874464392662, 0.14802147448062897, -0.1390107274055481, -0.11340068280696869, 0.12812945246696472, 0.1193743422627449, -0.07900317013263702, 0.04394629970192909, -0.06849908828735352, -0.020585792139172554, -0.049342431128025055, -0.0630531907081604, 0.23635153472423553, 0.041266635060310364, 0.08846194297075272, -0.08509009331464767, -0.08518026769161224, 0.0058358097448945045, -0.03089096024632454, -0.03245772421360016, 0.04097060486674309, 0.020853832364082336, -0.16205094754695892, 0.048399221152067184, -0.02044724114239216, 0.08396146446466446, 0.1857466846704483, 0.02419530786573887, -0.08765364438295364, -0.051142994314432144, -0.06627942621707916, 0.009614119306206703, 0.10283679515123367, 0.010930349119007587, 0.031157033517956734, 0.04190986603498459, 0.04502538964152336, 0.05054653808474541, -0.11681155115365982, 0.011095058172941208, 0.05112440511584282, -0.027213480323553085, -0.05381239950656891, 0.01578114554286003, 0.016644595190882683, 0.08832495659589767, 0.06452792882919312, 0.10754107683897018, -0.055695656687021255, -0.05111844092607498, -0.13680092990398407, 0.13979364931583405, -0.09108006954193115, -0.2078256756067276, -0.1378558874130249, -0.07239510118961334, 0.012911533005535603, 0.001156651065684855, 0.029782462865114212, -0.04584244638681412, -0.042996205389499664, -0.09455505013465881, 0.08098580688238144, -0.02813112922012806, -0.01299460418522358, 0.004773688968271017, 0.008833225816488266, -0.013554197736084461, -0.1278889924287796, -0.028936956077814102, 0.023064523935317993, -0.05867563560605049, 0.007089525926858187, 0.026526330038905144, 0.05430610850453377, 0.15464185178279877, 0.003580950666218996, 0.010349581949412823, -0.024274269118905067, 0.2652796804904938, -0.10635460168123245, 0.06658516824245453, 0.16063304245471954, -0.012060776352882385, 0.05707024037837982, 0.04677719995379448, -0.0019015417201444507, -0.06097406893968582, 0.05094187706708908, 0.07161998748779297, -0.06803746521472931, -0.2138480693101883, -0.034637853503227234, -0.018791615962982178, 0.022242236882448196, 0.12348565459251404, 0.03433692082762718, 0.04129951447248459, 0.014634242281317711, -0.09351151436567307, 0.05248456448316574, 0.020933687686920166, 0.09233318269252777, -0.07261192053556442, -0.003091020742431283, 0.04393605887889862, -0.055487748235464096, 0.04502645879983902, 0.12247710675001144, 0.04385209456086159, 0.2425876408815384, -0.0732230618596077, 0.08845110982656479, 0.08659420162439346, 0.09236274659633636, 0.01847684383392334, 0.046304795891046524, -0.03040110319852829, 0.03273522108793259, 0.01057890709489584, -0.09477174282073975, 0.0031176588963717222, 0.03254904970526695, 0.012374882586300373, -0.012249249033629894, -0.06018533557653427, -0.07791563868522644, 0.04749653860926628, 0.22482237219810486, 0.04671965911984444, -0.1559140533208847, -0.10011471062898636, 0.05904762074351311, -0.044732484966516495, -0.05352373421192169, -0.019696272909641266, 0.0580209344625473, -0.2090284377336502, 0.03860390558838844, -0.04818117246031761, 0.11355029791593552, -0.11782211810350418, -0.0024591670371592045, 0.042959216982126236, 0.048137422651052475, -0.07355821877717972, 0.07121007889509201, -0.15248289704322815, 0.08328783512115479, 0.0031672853510826826, 0.08492281287908554, -0.06936311721801758, 0.013616485521197319, 0.03358103707432747, 0.020955756306648254, 0.08729808777570724, 0.017279837280511856, 0.04696040600538254, -0.037645477801561356, -0.04498692974448204, -0.0018369711469858885, 0.05603155121207237, -0.07718849927186966, 0.1371704787015915, -0.027585314586758614, 0.025422222912311554, -0.02011062391102314, -0.08370766043663025, -0.09269638359546661, -0.14672298729419708, 0.07220175862312317, -0.1220034658908844, -0.005022714845836163, -0.0625690445303917, -0.021018078550696373, 0.0040296269580721855, 0.18792760372161865, -0.10313589870929718, -0.07468519359827042, -0.1373688131570816, 0.010470563545823097, 0.14653323590755463, -0.07624762505292892, 0.005978172644972801, -0.0038706676568835974, 0.15166893601417542, -0.013704161159694195, -0.14268524944782257, -0.004868743475526571, -0.07277783751487732, -0.17833861708641052, -0.028087232261896133, 0.1307712346315384, 0.07322898507118225, 0.039503566920757294, 0.003159962361678481, 0.006630988791584969, -0.03989257290959358, -0.16964109241962433, 0.02826247736811638, 0.14266829192638397, 0.019994815811514854, 0.023097293451428413, 0.020935768261551857, 0.025386599823832512, -0.13456875085830688, 0.022191472351551056, 0.050688061863183975, 0.193332239985466, -0.08244337141513824, 0.16602809727191925, 0.013383136130869389, -0.09268693625926971, -0.19138745963573456, 0.03397580236196518, -0.0002969526394736022, 0.02944527193903923, 0.015484966337680817, -0.1762189120054245, 0.03105315752327442, 0.02216346189379692, -0.007850720547139645, 0.08254311978816986, -0.3402342200279236, -0.14970549941062927, 0.028735624626278877, 0.022197706624865532, -0.07558772712945938, -0.047889549285173416, -0.036054495722055435, -0.0693717822432518, -0.24606221914291382, 0.10362713038921356, -0.13541236519813538, 0.0835270956158638, 0.01760990172624588, 0.07200818508863449, 0.04493585228919983, -0.07034299522638321, 0.13086357712745667, -0.027729790657758713, 0.06579799205064774, -0.07460544258356094, -0.05193609744310379, 0.0909571647644043, -0.06427635252475739, 0.0981845110654831, 0.010237853974103928, 0.09036505967378616, -0.12034517526626587, -0.06843085587024689, -0.08306421339511871, 0.01851090043783188, -0.05844385549426079, -0.09336141496896744, -0.0758998766541481, 0.09943749010562897, 0.12697254121303558, -0.03910788521170616, -0.09995657950639725, -0.03888954222202301, -0.025107137858867645, 0.0879664495587349, 0.09801974892616272, 0.09210895746946335, -0.09982773661613464, 0.006440852768719196, 0.0004750697407871485, 0.027781235054135323, -0.15697209537029266, 0.03278470039367676, 0.08169403672218323, 0.050798431038856506, 0.10263893753290176, 0.0090341130271554, -0.16988417506217957, 0.01885235123336315, 0.03375159204006195, -0.1501622498035431, -0.11487938463687897, -0.03173481673002243, 0.003457563929259777, -0.09106025844812393, -0.03215256705880165, 0.14488747715950012, -0.03790070861577988, -0.0295188520103693, -0.00004197455200483091, 0.05338893085718155, -0.04921117424964905, 0.12270189076662064, 0.033379118889570236, 0.048601485788822174, -0.07444527000188828, 0.11524412781000137, 0.06012372672557831, 0.01897125318646431, 0.04090705141425133, 0.04576233774423599, -0.08778806775808334, -0.0017984199803322554, -0.09305023401975632, 0.024766793474555016, -0.06035681441426277, -0.007072766311466694, -0.007273040246218443, -0.0390668548643589, 0.033714454621076584, 0.10926541686058044, -0.012891828082501888, 0.10858771950006485, -0.03087550587952137, -0.01486402191221714, -0.13513876497745514, 0.07232192903757095, 0.06479932367801666, 0.020736850798130035, -0.10570203512907028, 0.19343438744544983, 0.02566337026655674, 0.09182622283697128, -0.039961330592632294, -0.048462580889463425, -0.08549251407384872, -0.012094234116375446, -0.1647910177707672, -0.030456488952040672, -0.07401443272829056, -0.033553652465343475, -0.01755799539387226, -0.03566383570432663, -0.01856386847794056, 0.05826329439878464, -0.032465171068906784, -0.06138918548822403, -0.05528426170349121, 0.04483483359217644, -0.14534436166286469, 0.010127531364560127, 0.11152595281600952, -0.06233637407422066, 0.10245870053768158, 0.058371640741825104, -0.029895655810832977, 0.0278919730335474, -0.09542474150657654, 0.02131514810025692, -0.03674550727009773, 0.010722415521740913, 0.03446996957063675, -0.14277079701423645, 0.0049289013259112835, -0.0594746470451355, -0.0594862662255764, 0.010661626234650612, 0.009998048655688763, -0.1202872171998024, 0.00385074969381094, 0.06239645555615425, 0.013112351298332214, -0.06927900016307831, 0.06912729889154434, 0.07124371826648712, 0.02897254191339016, 0.07040204107761383, -0.03174654394388199, 0.0812838152050972, -0.17004291713237762, -0.04858579486608505, 0.0016226532170549035, 0.012164544314146042, 0.04986804351210594, 0.0010187331354245543, 0.048373714089393616, -0.016172682866454124, 0.18492341041564941, -0.008741607889533043, -0.023243866860866547, 0.03862515464425087, -0.043853696435689926, -0.027293818071484566, 0.04901673272252083, 0.06742985546588898, -0.043728362768888474, -0.022286031395196915, -0.04429297521710396, -0.0035990478936582804, -0.07367648184299469, -0.016008075326681137, 0.12106366455554962, 0.06357524544000626, 0.15675270557403564, -0.02824612520635128, 0.054375309497117996, -0.033022213727235794, -0.1065264418721199, -0.01159285195171833, -0.043630294501781464, 0.0452507883310318, -0.07283170521259308, 0.08536295592784882, 0.16028741002082825, -0.15496601164340973, 0.11848068982362747, 0.016044137999415398, -0.058768291026353836, -0.09046342968940735, -0.1732037216424942, -0.010623770765960217, -0.01945754513144493, 0.03411223366856575, -0.12432974576950073, 0.08557779341936111, 0.03182881698012352, 0.03402954712510109, -0.057385653257369995, 0.11899451166391373, -0.0629638284444809, -0.10617394000291824, 0.03595153987407684, 0.029724137857556343, 0.01458545122295618, 0.04018145054578781, 0.06862816214561462, 0.030779032036662102, 0.0068485732190310955, 0.05813652276992798, 0.036800168454647064, 0.033620741218328476, 0.04109101742506027, -0.008243014104664326, -0.05508780851960182, 0.025938356295228004, 0.010110911913216114, 0.03740266337990761, 0.11879761517047882, 0.07922403514385223, -0.012377766892313957, -0.03520296886563301, 0.2826269567012787, -0.0392807312309742, -0.05329480394721031, -0.1752387285232544, 0.17492544651031494, 0.019299060106277466, -0.00874276366084814, 0.026912089437246323, -0.14133314788341522, 0.019921066239476204, 0.15994268655776978, 0.18384666740894318, -0.056464776396751404, 0.014342370443046093, -0.03651178628206253, 0.01327461190521717, 0.03529168292880058, 0.09360094368457794, 0.055788248777389526, 0.20819450914859772, -0.04553922265768051, 0.05772226303815842, -0.0061728376895189285, -0.02490358054637909, -0.010519539006054401, 0.1162310317158699, -0.030906619504094124, -0.0033314446918666363, -0.06055713817477226, 0.08971234411001205, -0.07442780584096909, -0.28602275252342224, -0.009269856847822666, -0.04667983204126358, -0.09420490264892578, 0.04163316637277603, -0.04649823158979416, -0.017664631828665733, 0.09679143875837326, 0.015300762839615345, -0.0183502696454525, 0.1360401213169098, 0.032633982598781586, -0.04757406935095787, -0.017332898452878, 0.08003408461809158, -0.027338506653904915, 0.1805981546640396, -0.023548278957605362, 0.0005160503787919879, 0.09061285853385925, 0.021226156502962112, -0.12373147159814835, 0.00198186794295907, 0.04452122375369072, -0.09099461138248444, -0.014696665108203888, 0.17766405642032623, 0.004265874158591032, 0.020304271951317787, 0.04891175031661987, -0.04266849160194397, 0.029272759333252907, -0.04947403818368912, 0.0404975526034832, -0.1324925571680069, 0.04519706964492798, -0.07587101310491562, 0.15036097168922424, 0.1820690780878067, -0.07611303776502609, 0.026406768709421158, -0.050996460020542145, -0.0014404229586943984, -0.014476844109594822, 0.055397678166627884, -0.02090257778763771, -0.10622626543045044, 0.027042128145694733, 0.021117862313985825, 0.023549867793917656, -0.2060539424419403, -0.06370959430932999, 0.04723083972930908, -0.048413489013910294, 0.01684568077325821, 0.17410573363304138, 0.04246381297707558, 0.05999799817800522, -0.03138500079512596, 0.018472058698534966, -0.019481847062706947, 0.1066400557756424, -0.1310773640871048, -0.09035009890794754 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1aa6c04aad3652556046bb3aabe96498.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Billie Eilish</div> <a href="https://genius.com/artists/billie-eilish"> <div style="text-align: center; font-size: 14px;">@billie-eilish</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Billie Eilish. Dataset is available [here](https://huggingface.co/datasets/huggingartists/billie-eilish). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/billie-eilish") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/billie-eilish") model = AutoModelWithLMHead.from_pretrained("huggingartists/billie-eilish") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3l1r2mnu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Billie Eilish's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/209kskmi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/209kskmi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/billie-eilish') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/billie-eilish"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/billie-eilish
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/billie-eilish", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/billie-eilish #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Billie Eilish</div> <a href="URL <div style="text-align: center; font-size: 14px;">@billie-eilish</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Billie Eilish. Dataset is available here. And can be used with: Or with Transformers library: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Billie Eilish's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Billie Eilish.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Billie Eilish's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/billie-eilish #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Billie Eilish.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Billie Eilish's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 89, 21, 60, 74, 18, 47, 40 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/billie-eilish #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Billie Eilish.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Billie Eilish's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04164351150393486, 0.19219663739204407, -0.0033491686917841434, 0.08247361332178116, 0.08977780491113663, 0.010948813520371914, 0.07417188584804535, 0.1110820546746254, -0.006136107258498669, 0.0652046874165535, 0.05810249596834183, 0.03015640191733837, 0.06971678137779236, 0.0678241103887558, 0.046649686992168427, -0.22459560632705688, 0.004163342993706465, -0.03996751084923744, -0.012282333336770535, 0.09396512806415558, 0.08340474963188171, -0.07291228324174881, 0.06130862608551979, 0.02433638833463192, -0.06637100130319595, 0.0039375233463943005, 0.009335567243397236, -0.049619849771261215, 0.08266967535018921, 0.08357612788677216, 0.05220535770058632, 0.04574747011065483, 0.05080251395702362, -0.14489519596099854, 0.027904152870178223, 0.11105763167142868, 0.021271374076604843, 0.08476488292217255, 0.04079277068376541, -0.04181232675909996, 0.06602559238672256, -0.021465182304382324, 0.0933571383357048, 0.06292843073606491, -0.11863218247890472, -0.10756233334541321, -0.12139929831027985, 0.03203918784856796, 0.022217383608222008, 0.08052978664636612, -0.03147144243121147, 0.13287174701690674, -0.036359407007694244, 0.05301714316010475, 0.27151814103126526, -0.22690202295780182, -0.000048749938287073746, 0.045689657330513, 0.06648165732622147, 0.0037319520488381386, -0.09105145186185837, 0.003356396220624447, 0.045225974172353745, 0.05407950282096863, 0.07010465860366821, -0.016198931261897087, 0.12808164954185486, -0.004586761351674795, -0.10496454685926437, -0.07763250172138214, 0.08880293369293213, -0.021932894363999367, -0.08647634088993073, -0.11493725329637527, -0.0215634573251009, -0.04804201051592827, 0.04511532559990883, 0.013714867644011974, -0.004398955963551998, -0.006886801682412624, -0.07929058372974396, -0.14339496195316315, -0.08520764857530594, -0.05574881657958031, -0.04579927772283554, 0.09637686610221863, 0.04523017257452011, 0.03029494546353817, -0.08867692947387695, 0.20251265168190002, 0.016610177233815193, -0.10410532355308533, -0.06581076979637146, -0.10794049501419067, -0.09822599589824677, -0.020892487838864326, -0.013213938102126122, -0.003229430178180337, -0.021738393232226372, 0.1429048627614975, -0.05263924598693848, 0.0031372541561722755, -0.06137414649128914, 0.02324776165187359, 0.1251116693019867, 0.13304950296878815, -0.0980413630604744, -0.012808806262910366, 0.10109779238700867, -0.02614138461649418, -0.039133086800575256, -0.05589985474944115, -0.0011090429034084082, -0.05948992818593979, 0.060022663325071335, 0.0801682248711586, 0.08322316408157349, 0.05492038279771805, -0.03075065277516842, -0.06271258741617203, 0.06757155060768127, -0.15416833758354187, 0.017209317535161972, -0.007692309096455574, -0.0428021065890789, -0.023566724732518196, 0.08530978858470917, -0.03566379100084305, -0.1144884005188942, 0.05046895518898964, -0.08799871057271957, -0.05805892124772072, -0.08887018263339996, -0.11013997346162796, 0.00820688996464014, -0.06600034981966019, -0.015562772750854492, -0.09179394692182541, -0.17605634033679962, -0.019179848954081535, -0.015678266063332558, -0.05796455964446068, -0.03407452255487442, 0.029634425416588783, -0.026259059086441994, 0.004435683134943247, -0.014191528782248497, -0.007633833680301905, -0.006797182373702526, 0.06045425683259964, -0.060789577662944794, 0.04461669921875, 0.04093071073293686, 0.044895097613334656, -0.11105278134346008, 0.07324623316526413, -0.14713813364505768, 0.15607644617557526, -0.03663686290383339, -0.047770511358976364, -0.07742903381586075, -0.10279220342636108, -0.03315373510122299, -0.029636505991220474, 0.05503228306770325, 0.12705016136169434, -0.1556188464164734, -0.028981972485780716, 0.1990327388048172, -0.09388741105794907, -0.049094028770923615, 0.08787034451961517, -0.07210410386323929, 0.050372544676065445, 0.09900814294815063, 0.047445349395275116, 0.10389702022075653, -0.07919502258300781, -0.0766107589006424, -0.05133906379342079, -0.07030799239873886, 0.17792895436286926, 0.029210839420557022, -0.018091021105647087, 0.034702494740486145, -0.008615885861217976, 0.0025540348142385483, -0.016660580411553383, -0.037000980228185654, -0.032069843262434006, -0.028809204697608948, -0.021925736218690872, 0.03206565976142883, -0.032856881618499756, -0.02977159433066845, -0.015406259335577488, -0.11629693955183029, 0.04711633175611496, 0.09839233011007309, -0.08089020848274231, 0.03910671919584274, -0.11316180229187012, 0.037224024534225464, -0.04798377305269241, 0.004310230258852243, -0.19259005784988403, -0.025990523397922516, 0.02284909412264824, -0.07810646295547485, 0.08498727530241013, 0.02495492435991764, 0.03900955989956856, 0.0756080150604248, -0.024655144661664963, 0.010023275390267372, -0.08356375992298126, -0.0015926964115351439, -0.03930596262216568, -0.1553570181131363, -0.050508301705121994, -0.05556345731019974, 0.05527811869978905, -0.10516384243965149, 0.013002033345401287, 0.09966602176427841, 0.13795383274555206, 0.04071549326181412, -0.0668129250407219, 0.03117109090089798, -0.030400287359952927, -0.022937137633562088, -0.09528506547212601, -0.045966777950525284, 0.024325396865606308, -0.05629066005349159, 0.15318606793880463, -0.16553907096385956, -0.10702206939458847, 0.12846994400024414, 0.08082934468984604, -0.08859596401453018, 0.04019193723797798, -0.049279846251010895, -0.02720310352742672, -0.06838318705558777, -0.07909122854471207, 0.21822430193424225, 0.04016471654176712, 0.09795138984918594, -0.10493426769971848, -0.07067997753620148, -0.0016026366502046585, -0.016766881570219994, -0.009049876593053341, 0.04354335740208626, 0.028167590498924255, -0.20414258539676666, 0.048675600439310074, -0.0010282580042257905, 0.03379935771226883, 0.2069540172815323, 0.024847066029906273, -0.09448849409818649, -0.05967950448393822, -0.07961108535528183, 0.02300717495381832, 0.09570375084877014, -0.009365149773657322, 0.06898196041584015, 0.03903849422931671, 0.04070090875029564, 0.035374924540519714, -0.11667579412460327, 0.01355277094990015, 0.06778497993946075, -0.016430795192718506, -0.055556122213602066, 0.008249294944107533, 0.02839401736855507, 0.07589681446552277, 0.04498737305402756, 0.12284491956233978, -0.025007829070091248, -0.05158965289592743, -0.12274383008480072, 0.13353048264980316, -0.08450460433959961, -0.2187097668647766, -0.13496913015842438, -0.03941699489951134, 0.02530434913933277, 0.022828038781881332, 0.04676719754934311, -0.005767693277448416, -0.035826534032821655, -0.08617852628231049, 0.1018211841583252, -0.025985604152083397, -0.004752526059746742, -0.007993606850504875, 0.025023458525538445, 0.01143063884228468, -0.14988979697227478, -0.014701895415782928, 0.03625360503792763, -0.09452453255653381, 0.017545439302921295, 0.033153288066387177, 0.0371079221367836, 0.1252088099718094, -0.012890013866126537, -0.010527386330068111, -0.02618524618446827, 0.2733478248119354, -0.11932288110256195, 0.053920116275548935, 0.17292259633541107, -0.054675351828336716, 0.06493406742811203, 0.034642141312360764, -0.0008846053387969732, -0.06791812926530838, 0.057908181101083755, 0.057557325810194016, -0.06852446496486664, -0.21092724800109863, -0.017816979438066483, -0.033757682889699936, 0.018314162269234657, 0.10849997401237488, 0.0328420028090477, 0.00016813387628644705, 0.03418012335896492, -0.08755061775445938, 0.07484170794487, 0.04543441906571388, 0.10390536487102509, -0.007860006764531136, -0.004192909691482782, 0.06678321212530136, -0.05479341000318527, 0.019209779798984528, 0.09676320850849152, 0.033603962510824203, 0.25700539350509644, -0.10066574811935425, 0.07781396061182022, 0.08378592133522034, 0.06005639210343361, 0.04693180322647095, 0.05284159630537033, -0.026912545785307884, 0.0424441434442997, -0.0005560790305025876, -0.08617451041936874, -0.020173486322164536, 0.023792320862412453, 0.0184659231454134, -0.01847703941166401, -0.0394134521484375, -0.08207891881465912, 0.019510509446263313, 0.20025259256362915, 0.07318144291639328, -0.14069925248622894, -0.1038394346833229, 0.058288224041461945, -0.04812068119645119, -0.061525050550699234, -0.015780193731188774, 0.09026413410902023, -0.19468940794467926, 0.005019451025873423, -0.02467905357480049, 0.11817096918821335, -0.1558743715286255, -0.016723614186048508, -0.026352453976869583, 0.06457163393497467, -0.07293669879436493, 0.06846082955598831, -0.17037375271320343, 0.07186037302017212, 0.015841828659176826, 0.08299554884433746, -0.0646301656961441, 0.01887124963104725, 0.04991413652896881, 0.013745415955781937, 0.08469933271408081, 0.005792262963950634, 0.04649098217487335, -0.06455913931131363, -0.06104133650660515, 0.00528259202837944, 0.04287991300225258, -0.06190011277794838, 0.11175796389579773, -0.023286569863557816, 0.04976758360862732, -0.004616443999111652, -0.019963080063462257, -0.10834524780511856, -0.15282079577445984, 0.06374386698007584, -0.11321385204792023, -0.0028951154090464115, -0.055532265454530716, -0.04420231282711029, 0.02771015837788582, 0.18025454878807068, -0.10097663849592209, -0.08826982975006104, -0.11177528649568558, 0.06668495386838913, 0.14571936428546906, -0.07651764154434204, 0.04441690817475319, 0.020654212683439255, 0.15300101041793823, -0.010891224257647991, -0.1087723970413208, 0.006885351613163948, -0.046473581343889236, -0.20388665795326233, -0.015370176173746586, 0.10013008862733841, 0.09343905001878738, 0.06474629044532776, 0.02429680898785591, 0.007296172436326742, -0.028137531131505966, -0.14646698534488678, 0.027599964290857315, 0.10515163838863373, 0.0572039857506752, 0.054059650748968124, 0.021440863609313965, 0.028782391920685768, -0.11968395113945007, 0.009357994422316551, 0.08445169776678085, 0.25531360507011414, -0.08060649037361145, 0.14528654515743256, 0.02141389437019825, -0.09345894306898117, -0.19773566722869873, 0.016203461214900017, 0.011290811002254486, 0.044531725347042084, 0.056779827922582626, -0.19256114959716797, -0.0033768517896533012, 0.03392421454191208, -0.014249204657971859, 0.09731544554233551, -0.27082139253616333, -0.14084510505199432, 0.0511491484940052, 0.03742314875125885, -0.05253720283508301, -0.02838515117764473, -0.03372795134782791, -0.06359288096427917, -0.24150153994560242, 0.12896479666233063, -0.11492836475372314, 0.10641774535179138, 0.014792165718972683, 0.016413992270827293, 0.04640495404601097, -0.05366755276918411, 0.12966614961624146, -0.07288561016321182, 0.07211463898420334, -0.08515528589487076, -0.009310574270784855, 0.10225127637386322, -0.030657688155770302, 0.07335955649614334, 0.026095980778336525, 0.085490383207798, -0.04670967906713486, -0.07494685798883438, -0.0918741300702095, 0.027372892946004868, -0.06491116434335709, -0.09576188027858734, -0.0881589874625206, 0.09844938665628433, 0.1052791029214859, -0.03431694954633713, -0.10132210701704025, -0.0653548613190651, -0.028095392510294914, 0.08671855181455612, 0.12583328783512115, 0.09407169371843338, -0.0877801924943924, 0.006768686696887016, -0.010206674225628376, 0.059015173465013504, -0.10933469980955124, 0.06922326982021332, 0.06548584252595901, 0.0443718321621418, 0.10142232477664948, 0.03963230177760124, -0.17825861275196075, 0.044873692095279694, 0.03467973694205284, -0.12648624181747437, -0.1150997206568718, -0.02856920100748539, 0.02470029518008232, -0.07086147367954254, -0.04736606404185295, 0.15284711122512817, -0.0173170268535614, -0.04514497518539429, 0.020108502358198166, 0.04990847408771515, -0.03106638789176941, 0.11580779403448105, 0.05468754097819328, 0.04725312441587448, -0.07978879660367966, 0.10013347119092941, 0.07577512413263321, 0.000304455024888739, 0.05812588334083557, 0.053198717534542084, -0.07615825533866882, 0.0015333121409639716, -0.08400194346904755, 0.006689900066703558, -0.04880616441369057, 0.00301957200281322, -0.02340950258076191, -0.024713344871997833, 0.02699219062924385, 0.09571226686239243, -0.006225602701306343, 0.12305615842342377, -0.0249173566699028, 0.014947915449738503, -0.13243532180786133, 0.07388386875391006, 0.05095146596431732, 0.03253735974431038, -0.08045567572116852, 0.1568126529455185, 0.03236497938632965, 0.09885940700769424, -0.049193233251571655, -0.04696771502494812, -0.07935164868831635, -0.01488420832902193, -0.12135829776525497, -0.02614682726562023, -0.05800013244152069, -0.03917916491627693, -0.019227761775255203, -0.0367436520755291, -0.02829979732632637, 0.051348112523555756, -0.032988063991069794, -0.06234753876924515, -0.04160814359784126, 0.00916771125048399, -0.15303146839141846, -0.013429601676762104, 0.13649018108844757, -0.08291085809469223, 0.13063767552375793, 0.04687901586294174, -0.03904527425765991, 0.0021842995192855597, -0.06948614120483398, 0.017379581928253174, -0.048697710037231445, 0.008891100063920021, 0.018058164045214653, -0.13111460208892822, 0.021823959425091743, -0.06242910400032997, -0.04948670417070389, 0.00593325961381197, 0.03838833048939705, -0.12039477378129959, 0.0090184872969985, 0.06288405507802963, 0.0034690010361373425, -0.08202366530895233, 0.05905262753367424, 0.028225813060998917, 0.043810177594423294, 0.05413715913891792, -0.022377263754606247, 0.09891015291213989, -0.15960265696048737, -0.03668999299407005, 0.012781212106347084, 0.01144507434219122, 0.09675432741641998, -0.014508344233036041, 0.06534812599420547, -0.018096212297677994, 0.2065620869398117, -0.018916035071015358, -0.032026760280132294, 0.03130321577191353, -0.01824057660996914, -0.003614782588556409, 0.022308368235826492, 0.07881883531808853, -0.04474714398384094, -0.03550200164318085, -0.02906455658376217, 0.005747016053646803, -0.06866349279880524, 0.0028290245682001114, 0.13266119360923767, 0.03685340657830238, 0.13031859695911407, -0.04054781422019005, 0.05878528580069542, -0.007152160629630089, -0.1166384145617485, -0.029219962656497955, 0.017109908163547516, 0.01391618512570858, -0.054573092609643936, 0.041400499641895294, 0.13318796455860138, -0.14092271029949188, 0.14783185720443726, 0.0005818799254484475, -0.059868086129426956, -0.11686136573553085, -0.19264593720436096, -0.012426763772964478, -0.020417751744389534, 0.03923383727669716, -0.1275022178888321, 0.05595696344971657, 0.04373181611299515, 0.023402981460094452, -0.06270323693752289, 0.1102483943104744, -0.03449191153049469, -0.1193726509809494, 0.007666592486202717, 0.029822712764143944, 0.032013531774282455, 0.04233219474554062, 0.05307208374142647, 0.05157797411084175, 0.0669386014342308, 0.055237434804439545, 0.04329140484333038, 0.04303288459777832, 0.019840093329548836, -0.011162037029862404, -0.054253753274679184, -0.00010427665984025225, 0.018012437969446182, 0.034352127462625504, 0.15150319039821625, 0.05099133402109146, 0.00459634605795145, -0.03799409046769142, 0.2962057590484619, -0.03436734527349472, -0.07729864865541458, -0.17058593034744263, 0.16686119139194489, 0.0059539517387747765, -0.021398458629846573, 0.03194069117307663, -0.15739038586616516, 0.01390378549695015, 0.1454775035381317, 0.1718207448720932, -0.059251923114061356, 0.035528890788555145, -0.0005705686053261161, 0.006461257580667734, 0.029836395755410194, 0.06549657136201859, 0.04967986419796944, 0.20619915425777435, -0.06750789284706116, 0.05699421837925911, -0.015259677544236183, 0.004785195924341679, -0.0055077639408409595, 0.12968513369560242, -0.04502424970269203, 0.012806634418666363, -0.08116374164819717, 0.05135472118854523, -0.042766302824020386, -0.2930397093296051, 0.0019066190579906106, -0.04224446788430214, -0.08871440589427948, 0.04068395122885704, -0.06458909809589386, -0.03658405318856239, 0.07644852250814438, 0.014209771528840065, 0.011448879726231098, 0.09704824537038803, 0.031344491988420486, -0.036481425166130066, 0.0035506749991327524, 0.09840404987335205, -0.01831967942416668, 0.18938609957695007, -0.018691031262278557, 0.04007672518491745, 0.08923032134771347, 0.03165748342871666, -0.1165747195482254, 0.017242545261979103, 0.026052352041006088, -0.06200675293803215, -0.009084854274988174, 0.22535385191440582, 0.012629992328584194, -0.009524351917207241, 0.053874414414167404, -0.0409972183406353, 0.02895333059132099, -0.046155236661434174, 0.022894427180290222, -0.10776560008525848, 0.028815466910600662, -0.09994129836559296, 0.13695670664310455, 0.1595974862575531, -0.06511019915342331, 0.015941470861434937, -0.06288658827543259, 0.0077553242444992065, -0.003593976376578212, 0.024553025141358376, -0.02031094580888748, -0.09659309685230255, 0.027880344539880753, 0.07495110481977463, 0.026683533564209938, -0.2283344864845276, -0.07391846179962158, 0.057587217539548874, -0.08164390176534653, 0.0027102327439934015, 0.14085739850997925, 0.018062349408864975, 0.06019561365246773, -0.03835682198405266, -0.025630813091993332, -0.0331372432410717, 0.06547766923904419, -0.14353495836257935, -0.07820425927639008 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/66f0650a5d8acadaed4292d6e3df6b9b.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Billy Talent</div> <a href="https://genius.com/artists/billy-talent"> <div style="text-align: center; font-size: 14px;">@billy-talent</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Billy Talent. Dataset is available [here](https://huggingface.co/datasets/huggingartists/billy-talent). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/billy-talent") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/37amfbe8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Billy Talent's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/pyw6tj9v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/pyw6tj9v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/billy-talent') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/billy-talent") model = AutoModelWithLMHead.from_pretrained("huggingartists/billy-talent") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/billy-talent"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/billy-talent
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/billy-talent", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/billy-talent #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Billy Talent</div> <a href="URL <div style="text-align: center; font-size: 14px;">@billy-talent</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Billy Talent. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Billy Talent's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Billy Talent.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Billy Talent's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/billy-talent #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Billy Talent.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Billy Talent's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/billy-talent #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Billy Talent.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Billy Talent's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.011663803830742836, 0.16061092913150787, -0.0028474428690969944, 0.0404648557305336, 0.08404156565666199, 0.008192937821149826, 0.09494411945343018, 0.1061880886554718, 0.006650568451732397, 0.07430857419967651, 0.07322102785110474, 0.00429430091753602, 0.06570813804864883, 0.11267149448394775, 0.08856067061424255, -0.25457271933555603, 0.022156987339258194, -0.09333783388137817, 0.018373070284724236, 0.11331309378147125, 0.09613609313964844, -0.05561761558055878, 0.08335766941308975, 0.032942794263362885, -0.0867924690246582, 0.029220150783658028, 0.0050347112119197845, -0.05952134728431702, 0.09283894300460815, 0.06506266444921494, 0.027775902301073074, 0.030450843274593353, 0.05629362538456917, -0.19245076179504395, 0.03454452008008957, 0.12671779096126556, 0.03551344946026802, 0.06691296398639679, 0.03676334768533707, -0.08032474666833878, 0.15345242619514465, -0.007425717078149319, 0.09435735642910004, 0.04759754240512848, -0.12245701998472214, -0.15088185667991638, -0.12370699644088745, 0.08666513115167618, 0.09715689718723297, 0.08264816552400589, -0.031162237748503685, 0.04609042778611183, -0.008883844129741192, 0.03439164161682129, 0.23407381772994995, -0.22708337008953094, -0.017126239836215973, 0.07624170184135437, 0.03540967404842377, 0.030022460967302322, -0.08534222841262817, 0.01197674497961998, 0.04306040331721306, 0.026137767359614372, 0.05368812009692192, -0.014744379557669163, 0.1866299957036972, 0.025679277256131172, -0.08853337168693542, -0.08614800125360489, 0.10938513278961182, -0.024867309257388115, -0.08029894530773163, -0.14280962944030762, 0.0006936285062693059, -0.011854906566441059, 0.03761453926563263, -0.0041983965784311295, -0.006276295520365238, 0.001327713020145893, -0.04997849464416504, -0.10545112192630768, -0.0941181480884552, -0.032779742032289505, -0.02830221690237522, 0.07735581696033478, 0.027242373675107956, 0.0355219729244709, -0.08639208227396011, 0.2266303151845932, -0.01942526362836361, -0.1032622903585434, -0.04532067850232124, -0.0898689329624176, -0.09261509031057358, -0.05545167624950409, 0.0074750217609107494, 0.006895245518535376, -0.06093129888176918, 0.15318551659584045, -0.029354896396398544, 0.030772944912314415, -0.0006557780434377491, -0.015340263023972511, 0.14560319483280182, 0.13504734635353088, -0.09465586394071579, -0.019254157319664955, 0.061460886150598526, -0.011001374572515488, -0.06288789212703705, -0.050051189959049225, -0.011209825985133648, -0.02441219426691532, 0.0341702476143837, 0.07571430504322052, 0.05958149954676628, 0.05101833492517471, 0.009170268662273884, -0.06508505344390869, 0.10241556912660599, -0.14095662534236908, 0.014139157719910145, -0.0005970603669993579, -0.03713580220937729, 0.005096561275422573, 0.04448632150888443, 0.01699184440076351, -0.10097388178110123, 0.11863727122545242, -0.058261673897504807, -0.051373664289712906, -0.07070516049861908, -0.07819810509681702, 0.010067533701658249, -0.018094733357429504, -0.036788459867239, -0.06652379035949707, -0.1698000282049179, -0.043750911951065063, 0.03357458487153053, -0.04148158058524132, -0.06345945596694946, 0.02736075222492218, -0.021143147721886635, 0.007637680973857641, -0.017959345132112503, -0.029091214761137962, -0.02336863987147808, 0.03426714986562729, -0.06295833736658096, 0.026826493442058563, 0.07508150488138199, 0.04666264355182648, -0.11174895614385605, 0.06505768746137619, -0.16919809579849243, 0.1270182728767395, -0.010435848496854305, 0.029021238908171654, -0.10403987020254135, -0.08392033725976944, -0.04097414016723633, -0.030544044449925423, -0.011450735852122307, 0.09919333457946777, -0.18298521637916565, -0.05031333863735199, 0.20794591307640076, -0.06783430278301239, -0.08347181975841522, 0.07772154361009598, -0.08469948172569275, 0.03633439913392067, 0.1388174444437027, 0.07960977405309677, 0.17498192191123962, -0.12040673196315765, -0.048947349190711975, -0.04671899601817131, -0.05312506482005119, 0.20278356969356537, 0.05023137852549553, -0.017324915155768394, 0.018944183364510536, 0.01048064511269331, -0.0313449501991272, -0.025490231812000275, -0.008222730830311775, -0.03871352970600128, -0.008813828229904175, 0.016987929120659828, -0.013877770863473415, -0.035790082067251205, -0.0702848955988884, -0.026167670264840126, -0.11245628446340561, 0.02636873722076416, 0.0930648073554039, -0.0679696798324585, 0.00858333706855774, -0.09215329587459564, -0.011880269274115562, -0.02117255888879299, 0.01592382974922657, -0.16506224870681763, -0.0462334007024765, 0.02492775209248066, -0.07521332800388336, 0.10494020581245422, 0.026771781966090202, 0.03491036966443062, 0.043263718485832214, -0.01083504967391491, 0.018585070967674255, -0.039568278938531876, -0.031785301864147186, -0.023193638771772385, -0.15327560901641846, -0.05527634546160698, -0.05118843913078308, 0.0906454473733902, -0.11404917389154434, 0.0008067312883213162, 0.09358920156955719, 0.11580202728509903, 0.02661260776221752, -0.06690748035907745, 0.012785409577190876, -0.03721928596496582, -0.029167836531996727, -0.10580044239759445, -0.053784023970365524, 0.012760003097355366, -0.025762854143977165, 0.16107416152954102, -0.17330533266067505, -0.08756737411022186, 0.10544513165950775, 0.1447807401418686, -0.09077184647321701, 0.043937548995018005, -0.07775182276964188, -0.010220048017799854, -0.05448530986905098, -0.038674790412187576, 0.28095343708992004, 0.03760337457060814, 0.08158054947853088, -0.11288667470216751, -0.10910791903734207, -0.007283180486410856, -0.03851960599422455, -0.019042925909161568, 0.024489810690283775, 0.019156266003847122, -0.17268790304660797, 0.03762172907590866, -0.022119468078017235, 0.10752890259027481, 0.2162388414144516, 0.040424298495054245, -0.08224376291036606, -0.05853606387972832, -0.07911217957735062, -0.001959490589797497, 0.06146468594670296, 0.013839919120073318, 0.029159240424633026, 0.03541899099946022, 0.05222061648964882, 0.039906542748212814, -0.12063828855752945, 0.005655081011354923, 0.07449621707201004, -0.041733518242836, -0.06648606061935425, 0.021060306578874588, 0.02236924134194851, 0.0788632333278656, 0.08754999935626984, 0.14612117409706116, -0.06747910380363464, -0.05466199666261673, -0.1494297832250595, 0.13678376376628876, -0.0794314444065094, -0.2396080493927002, -0.1453777700662613, -0.0708933100104332, 0.022951245307922363, 0.013553671538829803, 0.03788549453020096, -0.04684833064675331, -0.043495211750268936, -0.097549207508564, 0.09585067629814148, -0.057802263647317886, -0.030258487910032272, 0.008609361946582794, 0.01283223181962967, -0.0228403490036726, -0.10376225411891937, -0.028339846059679985, 0.04037654027342796, -0.09520051628351212, -0.015902824699878693, 0.025077160447835922, 0.02508441172540188, 0.1614769697189331, -0.004043113440275192, -0.0009312672773376107, -0.03167487680912018, 0.28811877965927124, -0.12699496746063232, 0.07355981320142746, 0.1525837779045105, -0.01782882772386074, 0.06002649664878845, 0.08365127444267273, 0.007134436164051294, -0.05771311745047569, 0.07080492377281189, 0.06539037078619003, -0.08321864902973175, -0.2218586653470993, -0.032421547919511795, -0.013508494943380356, 0.01362260989844799, 0.12800174951553345, 0.052597757428884506, 0.04044518992304802, 0.004947380628436804, -0.1125514879822731, 0.061600107699632645, 0.03906279429793358, 0.10288720577955246, -0.04212937504053116, -0.006046904716640711, 0.03618215024471283, -0.059269826859235764, 0.027919746935367584, 0.1261546015739441, 0.04703154042363167, 0.20048591494560242, -0.056539636105298996, 0.11521477997303009, 0.06974085420370102, 0.08890078216791153, 0.027495969086885452, 0.013477955013513565, -0.019079137593507767, 0.02177780121564865, -0.005589755717664957, -0.08443331718444824, -0.009833009913563728, 0.03560398891568184, 0.03290802985429764, -0.029225820675492287, -0.03212269768118858, -0.06042693927884102, 0.03604641184210777, 0.23416130244731903, 0.0004481217765714973, -0.16353492438793182, -0.10227883607149124, 0.05366196855902672, -0.08702199906110764, -0.05968005582690239, -0.013968436978757381, 0.07433011382818222, -0.2060823142528534, 0.07448529452085495, -0.027118047699332237, 0.1103743240237236, -0.09888371080160141, -0.00562775693833828, 0.0794290155172348, 0.03596348688006401, -0.06237393617630005, 0.10015372931957245, -0.15459224581718445, 0.06139500439167023, -0.009351154789328575, 0.07714772969484329, -0.06424156576395035, 0.02367107942700386, 0.0023735836148262024, 0.04020557925105095, 0.08792679756879807, 0.016257528215646744, 0.03973456472158432, 0.015852557495236397, -0.03975763916969299, 0.011544764041900635, 0.05532555282115936, -0.12951277196407318, 0.12720339000225067, -0.03447871282696724, 0.03736405447125435, -0.041019681841135025, -0.07351897656917572, -0.06477586925029755, -0.15924997627735138, 0.07912935316562653, -0.12620440125465393, -0.004440441727638245, -0.06816528737545013, -0.012608293443918228, 0.027154674753546715, 0.215177521109581, -0.06312185525894165, -0.07256286591291428, -0.1334219127893448, 0.00986502692103386, 0.1374896615743637, -0.0844787061214447, -0.0015182839706540108, -0.015748370438814163, 0.20594552159309387, -0.008471738547086716, -0.13573217391967773, -0.021953508257865906, -0.055182088166475296, -0.16666261851787567, -0.015249490737915039, 0.17845050990581512, 0.060487642884254456, 0.034826356917619705, 0.010578813962638378, -0.00299286562949419, -0.05668187141418457, -0.17124256491661072, 0.03229561075568199, 0.14124418795108795, -0.03195809945464134, 0.005548884626477957, 0.053558677434921265, 0.013820435851812363, -0.13430412113666534, 0.01806381158530712, 0.056283481419086456, 0.17784102261066437, -0.07623977214097977, 0.19649256765842438, 0.024243559688329697, -0.09729507565498352, -0.1739683449268341, 0.010889125987887383, 0.027160288766026497, 0.03438906744122505, 0.0315103642642498, -0.20864728093147278, 0.04801451787352562, 0.021278750151395798, -0.004041268024593592, 0.0479959174990654, -0.30766910314559937, -0.15237826108932495, 0.003997534979134798, -0.002775920554995537, -0.10757701098918915, -0.03831665590405464, -0.03445779159665108, -0.08800255507230759, -0.2520674467086792, 0.10197658091783524, -0.10696695744991302, 0.07695350795984268, 0.022110220044851303, 0.12101346254348755, 0.04730435088276863, -0.0466458760201931, 0.11632999032735825, -0.02008470520377159, 0.0663834735751152, -0.08398514240980148, -0.06825453042984009, 0.07844631373882294, -0.06938285380601883, 0.09036209434270859, 0.019244207069277763, 0.08162450045347214, -0.09824628382921219, -0.0899428203701973, -0.08213796466588974, 0.005129093304276466, -0.05828429386019707, -0.07709292322397232, -0.0968686044216156, 0.08263830840587616, 0.12919673323631287, -0.044668618589639664, -0.0980130210518837, -0.06145203486084938, 0.005484891124069691, 0.045814499258995056, 0.13257642090320587, 0.06812126189470291, -0.0774334967136383, 0.006939600221812725, 0.015816016122698784, 0.02241259254515171, -0.1941654235124588, 0.04986099898815155, 0.08890741318464279, 0.052824974060058594, 0.10216180980205536, 0.0035248626954853535, -0.17869046330451965, 0.00048788246931508183, 0.05570605397224426, -0.16922178864479065, -0.13269253075122833, -0.045114915817976, 0.02813563495874405, -0.10863466560840607, -0.06017221510410309, 0.11966311931610107, -0.03412972763180733, -0.04145895689725876, 0.011378563940525055, 0.040061380714178085, -0.04525287449359894, 0.08435628563165665, 0.00034171188599430025, 0.04272645711898804, -0.07153422385454178, 0.11134057492017746, 0.0672634020447731, 0.005256154574453831, 0.03501089662313461, 0.06584134697914124, -0.08199919760227203, 0.014452924020588398, -0.09615509957075119, 0.011003988794982433, -0.021440960466861725, -0.0005161462468095124, 0.025143668055534363, -0.04398924112319946, 0.03958062827587128, 0.09841173887252808, -0.02151230163872242, 0.11136212199926376, -0.038871146738529205, 0.015955215319991112, -0.129380464553833, 0.07728619873523712, 0.03893626481294632, 0.02184765785932541, -0.1146700456738472, 0.1925296038389206, 0.02849714271724224, 0.09506525099277496, -0.033401381224393845, -0.056409355252981186, -0.05437440425157547, -0.0065061417408287525, -0.08187789469957352, -0.03702913969755173, -0.08979074656963348, -0.020474473014473915, -0.004253457300364971, -0.034955792129039764, -0.029561655595898628, 0.04089989885687828, -0.04203559085726738, -0.05625311657786369, -0.07634738087654114, 0.04684668779373169, -0.13253280520439148, 0.04425736516714096, 0.12796960771083832, -0.05442705377936363, 0.11956726759672165, 0.05965438857674599, -0.03770288825035095, 0.033052098006010056, -0.11936362832784653, 0.02814529649913311, -0.020610621199011803, 0.020009437575936317, 0.022761330008506775, -0.15096010267734528, 0.001499364385381341, -0.04169966280460358, -0.061185259371995926, 0.001501233666203916, -0.016549402847886086, -0.12797488272190094, -0.0008406030829064548, 0.0995299220085144, -0.025643378496170044, -0.07599719613790512, 0.06097027286887169, 0.04796179011464119, 0.026224538683891296, 0.0660589337348938, -0.022393478080630302, 0.08069580048322678, -0.17512314021587372, -0.04821227863430977, 0.004594180267304182, 0.034250013530254364, 0.02555876597762108, -0.013763237744569778, 0.037494588643312454, -0.015896350145339966, 0.20059525966644287, 0.0245179682970047, -0.04058857262134552, 0.039021365344524384, -0.06617084890604019, -0.01741752214729786, 0.03839334473013878, 0.0721416175365448, -0.03387276828289032, -0.0435083732008934, -0.0030294719617813826, -0.03797156736254692, -0.09771458059549332, -0.023660125210881233, 0.10835565626621246, 0.04020162671804428, 0.201210618019104, -0.06151968613266945, 0.07449544221162796, -0.008427952416241169, -0.12022155523300171, -0.017003266140818596, -0.045634523034095764, 0.03393912315368652, -0.05152192339301109, 0.07305103540420532, 0.18353872001171112, -0.16969504952430725, 0.12584224343299866, 0.015262586064636707, -0.05622759088873863, -0.1183398962020874, -0.1962418556213379, -0.020932069048285484, -0.04755917564034462, 0.03876630589365959, -0.14191479980945587, 0.08971817046403885, 0.02438003569841385, 0.028930265456438065, -0.06657999753952026, 0.13310135900974274, -0.06957122683525085, -0.13824711740016937, 0.047116413712501526, 0.0285545215010643, 0.02275606244802475, 0.056033652275800705, 0.09446771442890167, 0.03573651239275932, 0.007543480023741722, 0.07577221840620041, 0.04034153372049332, 0.03285403922200203, 0.03911398723721504, -0.04251747578382492, -0.04423417150974274, 0.0312492735683918, -0.00020922561816405505, 0.030281996354460716, 0.08661293983459473, 0.05526692420244217, -0.012223205529153347, -0.021239688619971275, 0.29607486724853516, -0.02744666300714016, -0.046495046466588974, -0.18631641566753387, 0.1787920743227005, 0.0014300602488219738, -0.019359851256012917, 0.029024217277765274, -0.11541517078876495, 0.01589137129485607, 0.12927359342575073, 0.16290828585624695, -0.017277147620916367, 0.020176870748400688, -0.03173324465751648, 0.020749205723404884, 0.03592682257294655, 0.09860676527023315, 0.057612840086221695, 0.217866450548172, -0.03376526013016701, 0.053882088512182236, -0.0086279958486557, -0.020598696544766426, 0.012376765720546246, 0.10905934870243073, -0.038338180631399155, 0.0016915390733629465, -0.06413672119379044, 0.10534932464361191, -0.05758919566869736, -0.2913838028907776, -0.022920358926057816, -0.03230235353112221, -0.08182448893785477, 0.05900179594755173, -0.02854839712381363, -0.029939575120806694, 0.0890929102897644, 0.02957206778228283, -0.045412030071020126, 0.13462473452091217, 0.0472288578748703, -0.05123955383896828, 0.005573683883994818, 0.11459214240312576, -0.03981529921293259, 0.17429494857788086, -0.03240056335926056, 0.019424930214881897, 0.07125268876552582, 0.01921379566192627, -0.12138884514570236, 0.0035859202034771442, 0.03168308734893799, -0.06225213780999184, -0.03150797262787819, 0.20309509336948395, 0.012269635684788227, 0.03183826059103012, 0.07220236957073212, -0.043472111225128174, 0.020365463569760323, -0.04470061883330345, 0.057237885892391205, -0.14568600058555603, 0.06776362657546997, -0.0883752778172493, 0.1258823722600937, 0.18270395696163177, -0.06790751218795776, 0.02043248899281025, -0.060297269374132156, 0.0028326536994427443, -0.01611172780394554, 0.08744117617607117, -0.021334072574973106, -0.11332971602678299, 0.007225114852190018, 0.034950826317071915, 0.018568482249975204, -0.20088014006614685, -0.06333006918430328, 0.0634707435965538, -0.04816896468400955, 0.030741939321160316, 0.17978361248970032, 0.023063765838742256, 0.057647570967674255, -0.04022460803389549, -0.006865847390145063, -0.011695844121277332, 0.12011902779340744, -0.16219981014728546, -0.08260783553123474 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1abf6ff09c7c4209c458e5937b088aba.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bladee</div> <a href="https://genius.com/artists/bladee"> <div style="text-align: center; font-size: 14px;">@bladee</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bladee. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bladee). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bladee") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/326nmhkf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bladee's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28bmutxl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28bmutxl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bladee') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bladee") model = AutoModelWithLMHead.from_pretrained("huggingartists/bladee") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/bladee"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/bladee
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bladee", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bladee #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bladee</div> <a href="URL <div style="text-align: center; font-size: 14px;">@bladee</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Bladee. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Bladee's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bladee.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bladee's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bladee #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bladee.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bladee's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bladee #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Bladee.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bladee's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.022276414558291435, 0.14327795803546906, -0.0024441098794341087, 0.03873161971569061, 0.08654862642288208, 0.0002510242920834571, 0.0848914161324501, 0.10835055261850357, -0.011016099713742733, 0.06939540058374405, 0.0800308883190155, 0.01885581575334072, 0.06741916388273239, 0.13346503674983978, 0.0917324349284172, -0.272936075925827, 0.03130410984158516, -0.10141247510910034, 0.0198447797447443, 0.12222570180892944, 0.09194428473711014, -0.05360402539372444, 0.0823826938867569, 0.042026977986097336, -0.07731878012418747, 0.030034862458705902, -0.009227529168128967, -0.07138757407665253, 0.09850123524665833, 0.08101761341094971, 0.03167874366044998, 0.02983395755290985, 0.06805791705846786, -0.18930958211421967, 0.03603338822722435, 0.1258161962032318, 0.027812408283352852, 0.06973353028297424, 0.041061170399188995, -0.07464423030614853, 0.17929847538471222, -0.03574448823928833, 0.09476568549871445, 0.042075544595718384, -0.10648717731237411, -0.18485987186431885, -0.125637486577034, 0.08413439989089966, 0.1005837544798851, 0.07538679242134094, -0.030033638700842857, 0.038384947925806046, 0.008214735426008701, 0.04951589182019234, 0.2331477403640747, -0.24430161714553833, -0.02041078545153141, 0.07781543582677841, 0.042924121022224426, 0.05238250270485878, -0.07771117240190506, 0.021559828892350197, 0.051733896136283875, 0.026903333142399788, 0.0542437843978405, -0.015390156768262386, 0.21584443747997284, 0.02031213603913784, -0.09104728698730469, -0.08432295173406601, 0.10910675674676895, -0.03303651139140129, -0.08162436634302139, -0.1569177508354187, 0.0034999840427190065, -0.023324323818087578, 0.040821854025125504, -0.017247861251235008, -0.007784718181937933, -0.002986527280882001, -0.036614757031202316, -0.09793993085622787, -0.09115857630968094, -0.028922853991389275, -0.023475462570786476, 0.07752267271280289, 0.024691499769687653, 0.03368881717324257, -0.07732781022787094, 0.23048491775989532, 0.014063633978366852, -0.10246960073709488, -0.05689363554120064, -0.08813036233186722, -0.0987415537238121, -0.05934995412826538, 0.01504652202129364, 0.01285302359610796, -0.06662610918283463, 0.16614951193332672, -0.027232812717556953, 0.030617451295256615, 0.001503049861639738, -0.024536527693271637, 0.1495427042245865, 0.1251526027917862, -0.09763892740011215, -0.035362180322408676, 0.04836532473564148, -0.01779775880277157, -0.06393305957317352, -0.06474509835243225, -0.010220975615084171, -0.02467680163681507, 0.03196938335895538, 0.09485871344804764, 0.04603854939341545, 0.05583964288234711, 0.03476692736148834, -0.05552157387137413, 0.11543011665344238, -0.1454363316297531, 0.010535904206335545, -0.015071465633809566, -0.023829033598303795, 0.023659920319914818, 0.04963545873761177, 0.012316116131842136, -0.09827104955911636, 0.11164930462837219, -0.05198364332318306, -0.05697166919708252, -0.06379032135009766, -0.08718368411064148, -0.0062689161859452724, 0.004921231884509325, -0.04762612283229828, -0.08406563848257065, -0.15976285934448242, -0.03116380237042904, 0.02236265502870083, -0.03749262914061546, -0.03976057469844818, 0.043879434466362, -0.031391024589538574, 0.00545165641233325, -0.012928645126521587, -0.013812084682285786, -0.03208821639418602, 0.024011174216866493, -0.06300478428602219, 0.034734830260276794, 0.07836049050092697, 0.03262558951973915, -0.10336554050445557, 0.06601371616125107, -0.15694160759449005, 0.14034338295459747, -0.011976181529462337, 0.015618603676557541, -0.10517051070928574, -0.0974886417388916, -0.02081909216940403, -0.025867892429232597, -0.006997419986873865, 0.08744897693395615, -0.19599811732769012, -0.04056859761476517, 0.196924090385437, -0.07800961285829544, -0.08437570929527283, 0.0731891468167305, -0.07678970694541931, 0.035867840051651, 0.13960833847522736, 0.05848543718457222, 0.16437794268131256, -0.11309678107500076, -0.05947640538215637, -0.04608604311943054, -0.060771483927965164, 0.22246040403842926, 0.05240645632147789, -0.0062176999635994434, 0.014819979667663574, 0.01864786632359028, -0.025102024897933006, -0.03220406547188759, -0.021312935277819633, -0.04120168089866638, -0.013168219476938248, 0.018323421478271484, -0.013413016684353352, -0.05404973030090332, -0.07075747102499008, -0.023445965722203255, -0.11267122626304626, 0.0399818941950798, 0.10593698173761368, -0.07759533077478409, 0.008936221711337566, -0.08790699392557144, -0.002438735216856003, -0.03788815066218376, 0.02284003049135208, -0.19065964221954346, -0.06257569789886475, 0.021443823352456093, -0.07057162374258041, 0.08089085668325424, 0.02590751461684704, 0.03631460294127464, 0.06663281470537186, -0.005461264867335558, 0.02596716582775116, -0.046681541949510574, -0.020303016528487206, -0.03604379668831825, -0.1411031037569046, -0.07292616367340088, -0.052582353353500366, 0.07828735560178757, -0.14028364419937134, 0.006011194083839655, 0.10920554399490356, 0.1126987561583519, 0.022710716351866722, -0.05848819017410278, 0.004686910659074783, -0.035031989216804504, -0.04202065244317055, -0.11475104838609695, -0.06217420473694801, 0.006291940808296204, -0.034939661622047424, 0.1541377156972885, -0.1786736398935318, -0.06445084512233734, 0.09380554407835007, 0.16720782220363617, -0.10533646494150162, 0.015075686387717724, -0.09176824241876602, -0.012077420949935913, -0.05465644970536232, -0.04039079695940018, 0.2693570852279663, 0.04149002209305763, 0.07658392190933228, -0.11317045241594315, -0.10022032260894775, 0.00013130278966855258, -0.033287763595581055, -0.02811926044523716, 0.027391672134399414, 0.007566625252366066, -0.17637097835540771, 0.020459145307540894, -0.0027456425596028566, 0.12244889885187149, 0.21322159469127655, 0.056236475706100464, -0.09364429116249084, -0.0605144165456295, -0.09039684385061264, 0.005107445642352104, 0.05668516084551811, 0.03173929080367088, 0.025551432743668556, 0.044847745448350906, 0.04776078462600708, 0.034592390060424805, -0.11432603001594543, 0.007706622127443552, 0.08043555915355682, -0.04583882912993431, -0.055324941873550415, 0.018346019089221954, 0.01660132221877575, 0.08469698578119278, 0.0768236592411995, 0.15021060407161713, -0.07190296798944473, -0.048885490745306015, -0.1430119276046753, 0.14112474024295807, -0.0787302777171135, -0.2688234746456146, -0.1402229517698288, -0.06471732258796692, 0.022494591772556305, 0.0010749209905043244, 0.03924783319234848, -0.05795707181096077, -0.04262605309486389, -0.10178905725479126, 0.08448642492294312, -0.048146914690732956, -0.015941251069307327, 0.005685607437044382, 0.01772351749241352, -0.030764298513531685, -0.11120625585317612, -0.031056756153702736, 0.04355557635426521, -0.10542961210012436, -0.014975592494010925, 0.03218245133757591, 0.044510066509246826, 0.15142448246479034, -0.012976199388504028, -0.005918627139180899, -0.03470173850655556, 0.27536025643348694, -0.12237926572561264, 0.06979655474424362, 0.15695448219776154, -0.028556952252984047, 0.056185293942689896, 0.07509990781545639, 0.008232437074184418, -0.06779810041189194, 0.07265874743461609, 0.06941204518079758, -0.09085014462471008, -0.2117045670747757, -0.026607466861605644, -0.008288213983178139, 0.024427153170108795, 0.13099151849746704, 0.06220872700214386, 0.051092684268951416, -0.006118474528193474, -0.10525060445070267, 0.050493013113737106, 0.031993966549634933, 0.10888972878456116, -0.06586794555187225, -0.0112413065508008, 0.04781134054064751, -0.06385337561368942, 0.03175751864910126, 0.14270326495170593, 0.048745688050985336, 0.19511158764362335, -0.061463624238967896, 0.10527797788381577, 0.0766507014632225, 0.10688024759292603, 0.037647321820259094, 0.015886595472693443, 0.002886825008317828, 0.012100321240723133, -0.0029522974509745836, -0.09761478751897812, -0.008941576816141605, 0.04631389304995537, 0.01915203593671322, -0.019617252051830292, -0.04048217833042145, -0.044069111347198486, 0.043805960565805435, 0.23610152304172516, -0.019771404564380646, -0.18242162466049194, -0.11770909279584885, 0.04144817963242531, -0.08284682780504227, -0.055661384016275406, -0.026874063536524773, 0.07628396898508072, -0.21965278685092926, 0.07373925298452377, -0.036061640828847885, 0.10686564445495605, -0.1176576241850853, 0.0022406785283237696, 0.08591973036527634, 0.049099501222372055, -0.06618880480527878, 0.10075125843286514, -0.1649722307920456, 0.0596589632332325, -0.01200642716139555, 0.07235520333051682, -0.08099120855331421, 0.026875928044319153, 0.0008529126644134521, 0.05130412057042122, 0.09050966054201126, 0.010522410273551941, 0.023635253310203552, 0.0025258047971874475, -0.044084981083869934, 0.017436999827623367, 0.05273186042904854, -0.12553949654102325, 0.12299776077270508, -0.029243214055895805, 0.03759913146495819, -0.04490188881754875, -0.10576609522104263, -0.09183462709188461, -0.17595195770263672, 0.09414646774530411, -0.13717736303806305, -0.0032206466421484947, -0.07378878444433212, -0.03429869934916496, 0.038327932357788086, 0.27465227246284485, -0.05860311910510063, -0.07464725524187088, -0.14328064024448395, 0.018600717186927795, 0.14135143160820007, -0.08812883496284485, 0.007574058603495359, -0.011056062765419483, 0.22614800930023193, -0.006185377016663551, -0.12603119015693665, -0.024476945400238037, -0.060417041182518005, -0.16549481451511383, -0.005350093822926283, 0.1609136313199997, 0.060538023710250854, 0.021814534440636635, 0.014982457272708416, -0.01854899525642395, -0.04374090954661369, -0.17253375053405762, 0.01871171034872532, 0.16582874953746796, -0.018708162009716034, -0.013484236784279346, 0.0486195832490921, 0.020134897902607918, -0.13455615937709808, 0.014378022402524948, 0.047825887799263, 0.1759999394416809, -0.08034083992242813, 0.18990850448608398, 0.03181581571698189, -0.09267661720514297, -0.15183281898498535, 0.0053968727588653564, 0.034830302000045776, 0.03876323997974396, 0.04929284751415253, -0.2013663500547409, 0.04590889438986778, 0.044311899691820145, 0.007864273153245449, 0.04445662721991539, -0.31948545575141907, -0.16047930717468262, -0.009879442863166332, 0.01405932754278183, -0.15373744070529938, -0.039865732192993164, -0.03423365578055382, -0.0980217456817627, -0.24231107532978058, 0.1013074591755867, -0.11520085483789444, 0.06987792998552322, 0.026939431205391884, 0.10338465124368668, 0.04368835315108299, -0.043153971433639526, 0.13286803662776947, -0.023478170856833458, 0.07031054049730301, -0.09527716785669327, -0.05736246332526207, 0.07477136701345444, -0.0734964981675148, 0.08829686790704727, 0.026999065652489662, 0.07874397933483124, -0.09569931030273438, -0.0888628363609314, -0.061087846755981445, 0.0013967584818601608, -0.053521160036325455, -0.08648046851158142, -0.08803834766149521, 0.08009341359138489, 0.11556923389434814, -0.05111733078956604, -0.0915442407131195, -0.06614354252815247, 0.0012296616332605481, 0.026409892365336418, 0.12480121850967407, 0.06660082191228867, -0.0589367039501667, 0.0001761922612786293, 0.017846019938588142, 0.009449007920920849, -0.1808202862739563, 0.047668471932411194, 0.09390836954116821, 0.04211096093058586, 0.10409193485975266, 0.004081901162862778, -0.16384857892990112, 0.008482187986373901, 0.053973983973264694, -0.16852079331874847, -0.13046519458293915, -0.03850099444389343, 0.02654924988746643, -0.10061652213335037, -0.05327633023262024, 0.13372023403644562, -0.0352521650493145, -0.03998658433556557, 0.0004871270211879164, 0.03792228177189827, -0.04060908034443855, 0.08509524911642075, -0.006384586449712515, 0.041125841438770294, -0.0689464882016182, 0.11777537316083908, 0.06708608567714691, 0.0031486477237194777, 0.04026687517762184, 0.06598448008298874, -0.09205057471990585, 0.016049938276410103, -0.09731265157461166, 0.011587538756430149, -0.02467777580022812, -0.01409954484552145, 0.029605144634842873, -0.033205144107341766, 0.043476566672325134, 0.09082410484552383, -0.018554776906967163, 0.10316479206085205, -0.05079805478453636, 0.021783731877803802, -0.13086703419685364, 0.07256386429071426, 0.035310421139001846, 0.02014930732548237, -0.10496004670858383, 0.2085656076669693, 0.03617681935429573, 0.10702726989984512, -0.03727838397026062, -0.0627884790301323, -0.046844687312841415, -0.015763400122523308, -0.0836983323097229, -0.03567168489098549, -0.09087157249450684, -0.021349480375647545, -0.004286289680749178, -0.029854344204068184, -0.02908865548670292, 0.04514336585998535, -0.029596909880638123, -0.06148653104901314, -0.07226487249135971, 0.04397385194897652, -0.14393866062164307, 0.035452067852020264, 0.11649862676858902, -0.054962147027254105, 0.1262921839952469, 0.04958934709429741, -0.0350806750357151, 0.026606738567352295, -0.13884244859218597, 0.05408799648284912, -0.0070695229806005955, 0.021059542894363403, 0.020527048036456108, -0.14774948358535767, 0.00418782839551568, -0.03246205672621727, -0.06965925544500351, 0.006110536400228739, -0.023758886381983757, -0.12827979028224945, -0.007724533323198557, 0.09223117679357529, -0.013335798867046833, -0.06585996598005295, 0.07313358783721924, 0.058384742587804794, 0.021704861894249916, 0.055450838059186935, -0.011535228230059147, 0.06887414306402206, -0.17961432039737701, -0.06266003102064133, -0.001326136407442391, 0.028368646278977394, 0.04224737361073494, -0.024918094277381897, 0.035287681967020035, -0.01736251451075077, 0.20727093517780304, 0.02124384045600891, -0.000926725275348872, 0.03694560378789902, -0.07176954299211502, -0.013187501579523087, 0.04262849688529968, 0.08485158532857895, -0.02172570675611496, -0.025544650852680206, -0.0003625360841397196, -0.028679179027676582, -0.09696578234434128, -0.0168145839124918, 0.09395018965005875, 0.012679974548518658, 0.20472998917102814, -0.059206753969192505, 0.06389544159173965, -0.014709343202412128, -0.11361388117074966, -0.04626886174082756, -0.04167439416050911, 0.030716627836227417, -0.054607782512903214, 0.04457038640975952, 0.19396789371967316, -0.15786045789718628, 0.11327195167541504, 0.046687375754117966, -0.0620507188141346, -0.11887993663549423, -0.1993291974067688, -0.012655716389417648, -0.027520157396793365, 0.023334378376603127, -0.14210493862628937, 0.10123127698898315, 0.015355459414422512, 0.03933564946055412, -0.06054207682609558, 0.1332944929599762, -0.07890814542770386, -0.1343861073255539, 0.049671273678541183, 0.020811501890420914, 0.03099498152732849, 0.04504244402050972, 0.09315761178731918, 0.03236930072307587, 0.0024047980550676584, 0.0709104910492897, 0.0413983128964901, 0.03390584886074066, 0.036208320409059525, -0.03496935963630676, -0.039940912276506424, 0.02968965284526348, -0.009914985857903957, 0.017543850466609, 0.09721282869577408, 0.07138928025960922, -0.01994883269071579, -0.01567246951162815, 0.3061351478099823, -0.013862180523574352, -0.03147345408797264, -0.18553636968135834, 0.1634523570537567, 0.00647542392835021, 0.00027765738195739686, 0.02133866585791111, -0.11281219869852066, 0.0228124912828207, 0.12215981632471085, 0.14174646139144897, -0.01596001349389553, 0.02535095624625683, -0.03145216032862663, 0.017230452969670296, 0.03642772138118744, 0.1128486916422844, 0.05590157210826874, 0.18881355226039886, -0.021732540801167488, 0.05568600073456764, -0.016404101625084877, -0.02185945026576519, 0.01147006917744875, 0.10243282467126846, -0.04115147888660431, 0.007009053602814674, -0.04979312792420387, 0.10158256441354752, -0.049741823226213455, -0.300641268491745, -0.0392349511384964, -0.00906075444072485, -0.09144697338342667, 0.07914954423904419, -0.03023809753358364, -0.026719385758042336, 0.07757636904716492, 0.03139492869377136, -0.04693223163485527, 0.17422102391719818, 0.051382213830947876, -0.043385520577430725, -0.0028121788054704666, 0.11043429374694824, -0.037754204124212265, 0.1649564951658249, -0.03704586252570152, 0.010522592812776566, 0.07433608919382095, 0.015958063304424286, -0.12923534214496613, 0.0008816784247756004, 0.03513719141483307, -0.04390960559248924, -0.019435681402683258, 0.204783633351326, 0.014547762461006641, 0.012237942777574062, 0.07421501725912094, -0.0478893406689167, 0.020508332177996635, -0.04115581512451172, 0.06140248849987984, -0.12808479368686676, 0.06783568859100342, -0.07254905253648758, 0.12142103165388107, 0.177127406001091, -0.06541118025779724, 0.041941095143556595, -0.060861628502607346, 0.005202900618314743, -0.028325611725449562, 0.08340344578027725, -0.01353877317160368, -0.1160983070731163, 0.002549677388742566, 0.029814353212714195, 0.010129141621291637, -0.17268197238445282, -0.08537807315587997, 0.07553446292877197, -0.058629121631383896, 0.02716316282749176, 0.18036532402038574, 0.016179049387574196, 0.05483749881386757, -0.037484705448150635, -0.005017401184886694, -0.00469187693670392, 0.1170097216963768, -0.175361767411232, -0.07259359955787659 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/22306423b6ad8777d1ed5b33ad8b0d0b.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bob Dylan</div> <a href="https://genius.com/artists/bob-dylan"> <div style="text-align: center; font-size: 14px;">@bob-dylan</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bob Dylan. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bob-dylan). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bob-dylan") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3mj0lvel/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bob Dylan's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2rt8ywgd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2rt8ywgd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bob-dylan') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bob-dylan") model = AutoModelWithLMHead.from_pretrained("huggingartists/bob-dylan") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/bob-dylan"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/bob-dylan
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bob-dylan", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bob-dylan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bob Dylan</div> <a href="URL <div style="text-align: center; font-size: 14px;">@bob-dylan</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Bob Dylan. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Bob Dylan's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bob Dylan.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bob Dylan's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bob-dylan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bob Dylan.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bob Dylan's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bob-dylan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Bob Dylan.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bob Dylan's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.005760774482041597, 0.17880620062351227, -0.0030378615483641624, 0.03280554711818695, 0.08702156692743301, 0.009374259039759636, 0.10558910667896271, 0.09959658980369568, -0.000005664751370204613, 0.07011614739894867, 0.07488147914409637, 0.006982852704823017, 0.0655282661318779, 0.0893995463848114, 0.08743325620889664, -0.25263333320617676, 0.027833541855216026, -0.09378980100154877, 0.0007971010636538267, 0.11236889660358429, 0.09275198727846146, -0.06092976778745651, 0.0802428126335144, 0.025702429935336113, -0.06346337497234344, 0.026943229138851166, -0.015591813251376152, -0.05483285337686539, 0.0898953527212143, 0.05837040767073631, 0.0298004150390625, 0.033430010080337524, 0.06259585171937943, -0.19535309076309204, 0.03272269666194916, 0.1263751983642578, 0.0335085503757, 0.07272320985794067, 0.04951005056500435, -0.0769810825586319, 0.1649089902639389, -0.0010311049409210682, 0.09488546848297119, 0.04848555102944374, -0.11171405762434006, -0.15756069123744965, -0.12365234643220901, 0.08818274736404419, 0.09108654409646988, 0.0832495167851448, -0.03538070246577263, 0.04250256344676018, -0.027171418070793152, 0.03733047842979431, 0.2370852679014206, -0.2320103943347931, -0.013106965459883213, 0.09414386004209518, 0.033539678901433945, 0.025738442316651344, -0.08434149622917175, 0.016153469681739807, 0.0356011688709259, 0.02063753455877304, 0.050007984042167664, -0.021938078105449677, 0.18867091834545135, 0.0330166295170784, -0.09635300189256668, -0.07689026743173599, 0.13660702109336853, -0.026738828048110008, -0.07117584347724915, -0.13632670044898987, 0.006588514428585768, 0.012226884253323078, 0.042626552283763885, -0.001935224630869925, -0.005981186404824257, 0.002029737923294306, -0.06651148200035095, -0.11857005953788757, -0.08677183091640472, -0.03024132549762726, -0.023495543748140335, 0.05699043720960617, 0.03772411122918129, 0.038061995059251785, -0.0680922269821167, 0.22699707746505737, -0.0014376745093613863, -0.1020803153514862, -0.046878401190042496, -0.08048753440380096, -0.09565059840679169, -0.05309457331895828, -0.0022157367784529924, 0.014335129410028458, -0.054195817559957504, 0.1909976750612259, 0.014641495421528816, 0.01828155666589737, 0.009068997576832771, -0.012321151793003082, 0.14729884266853333, 0.12389661371707916, -0.12067811191082001, -0.051638275384902954, 0.06686192750930786, -0.011687452904880047, -0.05798039212822914, -0.046989962458610535, -0.024251364171504974, -0.014933481812477112, 0.05046720430254936, 0.07810872793197632, 0.07023169845342636, 0.04704852029681206, 0.026778701692819595, -0.06953597813844681, 0.07118051499128342, -0.13330824673175812, 0.010927206836640835, 0.004312467761337757, -0.04741859808564186, 0.0010349198710173368, 0.03959997743368149, 0.022485902532935143, -0.10625000298023224, 0.1354270726442337, -0.057571034878492355, -0.051651958376169205, -0.0742185115814209, -0.0855923444032669, 0.003141087479889393, -0.026862679049372673, -0.03407755494117737, -0.06417594105005264, -0.1784418821334839, -0.041073672473430634, 0.037515971809625626, -0.04917144402861595, -0.054680850356817245, 0.018913934007287025, -0.022596413269639015, 0.003691890509799123, -0.017614006996154785, -0.03254818916320801, -0.025042258203029633, 0.024419717490673065, -0.05089863762259483, 0.025317830964922905, 0.08017505705356598, 0.04815859720110893, -0.11935052275657654, 0.048646535724401474, -0.1623784899711609, 0.12129241973161697, -0.01039506122469902, 0.02455444261431694, -0.10046451538801193, -0.08131973445415497, -0.026307759806513786, -0.03496182709932327, -0.0037134254816919565, 0.09951074421405792, -0.17865784466266632, -0.047844890505075455, 0.19461622834205627, -0.06631004810333252, -0.07338400185108185, 0.08073922246694565, -0.07940560579299927, 0.034540195018053055, 0.12766103446483612, 0.05918736383318901, 0.14979417622089386, -0.12013091146945953, -0.052950382232666016, -0.038155268877744675, -0.04584251716732979, 0.19062450528144836, 0.06400913000106812, -0.028753099963068962, 0.030348604544997215, 0.008469253778457642, -0.030057154595851898, -0.01885920576751232, -0.010441459715366364, -0.03944583982229233, -0.007458996027708054, 0.009380067698657513, -0.008370872586965561, -0.028552023693919182, -0.06617995351552963, -0.022613830864429474, -0.10979408770799637, 0.03817122429609299, 0.09740350395441055, -0.07274440675973892, 0.007268279790878296, -0.08537247031927109, -0.0022283887956291437, -0.03607480973005295, 0.013089832849800587, -0.16534356772899628, -0.04861738160252571, 0.01923711970448494, -0.07346517592668533, 0.10281185060739517, 0.0431084930896759, 0.03333715349435806, 0.05401018261909485, -0.017955617979168892, 0.02198098599910736, -0.03574876859784126, -0.02602112479507923, -0.02088128589093685, -0.14686594903469086, -0.05304344370961189, -0.04132939130067825, 0.11080358177423477, -0.11964712291955948, 0.0038218300323933363, 0.08970629423856735, 0.12554793059825897, 0.02615675888955593, -0.0696108341217041, 0.0214175246655941, -0.03851557523012161, -0.03552445024251938, -0.10387931019067764, -0.04647643864154816, 0.014642070047557354, -0.012773873284459114, 0.14449922740459442, -0.15703345835208893, -0.09031171351671219, 0.11121686547994614, 0.1372835636138916, -0.08822125196456909, 0.06202302128076553, -0.07634396851062775, -0.016093702986836433, -0.05317830294370651, -0.040118828415870667, 0.2687271237373352, 0.04137306287884712, 0.08397812396287918, -0.1099591925740242, -0.10900138318538666, -0.012317740358412266, -0.033523447811603546, -0.02004476636648178, 0.030177297070622444, 0.027248093858361244, -0.168182373046875, 0.03871948644518852, -0.01901789754629135, 0.08295253664255142, 0.20518992841243744, 0.03975773602724075, -0.0953928753733635, -0.06600654870271683, -0.08642978221178055, 0.0021093632094562054, 0.07576604187488556, 0.012007254175841808, 0.029629046097397804, 0.03938255086541176, 0.04432060196995735, 0.042173564434051514, -0.11992380768060684, 0.01192357949912548, 0.07135014981031418, -0.036033906042575836, -0.05623934417963028, 0.0060709514655172825, 0.018348190933465958, 0.0748465359210968, 0.08680249750614166, 0.11471527814865112, -0.06147385761141777, -0.05275224149227142, -0.14825324714183807, 0.13078859448432922, -0.08734846115112305, -0.23946809768676758, -0.14406825602054596, -0.05695221945643425, 0.012696639634668827, 0.011868187226355076, 0.03163279965519905, -0.0326666384935379, -0.04411096125841141, -0.0964546874165535, 0.08781197667121887, -0.059235185384750366, -0.03821142762899399, -0.006411710288375616, 0.028310410678386688, -0.03355811536312103, -0.10765456408262253, -0.019880928099155426, 0.033555347472429276, -0.10801810026168823, -0.022200211882591248, 0.026408391073346138, 0.03572418540716171, 0.15640723705291748, 0.006305190734565258, 0.005760652013123035, -0.023488929495215416, 0.27457597851753235, -0.1210891455411911, 0.06911703944206238, 0.13458463549613953, -0.009546348825097084, 0.04734281823039055, 0.07680394500494003, 0.0064667994156479836, -0.049558933824300766, 0.0682201236486435, 0.0771608054637909, -0.07725074142217636, -0.21542496979236603, -0.03434264659881592, -0.013890277594327927, 0.01013387180864811, 0.12276925146579742, 0.04544244706630707, 0.05579086020588875, 0.006143090780824423, -0.10876492410898209, 0.04786630719900131, 0.040018875151872635, 0.10769976675510406, -0.05152284353971481, -0.004330532159656286, 0.04242897406220436, -0.05694419518113136, 0.019308220595121384, 0.12796100974082947, 0.026877176016569138, 0.20749519765377045, -0.05730534717440605, 0.11392950266599655, 0.06365131586790085, 0.10826859623193741, 0.013546613045036793, 0.025584721937775612, -0.018438654020428658, 0.02283508889377117, -0.0008084867731668055, -0.08968895673751831, 0.0004573120968416333, 0.03500444442033768, 0.0401419997215271, -0.020284637808799744, -0.027040060609579086, -0.0751010850071907, 0.03576083108782768, 0.25333353877067566, 0.025452986359596252, -0.15966401994228363, -0.1015256866812706, 0.04986557364463806, -0.07188057899475098, -0.044524289667606354, -0.0034008051734417677, 0.08435864001512527, -0.21533037722110748, 0.06495074927806854, -0.027924638241529465, 0.10870620608329773, -0.12659771740436554, -0.00935637392103672, 0.08194774389266968, 0.039090484380722046, -0.05872645601630211, 0.10323583334684372, -0.16506153345108032, 0.05333029478788376, -0.005439542233943939, 0.08170809596776962, -0.06503769010305405, 0.020710568875074387, 0.00944583397358656, 0.04779916629195213, 0.08021173626184464, 0.016914138570427895, 0.022879187017679214, 0.008015697821974754, -0.05472224950790405, 0.010395145043730736, 0.05920681729912758, -0.1453024446964264, 0.1295900046825409, -0.044560208916664124, 0.030402397736907005, -0.03744254633784294, -0.054906200617551804, -0.08436828851699829, -0.16874024271965027, 0.08412337303161621, -0.11243872344493866, -0.01683775894343853, -0.06494168192148209, -0.02092907764017582, 0.0528007410466671, 0.23139210045337677, -0.08273646980524063, -0.0722934827208519, -0.12755586206912994, -0.0040620602667331696, 0.14192481338977814, -0.08212512731552124, -0.014769980683922768, -0.014628374949097633, 0.18876346945762634, -0.002030846429988742, -0.1396152377128601, -0.017926881089806557, -0.06534670293331146, -0.16974981129169464, -0.01535903848707676, 0.1712445616722107, 0.06806378066539764, 0.03654312714934349, 0.014302966184914112, 0.011658619157969952, -0.056966740638017654, -0.16757304966449738, 0.0269265566021204, 0.12864473462104797, -0.012657740153372288, 0.021778307855129242, 0.04357719048857689, 0.02563984878361225, -0.12549641728401184, 0.018488606438040733, 0.0657738447189331, 0.16460612416267395, -0.07198325544595718, 0.17589697241783142, 0.059630535542964935, -0.08997029811143875, -0.17642679810523987, 0.0059930975548923016, 0.008250722661614418, 0.019341440871357918, 0.01641567051410675, -0.2210727035999298, 0.05096349120140076, 0.029213445261120796, -0.006014291662722826, 0.04842403158545494, -0.3258969187736511, -0.15807627141475677, 0.028220046311616898, -0.00405694916844368, -0.10053078085184097, -0.047938089817762375, -0.035807088017463684, -0.08281693607568741, -0.26901742815971375, 0.11307462304830551, -0.1123029887676239, 0.0790242850780487, 0.02249133214354515, 0.10052597522735596, 0.04676192253828049, -0.04976262152194977, 0.11698610335588455, -0.01362510584294796, 0.05221310257911682, -0.0961286723613739, -0.06572803854942322, 0.0951949805021286, -0.061541032046079636, 0.08764848858118057, 0.016528263688087463, 0.08296465873718262, -0.107577845454216, -0.08520551025867462, -0.07571518421173096, 0.004223965108394623, -0.062418680638074875, -0.08529544621706009, -0.1001298725605011, 0.09464334696531296, 0.12665332853794098, -0.03916166350245476, -0.07914631068706512, -0.05446183681488037, -0.0058354162611067295, 0.06169041618704796, 0.11501547694206238, 0.0668627992272377, -0.07770027965307236, 0.012627152726054192, 0.01643792912364006, 0.020959779620170593, -0.13703401386737823, 0.046118807047605515, 0.0896964967250824, 0.05120226740837097, 0.1045871302485466, 0.006812973413616419, -0.18263769149780273, -0.0028864911291748285, 0.04620429873466492, -0.18818962574005127, -0.14608515799045563, -0.05398237332701683, -0.017271706834435463, -0.10762936621904373, -0.05317973345518112, 0.1209305003285408, -0.03201191872358322, -0.041702669113874435, 0.009902214631438255, 0.04235540330410004, -0.03936292603611946, 0.09725312143564224, 0.00797382090240717, 0.043552104383707047, -0.07259980589151382, 0.11840076744556427, 0.07642475515604019, 0.028974657878279686, 0.026950737461447716, 0.07129563391208649, -0.08424589037895203, 0.010465842671692371, -0.09346181154251099, 0.021787339821457863, -0.03089183196425438, -0.004647489637136459, 0.016747068613767624, -0.03126884624361992, 0.03490101918578148, 0.07328099757432938, -0.009806524962186813, 0.10206649452447891, -0.03926607966423035, 0.007026583421975374, -0.13605919480323792, 0.08475622534751892, 0.030637361109256744, 0.013638816773891449, -0.09499496966600418, 0.19932347536087036, 0.02230609767138958, 0.08403380960226059, -0.03749284893274307, -0.06471875309944153, -0.05968814343214035, -0.01298938225954771, -0.0908408910036087, -0.050828967243433, -0.08997255563735962, -0.027323340997099876, 0.001323401927947998, -0.04330902546644211, -0.026643915101885796, 0.040605999529361725, -0.03452340140938759, -0.05812196806073189, -0.06832028925418854, 0.04354848712682724, -0.14801141619682312, 0.036929305642843246, 0.12178333103656769, -0.0544886440038681, 0.12309909611940384, 0.06373261660337448, -0.03128528967499733, 0.027209710329771042, -0.11523154377937317, 0.018358701840043068, -0.03568059951066971, 0.019442109391093254, 0.028180573135614395, -0.16206206381320953, 0.004119891207665205, -0.03968588635325432, -0.053061727434396744, 0.005187761504203081, -0.0017685446655377746, -0.12509790062904358, -0.007455138489603996, 0.07979760318994522, -0.027009371668100357, -0.07501523196697235, 0.06654374301433563, 0.04650028422474861, 0.030356261879205704, 0.07420055568218231, -0.028417756780982018, 0.07878922671079636, -0.15827052295207977, -0.05051746591925621, 0.008139101788401604, 0.03192271292209625, 0.031966134905815125, -0.0087676290422678, 0.03288998454809189, -0.014403281733393669, 0.19159629940986633, 0.010797123424708843, -0.027089383453130722, 0.038150593638420105, -0.04576331004500389, -0.002806589240208268, 0.03479786962270737, 0.05869168043136597, -0.020827583968639374, -0.04806558042764664, -0.009456103667616844, -0.02152089774608612, -0.0916854590177536, -0.04409758374094963, 0.12770789861679077, 0.03361093997955322, 0.20310157537460327, -0.054013244807720184, 0.07291413098573685, -0.019482389092445374, -0.09936383366584778, -0.0035967666190117598, -0.026577690616250038, 0.046506479382514954, -0.0509389191865921, 0.10231132060289383, 0.18677738308906555, -0.168434277176857, 0.12063562870025635, 0.018102793022990227, -0.055028706789016724, -0.12696057558059692, -0.2046073079109192, -0.023359518498182297, -0.03258291259407997, 0.03503858298063278, -0.1393813192844391, 0.07755083590745926, 0.023319125175476074, 0.033280275762081146, -0.07275015860795975, 0.10157693177461624, -0.06390068680047989, -0.12468823045492172, 0.04087066650390625, 0.0250607468187809, 0.019122445955872536, 0.04694904014468193, 0.08289901167154312, 0.0268058143556118, 0.0031474377028644085, 0.08239608258008957, 0.030031686648726463, 0.024086691439151764, 0.039846956729888916, -0.037693411111831665, -0.04395254701375961, 0.029908280819654465, 0.0011351245921105146, 0.04356331005692482, 0.09120254218578339, 0.060652852058410645, -0.014766190201044083, -0.018568197265267372, 0.3138153553009033, -0.030615966767072678, -0.04828103259205818, -0.18137052655220032, 0.15048834681510925, 0.008747191168367863, -0.0076464819721877575, 0.04222184792160988, -0.12214510887861252, 0.005539535079151392, 0.14406494796276093, 0.1781751811504364, -0.020439116284251213, 0.012738394550979137, -0.02558264136314392, 0.017448365688323975, 0.04430859163403511, 0.07938007265329361, 0.06494763493537903, 0.23244896531105042, -0.03435012698173523, 0.06107990816235542, -0.0009582052007317543, -0.018000932410359383, -0.01011425256729126, 0.0974564477801323, -0.03219319507479668, -0.00009823954314924777, -0.05369407311081886, 0.10112792998552322, -0.054242342710494995, -0.2978041172027588, -0.02021833322942257, -0.026718340814113617, -0.09463455528020859, 0.05154222249984741, -0.029597152024507523, -0.031055638566613197, 0.08894603699445724, 0.025362472981214523, -0.039342522621154785, 0.13775403797626495, 0.04298001155257225, -0.05723066255450249, -0.01687735691666603, 0.11124063283205032, -0.04450564086437225, 0.1840001940727234, -0.03408220037817955, 0.011157897301018238, 0.0869562178850174, 0.018846968188881874, -0.12885615229606628, 0.005290609318763018, 0.0398678220808506, -0.07159731537103653, -0.02107672020792961, 0.20648308098316193, 0.007149890996515751, 0.036584991961717606, 0.08044326305389404, -0.03204759582877159, 0.03280239179730415, -0.059878770262002945, 0.059342335909605026, -0.1455674022436142, 0.06803341954946518, -0.0905575230717659, 0.1252766251564026, 0.1837531179189682, -0.07314673811197281, 0.026015037670731544, -0.05297843739390373, -0.005303113721311092, -0.02553502842783928, 0.0796281024813652, -0.012349159456789494, -0.09009252488613129, 0.011990065686404705, 0.011922757141292095, 0.021425781771540642, -0.21055015921592712, -0.061133574694395065, 0.06555215269327164, -0.054535627365112305, 0.02775430865585804, 0.1806042641401291, 0.03212814778089523, 0.05751362070441246, -0.04189225658774376, -0.023030148819088936, -0.027609802782535553, 0.10673734545707703, -0.17572644352912903, -0.09008575975894928 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/564dc935d7c601860b155b359d8ddf9d.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BONES</div> <a href="https://genius.com/artists/bones"> <div style="text-align: center; font-size: 14px;">@bones</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from BONES. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bones). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bones") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/26h7sojw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on BONES's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1yr1mvc2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1yr1mvc2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bones') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bones") model = AutoModelWithLMHead.from_pretrained("huggingartists/bones") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/bones"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/bones
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bones", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bones #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">BONES</div> <a href="URL <div style="text-align: center; font-size: 14px;">@bones</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from BONES. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on BONES's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from BONES.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BONES's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bones #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from BONES.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BONES's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bones #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from BONES.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BONES's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.022600142285227776, 0.156552255153656, -0.0026820071507245302, 0.04033569619059563, 0.08793307095766068, -0.001624047290533781, 0.08420100808143616, 0.11319414526224136, -0.009422746486961842, 0.07027105242013931, 0.07699623703956604, 0.013231207616627216, 0.06537245213985443, 0.1357467621564865, 0.08930519968271255, -0.267084002494812, 0.02941093035042286, -0.10366588830947876, 0.017916226759552956, 0.1196613684296608, 0.08994802087545395, -0.05123345926403999, 0.08402416110038757, 0.034760382026433945, -0.08348327875137329, 0.03343329206109047, -0.01473067793995142, -0.06706453114748001, 0.09519272297620773, 0.07807422429323196, 0.030855001881718636, 0.03224458545446396, 0.06568807363510132, -0.1916825920343399, 0.035315025597810745, 0.1254575550556183, 0.025003934279084206, 0.07099497318267822, 0.03762694448232651, -0.07471193373203278, 0.17531804740428925, -0.031854186207056046, 0.088743656873703, 0.04639217630028725, -0.10910197347402573, -0.18086539208889008, -0.12112226337194443, 0.07771886140108109, 0.09384418278932571, 0.0793590247631073, -0.03180593624711037, 0.051295679062604904, 0.004747561179101467, 0.04650777578353882, 0.24481211602687836, -0.24504531919956207, -0.018513189628720284, 0.09752916544675827, 0.03734220936894417, 0.05027652904391289, -0.0799192413687706, 0.01803549937903881, 0.050338614732027054, 0.02801310084760189, 0.04995938763022423, -0.01228591799736023, 0.20959687232971191, 0.024025795981287956, -0.09555954486131668, -0.08371128886938095, 0.10598805546760559, -0.031142354011535645, -0.08105015754699707, -0.1567670851945877, 0.0012738527730107307, -0.03747468441724777, 0.042688097804784775, -0.015118174254894257, -0.006107700522989035, 0.000914872158318758, -0.0375891737639904, -0.09868767112493515, -0.0923326313495636, -0.028395958244800568, -0.02867874689400196, 0.06527817994356155, 0.02439037151634693, 0.0294302050024271, -0.07137719541788101, 0.23336182534694672, 0.004520875867456198, -0.10298383235931396, -0.05530287325382233, -0.09199338406324387, -0.09879496693611145, -0.058495815843343735, 0.011336379684507847, 0.024243243038654327, -0.05967898294329643, 0.16997027397155762, -0.03761816397309303, 0.028150856494903564, -0.0029859680216759443, -0.027019673958420753, 0.15071797370910645, 0.12029097229242325, -0.08746618032455444, -0.03006475232541561, 0.046920400112867355, -0.011890222318470478, -0.0691809207201004, -0.0585285909473896, -0.016071535646915436, -0.026534555479884148, 0.03207370638847351, 0.09319999814033508, 0.046113271266222, 0.05259569361805916, 0.03437386080622673, -0.0579768531024456, 0.11497348546981812, -0.1427014172077179, 0.007486740592867136, -0.013739143498241901, -0.02742101438343525, 0.013968124985694885, 0.04862337186932564, 0.015968838706612587, -0.09349358081817627, 0.10652711987495422, -0.0508117713034153, -0.05788339301943779, -0.0682084858417511, -0.08375100046396255, -0.0040182932280004025, -0.01692286878824234, -0.04703556373715401, -0.08737365156412125, -0.15781892836093903, -0.031569089740514755, 0.020295685157179832, -0.04389101266860962, -0.04372965171933174, 0.04360402002930641, -0.03989822044968605, 0.0012366060400381684, -0.016843225806951523, -0.012563665397465229, -0.029959388077259064, 0.021673353388905525, -0.05254879966378212, 0.03677205741405487, 0.0785907506942749, 0.0329277478158474, -0.10600430518388748, 0.0659443661570549, -0.15422914922237396, 0.14402858912944794, -0.013125617057085037, 0.015559199266135693, -0.10590901225805283, -0.09167132526636124, -0.03033296950161457, -0.02858925424516201, -0.007856029085814953, 0.09542039036750793, -0.19077499210834503, -0.038824617862701416, 0.1969747096300125, -0.07557003945112228, -0.08787429332733154, 0.07507889717817307, -0.07904849201440811, 0.03945339098572731, 0.1364259123802185, 0.06522668153047562, 0.15834349393844604, -0.1091456413269043, -0.06942400336265564, -0.04824092984199524, -0.052975308150053024, 0.2160402089357376, 0.05473728105425835, -0.006553084123879671, 0.027265606448054314, 0.012456025928258896, -0.01926923543214798, -0.026159757748246193, -0.02138786017894745, -0.04381416365504265, -0.011547211557626724, 0.012469489127397537, -0.011644747108221054, -0.048644691705703735, -0.06765607744455338, -0.02225988171994686, -0.11187910288572311, 0.036300815641880035, 0.10173916816711426, -0.07165263593196869, 0.008450032211840153, -0.09177043288946152, -0.008835739456117153, -0.03856659308075905, 0.018685070797801018, -0.1937563419342041, -0.06832529604434967, 0.025721052661538124, -0.0721346065402031, 0.08868784457445145, 0.02087104506790638, 0.038196999579668045, 0.06429674476385117, -0.007726158946752548, 0.026225445792078972, -0.04791908338665962, -0.019126297906041145, -0.035428304225206375, -0.1456553339958191, -0.0719953179359436, -0.056088898330926895, 0.0835643783211708, -0.13719090819358826, 0.010445661842823029, 0.10716324299573898, 0.11900752782821655, 0.024971960112452507, -0.060882627964019775, 0.00601452961564064, -0.03727398440241814, -0.04036463424563408, -0.11534612625837326, -0.05980520322918892, 0.00640622666105628, -0.03463741019368172, 0.15180115401744843, -0.17572568356990814, -0.06683226674795151, 0.09877673536539078, 0.1750010997056961, -0.10418734699487686, 0.01143744308501482, -0.09355572611093521, -0.011196126230061054, -0.049057573080062866, -0.03865891695022583, 0.2678802013397217, 0.038213010877370834, 0.0746489092707634, -0.11250033229589462, -0.10271045565605164, -0.0010105198016390204, -0.03216371312737465, -0.02911033295094967, 0.027448585256934166, 0.016335923224687576, -0.1760236769914627, 0.030076125636696815, -0.007623210549354553, 0.12021664530038834, 0.21447555720806122, 0.05133771523833275, -0.0926755890250206, -0.061781156808137894, -0.0878014788031578, 0.005386661738157272, 0.05689341947436333, 0.027605578303337097, 0.026226231828331947, 0.04130290076136589, 0.05226759612560272, 0.03983931243419647, -0.11046984046697617, 0.008878069929778576, 0.07875771820545197, -0.047730952501297, -0.04864700511097908, 0.02240528166294098, 0.013678965158760548, 0.08095856755971909, 0.07631193846464157, 0.14707443118095398, -0.07269730418920517, -0.048156145960092545, -0.14257831871509552, 0.13617634773254395, -0.0770421251654625, -0.2597597539424896, -0.14015962183475494, -0.07340935617685318, 0.021172618493437767, 0.006109799724072218, 0.04360251501202583, -0.06056863069534302, -0.036543164402246475, -0.10344047099351883, 0.08717995882034302, -0.04843528941273689, -0.011997892521321774, 0.003226686967536807, 0.01833684742450714, -0.03255673125386238, -0.10782810300588608, -0.030345061793923378, 0.04118954762816429, -0.10681551694869995, -0.017658114433288574, 0.021989377215504646, 0.0419139601290226, 0.14783556759357452, -0.009527706541121006, -0.003258218290284276, -0.03632436320185661, 0.28108271956443787, -0.11933604627847672, 0.07002744823694229, 0.16391348838806152, -0.01878681220114231, 0.051593486219644547, 0.07594453543424606, 0.006840517278760672, -0.06838192790746689, 0.07801928371191025, 0.07575572282075882, -0.09416799992322922, -0.21728073060512543, -0.024482300505042076, -0.008153223432600498, 0.026050442829728127, 0.12930841743946075, 0.060893163084983826, 0.06147654727101326, -0.0017757037421688437, -0.10208805650472641, 0.04422447085380554, 0.028666099533438683, 0.11089510470628738, -0.06532817333936691, -0.006753146648406982, 0.05104079842567444, -0.06374325603246689, 0.02882121503353119, 0.14065483212471008, 0.04636768996715546, 0.19587267935276031, -0.06288110464811325, 0.10374144464731216, 0.07386121898889542, 0.11080088466405869, 0.0369676798582077, 0.01219092309474945, -0.00015909566718619317, 0.012214034795761108, -0.003807429224252701, -0.09699080139398575, -0.010686025023460388, 0.04881544038653374, 0.02723642624914646, -0.022722726687788963, -0.03957057371735573, -0.05040121078491211, 0.04098634794354439, 0.23265165090560913, -0.017365822568535805, -0.18407796323299408, -0.11693084239959717, 0.04092889651656151, -0.07732131332159042, -0.05124957486987114, -0.025548599660396576, 0.07729623466730118, -0.21715669333934784, 0.06724654883146286, -0.03667563572525978, 0.10756731033325195, -0.10582667589187622, 0.0036373583134263754, 0.08627823740243912, 0.04674699902534485, -0.06614648550748825, 0.09651884436607361, -0.16614539921283722, 0.059128906577825546, -0.012245905585587025, 0.06674150377511978, -0.07552335411310196, 0.031131869181990623, 0.0022672582417726517, 0.04746576026082039, 0.08865950256586075, 0.009033161215484142, 0.027351999655365944, 0.0074650589376688, -0.04649432376027107, 0.014344032853841782, 0.05549768730998039, -0.13467276096343994, 0.12797683477401733, -0.02576727233827114, 0.03679788112640381, -0.04122529923915863, -0.09025552123785019, -0.08685282617807388, -0.1711844652891159, 0.08966504782438278, -0.12448987364768982, -0.0032740633469074965, -0.07109232246875763, -0.034752652049064636, 0.029800163581967354, 0.2647531032562256, -0.05614230036735535, -0.07573849707841873, -0.14054666459560394, 0.02323547750711441, 0.14812220633029938, -0.08272625505924225, 0.00812157429754734, -0.0113377645611763, 0.2171047478914261, -0.004515149164944887, -0.1272779107093811, -0.01747013069689274, -0.062200065702199936, -0.1685560941696167, -0.0060523091815412045, 0.1668526530265808, 0.0650830790400505, 0.02539783902466297, 0.01061610784381628, -0.014312434010207653, -0.04618081822991371, -0.1696329116821289, 0.02406744658946991, 0.16283036768436432, -0.00985562801361084, -0.0010550941806286573, 0.04429600015282631, 0.015937963500618935, -0.1361832171678543, 0.012716383673250675, 0.04747845232486725, 0.1840529441833496, -0.08268436044454575, 0.19154591858386993, 0.02640865556895733, -0.0914485976099968, -0.1441226750612259, 0.010220845229923725, 0.040703386068344116, 0.040618617087602615, 0.04926563426852226, -0.20581583678722382, 0.04355941340327263, 0.03921686112880707, 0.006943494081497192, 0.035537462681531906, -0.3204328119754791, -0.15734221041202545, -0.009482289664447308, 0.004065724555402994, -0.15028168261051178, -0.044636745005846024, -0.03240007907152176, -0.09272054582834244, -0.25114986300468445, 0.10514861345291138, -0.11489897221326828, 0.07153308391571045, 0.02961905300617218, 0.10079684108495712, 0.04476529359817505, -0.04220736026763916, 0.13499368727207184, -0.013210226781666279, 0.06735409051179886, -0.09141855686903, -0.06119518354535103, 0.07469698041677475, -0.07435527443885803, 0.08865901827812195, 0.03347821906208992, 0.08025044947862625, -0.10006184130907059, -0.08979880809783936, -0.06302032619714737, -0.0006869255448691547, -0.05185232684016228, -0.08941343426704407, -0.08838587254285812, 0.08710025995969772, 0.12175118923187256, -0.04828576371073723, -0.08974320441484451, -0.07232926040887833, 0.015516090206801891, 0.05360351875424385, 0.12307209521532059, 0.07251256704330444, -0.053971532732248306, 0.00449353689327836, 0.016238106414675713, 0.005564132239669561, -0.1765661984682083, 0.046724896878004074, 0.09729775786399841, 0.03905460610985756, 0.10092675685882568, 0.006622541695833206, -0.17089547216892242, 0.004470077343285084, 0.0506957471370697, -0.164467915892601, -0.1238689199090004, -0.03953719511628151, 0.024954192340373993, -0.10467907041311264, -0.04661087691783905, 0.1351090371608734, -0.034053366631269455, -0.040524985641241074, 0.003484692657366395, 0.035630833357572556, -0.03730328008532524, 0.08455952256917953, -0.011116008274257183, 0.041702691465616226, -0.06919673830270767, 0.11776409298181534, 0.06563305109739304, 0.0031291258055716753, 0.03756146505475044, 0.06809374690055847, -0.09531193971633911, 0.017158040776848793, -0.09760057926177979, 0.002790703671053052, -0.0339372344315052, -0.009527583606541157, 0.026062751188874245, -0.03008914552628994, 0.04779199883341789, 0.10037215799093246, -0.01170938741415739, 0.1035192608833313, -0.050065118819475174, 0.024456316605210304, -0.13248272240161896, 0.07186219096183777, 0.03265271335840225, 0.02526346780359745, -0.10952178388834, 0.2035231590270996, 0.03175266087055206, 0.10152069479227066, -0.0383136160671711, -0.05970029532909393, -0.046775657683610916, -0.01590908132493496, -0.07667018473148346, -0.03762933611869812, -0.08750700205564499, -0.022796453908085823, -0.003087758319452405, -0.033038269728422165, -0.03200160339474678, 0.045106709003448486, -0.03298962488770485, -0.0623430497944355, -0.07657404243946075, 0.04690230265259743, -0.14186426997184753, 0.03486999496817589, 0.11453165858983994, -0.056360866874456406, 0.12776915729045868, 0.05510048568248749, -0.03401166573166847, 0.025018101558089256, -0.1285530924797058, 0.052419062703847885, -0.005323501303792, 0.021118849515914917, 0.01872963272035122, -0.15317091345787048, 0.004528259392827749, -0.034586187452077866, -0.06830684095621109, 0.008958441205322742, -0.011783204041421413, -0.12849675118923187, -0.009860430844128132, 0.09121036529541016, -0.008149854838848114, -0.06430722028017044, 0.0702972486615181, 0.05881556496024132, 0.02813788689672947, 0.05673177167773247, -0.011438795365393162, 0.06643853336572647, -0.18108254671096802, -0.0629102885723114, -0.0065298546105623245, 0.03322107717394829, 0.04362465813755989, -0.0252495389431715, 0.03623770549893379, -0.01665414683520794, 0.21217769384384155, 0.021842489019036293, 0.000009811327799980063, 0.03672574460506439, -0.08187983185052872, -0.0013274522498250008, 0.0399480015039444, 0.08674710243940353, -0.018061961978673935, -0.028553416952490807, 0.008800595067441463, -0.02585238218307495, -0.09693542867898941, -0.021913854405283928, 0.09839574247598648, 0.017911303788423538, 0.20335829257965088, -0.060225650668144226, 0.0707513839006424, -0.01765412837266922, -0.10290632396936417, -0.0324946828186512, -0.04110570251941681, 0.022215286269783974, -0.059949565678834915, 0.05075640603899956, 0.19217915832996368, -0.15658612549304962, 0.11683138459920883, 0.040728677064180374, -0.05694021284580231, -0.12086645513772964, -0.18642133474349976, -0.013527157716453075, -0.035027842968702316, 0.0222246665507555, -0.14143739640712738, 0.09540820121765137, 0.022691568359732628, 0.04037892818450928, -0.057697031646966934, 0.1350501924753189, -0.08542697876691818, -0.1370406299829483, 0.04356883093714714, 0.019391974434256554, 0.031145909801125526, 0.04345254600048065, 0.09074288606643677, 0.03786478936672211, 0.00734011409804225, 0.06940492987632751, 0.037997160106897354, 0.03669664263725281, 0.03626867011189461, -0.03228909149765968, -0.039086200296878815, 0.0288356002420187, -0.007751841563731432, 0.01818917877972126, 0.0986088290810585, 0.06911260634660721, -0.022961633279919624, -0.016679391264915466, 0.31199872493743896, -0.02149256505072117, -0.031296487897634506, -0.18715304136276245, 0.1599736213684082, 0.008628719486296177, 0.001808659522794187, 0.01894717663526535, -0.1149735078215599, 0.01819152757525444, 0.10704517364501953, 0.15439683198928833, -0.022014016285538673, 0.02362837828695774, -0.023027777671813965, 0.017668629065155983, 0.03672129288315773, 0.1063237190246582, 0.06432906538248062, 0.18864023685455322, -0.025238672271370888, 0.055028948932886124, -0.014044913463294506, -0.019205892458558083, 0.013935565948486328, 0.09986626356840134, -0.038583382964134216, 0.005919542629271746, -0.048703882843256, 0.10138659924268723, -0.05155107378959656, -0.3009393513202667, -0.03786807134747505, -0.022231364622712135, -0.09197571128606796, 0.07509084790945053, -0.03503500297665596, -0.026594942435622215, 0.07696709781885147, 0.02815740741789341, -0.04558006301522255, 0.16222430765628815, 0.0512230210006237, -0.04428933560848236, -0.0017908057197928429, 0.11163701862096786, -0.03522087633609772, 0.1610269695520401, -0.0412999652326107, 0.009628410451114178, 0.07636532932519913, 0.008800891228020191, -0.12848792970180511, 0.0019253859063610435, 0.0358404777944088, -0.049306273460388184, -0.021583562716841698, 0.20206838846206665, 0.013482918031513691, 0.02888868935406208, 0.07206211239099503, -0.05692023038864136, 0.01992671750485897, -0.04183075949549675, 0.06005977466702461, -0.13430456817150116, 0.06770413368940353, -0.07964838296175003, 0.11972277611494064, 0.17255501449108124, -0.06694256514310837, 0.04118170216679573, -0.05650733411312103, 0.008179332129657269, -0.025160716846585274, 0.0843832790851593, -0.017702633515000343, -0.11472881585359573, 0.004110722336918116, 0.03083913028240204, 0.011090735904872417, -0.1807277947664261, -0.08397742360830307, 0.07706969231367111, -0.053937241435050964, 0.020568834617733955, 0.17961114645004272, 0.013105339370667934, 0.058685991913080215, -0.04027002677321434, -0.01516641303896904, -0.006641926243901253, 0.11994689702987671, -0.18043102324008942, -0.07853300124406815 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/491c2f003f52c9837809b86faef7b764.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Борис Гребенщиков (Boris Grebenshikov)</div> <a href="https://genius.com/artists/boris-grebenshikov"> <div style="text-align: center; font-size: 14px;">@boris-grebenshikov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Борис Гребенщиков (Boris Grebenshikov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/boris-grebenshikov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/boris-grebenshikov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3nb43gls/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Борис Гребенщиков (Boris Grebenshikov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34p8ye7k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34p8ye7k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/boris-grebenshikov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/boris-grebenshikov") model = AutoModelWithLMHead.from_pretrained("huggingartists/boris-grebenshikov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/boris-grebenshikov"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/boris-grebenshikov
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/boris-grebenshikov", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/boris-grebenshikov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Борис Гребенщиков (Boris Grebenshikov)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@boris-grebenshikov</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Борис Гребенщиков (Boris Grebenshikov). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Борис Гребенщиков (Boris Grebenshikov)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Борис Гребенщиков (Boris Grebenshikov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Борис Гребенщиков (Boris Grebenshikov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/boris-grebenshikov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Борис Гребенщиков (Boris Grebenshikov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Борис Гребенщиков (Boris Grebenshikov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 87, 21, 60, 83, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/boris-grebenshikov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Борис Гребенщиков (Boris Grebenshikov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Борис Гребенщиков (Boris Grebenshikov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.060246508568525314, 0.1622135043144226, -0.004905280191451311, 0.09209010750055313, 0.09127369523048401, 0.003638335270807147, 0.13123902678489685, 0.10199755430221558, 0.04738321155309677, 0.056523870676755905, 0.07012231647968292, 0.02930985949933529, 0.02450725808739662, 0.05887652188539505, 0.014564723707735538, -0.21556608378887177, 0.0016674762591719627, -0.07352092862129211, -0.057842571288347244, 0.10106857866048813, 0.09839936345815659, -0.0502174012362957, 0.05600839853286743, 0.016429323703050613, -0.0882810577750206, 0.020899565890431404, 0.06219443306326866, -0.05192674696445465, 0.06086166203022003, 0.08152016997337341, 0.08893731236457825, 0.04002154618501663, 0.057453639805316925, -0.1292032152414322, 0.02738865092396736, 0.11196127533912659, 0.0033029073383659124, 0.07176390290260315, 0.08167397975921631, -0.12306015938520432, 0.09412886202335358, -0.043048959225416183, 0.059526436030864716, 0.04841966554522514, -0.12761074304580688, -0.14018812775611877, -0.11962330341339111, 0.06138046830892563, 0.0360204316675663, 0.07119185477495193, -0.03189825266599655, 0.07172493636608124, -0.059459343552589417, 0.08537319302558899, 0.22768479585647583, -0.21077460050582886, -0.016261113807559013, 0.08174563199281693, 0.041570283472537994, 0.052848756313323975, -0.09586748480796814, 0.014261738397181034, 0.020672621205449104, 0.013272094540297985, 0.08448012173175812, -0.03470579907298088, 0.10796402394771576, 0.03712816536426544, -0.10564370453357697, -0.07979395985603333, 0.08362738788127899, -0.02270466834306717, -0.06760892271995544, -0.0887281522154808, -0.022013094276189804, -0.09987278282642365, 0.07070815563201904, 0.0515429861843586, -0.022837191820144653, 0.0073904478922486305, -0.08533975481987, -0.11382084339857101, -0.06391803175210953, -0.07193855941295624, -0.01128088403493166, 0.14398586750030518, 0.01925097219645977, 0.0397607758641243, -0.10155098140239716, 0.20262518525123596, 0.034746430814266205, -0.10964396595954895, -0.03745584189891815, -0.0973450243473053, -0.09038428962230682, 0.007652394473552704, -0.05539313703775406, -0.035588786005973816, -0.020596474409103394, 0.16678425669670105, -0.034854158759117126, 0.013539023697376251, -0.04581376910209656, 0.02266043610870838, 0.0936715230345726, 0.14061196148395538, -0.07390047609806061, -0.03740539401769638, 0.09480096399784088, 0.011816713027656078, -0.06798142194747925, -0.04859393835067749, -0.009347088634967804, -0.06897644698619843, 0.05968497321009636, 0.08009503036737442, 0.03789042681455612, 0.057592783123254776, -0.025381343439221382, -0.05247452110052109, -0.0017479070229455829, -0.16026443243026733, 0.023814845830202103, 0.008159707300364971, -0.07060335576534271, 0.0017142249271273613, 0.08536801487207413, -0.0343189463019371, -0.09013354033231735, 0.10141440480947495, -0.053210459649562836, -0.03825054690241814, -0.09908699989318848, -0.10789411514997482, -0.008763354271650314, -0.045738786458969116, -0.020464101806282997, -0.06735870242118835, -0.1697518527507782, -0.03127876669168472, 0.032433655112981796, -0.03765800595283508, 0.025586556643247604, 0.012130693532526493, -0.026547962799668312, -0.0067265452817082405, -0.017256703227758408, -0.03129555284976959, -0.005598706658929586, 0.06471909582614899, -0.07680028676986694, 0.051092423498630524, 0.05843370035290718, 0.03286706283688545, -0.09225542098283768, 0.06949266791343689, -0.14861325919628143, 0.17404906451702118, -0.06576091796159744, -0.08711784332990646, -0.07309047132730484, -0.05514148622751236, -0.0016987021081149578, -0.00869116559624672, 0.0582275390625, 0.09330524504184723, -0.13820406794548035, -0.047428492456674576, 0.21498411893844604, -0.061492856591939926, -0.014516254886984825, 0.09677039086818695, -0.08650334179401398, 0.025471417233347893, 0.11951033771038055, 0.10379721224308014, 0.14915966987609863, -0.08327450603246689, -0.08513068407773972, -0.059917476028203964, -0.035071611404418945, 0.18234267830848694, 0.05107416212558746, 0.007508200593292713, 0.019512221217155457, 0.013554426841437817, -0.056216608732938766, -0.008632516488432884, -0.02038760297000408, -0.04510407894849777, -0.03262403607368469, -0.009754042141139507, 0.05734784156084061, -0.0582105852663517, -0.007078742608428001, -0.01613849401473999, -0.11722270399332047, 0.10572561621665955, 0.09929299354553223, -0.09291726350784302, 0.03339307755231857, -0.10697907209396362, 0.022228611633181572, -0.05094045400619507, 0.0044158329255878925, -0.20332211256027222, -0.013774954713881016, 0.01493789628148079, -0.1231284886598587, 0.08685018867254257, 0.007888766005635262, 0.05026085674762726, 0.08089244365692139, -0.04600610211491585, 0.0033600011374801397, -0.06912141293287277, -0.01702222414314747, -0.04385223239660263, -0.1825629621744156, -0.05281265079975128, -0.05146757885813713, 0.04803967848420143, -0.11113444715738297, 0.01614462397992611, 0.1189521998167038, 0.1206079050898552, 0.03821338713169098, -0.05887651816010475, 0.014115436002612114, -0.026021683588624, -0.028411105275154114, -0.06775303930044174, -0.051560256630182266, -0.010509036481380463, -0.07246293127536774, 0.09806632250547409, -0.14746922254562378, -0.08126506954431534, 0.1213233470916748, 0.10593830794095993, -0.06497450917959213, -0.014781731180846691, -0.044170305132865906, -0.023148810490965843, -0.04629576578736305, -0.07513013482093811, 0.19814492762088776, 0.028771065175533295, 0.09772961586713791, -0.11597584187984467, -0.057621393352746964, -0.01578041911125183, -0.04230707511305809, -0.002665306907147169, 0.06717843562364578, -0.04551112651824951, -0.16323117911815643, 0.06341040134429932, -0.0012354280333966017, -0.012783116661012173, 0.2514301538467407, 0.0024162279441952705, -0.08054984360933304, -0.09478557109832764, -0.03159182891249657, 0.026959476992487907, 0.10448889434337616, 0.0034786968026310205, 0.06743644177913666, 0.03848965838551521, 0.05096903443336487, 0.03806126490235329, -0.11777687817811966, 0.007640508469194174, 0.04856874421238899, -0.051616642624139786, -0.09005161374807358, 0.01175403967499733, 0.016200779005885124, 0.08527485281229019, 0.03010137565433979, 0.10471408814191818, -0.030649682506918907, -0.060980331152677536, -0.0951179713010788, 0.11817800253629684, -0.11619874089956284, -0.1472891867160797, -0.1687331348657608, -0.045119233429431915, -0.0521247461438179, 0.023551568388938904, 0.04892046004533768, -0.0333801694214344, -0.03188175708055496, -0.05744856968522072, 0.1331014335155487, 0.008708461187779903, -0.025645043700933456, 0.011841924861073494, 0.03473412245512009, -0.0071529122069478035, -0.151627779006958, -0.026505740359425545, 0.03105916827917099, -0.051159609109163284, 0.018097247928380966, 0.035383280366659164, 0.027258871123194695, 0.10325530171394348, -0.001302911201491952, 0.0019301276188343763, -0.01659657061100006, 0.2690817713737488, -0.09757480025291443, 0.07376385480165482, 0.13958397507667542, -0.05526387318968773, 0.06062218174338341, 0.02426043339073658, 0.015914106741547585, -0.06651592999696732, 0.052820321172475815, 0.05862980708479881, -0.07297871261835098, -0.23824571073055267, -0.025270089507102966, -0.030578086152672768, -0.000174329339643009, 0.07468114048242569, 0.011650584638118744, 0.05113298073410988, 0.01040259562432766, -0.08707518875598907, 0.0875210165977478, 0.08233332633972168, 0.0844518318772316, -0.015712175518274307, 0.009695474989712238, 0.06352058798074722, -0.04430446773767471, 0.04755892977118492, 0.10287144035100937, 0.060694728046655655, 0.25883224606513977, -0.0757867842912674, 0.12465645372867584, 0.08522501587867737, 0.07197599858045578, 0.06399237364530563, 0.03236566483974457, -0.035388726741075516, 0.05300283804535866, 0.017134569585323334, -0.11185713857412338, -0.012146136723458767, 0.015881499275565147, -0.0373595766723156, 0.009916316717863083, -0.023549465462565422, -0.06653589755296707, 0.050627004355192184, 0.20484590530395508, 0.03303122520446777, -0.14704027771949768, -0.10463588684797287, 0.06519421935081482, -0.011836047284305096, -0.03995779901742935, -0.031853772699832916, 0.0980333462357521, -0.17494337260723114, -0.010984214022755623, -0.054455775767564774, 0.10788051038980484, -0.08616246283054352, 0.005889290943741798, -0.028623264282941818, 0.11410803347826004, -0.07259025424718857, 0.050663989037275314, -0.17320124804973602, 0.1071852371096611, 0.02774183638393879, 0.08605774492025375, -0.05676677078008652, 0.023111892864108086, 0.05242355912923813, 0.0205633994191885, 0.0670725554227829, 0.01814575120806694, -0.0065847886726260185, -0.09897501766681671, -0.04400358349084854, 0.003265929874032736, 0.10226200520992279, -0.10558895021677017, 0.11660165339708328, -0.03137784078717232, 0.017908010631799698, -0.001263318699784577, -0.09199194610118866, -0.11644524335861206, -0.1359773725271225, 0.048736996948719025, -0.08219827711582184, 0.052473243325948715, -0.05147949233651161, -0.014565153047442436, 0.02970930002629757, 0.12113843113183975, -0.1519436091184616, -0.09272843599319458, -0.1105390414595604, 0.03359116613864899, 0.15293823182582855, -0.09204622358083725, 0.010377381928265095, 0.0065954942256212234, 0.10928142815828323, -0.005422290414571762, -0.13319015502929688, 0.011034013703465462, -0.03997783735394478, -0.19837787747383118, -0.024361642077565193, 0.10433099418878555, 0.08303293585777283, 0.05646528676152229, 0.009651252999901772, 0.011551993899047375, -0.0296461321413517, -0.13723812997341156, -0.0229567289352417, 0.12555281817913055, 0.01825169287621975, 0.06931678205728531, -0.0209005456417799, 0.03162139654159546, -0.11919303238391876, 0.01053009182214737, 0.05319160968065262, 0.24501240253448486, -0.07708308845758438, 0.1454314887523651, 0.06527400016784668, -0.0810786560177803, -0.17024992406368256, 0.035519298166036606, 0.03184300661087036, 0.05111860856413841, 0.024906767532229424, -0.17502723634243011, 0.005668377969413996, 0.08241666108369827, 0.007291737012565136, 0.06598111242055893, -0.33223098516464233, -0.15779976546764374, -0.000149319224874489, 0.03765003755688667, -0.08914435654878616, -0.054792530834674835, -0.03412435203790665, -0.07309917360544205, -0.18136733770370483, 0.11774472147226334, -0.09609440714120865, 0.11141232401132584, 0.019734466448426247, 0.01895456574857235, 0.040379639714956284, -0.04249194636940956, 0.1549762487411499, -0.029612941667437553, 0.10419732332229614, -0.0626678541302681, -0.007670530583709478, 0.13288046419620514, -0.05909820273518562, 0.06989070028066635, -0.030301533639431, 0.08568209409713745, -0.09029149264097214, -0.07910377532243729, -0.08384691923856735, 0.017012378200888634, -0.06519243121147156, -0.10840441286563873, -0.062010277062654495, 0.07218357920646667, 0.07991621643304825, -0.04779323935508728, -0.04575205594301224, -0.054511893540620804, -0.03628252074122429, 0.1275484263896942, 0.09003131836652756, 0.12889385223388672, -0.10974214226007462, 0.0196772962808609, 0.0071047283709049225, 0.08633618801832199, -0.17255908250808716, 0.04591824486851692, 0.06994157284498215, 0.04809455946087837, 0.10843213647603989, 0.018049949780106544, -0.15322226285934448, 0.04539875686168671, 0.025555143132805824, -0.14919255673885345, -0.10045141726732254, -0.03282101824879646, -0.04150567576289177, -0.045142337679862976, -0.041867099702358246, 0.1594262421131134, -0.04094872251152992, -0.02578231506049633, 0.026970649138092995, 0.020881759002804756, -0.04184504225850105, 0.13397319614887238, 0.05250003933906555, 0.04210221394896507, -0.07943946868181229, 0.11210042238235474, 0.05923759564757347, -0.003140895627439022, 0.04411954805254936, 0.045831505209207535, -0.07933645695447922, -0.004676126874983311, -0.08557875454425812, 0.07273899018764496, -0.05217748507857323, 0.024847032502293587, -0.02596515417098999, -0.031819723546504974, 0.02224447950720787, 0.1563139259815216, 0.015481267124414444, 0.10700947791337967, -0.04160162806510925, 0.01668737083673477, -0.12539410591125488, 0.09439289569854736, 0.08121760934591293, 0.021984698250889778, -0.08020412921905518, 0.14887841045856476, 0.004238089546561241, 0.04423537850379944, -0.03322543576359749, -0.05982886999845505, -0.12302002310752869, -0.004446231294423342, -0.19938509166240692, -0.03321473300457001, -0.04237601161003113, -0.020726416260004044, -0.02334904856979847, -0.04379173368215561, 0.002779544796794653, 0.05529510974884033, -0.03703846037387848, -0.05247572064399719, -0.030764460563659668, 0.03039546124637127, -0.16633158922195435, -0.01576296240091324, 0.09799888730049133, -0.08734405040740967, 0.10993877798318863, 0.10870061814785004, -0.021251128986477852, 0.03638932481408119, -0.11243846267461777, 0.05474149063229561, -0.05757160484790802, 0.00020355291781015694, 0.030099231749773026, -0.0825548991560936, 0.02858158014714718, -0.08271846920251846, -0.002778539201244712, 0.025933898985385895, 0.05582854151725769, -0.1209358423948288, 0.027517054229974747, 0.05812070891261101, 0.030184490606188774, -0.08495873212814331, 0.08140649646520615, 0.07917477935552597, 0.06732643395662308, 0.07711746543645859, -0.023192303255200386, 0.08970988541841507, -0.16132961213588715, -0.03771781548857689, 0.01859915815293789, -0.03464105725288391, 0.0031139885541051626, -0.023712800815701485, 0.048334889113903046, -0.031199557706713676, 0.13058564066886902, 0.004367968998849392, -0.011982902884483337, 0.017036791890859604, -0.03132244944572449, -0.029993312433362007, 0.03982904553413391, 0.04663374274969101, -0.020728427916765213, -0.014451934024691582, -0.04983341321349144, -0.013305749744176865, -0.05098842829465866, -0.037319231778383255, 0.0848502591252327, 0.10183524340391159, 0.09733237326145172, -0.02608843520283699, 0.0662510022521019, 0.00018404802540317178, -0.15483559668064117, -0.05362485721707344, -0.011595501564443111, 0.029839226976037025, -0.08983885496854782, 0.05012253671884537, 0.115920789539814, -0.16833777725696564, 0.1608019322156906, 0.03988240286707878, -0.07603664696216583, -0.09226943552494049, -0.21129779517650604, -0.005934739485383034, -0.010148673318326473, 0.03139185905456543, -0.1295708864927292, 0.09704755246639252, 0.00034257376682944596, 0.04130265861749649, -0.050276536494493484, 0.13249431550502777, -0.038822438567876816, -0.10281313210725784, 0.035161759704351425, 0.02235499583184719, 0.0057360162027180195, 0.06699752062559128, 0.03181169554591179, 0.058432918041944504, 0.01072659157216549, 0.03118954785168171, 0.05696811154484749, 0.040240999311208725, -0.03427671268582344, -0.04042072594165802, -0.06622260808944702, 0.009163925424218178, 0.0281017255038023, 0.029283951967954636, 0.15318016707897186, 0.0464799739420414, -0.03301481530070305, -0.039317786693573, 0.32736533880233765, -0.028612928465008736, -0.04301148280501366, -0.1593952775001526, 0.1709318608045578, 0.0005758355255238712, 0.01767880655825138, 0.018694203346967697, -0.13221590220928192, 0.002004675567150116, 0.13168466091156006, 0.1585984081029892, -0.03592204302549362, 0.03117557242512703, -0.0321011058986187, 0.018078867346048355, 0.009693787433207035, 0.10567513108253479, 0.019929639995098114, 0.18001459538936615, -0.031586986035108566, 0.10689260065555573, -0.004978315904736519, -0.029805215075612068, -0.0063437591306865215, 0.13201378285884857, -0.05682073533535004, -0.045792657881975174, -0.06909133493900299, 0.05898946896195412, -0.06914819031953812, -0.24196907877922058, 0.003925088327378035, -0.059635814279317856, -0.0903068259358406, 0.01798825152218342, 0.0004856478190049529, -0.02585044875741005, 0.07888879626989365, 0.016621382907032967, -0.015673546120524406, 0.09095843881368637, 0.011038318276405334, -0.014063715003430843, -0.025205105543136597, 0.0851839929819107, 0.002420848235487938, 0.1474008709192276, -0.004514448344707489, 0.06882067024707794, 0.09266943484544754, 0.031426817178726196, -0.10178611427545547, 0.014990877360105515, 0.04757644236087799, -0.09176340699195862, -0.03708240017294884, 0.20608264207839966, -0.0178811177611351, 0.0611942857503891, 0.03529565781354904, -0.029294053092598915, 0.028898416087031364, -0.03061286173760891, 0.03720764443278313, -0.10700203478336334, 0.02039521001279354, -0.07197808474302292, 0.10990449786186218, 0.20530623197555542, -0.06057394668459892, 0.02080422453582287, -0.05373196303844452, 0.028693757951259613, 0.01953502744436264, 0.0386190265417099, -0.0200361181050539, -0.10412675887346268, 0.015474412590265274, 0.1108202114701271, 0.018501225858926773, -0.21230725944042206, -0.09682752937078476, 0.030499860644340515, -0.06273340433835983, 0.022564956918358803, 0.14749741554260254, 0.04538627341389656, 0.07680652290582657, -0.0021991694811731577, -0.06190509349107742, -0.02412608079612255, 0.0676220953464508, -0.1355825811624527, -0.062295012176036835 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/64c7d35c8d427522574cbf7773084ee3.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bring Me The Horizon</div> <a href="https://genius.com/artists/bring-me-the-horizon"> <div style="text-align: center; font-size: 14px;">@bring-me-the-horizon</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bring Me The Horizon. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bring-me-the-horizon). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bring-me-the-horizon") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1e9181i6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bring Me The Horizon's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3p7pncir) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3p7pncir/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bring-me-the-horizon') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bring-me-the-horizon") model = AutoModelWithLMHead.from_pretrained("huggingartists/bring-me-the-horizon") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/bring-me-the-horizon"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/bring-me-the-horizon
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bring-me-the-horizon", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bring-me-the-horizon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bring Me The Horizon</div> <a href="URL <div style="text-align: center; font-size: 14px;">@bring-me-the-horizon</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Bring Me The Horizon. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Bring Me The Horizon's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bring Me The Horizon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bring Me The Horizon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bring-me-the-horizon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bring Me The Horizon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bring Me The Horizon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 87, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bring-me-the-horizon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Bring Me The Horizon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bring Me The Horizon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03382132202386856, 0.18037037551403046, -0.003329560160636902, 0.04885656386613846, 0.09449722617864609, 0.0011636093258857727, 0.06894910335540771, 0.10878592729568481, 0.006682541687041521, 0.07061571627855301, 0.06746616959571838, 0.05913104489445686, 0.0789589211344719, 0.08126126229763031, 0.06427069753408432, -0.25145483016967773, 0.04310346767306328, -0.07713250070810318, 0.0054439580999314785, 0.09725313633680344, 0.08326169848442078, -0.0825638622045517, 0.08385217934846878, 0.037696391344070435, -0.0562162809073925, 0.0002672998234629631, 0.00224602990783751, -0.0576615184545517, 0.08267134428024292, 0.08000487834215164, 0.033571358770132065, 0.03149263560771942, 0.061506692320108414, -0.18440157175064087, 0.026002898812294006, 0.12279163300991058, 0.026328377425670624, 0.08321443945169449, 0.0764303058385849, -0.08012025058269501, 0.13533172011375427, -0.03284662216901779, 0.08690633624792099, 0.06406255066394806, -0.10919471085071564, -0.10282324254512787, -0.14228098094463348, 0.06461536139249802, 0.08880136907100677, 0.08432407677173615, -0.029402002692222595, 0.094772569835186, -0.02764747478067875, 0.048712342977523804, 0.2593567371368408, -0.25300148129463196, -0.009338421747088432, 0.055384792387485504, 0.060232728719711304, 0.004943530540913343, -0.09453693777322769, 0.014788135886192322, 0.03975464031100273, 0.028010722249746323, 0.044913846999406815, -0.025131968781352043, 0.15021000802516937, 0.012501882389187813, -0.11013541370630264, -0.07304232567548752, 0.09592339396476746, -0.014588586986064911, -0.08569353073835373, -0.12751996517181396, -0.0032669994980096817, -0.0272505059838295, 0.023288289085030556, 0.017542341724038124, 0.0037616232875734568, -0.008735572919249535, -0.05451597273349762, -0.11671841889619827, -0.07763060182332993, -0.031703174114227295, -0.022219829261302948, 0.06364573538303375, 0.047090645879507065, 0.033899929374456406, -0.06556148082017899, 0.2133660912513733, 0.028050502762198448, -0.0974590927362442, -0.06326986104249954, -0.11201246827840805, -0.09765370935201645, -0.03451186791062355, -0.00849959161132574, -0.015174261294305325, -0.030268169939517975, 0.14864414930343628, -0.009276775643229485, 0.029004817828536034, -0.057132549583911896, 0.010882290080189705, 0.12488988786935806, 0.13783906400203705, -0.13245488703250885, -0.048729028552770615, 0.06723616272211075, -0.012304659001529217, -0.05376420170068741, -0.052579641342163086, 0.00016198199591599405, -0.020525986328721046, 0.04936080425977707, 0.07385342568159103, 0.09489130228757858, 0.06856101751327515, -0.000725148303899914, -0.059304993599653244, 0.047178562730550766, -0.13892242312431335, 0.01183424610644579, -0.016482112929224968, -0.06106000021100044, 0.022401126101613045, 0.05470319464802742, 0.009915150701999664, -0.10373980551958084, 0.08220615983009338, -0.0826755240559578, -0.04435810446739197, -0.09440039843320847, -0.10675404220819473, 0.005382501520216465, -0.04185904189944267, -0.02624235488474369, -0.07183540612459183, -0.16786512732505798, -0.03753107786178589, 0.021461552008986473, -0.06230030953884125, -0.017509786412119865, 0.021152744069695473, -0.04135849326848984, 0.00928251538425684, -0.01384742371737957, -0.0006432169466279447, -0.017387809231877327, 0.03959556668996811, -0.08819521963596344, 0.03842213749885559, 0.07629309594631195, 0.0373196005821228, -0.11475628614425659, 0.07420428097248077, -0.15043379366397858, 0.12919630110263824, -0.03324030712246895, -0.013750765472650528, -0.09561342746019363, -0.09164269268512726, -0.017702201381325722, -0.03505012392997742, 0.027366861701011658, 0.12793077528476715, -0.1767415851354599, -0.01620461978018284, 0.2055218517780304, -0.07550797611474991, -0.05257785692811012, 0.07224338501691818, -0.07502783834934235, 0.028613777831196785, 0.10917176306247711, 0.05394668132066727, 0.13358159363269806, -0.10423694550991058, -0.08912687748670578, -0.04282937943935394, -0.09048090875148773, 0.1798410415649414, 0.027175303548574448, -0.014811025932431221, 0.04481842368841171, 0.010783039033412933, -0.0221916064620018, -0.0037505128420889378, -0.03111937828361988, -0.03335905075073242, -0.00866546481847763, -0.002823419636115432, 0.012276047840714455, -0.0446113757789135, -0.0438663586974144, -0.007146608550101519, -0.09786057472229004, 0.04467795789241791, 0.09200499206781387, -0.07333961129188538, 0.022875186055898666, -0.10727214813232422, 0.044233787804841995, -0.061622992157936096, 0.013270140625536442, -0.18375597894191742, -0.03882448375225067, 0.012509513646364212, -0.06543738394975662, 0.06364363431930542, 0.04125257208943367, 0.04124775901436806, 0.06711510568857193, -0.018002532422542572, 0.004568719770759344, -0.035496700555086136, -0.0019240390975028276, -0.04594060406088829, -0.16751083731651306, -0.06200346350669861, -0.04360275715589523, 0.08017681539058685, -0.10327022522687912, 0.0053082797676324844, 0.10124272853136063, 0.1474783718585968, 0.03250878304243088, -0.06344812363386154, 0.03406941145658493, -0.03331051021814346, -0.03227442502975464, -0.09820447117090225, -0.04225093498826027, 0.010083016939461231, -0.0347493514418602, 0.16864390671253204, -0.1472766250371933, -0.10006622970104218, 0.13096007704734802, 0.08194475620985031, -0.07695921510457993, 0.02946558967232704, -0.07004093378782272, -0.025054490193724632, -0.03571253642439842, -0.06338859349489212, 0.2400444746017456, 0.05320462957024574, 0.09098191559314728, -0.089762844145298, -0.08053460717201233, 0.004488011822104454, -0.03831768408417702, -0.037270136177539825, 0.033330511301755905, 0.025573352351784706, -0.17490752041339874, 0.04546095058321953, -0.019524112343788147, 0.0871078372001648, 0.1721702367067337, 0.033218350261449814, -0.09344718605279922, -0.05370117351412773, -0.07226258516311646, 0.009779876098036766, 0.08152300864458084, 0.0172385536134243, 0.04582170769572258, 0.04634612426161766, 0.040560271590948105, 0.045356206595897675, -0.10954126715660095, 0.012743953615427017, 0.05415381118655205, -0.023470038548111916, -0.04564274474978447, 0.016259917989373207, 0.0315684899687767, 0.08673994243144989, 0.06217416748404503, 0.1030290499329567, -0.044109925627708435, -0.05575208738446236, -0.12754283845424652, 0.13431760668754578, -0.09705225378274918, -0.21427027881145477, -0.13442160189151764, -0.09287314116954803, 0.006048090290278196, 0.008162920363247395, 0.029442930594086647, -0.03480018675327301, -0.04372701048851013, -0.09560757130384445, 0.07775747030973434, -0.0405416265130043, -0.016916409134864807, -0.006851709447801113, 0.029894690960645676, -0.014625709503889084, -0.11993879824876785, -0.02289751172065735, 0.025767261162400246, -0.08471288532018661, 0.013412121683359146, 0.03760499134659767, 0.06239717826247215, 0.1263498216867447, 0.0007509463466703892, -0.000039812566683394834, -0.022165140137076378, 0.2663484215736389, -0.1084352657198906, 0.059208739548921585, 0.1630757600069046, -0.022899843752384186, 0.07065883278846741, 0.05374455079436302, -0.0041846176609396935, -0.05617941543459892, 0.0533003956079483, 0.06304694712162018, -0.06528562307357788, -0.2068265974521637, -0.028832005336880684, -0.022901881486177444, 0.006916021928191185, 0.10709279030561447, 0.030290480703115463, 0.041260313242673874, 0.01962803676724434, -0.09587853401899338, 0.05270100757479668, 0.041239120066165924, 0.10492944717407227, -0.0474805049598217, -0.015655504539608955, 0.056730810552835464, -0.049824830144643784, 0.027331393212080002, 0.10786076635122299, 0.033160045742988586, 0.25798866152763367, -0.07809710502624512, 0.05980924144387245, 0.09020767360925674, 0.08815421164035797, 0.018398957327008247, 0.05360390618443489, -0.025967158377170563, 0.030675388872623444, -0.0023718406446278095, -0.09242730587720871, -0.012626354582607746, 0.04303019866347313, 0.03597474843263626, -0.017876921221613884, -0.05233427509665489, -0.06188948452472687, 0.04718148708343506, 0.22945408523082733, 0.03784015029668808, -0.17222832143306732, -0.07477044314146042, 0.0683874785900116, -0.04572134092450142, -0.058591920882463455, -0.017355024814605713, 0.06775068491697311, -0.21212811768054962, 0.04288817569613457, -0.0516982302069664, 0.10384967923164368, -0.14405116438865662, 0.0008506173035129905, 0.0287026260048151, 0.047338202595710754, -0.061196811497211456, 0.07870157063007355, -0.1615174114704132, 0.08526971191167831, 0.007810436654835939, 0.07199302315711975, -0.07391805201768875, 0.017728246748447418, 0.03661571070551872, 0.013713912107050419, 0.10457859933376312, 0.010877399705350399, 0.014200938865542412, -0.06681393831968307, -0.058361295610666275, 0.00199064239859581, 0.06061123311519623, -0.07145813852548599, 0.13376763463020325, -0.03162151202559471, 0.024675732478499413, -0.02341637574136257, -0.04752861335873604, -0.10406679660081863, -0.16820251941680908, 0.07776723057031631, -0.11654534935951233, 0.003853983012959361, -0.06577160209417343, -0.026925118640065193, 0.015119027346372604, 0.20776231586933136, -0.10613328218460083, -0.07799267023801804, -0.12646383047103882, 0.028262369334697723, 0.15744329988956451, -0.07500433176755905, 0.013358624652028084, 0.006021064706146717, 0.1626877635717392, -0.0004673586518038064, -0.12680214643478394, -0.010726416483521461, -0.062131285667419434, -0.18241292238235474, -0.02334609441459179, 0.122381292283535, 0.0818692073225975, 0.045492589473724365, 0.01359663438051939, 0.007817366160452366, -0.02390984073281288, -0.16540290415287018, 0.01274211797863245, 0.15459392964839935, 0.04207177087664604, 0.028197042644023895, 0.013554075732827187, 0.015830418094992638, -0.1370163857936859, 0.030108997598290443, 0.06647288799285889, 0.18841420114040375, -0.0770966187119484, 0.15613485872745514, 0.010704725049436092, -0.09321437031030655, -0.1780824214220047, 0.02814159356057644, 0.0015793141210451722, 0.02935655042529106, 0.035410840064287186, -0.17096653580665588, 0.009257731027901173, 0.03217775374650955, -0.005121783819049597, 0.06661074608564377, -0.3205759525299072, -0.13726621866226196, 0.02187967114150524, 0.02292390912771225, -0.07074281573295593, -0.03236274793744087, -0.03783288598060608, -0.07923340797424316, -0.24495583772659302, 0.07533477246761322, -0.11451159417629242, 0.0845709815621376, 0.011959067545831203, 0.04415787756443024, 0.05058310925960541, -0.07001965492963791, 0.13341468572616577, -0.031690746545791626, 0.07368265092372894, -0.08684758096933365, -0.03469196334481239, 0.09831812232732773, -0.05336585268378258, 0.08402147144079208, 0.024485338479280472, 0.07245733588933945, -0.08463900536298752, -0.06396697461605072, -0.07936245203018188, 0.015340020880103111, -0.058240652084350586, -0.08940257132053375, -0.07825879752635956, 0.09827139973640442, 0.13596977293491364, -0.031741343438625336, -0.10535147786140442, -0.05539580062031746, -0.03622562065720558, 0.08249947428703308, 0.10927961021661758, 0.09058383852243423, -0.08061540871858597, 0.012313852086663246, 0.011699625290930271, 0.020076941698789597, -0.1260349154472351, 0.04121746867895126, 0.08575138449668884, 0.02364773117005825, 0.09704560786485672, 0.023759527131915092, -0.17382843792438507, 0.03801668435335159, 0.036066118627786636, -0.14107383787631989, -0.11186656355857849, -0.02810727246105671, 0.012132115662097931, -0.09221414476633072, -0.0432196743786335, 0.1408829241991043, -0.03064858540892601, -0.0344674214720726, -0.003193755866959691, 0.05998252332210541, -0.03684976324439049, 0.09943831712007523, 0.022395748645067215, 0.04407033324241638, -0.07167736440896988, 0.10391145199537277, 0.060682184994220734, 0.009072060696780682, 0.03547973558306694, 0.035059548914432526, -0.08556076884269714, -0.002220763126388192, -0.08439460396766663, 0.0068533155135810375, -0.038430023938417435, -0.006743869744241238, -0.0003680556546896696, -0.040689487010240555, 0.02744058519601822, 0.09889372438192368, -0.010857769288122654, 0.12159495800733566, -0.02331899292767048, -0.014129335060715675, -0.12706691026687622, 0.0726490393280983, 0.046215396374464035, 0.0163499154150486, -0.10345359146595001, 0.17565621435642242, 0.026379650458693504, 0.08385150879621506, -0.04172757640480995, -0.05355984345078468, -0.06895577907562256, -0.01049373485147953, -0.13113942742347717, -0.04099835827946663, -0.0929364413022995, -0.04227809980511665, -0.01939750835299492, -0.02928856573998928, -0.020403340458869934, 0.052676908671855927, -0.029681965708732605, -0.06843197345733643, -0.05596332997083664, 0.04457900673151016, -0.14831066131591797, 0.00512821925804019, 0.1281830072402954, -0.07461537420749664, 0.10925731807947159, 0.04691088944673538, -0.040616679936647415, 0.013846847228705883, -0.08486124128103256, 0.02047930844128132, -0.029749566689133644, 0.014483935199677944, 0.03434043005108833, -0.1323803812265396, 0.008534831926226616, -0.053386736661195755, -0.05927093327045441, 0.009432479739189148, 0.014392138458788395, -0.12571203708648682, 0.006004112772643566, 0.06380386650562286, 0.001571720466017723, -0.0716017559170723, 0.06892795115709305, 0.07006346434354782, 0.02526414580643177, 0.0715307742357254, -0.0232863612473011, 0.08678670972585678, -0.16843529045581818, -0.04062516242265701, 0.0076370844617486, 0.010349005460739136, 0.08993589133024216, -0.015355629846453667, 0.05005678907036781, -0.02263469062745571, 0.19920913875102997, -0.0015173901338130236, -0.018149791285395622, 0.03531302511692047, -0.03617148473858833, -0.014203262515366077, 0.05471695959568024, 0.05117332935333252, -0.03693302348256111, -0.033342357724905014, -0.01978176087141037, -0.0032217742409557104, -0.07393481582403183, -0.04247008264064789, 0.10853428393602371, 0.0635802298784256, 0.1703898161649704, -0.02979481965303421, 0.06408867985010147, -0.023578064516186714, -0.1154840812087059, -0.023103017359972, -0.02746972069144249, 0.03671124577522278, -0.062271617352962494, 0.08308808505535126, 0.1580154448747635, -0.15241767466068268, 0.12207683175802231, 0.02178947813808918, -0.056760720908641815, -0.1006246954202652, -0.19371859729290009, -0.019792301580309868, -0.014564434066414833, 0.04206389933824539, -0.12318218499422073, 0.08530252426862717, 0.030561409890651703, 0.023699646815657616, -0.05862894281744957, 0.1093643456697464, -0.06379301846027374, -0.11385694891214371, 0.030001666396856308, 0.02882968634366989, 0.016959672793745995, 0.04176152125000954, 0.06999193131923676, 0.030164146795868874, 0.016456235200166702, 0.06035354360938072, 0.038950465619564056, 0.04116144776344299, 0.043567556887865067, -0.024029243737459183, -0.06052643805742264, 0.018911294639110565, 0.006309908349066973, 0.04361678287386894, 0.10914851725101471, 0.0656319186091423, -0.01383685227483511, -0.04340453818440437, 0.29470065236091614, -0.04286137595772743, -0.03188934177160263, -0.16775180399417877, 0.17240162193775177, 0.04052843898534775, -0.010518995113670826, 0.024197818711400032, -0.14479896426200867, 0.019633019343018532, 0.15531669557094574, 0.18486472964286804, -0.05606982856988907, 0.012693936936557293, -0.03246907889842987, 0.009193040430545807, 0.02689124271273613, 0.07475893944501877, 0.06600340455770493, 0.2014385312795639, -0.05538688227534294, 0.06279429793357849, -0.010178986005485058, -0.011603124439716339, -0.005730000324547291, 0.12202595174312592, -0.0399366058409214, 0.0054111420176923275, -0.06100800633430481, 0.08923585712909698, -0.0647556260228157, -0.2647705674171448, -0.01432498823851347, -0.035217080265283585, -0.08586598187685013, 0.06362131983041763, -0.05354480817914009, -0.017219150438904762, 0.09504958987236023, 0.022833961993455887, -0.02242830954492092, 0.1337522715330124, 0.04033959284424782, -0.03818739205598831, -0.008326948620378971, 0.0864444375038147, -0.021076874807476997, 0.19597722589969635, -0.018995709717273712, 0.01099610049277544, 0.09343799203634262, 0.03138222172856331, -0.12536776065826416, -0.002022014930844307, 0.03684158995747566, -0.07591729611158371, -0.00915142148733139, 0.19705405831336975, 0.019066423177719116, 0.0185414906591177, 0.05569307133555412, -0.038916368037462234, 0.04649641737341881, -0.08770449459552765, 0.0451522134244442, -0.12351605296134949, 0.05062677338719368, -0.08316469192504883, 0.14279712736606598, 0.17336112260818481, -0.06571204960346222, 0.024895764887332916, -0.04996425285935402, -0.018637942150235176, -0.02575152926146984, 0.06055654212832451, -0.019029272720217705, -0.10174563527107239, 0.020400071516633034, 0.031855400651693344, 0.020044473931193352, -0.19708989560604095, -0.0772719532251358, 0.05719957873225212, -0.0650891587138176, 0.016108211129903793, 0.15482713282108307, 0.03437791019678116, 0.05017261579632759, -0.03920215368270874, -0.0014121993444859982, -0.020924849435687065, 0.1009044274687767, -0.14670565724372864, -0.07981805503368378 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6dfe4b89b895b331f09c6b136a0705e5.807x807x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bruce Springsteen</div> <a href="https://genius.com/artists/bruce-springsteen"> <div style="text-align: center; font-size: 14px;">@bruce-springsteen</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bruce Springsteen. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bruce-springsteen). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bruce-springsteen") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/28yd4w57/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bruce Springsteen's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/6qq7wbab) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/6qq7wbab/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bruce-springsteen') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bruce-springsteen") model = AutoModelWithLMHead.from_pretrained("huggingartists/bruce-springsteen") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/bruce-springsteen"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/bruce-springsteen
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bruce-springsteen", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bruce-springsteen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bruce Springsteen</div> <a href="URL <div style="text-align: center; font-size: 14px;">@bruce-springsteen</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Bruce Springsteen. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Bruce Springsteen's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bruce Springsteen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bruce Springsteen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bruce-springsteen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bruce Springsteen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bruce Springsteen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bruce-springsteen #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Bruce Springsteen.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bruce Springsteen's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.037005770951509476, 0.17911192774772644, -0.0020857774652540684, 0.053633589297533035, 0.08340463787317276, 0.007531519513577223, 0.07737729698419571, 0.11532679945230484, 0.028095291927456856, 0.0749346911907196, 0.0646555945277214, 0.014801792800426483, 0.06898194551467896, 0.09297199547290802, 0.0787990614771843, -0.23173274099826813, 0.020145075395703316, -0.08221065253019333, 0.012206832878291607, 0.10427292436361313, 0.08867236971855164, -0.0595368817448616, 0.08379780501127243, 0.0250861719250679, -0.09208958595991135, 0.020942186936736107, 0.0057808770798146725, -0.049505043774843216, 0.09743063151836395, 0.0529528483748436, 0.02422518841922283, 0.046185050159692764, 0.07562223821878433, -0.186754509806633, 0.030404221266508102, 0.13440799713134766, 0.030999990180134773, 0.07899750769138336, 0.05140193924307823, -0.08778169751167297, 0.11741852015256882, -0.01272896584123373, 0.07933744788169861, 0.06626303493976593, -0.11262007802724838, -0.12903304398059845, -0.14636757969856262, 0.0890013799071312, 0.08071592450141907, 0.07743377238512039, -0.026956534013152122, 0.05748653784394264, -0.018415343016386032, 0.026995597407221794, 0.2399783879518509, -0.23916612565517426, -0.01230559404939413, 0.0799766257405281, 0.06169678643345833, 0.001707963296212256, -0.09634781628847122, 0.02347349375486374, 0.04817745089530945, 0.02654002606868744, 0.05529944971203804, -0.02338269166648388, 0.1725190132856369, 0.021318763494491577, -0.09032940119504929, -0.0642644464969635, 0.10970215499401093, -0.01413821429014206, -0.08832834661006927, -0.13159191608428955, 0.00003331317566335201, 0.00577016593888402, 0.043915342539548874, -0.005166008602827787, -0.003970264922827482, 0.007254135794937611, -0.07543201744556427, -0.13423632085323334, -0.06856706738471985, -0.046041492372751236, -0.017590563744306564, 0.05289125442504883, 0.031938083469867706, 0.024193614721298218, -0.07044366747140884, 0.2280455082654953, -0.018962370231747627, -0.10248856246471405, -0.047067686915397644, -0.10411912202835083, -0.08985338360071182, -0.04652037471532822, 0.004036711063235998, 0.029574371874332428, -0.04295124486088753, 0.18113933503627777, -0.008145129308104515, 0.009584982879459858, -0.04003477096557617, 0.0028039058670401573, 0.1432531774044037, 0.1208951473236084, -0.11005445569753647, -0.0630953311920166, 0.07917730510234833, -0.002239240100607276, -0.06324232369661331, -0.045073252171278, -0.00985710695385933, -0.0247522983700037, 0.04442278668284416, 0.06401947885751724, 0.08029463142156601, 0.04534045606851578, 0.0046515632420778275, -0.06360159069299698, 0.08715614676475525, -0.11911745369434357, 0.022080248221755028, -0.0025912367273122072, -0.04912262037396431, 0.004872120916843414, 0.05450078099966049, 0.02640894241631031, -0.09020249545574188, 0.104002945125103, -0.07286689430475235, -0.05312759429216385, -0.07393989711999893, -0.0834178775548935, 0.0027640038169920444, -0.05297662317752838, -0.033636219799518585, -0.0686015784740448, -0.19398988783359528, -0.03534587472677231, 0.023280832916498184, -0.05220261216163635, -0.047894250601530075, 0.027341999113559723, -0.014684821479022503, 0.011701924726366997, -0.028249800205230713, -0.04418268799781799, -0.01644669659435749, 0.029230907559394836, -0.051248952746391296, 0.029127173125743866, 0.07196305692195892, 0.049270518124103546, -0.12242256104946136, 0.06492401659488678, -0.151499941945076, 0.11154445260763168, -0.015860900282859802, 0.001795860007405281, -0.103984035551548, -0.0785730630159378, -0.0443391278386116, -0.022438205778598785, 0.014858086593449116, 0.1110825166106224, -0.1894451230764389, -0.045501288026571274, 0.19835887849330902, -0.05599761754274368, -0.0793335810303688, 0.08168840408325195, -0.07322488725185394, 0.029703591018915176, 0.11758385598659515, 0.09120389819145203, 0.1480979025363922, -0.11807399988174438, -0.07082807272672653, -0.034450892359018326, -0.05294443666934967, 0.18167053163051605, 0.03972814232110977, -0.030436664819717407, 0.013182327151298523, 0.00398546177893877, -0.021785760298371315, -0.016822706907987595, -0.01608998142182827, -0.03342405706644058, -0.025792555883526802, -0.0023163342848420143, 0.007667264435440302, -0.0333753377199173, -0.07529834657907486, -0.018658006563782692, -0.113303042948246, 0.02683812379837036, 0.08991563320159912, -0.060486800968647, 0.012114684097468853, -0.07755158096551895, -0.0035569127649068832, -0.026888065040111542, -0.003291594097390771, -0.15961343050003052, -0.041215039789676666, 0.026380622759461403, -0.08395254611968994, 0.08748429268598557, 0.03294935077428818, 0.032218169420957565, 0.05970225855708122, -0.01987210474908352, -0.003097454085946083, -0.03872634097933769, -0.01615363173186779, -0.017207689583301544, -0.1561533808708191, -0.058941956609487534, -0.0519050657749176, 0.07963450253009796, -0.1082475334405899, -0.006025628186762333, 0.06392799317836761, 0.128253772854805, 0.024920951575040817, -0.07032567262649536, 0.030778659507632256, -0.03975461423397064, -0.038945116102695465, -0.10488995909690857, -0.0441938079893589, 0.020004311576485634, -0.015473904088139534, 0.14016173779964447, -0.13387545943260193, -0.10029902309179306, 0.11312978714704514, 0.12618598341941833, -0.08979171514511108, 0.0429784320294857, -0.07523703575134277, -0.021619763225317, -0.06380545347929001, -0.05026935040950775, 0.2543124556541443, 0.02914326637983322, 0.08464188873767853, -0.09474525600671768, -0.08379810303449631, -0.008051922544836998, -0.03225836902856827, -0.029747499153017998, 0.023951679468154907, 0.038441114127635956, -0.14533179998397827, 0.05306261405348778, -0.019108207896351814, 0.09415481239557266, 0.2048431783914566, 0.045243311673402786, -0.07512123882770538, -0.06055054813623428, -0.08831837773323059, -0.0025005373172461987, 0.08992524445056915, 0.0088101951405406, 0.030471207574009895, 0.02971055917441845, 0.052908290177583694, 0.04418744146823883, -0.11567876487970352, 0.001186511479318142, 0.05873621255159378, -0.0294275414198637, -0.06905567646026611, 0.012414970435202122, 0.01753317192196846, 0.07869730144739151, 0.07878823578357697, 0.11039294302463531, -0.055863842368125916, -0.05400801822543144, -0.14052052795886993, 0.126614511013031, -0.09002760052680969, -0.20675690472126007, -0.11388053745031357, -0.06441295146942139, 0.006496179848909378, 0.020444996654987335, 0.042059674859046936, -0.03727700561285019, -0.026308508589863777, -0.08591213077306747, 0.10328240692615509, -0.056822121143341064, -0.02623613178730011, 0.006851405370980501, 0.01824261248111725, -0.022567104548215866, -0.11118205636739731, -0.033871110528707504, 0.03000675141811371, -0.10232645273208618, -0.02276037447154522, 0.019529666751623154, 0.0467706024646759, 0.14200468361377716, 0.015405060723423958, 0.007777834311127663, -0.02870076894760132, 0.25528684258461, -0.11071588099002838, 0.07359570264816284, 0.16030745208263397, 0.009407632052898407, 0.05184604227542877, 0.05620146915316582, 0.0041490537114441395, -0.04588448256254196, 0.056862398982048035, 0.06554032117128372, -0.07126331329345703, -0.1990135759115219, -0.03949253633618355, -0.012155103497207165, 0.027457021176815033, 0.12285073846578598, 0.026359798386693, 0.05908019840717316, 0.009828563779592514, -0.1065707728266716, 0.060457538813352585, 0.027670862153172493, 0.09645955264568329, -0.09577275067567825, 0.00007033593283267692, 0.04669586196541786, -0.03300090506672859, 0.03076527640223503, 0.12063408643007278, 0.05424388125538826, 0.21143941581249237, -0.05694035813212395, 0.0955074355006218, 0.0648883804678917, 0.11013393849134445, 0.010377473197877407, 0.034489717334508896, -0.02212870493531227, 0.024127641692757607, -0.002717426512390375, -0.08639775216579437, -0.002376287244260311, 0.034265466034412384, 0.047682128846645355, -0.00925430841743946, -0.04554319009184837, -0.06648355722427368, 0.04039899259805679, 0.23120996356010437, 0.0388294979929924, -0.14695216715335846, -0.08790948987007141, 0.053751952946186066, -0.047689639031887054, -0.055682435631752014, 0.007333977147936821, 0.06469564139842987, -0.2052956372499466, 0.05185083672404289, -0.0385613888502121, 0.10866469144821167, -0.09981101751327515, 0.000358917866833508, 0.07727118581533432, 0.045991457998752594, -0.06093898415565491, 0.08222486078739166, -0.15747496485710144, 0.07561972737312317, -0.0020155850797891617, 0.0846492126584053, -0.05503886565566063, 0.02357526496052742, 0.02670307643711567, 0.019555794075131416, 0.10947944968938828, 0.010286376811563969, 0.02765679359436035, -0.007994678802788258, -0.04315020889043808, 0.0015324964188039303, 0.06248502433300018, -0.13010627031326294, 0.12737806141376495, -0.03669248893857002, 0.02303047478199005, -0.018116643652319908, -0.04906768724322319, -0.1290590465068817, -0.14176666736602783, 0.07233626395463943, -0.1312713921070099, -0.013261964544653893, -0.061322037130594254, -0.01010377611964941, 0.034151989966630936, 0.2127520740032196, -0.09517436474561691, -0.0597761794924736, -0.134428933262825, 0.007452359423041344, 0.13354556262493134, -0.0739147737622261, -0.004164653830230236, -0.004804159048944712, 0.1809016764163971, -0.014497868716716766, -0.14143961668014526, -0.0002304612862644717, -0.07644359767436981, -0.17428062856197357, -0.03770400956273079, 0.15393845736980438, 0.06730590015649796, 0.04121684283018112, 0.022512290626764297, 0.010819923132658005, -0.05815017968416214, -0.16563308238983154, 0.05588405951857567, 0.11137337237596512, 0.00277817714959383, 0.022761985659599304, 0.019160915166139603, 0.020050717517733574, -0.11565780639648438, 0.022292232140898705, 0.05721935257315636, 0.18059870600700378, -0.08388607203960419, 0.16973084211349487, 0.04309885576367378, -0.09420512616634369, -0.18644343316555023, 0.031110772863030434, 0.0002546803734730929, 0.017838044092059135, 0.020963149145245552, -0.21671269834041595, 0.04984390363097191, 0.02833753265440464, -0.0065848929807543755, 0.051011476665735245, -0.3182629644870758, -0.14415878057479858, 0.017045266926288605, -0.022778503596782684, -0.09338521957397461, -0.03613796457648277, -0.03722686320543289, -0.08683968335390091, -0.24428637325763702, 0.10476226359605789, -0.13845494389533997, 0.08061544597148895, 0.013272910378873348, 0.07532606273889542, 0.043120190501213074, -0.05993959307670593, 0.10025064647197723, 0.0037612055893987417, 0.0644664540886879, -0.06899051368236542, -0.07331391423940659, 0.08965647965669632, -0.061736099421978, 0.09839710593223572, 0.016184531152248383, 0.0911538377404213, -0.1127224788069725, -0.07672785222530365, -0.08676771819591522, 0.024246780201792717, -0.06121893972158432, -0.09591875225305557, -0.0838116854429245, 0.10587742924690247, 0.1217399537563324, -0.041001807898283005, -0.09692004323005676, -0.040044598281383514, 0.007951056584715843, 0.06295744329690933, 0.11743104457855225, 0.09805531054735184, -0.09313929826021194, 0.014951769262552261, 0.007540575228631496, 0.023382117971777916, -0.14415381848812103, 0.04215284064412117, 0.07991078495979309, 0.06304385513067245, 0.09468385577201843, 0.014420097693800926, -0.16646885871887207, 0.02060672454535961, 0.03503982722759247, -0.17410816252231598, -0.11592564731836319, -0.046214450150728226, -0.0001388737728120759, -0.09317388385534286, -0.04664934054017067, 0.12586569786071777, -0.03169139847159386, -0.04442282021045685, 0.0016676174709573388, 0.055762868374586105, -0.047919683158397675, 0.08883354812860489, 0.0385180339217186, 0.03793933987617493, -0.06181180477142334, 0.12613840401172638, 0.04729323834180832, 0.03188786655664444, 0.02544095553457737, 0.052347421646118164, -0.07776642590761185, 0.004234320018440485, -0.0897790938615799, 0.023510834202170372, -0.04145808890461922, 0.007002232130616903, 0.012301744893193245, -0.033702995628118515, 0.023709803819656372, 0.09300822019577026, -0.013786188326776028, 0.0941382572054863, -0.03652813285589218, 0.0020787296816706657, -0.13521958887577057, 0.07707613706588745, 0.0404522605240345, 0.026689326390624046, -0.09713798016309738, 0.1908881515264511, 0.01822463609278202, 0.09402704983949661, -0.04123838618397713, -0.048632849007844925, -0.0823834091424942, -0.010358736850321293, -0.13806799054145813, -0.04828790947794914, -0.08304727077484131, -0.03865561634302139, -0.015753356739878654, -0.03737564757466316, -0.021737797185778618, 0.045696914196014404, -0.030961083248257637, -0.06349749118089676, -0.058792296797037125, 0.046310003846883774, -0.15665608644485474, 0.03275692090392113, 0.11793286353349686, -0.05871632695198059, 0.11304496228694916, 0.06460297852754593, -0.020936841145157814, 0.017139127478003502, -0.11134418845176697, 0.007221591658890247, -0.047337472438812256, 0.012319475412368774, 0.03038707934319973, -0.14907795190811157, 0.002896170364692807, -0.05357685312628746, -0.06125487759709358, -0.0036123248282819986, 0.014123136177659035, -0.11449993401765823, 0.0028504522051662207, 0.08522691577672958, -0.02100088819861412, -0.0727371871471405, 0.06752016395330429, 0.07497614622116089, 0.038504745811223984, 0.06346218287944794, -0.030786970630288124, 0.08261050283908844, -0.18104888498783112, -0.04630948230624199, 0.0038882491644471884, 0.019727453589439392, 0.03662526607513428, 0.00446225143969059, 0.04483957961201668, -0.002900916151702404, 0.19663597643375397, 0.014040046371519566, -0.013267667964100838, 0.030893219634890556, -0.06798313558101654, -0.02609184756875038, 0.03846302628517151, 0.05331438034772873, -0.043674372136592865, -0.03050387278199196, -0.01377300638705492, -0.012530270032584667, -0.08467570692300797, -0.01947110891342163, 0.12985257804393768, 0.0550539456307888, 0.1936180293560028, -0.050106827169656754, 0.07761693745851517, -0.04010869190096855, -0.1310495138168335, -0.025647390633821487, -0.0271767508238554, 0.03751455247402191, -0.06237570196390152, 0.07140350341796875, 0.14552931487560272, -0.1634950190782547, 0.12148790806531906, 0.005549397319555283, -0.05420078709721565, -0.11345551908016205, -0.17493346333503723, -0.019373640418052673, -0.03343571722507477, 0.039668235927820206, -0.13700701296329498, 0.0868779718875885, 0.021540643647313118, 0.022623395547270775, -0.0639820471405983, 0.1057509109377861, -0.06118445098400116, -0.12205017358064651, 0.038674257695674896, 0.0325145497918129, 0.010217282921075821, 0.04081832617521286, 0.0781104564666748, 0.027470020577311516, 0.0026795710436999798, 0.0698251873254776, 0.02775999903678894, 0.023821527138352394, 0.038725610822439194, -0.029189646244049072, -0.05427251011133194, 0.022087352350354195, -0.008269304409623146, 0.03726072236895561, 0.09127313643693924, 0.06673958897590637, -0.006913823541253805, -0.01916154846549034, 0.2972097396850586, -0.033045053482055664, -0.021106163039803505, -0.17319922149181366, 0.17953048646450043, 0.00840799231082201, -0.010678987950086594, 0.03232711926102638, -0.12929652631282806, 0.024110153317451477, 0.1432407796382904, 0.18765613436698914, -0.04711766168475151, 0.012027177028357983, -0.03262984752655029, 0.011197388172149658, 0.040992431342601776, 0.07539623975753784, 0.06576164811849594, 0.20812009274959564, -0.042116206139326096, 0.05064360052347183, 0.0008816216723062098, -0.028822090476751328, 0.0004193108470644802, 0.11938603967428207, -0.038118187338113785, 0.004003782290965319, -0.06548628956079483, 0.09764780849218369, -0.04605511575937271, -0.2872448265552521, -0.021406443789601326, -0.04470301419496536, -0.08892747014760971, 0.05027110129594803, -0.036065369844436646, -0.024448728188872337, 0.10146377980709076, 0.01769600436091423, -0.033725183457136154, 0.13571928441524506, 0.040313720703125, -0.04805741086602211, -0.012876099906861782, 0.08892655372619629, -0.024933720007538795, 0.21078342199325562, -0.03922684118151665, -0.003282233839854598, 0.0803786888718605, 0.027147287502884865, -0.1183893159031868, -0.008937413804233074, 0.03707725927233696, -0.06871471554040909, -0.03181914612650871, 0.204120934009552, -0.004369974602013826, 0.05058128759264946, 0.06376670300960541, -0.0465523935854435, 0.03540810942649841, -0.03554157167673111, 0.03648679330945015, -0.1489359736442566, 0.06790729612112045, -0.08379597216844559, 0.14746473729610443, 0.1659637689590454, -0.07590325176715851, 0.017212819308042526, -0.05052568390965462, 0.008088350296020508, -0.005784322042018175, 0.1148989349603653, -0.016020942479372025, -0.09779234230518341, 0.01723978854715824, 0.03708086162805557, 0.02102155052125454, -0.19469384849071503, -0.07909327000379562, 0.05278261750936508, -0.05542117729783058, 0.020680474117398262, 0.16828720271587372, 0.03559555858373642, 0.06033407896757126, -0.03377721086144447, 0.016238419339060783, -0.01741054281592369, 0.10532169044017792, -0.1561778038740158, -0.09192709624767303 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2cb27a7f3f50142f45cd18fae968738c.750x750x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bryan Adams</div> <a href="https://genius.com/artists/bryan-adams"> <div style="text-align: center; font-size: 14px;">@bryan-adams</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bryan Adams. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bryan-adams). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bryan-adams") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/22ksbpsz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bryan Adams's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3b0c22fu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3b0c22fu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bryan-adams') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bryan-adams") model = AutoModelWithLMHead.from_pretrained("huggingartists/bryan-adams") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/bryan-adams"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/bryan-adams
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bryan-adams", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bryan-adams #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bryan Adams</div> <a href="URL <div style="text-align: center; font-size: 14px;">@bryan-adams</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Bryan Adams. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Bryan Adams's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bryan Adams.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bryan Adams's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bryan-adams #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Bryan Adams.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bryan Adams's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bryan-adams #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Bryan Adams.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Bryan Adams's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01862943172454834, 0.1637100726366043, -0.0026525745633989573, 0.0424824096262455, 0.08247349411249161, 0.0028332523070275784, 0.10374879837036133, 0.09997986257076263, 0.014765582047402859, 0.06499683111906052, 0.07470332086086273, 0.010919295251369476, 0.06184481829404831, 0.10712368041276932, 0.06888820976018906, -0.24949555099010468, 0.02363673225045204, -0.09374108910560608, 0.005387958139181137, 0.11866317689418793, 0.10075585544109344, -0.06713959574699402, 0.08579318970441818, 0.035718418657779694, -0.0756845474243164, 0.027663201093673706, 0.00280163181014359, -0.06742408126592636, 0.08864235877990723, 0.05990724638104439, 0.040557995438575745, 0.03100062534213066, 0.06058604270219803, -0.18468792736530304, 0.031041601672768593, 0.1227116584777832, 0.03811304271221161, 0.07577624917030334, 0.038934387266635895, -0.0828528180718422, 0.1394454836845398, -0.018328262493014336, 0.09599094092845917, 0.04601933807134628, -0.12438348680734634, -0.1356748789548874, -0.126407191157341, 0.09640010446310043, 0.09423020482063293, 0.08499664068222046, -0.03221854567527771, 0.04122169688344002, -0.01935795694589615, 0.041317932307720184, 0.22270998358726501, -0.23498426377773285, -0.01813170127570629, 0.07954660058021545, 0.043424300849437714, 0.03534547612071037, -0.07644600421190262, 0.017093518748879433, 0.03936334699392319, 0.016471413895487785, 0.055306751281023026, -0.01521697361022234, 0.19589880108833313, 0.036787670105695724, -0.09708698093891144, -0.0841323584318161, 0.12557506561279297, -0.023752104490995407, -0.07662046700716019, -0.14107106626033783, -0.0006372618954628706, -0.01518665999174118, 0.04389600828289986, -0.009212441742420197, -0.007244523614645004, 0.003344704629853368, -0.051663126796483994, -0.10999355465173721, -0.09239303320646286, -0.02867254801094532, -0.03528895601630211, 0.08153396844863892, 0.02826767787337303, 0.0371716246008873, -0.07585164904594421, 0.22957202792167664, -0.0022905913647264242, -0.10406965017318726, -0.04097124934196472, -0.09370516985654831, -0.09705087542533875, -0.05243760347366333, -0.0028336055111140013, 0.013727134093642235, -0.06047511100769043, 0.16459554433822632, -0.009797550737857819, 0.02507890574634075, 0.005483785178512335, -0.01618165895342827, 0.14280176162719727, 0.14079755544662476, -0.09349088370800018, -0.031029753386974335, 0.058869581669569016, -0.006461686454713345, -0.06581058353185654, -0.05429639667272568, -0.020530084148049355, -0.01910492591559887, 0.0390453077852726, 0.0783892571926117, 0.059742581099271774, 0.054585665464401245, 0.009637482464313507, -0.07134725898504257, 0.09473735839128494, -0.13494087755680084, 0.016147257760167122, -0.0011181965237483382, -0.044163115322589874, 0.0018298305803909898, 0.04025659337639809, 0.02290782891213894, -0.09805096685886383, 0.11193576455116272, -0.05982991307973862, -0.055436521768569946, -0.08245012909173965, -0.08737970888614655, -0.004050699062645435, -0.02453434094786644, -0.03747521713376045, -0.07327470183372498, -0.179236501455307, -0.043910861015319824, 0.03583424165844917, -0.04287483170628548, -0.04873991385102272, 0.03391450271010399, -0.014408028684556484, 0.011478670872747898, -0.01899184286594391, -0.03368440270423889, -0.026022139936685562, 0.029817497357726097, -0.05446714535355568, 0.028115231543779373, 0.08181826025247574, 0.04798562824726105, -0.11131680756807327, 0.06081538274884224, -0.14840416610240936, 0.1347903460264206, -0.007238897029310465, 0.022845476865768433, -0.1002458781003952, -0.08067607879638672, -0.020358191803097725, -0.029610320925712585, -0.006167961284518242, 0.10044171661138535, -0.1712152063846588, -0.03943935036659241, 0.1862955391407013, -0.06173834204673767, -0.08239871263504028, 0.07522893697023392, -0.08681896328926086, 0.03150244429707527, 0.13059137761592865, 0.07046189159154892, 0.15268418192863464, -0.11780044436454773, -0.0480564720928669, -0.051630984991788864, -0.04755998030304909, 0.1957855224609375, 0.055927738547325134, -0.009863360784947872, 0.006551251746714115, 0.006835124921053648, -0.036944180727005005, -0.027290072292089462, -0.01708579994738102, -0.04189799353480339, -0.00957922451198101, 0.008496920578181744, -0.007347742561250925, -0.038750916719436646, -0.059946272522211075, -0.029486151412129402, -0.11140380799770355, 0.04490770399570465, 0.09245982766151428, -0.07097690552473068, 0.00228593940846622, -0.09854111075401306, 0.0010555905755609274, -0.03917843475937843, 0.0032241896260529757, -0.1692579835653305, -0.05482522398233414, 0.024106254801154137, -0.056260623037815094, 0.0960165411233902, 0.03613954037427902, 0.03586766496300697, 0.05253205820918083, -0.016086041927337646, 0.011668357998132706, -0.03767044469714165, -0.02026938833296299, -0.02928241714835167, -0.14646659791469574, -0.06050916761159897, -0.04930393770337105, 0.10360242426395416, -0.12086877971887589, 0.007322929799556732, 0.08872533589601517, 0.11878149211406708, 0.025942586362361908, -0.06349319964647293, 0.012916576117277145, -0.04061988741159439, -0.031507156789302826, -0.10199286043643951, -0.04912698268890381, 0.01204453781247139, -0.0271744467318058, 0.15665580332279205, -0.17151762545108795, -0.07197565585374832, 0.1069888323545456, 0.13125556707382202, -0.08824621886014938, 0.028488485142588615, -0.07866127043962479, -0.014900559559464455, -0.049605682492256165, -0.04299646243453026, 0.2761012613773346, 0.03540926054120064, 0.0799325630068779, -0.10806238651275635, -0.11020287126302719, -0.01585054211318493, -0.04104859381914139, -0.029769128188490868, 0.028232255950570107, 0.005393609404563904, -0.18627332150936127, 0.038686878979206085, -0.0018875420792028308, 0.09483610093593597, 0.19632618129253387, 0.0437767468392849, -0.08539874106645584, -0.06445961445569992, -0.08418650180101395, -0.0004634660144802183, 0.06197884678840637, 0.01545761153101921, 0.027711903676390648, 0.04038144648075104, 0.05050558224320412, 0.04070322960615158, -0.11811994016170502, 0.008770856074988842, 0.08058644831180573, -0.03468085825443268, -0.058812882751226425, 0.012970961630344391, 0.020365942269563675, 0.07790929079055786, 0.09182636439800262, 0.13324891030788422, -0.05661071836948395, -0.05345390364527702, -0.13939133286476135, 0.1344972401857376, -0.07814271003007889, -0.24111106991767883, -0.1408834606409073, -0.07884430885314941, 0.017113100737333298, 0.016836663708090782, 0.03322703763842583, -0.047146957367658615, -0.044669583439826965, -0.09871606528759003, 0.08245141059160233, -0.0478079579770565, -0.024569429457187653, 0.008773362264037132, 0.0166484247893095, -0.023147277534008026, -0.1095416471362114, -0.03406066820025444, 0.036384306848049164, -0.08965270966291428, -0.0111533273011446, 0.025462234392762184, 0.038167111575603485, 0.16464613378047943, -0.011478770524263382, 0.0065998113714158535, -0.023072466254234314, 0.27729958295822144, -0.11858438700437546, 0.06720806658267975, 0.16195771098136902, -0.018144944682717323, 0.05129976198077202, 0.07382535934448242, 0.005286115687340498, -0.054901372641325, 0.0753023698925972, 0.07380036264657974, -0.07339297980070114, -0.22149322926998138, -0.032855451107025146, -0.00957321934401989, 0.001240466721355915, 0.12777391076087952, 0.04539204388856888, 0.054651081562042236, 0.012809026055037975, -0.10003592818975449, 0.047477785497903824, 0.03422815352678299, 0.10587985068559647, -0.04279794543981552, -0.00729691656306386, 0.05259859934449196, -0.05334534868597984, 0.02085726708173752, 0.1326012760400772, 0.044458165764808655, 0.18687501549720764, -0.0630476176738739, 0.09989453107118607, 0.06836235523223877, 0.0940953940153122, 0.030762404203414917, 0.015922782942652702, -0.020616574212908745, 0.020042825490236282, -0.005657977890223265, -0.08939534425735474, -0.011588908731937408, 0.04523343965411186, 0.03922681137919426, -0.023629194125533104, -0.03619198128581047, -0.07298746705055237, 0.0436629056930542, 0.24591656029224396, 0.026124894618988037, -0.18023008108139038, -0.11374691873788834, 0.05920330435037613, -0.07613663375377655, -0.058727387338876724, -0.009808359667658806, 0.06721093505620956, -0.2049638032913208, 0.0619686022400856, -0.02884737215936184, 0.11379078030586243, -0.11419402062892914, -0.002933260751888156, 0.08683987706899643, 0.0358247347176075, -0.06436145305633545, 0.0957121029496193, -0.1640949845314026, 0.06517895311117172, -0.005738188046962023, 0.0688818097114563, -0.07222748547792435, 0.021729806438088417, 0.009313196875154972, 0.04477200657129288, 0.07498230785131454, 0.015187369659543037, 0.02708348259329796, -0.0021065876353532076, -0.0521385632455349, 0.009881794452667236, 0.05214284732937813, -0.13306495547294617, 0.12698274850845337, -0.03710194677114487, 0.033397313207387924, -0.03101438097655773, -0.07586721330881119, -0.08783064782619476, -0.15930116176605225, 0.0803150087594986, -0.11802732199430466, 0.007706759963184595, -0.06755559891462326, -0.022599296644330025, 0.03069542720913887, 0.2432776391506195, -0.05788207799196243, -0.07509409636259079, -0.13831351697444916, 0.0057193986140191555, 0.13798604905605316, -0.08018830418586731, -0.000752146530430764, -0.008447234518826008, 0.1935786008834839, -0.0009297422948293388, -0.13559459149837494, -0.005581831559538841, -0.0623602420091629, -0.17115943133831024, -0.018579427152872086, 0.16907811164855957, 0.07445073127746582, 0.034740034490823746, 0.007063921540975571, 0.0020201189909130335, -0.06530877202749252, -0.16545173525810242, 0.03282594680786133, 0.1404932588338852, 0.004702760372310877, 0.029552770778536797, 0.04839783161878586, 0.02141714282333851, -0.12808075547218323, 0.01860332489013672, 0.05331823229789734, 0.17625939846038818, -0.07364639639854431, 0.17549113929271698, 0.033222001045942307, -0.0893402099609375, -0.15904481709003448, 0.019474852830171585, 0.010666469112038612, 0.03774360194802284, 0.025424184277653694, -0.19278660416603088, 0.0419500470161438, 0.026779381558299065, -0.005212899763137102, 0.04405250772833824, -0.3107329308986664, -0.154818594455719, 0.017639053985476494, 0.0033563035540282726, -0.10451135039329529, -0.041130878031253815, -0.03665562719106674, -0.08547968417406082, -0.2608523368835449, 0.10598863661289215, -0.10444686561822891, 0.07631964236497879, 0.01933165080845356, 0.1034473329782486, 0.047261182218790054, -0.05197247117757797, 0.12942780554294586, -0.026179755106568336, 0.06438443064689636, -0.0948236957192421, -0.06826034188270569, 0.09286218881607056, -0.06729593127965927, 0.09130191057920456, 0.02293860726058483, 0.09021560847759247, -0.09871527552604675, -0.08959054201841354, -0.0753893032670021, 0.005120258312672377, -0.060119904577732086, -0.09067744016647339, -0.09489114582538605, 0.08921390026807785, 0.1233079731464386, -0.04568330943584442, -0.08323343843221664, -0.06316202878952026, 0.003777513513341546, 0.06797521561384201, 0.12604929506778717, 0.07610107958316803, -0.059429917484521866, 0.006772961933165789, 0.014430149458348751, 0.021389013156294823, -0.16788922250270844, 0.048293765634298325, 0.09326811879873276, 0.03947567567229271, 0.11272986978292465, 0.008964288979768753, -0.16648131608963013, 0.0042747133411467075, 0.047784268856048584, -0.1808037906885147, -0.11626125127077103, -0.054224513471126556, 0.014355815015733242, -0.10453896224498749, -0.05365636944770813, 0.13351401686668396, -0.033788301050662994, -0.04357968270778656, 0.005492828320711851, 0.04422392323613167, -0.04348072409629822, 0.08810964226722717, 0.01033743005245924, 0.0429394505918026, -0.06291485577821732, 0.11172353476285934, 0.07237356901168823, -0.005503920838236809, 0.031310759484767914, 0.06276105344295502, -0.08400595933198929, 0.006045669782906771, -0.09110691398382187, 0.013936110772192478, -0.0440581776201725, -0.008066914975643158, 0.007586505264043808, -0.042532242834568024, 0.04572906345129013, 0.08673099428415298, -0.01247181836515665, 0.10895023494958878, -0.04622925817966461, 0.014263641089200974, -0.12490692734718323, 0.08112481236457825, 0.04499610885977745, 0.02218666300177574, -0.1149049699306488, 0.18944969773292542, 0.017986051738262177, 0.0923101156949997, -0.03780017048120499, -0.060916051268577576, -0.06296590715646744, -0.008483963087201118, -0.11223209649324417, -0.0451417900621891, -0.09009499102830887, -0.021752744913101196, -0.00793040543794632, -0.04442431777715683, -0.025136398151516914, 0.043393999338150024, -0.03603643551468849, -0.051941320300102234, -0.06431973725557327, 0.03972217068076134, -0.14088581502437592, 0.03189806267619133, 0.12171216309070587, -0.05471475422382355, 0.12761427462100983, 0.05948661267757416, -0.03933624550700188, 0.013966782949864864, -0.11495720595121384, 0.04201844334602356, -0.02321607433259487, 0.016626661643385887, 0.02301132306456566, -0.17033983767032623, 0.006858091335743666, -0.03715096786618233, -0.06728304922580719, 0.005424194969236851, 0.01363504771143198, -0.12089560925960541, -0.0033930062782019377, 0.09310471266508102, -0.023910779505968094, -0.08312853425741196, 0.06330202519893646, 0.05755859240889549, 0.03101092018187046, 0.060279786586761475, -0.023651419207453728, 0.07742208242416382, -0.168037548661232, -0.05130518600344658, 0.008089744485914707, 0.025607362389564514, 0.028858259320259094, -0.016261229291558266, 0.041004784405231476, -0.018355805426836014, 0.21082991361618042, 0.01709817163646221, -0.026264738291502, 0.03679242357611656, -0.06692705303430557, 0.0116374921053648, 0.04384346306324005, 0.0780811533331871, -0.04277817904949188, -0.041927289217710495, 0.00414315378293395, -0.025706639513373375, -0.09314201772212982, -0.022003524005413055, 0.11912094801664352, 0.04407336562871933, 0.20057228207588196, -0.05412709340453148, 0.06531485915184021, -0.008760958909988403, -0.12397244572639465, -0.03515907749533653, -0.042177919298410416, 0.03774861618876457, -0.06236054003238678, 0.056760646402835846, 0.17728368937969208, -0.17247386276721954, 0.12036596238613129, 0.008769179694354534, -0.05763024836778641, -0.11448515951633453, -0.1992906630039215, -0.021179430186748505, -0.04052579030394554, 0.029226073995232582, -0.1427357941865921, 0.0875377431511879, 0.009829225018620491, 0.03168220818042755, -0.07302942872047424, 0.12646619975566864, -0.07383279502391815, -0.11977313458919525, 0.04349571466445923, 0.02445691078901291, 0.02807558700442314, 0.05230262503027916, 0.08535189181566238, 0.021885568276047707, 0.01070551946759224, 0.06785275042057037, 0.03581730276346207, 0.027932550758123398, 0.034820325672626495, -0.02705562487244606, -0.04822416976094246, 0.024688493460416794, 0.002554945647716522, 0.04006492346525192, 0.09315615147352219, 0.056947946548461914, -0.01510940957814455, -0.02002611756324768, 0.3103935718536377, -0.038011014461517334, -0.04427666962146759, -0.18108290433883667, 0.17365515232086182, 0.005515045020729303, -0.011487296782433987, 0.03464648500084877, -0.12107297033071518, 0.011317363940179348, 0.12417469173669815, 0.17716917395591736, -0.036568280309438705, 0.02238187938928604, -0.030771123245358467, 0.01800861395895481, 0.03916626423597336, 0.0900195837020874, 0.06087017431855202, 0.21122032403945923, -0.0368192233145237, 0.048819173127412796, 0.0009120662580244243, -0.02093486301600933, 0.005072955507785082, 0.11154962331056595, -0.03341706469655037, 0.00021806701261084527, -0.05624723434448242, 0.1000322625041008, -0.04658178240060806, -0.28057458996772766, -0.025306174531579018, -0.03652112931013107, -0.0883360505104065, 0.06463711708784103, -0.028600094839930534, -0.03217213973402977, 0.08596665412187576, 0.026275433599948883, -0.04301375150680542, 0.13222277164459229, 0.0468345545232296, -0.0463070347905159, 0.00020366291573736817, 0.11765331774950027, -0.023835377767682076, 0.17240235209465027, -0.027722923085093498, 0.014391958713531494, 0.08431761711835861, 0.01924443244934082, -0.12846723198890686, 0.00830127764493227, 0.03976040333509445, -0.06659601628780365, -0.025128016248345375, 0.1953602433204651, 0.01371657196432352, 0.03555326908826828, 0.07771145552396774, -0.055993013083934784, 0.028898732736706734, -0.06782910227775574, 0.05922778323292732, -0.1517641395330429, 0.05882776156067848, -0.08721493184566498, 0.13603496551513672, 0.18563634157180786, -0.06985174119472504, 0.02598503790795803, -0.051324062049388885, 0.004091409035027027, -0.020432114601135254, 0.08540062606334686, -0.019238736480474472, -0.10501702129840851, 0.009174957871437073, 0.04507268965244293, 0.02870284765958786, -0.20440763235092163, -0.0734962746500969, 0.06340902298688889, -0.05420650914311409, 0.028980569913983345, 0.18231354653835297, 0.03226914629340172, 0.05863085389137268, -0.03874402120709419, -0.011259537190198898, -0.014117731712758541, 0.11715365201234818, -0.17321816086769104, -0.0812530443072319 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/62edc981d303447265d23a3862abce43.589x589x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Burzum</div> <a href="https://genius.com/artists/burzum"> <div style="text-align: center; font-size: 14px;">@burzum</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Burzum. Dataset is available [here](https://huggingface.co/datasets/huggingartists/burzum). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/burzum") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/j34qgww2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Burzum's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3579mrib) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3579mrib/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/burzum') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/burzum") model = AutoModelWithLMHead.from_pretrained("huggingartists/burzum") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/burzum"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/burzum
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/burzum", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/burzum #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Burzum</div> <a href="URL <div style="text-align: center; font-size: 14px;">@burzum</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Burzum. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Burzum's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Burzum.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Burzum's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/burzum #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Burzum.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Burzum's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/burzum #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Burzum.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Burzum's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02313011698424816, 0.15131495893001556, -0.0026425374671816826, 0.02966884709894657, 0.08735474944114685, 0.0014698399463668466, 0.08490603417158127, 0.10265032202005386, -0.005590695422142744, 0.07730395346879959, 0.07898899912834167, 0.009823781438171864, 0.06419366598129272, 0.13783098757266998, 0.08627934008836746, -0.2638504207134247, 0.02998059056699276, -0.10540255904197693, 0.02329782396554947, 0.12301214784383774, 0.08860137313604355, -0.05543869733810425, 0.08176182955503464, 0.03135259822010994, -0.0746811032295227, 0.032324448227882385, -0.01213823165744543, -0.07256074249744415, 0.08996456861495972, 0.08144577592611313, 0.034434881061315536, 0.03322511911392212, 0.06491220742464066, -0.19228778779506683, 0.035411302000284195, 0.12763166427612305, 0.023086192086338997, 0.07318496704101562, 0.03678400069475174, -0.08104421198368073, 0.18862588703632355, -0.025616690516471863, 0.08512228727340698, 0.045612871646881104, -0.11066890507936478, -0.17366833984851837, -0.12124156951904297, 0.09967770427465439, 0.09266921877861023, 0.07725716382265091, -0.03437484800815582, 0.036677341908216476, 0.0008064883877523243, 0.04332664981484413, 0.22865481674671173, -0.24584569036960602, -0.013957001268863678, 0.08940392732620239, 0.041957348585128784, 0.048385512083768845, -0.08159208297729492, 0.02137172408401966, 0.05140285566449165, 0.022103041410446167, 0.04301032796502113, -0.01626056618988514, 0.23075325787067413, 0.020486364141106606, -0.09464526921510696, -0.08978545665740967, 0.09799093753099442, -0.026783235371112823, -0.08476289361715317, -0.1519634872674942, 0.003834384260699153, -0.018631068989634514, 0.03569686785340309, -0.007884738966822624, -0.009876162745058537, -0.0007247303146868944, -0.04562507942318916, -0.09948227554559708, -0.09015438705682755, -0.028884010389447212, -0.021866971626877785, 0.08163496106863022, 0.027064934372901917, 0.031955115497112274, -0.07731901854276657, 0.22722357511520386, 0.014943532645702362, -0.1048932671546936, -0.049743860960006714, -0.09348990768194199, -0.09612575173377991, -0.054952990263700485, 0.008189644664525986, 0.02817857265472412, -0.06278214603662491, 0.17033328115940094, -0.03886089473962784, 0.030855447053909302, 0.0010204579448327422, -0.022114383056759834, 0.1529187113046646, 0.1246875748038292, -0.09969643503427505, -0.03261791542172432, 0.04687955603003502, -0.012372848577797413, -0.06784216314554214, -0.056889936327934265, -0.012748528271913528, -0.02144271321594715, 0.02051529288291931, 0.09532789140939713, 0.046859364956617355, 0.053957268595695496, 0.03401082381606102, -0.05632384493947029, 0.11382100731134415, -0.14330720901489258, 0.011304092593491077, -0.006426405627280474, -0.03145362809300423, 0.013463941402733326, 0.05038991943001747, 0.0073070223443210125, -0.09919289499521255, 0.11794382333755493, -0.05437466502189636, -0.05954376980662346, -0.06439583003520966, -0.09194228053092957, -0.007155700121074915, -0.020151134580373764, -0.04803517460823059, -0.08526226133108139, -0.15761442482471466, -0.03160427510738373, 0.021539295092225075, -0.039786189794540405, -0.03534059226512909, 0.042712289839982986, -0.034209784120321274, 0.0011638837167993188, -0.015696140006184578, -0.01887904293835163, -0.02874111384153366, 0.02171914093196392, -0.05919825658202171, 0.038031063973903656, 0.08181431889533997, 0.03382329270243645, -0.10642510652542114, 0.0673682689666748, -0.15871620178222656, 0.14300309121608734, -0.015815038233995438, 0.014161775819957256, -0.1141587495803833, -0.09654400497674942, -0.034856174141168594, -0.026638442650437355, -0.00648285448551178, 0.09150508046150208, -0.17357592284679413, -0.046373993158340454, 0.20997686684131622, -0.0780947357416153, -0.08360741287469864, 0.06771714240312576, -0.07707314938306808, 0.034204598516225815, 0.13943912088871002, 0.05203482508659363, 0.15827350318431854, -0.12104332447052002, -0.0760413259267807, -0.04054747149348259, -0.05640214681625366, 0.21976317465305328, 0.053462568670511246, -0.00514696491882205, 0.011525378562510014, 0.009796052239835262, -0.017190905287861824, -0.022399626672267914, -0.02421504259109497, -0.04206305742263794, -0.008345655165612698, 0.013754046522080898, -0.009582136757671833, -0.050204917788505554, -0.06500846147537231, -0.014567811973392963, -0.11695531755685806, 0.042643990367650986, 0.1071602925658226, -0.07213648408651352, 0.00958852469921112, -0.09207839518785477, -0.004463422577828169, -0.0381895937025547, 0.025103310123085976, -0.1923648864030838, -0.04342750832438469, 0.022202366963028908, -0.06638871878385544, 0.08945012092590332, 0.02250608615577221, 0.03917742148041725, 0.06505995988845825, -0.011853039264678955, 0.022734621539711952, -0.051166195422410965, -0.022845402359962463, -0.03162622079253197, -0.14398877322673798, -0.07413843274116516, -0.05423389747738838, 0.09276634454727173, -0.1408037543296814, 0.005985638126730919, 0.0954984650015831, 0.1170736625790596, 0.022265858948230743, -0.05784842371940613, 0.006184760481119156, -0.031979452818632126, -0.04048488661646843, -0.10796642303466797, -0.0611686110496521, 0.005330642685294151, -0.04169847443699837, 0.1537565141916275, -0.16770245134830475, -0.07525911182165146, 0.09856268018484116, 0.17320454120635986, -0.10608438402414322, 0.013396787457168102, -0.0975865051150322, -0.007069129031151533, -0.043606679886579514, -0.04152357950806618, 0.2644152343273163, 0.04144914820790291, 0.07993922382593155, -0.11190173029899597, -0.09932032972574234, 0.001332853571511805, -0.03417612984776497, -0.029363205656409264, 0.029944315552711487, 0.0190903190523386, -0.17950095236301422, 0.0234008077532053, -0.008638282306492329, 0.12082632631063461, 0.212702676653862, 0.052118897438049316, -0.10088345408439636, -0.05958383157849312, -0.08838396519422531, 0.006030837539583445, 0.05287154018878937, 0.041313640773296356, 0.0282758679240942, 0.041038211435079575, 0.04574129357933998, 0.04020392894744873, -0.10854524374008179, 0.010452496819198132, 0.07636000961065292, -0.043473321944475174, -0.06900446861982346, 0.019567685201764107, 0.013839480467140675, 0.08347096294164658, 0.07717067748308182, 0.1469699740409851, -0.07745009660720825, -0.0472998321056366, -0.14159423112869263, 0.1378079056739807, -0.07502277940511703, -0.2714671194553375, -0.14126333594322205, -0.06910554319620132, 0.025223931297659874, 0.005881626624614, 0.03917890414595604, -0.06410673260688782, -0.0388341099023819, -0.10201671719551086, 0.09364435076713562, -0.04859662055969238, -0.012867781333625317, 0.003840795950964093, 0.021805206313729286, -0.03192351013422012, -0.10781651735305786, -0.02707797847688198, 0.03431093692779541, -0.10182705521583557, -0.018419766798615456, 0.03112202323973179, 0.0415046252310276, 0.1555481106042862, -0.0065547265112400055, -0.0066980645060539246, -0.03383396938443184, 0.28035882115364075, -0.1203756108880043, 0.06801700592041016, 0.1611175239086151, -0.024649983271956444, 0.05439598485827446, 0.07569702714681625, 0.004437767434865236, -0.06668054312467575, 0.07561907917261124, 0.07084067910909653, -0.09008520841598511, -0.2160237580537796, -0.030005695298314095, -0.009414571337401867, 0.020319364964962006, 0.13467548787593842, 0.0587042011320591, 0.055607378482818604, -0.0021066998597234488, -0.10827520489692688, 0.04988444223999977, 0.025355180725455284, 0.10660833865404129, -0.07403695583343506, -0.013010594062507153, 0.04812657833099365, -0.06931651383638382, 0.02665020525455475, 0.14083069562911987, 0.039721112698316574, 0.19923661649227142, -0.06383759528398514, 0.09866077452898026, 0.08025377243757248, 0.08973116427659988, 0.038042519241571426, 0.010401585139334202, -0.006623121444135904, 0.009650043211877346, -0.004095413256436586, -0.09737149626016617, -0.010668006725609303, 0.049399569630622864, 0.03217000141739845, -0.024496786296367645, -0.04139391705393791, -0.057005930691957474, 0.04388295114040375, 0.21911470592021942, -0.011038881726562977, -0.1765398234128952, -0.12279241532087326, 0.039823267608881, -0.0792229175567627, -0.04497600719332695, -0.029606066644191742, 0.08437827229499817, -0.2117100954055786, 0.06871029734611511, -0.02870585210621357, 0.1097981408238411, -0.1012478843331337, -0.0007286903564818203, 0.07288099825382233, 0.05123080685734749, -0.06485575437545776, 0.09590563178062439, -0.15877823531627655, 0.061836306005716324, -0.011726606637239456, 0.07040473818778992, -0.0759570449590683, 0.029650302603840828, 0.0008660021121613681, 0.0414174422621727, 0.08840411901473999, 0.012609765864908695, 0.025964805856347084, -0.0006348465685732663, -0.04753844812512398, 0.014873181469738483, 0.059253472834825516, -0.1294833868741989, 0.12689854204654694, -0.023263007402420044, 0.03112400881946087, -0.04170219600200653, -0.09897323697805405, -0.09943080693483353, -0.16953998804092407, 0.08602800220251083, -0.1325863152742386, -0.012351137585937977, -0.07097166031599045, -0.02777344547212124, 0.04281100630760193, 0.2539643943309784, -0.04854198172688484, -0.06625166535377502, -0.13536305725574493, 0.027792995795607567, 0.14842604100704193, -0.08911171555519104, 0.010511974804103374, -0.012315143831074238, 0.2097688913345337, -0.006327681243419647, -0.1278100460767746, -0.02604343555867672, -0.06314866989850998, -0.16382281482219696, -0.006719287484884262, 0.16920800507068634, 0.06403619796037674, 0.025509221479296684, 0.01066980604082346, -0.014742846600711346, -0.04187712073326111, -0.17369389533996582, 0.02471637725830078, 0.1510068029165268, -0.007828878238797188, 0.0027119319420307875, 0.04036102816462517, 0.018496530130505562, -0.1343391090631485, 0.015677670016884804, 0.04728945717215538, 0.1835964322090149, -0.0816909670829773, 0.19088272750377655, 0.04282886162400246, -0.08967367559671402, -0.15734165906906128, 0.0037910935934633017, 0.037993911653757095, 0.040408723056316376, 0.038121163845062256, -0.2170840948820114, 0.04133443534374237, 0.03240339830517769, 0.006106293294578791, 0.04026861488819122, -0.3358156681060791, -0.1608293205499649, 0.0029001219663769007, 0.008958139456808567, -0.15293525159358978, -0.04311782121658325, -0.03688278794288635, -0.10038913041353226, -0.23250795900821686, 0.10587361454963684, -0.11144691705703735, 0.07586724311113358, 0.030587701126933098, 0.087696872651577, 0.04358482360839844, -0.04528689384460449, 0.1328851729631424, -0.015940209850668907, 0.06252044439315796, -0.09065929055213928, -0.057903219014406204, 0.08213072270154953, -0.0685468390583992, 0.08662547916173935, 0.02188473381102085, 0.08379126340150833, -0.09173671156167984, -0.08971438556909561, -0.06362497806549072, 0.0025289335753768682, -0.051405031234025955, -0.08737047761678696, -0.09091339260339737, 0.08838298916816711, 0.12109553813934326, -0.046014875173568726, -0.09849977493286133, -0.0725972130894661, 0.0071908291429281235, 0.047087620943784714, 0.11559686809778214, 0.08551058173179626, -0.05084718391299248, 0.002501385984942317, 0.014680746011435986, 0.013596474193036556, -0.18336714804172516, 0.04508945345878601, 0.09082243591547012, 0.04521169885993004, 0.10933233052492142, 0.0031871823593974113, -0.16474060714244843, 0.003976169042289257, 0.05905537307262421, -0.16330435872077942, -0.13028918206691742, -0.03801341727375984, 0.016749616712331772, -0.10225803405046463, -0.05253284052014351, 0.13342304527759552, -0.03586462885141373, -0.039420586079359055, 0.00019266891467850655, 0.03621102496981621, -0.043353378772735596, 0.0906878337264061, -0.0071666366420686245, 0.04257632791996002, -0.06797539442777634, 0.11619593948125839, 0.07069652527570724, 0.00035950899473391473, 0.038991786539554596, 0.059677284210920334, -0.08914204686880112, 0.01673431508243084, -0.1136304959654808, 0.0019839268643409014, -0.020723240450024605, -0.008160644210875034, 0.02632351964712143, -0.028427673503756523, 0.05558735132217407, 0.09674423933029175, -0.017884640023112297, 0.10485351085662842, -0.05291071906685829, 0.027174105867743492, -0.13163787126541138, 0.0687718465924263, 0.03756820783019066, 0.017462383955717087, -0.1067606583237648, 0.21000605821609497, 0.04037684202194214, 0.10138601064682007, -0.03867825120687485, -0.06151041388511658, -0.05871349945664406, -0.0161963552236557, -0.08982083946466446, -0.03419598937034607, -0.08882506936788559, -0.024634769186377525, -0.007613117340952158, -0.03197983279824257, -0.036155179142951965, 0.0440434031188488, -0.034018222242593765, -0.06163617968559265, -0.07290992885828018, 0.05145186185836792, -0.14591963589191437, 0.04025058075785637, 0.12020496279001236, -0.056925173848867416, 0.12716804444789886, 0.0607350654900074, -0.033267486840486526, 0.027732210233807564, -0.13733942806720734, 0.04684968665242195, -0.0032691119704395533, 0.021904319524765015, 0.014300954528152943, -0.1496581882238388, 0.014448489062488079, -0.035629644989967346, -0.07249695807695389, 0.005592871457338333, -0.014886782504618168, -0.1295814961194992, -0.009917780756950378, 0.08647796511650085, -0.009926644153892994, -0.06638359278440475, 0.07257819920778275, 0.056427303701639175, 0.025602394714951515, 0.05205901339650154, -0.014474228955805302, 0.06680408865213394, -0.1820487529039383, -0.062173545360565186, -0.008577154949307442, 0.03132446110248566, 0.04823842644691467, -0.027798093855381012, 0.03493162989616394, -0.014543518424034119, 0.2124355286359787, 0.01599334180355072, -0.012255844660103321, 0.03719625994563103, -0.06676864624023438, -0.01296011358499527, 0.043553292751312256, 0.09307936578989029, -0.012931677512824535, -0.02987830899655819, -0.004506102297455072, -0.02709074504673481, -0.09650162607431412, -0.014152188785374165, 0.09805091470479965, 0.025515729561448097, 0.21290655434131622, -0.06154341623187065, 0.06994450837373734, -0.019840555265545845, -0.09443793445825577, -0.018440984189510345, -0.04846203699707985, 0.029956193640828133, -0.05684293434023857, 0.0553550161421299, 0.1866525262594223, -0.15349215269088745, 0.1164107546210289, 0.045507173985242844, -0.05619354173541069, -0.11768896132707596, -0.18582721054553986, -0.011285697109997272, -0.03149961307644844, 0.029161348938941956, -0.13818146288394928, 0.09205297380685806, 0.00884910300374031, 0.037953395396471024, -0.05754275992512703, 0.13550835847854614, -0.0894395112991333, -0.13791538774967194, 0.04590162634849548, 0.018758896738290787, 0.02484194003045559, 0.049236830323934555, 0.08756186813116074, 0.04116019606590271, 0.007831650786101818, 0.0730280950665474, 0.03839521110057831, 0.030381275340914726, 0.04511432349681854, -0.029133081436157227, -0.03774802386760712, 0.028199857100844383, -0.004164965823292732, 0.027560189366340637, 0.10358182340860367, 0.07016322761774063, -0.019225651398301125, -0.017760738730430603, 0.31421229243278503, -0.020336555317044258, -0.03432147577404976, -0.18620043992996216, 0.16697180271148682, 0.013696860522031784, 0.0022659488022327423, 0.02059902437031269, -0.11601924896240234, 0.010529090650379658, 0.11627816408872604, 0.15548007190227509, -0.024348890408873558, 0.025120055302977562, -0.01970827579498291, 0.018734760582447052, 0.04284768924117088, 0.11009449511766434, 0.062028974294662476, 0.20650224387645721, -0.024229055270552635, 0.05038727447390556, -0.014316552318632603, -0.022407785058021545, 0.0198687557131052, 0.1108923926949501, -0.04002392292022705, 0.0012625005329027772, -0.048336610198020935, 0.10185157507658005, -0.06314007937908173, -0.3162368834018707, -0.040767207741737366, -0.01911833882331848, -0.08925358206033707, 0.07169163972139359, -0.033095553517341614, -0.015689359977841377, 0.08067291229963303, 0.029827142134308815, -0.049273520708084106, 0.15869209170341492, 0.05213978886604309, -0.04035654291510582, -0.00634896382689476, 0.11119353771209717, -0.039371225982904434, 0.16097408533096313, -0.042219728231430054, 0.010697905905544758, 0.07616852968931198, 0.014196808449923992, -0.12171704322099686, 0.002043517306447029, 0.03625309839844704, -0.05614728853106499, -0.019592689350247383, 0.206048846244812, 0.00916686374694109, 0.022968126460909843, 0.072454072535038, -0.056379418820142746, 0.021464908495545387, -0.03835779055953026, 0.05532220005989075, -0.13128356635570526, 0.0680575892329216, -0.0774151086807251, 0.12039192765951157, 0.17808844149112701, -0.06735897809267044, 0.03889790549874306, -0.05946841463446617, 0.011222473345696926, -0.02435844950377941, 0.07713080942630768, -0.015338174998760223, -0.11420613527297974, 0.004220586735755205, 0.026646846905350685, 0.016442405059933662, -0.18289172649383545, -0.07665913552045822, 0.0773962214589119, -0.04811566695570946, 0.021252738311886787, 0.17910408973693848, 0.01388599630445242, 0.0605025589466095, -0.03723299503326416, -0.030024796724319458, -0.004377430304884911, 0.112803153693676, -0.17416787147521973, -0.07446268200874329 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6e5b165de8561df37790229c26b25692.959x959x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BUSHIDO ZHO</div> <a href="https://genius.com/artists/bushido-zho"> <div style="text-align: center; font-size: 14px;">@bushido-zho</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from BUSHIDO ZHO. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bushido-zho). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bushido-zho") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/vtfjc0qi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on BUSHIDO ZHO's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/iwclgqsj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/iwclgqsj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bushido-zho') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bushido-zho") model = AutoModelWithLMHead.from_pretrained("huggingartists/bushido-zho") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/bushido-zho"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/bushido-zho
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bushido-zho", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bushido-zho #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">BUSHIDO ZHO</div> <a href="URL <div style="text-align: center; font-size: 14px;">@bushido-zho</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from BUSHIDO ZHO. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on BUSHIDO ZHO's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from BUSHIDO ZHO.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BUSHIDO ZHO's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bushido-zho #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from BUSHIDO ZHO.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BUSHIDO ZHO's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/bushido-zho #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from BUSHIDO ZHO.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on BUSHIDO ZHO's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03080507554113865, 0.17135635018348694, -0.003360242350026965, 0.057180821895599365, 0.08678113669157028, 0.0012425504392012954, 0.07500848919153214, 0.1102343201637268, 0.015144377946853638, 0.07855741679668427, 0.052492838352918625, 0.052424319088459015, 0.0897921472787857, 0.05938293784856796, 0.04332786053419113, -0.24428661167621613, 0.04191399738192558, -0.059147123247385025, -0.009551223367452621, 0.09496062248945236, 0.08558544516563416, -0.08681678026914597, 0.08252114802598953, 0.037845298647880554, -0.03864607959985733, 0.0014792983420193195, 0.0015591854462400079, -0.05247879400849342, 0.07433994114398956, 0.08238893747329712, 0.03825349360704422, 0.04359810799360275, 0.062481023371219635, -0.18006651103496552, 0.024364592507481575, 0.11595990508794785, 0.026037918403744698, 0.08873698115348816, 0.07400716096162796, -0.06621232628822327, 0.11617864668369293, -0.026238199323415756, 0.07623248547315598, 0.06740107387304306, -0.10264678299427032, -0.08853466808795929, -0.1525285392999649, 0.07916505634784698, 0.07101462036371231, 0.083804190158844, -0.029177308082580566, 0.10304296761751175, -0.034554172307252884, 0.044541873037815094, 0.2641928493976593, -0.24685673415660858, -0.008681009523570538, 0.056627657264471054, 0.07747025787830353, 0.017971878871321678, -0.10839962214231491, 0.011990691535174847, 0.04138725623488426, 0.024573907256126404, 0.04040643945336342, -0.03190263360738754, 0.17479561269283295, 0.009310516528785229, -0.10743875801563263, -0.07298225909471512, 0.0814002975821495, -0.005055224988609552, -0.08387744426727295, -0.12242691218852997, 0.0008851443999446929, -0.027990203350782394, 0.019136983901262283, 0.008263018913567066, -0.001968860160559416, -0.007875554263591766, -0.053941939026117325, -0.12512458860874176, -0.07498444616794586, -0.034177012741565704, -0.015645651146769524, 0.0695544108748436, 0.05191342905163765, 0.033203549683094025, -0.06950199604034424, 0.19830486178398132, 0.05026562511920929, -0.10518468171358109, -0.06699209660291672, -0.11782074719667435, -0.09091433137655258, -0.03190271183848381, -0.004959266632795334, -0.0017741045448929071, -0.013954711146652699, 0.1502504050731659, -0.02331201359629631, 0.028006190434098244, -0.05562514066696167, 0.004409100394695997, 0.11929915845394135, 0.1418071985244751, -0.12831881642341614, -0.056352585554122925, 0.07121586799621582, -0.007629898376762867, -0.0689719170331955, -0.04979681223630905, -0.006175174377858639, -0.039444610476493835, 0.059731218963861465, 0.07445502281188965, 0.08441536873579025, 0.06643015146255493, 0.00466178497299552, -0.05901665240526199, 0.029246484860777855, -0.1364922821521759, 0.014990282244980335, -0.0129057876765728, -0.06685864925384521, 0.02172938734292984, 0.04810947924852371, 0.0034217694774270058, -0.11724646389484406, 0.0804203525185585, -0.08807961642742157, -0.04582108184695244, -0.08651407063007355, -0.10429447889328003, 0.008541122078895569, -0.054006122052669525, -0.018875282257795334, -0.07576105743646622, -0.15705890953540802, -0.03692219406366348, 0.010664300993084908, -0.0625494197010994, -0.00800853781402111, 0.027692828327417374, -0.036856140941381454, 0.005676883272826672, -0.02162729762494564, 0.014074414037168026, -0.010523277334868908, 0.04856118932366371, -0.08458702266216278, 0.03008890710771084, 0.060892052948474884, 0.04022441804409027, -0.11401648074388504, 0.07438314706087112, -0.11320343613624573, 0.1299559473991394, -0.034423958510160446, -0.03436770662665367, -0.09991887956857681, -0.08995398879051208, -0.01618899218738079, -0.03552940860390663, 0.03114853799343109, 0.12988018989562988, -0.15209455788135529, -0.013757646083831787, 0.21356672048568726, -0.07237090915441513, -0.05694500356912613, 0.06935451924800873, -0.07646390050649643, 0.030107788741588593, 0.11877050995826721, 0.04647176340222359, 0.13416127860546112, -0.10621743649244308, -0.0951727107167244, -0.04139097407460213, -0.07333613932132721, 0.1843872219324112, 0.030743123963475227, -0.01122481469064951, 0.04276248440146446, 0.0055200099013745785, -0.0028593249153345823, -0.007483704015612602, -0.03399275243282318, -0.03617866709828377, -0.008359666913747787, -0.006455737166106701, 0.02114381641149521, -0.04641289263963699, -0.03405352681875229, -0.0007165761198848486, -0.10405691713094711, 0.051697373390197754, 0.09655875712633133, -0.07368073612451553, 0.016706418246030807, -0.11417756974697113, 0.033499907702207565, -0.05884047597646713, 0.011836325749754906, -0.18560791015625, -0.02622065506875515, 0.012586322613060474, -0.07344920933246613, 0.06835098564624786, 0.03873619809746742, 0.041276365518569946, 0.06705762445926666, -0.021276401355862617, 0.005967808421701193, -0.041963011026382446, 0.005670533981174231, -0.05095694959163666, -0.1596819907426834, -0.06384779512882233, -0.038078855723142624, 0.06910292059183121, -0.10574265569448471, 0.0020311183761805296, 0.09715171903371811, 0.15709009766578674, 0.0319412536919117, -0.05887635797262192, 0.025202209129929543, -0.030411822721362114, -0.031512655317783356, -0.09206987917423248, -0.050514206290245056, 0.010506530292332172, -0.03570358827710152, 0.15574291348457336, -0.136397585272789, -0.10561759769916534, 0.1265522986650467, 0.09006235748529434, -0.06767554581165314, 0.015302169136703014, -0.06096411496400833, -0.02782543934881687, -0.028891272842884064, -0.07420146465301514, 0.22162675857543945, 0.04851812869310379, 0.0959034413099289, -0.09647282212972641, -0.08067052066326141, 0.00803599413484335, -0.040074367076158524, -0.026074452325701714, 0.04349201172590256, 0.023235512897372246, -0.20015768706798553, 0.06456589698791504, -0.018275771290063858, 0.08181186020374298, 0.18086473643779755, 0.01518907118588686, -0.09283783286809921, -0.06292958557605743, -0.06786035746335983, 0.01088140718638897, 0.08496002852916718, 0.011822397820651531, 0.05419003963470459, 0.04170333594083786, 0.04398433119058609, 0.043876707553863525, -0.10376965999603271, 0.02251347340643406, 0.04908199608325958, -0.024778522551059723, -0.03155243396759033, 0.014378271996974945, 0.03338978812098503, 0.09086304903030396, 0.06629394739866257, 0.10107874125242233, -0.04288408160209656, -0.05484367907047272, -0.12519356608390808, 0.12701566517353058, -0.09087970852851868, -0.2072354555130005, -0.13191023468971252, -0.10311868041753769, 0.003404848510399461, 0.007372112479060888, 0.028392178937792778, -0.025424979627132416, -0.03293449059128761, -0.08437341451644897, 0.08810325711965561, -0.039428383111953735, -0.010230320505797863, -0.009895158000290394, 0.036618784070014954, -0.016895810142159462, -0.1175725907087326, -0.027287298813462257, 0.019222794100642204, -0.075019970536232, -0.0007670288905501366, 0.02789483405649662, 0.054565850645303726, 0.118555448949337, -0.0009205335518345237, 0.001465842011384666, -0.02609831839799881, 0.25721344351768494, -0.10682616382837296, 0.058120932430028915, 0.1783483624458313, -0.035676661878824234, 0.06501851975917816, 0.05060620978474617, -0.0066800606437027454, -0.045661307871341705, 0.04738190025091171, 0.06384135782718658, -0.062026090919971466, -0.2085515558719635, -0.025504808872938156, -0.033305760473012924, -0.002826838521286845, 0.11038407683372498, 0.025263413786888123, 0.05939628928899765, 0.027391988784074783, -0.10449358075857162, 0.06380193680524826, 0.050549328327178955, 0.10007625818252563, -0.05043799430131912, -0.010757035575807095, 0.05558823421597481, -0.04827456176280975, 0.016117332503199577, 0.1028091311454773, 0.04134529456496239, 0.2602011263370514, -0.07031821459531784, 0.07837694138288498, 0.08683250844478607, 0.08998824656009674, 0.022291334345936775, 0.05742897838354111, -0.02590370737016201, 0.033846646547317505, -0.0025382295716553926, -0.09376160055398941, -0.017774123698472977, 0.03689056634902954, 0.03618549555540085, -0.010013052262365818, -0.05576557666063309, -0.08646925538778305, 0.036325957626104355, 0.21619822084903717, 0.04226294532418251, -0.1626541018486023, -0.07890855520963669, 0.06652187556028366, -0.045708246529102325, -0.061887696385383606, -0.02179025486111641, 0.07211475819349289, -0.21228857338428497, 0.025256717577576637, -0.04834982752799988, 0.1170206218957901, -0.14397193491458893, -0.0028311547357589006, -0.0022626298014074564, 0.053002387285232544, -0.061533890664577484, 0.07584764808416367, -0.175889790058136, 0.07333644479513168, 0.010233728215098381, 0.0781572163105011, -0.08318093419075012, 0.025934217497706413, 0.04189801961183548, -0.002293891506269574, 0.0996931940317154, 0.004686949774622917, 0.017680758610367775, -0.08115258067846298, -0.060749828815460205, -0.0011584156891331077, 0.062129873782396317, -0.07044696062803268, 0.13629376888275146, -0.03893524408340454, 0.030362429097294807, -0.020658669993281364, -0.04155000299215317, -0.10867976397275925, -0.16337667405605316, 0.07601146399974823, -0.12083162367343903, -0.000744763994589448, -0.05932378023862839, -0.02566700614988804, 0.03039088286459446, 0.17978280782699585, -0.11838101595640182, -0.08112591505050659, -0.12713734805583954, 0.043949902057647705, 0.16202455759048462, -0.07987769693136215, 0.0113285006955266, 0.007483809720724821, 0.15615300834178925, -0.006848596502095461, -0.12926310300827026, -0.023126713931560516, -0.05444125458598137, -0.1885717809200287, -0.025471575558185577, 0.12169577181339264, 0.09284759312868118, 0.04701683670282364, 0.024261482059955597, -0.005331722088158131, -0.020223962143063545, -0.16077078878879547, 0.0007978738285601139, 0.12714029848575592, 0.06354642659425735, 0.031874433159828186, 0.008685259148478508, 0.017462901771068573, -0.13886606693267822, 0.02963004633784294, 0.058152344077825546, 0.18788057565689087, -0.0689106434583664, 0.14324951171875, 0.015957655385136604, -0.08872019499540329, -0.1723507195711136, 0.015552754513919353, 0.008737844415009022, 0.03368964046239853, 0.01909490115940571, -0.15800340473651886, 0.003172176191583276, 0.031472284346818924, -0.008178829215466976, 0.07270433753728867, -0.3079642355442047, -0.13213756680488586, 0.035396791994571686, 0.024285851046442986, -0.07233662903308868, -0.0398431122303009, -0.04548988118767738, -0.07988522946834564, -0.24188217520713806, 0.0955582857131958, -0.09561123698949814, 0.08727025985717773, 0.012735430151224136, 0.03329785540699959, 0.050264813005924225, -0.05897308886051178, 0.13587133586406708, -0.038246817886829376, 0.0652514323592186, -0.08927765488624573, -0.04882824420928955, 0.08822579681873322, -0.050430405884981155, 0.0741300880908966, 0.0010235406225547194, 0.06872051954269409, -0.08088868856430054, -0.06961063295602798, -0.0811990275979042, 0.019436607137322426, -0.06629310548305511, -0.09214990586042404, -0.08757957071065903, 0.11079394072294235, 0.1254306584596634, -0.027173900976777077, -0.08018606901168823, -0.0593612976372242, -0.04814187064766884, 0.10046219825744629, 0.1056351512670517, 0.10543548315763474, -0.07386811822652817, 0.004909740295261145, 0.012113627046346664, 0.03701057285070419, -0.1155618280172348, 0.047505781054496765, 0.08683811873197556, 0.0229814313352108, 0.11137323081493378, 0.02285665273666382, -0.18140290677547455, 0.03225139528512955, 0.027952134609222412, -0.12456917017698288, -0.10083931684494019, -0.032985296100378036, 0.004833243787288666, -0.0889119952917099, -0.04257664829492569, 0.14955444633960724, -0.031296730041503906, -0.03822201117873192, -0.0034787533804774284, 0.05757816880941391, -0.0432526096701622, 0.11621572077274323, 0.03203888610005379, 0.051147837191820145, -0.07290384918451309, 0.09144582599401474, 0.06443817913532257, 0.03213462233543396, 0.032318707555532455, 0.04066038876771927, -0.08046483993530273, -0.004461146425455809, -0.08927620947360992, 0.01609700545668602, -0.033531028777360916, -0.009164090268313885, -0.0037089979741722345, -0.05087432265281677, 0.031519271433353424, 0.1153063103556633, -0.008641389198601246, 0.11852487176656723, -0.02068900875747204, -0.008618539199233055, -0.13177062571048737, 0.0716484934091568, 0.05080199986696243, 0.015877682715654373, -0.09351012855768204, 0.15394476056098938, 0.02361859194934368, 0.08631470054388046, -0.04470011964440346, -0.046940285712480545, -0.08781426399946213, -0.011024725623428822, -0.16988115012645721, -0.023236867040395737, -0.09368958324193954, -0.04853547364473343, -0.020995454862713814, -0.04396798834204674, -0.025510085746645927, 0.05637364089488983, -0.027805419638752937, -0.06767173111438751, -0.05463492125272751, 0.05575814098119736, -0.1412234604358673, -0.0008981646387837827, 0.13019540905952454, -0.08198608458042145, 0.10754787921905518, 0.04842264577746391, -0.03731711208820343, 0.023488465696573257, -0.08168579638004303, 0.02525971457362175, -0.0399063341319561, 0.023290123790502548, 0.03545325994491577, -0.1312466859817505, 0.01770440861582756, -0.055181119590997696, -0.052461110055446625, 0.005747290328145027, 0.009968506172299385, -0.1182183176279068, -0.009823252446949482, 0.04694011062383652, 0.0076329209841787815, -0.07049164921045303, 0.07313564419746399, 0.07006514817476273, 0.03194155916571617, 0.06851307302713394, -0.017122287303209305, 0.09657100588083267, -0.17458932101726532, -0.033081408590078354, 0.0070548285730183125, 0.0016049867263063788, 0.11004189401865005, -0.0305620189756155, 0.05319910869002342, -0.018094247207045555, 0.18591509759426117, -0.004899406339973211, -0.023966597393155098, 0.03026467002928257, -0.03172137588262558, -0.00020970302284695208, 0.05585590749979019, 0.07802381366491318, -0.029118556529283524, -0.04086598381400108, -0.020590409636497498, -0.0034107270184904337, -0.07454914599657059, -0.03974490240216255, 0.11598347872495651, 0.09488052874803543, 0.15787695348262787, -0.031266216188669205, 0.07716108858585358, -0.014370125718414783, -0.0961998775601387, -0.021392039954662323, -0.01155214011669159, 0.016172317788004875, -0.06384064257144928, 0.08208061009645462, 0.1538785696029663, -0.15541337430477142, 0.1239871010184288, 0.018327008932828903, -0.05571901425719261, -0.09698957204818726, -0.19740153849124908, -0.02567831426858902, -0.002678381511941552, 0.03885120898485184, -0.12461433559656143, 0.06551001220941544, 0.053276777267456055, 0.029175763949751854, -0.060950398445129395, 0.09307066351175308, -0.055600184947252274, -0.12439694255590439, 0.02415354549884796, 0.03815710172057152, 0.014288108795881271, 0.033413827419281006, 0.05609586834907532, 0.03403168544173241, 0.02559598535299301, 0.06323564052581787, 0.032954830676317215, 0.035983748733997345, 0.033444806933403015, -0.02283371612429619, -0.055201124399900436, 0.025113841518759727, 0.002106261206790805, 0.05450943857431412, 0.13460732996463776, 0.059568583965301514, -0.015979589894413948, -0.04673093184828758, 0.2842937409877777, -0.03162707760930061, -0.044178467243909836, -0.16579851508140564, 0.150383859872818, 0.03503892943263054, -0.00739726098254323, 0.03006892092525959, -0.1385156512260437, 0.01997220143675804, 0.1636216938495636, 0.16973018646240234, -0.06436218321323395, 0.01270935870707035, -0.023445261642336845, 0.010894949547946453, 0.02841491810977459, 0.07962507009506226, 0.05699216201901436, 0.20604681968688965, -0.051128923892974854, 0.07452552020549774, -0.001844179816544056, -0.012069527991116047, -0.007257529534399509, 0.13231998682022095, -0.03708735853433609, 0.006765448022633791, -0.06992178410291672, 0.08259956538677216, -0.0640636682510376, -0.2740418016910553, 0.006764373742043972, -0.03926626220345497, -0.09254539757966995, 0.058717191219329834, -0.06132722273468971, -0.01588166505098343, 0.08210014551877975, 0.022518878802657127, -0.011809280142188072, 0.1093001663684845, 0.03828926756978035, -0.02566136233508587, -0.005163888446986675, 0.09421758353710175, -0.01629927009344101, 0.1999930441379547, -0.02117578685283661, 0.022669605910778046, 0.10035455971956253, 0.03681770712137222, -0.11412759125232697, -0.0025475267320871353, 0.03769366443157196, -0.07846235483884811, -0.006700051017105579, 0.187020406126976, 0.012894182465970516, 0.017701469361782074, 0.060220278799533844, -0.042413439601659775, 0.03892882913351059, -0.07622780650854111, 0.034813135862350464, -0.11764799058437347, 0.04900215193629265, -0.08953440934419632, 0.1438630223274231, 0.16794128715991974, -0.07250485569238663, 0.0268718209117651, -0.04921925812959671, -0.0018087561475113034, -0.019298074766993523, 0.056436747312545776, -0.02533312886953354, -0.1030682772397995, 0.01107234600931406, 0.034943513572216034, 0.015774590894579887, -0.1993897557258606, -0.07097113877534866, 0.04697149991989136, -0.06613864749670029, 0.0037472902331501245, 0.15089435875415802, 0.029475558549165726, 0.05033485218882561, -0.03235125541687012, -0.04022790864109993, -0.030633635818958282, 0.08849004656076431, -0.14294017851352692, -0.07364729791879654 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5a60c41c5543b9286bc6d645603c8df8.568x568x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cardi B</div> <a href="https://genius.com/artists/cardi-b"> <div style="text-align: center; font-size: 14px;">@cardi-b</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Cardi B. Dataset is available [here](https://huggingface.co/datasets/huggingartists/cardi-b). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/cardi-b") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2794795e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Cardi B's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1buiv5nf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1buiv5nf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/cardi-b') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/cardi-b") model = AutoModelWithLMHead.from_pretrained("huggingartists/cardi-b") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/cardi-b"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/cardi-b
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/cardi-b", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/cardi-b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cardi B</div> <a href="URL <div style="text-align: center; font-size: 14px;">@cardi-b</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Cardi B. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Cardi B's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Cardi B.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Cardi B's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/cardi-b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Cardi B.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Cardi B's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/cardi-b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Cardi B.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Cardi B's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02054952085018158, 0.15798881649971008, -0.003039068076759577, 0.046947646886110306, 0.09234123677015305, 0.013933672569692135, 0.08664453774690628, 0.11147003620862961, 0.008497299626469612, 0.07696571201086044, 0.07349985837936401, 0.029998239129781723, 0.075694739818573, 0.10038049519062042, 0.0735795646905899, -0.2447504848241806, 0.03760867193341255, -0.09097012877464294, 0.004648411646485329, 0.1154756024479866, 0.09799206256866455, -0.06254419684410095, 0.08316962420940399, 0.03701406717300415, -0.07555986940860748, 0.014069011434912682, 0.0035788188688457012, -0.06094810739159584, 0.08936750143766403, 0.058735691010951996, 0.047023970633745193, 0.029007386416196823, 0.07037803530693054, -0.1864030957221985, 0.02921096794307232, 0.12499833852052689, 0.03316785767674446, 0.07529512047767639, 0.050962772220373154, -0.08275048434734344, 0.13476936519145966, -0.012402853928506374, 0.10238523781299591, 0.052398450672626495, -0.12064240872859955, -0.16244040429592133, -0.1333216428756714, 0.09553097188472748, 0.08922111243009567, 0.08018569648265839, -0.028858840465545654, 0.048183806240558624, -0.029959339648485184, 0.04025072604417801, 0.22580190002918243, -0.23935343325138092, -0.01255072746425867, 0.08338645100593567, 0.05381761118769646, 0.031853239983320236, -0.08181571215391159, 0.01070814672857523, 0.040322959423065186, 0.020167676731944084, 0.053043730556964874, -0.01675468310713768, 0.19209909439086914, 0.03312145918607712, -0.10391101986169815, -0.08561023324728012, 0.10613388568162918, -0.02263130620121956, -0.07423939555883408, -0.13869637250900269, -0.0027951279189437628, -0.03395337983965874, 0.0384475514292717, 0.0014420818770304322, 0.0018652935978025198, 0.004238688386976719, -0.026678772643208504, -0.10341228544712067, -0.08496228605508804, -0.04054775834083557, -0.019644375890493393, 0.04974183440208435, 0.03607117757201195, 0.03769640997052193, -0.07138042896986008, 0.22708168625831604, -0.017732374370098114, -0.0937056913971901, -0.05161849409341812, -0.09526059776544571, -0.09517502784729004, -0.0495532751083374, 0.008301983587443829, 0.0016167366411536932, -0.04981698840856552, 0.15882229804992676, -0.02831256203353405, 0.03463474288582802, -0.01575247012078762, -0.004709431901574135, 0.151494100689888, 0.13608907163143158, -0.10909145325422287, -0.025093864649534225, 0.05510828644037247, -0.0004191306361462921, -0.07032784819602966, -0.05455412715673447, -0.012417932040989399, -0.006835055071860552, 0.03881625086069107, 0.08127395063638687, 0.057875897735357285, 0.05963628739118576, 0.009365275502204895, -0.06951060146093369, 0.08968210965394974, -0.13522782921791077, 0.016299765557050705, 0.0005013772170059383, -0.04987290874123573, 0.01641850918531418, 0.05285269767045975, 0.013685696758329868, -0.09898702800273895, 0.1134067252278328, -0.05996273458003998, -0.04919635131955147, -0.08582668751478195, -0.09318023175001144, -0.005061337724328041, -0.040964275598526, -0.04756104573607445, -0.07001671195030212, -0.17940466105937958, -0.036556847393512726, 0.03613896295428276, -0.053687866777181625, -0.030613742768764496, 0.031489260494709015, -0.013218672014772892, 0.014998354949057102, -0.016526667401194572, -0.028227757662534714, -0.028207480907440186, 0.034539103507995605, -0.06167718395590782, 0.03408459573984146, 0.06870593875646591, 0.04712488129734993, -0.10561319440603256, 0.0758250504732132, -0.1621810644865036, 0.11876082420349121, -0.020656714215874672, 0.003576375776901841, -0.10143531858921051, -0.08311779797077179, -0.015293410047888756, -0.03119621053338051, -0.0008513706270605326, 0.09298154711723328, -0.16422419250011444, -0.032865267246961594, 0.19964265823364258, -0.07135500013828278, -0.0768137201666832, 0.07163482159376144, -0.0806790143251419, 0.03474457189440727, 0.11497525125741959, 0.08004464209079742, 0.15770064294338226, -0.11416029930114746, -0.05713462829589844, -0.04782843962311745, -0.06985177844762802, 0.18744845688343048, 0.04830217361450195, -0.022730011492967606, 0.023114701732993126, 0.007346757221966982, -0.03326604515314102, -0.02532775141298771, -0.01718049868941307, -0.03972885385155678, -0.020200159400701523, -0.0033260686323046684, 0.0028268019668757915, -0.04365319386124611, -0.060986027121543884, -0.027213770896196365, -0.10551096498966217, 0.05483530834317207, 0.1019742414355278, -0.06721454858779907, 0.00819159671664238, -0.09719635546207428, 0.024154992774128914, -0.046265166252851486, 0.007544079329818487, -0.16869378089904785, -0.04056035354733467, 0.02671843022108078, -0.08130961656570435, 0.0834345892071724, 0.033221535384655, 0.04086460545659065, 0.06347152590751648, -0.019036678597331047, 0.0014387288829311728, -0.04262159392237663, -0.012984408996999264, -0.0242181234061718, -0.1559266746044159, -0.06023938208818436, -0.04547732695937157, 0.08932457119226456, -0.11452231556177139, 0.007334454916417599, 0.09237489849328995, 0.12579266726970673, 0.016499081626534462, -0.0651310384273529, 0.021743914112448692, -0.04915609955787659, -0.029978377744555473, -0.10285385698080063, -0.04438432306051254, 0.005128160119056702, -0.013993320986628532, 0.14988388121128082, -0.16580429673194885, -0.07564655691385269, 0.114694744348526, 0.11682964861392975, -0.09126012027263641, 0.04497610032558441, -0.07678238302469254, -0.015790367498993874, -0.044167641550302505, -0.051646821200847626, 0.2546478509902954, 0.033627524971961975, 0.09279047697782516, -0.10886254906654358, -0.09643140435218811, -0.0028974509332329035, -0.040811166167259216, -0.029717229306697845, 0.029800890013575554, 0.03436781093478203, -0.17119042575359344, 0.04548777639865875, -0.004667957779020071, 0.09807103127241135, 0.20734834671020508, 0.03969573602080345, -0.08332736045122147, -0.062239497900009155, -0.05945887044072151, -0.0010861490154638886, 0.0801902636885643, 0.006566888187080622, 0.031114261597394943, 0.04571866616606712, 0.0545533262193203, 0.041343893855810165, -0.12016597390174866, 0.011939501389861107, 0.07185110449790955, -0.04108285531401634, -0.05376807972788811, 0.009763621725142002, 0.026360658928751945, 0.08689577877521515, 0.09358743578195572, 0.13321557641029358, -0.055923935025930405, -0.0475485697388649, -0.139304056763649, 0.1301921308040619, -0.08989304304122925, -0.23963283002376556, -0.1371789127588272, -0.077915258705616, 0.018741101026535034, 0.01296413317322731, 0.029067732393741608, -0.05460885539650917, -0.04372938722372055, -0.0915537178516388, 0.08519280701875687, -0.05326175317168236, -0.02551957778632641, 0.006248622667044401, 0.018705522641539574, -0.015248868614435196, -0.11945656687021255, -0.03200986608862877, 0.03487483784556389, -0.0843520238995552, -0.004372766241431236, 0.02986845001578331, 0.03962736949324608, 0.1676248013973236, -0.01100899837911129, 0.010864119976758957, -0.020556557923555374, 0.26931488513946533, -0.11258648335933685, 0.07507684826850891, 0.1655893176794052, -0.015627559274435043, 0.06180131062865257, 0.07087209075689316, 0.006623394787311554, -0.058371201157569885, 0.06266002357006073, 0.07357893139123917, -0.07406400889158249, -0.2134789526462555, -0.03227590024471283, -0.009619859047234058, 0.02073904685676098, 0.11363694816827774, 0.044614579528570175, 0.052604980766773224, 0.010624516755342484, -0.09771814942359924, 0.04131781682372093, 0.025783685967326164, 0.10276421159505844, -0.065660260617733, -0.01033021043986082, 0.05075457692146301, -0.055783968418836594, 0.03206569328904152, 0.1321134716272354, 0.0513007752597332, 0.20284947752952576, -0.06333880871534348, 0.09983828663825989, 0.08040732890367508, 0.10781778395175934, 0.028025003150105476, 0.019980184733867645, -0.025733832269906998, 0.023148031905293465, 0.0011562133440747857, -0.08892686665058136, -0.008109651505947113, 0.03863580897450447, 0.03945951908826828, -0.010583697818219662, -0.04103159159421921, -0.07313220947980881, 0.04789172112941742, 0.22940956056118011, 0.018300600349903107, -0.17018920183181763, -0.0926380529999733, 0.05787638947367668, -0.06375332176685333, -0.06644890457391739, -0.020620213821530342, 0.05536239221692085, -0.2163260132074356, 0.0512605682015419, -0.03707576170563698, 0.10630986839532852, -0.12626227736473083, -0.003311416134238243, 0.08244841545820236, 0.04249546676874161, -0.06665338575839996, 0.09227736294269562, -0.16005875170230865, 0.06502717733383179, -0.0038936003111302853, 0.0726124495267868, -0.07132154703140259, 0.03111167997121811, 0.010545643046498299, 0.036988794803619385, 0.08443565666675568, 0.016853701323270798, 0.03297718986868858, -0.027896134182810783, -0.036848034709692, -0.004268120042979717, 0.07119092345237732, -0.11289209127426147, 0.12081328779459, -0.03420432657003403, 0.03066251240670681, -0.02785865031182766, -0.0855986624956131, -0.0796232596039772, -0.1494017392396927, 0.08746457099914551, -0.12305820733308792, -0.006398888770490885, -0.06874337792396545, -0.011711292900145054, 0.007959529757499695, 0.242770716547966, -0.08251909911632538, -0.07999487966299057, -0.1427684724330902, -0.008823295123875141, 0.13576379418373108, -0.07498151063919067, 0.012830494903028011, -0.02162700891494751, 0.1799393892288208, -0.00667254813015461, -0.1342267245054245, -0.0021595170255750418, -0.06420544534921646, -0.17702624201774597, -0.025697648525238037, 0.16492336988449097, 0.06463225930929184, 0.030924538150429726, 0.002597194630652666, -0.0000707033250364475, -0.05255711078643799, -0.16621693968772888, 0.03494342416524887, 0.14411409199237823, 0.002704263897612691, 0.02581596188247204, 0.036315735429525375, 0.02117578685283661, -0.11887497454881668, 0.015325014479458332, 0.04750137776136398, 0.17783521115779877, -0.07672208547592163, 0.18567012250423431, 0.026818323880434036, -0.08758122473955154, -0.16041401028633118, 0.025459876284003258, 0.012029547244310379, 0.023387432098388672, 0.0162692591547966, -0.1910891979932785, 0.033910252153873444, 0.03422195836901665, -0.00996908638626337, 0.06204745173454285, -0.3275259733200073, -0.14857251942157745, 0.006622843910008669, 0.018744291737675667, -0.105789914727211, -0.04150433465838432, -0.03870899975299835, -0.07828282564878464, -0.2646529972553253, 0.10230506956577301, -0.11184948682785034, 0.07920290529727936, 0.011109518818557262, 0.08602505922317505, 0.04132188856601715, -0.06007203459739685, 0.13031452894210815, -0.03154364600777626, 0.06570737063884735, -0.09448321908712387, -0.05852574110031128, 0.08974220603704453, -0.06624136120080948, 0.10555294901132584, 0.01941864937543869, 0.0855075791478157, -0.1216922253370285, -0.08080177754163742, -0.0778595358133316, 0.002802895614877343, -0.06087176501750946, -0.0993674248456955, -0.09708502143621445, 0.09046490490436554, 0.12273259460926056, -0.043384768068790436, -0.10174337029457092, -0.055723611265420914, -0.01050595287233591, 0.07809127122163773, 0.10812246054410934, 0.08726660907268524, -0.09001648426055908, 0.0016257618553936481, 0.013245112262666225, 0.020878024399280548, -0.17421269416809082, 0.04501262307167053, 0.08568738400936127, 0.03791522979736328, 0.11239490658044815, 0.010129092261195183, -0.16817492246627808, 0.004404779057949781, 0.04206256940960884, -0.16198669373989105, -0.11340812593698502, -0.03560514375567436, 0.013901053927838802, -0.09847560524940491, -0.04849729686975479, 0.12645652890205383, -0.029636193066835403, -0.03520658239722252, 0.0064899735152721405, 0.048472777009010315, -0.04522187262773514, 0.09127508848905563, 0.021280378103256226, 0.048641156405210495, -0.06910420209169388, 0.11760847270488739, 0.0686667412519455, 0.01644025929272175, 0.039815161377191544, 0.062349967658519745, -0.08724801242351532, 0.003191764233633876, -0.08277571201324463, 0.02744077891111374, -0.03697919473052025, -0.012837013229727745, 0.0095107676461339, -0.051601700484752655, 0.04333882033824921, 0.09398721903562546, -0.011620579287409782, 0.10717540234327316, -0.03497633337974548, 0.006307796575129032, -0.13483084738254547, 0.07808607816696167, 0.03402496501803398, 0.02454986236989498, -0.10948898643255234, 0.18687671422958374, 0.027959728613495827, 0.09310407936573029, -0.037206485867500305, -0.05875404551625252, -0.0698009580373764, -0.00647506071254611, -0.11162056028842926, -0.04457629472017288, -0.08018573373556137, -0.027590559795498848, -0.007331641856580973, -0.03558968007564545, -0.01462713722139597, 0.04358420893549919, -0.036658722907304764, -0.055490605533123016, -0.05962927266955376, 0.039762385189533234, -0.14249397814273834, 0.02507057413458824, 0.11809038370847702, -0.055953457951545715, 0.11840630322694778, 0.05409665405750275, -0.0313299261033535, 0.018270278349518776, -0.11305073648691177, 0.03611093387007713, -0.03106982447206974, 0.01711612567305565, 0.02488015405833721, -0.15110601484775543, 0.010192649438977242, -0.04876364767551422, -0.06972409784793854, 0.008463740348815918, 0.004493712913244963, -0.12930183112621307, 0.011800926178693771, 0.07293015718460083, -0.016361704096198082, -0.06900393962860107, 0.07223311066627502, 0.060000501573085785, 0.017343660816550255, 0.05424168333411217, -0.02385883405804634, 0.07750455290079117, -0.17103898525238037, -0.05258692428469658, 0.01230639312416315, 0.023591233417391777, 0.03756534308195114, -0.01072007603943348, 0.03354351222515106, -0.025835277512669563, 0.19954662024974823, 0.00979513581842184, -0.02540813572704792, 0.03574791178107262, -0.05625639110803604, -0.005279898177832365, 0.04885384440422058, 0.0735992044210434, -0.04508715867996216, -0.03666568174958229, -0.007582032587379217, -0.019736483693122864, -0.08835352212190628, -0.04522200673818588, 0.10580095648765564, 0.0577755868434906, 0.18421629071235657, -0.051727890968322754, 0.06775310635566711, -0.02592824213206768, -0.1243729218840599, -0.0031381400767713785, -0.05197397246956825, 0.036741938441991806, -0.06352328509092331, 0.0699848160147667, 0.17059682309627533, -0.16350482404232025, 0.12160295248031616, 0.021571852266788483, -0.05892907455563545, -0.10275038331747055, -0.18800340592861176, -0.017746584489941597, -0.03911302611231804, 0.0348387248814106, -0.1275756061077118, 0.09276241809129715, 0.02440791204571724, 0.037328239530324936, -0.06908021867275238, 0.1307278573513031, -0.07565253227949142, -0.10686280578374863, 0.03425009548664093, 0.02873074822127819, 0.024884911254048347, 0.049615465104579926, 0.07489174604415894, 0.027598902583122253, 0.007789915427565575, 0.07034365087747574, 0.04098103195428848, 0.02516995184123516, 0.02698942832648754, -0.01755613647401333, -0.048766523599624634, 0.03136652708053589, 0.001784282037988305, 0.02497849054634571, 0.09679584205150604, 0.05495883524417877, -0.015486586838960648, -0.03060254454612732, 0.28777599334716797, -0.03668858855962753, -0.03510875627398491, -0.17178355157375336, 0.16819137334823608, 0.006194912828505039, -0.006155109964311123, 0.030218955129384995, -0.12558281421661377, 0.005870410241186619, 0.14468206465244293, 0.16893599927425385, -0.03589887544512749, 0.01890839822590351, -0.025002440437674522, 0.015606848523020744, 0.03752399608492851, 0.09352417290210724, 0.06428388506174088, 0.19063252210617065, -0.040236134082078934, 0.04744143411517143, -0.004880242981016636, -0.022251514717936516, 0.0029693220276385546, 0.1138443872332573, -0.03158917278051376, 0.006394077092409134, -0.06224493682384491, 0.08860816806554794, -0.05055658519268036, -0.2731190025806427, -0.011088085360825062, -0.03032711148262024, -0.09205934405326843, 0.05902045592665672, -0.023808985948562622, -0.03353068605065346, 0.07767236232757568, 0.02335379272699356, -0.04389769211411476, 0.13696391880512238, 0.044772181659936905, -0.0523853600025177, -0.015686159953475, 0.0959591493010521, -0.029383668676018715, 0.19007450342178345, -0.022259443998336792, 0.00401059677824378, 0.08646463602781296, 0.014624195173382759, -0.11781629920005798, 0.01500545721501112, 0.04512113705277443, -0.07134290784597397, -0.027863143011927605, 0.20227497816085815, 0.013971774838864803, 0.03521572798490524, 0.06038035452365875, -0.06639230251312256, 0.02392476610839367, -0.05268966034054756, 0.04675113037228584, -0.14773181080818176, 0.06070786714553833, -0.08680172264575958, 0.13611598312854767, 0.18597783148288727, -0.06345627456903458, 0.0270604956895113, -0.06227206066250801, 0.010914163663983345, -0.021967701613903046, 0.0759091004729271, -0.019407590851187706, -0.1055145189166069, 0.014143225736916065, 0.026755278930068016, 0.02666403539478779, -0.1975395381450653, -0.07903850823640823, 0.0597543828189373, -0.050701554864645004, 0.019749470055103302, 0.17272211611270905, 0.03366508707404137, 0.07238005846738815, -0.03579665347933769, 0.006741760298609734, -0.01708676479756832, 0.11765633523464203, -0.15602192282676697, -0.07581824064254761 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3853f38429e3cd0278c2b5b6307b9e92.752x752x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chester Bennington</div> <a href="https://genius.com/artists/chester-bennington"> <div style="text-align: center; font-size: 14px;">@chester-bennington</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Chester Bennington. Dataset is available [here](https://huggingface.co/datasets/huggingartists/chester-bennington). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/chester-bennington") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3pq3bd6d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Chester Bennington's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1sxpshrc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1sxpshrc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/chester-bennington') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/chester-bennington") model = AutoModelWithLMHead.from_pretrained("huggingartists/chester-bennington") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/chester-bennington"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/chester-bennington
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/chester-bennington", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/chester-bennington #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chester Bennington</div> <a href="URL <div style="text-align: center; font-size: 14px;">@chester-bennington</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Chester Bennington. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Chester Bennington's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Chester Bennington.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Chester Bennington's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/chester-bennington #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Chester Bennington.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Chester Bennington's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/chester-bennington #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Chester Bennington.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Chester Bennington's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04052314534783363, 0.19120614230632782, -0.002865252085030079, 0.06958663463592529, 0.0954662337899208, 0.008029784075915813, 0.06475573033094406, 0.11159855127334595, 0.0337296761572361, 0.08210557699203491, 0.06602991372346878, 0.04037213325500488, 0.07655179500579834, 0.05564660578966141, 0.06187891215085983, -0.23364892601966858, 0.035212017595767975, -0.06740719825029373, 0.01849730871617794, 0.09446787089109421, 0.0803365558385849, -0.0845598503947258, 0.09134045988321304, 0.03921234980225563, -0.04796872287988663, -0.0003661918162833899, -0.007893086411058903, -0.051508042961359024, 0.0839456096291542, 0.0713607668876648, 0.038012608885765076, 0.045895472168922424, 0.06465036422014236, -0.1723896712064743, 0.026782747358083725, 0.1229732409119606, 0.03277144208550453, 0.09250079840421677, 0.07631158828735352, -0.08175919950008392, 0.10007942467927933, -0.03637918829917908, 0.08832737058401108, 0.05988766998052597, -0.10145170986652374, -0.07924491167068481, -0.1382966935634613, 0.061494167894124985, 0.07994794845581055, 0.07522030919790268, -0.026386188343167305, 0.09072435647249222, -0.0364399328827858, 0.04711127281188965, 0.2618884742259979, -0.2517145276069641, -0.00479119410738349, 0.06739934533834457, 0.06380655616521835, 0.02567858062684536, -0.09711567312479019, 0.022899841889739037, 0.04808313399553299, 0.029298432171344757, 0.04273315519094467, -0.0213607270270586, 0.14251406490802765, 0.013059623539447784, -0.10937653481960297, -0.07017796486616135, 0.07220427691936493, -0.006131273694336414, -0.088701032102108, -0.13113658130168915, -0.0011992254294455051, -0.01913471147418022, 0.028978895395994186, 0.016903290525078773, 0.0005275804433040321, -0.005586980376392603, -0.06405889987945557, -0.12184257805347443, -0.068525031208992, -0.04138604924082756, -0.013149394653737545, 0.052551042288541794, 0.04707217961549759, 0.03080211766064167, -0.06225047633051872, 0.22653619945049286, 0.014298638328909874, -0.10713731497526169, -0.07736176997423172, -0.11726338416337967, -0.0888885036110878, -0.052807241678237915, -0.004292111378163099, 0.01708628609776497, -0.023006774485111237, 0.14659270644187927, -0.003934978973120451, 0.032384298741817474, -0.0699462816119194, 0.002660803496837616, 0.12430024147033691, 0.13899417221546173, -0.1312146782875061, -0.046132251620292664, 0.06585154682397842, 0.00865390058606863, -0.06726950407028198, -0.053945671766996384, 0.00039501875289715827, -0.03516616299748421, 0.049739886075258255, 0.07186777889728546, 0.08516760170459747, 0.06657123565673828, 0.00677711796015501, -0.05070153623819351, 0.07748674601316452, -0.12780041992664337, 0.012279114685952663, -0.008088617585599422, -0.07469112426042557, 0.025183958932757378, 0.06667431443929672, 0.009063457138836384, -0.1059710681438446, 0.10014234483242035, -0.08562026917934418, -0.04676654934883118, -0.0757024735212326, -0.11468274891376495, 0.005600105505436659, -0.059724774211645126, -0.020341360941529274, -0.06945353001356125, -0.16016124188899994, -0.0332752950489521, 0.011632605455815792, -0.05782981589436531, -0.02622927539050579, 0.020625311881303787, -0.04056612029671669, 0.008030669763684273, -0.015209016390144825, 0.0014685711357742548, -0.016804704442620277, 0.030880911275744438, -0.0904574766755104, 0.04483755677938461, 0.07862360775470734, 0.03789575770497322, -0.12880778312683105, 0.07083272188901901, -0.15203657746315002, 0.12860548496246338, -0.040476568043231964, -0.007084986194968224, -0.0972595289349556, -0.0867609903216362, -0.026844099164009094, -0.04190896824002266, 0.029878385365009308, 0.1303698867559433, -0.15543749928474426, -0.015696311369538307, 0.1969233751296997, -0.06481001526117325, -0.0665372759103775, 0.08161415904760361, -0.07373856753110886, 0.010473438538610935, 0.11433407664299011, 0.0426446869969368, 0.15607336163520813, -0.11959926038980484, -0.09373701363801956, -0.026739776134490967, -0.0746879056096077, 0.18438440561294556, 0.025320669636130333, -0.023940855637192726, 0.046025216579437256, 0.009745714254677296, -0.035547707229852676, -0.002063508378341794, -0.038625385612249374, -0.024240044876933098, -0.021281762048602104, -0.015444171614944935, 0.01758376881480217, -0.046128131449222565, -0.04005061835050583, -0.002864784561097622, -0.11061082780361176, 0.04578704759478569, 0.08609195053577423, -0.07346998900175095, 0.028723763301968575, -0.09919630736112595, 0.04616159945726395, -0.057080406695604324, 0.005748216062784195, -0.18270042538642883, -0.04410729557275772, 0.025704193860292435, -0.09111801534891129, 0.06242480129003525, 0.02946481853723526, 0.038919415324926376, 0.07982955127954483, -0.018860097974538803, 0.007695430889725685, -0.027272816747426987, 0.003105634357780218, -0.0516783744096756, -0.17138831317424774, -0.06634270399808884, -0.04894649609923363, 0.08838329464197159, -0.1010206937789917, 0.009684018790721893, 0.0964265763759613, 0.15199632942676544, 0.030550794675946236, -0.05797214061021805, 0.03431089594960213, -0.032592758536338806, -0.03393305465579033, -0.10759251564741135, -0.04429522529244423, 0.006828559096902609, -0.03507119044661522, 0.1604224294424057, -0.13143354654312134, -0.1272261142730713, 0.13338275253772736, 0.10209459811449051, -0.07054193317890167, 0.025318874046206474, -0.06523400545120239, -0.026837535202503204, -0.048295699059963226, -0.0606752447783947, 0.23851042985916138, 0.05190088972449303, 0.09297001361846924, -0.08886965364217758, -0.07642211765050888, -0.004441191907972097, -0.024626340717077255, -0.04023852199316025, 0.03057318739593029, 0.02924608811736107, -0.17374663054943085, 0.03776760399341583, -0.019641460850834846, 0.08585994690656662, 0.16989682614803314, 0.0328829251229763, -0.10342323780059814, -0.04555237293243408, -0.07247474044561386, 0.0004827008524443954, 0.07395913451910019, 0.008819475769996643, 0.04744519665837288, 0.04174887016415596, 0.04271380230784416, 0.040485553443431854, -0.10184303671121597, 0.01991402730345726, 0.05762268975377083, -0.02545856311917305, -0.06529851257801056, 0.009775611571967602, 0.033626988530159, 0.08781518787145615, 0.06283720582723618, 0.09500046074390411, -0.046920038759708405, -0.05554147809743881, -0.12356086075305939, 0.12838247418403625, -0.08205471187829971, -0.17432838678359985, -0.1362181156873703, -0.09886497259140015, 0.013009716756641865, 0.0050888038240373135, 0.029844339936971664, -0.028921520337462425, -0.040270447731018066, -0.10989494621753693, 0.0662604346871376, -0.03871095925569534, -0.009600427933037281, 0.002599311526864767, 0.019802004098892212, -0.015624303370714188, -0.12383116781711578, -0.02100018784403801, 0.02014705166220665, -0.0711931511759758, -0.005143018905073404, 0.03959054872393608, 0.05522096902132034, 0.12484757602214813, -0.005473495926707983, 0.004069543909281492, -0.028887294232845306, 0.2619472146034241, -0.0958019345998764, 0.05820661038160324, 0.1445886641740799, -0.04556652158498764, 0.06505107134580612, 0.0572771355509758, 0.0016120967920869589, -0.04812197759747505, 0.05470690503716469, 0.06407677382230759, -0.06851610541343689, -0.2093665450811386, -0.019986674189567566, -0.025053005665540695, 0.01867697760462761, 0.11238294839859009, 0.023179151117801666, 0.042628269642591476, 0.014119993895292282, -0.09701092541217804, 0.04068419709801674, 0.043167658150196075, 0.09843796491622925, -0.04768260568380356, -0.008990555070340633, 0.05324988812208176, -0.04971080645918846, 0.036065541207790375, 0.10016025602817535, 0.02241232618689537, 0.24744568765163422, -0.08734162896871567, 0.07293079048395157, 0.07633062452077866, 0.09183871001005173, 0.027505768463015556, 0.05054716020822525, -0.02774227410554886, 0.027436230331659317, 0.004994386341422796, -0.08986254036426544, 0.008896784856915474, 0.033101558685302734, 0.04359162226319313, -0.00832809042185545, -0.0567920096218586, -0.052335578948259354, 0.03530171141028404, 0.21083250641822815, 0.051513418555259705, -0.1750635802745819, -0.07765688002109528, 0.06666485965251923, -0.03779051825404167, -0.05728160962462425, -0.016004472970962524, 0.06739344447851181, -0.20053903758525848, 0.034249838441610336, -0.03762240335345268, 0.11240880191326141, -0.13955584168434143, -0.007393172010779381, 0.039519354701042175, 0.04849020391702652, -0.07676874101161957, 0.06547252833843231, -0.15910187363624573, 0.07587267458438873, 0.010627441108226776, 0.07407957315444946, -0.07538571953773499, 0.024569071829319, 0.043577369302511215, 0.025408368557691574, 0.10790519416332245, 0.0009462902671657503, 0.017466887831687927, -0.06606990098953247, -0.07063543051481247, 0.0019042649073526263, 0.055399585515260696, -0.08264734596014023, 0.12847349047660828, -0.024548232555389404, 0.019431181252002716, -0.016433196142315865, -0.0454244501888752, -0.1251211166381836, -0.16106076538562775, 0.069198377430439, -0.1204449012875557, -0.009205808863043785, -0.0547005832195282, -0.04117901623249054, -0.007027353160083294, 0.19460566341876984, -0.09338744729757309, -0.07488348335027695, -0.12088275700807571, 0.031769365072250366, 0.1587297022342682, -0.07629702985286713, 0.018523816019296646, 0.006882517132908106, 0.15304668247699738, 0.0033886823803186417, -0.1285824179649353, -0.016137156635522842, -0.058247826993465424, -0.1784382164478302, -0.027550747618079185, 0.13364236056804657, 0.09454724192619324, 0.047452569007873535, 0.013615547679364681, 0.006041720975190401, -0.013768181204795837, -0.1574593037366867, 0.011068139225244522, 0.13507568836212158, 0.0298962090164423, 0.0285494327545166, 0.023365821689367294, 0.015464706346392632, -0.13538223505020142, 0.03792000561952591, 0.05941443517804146, 0.1980355679988861, -0.07885707914829254, 0.14647617936134338, 0.020542215555906296, -0.08774333447217941, -0.16145215928554535, 0.039305489510297775, -0.0004188146849628538, 0.031105050817131996, 0.03304872289299965, -0.1602468490600586, 0.02637101151049137, 0.015771038830280304, -0.004516454413533211, 0.058111175894737244, -0.3184588551521301, -0.14396505057811737, 0.045692574232816696, 0.017177913337945938, -0.07642248272895813, -0.025091268122196198, -0.04143207147717476, -0.06379010528326035, -0.27086129784584045, 0.08727262169122696, -0.10411980003118515, 0.07748682051897049, 0.013837423175573349, 0.030855482444167137, 0.05182718113064766, -0.06550831347703934, 0.13546061515808105, -0.011236506514251232, 0.06305139511823654, -0.08900293707847595, -0.033649954944849014, 0.08728956431150436, -0.058528151363134384, 0.08213546127080917, 0.015297185629606247, 0.07526088505983353, -0.0809943899512291, -0.06281225383281708, -0.07670190185308456, 0.020169882103800774, -0.05863461643457413, -0.09044186025857925, -0.08262121677398682, 0.09781935065984726, 0.12532030045986176, -0.027099991217255592, -0.10265806317329407, -0.050316158682107925, -0.03953857347369194, 0.10052347183227539, 0.12554451823234558, 0.0836021676659584, -0.0401567704975605, 0.02403244562447071, 0.004162584897130728, 0.026255805045366287, -0.12130414694547653, 0.04332858696579933, 0.09429408609867096, 0.03968730568885803, 0.08616434037685394, 0.01779613271355629, -0.16609102487564087, 0.025595298036932945, 0.02430751733481884, -0.15051446855068207, -0.09872042387723923, -0.032064054161310196, -0.03337417542934418, -0.09392914175987244, -0.057415883988142014, 0.13998821377754211, -0.031292982399463654, -0.03319087624549866, -0.0010136625496670604, 0.05167129635810852, -0.03795256465673447, 0.10588422417640686, 0.02775779739022255, 0.04399620369076729, -0.06617321074008942, 0.10602768510580063, 0.06877175718545914, -0.0022188504226505756, 0.01600148342549801, 0.029612325131893158, -0.09032758325338364, -0.002065530978143215, -0.0998770073056221, 0.012351621873676777, -0.02017303928732872, 0.0002891195472329855, -0.0006652917363680899, -0.039824094623327255, 0.029808860272169113, 0.107573501765728, -0.00491053331643343, 0.12436064332723618, -0.03535708039999008, -0.0059130508452653885, -0.1400635540485382, 0.08031471818685532, 0.05666891485452652, 0.025857629254460335, -0.0988844782114029, 0.17083323001861572, 0.018793420866131783, 0.08165945112705231, -0.04165806621313095, -0.04696018993854523, -0.06353756040334702, -0.016586430370807648, -0.14208732545375824, -0.038532353937625885, -0.08799336850643158, -0.039758387953042984, -0.02871195413172245, -0.04836396872997284, -0.027155371382832527, 0.05037982016801834, -0.026865024119615555, -0.06980644911527634, -0.04569968581199646, 0.06091342493891716, -0.15588076412677765, 0.006287530995905399, 0.129918172955513, -0.07718697935342789, 0.11747753620147705, 0.04522458463907242, -0.042864471673965454, 0.011671571061015129, -0.09623387455940247, 0.01643027737736702, -0.028429385274648666, 0.010531139560043812, 0.03187844902276993, -0.13631802797317505, 0.01152735110372305, -0.05867774039506912, -0.05963512510061264, 0.0036760747898370028, 0.013919677585363388, -0.1102660670876503, -0.009024322032928467, 0.07329913973808289, 0.013251093216240406, -0.06916485726833344, 0.0665816217660904, 0.09625783562660217, 0.0302012600004673, 0.06603439897298813, -0.01649295538663864, 0.08457224816083908, -0.17814356088638306, -0.04070433974266052, 0.011757617816329002, 0.011354521848261356, 0.09444065392017365, -0.014476126059889793, 0.05472548305988312, -0.0209062397480011, 0.19936583936214447, -0.011289247311651707, -0.022542426362633705, 0.04212135449051857, -0.009292096830904484, -0.012012590654194355, 0.056101299822330475, 0.06442426890134811, -0.044529255479574203, -0.03688908740878105, -0.01201533805578947, -0.008084842003881931, -0.06838306039571762, -0.03565780073404312, 0.1279008984565735, 0.06763412803411484, 0.17043964564800262, -0.034971144050359726, 0.07641041278839111, -0.018905384466052055, -0.11410500109195709, -0.02141004614531994, -0.021034255623817444, 0.03932671993970871, -0.061785660684108734, 0.08777307718992233, 0.14348876476287842, -0.14887703955173492, 0.10705126821994781, 0.016523519530892372, -0.06244915351271629, -0.10816369205713272, -0.18067924678325653, -0.017602454870939255, -0.011950608342885971, 0.04390956461429596, -0.11867576837539673, 0.08506044745445251, 0.0463847778737545, 0.03083503060042858, -0.0597078762948513, 0.11912014335393906, -0.05540063604712486, -0.10974521189928055, 0.03431972116231918, 0.02369922399520874, 0.00999648030847311, 0.036185573786497116, 0.05943850800395012, 0.030407879501581192, 0.024096006527543068, 0.04983263835310936, 0.022284401580691338, 0.04322237893939018, 0.042484983801841736, -0.02092192880809307, -0.0604846365749836, 0.016609566286206245, 0.004288299474865198, 0.04232898727059364, 0.12024419754743576, 0.06743939965963364, -0.006238212808966637, -0.044562362134456635, 0.2955210208892822, -0.03885411471128464, -0.02322913147509098, -0.16472017765045166, 0.1391577571630478, 0.04168406501412392, -0.012684550136327744, 0.03550265356898308, -0.1454164981842041, 0.023350898176431656, 0.13726727664470673, 0.17003369331359863, -0.06163332983851433, 0.01160783227533102, -0.0332142636179924, 0.00803107488900423, 0.039380110800266266, 0.06739003211259842, 0.06729402393102646, 0.16598711907863617, -0.04906577989459038, 0.05630382522940636, -0.006100844591856003, -0.009775717742741108, -0.006481542717665434, 0.13123612105846405, -0.03148799389600754, 0.0027270959690213203, -0.06856504827737808, 0.08473598957061768, -0.0689367726445198, -0.26647111773490906, -0.02458471991121769, -0.0450180321931839, -0.08470597118139267, 0.05420169234275818, -0.04604993760585785, -0.013956206850707531, 0.08484216034412384, 0.00947028398513794, -0.017294976860284805, 0.13793256878852844, 0.03022756427526474, -0.02699768915772438, -0.008445914834737778, 0.07444268465042114, -0.04596627876162529, 0.20955181121826172, -0.012526321224868298, 0.0096129160374403, 0.09628228098154068, 0.0364493802189827, -0.12767645716667175, -0.01595865748822689, 0.041918884962797165, -0.0767877921462059, -0.013230753131210804, 0.2030937373638153, 0.015422765165567398, 0.03107852302491665, 0.05604621022939682, -0.04505091533064842, 0.05054493248462677, -0.09041436016559601, 0.03743405267596245, -0.13272708654403687, 0.04291537404060364, -0.07424871623516083, 0.14552675187587738, 0.16174544394016266, -0.0667017251253128, 0.025060191750526428, -0.04073324054479599, -0.025913208723068237, -0.02280282787978649, 0.05545534938573837, -0.024576004594564438, -0.1018393486738205, 0.027836930006742477, 0.018565990030765533, 0.012073797173798084, -0.1946534663438797, -0.07881740480661392, 0.03926629200577736, -0.06829237937927246, 0.005991690792143345, 0.15238575637340546, 0.03763944283127785, 0.045282814651727676, -0.029118729755282402, -0.011593631468713284, -0.021192463114857674, 0.09946030378341675, -0.16292129456996918, -0.0791459009051323 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a6115c556163f271124bacf8a07db45d.499x499x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cocomelon</div> <a href="https://genius.com/artists/cocomelon"> <div style="text-align: center; font-size: 14px;">@cocomelon</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Cocomelon. Dataset is available [here](https://huggingface.co/datasets/huggingartists/cocomelon). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/cocomelon") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1avk18yc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Cocomelon's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3s0b2uix) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3s0b2uix/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/cocomelon') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/cocomelon") model = AutoModelWithLMHead.from_pretrained("huggingartists/cocomelon") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/cocomelon"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/cocomelon
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/cocomelon", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/cocomelon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cocomelon</div> <a href="URL <div style="text-align: center; font-size: 14px;">@cocomelon</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Cocomelon. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Cocomelon's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Cocomelon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Cocomelon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/cocomelon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Cocomelon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Cocomelon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/cocomelon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Cocomelon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Cocomelon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.016907963901758194, 0.16056731343269348, -0.0029012393206357956, 0.035649821162223816, 0.09230569750070572, 0.007423078175634146, 0.0837835967540741, 0.10003174096345901, -0.010484191589057446, 0.07418691366910934, 0.06717749685049057, 0.022451499477028847, 0.07342860847711563, 0.11165396124124527, 0.08065775036811829, -0.2519606649875641, 0.03204774856567383, -0.09511981904506683, 0.006008233409374952, 0.11509216576814651, 0.09720157831907272, -0.05944456160068512, 0.08990639448165894, 0.040096912533044815, -0.07963043451309204, 0.012473572045564651, -0.0016650623874738812, -0.06813240796327591, 0.08665600419044495, 0.06547009944915771, 0.03948505222797394, 0.02299368381500244, 0.06440835446119308, -0.18489210307598114, 0.029044996947050095, 0.12284225970506668, 0.03500630334019661, 0.0747561976313591, 0.045942507684230804, -0.08518759906291962, 0.1622573733329773, -0.01752433180809021, 0.09965535998344421, 0.04871495068073273, -0.12028607726097107, -0.13467621803283691, -0.13458764553070068, 0.08464217931032181, 0.0947856679558754, 0.08929569274187088, -0.028014617040753365, 0.047001034021377563, -0.025520028546452522, 0.043844547122716904, 0.22923225164413452, -0.23529848456382751, -0.0182271096855402, 0.092461496591568, 0.046281374990940094, 0.01925778202712536, -0.07744991034269333, 0.015694940462708473, 0.04564642533659935, 0.017109453678131104, 0.05047786980867386, -0.017748139798641205, 0.1878131777048111, 0.01788053847849369, -0.10092316567897797, -0.08643679320812225, 0.12140420824289322, -0.027556847780942917, -0.07389312237501144, -0.13615664839744568, -0.00021214078878983855, -0.02710287645459175, 0.0356428362429142, -0.0034312724601477385, -0.0013418084708973765, 0.009008001536130905, -0.03466560319066048, -0.10263627022504807, -0.08776162564754486, -0.02942543290555477, -0.030438631772994995, 0.07722591608762741, 0.02786671370267868, 0.03198523074388504, -0.07523547857999802, 0.23118112981319427, -0.009816468693315983, -0.0983344167470932, -0.047444820404052734, -0.09233984351158142, -0.09214071184396744, -0.056697871536016464, 0.009238732047379017, 0.013357036747038364, -0.053286194801330566, 0.1539575308561325, -0.02586902119219303, 0.02545626275241375, -0.00780390202999115, -0.01198753621429205, 0.14839930832386017, 0.14388065040111542, -0.09999828040599823, -0.030305709689855576, 0.0596526674926281, -0.017922570928931236, -0.0607697032392025, -0.0553838312625885, -0.01185142993927002, -0.014580726623535156, 0.035636208951473236, 0.08992280066013336, 0.06252489238977432, 0.0598718598484993, 0.009847409091889858, -0.06569141149520874, 0.10285776108503342, -0.13307932019233704, 0.015649914741516113, -0.0025131397414952517, -0.04218358173966408, 0.02192707732319832, 0.05087579786777496, 0.021166091784834862, -0.101224884390831, 0.10822886228561401, -0.06119959056377411, -0.048661716282367706, -0.0808391198515892, -0.08882665634155273, -0.001875304151326418, -0.019089283421635628, -0.04617055878043175, -0.07644720375537872, -0.16218894720077515, -0.047160618007183075, 0.028192618861794472, -0.047401536256074905, -0.045077092945575714, 0.02520895190536976, -0.026280730962753296, 0.012429041787981987, -0.011446728371083736, -0.0314999520778656, -0.02952471934258938, 0.02446671389043331, -0.06386590749025345, 0.02772928588092327, 0.08084021508693695, 0.04361669719219208, -0.11078746616840363, 0.07114240527153015, -0.16012609004974365, 0.1269218623638153, -0.013061944395303726, 0.027593886479735374, -0.10045865923166275, -0.08547110855579376, -0.021821128204464912, -0.035599298775196075, -0.009713334031403065, 0.10199325531721115, -0.17309971153736115, -0.03359207138419151, 0.1995481550693512, -0.072297602891922, -0.08128777891397476, 0.06772522628307343, -0.07579667121171951, 0.032805949449539185, 0.13050992786884308, 0.05706532672047615, 0.15599298477172852, -0.11829415708780289, -0.060741573572158813, -0.046942029148340225, -0.06378746032714844, 0.20038054883480072, 0.055045824497938156, -0.020767303183674812, 0.012850931845605373, 0.0043585337698459625, -0.039896320551633835, -0.0217545535415411, -0.017873773351311684, -0.03911181911826134, -0.011359816417098045, 0.011510882526636124, -0.005369835067540407, -0.042749155312776566, -0.06794973462820053, -0.027111532166600227, -0.10568957030773163, 0.03470012918114662, 0.10053505748510361, -0.0712318867444992, 0.007103338371962309, -0.09369805455207825, 0.011089115403592587, -0.03292045742273331, 0.007454039063304663, -0.16545481979846954, -0.06577777862548828, 0.026088546961545944, -0.052338551729917526, 0.08111391216516495, 0.034606240689754486, 0.032807402312755585, 0.059110868722200394, -0.008328457362949848, 0.015903715044260025, -0.04012656956911087, -0.018346823751926422, -0.021807249635457993, -0.1452271193265915, -0.05594457685947418, -0.04860047623515129, 0.10578924417495728, -0.1214226707816124, 0.007759155705571175, 0.10364130139350891, 0.1228373646736145, 0.02319927141070366, -0.06433581560850143, 0.023978227749466896, -0.04227650538086891, -0.03196996822953224, -0.11059007793664932, -0.05054997280240059, 0.014727149158716202, -0.024921735748648643, 0.1587917059659958, -0.17652647197246552, -0.08668646961450577, 0.10653021931648254, 0.12941472232341766, -0.09672567248344421, 0.02521291933953762, -0.08073341846466064, -0.01255565881729126, -0.05074700713157654, -0.0397004596889019, 0.26972633600234985, 0.03617414832115173, 0.08392209559679031, -0.10577719658613205, -0.10371958464384079, -0.00801735557615757, -0.043420106172561646, -0.03067794255912304, 0.02226041443645954, 0.021176092326641083, -0.16814149916172028, 0.034438926726579666, -0.008621645160019398, 0.10314590483903885, 0.1955460011959076, 0.047526583075523376, -0.08094054460525513, -0.061996106058359146, -0.07084684818983078, 0.0035266648046672344, 0.05144447460770607, 0.010031098499894142, 0.026723813265562057, 0.04245502129197121, 0.054580312222242355, 0.04100595787167549, -0.11834771186113358, 0.011901920661330223, 0.07659101486206055, -0.04116418585181236, -0.04709591716527939, 0.014981495216488838, 0.021109145134687424, 0.0777699202299118, 0.09039871394634247, 0.1345728635787964, -0.0638437569141388, -0.04948870837688446, -0.1428055316209793, 0.1382931023836136, -0.08591049164533615, -0.24931225180625916, -0.12837126851081848, -0.07769180089235306, 0.020482614636421204, 0.012557840906083584, 0.02940353937447071, -0.0480058416724205, -0.041651591658592224, -0.09407614171504974, 0.08623729646205902, -0.047710493206977844, -0.02170199528336525, 0.00917105469852686, 0.020076515153050423, -0.031587567180395126, -0.11339696496725082, -0.03251742199063301, 0.03761043772101402, -0.10830440372228622, -0.014032799750566483, 0.024226373061537743, 0.04169628769159317, 0.17418013513088226, -0.011114062741398811, 0.00399608863517642, -0.023637333884835243, 0.27978211641311646, -0.12129504978656769, 0.06781714409589767, 0.160630002617836, -0.007782371714711189, 0.05560402199625969, 0.07532230764627457, 0.003059899201616645, -0.06394436210393906, 0.07463455945253372, 0.0690169632434845, -0.07783108949661255, -0.21771486103534698, -0.037428393959999084, -0.010990400798618793, 0.012175997719168663, 0.12126811593770981, 0.04662196710705757, 0.049815379083156586, 0.012425112538039684, -0.10417599231004715, 0.04575485363602638, 0.029956625774502754, 0.10391033440828323, -0.06215726211667061, -0.00710149435326457, 0.04615912213921547, -0.05495651066303253, 0.02870127186179161, 0.13274817168712616, 0.046758923679590225, 0.1934400200843811, -0.06978239864110947, 0.09956060349941254, 0.07884994894266129, 0.09518638998270035, 0.024819549173116684, 0.015501328743994236, -0.01858285441994667, 0.016992593184113503, 0.00037663281545974314, -0.09240170568227768, -0.020714445039629936, 0.038243550807237625, 0.040399640798568726, -0.018596697598695755, -0.04691297560930252, -0.054209012538194656, 0.04579218849539757, 0.22835737466812134, 0.01090019941329956, -0.17716486752033234, -0.10208495706319809, 0.05500447005033493, -0.06492427736520767, -0.05893999710679054, -0.016415990889072418, 0.07230307906866074, -0.2209070920944214, 0.06509388238191605, -0.0279643964022398, 0.10883014649152756, -0.13183322548866272, -0.005660666152834892, 0.08506610989570618, 0.04082731902599335, -0.060242388397455215, 0.09680832177400589, -0.14985033869743347, 0.06246301531791687, -0.009914647787809372, 0.07123278081417084, -0.07338501513004303, 0.031174970790743828, 0.01025643665343523, 0.05869371071457863, 0.08214977383613586, 0.020288435742259026, 0.017607176676392555, -0.004221816081553698, -0.04995338246226311, 0.0029532653279602528, 0.051880475133657455, -0.12702572345733643, 0.12253083288669586, -0.03314616158604622, 0.02839413471519947, -0.03697822988033295, -0.0942065417766571, -0.08818060159683228, -0.1566532552242279, 0.08709856122732162, -0.1224980354309082, 0.007307819090783596, -0.07032351940870285, -0.020913001149892807, 0.025370683521032333, 0.2555055022239685, -0.05945643410086632, -0.07667206972837448, -0.1354156881570816, -0.000054623345931759104, 0.13250185549259186, -0.08075559139251709, 0.011608106084167957, -0.016555845737457275, 0.19946399331092834, 0.0019484200747683644, -0.12359727919101715, -0.008806568570435047, -0.06782836467027664, -0.17108653485774994, -0.013905178755521774, 0.16958238184452057, 0.06054423749446869, 0.034532543271780014, 0.011497598141431808, -0.0006688203429803252, -0.04936249926686287, -0.17349548637866974, 0.01955527439713478, 0.16349993646144867, 0.0006035081460140646, 0.02432810142636299, 0.04721471667289734, 0.01617678627371788, -0.12753978371620178, 0.021224386990070343, 0.06252219527959824, 0.1765318512916565, -0.0765937939286232, 0.17501023411750793, 0.013380007818341255, -0.09371212869882584, -0.15915025770664215, 0.022071203216910362, 0.018985426053404808, 0.034043025225400925, 0.020172880962491035, -0.1923898309469223, 0.040024347603321075, 0.03593869507312775, -0.0036789372097700834, 0.04922663792967796, -0.3381323218345642, -0.15015502274036407, -0.0016547006089240313, 0.0076060728169977665, -0.12054422497749329, -0.035297200083732605, -0.04104039445519447, -0.08422265201807022, -0.25758010149002075, 0.10339691489934921, -0.10876410454511642, 0.07528381049633026, 0.02214336395263672, 0.08667352795600891, 0.04539830982685089, -0.052214931696653366, 0.13104693591594696, -0.022661902010440826, 0.05767402425408363, -0.09860754758119583, -0.06534566730260849, 0.08272812515497208, -0.0654921755194664, 0.0993393138051033, 0.03777720406651497, 0.08768714219331741, -0.10016439110040665, -0.0806877389550209, -0.07703062891960144, 0.00849245861172676, -0.06058938801288605, -0.08930251002311707, -0.10088211297988892, 0.08757125586271286, 0.13106706738471985, -0.038866788148880005, -0.09597122669219971, -0.05795654281973839, -0.002847080584615469, 0.06113525480031967, 0.11832387745380402, 0.07772868871688843, -0.07082206010818481, 0.0028507369570434093, 0.019907640293240547, 0.015266423113644123, -0.16646169126033783, 0.04660110920667648, 0.08770168572664261, 0.03845136985182762, 0.10446496307849884, 0.008616580627858639, -0.16516780853271484, 0.0038661023136228323, 0.049905452877283096, -0.16496439278125763, -0.11004681140184402, -0.04879360646009445, 0.02449549175798893, -0.10385184735059738, -0.05379663407802582, 0.1326179951429367, -0.031563542783260345, -0.039563994854688644, 0.0036898471880704165, 0.04376193508505821, -0.045808568596839905, 0.08753599971532822, 0.005079828202724457, 0.0425398051738739, -0.06941891461610794, 0.11285050213336945, 0.07285621762275696, 0.014523479156196117, 0.031154830008745193, 0.06712331622838974, -0.09109226614236832, 0.007764983922243118, -0.08849325031042099, 0.014772435650229454, -0.03437931835651398, -0.010927184484899044, 0.014231346547603607, -0.04246881604194641, 0.040032241493463516, 0.08124564588069916, -0.00982141587883234, 0.11872915923595428, -0.03988519683480263, 0.008044222369790077, -0.12911400198936462, 0.06846121698617935, 0.03765507787466049, 0.020736420527100563, -0.1148308739066124, 0.20369954407215118, 0.029903147369623184, 0.09757037460803986, -0.035294175148010254, -0.06441432237625122, -0.058587223291397095, -0.010606631636619568, -0.07750871032476425, -0.0394652858376503, -0.09790179133415222, -0.02391223981976509, -0.0067510707303881645, -0.03334254026412964, -0.025003226473927498, 0.04292593523859978, -0.03405171260237694, -0.05732152238488197, -0.075107142329216, 0.04738322272896767, -0.1328549087047577, 0.0338895358145237, 0.1230427548289299, -0.05689117684960365, 0.12100445479154587, 0.04900164529681206, -0.031164705753326416, 0.018096210435032845, -0.12275703996419907, 0.036938488483428955, -0.012777562253177166, 0.014497783966362476, 0.02540634758770466, -0.1664019078016281, 0.006110537797212601, -0.04037529230117798, -0.06618724763393402, 0.00476165022701025, 0.002159250434488058, -0.1321253627538681, -0.00769973685964942, 0.08563750982284546, -0.023862794041633606, -0.07177022099494934, 0.07007897645235062, 0.05650506168603897, 0.01579214446246624, 0.06003565713763237, -0.020356187596917152, 0.07786426693201065, -0.163796067237854, -0.05329851061105728, 0.004003210458904505, 0.028238331899046898, 0.037420108914375305, -0.010166904889047146, 0.03859858214855194, -0.0130861671641469, 0.19618090987205505, 0.01681194081902504, -0.017551131546497345, 0.033332034945487976, -0.056179217994213104, 0.007648528553545475, 0.04657319560647011, 0.07663297653198242, -0.03308219090104103, -0.035557933151721954, 0.006507106125354767, -0.019968301057815552, -0.08665340393781662, -0.043953586369752884, 0.11692539602518082, 0.029274415224790573, 0.20324388146400452, -0.046543627977371216, 0.06515312194824219, -0.014389663934707642, -0.12092229723930359, -0.01797468401491642, -0.04571981728076935, 0.03807905316352844, -0.06169051676988602, 0.04510313645005226, 0.17685279250144958, -0.16477249562740326, 0.11458723992109299, 0.02729780413210392, -0.060642194002866745, -0.1136276051402092, -0.19366972148418427, -0.017950890585780144, -0.04075939953327179, 0.026894457638263702, -0.1407429724931717, 0.08699975162744522, 0.02278471365571022, 0.03184690698981285, -0.0677393302321434, 0.1375739574432373, -0.08676395565271378, -0.12487585842609406, 0.036832544952631, 0.024242784827947617, 0.03383176773786545, 0.04180143401026726, 0.08250424265861511, 0.021236035972833633, 0.01835470087826252, 0.07548752427101135, 0.04307621344923973, 0.03503353148698807, 0.039603713899850845, -0.025497017428278923, -0.047361988574266434, 0.02919711545109749, -0.0031653940677642822, 0.030519424006342888, 0.09230577945709229, 0.06439050287008286, -0.01518773939460516, -0.019773337990045547, 0.29967203736305237, -0.03615407273173332, -0.039671674370765686, -0.18626753985881805, 0.1538909524679184, 0.009093383327126503, -0.007310100831091404, 0.027390675619244576, -0.1204126626253128, 0.008326271548867226, 0.1351252645254135, 0.16505250334739685, -0.02568383887410164, 0.02189507894217968, -0.029804082587361336, 0.017405860126018524, 0.036403439939022064, 0.09551269561052322, 0.06281141191720963, 0.1899016946554184, -0.03730205073952675, 0.04062677547335625, -0.008183933794498444, -0.019926782697439194, -0.003557566786184907, 0.08767852932214737, -0.038598768413066864, 0.007405917625874281, -0.052066754549741745, 0.10658129304647446, -0.0515887551009655, -0.26722854375839233, -0.028556089848279953, -0.030175955966114998, -0.09433884173631668, 0.06389261782169342, -0.03242109343409538, -0.020809676498174667, 0.09284334629774094, 0.029349472373723984, -0.05142395198345184, 0.15491259098052979, 0.049440719187259674, -0.04956571385264397, -0.008683150634169579, 0.10119181126356125, -0.01675608567893505, 0.1898690015077591, -0.028503229841589928, 0.005080929957330227, 0.08434707671403885, 0.015101584605872631, -0.1283637285232544, 0.0026153577491641045, 0.04243548959493637, -0.058267656713724136, -0.01818864978849888, 0.19180333614349365, 0.01038571447134018, 0.03146633133292198, 0.07017181068658829, -0.06439860910177231, 0.028162818402051926, -0.05803783982992172, 0.06664679944515228, -0.14720112085342407, 0.06218133866786957, -0.08770371228456497, 0.1327073574066162, 0.18979506194591522, -0.06595614552497864, 0.026035446673631668, -0.05434676632285118, 0.0027908803895115852, -0.027690347284078598, 0.07857006788253784, -0.02363930270075798, -0.10840410739183426, 0.006839737296104431, 0.035038210451602936, 0.02696150355041027, -0.17051178216934204, -0.07198455929756165, 0.06421175599098206, -0.052774809300899506, 0.020079905167222023, 0.17560578882694244, 0.015168702229857445, 0.058772847056388855, -0.03831521049141884, -0.013455948792397976, -0.013342143967747688, 0.11609112471342087, -0.16561736166477203, -0.08414328098297119 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6cfcc2b1425286fe0d0b8c857c895b63.600x338x200.gif&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Coldplay</div> <a href="https://genius.com/artists/coldplay"> <div style="text-align: center; font-size: 14px;">@coldplay</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Coldplay. Dataset is available [here](https://huggingface.co/datasets/huggingartists/coldplay). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/coldplay") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/34tqcy7u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Coldplay's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/23h7o09h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/23h7o09h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/coldplay') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/coldplay") model = AutoModelWithLMHead.from_pretrained("huggingartists/coldplay") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/coldplay"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/coldplay
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/coldplay", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/coldplay #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Coldplay</div> <a href="URL <div style="text-align: center; font-size: 14px;">@coldplay</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Coldplay. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Coldplay's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Coldplay.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Coldplay's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/coldplay #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Coldplay.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Coldplay's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/coldplay #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Coldplay.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Coldplay's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03068270906805992, 0.14548414945602417, -0.002379813464358449, 0.04900779575109482, 0.08531766384840012, -0.0018167626112699509, 0.08770763874053955, 0.09823529422283173, -0.0008748131804168224, 0.07265589386224747, 0.07770558446645737, 0.00747994240373373, 0.06500748544931412, 0.12223746627569199, 0.0928865298628807, -0.27378737926483154, 0.026923255994915962, -0.10677175968885422, 0.01325264386832714, 0.12129698693752289, 0.08550619333982468, -0.04424095153808594, 0.07745501399040222, 0.041575539857149124, -0.06334032118320465, 0.015570854768157005, -0.010723519138991833, -0.06452106684446335, 0.0949363186955452, 0.07081329077482224, 0.018747515976428986, 0.025561152026057243, 0.05926993116736412, -0.20085816085338593, 0.03444645553827286, 0.12123502045869827, 0.024794885888695717, 0.0669911578297615, 0.05196565389633179, -0.07963594049215317, 0.18115197122097015, -0.028770847246050835, 0.0997239276766777, 0.054696228355169296, -0.10978782176971436, -0.16588550806045532, -0.11297913640737534, 0.08902912586927414, 0.09003626555204391, 0.08887874335050583, -0.03381958603858948, 0.04528728872537613, -0.013469207100570202, 0.05771327391266823, 0.23752781748771667, -0.25280579924583435, -0.016728602349758148, 0.08612832427024841, 0.04510873556137085, 0.04264022409915924, -0.07724719494581223, 0.023207414895296097, 0.047747429460287094, 0.02216549590229988, 0.042839813977479935, -0.006004765164107084, 0.20803020894527435, 0.020572945475578308, -0.09963009506464005, -0.07367642223834991, 0.10025502741336823, -0.033422648906707764, -0.07951904833316803, -0.1538107842206955, 0.011683434247970581, -0.04616748169064522, 0.03695528954267502, -0.005404552910476923, -0.002309448318555951, 0.004553693812340498, -0.04431509971618652, -0.09704712778329849, -0.08664712309837341, -0.030278543010354042, -0.012016893364489079, 0.09380560368299484, 0.016382258385419846, 0.03546341136097908, -0.08046725392341614, 0.228570356965065, -0.010603484697639942, -0.10356573015451431, -0.06381562352180481, -0.09049787372350693, -0.10567663609981537, -0.06459827721118927, -0.003229099791496992, 0.021444246172904968, -0.06257902085781097, 0.18583732843399048, -0.01832425408065319, 0.03865917772054672, 0.00974476058036089, -0.023927683010697365, 0.15573325753211975, 0.12776513397693634, -0.09328094869852066, -0.04418477043509483, 0.04566609859466553, -0.01969144307076931, -0.05655648186802864, -0.06191127002239227, -0.017207853496074677, -0.031268130987882614, 0.036728840321302414, 0.09330829977989197, 0.0483168326318264, 0.052441004663705826, 0.015376417897641659, -0.05040254816412926, 0.11274923384189606, -0.14126715064048767, 0.015193655155599117, -0.004992158617824316, -0.0339883454144001, 0.029168814420700073, 0.0420372299849987, 0.022061429917812347, -0.09570378065109253, 0.12582504749298096, -0.04987380653619766, -0.04915938898921013, -0.06413416564464569, -0.07615718245506287, 0.004827167373150587, -0.02620423585176468, -0.04004522040486336, -0.07355020940303802, -0.15695062279701233, -0.040752459317445755, 0.030835498124361038, -0.04503854364156723, -0.041709911078214645, 0.027552196756005287, -0.03813665732741356, 0.01075846515595913, -0.010257384739816189, -0.018166374415159225, -0.037748172879219055, 0.018729204311966896, -0.07617633044719696, 0.03889186307787895, 0.07384877651929855, 0.03186358883976936, -0.11373190581798553, 0.06727857887744904, -0.16433408856391907, 0.146932452917099, -0.017067572101950645, 0.011630095541477203, -0.09448006004095078, -0.09362408518791199, -0.028543181717395782, -0.029448987916111946, -0.0049225687980651855, 0.1073841080069542, -0.20528990030288696, -0.03788986802101135, 0.19337888062000275, -0.08384032547473907, -0.08467182517051697, 0.07741880416870117, -0.07202160358428955, 0.025825433433055878, 0.13964100182056427, 0.06533216685056686, 0.15151770412921906, -0.12017277628183365, -0.06752743571996689, -0.03946876898407936, -0.06957222521305084, 0.21219082176685333, 0.05754971504211426, -0.006277184467762709, 0.03284900635480881, 0.007856080308556557, -0.025513488799333572, -0.024433661252260208, -0.016927216202020645, -0.0403454527258873, -0.012249782681465149, 0.01077039260417223, -0.013032925315201283, -0.04934578388929367, -0.07549624890089035, -0.03166944906115532, -0.10830044746398926, 0.0314929224550724, 0.09019316732883453, -0.06027185916900635, 0.015895748510956764, -0.08619125932455063, -0.0029325459618121386, -0.01750747673213482, 0.010856997221708298, -0.19547145068645477, -0.06817558407783508, 0.014239293523132801, -0.0643775686621666, 0.08887430280447006, 0.0185790304094553, 0.04782996326684952, 0.06694754958152771, -0.010054336860775948, 0.022384675219655037, -0.05002494528889656, -0.02014426700770855, -0.03565067797899246, -0.15734201669692993, -0.07366348057985306, -0.05221881717443466, 0.09605834633111954, -0.11906157433986664, 0.001224172068759799, 0.11149419844150543, 0.12448372691869736, 0.025060178712010384, -0.06601858139038086, 0.009679247625172138, -0.036518219858407974, -0.028502875939011574, -0.11223745346069336, -0.05560589209198952, 0.01529099140316248, -0.048065245151519775, 0.1622828096151352, -0.1701592355966568, -0.08138202130794525, 0.09851831197738647, 0.1641875058412552, -0.10583784431219101, 0.009903071448206902, -0.08227212727069855, -0.012937711551785469, -0.04750346764922142, -0.029170500114560127, 0.2811426818370819, 0.04380066692829132, 0.06844799220561981, -0.10843943804502487, -0.10146652162075043, -0.002720743417739868, -0.04346911981701851, -0.024767689406871796, 0.025962039828300476, 0.010800126008689404, -0.1885978728532791, 0.028697725385427475, -0.016230493783950806, 0.10619480907917023, 0.2314307540655136, 0.04639151319861412, -0.09462320804595947, -0.05399373173713684, -0.08583161234855652, 0.003070743987336755, 0.05861982703208923, 0.0363578237593174, 0.03547366335988045, 0.038864169269800186, 0.0459110364317894, 0.036969684064388275, -0.1126289963722229, 0.008944682776927948, 0.08421473950147629, -0.04014715552330017, -0.06375998258590698, 0.01971839740872383, 0.0105673186480999, 0.07820778340101242, 0.08813600242137909, 0.14098575711250305, -0.0604875274002552, -0.046653345227241516, -0.1480429321527481, 0.1389433592557907, -0.08545789867639542, -0.23789982497692108, -0.14070793986320496, -0.0612424872815609, 0.025792507454752922, 0.0058641559444367886, 0.038362085819244385, -0.06449755281209946, -0.04331210255622864, -0.10096658766269684, 0.08704106509685516, -0.05085871368646622, -0.017673445865511894, -0.0009274767362512648, 0.020849063992500305, -0.03966272622346878, -0.10214969515800476, -0.027423635125160217, 0.04002959653735161, -0.0879119262099266, -0.017681153491139412, 0.03157632052898407, 0.03385421633720398, 0.15599188208580017, -0.004537396132946014, -0.0015771730104461312, -0.027367450296878815, 0.28324809670448303, -0.12150686979293823, 0.07737953215837479, 0.14872349798679352, -0.03218274936079979, 0.057514507323503494, 0.06516142189502716, 0.00701843062415719, -0.064180888235569, 0.07455963641405106, 0.07033196091651917, -0.09349056333303452, -0.21811741590499878, -0.03426177427172661, -0.010738045908510685, 0.030278703197836876, 0.12954165041446686, 0.052991416305303574, 0.05487550050020218, 0.0010281329741701484, -0.10628599673509598, 0.0253506600856781, 0.03402196243405342, 0.1048702672123909, -0.07465067505836487, -0.0008908594027161598, 0.04557059332728386, -0.05985404551029205, 0.04110728204250336, 0.13814865052700043, 0.034098125994205475, 0.18733210861682892, -0.06483717262744904, 0.10196994990110397, 0.06693081557750702, 0.09251552075147629, 0.0392012745141983, 0.03139941394329071, 0.0018482349114492536, 0.011811435222625732, 0.009714658372104168, -0.09805388003587723, -0.01983926258981228, 0.04742290824651718, 0.02875414304435253, -0.038359228521585464, -0.03259415179491043, -0.027683112770318985, 0.03697677329182625, 0.2499462217092514, -0.015766164287924767, -0.17739449441432953, -0.11609736829996109, 0.03680368512868881, -0.0734841525554657, -0.06284260749816895, -0.015452040359377861, 0.07313508540391922, -0.2174900770187378, 0.07947240769863129, -0.03154982253909111, 0.10589195042848587, -0.10277020186185837, -0.004940912127494812, 0.10373484343290329, 0.04594723507761955, -0.0687524750828743, 0.08982722461223602, -0.15529672801494598, 0.04298953711986542, -0.00817905180156231, 0.07891958951950073, -0.08553758263587952, 0.025971077382564545, 0.004034674726426601, 0.052828844636678696, 0.08337655663490295, 0.016894973814487457, 0.022085269913077354, 0.009099304676055908, -0.0489291287958622, 0.004034440498799086, 0.07081291079521179, -0.12316557765007019, 0.1203097552061081, -0.025448264554142952, 0.036916956305503845, -0.0411827377974987, -0.1086665540933609, -0.0806412324309349, -0.17595674097537994, 0.0817478597164154, -0.12604349851608276, 0.015253636986017227, -0.06563085317611694, -0.036676809191703796, 0.021875586360692978, 0.2507488429546356, -0.04294119402766228, -0.08559535443782806, -0.14222674071788788, 0.005887426435947418, 0.14544211328029633, -0.07961603999137878, 0.021166712045669556, -0.014839944429695606, 0.21039970219135284, -0.009914894588291645, -0.1270686239004135, -0.010396729223430157, -0.064806267619133, -0.17670655250549316, 0.0029502185061573982, 0.17423619329929352, 0.0744238793849945, 0.02895793691277504, 0.005141109228134155, 0.004471748135983944, -0.04243187978863716, -0.17201046645641327, 0.018887532874941826, 0.1431010514497757, -0.02043595165014267, 0.003749963128939271, 0.05629952996969223, 0.03334381431341171, -0.12501169741153717, 0.018915096297860146, 0.05584988370537758, 0.18081213533878326, -0.08428050577640533, 0.19362682104110718, 0.018785465508699417, -0.07658610492944717, -0.1590387523174286, 0.009780481457710266, 0.03817760944366455, 0.03984513878822327, 0.047381218522787094, -0.21393543481826782, 0.055346276611089706, 0.03610697016119957, 0.0029057320207357407, 0.06766103953123093, -0.3055136203765869, -0.15658186376094818, -0.015515527687966824, 0.0019765354227274656, -0.13589923083782196, -0.03244055435061455, -0.031421538442373276, -0.08483658730983734, -0.2454507201910019, 0.10143551230430603, -0.11566118150949478, 0.07710433006286621, 0.029784144833683968, 0.09066711366176605, 0.0493488572537899, -0.05133538320660591, 0.12968869507312775, -0.011715685948729515, 0.06077781319618225, -0.09378105401992798, -0.04124484956264496, 0.07038866728544235, -0.07308695465326309, 0.09312181174755096, 0.010192922316491604, 0.07952573895454407, -0.08790276944637299, -0.09034761041402817, -0.06274835020303726, -0.0008295854204334319, -0.05984432250261307, -0.08670549094676971, -0.08958153426647186, 0.08634353429079056, 0.12056286633014679, -0.048825155943632126, -0.08553531020879745, -0.07163859903812408, -0.0025334227830171585, 0.04905225709080696, 0.13927476108074188, 0.07652496546506882, -0.07298500090837479, 0.002794763073325157, 0.012280561029911041, 0.014756235294044018, -0.16877564787864685, 0.04992835223674774, 0.09180578589439392, 0.04960526153445244, 0.09027109295129776, 0.01004519872367382, -0.16438652575016022, -0.003014341229572892, 0.04675217345356941, -0.16863161325454712, -0.11799005419015884, -0.04315650090575218, 0.01385215949267149, -0.09715186059474945, -0.05122124403715134, 0.1308199167251587, -0.03781793639063835, -0.035428486764431, 0.0025941976346075535, 0.04392559453845024, -0.04652106389403343, 0.08239488303661346, -0.005122557748109102, 0.04351452365517616, -0.07933804392814636, 0.12235197424888611, 0.047236911952495575, 0.011449490673840046, 0.04526747763156891, 0.0753825306892395, -0.09900017082691193, 0.013564927503466606, -0.08938464522361755, 0.0012160901678726077, -0.04131694510579109, -0.019633125513792038, 0.02725110948085785, -0.04095308855175972, 0.04889337718486786, 0.09411405026912689, -0.013927776366472244, 0.10789802670478821, -0.05061568319797516, 0.015013210475444794, -0.12552040815353394, 0.07171338051557541, 0.03477535396814346, 0.016971461474895477, -0.1072297915816307, 0.20114538073539734, 0.030148271471261978, 0.08756198734045029, -0.03737137094140053, -0.057312119752168655, -0.04838123917579651, -0.012351064942777157, -0.0811038538813591, -0.042252086102962494, -0.09311755001544952, -0.01690923050045967, -0.00732558174058795, -0.026333283632993698, -0.022801799699664116, 0.050124991685152054, -0.03351176902651787, -0.06202167645096779, -0.08057514578104019, 0.03002227656543255, -0.141050785779953, 0.0428149439394474, 0.11206135898828506, -0.06089785695075989, 0.12594056129455566, 0.06351131200790405, -0.03636274114251137, 0.025612598285079002, -0.12511122226715088, 0.05216740071773529, -0.011051302775740623, 0.013929982669651508, 0.017494292929768562, -0.13752439618110657, -0.006854975130409002, -0.042059481143951416, -0.06913426518440247, 0.009938562288880348, -0.020198719576001167, -0.12669998407363892, 0.004116805270314217, 0.09713608026504517, -0.012960441410541534, -0.07147771120071411, 0.06387601792812347, 0.06330668181180954, 0.026237210258841515, 0.06850006431341171, -0.013382554054260254, 0.07792332768440247, -0.1629224270582199, -0.05688934773206711, 0.006624437868595123, 0.04146791622042656, 0.03582443296909332, -0.015920370817184448, 0.03859476372599602, -0.018967190757393837, 0.2009197473526001, 0.006764761172235012, -0.014151283539831638, 0.038333434611558914, -0.05584163963794708, 0.0032943899277597666, 0.04528980329632759, 0.09034683555364609, -0.024253835901618004, -0.03387129306793213, 0.00728494580835104, -0.020555853843688965, -0.09868204593658447, -0.03739531710743904, 0.11826950311660767, 0.012880067341029644, 0.18904460966587067, -0.04436152055859566, 0.06056399643421173, -0.018569467589259148, -0.11244498193264008, -0.02824484184384346, -0.046312183141708374, 0.025230204686522484, -0.05143500119447708, 0.06717929989099503, 0.18835633993148804, -0.1565174013376236, 0.11294261366128922, 0.041710495948791504, -0.06034966558218002, -0.12140379101037979, -0.1950843334197998, -0.011533763259649277, -0.032974131405353546, 0.029796140268445015, -0.13859128952026367, 0.10087922215461731, 0.017831556499004364, 0.04386430233716965, -0.05148874595761299, 0.14377467334270477, -0.09663835912942886, -0.13053953647613525, 0.04784286394715309, 0.016105443239212036, 0.030275335535407066, 0.057781290262937546, 0.07271408289670944, 0.033035628497600555, -0.007383034564554691, 0.0655931755900383, 0.035965681076049805, 0.03136511519551277, 0.034833747893571854, -0.024300765246152878, -0.04103478416800499, 0.03527398407459259, -0.0023024403490126133, 0.02756035141646862, 0.09855897724628448, 0.06678421050310135, -0.01700534112751484, -0.019414391368627548, 0.301655113697052, -0.024918701499700546, -0.04517127200961113, -0.1910458654165268, 0.1570865958929062, -0.0004941358929499984, -0.005222019739449024, 0.016836337745189667, -0.11933601647615433, 0.018119577318429947, 0.10732518136501312, 0.14501363039016724, -0.02205241471529007, 0.02481754869222641, -0.038919754326343536, 0.018483644351363182, 0.04201924800872803, 0.09905918687582016, 0.05596046894788742, 0.18273235857486725, -0.03410854563117027, 0.05363598093390465, -0.028638852760195732, -0.02716870978474617, 0.00853833369910717, 0.09794190526008606, -0.040253717452287674, -0.002090712310746312, -0.053997952491045, 0.11460848897695541, -0.07183408737182617, -0.2859971821308136, -0.030895743519067764, -0.008891710080206394, -0.0932442918419838, 0.06681749224662781, -0.03384013473987579, -0.017342550680041313, 0.09290234744548798, 0.04361886531114578, -0.052173979580402374, 0.14329589903354645, 0.05554801598191261, -0.05235413834452629, 0.0014600332360714674, 0.09702146798372269, -0.0289546400308609, 0.15275095403194427, -0.02703309804201126, 0.017229584977030754, 0.07689803838729858, 0.025448670610785484, -0.1269868016242981, -0.00225249701179564, 0.040955718606710434, -0.07566814869642258, -0.028796998783946037, 0.20069582760334015, 0.014783591963350773, 0.019662482663989067, 0.06672746688127518, -0.060563649982213974, 0.020271237939596176, -0.023441530764102936, 0.059259023517370224, -0.13864749670028687, 0.0639338418841362, -0.07752171158790588, 0.12918315827846527, 0.18307803571224213, -0.06765155494213104, 0.025841539725661278, -0.054069072008132935, 0.006971321534365416, -0.027226578444242477, 0.054438743740320206, -0.016404371708631516, -0.11878681927919388, 0.007660325616598129, 0.02791014313697815, 0.011133715510368347, -0.15612921118736267, -0.07352455705404282, 0.06317071616649628, -0.05194289982318878, 0.02433982491493225, 0.16424235701560974, 0.014826308004558086, 0.05258411169052124, -0.02989429049193859, -0.012234346941113472, 0.005238385405391455, 0.12000520527362823, -0.17380791902542114, -0.07528472691774368 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b68b0e6ba289b80529dc0194cdb7d00d.639x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DaBaby</div> <a href="https://genius.com/artists/dababy"> <div style="text-align: center; font-size: 14px;">@dababy</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from DaBaby. Dataset is available [here](https://huggingface.co/datasets/huggingartists/dababy). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dababy") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/qnkumvdw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on DaBaby's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/24o367up) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/24o367up/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/dababy') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/dababy") model = AutoModelWithLMHead.from_pretrained("huggingartists/dababy") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/dababy"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/dababy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/dababy", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dababy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">DaBaby</div> <a href="URL <div style="text-align: center; font-size: 14px;">@dababy</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from DaBaby. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on DaBaby's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from DaBaby.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DaBaby's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dababy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from DaBaby.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DaBaby's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dababy #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from DaBaby.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DaBaby's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01846916787326336, 0.15480586886405945, -0.0028436121065169573, 0.03830922022461891, 0.09228746592998505, 0.007871661335229874, 0.0879303365945816, 0.10233594477176666, -0.003402932547032833, 0.07831787317991257, 0.07429657131433487, 0.0011419141665101051, 0.07283537089824677, 0.11229509860277176, 0.08548210561275482, -0.25696298480033875, 0.02668893337249756, -0.09467482566833496, 0.0016488840337842703, 0.1151866689324379, 0.10217535495758057, -0.05326803773641586, 0.08552102744579315, 0.03278007358312607, -0.06847734749317169, 0.02126426063477993, -0.0038772716652601957, -0.06716711074113846, 0.08833825588226318, 0.06654778867959976, 0.03529329597949982, 0.022796137258410454, 0.060687653720378876, -0.18183140456676483, 0.030964501202106476, 0.1284516453742981, 0.033945128321647644, 0.06944578140974045, 0.03796830773353577, -0.07402879744768143, 0.1782456487417221, -0.015924634411931038, 0.09619828313589096, 0.04660710692405701, -0.11709758639335632, -0.15668633580207825, -0.12879760563373566, 0.09034187346696854, 0.10332825779914856, 0.08960755169391632, -0.029491741210222244, 0.03704150393605232, -0.013361861929297447, 0.03803211450576782, 0.2264256775379181, -0.22990073263645172, -0.016814403235912323, 0.09475129097700119, 0.041552457958459854, 0.027664409950375557, -0.07832988351583481, 0.013727953657507896, 0.04470178857445717, 0.027053536847233772, 0.043637942522764206, -0.01711142249405384, 0.21268577873706818, 0.019082529470324516, -0.09355129301548004, -0.08292222023010254, 0.1250813901424408, -0.030087124556303024, -0.07905258238315582, -0.1422484964132309, 0.00025918957544490695, -0.017412403598427773, 0.03059949353337288, -0.010319259949028492, -0.006691581103950739, 0.00980205088853836, -0.030275482684373856, -0.10350892692804337, -0.09001936763525009, -0.031157968565821648, -0.022325092926621437, 0.06883453577756882, 0.02792246639728546, 0.030230486765503883, -0.08728792518377304, 0.22920595109462738, -0.020939817652106285, -0.10382094234228134, -0.05037328973412514, -0.09570500254631042, -0.08357565104961395, -0.05481146275997162, 0.008042266592383385, 0.0050461008213460445, -0.05453743040561676, 0.16065074503421783, -0.029083678498864174, 0.036280665546655655, -0.010995820164680481, -0.016596036031842232, 0.14413312077522278, 0.12960675358772278, -0.10143467783927917, -0.029848020523786545, 0.05930929258465767, -0.011717391200363636, -0.06098361685872078, -0.054012931883335114, -0.009676220826804638, -0.017522495239973068, 0.0340169221162796, 0.08372152596712112, 0.05818471685051918, 0.05555221065878868, 0.01958327926695347, -0.060695599764585495, 0.10479114949703217, -0.1388414204120636, 0.01316807046532631, -0.007901504635810852, -0.03718721494078636, 0.013243732042610645, 0.04748963937163353, 0.015904493629932404, -0.0984819307923317, 0.12461607903242111, -0.05590999126434326, -0.05687103793025017, -0.07682228088378906, -0.07910744100809097, -0.00021126233332324773, -0.018934190273284912, -0.0414961576461792, -0.0717863142490387, -0.17409564554691315, -0.042550500482320786, 0.028132516890764236, -0.04715842753648758, -0.04601728916168213, 0.03610248863697052, -0.02845798246562481, 0.012376591563224792, -0.012145224027335644, -0.023231690749526024, -0.02573484182357788, 0.028780445456504822, -0.05370023846626282, 0.027738243341445923, 0.06870488822460175, 0.042181577533483505, -0.10861893743276596, 0.07724649459123611, -0.17388074100017548, 0.13359445333480835, -0.00854101125150919, 0.013723933137953281, -0.10190198570489883, -0.08827874809503555, -0.04132193699479103, -0.02975337579846382, -0.0005608946667052805, 0.10188726335763931, -0.19252602756023407, -0.03514443710446358, 0.2031453549861908, -0.07644869387149811, -0.08002530038356781, 0.06596635282039642, -0.07591957598924637, 0.03491586819291115, 0.13223974406719208, 0.06151033192873001, 0.16672372817993164, -0.10890726745128632, -0.06598486751317978, -0.04936419054865837, -0.055202119052410126, 0.21139445900917053, 0.0483282171189785, -0.02113787829875946, 0.01959431730210781, 0.00916820764541626, -0.0347537137567997, -0.025522824376821518, -0.011942270211875439, -0.03923649340867996, -0.014743031933903694, 0.012390193529427052, -0.008757215924561024, -0.03978466987609863, -0.07031460106372833, -0.027704570442438126, -0.10650502145290375, 0.02508324384689331, 0.10091863572597504, -0.06499239802360535, 0.0070348866283893585, -0.09329472482204437, 0.0026555147487670183, -0.025827519595623016, 0.018883513286709785, -0.1781734973192215, -0.0568840354681015, 0.021601492539048195, -0.06397808343172073, 0.08807437121868134, 0.017569147050380707, 0.03768031299114227, 0.05340365692973137, -0.01676212251186371, 0.018865616992115974, -0.051386985927820206, -0.021716829389333725, -0.025245627388358116, -0.14005747437477112, -0.05420270562171936, -0.047844886779785156, 0.08992421627044678, -0.12471366673707962, 0.0059512886218726635, 0.10541122406721115, 0.1247548833489418, 0.023072917014360428, -0.063941590487957, 0.018049966543912888, -0.03734859079122543, -0.03150450810790062, -0.111258864402771, -0.05771489813923836, 0.007850483991205692, -0.02732830122113228, 0.14669281244277954, -0.16905193030834198, -0.08529947698116302, 0.10158910602331161, 0.15367478132247925, -0.1000232994556427, 0.03773200139403343, -0.07813632488250732, -0.015899769961833954, -0.049807168543338776, -0.04489428177475929, 0.27074238657951355, 0.03824809566140175, 0.0784393772482872, -0.10489273071289062, -0.09321212768554688, -0.0027731580194085836, -0.03823414444923401, -0.028421828523278236, 0.02163689397275448, 0.025728769600391388, -0.17175854742527008, 0.037247467786073685, -0.0016996582271531224, 0.10879257321357727, 0.20157873630523682, 0.04055275395512581, -0.08750498294830322, -0.05546073615550995, -0.07567588239908218, 0.0007646059384569526, 0.05822790041565895, 0.014056989923119545, 0.029530148953199387, 0.03907535597681999, 0.05725858733057976, 0.039294783025979996, -0.11116673052310944, 0.015018163248896599, 0.07435546815395355, -0.04114103317260742, -0.04367895424365997, 0.019563762471079826, 0.01778532937169075, 0.0824761688709259, 0.08918501436710358, 0.13702309131622314, -0.06430055946111679, -0.046156056225299835, -0.1452244520187378, 0.13683512806892395, -0.08380217850208282, -0.25092968344688416, -0.13356232643127441, -0.06932751834392548, 0.016816986724734306, 0.013361945748329163, 0.03089876100420952, -0.05005656182765961, -0.04051122069358826, -0.0906941294670105, 0.08506433665752411, -0.05010313168168068, -0.02176307514309883, 0.010707919485867023, 0.016777945682406425, -0.023188728839159012, -0.10677254945039749, -0.031774263828992844, 0.04664716124534607, -0.09545287489891052, -0.015141419135034084, 0.031450726091861725, 0.032095640897750854, 0.1615976095199585, -0.007093068677932024, -0.0005301159690134227, -0.02290007472038269, 0.27936768531799316, -0.12568092346191406, 0.07571575045585632, 0.1631494015455246, -0.014359798282384872, 0.05544336512684822, 0.07957551628351212, 0.004266946576535702, -0.06954961270093918, 0.07325533777475357, 0.07343980669975281, -0.08695035427808762, -0.20769166946411133, -0.035674989223480225, -0.015427883714437485, 0.013694802299141884, 0.12353242933750153, 0.05607723444700241, 0.04560323804616928, 0.008838498033583164, -0.10797527432441711, 0.04832129925489426, 0.029088784009218216, 0.10232923179864883, -0.06167060509324074, -0.012522280216217041, 0.04378233850002289, -0.05966237559914589, 0.026675358414649963, 0.13390569388866425, 0.04730789735913277, 0.19905050098896027, -0.06517642736434937, 0.08843978494405746, 0.07471899688243866, 0.09135236591100693, 0.027333201840519905, 0.015305296517908573, -0.017888372763991356, 0.014454538002610207, -0.0007357302238233387, -0.09247193485498428, -0.013955892063677311, 0.043001238256692886, 0.024278389289975166, -0.024694664403796196, -0.04091129079461098, -0.05633643642067909, 0.03887275233864784, 0.23356030881404877, 0.004191218875348568, -0.1668429970741272, -0.10412000119686127, 0.05288800969719887, -0.06816767901182175, -0.06522846966981888, -0.014301936142146587, 0.06477896869182587, -0.21503061056137085, 0.07319284975528717, -0.029070772230625153, 0.1069997251033783, -0.11278761178255081, -0.0028428914956748486, 0.08221662789583206, 0.03963416442275047, -0.06104663014411926, 0.09541241824626923, -0.17994509637355804, 0.0516539067029953, -0.008310237899422646, 0.07620497047901154, -0.07252456247806549, 0.03269275650382042, 0.004676159005612135, 0.050437748432159424, 0.08091246336698532, 0.016304627060890198, 0.015327993780374527, 0.013523304834961891, -0.041087210178375244, 0.006543645169585943, 0.05971536040306091, -0.1263229101896286, 0.121676005423069, -0.027486559003591537, 0.035897184163331985, -0.038084741681814194, -0.08227013051509857, -0.0802110880613327, -0.1642690896987915, 0.08823537826538086, -0.11858367174863815, -0.0010441665071994066, -0.07391165941953659, -0.011527229100465775, 0.041179779917001724, 0.24299374222755432, -0.062186919152736664, -0.08321812748908997, -0.1314946711063385, 0.0032574806828051805, 0.13919495046138763, -0.07795260846614838, 0.006946096662431955, -0.013128799386322498, 0.19849584996700287, -0.00006406541797332466, -0.128691166639328, -0.018104273825883865, -0.06452759355306625, -0.1719190776348114, -0.011987223289906979, 0.1775132268667221, 0.06206310912966728, 0.02659602276980877, 0.007076353766024113, -0.005275464616715908, -0.04517876356840134, -0.17193591594696045, 0.022347085177898407, 0.15225327014923096, -0.004733499139547348, 0.011314822360873222, 0.05071306973695755, 0.02794835902750492, -0.128373384475708, 0.014291360974311829, 0.04651358723640442, 0.169566810131073, -0.07222406566143036, 0.18429754674434662, 0.025897685438394547, -0.08874942362308502, -0.16017647087574005, 0.012757218442857265, 0.027602307498455048, 0.0350005105137825, 0.02359122224152088, -0.20855610072612762, 0.04081803187727928, 0.03212953358888626, -0.0035799886099994183, 0.06475965678691864, -0.3296947479248047, -0.1525166630744934, 0.0059387171640992165, -0.004133688751608133, -0.12336672842502594, -0.04558222368359566, -0.03490410000085831, -0.08943004161119461, -0.2511456310749054, 0.09938046336174011, -0.10376275330781937, 0.07131686061620712, 0.01972978003323078, 0.1011851504445076, 0.047300536185503006, -0.049042459577322006, 0.13246361911296844, -0.02698192186653614, 0.06128497049212456, -0.09827917069196701, -0.05646057426929474, 0.07697112113237381, -0.06809256225824356, 0.09225430339574814, 0.027623018249869347, 0.08672874420881271, -0.10472767055034637, -0.08632967621088028, -0.07200262695550919, 0.004074877593666315, -0.05999062955379486, -0.08838928490877151, -0.10123643279075623, 0.08486075699329376, 0.11594951897859573, -0.04450858384370804, -0.10096913576126099, -0.05907147005200386, 0.00042990868678316474, 0.05319502577185631, 0.11943677067756653, 0.07491552829742432, -0.07582321763038635, 0.006521615199744701, 0.01962965913116932, 0.02022910676896572, -0.17951352894306183, 0.047941166907548904, 0.088347427546978, 0.04172613099217415, 0.10479629784822464, 0.0054022930562496185, -0.1688893437385559, 0.0013510878197848797, 0.05281535163521767, -0.16274826228618622, -0.1235952228307724, -0.0475899875164032, 0.0298702884465456, -0.10832026600837708, -0.055659592151641846, 0.12862679362297058, -0.036095935851335526, -0.03760013356804848, 0.005553050432354212, 0.04609289765357971, -0.046447478234767914, 0.09373858571052551, -0.0027341824024915695, 0.04300563037395477, -0.07032030820846558, 0.11894042044878006, 0.07007744163274765, 0.012395905330777168, 0.04218725115060806, 0.0696304589509964, -0.08927922695875168, 0.011117028072476387, -0.10780748724937439, 0.012132465839385986, -0.02264580875635147, -0.014432747848331928, 0.029389603063464165, -0.04264305904507637, 0.042725302278995514, 0.07409241795539856, -0.017988331615924835, 0.11290493607521057, -0.04111550748348236, 0.010375546291470528, -0.13258081674575806, 0.06621050834655762, 0.03407622501254082, 0.023018155246973038, -0.11526516079902649, 0.18722929060459137, 0.02855026163160801, 0.09738504141569138, -0.03441106528043747, -0.056094396859407425, -0.05594197288155556, -0.009243975393474102, -0.0890040397644043, -0.04250519350171089, -0.09237877279520035, -0.02688029408454895, -0.0003705197013914585, -0.03169884905219078, -0.02394590713083744, 0.04129510000348091, -0.031322069466114044, -0.06269654631614685, -0.07849784940481186, 0.04537398740649223, -0.1321321576833725, 0.03567105159163475, 0.12049132585525513, -0.05652638152241707, 0.12128478288650513, 0.059348322451114655, -0.03151300549507141, 0.023923339322209358, -0.11476373672485352, 0.04549644514918327, -0.014143736101686954, 0.017215529456734657, 0.014804547652602196, -0.15741202235221863, 0.008248941041529179, -0.042425595223903656, -0.07102914899587631, 0.003801903920248151, -0.007967743091285229, -0.13249507546424866, -0.0024935868568718433, 0.08301287889480591, -0.0147598497569561, -0.06796055287122726, 0.06588633358478546, 0.06076966971158981, 0.026737963780760765, 0.057225003838539124, -0.021798087283968925, 0.07420312613248825, -0.16601112484931946, -0.054107073694467545, -0.002118089236319065, 0.037524718791246414, 0.05054502189159393, -0.014506547711789608, 0.036849867552518845, -0.021008405834436417, 0.19279825687408447, 0.010738607496023178, -0.022929053753614426, 0.03791934251785278, -0.06865446269512177, -0.002144609345123172, 0.045820657163858414, 0.07794596254825592, -0.029065126553177834, -0.04106510058045387, -0.004599106963723898, -0.017872361466288567, -0.09391052275896072, -0.026081880554556847, 0.10595246404409409, 0.03420799598097801, 0.18384812772274017, -0.05708061531186104, 0.06257615238428116, -0.020145097747445107, -0.11529256403446198, -0.009824981912970543, -0.04229758679866791, 0.0282912477850914, -0.0585881844162941, 0.05723238363862038, 0.18582920730113983, -0.16150112450122833, 0.12051019817590714, 0.019755853340029716, -0.05701177194714546, -0.11085141450166702, -0.18895401060581207, -0.01737319864332676, -0.03523547947406769, 0.030175846070051193, -0.13861936330795288, 0.08822205662727356, 0.020705629140138626, 0.03252973034977913, -0.07185234129428864, 0.14096449315547943, -0.08828805387020111, -0.12970109283924103, 0.04035408794879913, 0.028009526431560516, 0.027655048295855522, 0.05825107917189598, 0.08402670919895172, 0.025280773639678955, 0.006692286115139723, 0.07281475514173508, 0.041872814297676086, 0.031076006591320038, 0.03212727978825569, -0.027741175144910812, -0.03670414909720421, 0.030867941677570343, -0.004155507776886225, 0.03197435289621353, 0.10039731860160828, 0.05870090797543526, -0.020326826721429825, -0.0218287855386734, 0.3021443486213684, -0.03210866451263428, -0.04026781767606735, -0.18512451648712158, 0.1629156470298767, 0.00540662556886673, -0.012462561950087547, 0.023748300969600677, -0.12129169702529907, 0.009259932674467564, 0.12361032515764236, 0.1549064666032791, -0.01982463337481022, 0.022694241255521774, -0.029639698565006256, 0.019411828368902206, 0.03428894653916359, 0.10070681571960449, 0.06826131790876389, 0.20861367881298065, -0.03188555687665939, 0.05032353475689888, -0.013167059980332851, -0.01683095470070839, -0.004616162274032831, 0.11190006136894226, -0.03753211349248886, 0.004557864740490913, -0.05145394802093506, 0.10293581336736679, -0.050583839416503906, -0.2903459668159485, -0.027078090235590935, -0.028025250881910324, -0.09222125262022018, 0.06715762615203857, -0.04712274298071861, -0.025262057781219482, 0.08418922126293182, 0.02967226505279541, -0.04629307985305786, 0.14037491381168365, 0.04950195178389549, -0.04361032694578171, 0.0011231619864702225, 0.10529094189405441, -0.014837592840194702, 0.17228588461875916, -0.030136050656437874, 0.0035285919439047575, 0.07931021600961685, 0.018650779500603676, -0.12603476643562317, 0.008433771319687366, 0.0381857268512249, -0.05487073212862015, -0.02188321389257908, 0.19840587675571442, 0.011024109087884426, 0.015448024496436119, 0.07136115431785583, -0.055683791637420654, 0.016326161101460457, -0.037763360887765884, 0.06517145782709122, -0.1472737193107605, 0.07358060032129288, -0.0898328423500061, 0.12985174357891083, 0.18119877576828003, -0.06661763042211533, 0.027456562966108322, -0.059607382863759995, 0.010193509981036186, -0.024284634739160538, 0.08464736491441727, -0.019359083846211433, -0.11126769334077835, 0.007844443432986736, 0.03708941116929054, 0.015464087016880512, -0.18408489227294922, -0.0674070417881012, 0.07645318657159805, -0.047895338386297226, 0.026107115671038628, 0.17582109570503235, 0.01511388085782528, 0.05962648615241051, -0.04150425270199776, -0.012363814748823643, -0.014383531175553799, 0.11675780266523361, -0.16683204472064972, -0.08081509917974472 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.rapgenius.com/avatars/medium/f258b58a22ea31bb81b73395c47e5ba4&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DDT</div> <a href="https://genius.com/artists/ddt"> <div style="text-align: center; font-size: 14px;">@ddt</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from DDT. Dataset is available [here](https://huggingface.co/datasets/huggingartists/ddt). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ddt") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2t9xnx5c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on DDT's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/33zphjtk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/33zphjtk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ddt') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ddt") model = AutoModelWithLMHead.from_pretrained("huggingartists/ddt") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/ddt"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/ddt
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ddt", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ddt #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">DDT</div> <a href="URL <div style="text-align: center; font-size: 14px;">@ddt</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from DDT. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on DDT's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from DDT.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DDT's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ddt #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from DDT.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DDT's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ddt #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from DDT.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DDT's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.024776145815849304, 0.1451086550951004, -0.002826359821483493, 0.03344060853123665, 0.08746499568223953, -0.0017798038898035884, 0.08479487895965576, 0.10939133167266846, -0.013845889829099178, 0.07212058454751968, 0.07831328362226486, 0.015991440042853355, 0.0656370148062706, 0.1302802711725235, 0.08618593961000443, -0.2675839960575104, 0.030496468767523766, -0.1033281683921814, 0.018028756603598595, 0.12059331685304642, 0.09171848744153976, -0.05639967694878578, 0.0830753818154335, 0.0317554771900177, -0.07430475205183029, 0.029009437188506126, -0.01607031561434269, -0.07059144228696823, 0.09309206157922745, 0.07811956852674484, 0.0338255949318409, 0.03433063626289368, 0.06937233358621597, -0.18990235030651093, 0.0342276468873024, 0.1260400414466858, 0.029534734785556793, 0.07111213356256485, 0.040763065218925476, -0.07395533472299576, 0.1717662811279297, -0.028253739699721336, 0.09122446924448013, 0.04357733950018883, -0.10682666301727295, -0.18437756597995758, -0.12350723892450333, 0.08654407411813736, 0.10588125139474869, 0.08317491412162781, -0.030245788395404816, 0.04593389108777046, 0.002831285120919347, 0.045664530247449875, 0.23106908798217773, -0.23696988821029663, -0.013898927718400955, 0.10211112350225449, 0.04118812456727028, 0.04350217059254646, -0.0769282802939415, 0.016630589962005615, 0.04928550496697426, 0.027859879657626152, 0.04520995542407036, -0.015425887890160084, 0.22795730829238892, 0.02049448899924755, -0.09419125318527222, -0.08464352041482925, 0.11118030548095703, -0.031209347769618034, -0.08314723521471024, -0.15405477583408356, 0.003196470206603408, -0.031701263040304184, 0.03634720668196678, -0.018045224249362946, -0.005219300743192434, 0.0007560441154055297, -0.038262609392404556, -0.0950620174407959, -0.09409745782613754, -0.026547683402895927, -0.0296491589397192, 0.07440602034330368, 0.025981804355978966, 0.027332285419106483, -0.0788850262761116, 0.23500347137451172, 0.011385374702513218, -0.10373970866203308, -0.056501612067222595, -0.09237947314977646, -0.09554801136255264, -0.06100591644644737, 0.010355167090892792, 0.012794293463230133, -0.06444639712572098, 0.16849170625209808, -0.031792256981134415, 0.031232615932822227, -0.00031998768099583685, -0.025669602677226067, 0.15166185796260834, 0.1302405148744583, -0.09825638681650162, -0.025590816512703896, 0.045450326055288315, -0.01300039142370224, -0.06675036996603012, -0.05776992440223694, -0.015127569437026978, -0.021495798602700233, 0.030082084238529205, 0.09541577100753784, 0.04978308081626892, 0.05780341103672981, 0.03210138902068138, -0.058129578828811646, 0.11582637578248978, -0.14530164003372192, 0.008012677542865276, -0.009670560248196125, -0.0318521223962307, 0.02332967519760132, 0.048390571027994156, 0.014120470732450485, -0.09618762135505676, 0.11716759949922562, -0.04817870259284973, -0.05537707731127739, -0.06679883599281311, -0.087360680103302, -0.006207027938216925, -0.006614734884351492, -0.04704040661454201, -0.08644785732030869, -0.16127650439739227, -0.03199266642332077, 0.02265222929418087, -0.03898841142654419, -0.03489900007843971, 0.040163274854421616, -0.03869617357850075, 0.0019286860479041934, -0.013752822764217854, -0.020659947767853737, -0.029545165598392487, 0.022364920005202293, -0.05616586282849312, 0.03453737124800682, 0.07696395367383957, 0.03495289385318756, -0.10811594873666763, 0.06866583973169327, -0.15858370065689087, 0.1483050137758255, -0.01036983635276556, 0.016213664785027504, -0.10794626921415329, -0.09709059447050095, -0.030401669442653656, -0.026827896013855934, -0.009231321513652802, 0.09982361644506454, -0.19504587352275848, -0.03809428587555885, 0.19980786740779877, -0.07237055897712708, -0.084187813103199, 0.06737777590751648, -0.07857158035039902, 0.03826787695288658, 0.13888458907604218, 0.05023076757788658, 0.16593734920024872, -0.1219867467880249, -0.07067803293466568, -0.039068423211574554, -0.05982658639550209, 0.2238800972700119, 0.0526072196662426, -0.008940116502344608, 0.02892773039638996, 0.011266977526247501, -0.026028865948319435, -0.030273159965872765, -0.02156667970120907, -0.04373067617416382, -0.009551028721034527, 0.01806521974503994, -0.007946101948618889, -0.05094577372074127, -0.06754770129919052, -0.016640378162264824, -0.11239693313837051, 0.04555152729153633, 0.10667381435632706, -0.07155513018369675, 0.009123850613832474, -0.09490110725164413, -0.011455190367996693, -0.03993123769760132, 0.02324584871530533, -0.19479136168956757, -0.06541558355093002, 0.021539082750678062, -0.06251343339681625, 0.0852816179394722, 0.026438439264893532, 0.04001128673553467, 0.06214005872607231, -0.00945963803678751, 0.02061760239303112, -0.049680888652801514, -0.020118610933423042, -0.03236597776412964, -0.138790562748909, -0.0698917880654335, -0.056143417954444885, 0.08021349459886551, -0.13608722388744354, 0.008459248580038548, 0.11091327667236328, 0.1160392090678215, 0.02723143808543682, -0.05602505803108215, 0.007328081876039505, -0.03501662611961365, -0.04231572151184082, -0.11436467617750168, -0.06418395787477493, 0.004240493755787611, -0.042658206075429916, 0.15066055953502655, -0.17321695387363434, -0.0689694881439209, 0.09943953156471252, 0.16771064698696136, -0.10773437470197678, 0.016404543071985245, -0.09261193126440048, -0.010125722736120224, -0.04702404513955116, -0.04556006193161011, 0.27047672867774963, 0.042890217155218124, 0.07549100369215012, -0.10733744502067566, -0.09865709394216537, -0.0010880219051614404, -0.03280512988567352, -0.032230790704488754, 0.025743519887328148, 0.012671818025410175, -0.16643394529819489, 0.027706993743777275, -0.0021811218466609716, 0.1239730715751648, 0.2068513035774231, 0.046983134001493454, -0.09474548697471619, -0.05984184145927429, -0.08523421734571457, 0.003822424216195941, 0.049889881163835526, 0.043156515806913376, 0.028906533494591713, 0.04214957728981972, 0.05328584834933281, 0.034299880266189575, -0.11147969961166382, 0.010036787949502468, 0.08121484518051147, -0.046931106597185135, -0.05206723511219025, 0.018547913059592247, 0.016219381242990494, 0.08207142353057861, 0.08009500056505203, 0.14057350158691406, -0.0671830102801323, -0.04649970307946205, -0.14190076291561127, 0.1390136182308197, -0.08010309189558029, -0.26661792397499084, -0.13830508291721344, -0.07127224653959274, 0.023525148630142212, 0.008011515252292156, 0.037847861647605896, -0.0627647414803505, -0.0394403338432312, -0.10230594873428345, 0.08683589845895767, -0.051175761967897415, -0.015169265680015087, 0.004824329167604446, 0.020697051659226418, -0.03293992578983307, -0.11048460006713867, -0.027422115206718445, 0.044261958450078964, -0.1017656922340393, -0.013962917029857635, 0.03126553073525429, 0.03791467472910881, 0.155648872256279, -0.007591952104121447, -0.00663836719468236, -0.03491806611418724, 0.27500277757644653, -0.1244361400604248, 0.06867565959692001, 0.1622287631034851, -0.022959785535931587, 0.052258457988500595, 0.08373859524726868, 0.00689066993072629, -0.07001294940710068, 0.07752705365419388, 0.07023816555738449, -0.09074103832244873, -0.21488554775714874, -0.028373807668685913, -0.006947094574570656, 0.026943033561110497, 0.1268257051706314, 0.059723127633333206, 0.055520981550216675, -0.005351880099624395, -0.10565844178199768, 0.04930618032813072, 0.029519423842430115, 0.10899718850851059, -0.06583868712186813, -0.01149443443864584, 0.048149894922971725, -0.06567195057868958, 0.025653308257460594, 0.1404847800731659, 0.04597271978855133, 0.198497012257576, -0.06246801093220711, 0.09406671673059464, 0.0737866684794426, 0.09585205465555191, 0.03403779864311218, 0.009609478525817394, 0.001053695217706263, 0.010575078427791595, -0.001879206276498735, -0.09888643026351929, -0.006528946105390787, 0.050402164459228516, 0.028195247054100037, -0.026141727343201637, -0.0366562083363533, -0.047209691256284714, 0.043139051645994186, 0.23002664744853973, -0.013784646056592464, -0.18452583253383636, -0.11757954210042953, 0.04063687101006508, -0.07647102326154709, -0.048563797026872635, -0.026589510962367058, 0.07129267603158951, -0.2150263786315918, 0.07314754277467728, -0.03396080061793327, 0.10619286447763443, -0.11380616575479507, 0.0029060840606689453, 0.08575809001922607, 0.045355360954999924, -0.06443481892347336, 0.09503651410341263, -0.17677736282348633, 0.05690615996718407, -0.010296178981661797, 0.06948766857385635, -0.07609251141548157, 0.030940307304263115, -0.0002113313676090911, 0.05251740291714668, 0.0877288356423378, 0.009790400043129921, 0.03006085194647312, 0.0013745833421126008, -0.05149771645665169, 0.012168161571025848, 0.060684919357299805, -0.1270241141319275, 0.1261177510023117, -0.022883662953972816, 0.033672135323286057, -0.042196229100227356, -0.09696367383003235, -0.08667408674955368, -0.16503237187862396, 0.09349770098924637, -0.13320501148700714, 0.0025502818170934916, -0.07123041152954102, -0.030727028846740723, 0.034329604357481, 0.26483142375946045, -0.06131948158144951, -0.07387997955083847, -0.1376149207353592, 0.01727534458041191, 0.14242754876613617, -0.0846686065196991, 0.01004334632307291, -0.009028982371091843, 0.21329660713672638, -0.0002004583366215229, -0.1292901486158371, -0.018902499228715897, -0.06308994442224503, -0.1669793725013733, -0.007907845079898834, 0.16764087975025177, 0.062172532081604004, 0.025425920262932777, 0.00956982746720314, -0.017796361818909645, -0.04059576615691185, -0.17020340263843536, 0.02287248708307743, 0.1644529551267624, -0.011641912162303925, -0.0012591605773195624, 0.04646986722946167, 0.010230666026473045, -0.13571959733963013, 0.013857302255928516, 0.04602110758423805, 0.17978410422801971, -0.07991441339254379, 0.188801571726799, 0.029852673411369324, -0.08868514746427536, -0.15364627540111542, 0.011267012916505337, 0.03963116556406021, 0.03858429566025734, 0.044284600764513016, -0.2121303677558899, 0.0400376133620739, 0.03860406205058098, 0.0061857993714511395, 0.043160539120435715, -0.3343379497528076, -0.1595895141363144, -0.0032315338030457497, 0.003453916637226939, -0.16181518137454987, -0.04267182573676109, -0.03420935943722725, -0.09669064730405807, -0.24667592346668243, 0.1060650423169136, -0.107025645673275, 0.06953591853380203, 0.03063380718231201, 0.1004604622721672, 0.046803709119558334, -0.043549250811338425, 0.1318262368440628, -0.016099758446216583, 0.07059123367071152, -0.09441640228033066, -0.06061778590083122, 0.07689852267503738, -0.07129412144422531, 0.09320961683988571, 0.037980951368808746, 0.08239701390266418, -0.0946863666176796, -0.08865255862474442, -0.06143846735358238, -0.0031081202905625105, -0.05229141190648079, -0.09254416823387146, -0.09207075834274292, 0.08279645442962646, 0.11899244785308838, -0.05093507096171379, -0.08827343583106995, -0.06732778251171112, -0.0013451986014842987, 0.04161973297595978, 0.1262028068304062, 0.08153650164604187, -0.05824004113674164, 0.0002710788103286177, 0.01669449545443058, 0.010153785347938538, -0.1808202713727951, 0.04770226404070854, 0.09618221968412399, 0.03995900973677635, 0.10539897531270981, 0.004944035317748785, -0.16787011921405792, 0.007292600814253092, 0.05221414566040039, -0.16063246130943298, -0.1310340315103531, -0.0388750396668911, 0.02399287559092045, -0.10233583301305771, -0.044541146606206894, 0.13439089059829712, -0.03686157986521721, -0.036502134054899216, 0.004277144093066454, 0.0376313142478466, -0.040066253393888474, 0.08942107111215591, -0.009562146849930286, 0.04154045507311821, -0.06673157960176468, 0.12076914310455322, 0.06716255098581314, 0.0007802885957062244, 0.03918282687664032, 0.062290776520967484, -0.09321814030408859, 0.015627199783921242, -0.10642766952514648, -0.0012215161696076393, -0.02642110548913479, -0.010257097892463207, 0.028902476653456688, -0.03267369791865349, 0.04992273449897766, 0.08721053600311279, -0.016051705926656723, 0.10851071029901505, -0.0505613274872303, 0.023288674652576447, -0.13091474771499634, 0.07017508894205093, 0.03305871784687042, 0.024231424555182457, -0.11341274529695511, 0.21002157032489777, 0.032981377094984055, 0.10418090224266052, -0.03807804360985756, -0.06379591673612595, -0.04637554660439491, -0.012016110122203827, -0.08711779117584229, -0.038920287042856216, -0.08513045310974121, -0.0237563606351614, -0.0031847774516791105, -0.028063252568244934, -0.029107069596648216, 0.04368574544787407, -0.032838374376297, -0.0611281581223011, -0.07565169781446457, 0.04393838718533516, -0.14124982059001923, 0.032400086522102356, 0.11309804767370224, -0.056170184165239334, 0.1265856772661209, 0.05595393106341362, -0.03474903479218483, 0.023706182837486267, -0.13172541558742523, 0.05014750361442566, 0.0022432401310652494, 0.024724101647734642, 0.017569804564118385, -0.1476808786392212, 0.004050272051244974, -0.03268598020076752, -0.07395116239786148, 0.0070516131818294525, -0.018341636285185814, -0.12993548810482025, -0.009567344561219215, 0.08704868704080582, -0.006418261211365461, -0.06602706760168076, 0.0721852108836174, 0.05917935073375702, 0.027055740356445312, 0.05792240425944328, -0.011957886628806591, 0.06976474076509476, -0.1758338361978531, -0.06425312906503677, -0.005772323813289404, 0.03152819722890854, 0.04834476113319397, -0.024384966120123863, 0.03677581250667572, -0.02000611461699009, 0.2053815871477127, 0.014256100170314312, -0.00792580097913742, 0.037784066051244736, -0.07552222162485123, -0.007208000402897596, 0.04364896938204765, 0.08461668342351913, -0.014900152571499348, -0.029641270637512207, -0.00015934121620375663, -0.023317014798521996, -0.0938912034034729, -0.021346440538764, 0.09509057551622391, 0.01676960103213787, 0.201344296336174, -0.05931507423520088, 0.06633662432432175, -0.021277479827404022, -0.10693299770355225, -0.03510488197207451, -0.04815417528152466, 0.02958611212670803, -0.05691942200064659, 0.05184464529156685, 0.1884160041809082, -0.15346671640872955, 0.11472973972558975, 0.04109059274196625, -0.056718822568655014, -0.11708471924066544, -0.18716447055339813, -0.01138237863779068, -0.0313461497426033, 0.02411256544291973, -0.13835100829601288, 0.0931168794631958, 0.014904849231243134, 0.04153834655880928, -0.06104091927409172, 0.141214057803154, -0.09239428490400314, -0.13836131989955902, 0.04536003991961479, 0.017516905441880226, 0.02601391077041626, 0.04790498688817024, 0.08983904123306274, 0.03585844859480858, 0.004835575819015503, 0.07128231972455978, 0.04099186509847641, 0.032748132944107056, 0.038162484765052795, -0.03159455582499504, -0.03810460865497589, 0.029453016817569733, -0.004713080357760191, 0.01852989010512829, 0.09921810030937195, 0.06918920576572418, -0.020515257492661476, -0.015547174029052258, 0.3076383173465729, -0.02147052250802517, -0.034849394112825394, -0.18374645709991455, 0.16584940254688263, 0.014560612849891186, 0.0038515536580234766, 0.020675357431173325, -0.11907234787940979, 0.012972312979400158, 0.10872607678174973, 0.1498253345489502, -0.0222820695489645, 0.024406785145401955, -0.023724600672721863, 0.018923183903098106, 0.032580021768808365, 0.10894062370061874, 0.06449539214372635, 0.19650037586688995, -0.022532133385539055, 0.05332569405436516, -0.012412972748279572, -0.020699260756373405, 0.014994092285633087, 0.10154318809509277, -0.04159804806113243, 0.005712026730179787, -0.049309153109788895, 0.10232577472925186, -0.058178920298814774, -0.3054009675979614, -0.03677146136760712, -0.013745870441198349, -0.08980564028024673, 0.07688221335411072, -0.03784125670790672, -0.02152191661298275, 0.07797625660896301, 0.030153142288327217, -0.046774011105298996, 0.16499562561511993, 0.05060793086886406, -0.041595298796892166, 0.0010261847637593746, 0.11005281656980515, -0.03603940084576607, 0.15624551475048065, -0.03757816180586815, 0.013944794423878193, 0.07334443181753159, 0.014613400213420391, -0.12751193344593048, 0.007519345264881849, 0.03870222717523575, -0.04961521551012993, -0.0188792422413826, 0.1999397873878479, 0.011480425484478474, 0.026412038132548332, 0.07514377683401108, -0.0536838136613369, 0.018273308873176575, -0.033212583512067795, 0.05512731149792671, -0.13606131076812744, 0.06654728204011917, -0.076239675283432, 0.11720966547727585, 0.17642773687839508, -0.06594641506671906, 0.04223893955349922, -0.05821756646037102, 0.008181513287127018, -0.026523763313889503, 0.0738515555858612, -0.017312176525592804, -0.11280980706214905, 0.005865622777491808, 0.033363211899995804, 0.014171071350574493, -0.1720276027917862, -0.08125578612089157, 0.0796971246600151, -0.053148847073316574, 0.02388114482164383, 0.17719070613384247, 0.0098864221945405, 0.0577942319214344, -0.039255183190107346, -0.008630302734673023, -0.006181289907544851, 0.11544019728899002, -0.17751647531986237, -0.07806915789842606 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/de4ca387303c4b46007ca1072c2e57d0.600x600x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Death Grips</div> <a href="https://genius.com/artists/death-grips"> <div style="text-align: center; font-size: 14px;">@death-grips</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Death Grips. Dataset is available [here](https://huggingface.co/datasets/huggingartists/death-grips). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/death-grips") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2hmeenl7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Death Grips's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/226ak5bw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/226ak5bw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/death-grips') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/death-grips") model = AutoModelWithLMHead.from_pretrained("huggingartists/death-grips") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/death-grips"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/death-grips
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/death-grips", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/death-grips #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Death Grips</div> <a href="URL <div style="text-align: center; font-size: 14px;">@death-grips</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Death Grips. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Death Grips's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Death Grips.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Death Grips's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/death-grips #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Death Grips.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Death Grips's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/death-grips #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Death Grips.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Death Grips's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.017814375460147858, 0.15131425857543945, -0.0030263077933341265, 0.04736855626106262, 0.09024490416049957, 0.02093699760735035, 0.06431689113378525, 0.11603846400976181, 0.030267667025327682, 0.0927916020154953, 0.07191761583089828, 0.035076066851615906, 0.07205425947904587, 0.08486196398735046, 0.06853770464658737, -0.2361978143453598, 0.03308511897921562, -0.0935293585062027, -0.007863916456699371, 0.10439200699329376, 0.08253121376037598, -0.05825942009687424, 0.081853486597538, 0.023134347051382065, -0.0584382526576519, 0.02355961874127388, -0.0036066886968910694, -0.04712047800421715, 0.0994115099310875, 0.050896886736154556, 0.02444269321858883, 0.007993270643055439, 0.07342824339866638, -0.1785774677991867, 0.03223729878664017, 0.12690860033035278, 0.028677066788077354, 0.07473761588335037, 0.03354084864258766, -0.0840080976486206, 0.1394072324037552, -0.016868485137820244, 0.09464843571186066, 0.04491359740495682, -0.11078184098005295, -0.16865500807762146, -0.13840655982494354, 0.09412703663110733, 0.09944996982812881, 0.08635035902261734, -0.026841048151254654, 0.06335923075675964, -0.0015085542108863592, 0.03824232518672943, 0.2182350605726242, -0.2117258608341217, -0.01590612716972828, 0.10684771090745926, 0.06097464635968208, 0.01940992847084999, -0.09335756301879883, 0.022902529686689377, 0.04711781069636345, 0.03598989546298981, 0.04114796593785286, -0.014909240417182446, 0.1809091567993164, 0.031893275678157806, -0.09709056466817856, -0.0822645053267479, 0.08439604938030243, -0.03442545235157013, -0.05174935609102249, -0.13187739253044128, -0.0021982796024531126, -0.03371984884142876, 0.030719898641109467, -0.0023048794828355312, -0.0017965728184208274, 0.0025005261413753033, -0.032524462789297104, -0.09423872083425522, -0.07864769548177719, -0.04963364452123642, -0.00689808651804924, 0.05821661651134491, 0.039501894265413284, 0.038814324885606766, -0.06564706563949585, 0.21060596406459808, -0.03678939491510391, -0.08336047828197479, -0.053203459829092026, -0.09219059348106384, -0.10194923728704453, -0.04207680746912956, 0.010751716792583466, 0.010814892128109932, -0.01796845532953739, 0.13080629706382751, -0.038644175976514816, 0.0201855655759573, -0.015699489042162895, 0.0002820042718667537, 0.14799070358276367, 0.09019710123538971, -0.11620499193668365, -0.04831203818321228, 0.06300311535596848, 0.002833493985235691, -0.057842694222927094, -0.045270077884197235, -0.003262822050601244, 0.00485405046492815, 0.05663473531603813, 0.08473211526870728, 0.06664694845676422, 0.05308332294225693, 0.010822178795933723, -0.05751723423600197, 0.0765823945403099, -0.12436003237962723, 0.005936909932643175, -0.006962568964809179, -0.048372916877269745, 0.006210121791809797, 0.059744831174612045, 0.00684530520811677, -0.10041595250368118, 0.13294854760169983, -0.06851000338792801, -0.054255273193120956, -0.08109784126281738, -0.10244422405958176, 0.007258629892021418, -0.0375496968626976, -0.043413564562797546, -0.05799099802970886, -0.17465953528881073, -0.0387771911919117, 0.029464902356266975, -0.0548337921500206, -0.037742406129837036, 0.0290786474943161, -0.029414601624011993, 0.011397256515920162, -0.014410994946956635, -0.03473089262843132, -0.029787883162498474, 0.035757876932621, -0.06734916567802429, 0.037457674741744995, 0.06762783229351044, 0.04709174484014511, -0.0979953333735466, 0.06546429544687271, -0.14795655012130737, 0.11805108934640884, -0.03399812802672386, 0.023217152804136276, -0.09207451343536377, -0.06906025856733322, -0.024955779314041138, -0.037739790976047516, 0.013572756201028824, 0.10553328692913055, -0.1826549470424652, -0.03105250932276249, 0.19388839602470398, -0.07111260294914246, -0.0898839458823204, 0.0690222755074501, -0.07125800848007202, 0.031125668436288834, 0.09980761259794235, 0.07563839852809906, 0.12841041386127472, -0.1149991899728775, -0.062267594039440155, -0.05194442719221115, -0.07610815763473511, 0.18209360539913177, 0.032476212829351425, -0.03657826408743858, 0.02177444100379944, 0.0038264321628957987, -0.028938278555870056, -0.0283586997538805, -0.027051668614149094, -0.028235914185643196, -0.016581164672970772, -0.00966024398803711, 0.01606174372136593, -0.04296833276748657, -0.061842180788517, -0.025107959285378456, -0.09280642867088318, 0.06215425580739975, 0.09662041068077087, -0.05570754408836365, 0.00569241214543581, -0.08783387392759323, 0.016802076250314713, -0.055825285613536835, 0.01849164254963398, -0.16861024498939514, -0.08002503961324692, 0.02954033948481083, -0.05326971784234047, 0.07888998091220856, 0.024593254551291466, 0.053191177546978, 0.07471954077482224, -0.004698564764112234, 0.014120255596935749, -0.03275319188833237, -0.005591594614088535, -0.05024750530719757, -0.17394877970218658, -0.05307978764176369, -0.042946916073560715, 0.07292154431343079, -0.11250723898410797, -0.001038211164996028, 0.08222075551748276, 0.12739697098731995, 0.0075629642233252525, -0.07751025259494781, 0.03281330317258835, -0.04938647150993347, -0.033932797610759735, -0.09939049929380417, -0.051772650331258774, -0.002418127842247486, -0.021453257650136948, 0.1520758420228958, -0.16439484059810638, -0.07681228965520859, 0.10784300416707993, 0.12055790424346924, -0.08945180475711823, 0.05275780335068703, -0.07925358414649963, -0.016852037981152534, -0.06397493183612823, -0.05617408826947212, 0.2465217411518097, 0.036915384232997894, 0.08889742195606232, -0.10219840705394745, -0.09623757749795914, -0.001987720839679241, -0.030804671347141266, -0.0317198783159256, 0.028839586302638054, 0.013245089910924435, -0.15815436840057373, 0.05635397508740425, -0.02798876166343689, 0.07991719245910645, 0.1751149296760559, 0.052093103528022766, -0.08584069460630417, -0.06373872607946396, -0.05822475999593735, 0.0047934390604496, 0.103151835501194, -0.003624658565968275, 0.05609818175435066, 0.03663412481546402, 0.042418431490659714, 0.037471022456884384, -0.11381800472736359, 0.011336087249219418, 0.05796118825674057, -0.04677662253379822, -0.053880441933870316, 0.027936726808547974, 0.021282069385051727, 0.08428175747394562, 0.08204861730337143, 0.1372663825750351, -0.052758436650037766, -0.05305185914039612, -0.13863712549209595, 0.12816013395786285, -0.0891755223274231, -0.23141057789325714, -0.1297333687543869, -0.052858952432870865, 0.017792990431189537, 0.010950316675007343, 0.03785901516675949, -0.06466557830572128, -0.047198642045259476, -0.09047000110149384, 0.07086105644702911, -0.045060258358716965, -0.02150815539062023, 0.007878702133893967, 0.021008802577853203, -0.013126990757882595, -0.10263378918170929, -0.02917054109275341, 0.0037491261027753353, -0.07276547700166702, -0.010074667632579803, 0.04129887372255325, 0.03579508513212204, 0.14368043839931488, -0.0063773454166948795, 0.013173773884773254, -0.02340356446802616, 0.2568763792514801, -0.1044696718454361, 0.07555413991212845, 0.17775510251522064, -0.016952767968177795, 0.07348611950874329, 0.04930705949664116, 0.008118721656501293, -0.04743574932217598, 0.05556634068489075, 0.09533435106277466, -0.07575350999832153, -0.20001226663589478, -0.03995120897889137, -0.019591834396123886, 0.005089451093226671, 0.11460500210523605, 0.04756544902920723, 0.052735455334186554, 0.01900186389684677, -0.10908795893192291, 0.06256970763206482, 0.01364950928837061, 0.10137303918600082, -0.08640549331903458, -0.013197299093008041, 0.041414931416511536, -0.045513786375522614, 0.0365716777741909, 0.13845737278461456, 0.05408581346273422, 0.2152271568775177, -0.06420431286096573, 0.07481034100055695, 0.0876549780368805, 0.12166189402341843, 0.025954145938158035, 0.014852344989776611, -0.03785359486937523, 0.021278569474816322, 0.007264150772243738, -0.09881360083818436, -0.01663649082183838, 0.056029051542282104, 0.034764066338539124, 0.003958039451390505, -0.042111992835998535, -0.051097482442855835, 0.048956818878650665, 0.23330293595790863, 0.02042318321764469, -0.17134149372577667, -0.10789303481578827, 0.06271783262491226, -0.04782085865736008, -0.056775808334350586, -0.01934412494301796, 0.06669911742210388, -0.2151777744293213, 0.05946691706776619, -0.04844937101006508, 0.10870496928691864, -0.1203223168849945, 0.00032650819048285484, 0.06771857291460037, 0.03405105322599411, -0.07022690027952194, 0.08997488766908646, -0.14148816466331482, 0.07021000981330872, -0.008895989507436752, 0.063316211104393, -0.07381796091794968, 0.03131445124745369, 0.03570278361439705, 0.04327297583222389, 0.10143956542015076, 0.016347577795386314, 0.01815982162952423, -0.006923334673047066, -0.03724876418709755, -0.004533735103905201, 0.05821257084608078, -0.11273939907550812, 0.1287945955991745, -0.03846997022628784, 0.03290789946913719, -0.032124780118465424, -0.09767705947160721, -0.07597720623016357, -0.13616228103637695, 0.07806786894798279, -0.1088542565703392, -0.007740792352706194, -0.07020264863967896, -0.004575292579829693, 0.01777050644159317, 0.24464696645736694, -0.12275442481040955, -0.09141195565462112, -0.1528005599975586, 0.008724479004740715, 0.14415833353996277, -0.07159528136253357, -0.006269119214266539, -0.02082383818924427, 0.19507984817028046, -0.01596403308212757, -0.1294030398130417, -0.00011493093188619241, -0.09431256353855133, -0.1834445595741272, -0.03503057733178139, 0.1653972864151001, 0.06017891690135002, 0.03432193025946617, 0.00728067709133029, 0.003695135470479727, -0.06057407334446907, -0.1623261570930481, 0.04894152656197548, 0.1555415689945221, -0.005657280795276165, 0.030302906408905983, 0.00452885078266263, 0.01850682497024536, -0.1203167662024498, 0.0313689149916172, 0.04567597061395645, 0.18284820020198822, -0.07566330581903458, 0.18085487186908722, 0.028508232906460762, -0.09622784703969955, -0.19020076096057892, 0.023043693974614143, 0.015298424288630486, 0.01568729057908058, 0.025839446112513542, -0.17938232421875, 0.03522232919931412, 0.03700592368841171, -0.01200892310589552, 0.054964713752269745, -0.3354555666446686, -0.1468270868062973, 0.006884113419800997, 0.013844060711562634, -0.09936033189296722, -0.04432664066553116, -0.051230479031801224, -0.08660711348056793, -0.22298185527324677, 0.08690883219242096, -0.1209496557712555, 0.07559619843959808, 0.0014847841812297702, 0.093295618891716, 0.05572112649679184, -0.06174164637923241, 0.12150873988866806, -0.03159263730049133, 0.0710269883275032, -0.10074581205844879, -0.05782351642847061, 0.1009044423699379, -0.07621771097183228, 0.1068270355463028, 0.012399634346365929, 0.09250752627849579, -0.11327768862247467, -0.06694012880325317, -0.06982242316007614, 0.006220723036676645, -0.05477942153811455, -0.09525120258331299, -0.09936147183179855, 0.09362021833658218, 0.12773600220680237, -0.03665134683251381, -0.0941496193408966, -0.04085033759474754, 0.007267458364367485, 0.07388399541378021, 0.08631438761949539, 0.09730768948793411, -0.09962792694568634, 0.020103370770812035, 0.012980801984667778, 0.026137853041291237, -0.15704651176929474, 0.04479628801345825, 0.08580946922302246, 0.0453474335372448, 0.09904266148805618, 0.012336192652583122, -0.18038059771060944, 0.014493701979517937, 0.04648667946457863, -0.16954021155834198, -0.14344166219234467, -0.0415702760219574, -0.008764324709773064, -0.09545226395130157, -0.038641877472400665, 0.1327723264694214, -0.03976699337363243, -0.02239157259464264, 0.0025860602036118507, 0.06760347634553909, -0.043972015380859375, 0.09983589500188828, -0.007543334737420082, 0.05328588932752609, -0.07680383324623108, 0.11801206320524216, 0.05686775967478752, 0.03741975873708725, 0.040353868156671524, 0.07235509902238846, -0.07986577600240707, 0.009657537564635277, -0.09824640303850174, 0.027660232037305832, -0.05071662738919258, -0.010459908284246922, 0.0029375036247074604, -0.05023326724767685, 0.03498566150665283, 0.11779849976301193, -0.012936937622725964, 0.08878584206104279, -0.02203965373337269, -0.00014950874901842326, -0.14686638116836548, 0.09079743176698685, 0.02193724550306797, 0.02435498870909214, -0.10051292926073074, 0.19225434958934784, 0.013670319691300392, 0.09969143569469452, -0.04154201224446297, -0.05738111585378647, -0.06617531180381775, -0.013225979171693325, -0.1097051203250885, -0.049135420471429825, -0.08631695061922073, -0.038209281861782074, -0.0014428079593926668, -0.03090648539364338, -0.0069837141782045364, 0.058591749519109726, -0.02459157258272171, -0.06176932528614998, -0.05891915783286095, 0.03428706154227257, -0.1594863384962082, 0.012630083598196507, 0.12050114572048187, -0.046966370195150375, 0.12122891843318939, 0.049603402614593506, -0.02819899283349514, 0.022363699972629547, -0.10690111666917801, 0.03628949820995331, -0.012567601166665554, 0.018646132200956345, 0.03712717816233635, -0.13816016912460327, -0.00011848760186694562, -0.06518073379993439, -0.06756191700696945, 0.014685701578855515, 0.02149924822151661, -0.12519419193267822, -0.014897258020937443, 0.07915884256362915, -0.0030294640455394983, -0.05369826406240463, 0.05991567671298981, 0.05106645077466965, 0.017094839364290237, 0.06456923484802246, -0.024573149159550667, 0.08210305869579315, -0.16749075055122375, -0.04766430705785751, 0.012625031173229218, 0.028233738616108894, 0.03475869446992874, 0.0036064868327230215, 0.04088340327143669, -0.02448982372879982, 0.19208309054374695, 0.007062363438308239, -0.030276307836174965, 0.03615296632051468, -0.04246415197849274, 0.00137958989944309, 0.02606354095041752, 0.04953330382704735, -0.03753574192523956, -0.03506570681929588, -0.031176786869764328, -0.009166697040200233, -0.07420956343412399, -0.08316188305616379, 0.13030920922756195, 0.044682521373033524, 0.18383394181728363, -0.03935615345835686, 0.08889885991811752, -0.023962747305631638, -0.10997619479894638, -0.02680353820323944, -0.04234134405851364, 0.03937670588493347, -0.05237961187958717, 0.05283640697598457, 0.176082581281662, -0.1553376168012619, 0.11492917686700821, 0.019698897376656532, -0.053650952875614166, -0.09644639492034912, -0.15955960750579834, -0.020073961466550827, -0.032693441957235336, 0.03275153040885925, -0.13889078795909882, 0.09769324213266373, 0.022869763895869255, 0.03349171206355095, -0.05856054648756981, 0.13397860527038574, -0.0859929621219635, -0.09829039871692657, 0.02504821866750717, 0.031020138412714005, 0.02214357815682888, 0.06504948437213898, 0.0668867975473404, 0.023817116394639015, -0.0017832583980634809, 0.058535829186439514, 0.03736032918095589, 0.02806655690073967, 0.04101313650608063, -0.008771716617047787, -0.051818039268255234, 0.03039449267089367, -0.008440203033387661, 0.021090181544423103, 0.08933046460151672, 0.06957641243934631, -0.012095303274691105, -0.03780599310994148, 0.2707517445087433, -0.041107673197984695, -0.03495315834879875, -0.16049185395240784, 0.16107098758220673, 0.019174503162503242, -0.010336724109947681, 0.024036865681409836, -0.12584362924098969, 0.017456425353884697, 0.1415841281414032, 0.16331684589385986, -0.04586273059248924, 0.016973858699202538, -0.03767470270395279, 0.014067240059375763, 0.04397992044687271, 0.09044095873832703, 0.05612868070602417, 0.20857591927051544, -0.04718262329697609, 0.04895072802901268, -0.005753292702138424, -0.01697893813252449, -0.012952067889273167, 0.10763274133205414, -0.02629767544567585, 0.005081410054117441, -0.04995308816432953, 0.0981038361787796, -0.07655864208936691, -0.2586198151111603, -0.0009660340729169548, -0.02865036018192768, -0.10537884384393692, 0.04817613214254379, -0.02783704549074173, -0.029222501441836357, 0.08598969131708145, 0.031918566673994064, -0.03947281092405319, 0.16412848234176636, 0.03688111528754234, -0.0615483894944191, -0.0313756950199604, 0.08397447317838669, -0.012583624571561813, 0.20348799228668213, -0.023381926119327545, -0.0010211130138486624, 0.08261070400476456, -0.0049681710079312325, -0.11740435659885406, 0.016353826969861984, 0.041303668171167374, -0.09019798785448074, -0.017860231921076775, 0.20000118017196655, 0.016914939507842064, 0.04108161851763725, 0.06478581577539444, -0.05473603308200836, 0.014127444475889206, -0.07676578313112259, 0.03828518092632294, -0.1350819170475006, 0.05711892247200012, -0.07511899620294571, 0.13384480774402618, 0.190166637301445, -0.07315989583730698, 0.0314142145216465, -0.0560079887509346, 0.008999773301184177, -0.024851825088262558, 0.08634727448225021, -0.0048488425090909, -0.12557430565357208, 0.016374878585338593, 0.009149057790637016, 0.023243382573127747, -0.20653590559959412, -0.08175063133239746, 0.048796605318784714, -0.04651675745844841, 0.03363675996661186, 0.17104314267635345, 0.05400669574737549, 0.06366506963968277, -0.03181830421090126, 0.023344287648797035, -0.00562650803476572, 0.11703930795192719, -0.1442413330078125, -0.07774043083190918 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/91b25ad26e90b71d04d42ccec0a46347.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Purple</div> <a href="https://genius.com/artists/deep-purple"> <div style="text-align: center; font-size: 14px;">@deep-purple</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Deep Purple. Dataset is available [here](https://huggingface.co/datasets/huggingartists/deep-purple). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/deep-purple") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2sybcajo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Deep Purple's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3evu15qv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3evu15qv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/deep-purple') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/deep-purple") model = AutoModelWithLMHead.from_pretrained("huggingartists/deep-purple") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/deep-purple"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/deep-purple
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/deep-purple", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/deep-purple #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Purple</div> <a href="URL <div style="text-align: center; font-size: 14px;">@deep-purple</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Deep Purple. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Deep Purple's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Deep Purple.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Deep Purple's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/deep-purple #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Deep Purple.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Deep Purple's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/deep-purple #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Deep Purple.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Deep Purple's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.016629954800009727, 0.1818801611661911, -0.0032679918222129345, 0.047013744711875916, 0.08760514855384827, 0.005935182329267263, 0.0846450924873352, 0.10829196125268936, -0.008507847785949707, 0.0811704471707344, 0.0713777169585228, 0.033639464527368546, 0.07209569215774536, 0.09629253298044205, 0.07635119557380676, -0.25621461868286133, 0.03279350325465202, -0.09485748410224915, -0.011567449197173119, 0.1155763640999794, 0.09839355945587158, -0.06119666248559952, 0.0804876759648323, 0.03839080035686493, -0.0786283016204834, 0.016861138865351677, 0.005348398350179195, -0.06298945844173431, 0.08644279092550278, 0.05897926911711693, 0.0426115021109581, 0.023209348320961, 0.0667380690574646, -0.18855726718902588, 0.03148213028907776, 0.12962357699871063, 0.03554753214120865, 0.0779808908700943, 0.05967986583709717, -0.07717516273260117, 0.1316063106060028, -0.02345769852399826, 0.10452249646186829, 0.04805353656411171, -0.11445000022649765, -0.14557911455631256, -0.128261998295784, 0.10616201162338257, 0.08974655717611313, 0.0778358206152916, -0.029018308967351913, 0.05812497437000275, -0.03104380890727043, 0.038588251918554306, 0.23212216794490814, -0.24844877421855927, -0.01574394293129444, 0.07542657107114792, 0.0440240204334259, 0.020105741918087006, -0.07811672985553741, 0.01251436397433281, 0.03436661884188652, 0.020754637196660042, 0.046725332736968994, -0.018662208691239357, 0.16907626390457153, 0.02742154896259308, -0.10701609402894974, -0.07032902538776398, 0.10736087709665298, -0.02435488812625408, -0.07290162891149521, -0.1296035498380661, -0.007851148955523968, -0.018002808094024658, 0.03691412881016731, -0.0008073179051280022, 0.00779512757435441, 0.010862741619348526, -0.0321696400642395, -0.10534444451332092, -0.08694451302289963, -0.031708624213933945, -0.03016820177435875, 0.05228692293167114, 0.03959773853421211, 0.036066845059394836, -0.0760471299290657, 0.22297467291355133, -0.03552631661295891, -0.0933675691485405, -0.04597291350364685, -0.1002211794257164, -0.09552479535341263, -0.04799538850784302, 0.002352282637730241, 0.003857392119243741, -0.045154597610235214, 0.16656504571437836, -0.00392597122117877, 0.03724448382854462, -0.02260015159845352, -0.00603738846257329, 0.14206402003765106, 0.136372908949852, -0.11542204022407532, -0.02783852070569992, 0.0700104832649231, -0.012891768477857113, -0.05755455046892166, -0.05314856767654419, -0.013668001629412174, -0.018186461180448532, 0.0299894530326128, 0.07567732036113739, 0.0730581060051918, 0.05776209756731987, 0.005151457618921995, -0.06819319725036621, 0.07069777697324753, -0.1363004744052887, 0.018408168107271194, 0.001131505356170237, -0.04816347733139992, 0.01914501190185547, 0.049947820603847504, 0.024061162024736404, -0.10063648968935013, 0.10466232150793076, -0.057376276701688766, -0.04995092377066612, -0.0848173126578331, -0.09013256430625916, -0.000024257860786747187, -0.02248196490108967, -0.047937411814928055, -0.07362587004899979, -0.17880433797836304, -0.03956688940525055, 0.035601019859313965, -0.050572287291288376, -0.03933848440647125, 0.03972568362951279, -0.01890346221625805, 0.009590726345777512, -0.016130231320858, -0.04180251806974411, -0.026380615308880806, 0.033470164984464645, -0.06316911429166794, 0.029368845745921135, 0.07316669821739197, 0.045192256569862366, -0.1061372458934784, 0.07104432582855225, -0.1689947098493576, 0.1220220997929573, -0.011455834843218327, 0.010814396664500237, -0.09819605201482773, -0.09507794678211212, -0.02037334255874157, -0.03975284844636917, 0.0014473438495770097, 0.09894180297851562, -0.17547686398029327, -0.03221709653735161, 0.19482913613319397, -0.06826862692832947, -0.06888867169618607, 0.07623223960399628, -0.07699660956859589, 0.02561788260936737, 0.12078341096639633, 0.08607237040996552, 0.1629222333431244, -0.11573538929224014, -0.05867055431008339, -0.04738222062587738, -0.07054658234119415, 0.17860057950019836, 0.05271260440349579, -0.02313058450818062, 0.017482763156294823, 0.0037951942067593336, -0.04317465424537659, -0.02522500976920128, -0.01770944520831108, -0.034583572298288345, -0.01883096992969513, -0.000646687054540962, 0.007237606216222048, -0.044877856969833374, -0.0588994063436985, -0.029469607397913933, -0.10188934206962585, 0.07200614362955093, 0.10208750516176224, -0.06050780415534973, 0.010451358743011951, -0.10059916973114014, 0.02001739665865898, -0.032176390290260315, 0.0037084193900227547, -0.17295055091381073, -0.03847133368253708, 0.02403419278562069, -0.07646344602108002, 0.08456141501665115, 0.028237711638212204, 0.03818132355809212, 0.06156019866466522, -0.015110401436686516, 0.004316679202020168, -0.04807895049452782, -0.01889423280954361, -0.025696037337183952, -0.1574573963880539, -0.05548449978232384, -0.03865230083465576, 0.09253881126642227, -0.10747005045413971, 0.011800721287727356, 0.07649491727352142, 0.13616697490215302, 0.01935262233018875, -0.06635506451129913, 0.02528884820640087, -0.04698219895362854, -0.02284989133477211, -0.10505034029483795, -0.04792210832238197, 0.01034095324575901, -0.018230384215712547, 0.14323697984218597, -0.16090373694896698, -0.056692127138376236, 0.11255506426095963, 0.11136786639690399, -0.0841895267367363, 0.05004201456904411, -0.07800426334142685, -0.01438547857105732, -0.045254357159137726, -0.040302686393260956, 0.24882908165454865, 0.030776722356677055, 0.07877057045698166, -0.10746634006500244, -0.09672798961400986, -0.009019598364830017, -0.05251399800181389, -0.026062356308102608, 0.025562245398759842, 0.033845704048871994, -0.16484415531158447, 0.03894612565636635, -0.0019692028872668743, 0.08842667192220688, 0.19242113828659058, 0.03798665851354599, -0.07794680446386337, -0.0672173872590065, -0.06598260998725891, -0.00022319727577269077, 0.06605330109596252, 0.01417375635355711, 0.03397110477089882, 0.04353665933012962, 0.051135022193193436, 0.03988499566912651, -0.12066821753978729, 0.009906257502734661, 0.06673712283372879, -0.03458956256508827, -0.054732922464609146, 0.011706236749887466, 0.0292417723685503, 0.08575335890054703, 0.09461414813995361, 0.1404338777065277, -0.057370688766241074, -0.051727816462516785, -0.13632695376873016, 0.1336997002363205, -0.10349167138338089, -0.24358035624027252, -0.13257548213005066, -0.07856032997369766, 0.011052435263991356, 0.016567915678024292, 0.029482418671250343, -0.06221134588122368, -0.041955288499593735, -0.08888231217861176, 0.0953480452299118, -0.05025963857769966, -0.010594856925308704, 0.00562262162566185, 0.022918201982975006, -0.016820251941680908, -0.11238928884267807, -0.030651455745100975, 0.028551414608955383, -0.08377693593502045, -0.004929456394165754, 0.03291027247905731, 0.030322646722197533, 0.17377059161663055, -0.0088668717071414, 0.0060301232151687145, -0.01732730120420456, 0.264360249042511, -0.10969297587871552, 0.07252354174852371, 0.18138982355594635, -0.009720101952552795, 0.06173603981733322, 0.07921113818883896, 0.004565793089568615, -0.06227768212556839, 0.07321088016033173, 0.0739627331495285, -0.06300140917301178, -0.21822598576545715, -0.030360527336597443, -0.014902083203196526, 0.0183490552008152, 0.10775063931941986, 0.043287865817546844, 0.029235824942588806, 0.0053778719156980515, -0.09445516765117645, 0.046704910695552826, 0.024350613355636597, 0.1004936546087265, -0.04359352961182594, -0.013242583721876144, 0.050206564366817474, -0.05475688353180885, 0.028334209695458412, 0.13328243792057037, 0.029051117599010468, 0.18199710547924042, -0.06946942955255508, 0.07636591047048569, 0.07917505502700806, 0.1256358027458191, 0.030089283362030983, 0.012752274051308632, -0.015566849149763584, 0.022530535236001015, 0.005089818965643644, -0.0935547798871994, -0.02307744137942791, 0.03241544961929321, 0.042091477662324905, -0.014660944230854511, -0.041647881269454956, -0.0612751841545105, 0.04454503208398819, 0.23101454973220825, 0.023112963885068893, -0.16446149349212646, -0.09611941128969193, 0.061093371361494064, -0.06496784090995789, -0.06675729900598526, -0.013865452259778976, 0.06149710342288017, -0.21560156345367432, 0.055262647569179535, -0.033640045672655106, 0.1076563224196434, -0.12215500324964523, 0.0029254890978336334, 0.08681921660900116, 0.04933115467429161, -0.06540366262197495, 0.08866964280605316, -0.15918031334877014, 0.04733772203326225, -0.0021991990506649017, 0.07366779446601868, -0.06281615048646927, 0.028241027146577835, 0.012549454346299171, 0.047836702316999435, 0.06817954033613205, 0.01953272894024849, 0.031720634549856186, -0.02245432138442993, -0.05110876262187958, 0.00294676935300231, 0.07081889361143112, -0.111147940158844, 0.1203700602054596, -0.03713463246822357, 0.032585009932518005, -0.024926794692873955, -0.08392620831727982, -0.09279195964336395, -0.14282427728176117, 0.08555098623037338, -0.1286790370941162, 0.01064950879663229, -0.07639661431312561, -0.017643792554736137, 0.02581802010536194, 0.24608416855335236, -0.08097913861274719, -0.07595664262771606, -0.1397407203912735, 0.002493572188541293, 0.13916294276714325, -0.07634159177541733, 0.015293797478079796, -0.017043130472302437, 0.18188637495040894, 0.005208972375839949, -0.13410121202468872, -0.003486649366095662, -0.0642380565404892, -0.1761147379875183, -0.022559456527233124, 0.1631225049495697, 0.06110232695937157, 0.0375388003885746, 0.0006019651191309094, 0.0007871154230087996, -0.05352887511253357, -0.16957905888557434, 0.03136489912867546, 0.16018332540988922, 0.00563650019466877, 0.031379107385873795, 0.03858339041471481, 0.029966240748763084, -0.109699547290802, 0.024514582008123398, 0.052008502185344696, 0.17538563907146454, -0.07400093227624893, 0.18147966265678406, 0.02177133969962597, -0.08667677640914917, -0.16495095193386078, 0.03643042594194412, 0.01740553416311741, 0.030276650562882423, 0.01664413884282112, -0.19497306644916534, 0.046029798686504364, 0.03013077937066555, -0.009673221036791801, 0.03719872236251831, -0.33660298585891724, -0.14879798889160156, 0.011501370929181576, 0.009250457398593426, -0.10058917105197906, -0.03988923504948616, -0.0394413135945797, -0.08201253414154053, -0.2568594813346863, 0.10499756783246994, -0.12783804535865784, 0.0809696614742279, 0.011065822094678879, 0.08252089470624924, 0.046485546976327896, -0.054296135902404785, 0.1241208091378212, -0.030935680493712425, 0.06567106395959854, -0.0948835164308548, -0.03824709355831146, 0.07918012887239456, -0.06708088517189026, 0.09928251057863235, 0.04212408512830734, 0.09016112983226776, -0.11504346132278442, -0.0766158327460289, -0.08003774285316467, 0.011710131540894508, -0.05997525155544281, -0.09929731488227844, -0.09297321736812592, 0.08977169543504715, 0.12046770006418228, -0.04381556808948517, -0.09795244038105011, -0.047737278044223785, -0.004165319260209799, 0.05739511549472809, 0.11302947252988815, 0.1009722650051117, -0.09501386433839798, 0.008819694630801678, 0.012960952706634998, 0.018071921542286873, -0.16812987625598907, 0.04047797992825508, 0.08455103635787964, 0.03898779675364494, 0.10475064069032669, 0.008099035359919071, -0.1636507511138916, 0.001939617795869708, 0.04604412987828255, -0.1677442491054535, -0.10677993297576904, -0.03407929837703705, 0.027830390259623528, -0.10348723083734512, -0.04923804849386215, 0.12998521327972412, -0.03130700811743736, -0.040948063135147095, 0.010199269279837608, 0.05076391249895096, -0.04525512456893921, 0.09301917254924774, 0.030596241354942322, 0.042324330657720566, -0.06872767955064774, 0.12129683047533035, 0.0649823322892189, 0.014817905612289906, 0.03990669548511505, 0.06546955555677414, -0.08793827146291733, 0.006270475219935179, -0.056046534329652786, 0.018091171979904175, -0.026494702324271202, -0.01260436326265335, 0.005505912005901337, -0.04786176607012749, 0.041643355041742325, 0.08126570284366608, -0.009921811521053314, 0.109377920627594, -0.04071783646941185, 0.007111378479748964, -0.12522739171981812, 0.07482361793518066, 0.04338777810335159, 0.019919322803616524, -0.11552685499191284, 0.19528327882289886, 0.024358540773391724, 0.09733482450246811, -0.0372660756111145, -0.05641330033540726, -0.0725686177611351, -0.011904846876859665, -0.11013030260801315, -0.050974417477846146, -0.07594180107116699, -0.025817908346652985, -0.010372203774750233, -0.03771136328577995, -0.01990542933344841, 0.043844979256391525, -0.03572918474674225, -0.05749020725488663, -0.06843960285186768, 0.040373314172029495, -0.14823438227176666, 0.027732500806450844, 0.12895934283733368, -0.055296000093221664, 0.12504594027996063, 0.05920236185193062, -0.03194282576441765, 0.01732921227812767, -0.09926342964172363, 0.028124850243330002, -0.02754349075257778, 0.019960986450314522, 0.02478170394897461, -0.14667831361293793, 0.010257729329168797, -0.05189349874854088, -0.0678785964846611, 0.006984054576605558, 0.013135778717696667, -0.1315726637840271, 0.011989551596343517, 0.0650254637002945, -0.0164183396846056, -0.07529037445783615, 0.06172667816281319, 0.04665582627058029, 0.026950722560286522, 0.05283075198531151, -0.025849273428320885, 0.07556019723415375, -0.16570517420768738, -0.05404866486787796, 0.008860347792506218, 0.029343415051698685, 0.03757282719016075, -0.006527671590447426, 0.04153198376297951, -0.01710689812898636, 0.18811939656734467, 0.01747582107782364, -0.02965516224503517, 0.0377010740339756, -0.049308471381664276, 0.006551073398441076, 0.04679793491959572, 0.06188870966434479, -0.04269978031516075, -0.03628122806549072, 0.010839739814400673, -0.020742883905768394, -0.08402986824512482, -0.049189675599336624, 0.11570195108652115, 0.05643989145755768, 0.19800648093223572, -0.05444301664829254, 0.06516417860984802, -0.015745071694254875, -0.13359525799751282, -0.0031161634251475334, -0.04800667613744736, 0.036773234605789185, -0.06781137734651566, 0.06802690029144287, 0.16300593316555023, -0.16057048738002777, 0.11358227580785751, 0.023065512999892235, -0.05972479656338692, -0.11858966946601868, -0.18521037697792053, -0.018549347296357155, -0.04153717681765556, 0.02987089194357395, -0.13525395095348358, 0.08759408444166183, 0.021247055381536484, 0.03751920536160469, -0.0660504400730133, 0.12383141368627548, -0.07406673580408096, -0.11885279417037964, 0.03318490833044052, 0.027415938675403595, 0.023376990109682083, 0.04873887449502945, 0.07239796966314316, 0.025276169180870056, 0.014304490759968758, 0.0740119144320488, 0.042940109968185425, 0.023970410227775574, 0.031769465655088425, -0.023709002882242203, -0.0500359870493412, 0.033710818737745285, 0.0006895923288539052, 0.029925430193543434, 0.08802226185798645, 0.060914576053619385, -0.02188669517636299, -0.02936599589884281, 0.3085572421550751, -0.041187774389982224, -0.0364522822201252, -0.17160151898860931, 0.16716310381889343, 0.002452622400596738, -0.010662363842129707, 0.027245568111538887, -0.1290154755115509, -0.0014524434227496386, 0.14482881128787994, 0.16352592408657074, -0.03952934220433235, 0.019036144018173218, -0.02408011443912983, 0.013865168206393719, 0.0351666659116745, 0.09667326509952545, 0.07745019346475601, 0.19557315111160278, -0.04217539727687836, 0.045340459793806076, -0.0016573169268667698, -0.018043069168925285, -0.012378119863569736, 0.09955807030200958, -0.034087929874658585, 0.006678606849163771, -0.05456306040287018, 0.10252897441387177, -0.05402962118387222, -0.28460320830345154, -0.023401938378810883, -0.026328017935156822, -0.10036955028772354, 0.06390247493982315, -0.019502639770507812, -0.029481958597898483, 0.08683643490076065, 0.02078636735677719, -0.04364984109997749, 0.13910670578479767, 0.04390550032258034, -0.052336521446704865, -0.012121166102588177, 0.10408982634544373, -0.010114687494933605, 0.17500706017017365, -0.018814677372574806, 0.008875702507793903, 0.08801836520433426, 0.016118399798870087, -0.11977747082710266, 0.004574387334287167, 0.04280007630586624, -0.07599858194589615, -0.03461384400725365, 0.19685505330562592, 0.01527940109372139, 0.03342505171895027, 0.06965544074773788, -0.055659450590610504, 0.015145095065236092, -0.06720542162656784, 0.05700162053108215, -0.1615283191204071, 0.06209281459450722, -0.09016154706478119, 0.13004928827285767, 0.1849742978811264, -0.07029574364423752, 0.026265813037753105, -0.06290163099765778, 0.001664508250541985, -0.02479652501642704, 0.06815116852521896, -0.019010338932275772, -0.10408443957567215, 0.016152596101164818, 0.024050859734416008, 0.02721382863819599, -0.17926111817359924, -0.07930432260036469, 0.06256694346666336, -0.045951321721076965, 0.011367466300725937, 0.1748180389404297, 0.02047702670097351, 0.0641162246465683, -0.03289474546909332, -0.004385954234749079, -0.01965164765715599, 0.11455211788415909, -0.16186092793941498, -0.08338580280542374 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/cc5ab151c2e490b6795919a7838ffdc4.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DenDerty</div> <a href="https://genius.com/artists/denderty"> <div style="text-align: center; font-size: 14px;">@denderty</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from DenDerty. Dataset is available [here](https://huggingface.co/datasets/huggingartists/denderty). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/denderty") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/gu1nyrga/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on DenDerty's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2hx5b1gk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2hx5b1gk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/denderty') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/denderty") model = AutoModelWithLMHead.from_pretrained("huggingartists/denderty") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/denderty"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/denderty
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/denderty", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/denderty #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">DenDerty</div> <a href="URL <div style="text-align: center; font-size: 14px;">@denderty</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from DenDerty. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on DenDerty's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from DenDerty.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DenDerty's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/denderty #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from DenDerty.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DenDerty's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/denderty #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from DenDerty.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DenDerty's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.016924748197197914, 0.1539500653743744, -0.002990186447277665, 0.038349658250808716, 0.09177540987730026, 0.010697265155613422, 0.08702724426984787, 0.10306210070848465, -0.002342064632102847, 0.0707613006234169, 0.06958362460136414, 0.015881452709436417, 0.07138977944850922, 0.10872480273246765, 0.08165477961301804, -0.2564433813095093, 0.03228331357240677, -0.09184248745441437, 0.011055988259613514, 0.11500145494937897, 0.09882156550884247, -0.061360448598861694, 0.0870724469423294, 0.04109207168221474, -0.07828422635793686, 0.016661183908581734, 0.0011821393854916096, -0.06756588071584702, 0.09287185221910477, 0.06616762280464172, 0.04419204592704773, 0.022567586973309517, 0.06679040938615799, -0.1851324886083603, 0.030251815915107727, 0.12480786442756653, 0.03471658378839493, 0.07576421648263931, 0.04634321480989456, -0.07739464938640594, 0.1648765355348587, -0.01857883110642433, 0.09804625809192657, 0.046937406063079834, -0.12060436606407166, -0.14858104288578033, -0.126871258020401, 0.08909085392951965, 0.09391345083713531, 0.08924170583486557, -0.02886820025742054, 0.04702112823724747, -0.021778032183647156, 0.04567646607756615, 0.22638648748397827, -0.24188484251499176, -0.014769218862056732, 0.10294385254383087, 0.043434467166662216, 0.021171126514673233, -0.08119506388902664, 0.01543737668544054, 0.041575606912374496, 0.021652702242136, 0.05201531946659088, -0.016458161175251007, 0.2056935429573059, 0.02109169028699398, -0.0997733399271965, -0.08287394046783447, 0.12047164142131805, -0.027347151190042496, -0.07113143056631088, -0.13761013746261597, -0.0003911744279321283, -0.018042298033833504, 0.0371779128909111, -0.00810682587325573, -0.005361095070838928, 0.0045279813930392265, -0.03747781738638878, -0.10665996372699738, -0.09014813601970673, -0.027652986347675323, -0.029944993555545807, 0.0665990486741066, 0.029993224889039993, 0.03425552695989609, -0.08295361697673798, 0.23300053179264069, -0.012407329864799976, -0.09956056624650955, -0.0497361458837986, -0.09310495108366013, -0.09290222078561783, -0.06212076172232628, 0.010332426987588406, 0.003754568053409457, -0.054924849420785904, 0.14837868511676788, -0.035146310925483704, 0.03209536895155907, -0.006484029348939657, -0.013848977163434029, 0.15185558795928955, 0.13432322442531586, -0.10077568888664246, -0.03411831706762314, 0.056196071207523346, -0.015298979356884956, -0.0662936344742775, -0.05469787120819092, -0.010707934387028217, -0.018859224393963814, 0.03973424807190895, 0.08425568044185638, 0.05827154591679573, 0.06264296919107437, 0.015465179458260536, -0.06620633602142334, 0.0958600714802742, -0.13729360699653625, 0.017688052728772163, -0.0052467770874500275, -0.042003780603408813, 0.02157520316541195, 0.04977591335773468, 0.017213566228747368, -0.10403155535459518, 0.12014945596456528, -0.06199273467063904, -0.049612514674663544, -0.08196502178907394, -0.0906619280576706, -0.004102287348359823, -0.020696349442005157, -0.043267033994197845, -0.07278357446193695, -0.16719311475753784, -0.04159918054938316, 0.03513467684388161, -0.047973573207855225, -0.04179701581597328, 0.02635508030653, -0.02336670644581318, 0.013415264897048473, -0.013045646250247955, -0.033217042684555054, -0.02905309572815895, 0.024507995694875717, -0.05863577127456665, 0.028857436031103134, 0.0718068853020668, 0.044899098575115204, -0.1121244803071022, 0.0728105902671814, -0.15774133801460266, 0.12787409126758575, -0.010593140497803688, 0.016717756167054176, -0.09958166629076004, -0.09170256555080414, -0.025105176493525505, -0.0303907860070467, -0.003712697885930538, 0.0947214886546135, -0.17942476272583008, -0.03454799950122833, 0.21012140810489655, -0.07739079743623734, -0.08290453255176544, 0.06512048840522766, -0.08010216802358627, 0.040136951953172684, 0.13124056160449982, 0.05962343141436577, 0.16588518023490906, -0.11873412132263184, -0.06090753525495529, -0.04679455980658531, -0.06591129302978516, 0.19730602204799652, 0.046143386512994766, -0.01643597148358822, 0.01766066998243332, 0.005629289895296097, -0.034864842891693115, -0.021386506035923958, -0.01797165721654892, -0.03763170540332794, -0.015270652249455452, 0.013759289868175983, -0.0046880487352609634, -0.04506862163543701, -0.06586424261331558, -0.02809910848736763, -0.1034059152007103, 0.054088007658720016, 0.10101432353258133, -0.06925120949745178, 0.006367660127580166, -0.09573739022016525, 0.0060106911696493626, -0.03332698345184326, 0.011920174583792686, -0.17345170676708221, -0.058785200119018555, 0.022994231432676315, -0.06782808899879456, 0.08099260926246643, 0.04357944801449776, 0.03963097184896469, 0.05694325268268585, -0.01592664234340191, 0.012460377998650074, -0.04563767462968826, -0.017023757100105286, -0.023965410888195038, -0.14519871771335602, -0.055592358112335205, -0.04941670596599579, 0.0810917466878891, -0.12496093660593033, 0.0048778606578707695, 0.09681107103824615, 0.12809304893016815, 0.024081436917185783, -0.06333775073289871, 0.01759343594312668, -0.0417446494102478, -0.03138376772403717, -0.107892706990242, -0.050556667149066925, 0.009693648666143417, -0.024054070934653282, 0.15222594141960144, -0.1739027053117752, -0.08156169950962067, 0.10575468838214874, 0.1284516304731369, -0.09398641437292099, 0.031232483685016632, -0.08104410767555237, -0.0138249471783638, -0.04977910965681076, -0.042668621987104416, 0.2687036395072937, 0.037029583007097244, 0.0784098207950592, -0.10204506665468216, -0.10003287345170975, -0.006518014241009951, -0.04058697447180748, -0.032120365649461746, 0.02135154977440834, 0.02173897810280323, -0.18089143931865692, 0.03398705646395683, -0.0009670981671661139, 0.10277704894542694, 0.20211878418922424, 0.04430830106139183, -0.08355807512998581, -0.061647601425647736, -0.0731324851512909, -0.001129722106270492, 0.057726819068193436, 0.013466637581586838, 0.02589019201695919, 0.04146229103207588, 0.059659693390131, 0.03996258229017258, -0.11591028422117233, 0.013383224606513977, 0.07580644637346268, -0.04093576595187187, -0.04694950953125954, 0.01458679884672165, 0.02115699090063572, 0.0798904150724411, 0.089210145175457, 0.13487187027931213, -0.05983468145132065, -0.04774384945631027, -0.14135292172431946, 0.1351749151945114, -0.08475249260663986, -0.2538715600967407, -0.13249912858009338, -0.07301303744316101, 0.020283490419387817, 0.009412704035639763, 0.028304532170295715, -0.04839732125401497, -0.04340148717164993, -0.09138455241918564, 0.08959462493658066, -0.05382472276687622, -0.022280722856521606, 0.011496859602630138, 0.02096494473516941, -0.02641647309064865, -0.1157904639840126, -0.03249417617917061, 0.04020915552973747, -0.09829776734113693, -0.007936730049550533, 0.0324198454618454, 0.03583398833870888, 0.16325609385967255, -0.014980347827076912, 0.004725724924355745, -0.024515783414244652, 0.2832050323486328, -0.1190430223941803, 0.07453131675720215, 0.15931390225887299, -0.012766224332153797, 0.056204114109277725, 0.07687494158744812, 0.004752811510115862, -0.06321582198143005, 0.07560216635465622, 0.07549035549163818, -0.07848647236824036, -0.2123684138059616, -0.03285425156354904, -0.013007692992687225, 0.009371141903102398, 0.12174715846776962, 0.04959753528237343, 0.053525324910879135, 0.008702094666659832, -0.10092949867248535, 0.042434386909008026, 0.033239636570215225, 0.10246268659830093, -0.05224492400884628, -0.007527078036218882, 0.04878788813948631, -0.05690513923764229, 0.02796418033540249, 0.12845058739185333, 0.041113339364528656, 0.20234264433383942, -0.06642865389585495, 0.08846589177846909, 0.07723617553710938, 0.09499602764844894, 0.028601042926311493, 0.020909566432237625, -0.018346598371863365, 0.016974367201328278, 0.0016308053163811564, -0.09081289917230606, -0.011266423389315605, 0.03901497274637222, 0.03420194983482361, -0.016172803938388824, -0.03966093063354492, -0.051365774124860764, 0.0430685319006443, 0.22992956638336182, 0.018258826807141304, -0.17391131818294525, -0.10591796040534973, 0.05368697643280029, -0.06600137054920197, -0.06237446516752243, -0.01700141280889511, 0.07247257232666016, -0.2165343165397644, 0.06760552525520325, -0.0333561934530735, 0.10873580724000931, -0.12774159014225006, -0.000569899391848594, 0.08440801501274109, 0.047782011330127716, -0.06367369741201401, 0.09460815787315369, -0.17564471065998077, 0.06373687088489532, -0.009590286761522293, 0.0768343135714531, -0.07075530290603638, 0.029741333797574043, 0.006618623621761799, 0.051656827330589294, 0.07914035022258759, 0.019863450899720192, 0.016765451058745384, 0.0005966988392174244, -0.04393688589334488, 0.005950562190264463, 0.056460149586200714, -0.1175965964794159, 0.12240909039974213, -0.03405303880572319, 0.03294007480144501, -0.033294081687927246, -0.08384348452091217, -0.08875115215778351, -0.15659837424755096, 0.08717592805624008, -0.11827666312456131, 0.0010359539883211255, -0.06817217171192169, -0.019912656396627426, 0.030494514852762222, 0.2526877820491791, -0.061214812099933624, -0.0812915489077568, -0.13697731494903564, 0.0042105927132070065, 0.13515214622020721, -0.08158977329730988, 0.008887622505426407, -0.01584206521511078, 0.19365233182907104, 0.0010266955941915512, -0.13025730848312378, -0.008634114637970924, -0.06467383354902267, -0.16992220282554626, -0.011786689050495625, 0.16684357821941376, 0.06518560647964478, 0.032254040241241455, 0.009029844775795937, 0.00024901021970435977, -0.044787123799324036, -0.17196717858314514, 0.025530250743031502, 0.15590113401412964, -0.01564173959195614, 0.011565200984477997, 0.04760027676820755, 0.01838967390358448, -0.12588341534137726, 0.02134031429886818, 0.057138841599226, 0.170376718044281, -0.07327233999967575, 0.17991319298744202, 0.01803286001086235, -0.09246926754713058, -0.15780693292617798, 0.024643104523420334, 0.019306505098938942, 0.03462370112538338, 0.026341909542679787, -0.19967134296894073, 0.043439313769340515, 0.029724489897489548, -0.001211614697240293, 0.056639038026332855, -0.3243870735168457, -0.15076440572738647, 0.0015271620359271765, 0.010352001525461674, -0.11842793971300125, -0.030662698671221733, -0.03629813715815544, -0.07888350635766983, -0.26203295588493347, 0.1008232980966568, -0.10220342874526978, 0.07263794541358948, 0.021149223670363426, 0.09781213104724884, 0.04596644267439842, -0.05198083445429802, 0.12534239888191223, -0.02673625759780407, 0.06356494128704071, -0.10240539908409119, -0.05920304358005524, 0.07575827091932297, -0.06655826419591904, 0.10263904929161072, 0.03343331441283226, 0.08901778608560562, -0.09715454280376434, -0.08327847719192505, -0.07718472927808762, 0.007596076466143131, -0.06092514097690582, -0.09548776596784592, -0.09444878250360489, 0.08986098319292068, 0.1259835958480835, -0.04355565086007118, -0.08797677606344223, -0.054008860141038895, -0.0010247027967125177, 0.053333692252635956, 0.11722493916749954, 0.07760003209114075, -0.07400766015052795, 0.003612007014453411, 0.018081389367580414, 0.019621560350060463, -0.16620194911956787, 0.0485663041472435, 0.09181204438209534, 0.037645939737558365, 0.10757933557033539, 0.00966516975313425, -0.16993775963783264, 0.0027412842027843, 0.05008222535252571, -0.16440995037555695, -0.12077506631612778, -0.044831447303295135, 0.014353165403008461, -0.10392465442419052, -0.04989444464445114, 0.13368964195251465, -0.03269121050834656, -0.03464498743414879, 0.0048745498061180115, 0.044824231415987015, -0.04723837226629257, 0.08873900771141052, 0.00090654322411865, 0.04471241310238838, -0.06586761027574539, 0.11354217678308487, 0.07198478281497955, 0.012218980118632317, 0.03968134522438049, 0.06362253427505493, -0.09118231385946274, 0.00913007277995348, -0.09553292393684387, 0.014723267406225204, -0.03145259618759155, -0.013998906128108501, 0.020326942205429077, -0.04327039793133736, 0.040796343237161636, 0.07736453413963318, -0.014468509703874588, 0.11477614939212799, -0.04006299749016762, 0.00966537743806839, -0.13230296969413757, 0.07186309248209, 0.03626048564910889, 0.0233161561191082, -0.11869373172521591, 0.19729986786842346, 0.03015664778649807, 0.09643857926130295, -0.03670908138155937, -0.06156165525317192, -0.0620504654943943, -0.01039700023829937, -0.0929112657904625, -0.045312702655792236, -0.09695467352867126, -0.025124559178948402, -0.003243784187361598, -0.0387585274875164, -0.022937528789043427, 0.044426221400499344, -0.03296399861574173, -0.05721227452158928, -0.06958531588315964, 0.04420849308371544, -0.13442765176296234, 0.03180607408285141, 0.11963540315628052, -0.05558008328080177, 0.12001346796751022, 0.05140910670161247, -0.0342656672000885, 0.025288641452789307, -0.12116236239671707, 0.041871216148138046, -0.016448020935058594, 0.015795873478055, 0.024142233654856682, -0.15874534845352173, 0.006768329534679651, -0.04184721037745476, -0.06569816172122955, 0.0062354132533073425, -0.006877688691020012, -0.1312175989151001, -0.0009832240175455809, 0.07975295931100845, -0.02127469889819622, -0.06839700788259506, 0.06893268972635269, 0.05744032561779022, 0.01785065047442913, 0.06151339411735535, -0.024297956377267838, 0.07858492434024811, -0.16610325872898102, -0.05371065065264702, 0.00374256051145494, 0.035029858350753784, 0.043096959590911865, -0.016226788982748985, 0.036615557968616486, -0.021442553028464317, 0.19065578281879425, 0.016678564250469208, -0.020182127133011818, 0.038462281227111816, -0.06600687652826309, -0.010310584679245949, 0.04485255107283592, 0.07399222254753113, -0.03443991392850876, -0.039851751178503036, 0.003329533850774169, -0.01876373402774334, -0.09503165632486343, -0.041112642735242844, 0.11454001814126968, 0.0362556055188179, 0.1817583590745926, -0.05356285348534584, 0.06578023731708527, -0.01637895219027996, -0.12034472078084946, -0.021376587450504303, -0.04550732299685478, 0.03392930328845978, -0.06166823208332062, 0.05225202813744545, 0.17675752937793732, -0.16020897030830383, 0.11803054064512253, 0.022265665233135223, -0.060747187584638596, -0.1109524518251419, -0.19875739514827728, -0.017882807180285454, -0.03335827589035034, 0.02837957814335823, -0.1401054859161377, 0.08680327236652374, 0.016462501138448715, 0.03807196021080017, -0.07270238548517227, 0.1364346444606781, -0.0763135701417923, -0.1228887066245079, 0.03813781961798668, 0.025817079469561577, 0.031688738614320755, 0.04501858726143837, 0.08458484709262848, 0.022049931809306145, 0.018917765468358994, 0.07027869671583176, 0.04079805687069893, 0.027656830847263336, 0.032534752041101456, -0.023545224219560623, -0.04645698517560959, 0.03122168593108654, -0.0011145735625177622, 0.025807762518525124, 0.09056589752435684, 0.06366746127605438, -0.018187589943408966, -0.024620430544018745, 0.3009496331214905, -0.03477862849831581, -0.042422059923410416, -0.18216554820537567, 0.1653270125389099, 0.008809948340058327, -0.005529945716261864, 0.027740463614463806, -0.12177664786577225, 0.005664734169840813, 0.12890976667404175, 0.16891908645629883, -0.022095609456300735, 0.021211465820670128, -0.029922574758529663, 0.01898818276822567, 0.0367826484143734, 0.09501596540212631, 0.06127018854022026, 0.19544042646884918, -0.03467005491256714, 0.05128094553947449, -0.012763915583491325, -0.018851175904273987, 0.004303895868360996, 0.08717477321624756, -0.032883040606975555, 0.008956284262239933, -0.05625973269343376, 0.10216440260410309, -0.055942781269550323, -0.2724413275718689, -0.027540605515241623, -0.027853352949023247, -0.09282616525888443, 0.06399575620889664, -0.02979588508605957, -0.024230696260929108, 0.08831536769866943, 0.028458913788199425, -0.04598228260874748, 0.15107500553131104, 0.048753201961517334, -0.047960709780454636, -0.007379548624157906, 0.10403677076101303, -0.014654519036412239, 0.1745566576719284, -0.027704816311597824, 0.0068442788906395435, 0.08335235714912415, 0.01792069710791111, -0.12466178089380264, 0.005915708374232054, 0.040113117545843124, -0.05979445204138756, -0.025266222655773163, 0.1922266036272049, 0.013932560570538044, 0.030076082795858383, 0.07202038913965225, -0.06597509980201721, 0.01962951384484768, -0.05313478410243988, 0.06096014752984047, -0.14692261815071106, 0.0658709779381752, -0.08104842901229858, 0.13219892978668213, 0.190664604306221, -0.06549564003944397, 0.025835314765572548, -0.05898037180304527, 0.008367602713406086, -0.02650723047554493, 0.07403559982776642, -0.025015970692038536, -0.10726268589496613, 0.00890838447958231, 0.026291808113455772, 0.02179207094013691, -0.17844608426094055, -0.07184020429849625, 0.06930080056190491, -0.05080825462937355, 0.02184031903743744, 0.17613565921783447, 0.02236296236515045, 0.06507837772369385, -0.03793046995997429, -0.004483169876039028, -0.013999653980135918, 0.11611521244049072, -0.16580629348754883, -0.08224297314882278 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/7499a229de60cdfb23ce61f5924c401d.416x416x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DJ Artem Artemov</div> <a href="https://genius.com/artists/dj-artem-artemov"> <div style="text-align: center; font-size: 14px;">@dj-artem-artemov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from DJ Artem Artemov. Dataset is available [here](https://huggingface.co/datasets/huggingartists/dj-artem-artemov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dj-artem-artemov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2yaf9hon/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on DJ Artem Artemov's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/crwya5am) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/crwya5am/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/dj-artem-artemov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/dj-artem-artemov") model = AutoModelWithLMHead.from_pretrained("huggingartists/dj-artem-artemov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/dj-artem-artemov"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/dj-artem-artemov
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/dj-artem-artemov", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dj-artem-artemov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">DJ Artem Artemov</div> <a href="URL <div style="text-align: center; font-size: 14px;">@dj-artem-artemov</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from DJ Artem Artemov. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on DJ Artem Artemov's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from DJ Artem Artemov.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DJ Artem Artemov's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dj-artem-artemov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from DJ Artem Artemov.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DJ Artem Artemov's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dj-artem-artemov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from DJ Artem Artemov.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on DJ Artem Artemov's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.01591053605079651, 0.1882699579000473, -0.004766596481204033, 0.053874410688877106, 0.07113373279571533, -0.0077321287244558334, 0.08492013067007065, 0.10925200581550598, -0.008368246257305145, 0.07836691290140152, 0.053266629576683044, 0.05496279522776604, 0.07870792597532272, 0.07244548201560974, 0.03535047546029091, -0.2509954273700714, 0.04018067941069603, -0.05722431093454361, -0.03098594769835472, 0.09397315233945847, 0.08899194747209549, -0.09065089374780655, 0.0839114710688591, 0.030067939311265945, -0.03384321555495262, 0.0016673729987815022, 0.007852868176996708, -0.07426134496927261, 0.06575152277946472, 0.08655215799808502, 0.04285179451107979, 0.06026922166347504, 0.06644196808338165, -0.17464296519756317, 0.025281714275479317, 0.11905496567487717, 0.022402366623282433, 0.09323061257600784, 0.08388875424861908, -0.05300801247358322, 0.11080994457006454, -0.04747040197253227, 0.09065312892198563, 0.05593178793787956, -0.11373020708560944, -0.08300433307886124, -0.14397229254245758, 0.046247925609350204, 0.08132529258728027, 0.07656340301036835, -0.022557497024536133, 0.09352997690439224, -0.032699450850486755, 0.05130774527788162, 0.2215600460767746, -0.26338550448417664, -0.017215143889188766, 0.05385837331414223, 0.084392249584198, 0.023871978744864464, -0.09530539810657501, 0.023234622552990913, 0.03009698912501335, 0.039287034422159195, 0.0727248340845108, -0.04403747245669365, 0.16729982197284698, -0.013938595540821552, -0.10070265084505081, -0.06996651738882065, 0.10072346776723862, -0.006595535669475794, -0.07923487573862076, -0.10742229223251343, -0.0051772575825452805, 0.0056180646643042564, 0.013798322528600693, -0.0015553298871964216, -0.002141698030754924, -0.0037973402068018913, -0.10277365893125534, -0.12132163345813751, -0.07564987987279892, -0.03693017736077309, -0.031044557690620422, 0.04804695397615433, 0.04471268132328987, 0.03411128371953964, -0.057510338723659515, 0.18235069513320923, 0.026287276297807693, -0.11126648634672165, -0.06967557221651077, -0.11844318360090256, -0.08776208013296127, -0.04696328565478325, -0.004669032990932465, -0.01989179290831089, -0.022386517375707626, 0.14956511557102203, -0.026913773268461227, 0.020119864493608475, -0.03775884583592415, 0.014587442390620708, 0.1094956174492836, 0.11688937246799469, -0.12181561440229416, -0.05028755962848663, 0.07005979865789413, -0.02165110968053341, -0.05689002946019173, -0.048074644058942795, -0.010910668410360813, -0.04814526438713074, 0.05716787278652191, 0.06744541972875595, 0.0845177099108696, 0.046188727021217346, -0.0015551535179838538, -0.05310574918985367, 0.04353627935051918, -0.13181723654270172, 0.029757481068372726, -0.014746235683560371, -0.04980930685997009, 0.008618243038654327, 0.04245547205209732, 0.01437152549624443, -0.10889565944671631, 0.07077828049659729, -0.07686133682727814, -0.030956191942095757, -0.08644559979438782, -0.12096177786588669, 0.014878200367093086, -0.019666247069835663, -0.020507456734776497, -0.08491577953100204, -0.13438139855861664, -0.04177357628941536, 0.030732039362192154, -0.07746215909719467, -0.013330620713531971, 0.03231213241815567, -0.04514521360397339, 0.007322277873754501, -0.009196997620165348, 0.009012322872877121, -0.0124390609562397, 0.05865238979458809, -0.08381406217813492, 0.04953023046255112, 0.060314856469631195, 0.04631384089589119, -0.10481949895620346, 0.07229816913604736, -0.1536078304052353, 0.14502495527267456, -0.030868083238601685, -0.04624621197581291, -0.10360054671764374, -0.10475246608257294, -0.016944659873843193, -0.03800704702734947, 0.04451492056250572, 0.1147245243191719, -0.17541508376598358, -0.00982820987701416, 0.21633002161979675, -0.0707651674747467, -0.04264148697257042, 0.08415742218494415, -0.07934840768575668, 0.035150591284036636, 0.1121048703789711, 0.026648608967661858, 0.13475248217582703, -0.0886976346373558, -0.08420036733150482, -0.03564521670341492, -0.06729087233543396, 0.1838708221912384, 0.04284580796957016, -0.011442621238529682, 0.06998290121555328, -0.007513972464948893, 0.008438687771558762, -0.01723448373377323, -0.03610822558403015, -0.03476836532354355, -0.0036797835491597652, 0.004533886443823576, 0.026295818388462067, -0.05004626512527466, -0.023652654141187668, -0.00416403915733099, -0.10232944041490555, 0.05320616438984871, 0.08054779469966888, -0.06809618324041367, 0.021746279671788216, -0.11027242988348007, 0.03153866156935692, -0.08195951581001282, 0.009390766732394695, -0.18475356698036194, -0.00539031159132719, 0.016573185101151466, -0.053534891456365585, 0.05795203149318695, 0.0313270278275013, 0.053750015795230865, 0.0727265253663063, -0.02913292497396469, 0.01038634218275547, -0.05519408360123634, 0.008771158754825592, -0.06185978651046753, -0.15280167758464813, -0.056608498096466064, -0.045847855508327484, 0.03764202445745468, -0.10965670645236969, -0.005330761428922415, 0.09649181365966797, 0.15924909710884094, 0.05126344412565231, -0.053153812885284424, 0.024749264121055603, -0.01500034797936678, -0.031642064452171326, -0.08890557289123535, -0.04504891484975815, 0.010488905012607574, -0.029480159282684326, 0.15334844589233398, -0.14850269258022308, -0.08045127987861633, 0.11355961859226227, 0.06943469494581223, -0.0795840173959732, 0.02905895747244358, -0.0494760200381279, -0.02417437732219696, -0.04882238805294037, -0.04898897930979729, 0.20924948155879974, 0.056488286703825, 0.08925892412662506, -0.08916351199150085, -0.07061313837766647, 0.005679767578840256, -0.03461284190416336, -0.021871047094464302, 0.03969082608819008, 0.025059016421437263, -0.21042615175247192, 0.05430298298597336, 0.021519189700484276, 0.06966912001371384, 0.15963703393936157, 0.0163237564265728, -0.10339862108230591, -0.06364918500185013, -0.0609152726829052, 0.014734813943505287, 0.07348088175058365, 0.03630177304148674, 0.0593477301299572, 0.04145415127277374, 0.04622581601142883, 0.0169734675437212, -0.11395339667797089, 0.023549631237983704, 0.05294731259346008, -0.026238368824124336, -0.05466066300868988, 0.005668553523719311, 0.03804550692439079, 0.08121760934591293, 0.07641981542110443, 0.0857076421380043, -0.03164348378777504, -0.05269863083958626, -0.10977640748023987, 0.12052269279956818, -0.09983497858047485, -0.2042657881975174, -0.12342046201229095, -0.07324234396219254, 0.0226134005934, 0.014965461567044258, 0.03194258734583855, -0.014679085463285446, -0.04084440693259239, -0.0848589837551117, 0.04877745360136032, -0.04854975640773773, -0.023004526272416115, 0.009815242141485214, 0.06145098805427551, -0.007894322276115417, -0.10290180891752243, -0.017573358491063118, 0.026409076526761055, -0.06642322242259979, 0.0146748973056674, 0.04031655564904213, 0.048889752477407455, 0.11104606837034225, -0.0010387860238552094, -0.0028827334754168987, -0.022513333708047867, 0.270616739988327, -0.1094982847571373, 0.06271885335445404, 0.16040806472301483, -0.03609723597764969, 0.07065556198358536, 0.08411865681409836, 0.0028452167753130198, -0.04175509884953499, 0.048725441098213196, 0.05327346920967102, -0.056833382695913315, -0.19585460424423218, -0.012341483496129513, -0.04041450098156929, -0.012235188856720924, 0.10407162457704544, 0.017531657591462135, 0.026037808507680893, 0.028546243906021118, -0.0917479619383812, 0.08299446105957031, 0.08866546303033829, 0.1029735878109932, -0.013988691382110119, -0.006145946681499481, 0.0678626149892807, -0.05043266713619232, 0.008389244787395, 0.10402323305606842, 0.03900701925158501, 0.25470852851867676, -0.06992308050394058, 0.061663080006837845, 0.08537048101425171, 0.06706506013870239, 0.02556881122291088, 0.046943988651037216, -0.01986614800989628, 0.03982057049870491, -0.010804301127791405, -0.09757477045059204, -0.00981582049280405, 0.04117504134774208, 0.038744863122701645, -0.037100113928318024, -0.04112182557582855, -0.04818806052207947, 0.028799576684832573, 0.19850176572799683, 0.08065109699964523, -0.16980427503585815, -0.08969514816999435, 0.07638172805309296, -0.04838797450065613, -0.07238707691431046, -0.01657390035688877, 0.09825082123279572, -0.20235174894332886, 0.022251151502132416, -0.04373616725206375, 0.12422677129507065, -0.14410947263240814, -0.012796382419764996, -0.0009458563290536404, 0.058607958257198334, -0.06090451776981354, 0.06981955468654633, -0.1954439878463745, 0.07755927741527557, 0.017036328092217445, 0.0891636535525322, -0.0599701926112175, 0.026856591925024986, 0.0440710224211216, 0.029971161857247353, 0.1037278026342392, 0.009724880568683147, -0.013083544559776783, -0.08693446218967438, -0.07761131972074509, 0.008574172854423523, 0.05995659902691841, -0.05569211021065712, 0.12584011256694794, -0.030821241438388824, 0.018483689054846764, -0.01786259189248085, -0.03709793835878372, -0.1360517144203186, -0.16239306330680847, 0.07674474269151688, -0.1150674894452095, 0.026940109208226204, -0.05684584379196167, -0.028326790779829025, 0.03776530548930168, 0.19642001390457153, -0.09520087391138077, -0.08369015157222748, -0.12061063200235367, 0.027835272252559662, 0.16065405309200287, -0.07699762284755707, 0.02355302684009075, 0.013452320359647274, 0.15701617300510406, 0.002071999479085207, -0.12109068036079407, -0.007984071038663387, -0.055574461817741394, -0.18275965750217438, -0.0249349232763052, 0.10225286334753036, 0.07648027688264847, 0.05559968948364258, 0.03442271053791046, 0.018993264064192772, -0.01720621809363365, -0.14014998078346252, 0.0041197799146175385, 0.11753784865140915, 0.06724761426448822, 0.019068527966737747, 0.010006362572312355, 0.009783223271369934, -0.11977126449346542, 0.02428372949361801, 0.0665518119931221, 0.2029774785041809, -0.07655183970928192, 0.14970234036445618, 0.018675867468118668, -0.08175154775381088, -0.1643998920917511, 0.001963564194738865, 0.00794248003512621, 0.03262149915099144, 0.02832537703216076, -0.17664645612239838, -0.02281307987868786, 0.01685807667672634, -0.005703467410057783, 0.07257819175720215, -0.30143919587135315, -0.12749500572681427, 0.024567868560552597, 0.02713082730770111, -0.048619844019412994, -0.028169933706521988, -0.05432018265128136, -0.08333870023488998, -0.25587624311447144, 0.09357988089323044, -0.09657379239797592, 0.08617877215147018, 0.023457594215869904, 0.02942303754389286, 0.039123523980379105, -0.050374485552310944, 0.1374705582857132, -0.05075459182262421, 0.06161833181977272, -0.09164008498191833, -0.021867631003260612, 0.07581610977649689, -0.050885047763586044, 0.05794902890920639, 0.020747777074575424, 0.060057371854782104, -0.06509088724851608, -0.0646914467215538, -0.07657428085803986, 0.0030513645615428686, -0.0642329677939415, -0.0930519849061966, -0.0731726661324501, 0.10386680066585541, 0.12366116791963577, -0.0330662839114666, -0.07363912463188171, -0.04132382944226265, -0.04150475934147835, 0.09733545035123825, 0.11704589426517487, 0.10061350464820862, -0.06044824793934822, 0.013756565749645233, -0.00018787891895044595, 0.048737719655036926, -0.09808029979467392, 0.06541087478399277, 0.08739373087882996, 0.016170339658856392, 0.11499803513288498, 0.026529353111982346, -0.16695855557918549, 0.04251508042216301, 0.02981005236506462, -0.11604097485542297, -0.0986812636256218, -0.020330488681793213, 0.0016531039727851748, -0.07894282042980194, -0.05734150856733322, 0.15502798557281494, -0.034680698066949844, -0.04333355277776718, 0.0081023583188653, 0.06787058711051941, -0.039258457720279694, 0.10995196551084518, 0.025073397904634476, 0.038310177624225616, -0.06475839018821716, 0.08581233024597168, 0.07417435199022293, -0.004835263825953007, 0.02777443453669548, 0.04841647669672966, -0.09178140759468079, -0.011299313977360725, -0.062323231250047684, -0.0014550312189385295, -0.026915695518255234, -0.004113044589757919, -0.006477562244981527, -0.04685265198349953, 0.040809039026498795, 0.09802927821874619, -0.010176355019211769, 0.10416465997695923, -0.020456675440073013, -0.004462321754544973, -0.11807763576507568, 0.08404497057199478, 0.05047246813774109, 0.017277905717492104, -0.08950882405042648, 0.1542268842458725, 0.013376626186072826, 0.07380997389554977, -0.047020260244607925, -0.04822530597448349, -0.07864349335432053, -0.011507070623338223, -0.17788228392601013, -0.020812151953577995, -0.11365915834903717, -0.04824080690741539, -0.02563927136361599, -0.03750055655837059, -0.03742597624659538, 0.05004540830850601, -0.03354906663298607, -0.0695386454463005, -0.06844373047351837, 0.050799719989299774, -0.15027685463428497, -0.011893927119672298, 0.12176480889320374, -0.08624974638223648, 0.10618884861469269, 0.03604487329721451, -0.03694680333137512, -0.006340246647596359, -0.06803873181343079, 0.0037261946126818657, -0.026141798123717308, 0.017438195645809174, 0.03699565306305885, -0.1464414894580841, 0.017741212621331215, -0.05357290431857109, -0.03851666674017906, 0.010797240771353245, 0.024221261963248253, -0.11235842108726501, -0.019483545795083046, 0.03176224231719971, -0.008982292376458645, -0.07432319968938828, 0.0875856801867485, 0.05343146622180939, 0.03352474421262741, 0.08057460188865662, -0.029033822938799858, 0.10055702924728394, -0.1649552583694458, -0.02856552042067051, 0.011906411498785019, 0.0028538324404507875, 0.09797070175409317, -0.026445813477039337, 0.06069904565811157, -0.020082945004105568, 0.16551662981510162, 0.0015361045952886343, -0.024411823600530624, 0.03684048354625702, -0.04752961918711662, -0.02334929071366787, 0.052098631858825684, 0.07644420862197876, -0.010187079198658466, -0.05134717375040054, -0.02950023114681244, 0.0011310850968584418, -0.05489121004939079, -0.047343216836452484, 0.11320333927869797, 0.09533633291721344, 0.1683797389268875, -0.025244293734431267, 0.06951161473989487, -0.01049713883548975, -0.10472725331783295, -0.02114749699831009, -0.0055082025937736034, 0.03389239311218262, -0.0573427714407444, 0.05082821100950241, 0.14493612945079803, -0.16144855320453644, 0.11918605118989944, -0.0005294885486364365, -0.05590902641415596, -0.10781847685575485, -0.19130849838256836, -0.03679569065570831, -0.011678946204483509, 0.030039489269256592, -0.12456891685724258, 0.07744502276182175, 0.023211445659399033, 0.025211628526449203, -0.05280385538935661, 0.07563312351703644, -0.06028177589178085, -0.12298724800348282, 0.024217484518885612, 0.029438234865665436, 0.030724626034498215, 0.04888095706701279, 0.05872808396816254, 0.03775697946548462, 0.03205205500125885, 0.06602457910776138, 0.03736303001642227, 0.03737860172986984, 0.02554754726588726, -0.01819329708814621, -0.06279692053794861, 0.01391101349145174, 0.01668650098145008, 0.04333866015076637, 0.13360898196697235, 0.06557782739400864, -0.006717373616993427, -0.03009297326207161, 0.3074612319469452, -0.049730535596609116, -0.04652067646384239, -0.1852806955575943, 0.1572379469871521, 0.027068831026554108, 0.0026150797493755817, 0.03481125086545944, -0.1396031230688095, 0.011784116737544537, 0.14429281651973724, 0.16622938215732574, -0.06455881893634796, 0.008685770444571972, -0.009173635393381119, 0.00993319321423769, 0.02469584345817566, 0.06474386900663376, 0.05129541456699371, 0.19960948824882507, -0.06611917167901993, 0.059466149657964706, 0.0010236200178042054, -0.011415566317737103, -0.030450474470853806, 0.10693981498479843, -0.033436331897974014, 0.010260388255119324, -0.06365328282117844, 0.09246216714382172, -0.05099458247423172, -0.2439277023077011, -0.0014812910230830312, -0.027688777074217796, -0.09003132581710815, 0.05987748131155968, -0.050954923033714294, -0.011387063190340996, 0.07469604909420013, 0.021471092477440834, -0.004870482254773378, 0.1301141381263733, 0.04351642727851868, -0.0067064110189676285, 0.011737672612071037, 0.09859811514616013, -0.01318762730807066, 0.1776891052722931, -0.009405584074556828, 0.04716259613633156, 0.09807523339986801, 0.04447591304779053, -0.11390269547700882, -0.0040842145681381226, 0.043877359479665756, -0.05531707778573036, -0.0030955763068050146, 0.19890213012695312, 0.01018455158919096, 0.020379064604640007, 0.07977074384689331, -0.03365560993552208, 0.033371806144714355, -0.07462920248508453, 0.027322441339492798, -0.1101880669593811, 0.041891638189554214, -0.08492255210876465, 0.12693732976913452, 0.1621749997138977, -0.06462140381336212, 0.028984233736991882, -0.04185200855135918, -0.0048220218159258366, -0.00448837922886014, 0.03293328359723091, -0.03574541583657265, -0.08805850148200989, 0.011638444848358631, 0.028851952403783798, 0.03175937756896019, -0.21134579181671143, -0.07763034850358963, 0.041856516152620316, -0.0653987005352974, -0.0059427437372505665, 0.14357921481132507, 0.029505548998713493, 0.04087207466363907, -0.038387615233659744, -0.061914607882499695, -0.02683735080063343, 0.07869860529899597, -0.14363209903240204, -0.06466027349233627 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/49b33cfa0bdb3ed97058a10960f2af8d.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Doja Cat</div> <a href="https://genius.com/artists/doja-cat"> <div style="text-align: center; font-size: 14px;">@doja-cat</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Doja Cat. Dataset is available [here](https://huggingface.co/datasets/huggingartists/doja-cat). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/doja-cat") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1qxclk1g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Doja Cat's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2lqvdntl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2lqvdntl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/doja-cat') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/doja-cat") model = AutoModelWithLMHead.from_pretrained("huggingartists/doja-cat") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/doja-cat"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/doja-cat
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/doja-cat", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/doja-cat #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Doja Cat</div> <a href="URL <div style="text-align: center; font-size: 14px;">@doja-cat</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Doja Cat. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Doja Cat's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Doja Cat.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Doja Cat's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/doja-cat #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Doja Cat.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Doja Cat's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/doja-cat #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Doja Cat.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Doja Cat's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.020312799140810966, 0.1832118034362793, -0.002805269556120038, 0.030120013281702995, 0.10212280601263046, 0.01571534015238285, 0.07609876990318298, 0.11030691862106323, 0.03220313787460327, 0.07931610196828842, 0.06504905968904495, 0.02220078371465206, 0.07910138368606567, 0.09245817363262177, 0.08386903256177902, -0.23742859065532684, 0.04920707643032074, -0.08788234740495682, 0.01294700987637043, 0.10939205437898636, 0.09516172111034393, -0.060080572962760925, 0.07604658603668213, 0.043080687522888184, -0.06811907142400742, 0.008736314252018929, -0.008011287078261375, -0.054011616855859756, 0.08377058804035187, 0.048962611705064774, 0.04831716790795326, 0.028185637667775154, 0.07431060075759888, -0.17046792805194855, 0.027061495929956436, 0.13048160076141357, 0.030583376064896584, 0.07287698984146118, 0.0740606039762497, -0.0893418937921524, 0.13617785274982452, -0.017020465806126595, 0.10278532654047012, 0.05952142924070358, -0.10370834916830063, -0.16764192283153534, -0.1220920979976654, 0.07674940675497055, 0.09521966427564621, 0.08967912942171097, -0.0316481776535511, 0.0364205427467823, -0.03247658163309097, 0.043845728039741516, 0.23661938309669495, -0.24150511622428894, -0.015246222727000713, 0.09466016292572021, 0.06203974783420563, 0.03765198960900307, -0.08666297048330307, 0.011956576257944107, 0.04226557910442352, 0.012875438667833805, 0.044100597500801086, -0.006219654809683561, 0.20155592262744904, 0.01169346272945404, -0.10384956747293472, -0.08195751905441284, 0.11290452629327774, -0.021282168105244637, -0.07278556376695633, -0.12386715412139893, -0.011680695228278637, -0.01881350390613079, 0.03042425587773323, 0.0033982950262725353, -0.002098623663187027, 0.014600006863474846, -0.020881200209259987, -0.09838998317718506, -0.0765281394124031, -0.0481773316860199, -0.010714109055697918, 0.04268784448504448, 0.032237548381090164, 0.03113739751279354, -0.06923582404851913, 0.23089592158794403, -0.015678558498620987, -0.09433754533529282, -0.05442339554429054, -0.08820382505655289, -0.10358357429504395, -0.0438561774790287, 0.007870227098464966, 0.017268819734454155, -0.046481918543577194, 0.15385319292545319, -0.0010948632843792439, 0.037926431745290756, -0.028075432404875755, -0.011332969181239605, 0.13492894172668457, 0.14500629901885986, -0.11831885576248169, -0.054520655423402786, 0.04777117446064949, -0.008364878594875336, -0.07427635043859482, -0.0634601041674614, -0.009482543915510178, -0.013793392106890678, 0.04115607589483261, 0.08501333743333817, 0.07455500215291977, 0.0626366138458252, 0.011017072014510632, -0.06737891584634781, 0.09553579986095428, -0.1339258849620819, 0.018216947093605995, 0.014272316358983517, -0.04508479684591293, 0.015558520331978798, 0.042666446417570114, 0.012942048721015453, -0.09564664214849472, 0.10225079953670502, -0.07057798653841019, -0.04988615959882736, -0.09233953803777695, -0.09700099378824234, -0.011828642338514328, -0.028665851801633835, -0.05580318719148636, -0.06772995740175247, -0.17745672166347504, -0.03490077704191208, 0.03164966404438019, -0.055218406021595, -0.024049490690231323, 0.024573571979999542, -0.02793193608522415, 0.021172864362597466, -0.011081663891673088, -0.04010646790266037, -0.031478509306907654, 0.025136414915323257, -0.06702934205532074, 0.03495020046830177, 0.06728754192590714, 0.05072799324989319, -0.10632863640785217, 0.0763067901134491, -0.1513436883687973, 0.11595583707094193, -0.020975206047296524, 0.0222256351262331, -0.09473367780447006, -0.08023178577423096, -0.029030999168753624, -0.04980115219950676, 0.001954559236764908, 0.09730708599090576, -0.17127732932567596, -0.01608986034989357, 0.19177258014678955, -0.06742038577795029, -0.06523866206407547, 0.07659966498613358, -0.06614159792661667, 0.041504595428705215, 0.1251051127910614, 0.0821518823504448, 0.18148337304592133, -0.10913646221160889, -0.06274548172950745, -0.04426088184118271, -0.06986532360315323, 0.1923459768295288, 0.05059941112995148, -0.027521442621946335, 0.023527735844254494, 0.0034190600272268057, -0.03942979872226715, -0.030201617628335953, -0.01930934563279152, -0.03386213630437851, -0.016020914539694786, -0.00389741244725883, -0.007226209156215191, -0.0396592877805233, -0.06961370259523392, -0.026978928595781326, -0.1050814762711525, 0.02932993322610855, 0.10763010382652283, -0.07090233266353607, 0.013994281180202961, -0.10343563556671143, 0.03814498335123062, -0.03949596360325813, 0.01431439071893692, -0.17441311478614807, -0.04317145422101021, 0.026208922266960144, -0.06847039610147476, 0.07153262943029404, 0.03660885989665985, 0.0291909109801054, 0.05302112177014351, -0.0010282882722094655, 0.0015656836330890656, -0.041993074119091034, -0.007774016819894314, -0.03279765322804451, -0.1427207589149475, -0.05159255117177963, -0.04469577595591545, 0.1078420877456665, -0.11882801353931427, 0.019783983007073402, 0.10562457144260406, 0.12733367085456848, 0.005227157846093178, -0.07530711591243744, 0.014624645002186298, -0.058978866785764694, -0.035641733556985855, -0.11322495341300964, -0.04181229695677757, 0.007599205244332552, -0.016063304618000984, 0.13967189192771912, -0.16964617371559143, -0.08705668151378632, 0.11083026975393295, 0.1262964904308319, -0.0851825624704361, 0.0801815539598465, -0.07180958986282349, -0.010714353062212467, -0.04115937277674675, -0.06869572401046753, 0.2407703995704651, 0.0322052426636219, 0.08067302405834198, -0.10749385505914688, -0.08737757802009583, -0.005064251367002726, -0.03679851070046425, -0.029492516070604324, 0.0291812215000391, 0.03709544613957405, -0.17051094770431519, 0.04171426594257355, 0.011938576586544514, 0.09791719913482666, 0.20849411189556122, 0.06191696226596832, -0.08524301648139954, -0.05989387258887291, -0.06421166658401489, 0.0013893040595576167, 0.07701151072978973, 0.01319862250238657, 0.039214685559272766, 0.04275486245751381, 0.058745987713336945, 0.04469471424818039, -0.12476514279842377, 0.01815117709338665, 0.0627681314945221, -0.045857321470975876, -0.067066490650177, 0.002933851210400462, 0.025486363098025322, 0.0900275856256485, 0.08646487444639206, 0.10796399414539337, -0.057219941169023514, -0.0566699281334877, -0.1379455327987671, 0.12871436774730682, -0.09634698182344437, -0.24157242476940155, -0.1283254325389862, -0.06255640089511871, 0.021205533295869827, 0.01599484495818615, 0.030363429337739944, -0.04353080689907074, -0.04266546294093132, -0.09315073490142822, 0.06647016853094101, -0.06834731251001358, -0.01957681030035019, 0.023840367794036865, 0.016776390373706818, -0.020942848175764084, -0.12104059010744095, -0.033903319388628006, 0.038185689598321915, -0.10716111212968826, -0.01618969440460205, 0.015379102900624275, 0.043573684990406036, 0.17563074827194214, -0.013613463379442692, 0.004726740065962076, -0.015337708406150341, 0.26646485924720764, -0.11513804644346237, 0.06792066246271133, 0.1533537358045578, -0.0040618847124278545, 0.06688769906759262, 0.07583718746900558, -0.0005094766966067255, -0.06826157867908478, 0.06410782784223557, 0.07427610456943512, -0.08060245215892792, -0.19719314575195312, -0.03614092990756035, -0.020416023209691048, 0.030095072463154793, 0.1051175445318222, 0.0390276201069355, 0.05489407479763031, 0.004458585288375616, -0.11376751214265823, 0.012639598920941353, 0.03342953324317932, 0.11031461507081985, -0.07724404335021973, -0.01365001779049635, 0.05412663146853447, -0.06171892583370209, 0.04323212057352066, 0.11164708435535431, 0.04431122541427612, 0.2109874039888382, -0.052618321031332016, 0.10105039924383163, 0.07096107304096222, 0.11684992164373398, 0.0279470793902874, 0.025723405182361603, -0.028954539448022842, 0.02553725056350231, -0.0036704090889543295, -0.08672510087490082, 0.0003226866538170725, 0.03921591490507126, 0.046511728316545486, -0.018323972821235657, -0.04879571497440338, -0.08802568912506104, 0.04687616974115372, 0.2228102684020996, 0.008452574722468853, -0.17685411870479584, -0.09136194735765457, 0.06039247661828995, -0.06384236365556717, -0.0671069398522377, -0.025601308792829514, 0.05433110147714615, -0.2151574045419693, 0.04764384403824806, -0.027633726596832275, 0.10931910574436188, -0.09857891499996185, 0.0015408246545121074, 0.07264254987239838, 0.03487718850374222, -0.0689765214920044, 0.1047806367278099, -0.1491796225309372, 0.05221252888441086, -0.006811946164816618, 0.06813248991966248, -0.07138670235872269, 0.02845967374742031, 0.01673634722828865, 0.0589178092777729, 0.07858699560165405, 0.013719482347369194, 0.01984393037855625, -0.029303519055247307, -0.03665662929415703, -0.0036162659525871277, 0.06756576895713806, -0.12993592023849487, 0.12623178958892822, -0.035151731222867966, 0.02997913956642151, -0.025818180292844772, -0.06584607809782028, -0.0773669183254242, -0.1553768813610077, 0.0929131880402565, -0.10459748655557632, 0.010214372538030148, -0.06529512256383896, -0.009306410327553749, 0.018143823370337486, 0.2427617311477661, -0.11390097439289093, -0.07181153446435928, -0.1318291574716568, -0.027974983677268028, 0.13796651363372803, -0.07323256134986877, 0.010115362703800201, -0.019489629194140434, 0.18858946859836578, 0.004227234981954098, -0.130579873919487, -0.014207340776920319, -0.08147796988487244, -0.1858559250831604, -0.029836107045412064, 0.1546550840139389, 0.06993629038333893, 0.040844544768333435, 0.010575264692306519, -0.0024416372179985046, -0.05357268080115318, -0.16100405156612396, 0.008882775902748108, 0.16151341795921326, -0.004961979575455189, 0.014321978203952312, 0.03634452819824219, 0.0021698884665966034, -0.13938124477863312, 0.026502447202801704, 0.037069447338581085, 0.15952999889850616, -0.08286986500024796, 0.18410883843898773, 0.02137145586311817, -0.08465219289064407, -0.1541719138622284, 0.02980441227555275, 0.012063523754477501, 0.027217619121074677, 0.018188966438174248, -0.188484787940979, 0.04532509297132492, 0.0298260860145092, -0.020865339785814285, 0.06957906484603882, -0.3235901892185211, -0.14240844547748566, 0.00660123722627759, 0.0014655879931524396, -0.11381782591342926, -0.04336664825677872, -0.03188960999250412, -0.07473624497652054, -0.249734565615654, 0.12574400007724762, -0.1036003828048706, 0.07934802025556564, 0.026107020676136017, 0.07653844356536865, 0.04799744114279747, -0.05660780519247055, 0.1412433534860611, -0.02320973388850689, 0.05074034631252289, -0.09219929575920105, -0.04683816060423851, 0.08587468415498734, -0.06751514971256256, 0.09278324991464615, 0.01697361469268799, 0.08128571510314941, -0.12154465913772583, -0.07388554513454437, -0.07257181406021118, 0.011591626331210136, -0.05531148985028267, -0.09087549149990082, -0.10475201159715652, 0.0954679474234581, 0.13730034232139587, -0.03965223580598831, -0.08780068159103394, -0.05480189621448517, -0.008857622742652893, 0.06781937181949615, 0.1025681123137474, 0.06994093954563141, -0.07078460603952408, 0.0010939667699858546, 0.01806667260825634, 0.03294279798865318, -0.14932972192764282, 0.047047536820173264, 0.08709678798913956, 0.03911668807268143, 0.09869642555713654, 0.016292355954647064, -0.16865713894367218, -0.0012641350040212274, 0.048723477870225906, -0.1534690260887146, -0.10181070119142532, -0.028371041640639305, 0.034662287682294846, -0.10123910754919052, -0.0498012937605381, 0.1232200413942337, -0.019955357536673546, -0.03554455190896988, 0.003056370187550783, 0.05524914711713791, -0.03702748939394951, 0.09460911154747009, 0.00022682701819576323, 0.05223223939538002, -0.06923767179250717, 0.10747408121824265, 0.08043159544467926, 0.010517336428165436, 0.035243161022663116, 0.05299866944551468, -0.08706619590520859, 0.012694100849330425, -0.09749495983123779, 0.014304564334452152, -0.02823081985116005, -0.018084947019815445, 0.00010534199100220576, -0.03921609744429588, 0.03525272011756897, 0.095828115940094, -0.01006507221609354, 0.11178677529096603, -0.03732851520180702, 0.004167989827692509, -0.1376306563615799, 0.07378632575273514, 0.03260218724608421, 0.011070847511291504, -0.11677908897399902, 0.19222983717918396, 0.03838450461626053, 0.08404146134853363, -0.03305334970355034, -0.06348252296447754, -0.06198110803961754, -0.011216211132705212, -0.08464352041482925, -0.042766720056533813, -0.08854662626981735, -0.026594141498208046, -0.008483476005494595, -0.03912744298577309, -0.023980561643838882, 0.040975190699100494, -0.03500134125351906, -0.06802847236394882, -0.06930514425039291, 0.05248654633760452, -0.1341119408607483, 0.026755372062325478, 0.12023495882749557, -0.05791744217276573, 0.10378564149141312, 0.05721006542444229, -0.030860085040330887, 0.013513272628188133, -0.12386574596166611, 0.03244815021753311, -0.03968430683016777, 0.026840222999453545, 0.016333401203155518, -0.14402128756046295, 0.002618514932692051, -0.045805804431438446, -0.06356363743543625, 0.0051446896977722645, 0.0030984501354396343, -0.13231155276298523, -0.0033327676355838776, 0.06251106411218643, -0.017059650272130966, -0.06280484795570374, 0.06152857095003128, 0.05630668252706528, 0.024407165125012398, 0.06077060475945473, -0.01727106235921383, 0.08159133046865463, -0.1642119586467743, -0.052890658378601074, 0.00672913296148181, 0.03311155363917351, 0.047410815954208374, -0.016731739044189453, 0.03581129014492035, -0.01949237659573555, 0.17964935302734375, 0.005393179599195719, -0.01646505482494831, 0.03448763117194176, -0.04761273041367531, 0.013419863767921925, 0.038668062537908554, 0.07371343672275543, -0.036650583148002625, -0.029665829613804817, 0.008415305987000465, -0.018798092380166054, -0.08340869098901749, -0.03727341070771217, 0.10691174864768982, 0.05523817986249924, 0.18914616107940674, -0.04430314153432846, 0.06080004200339317, -0.03219914063811302, -0.12341861426830292, -0.001987473340705037, -0.04642863571643829, 0.02881079539656639, -0.05976555123925209, 0.0730532705783844, 0.17970433831214905, -0.16134113073349, 0.11654004454612732, 0.02534252032637596, -0.0509205125272274, -0.10398215055465698, -0.18144799768924713, -0.009774048812687397, -0.040296997874975204, 0.029521534219384193, -0.12433028221130371, 0.09649372845888138, 0.04118069261312485, 0.027737900614738464, -0.0679660215973854, 0.13628354668617249, -0.08970537036657333, -0.11529184132814407, 0.0258160587400198, 0.027148371562361717, 0.028066575527191162, 0.044904645532369614, 0.06467926502227783, 0.03473511338233948, 0.020426906645298004, 0.0735078826546669, 0.04322441294789314, 0.03460671752691269, 0.03064177930355072, -0.019446110352873802, -0.05040227621793747, 0.029604287818074226, -0.0001638926478335634, 0.02525990828871727, 0.10893981158733368, 0.061977680772542953, -0.027337796986103058, -0.029811102896928787, 0.2832334339618683, -0.042161960154771805, -0.019603295251727104, -0.16813424229621887, 0.1893223077058792, 0.004865242168307304, -0.01223791018128395, 0.029300684109330177, -0.134051114320755, -0.0013303224695846438, 0.1354752629995346, 0.15708164870738983, -0.03930993750691414, 0.014655929058790207, -0.045985329896211624, 0.013219949789345264, 0.031786005944013596, 0.08313984423875809, 0.07550858706235886, 0.22192715108394623, -0.02923707291483879, 0.049287039786577225, -0.006704645697027445, -0.012718035839498043, -0.01949250139296055, 0.09199388325214386, -0.04062638431787491, 0.01033914927393198, -0.06105644255876541, 0.10026319324970245, -0.04281190410256386, -0.28241613507270813, -0.01744512841105461, -0.0250814501196146, -0.08937795460224152, 0.06408466398715973, -0.032362233847379684, -0.04387301951646805, 0.08575088530778885, 0.01512714009732008, -0.03718185052275658, 0.12588131427764893, 0.03968311473727226, -0.04172433167695999, -0.014689222909510136, 0.09258377552032471, -0.05007943511009216, 0.21233060956001282, -0.031511224806308746, -0.0012041641166433692, 0.09077277779579163, 0.01499910932034254, -0.1260930299758911, 0.009354611858725548, 0.04590407758951187, -0.06518004834651947, -0.017379729077219963, 0.2025431990623474, 0.0056394352577626705, 0.043895501643419266, 0.07303765416145325, -0.06548698991537094, 0.03103463724255562, -0.0637328177690506, 0.059302326291799545, -0.1481553465127945, 0.057254258543252945, -0.09305627644062042, 0.13719631731510162, 0.18368880450725555, -0.07377532869577408, 0.019869660958647728, -0.053803157061338425, -0.005468735471367836, -0.030553007498383522, 0.06604709476232529, -0.026641685515642166, -0.1249438002705574, 0.01486798282712698, 0.009112250991165638, 0.023623498156666756, -0.1846596598625183, -0.08054381608963013, 0.06340232491493225, -0.054822880774736404, 0.023540176451206207, 0.16423729062080383, 0.02205292508006096, 0.05091814324259758, -0.03551194444298744, -0.014455652795732021, -0.02091887965798378, 0.12546367943286896, -0.15526795387268066, -0.08649662882089615 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/26104e61a238b70abfbad57be3de4359.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Drake</div> <a href="https://genius.com/artists/drake"> <div style="text-align: center; font-size: 14px;">@drake</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Drake. Dataset is available [here](https://huggingface.co/datasets/huggingartists/drake). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/drake") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/l3lz2q80/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Drake's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/033yz8al) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/033yz8al/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/drake') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/drake") model = AutoModelWithLMHead.from_pretrained("huggingartists/drake") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/drake"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/drake
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/drake", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/drake #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Drake</div> <a href="URL <div style="text-align: center; font-size: 14px;">@drake</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Drake. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Drake's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Drake.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Drake's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/drake #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Drake.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Drake's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 49, 71, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/drake #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Drake.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Drake's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.010683022439479828, 0.1843145340681076, -0.002792092738673091, 0.034683264791965485, 0.08485696464776993, -0.004650365095585585, 0.09235887974500656, 0.09963326901197433, -0.017597120255231857, 0.076416976749897, 0.06875062733888626, 0.020537851378321648, 0.06957236677408218, 0.10803214460611343, 0.08566012233495712, -0.25409260392189026, 0.021952763199806213, -0.08980681002140045, 0.009569943882524967, 0.11714796721935272, 0.09216328710317612, -0.059343062341213226, 0.08478663116693497, 0.03887394815683365, -0.07342211902141571, 0.02699343115091324, -0.012400983832776546, -0.06734739243984222, 0.08927835524082184, 0.06461949646472931, 0.024614989757537842, 0.033530451357364655, 0.052850570529699326, -0.19316567480564117, 0.03154880180954933, 0.12629267573356628, 0.0300985649228096, 0.0720432922244072, 0.05404209345579147, -0.08180306106805801, 0.17773830890655518, -0.009922762401401997, 0.08827343583106995, 0.04112636670470238, -0.11015541106462479, -0.14496243000030518, -0.12705180048942566, 0.08621703088283539, 0.09563425928354263, 0.0801350399851799, -0.028358079493045807, 0.039221759885549545, -0.012389833107590675, 0.04310646280646324, 0.23512686789035797, -0.26245737075805664, -0.016068706288933754, 0.07485046982765198, 0.051855530589818954, 0.02605639398097992, -0.07370313256978989, 0.017934877425432205, 0.048082128167152405, 0.023152684792876244, 0.042499493807554245, -0.013447060249745846, 0.19946320354938507, 0.016701379790902138, -0.09425308555364609, -0.08787479251623154, 0.13235266506671906, -0.03120451793074608, -0.07963910698890686, -0.14545641839504242, -0.003273103618994355, 0.0051324921660125256, 0.04161709174513817, -0.015431108884513378, -0.004277633037418127, 0.00556098623201251, -0.05580093339085579, -0.09763883799314499, -0.08179377764463425, -0.024815160781145096, -0.035682667046785355, 0.065174899995327, 0.030218081548810005, 0.024905357509851456, -0.08646756410598755, 0.23136237263679504, -0.0025983157102018595, -0.10537614673376083, -0.04870239272713661, -0.09072745591402054, -0.07105033844709396, -0.0636398121714592, 0.002022359985858202, -0.007321711629629135, -0.0542648583650589, 0.16043908894062042, -0.033613089472055435, 0.028047775849699974, -0.006646024063229561, -0.01786276511847973, 0.1512092500925064, 0.12181388586759567, -0.10058704763650894, -0.033845558762550354, 0.05407431349158287, -0.026367347687482834, -0.06140692159533501, -0.0583561435341835, -0.009736371226608753, -0.01807543635368347, 0.029588457196950912, 0.0816136971116066, 0.0662030354142189, 0.04670130833983421, 0.0267232283949852, -0.06397738307714462, 0.10459370911121368, -0.13116466999053955, 0.013698997907340527, -0.008780090138316154, -0.03644757345318794, 0.003194123739376664, 0.03809722512960434, 0.020654261112213135, -0.10597912967205048, 0.1171286478638649, -0.0572144091129303, -0.05580800399184227, -0.07446008175611496, -0.07403503358364105, -0.003196787554770708, 0.007120178546756506, -0.04177505150437355, -0.07271682471036911, -0.1637290120124817, -0.042559538036584854, 0.032160088419914246, -0.04506031423807144, -0.05959734693169594, 0.03540559485554695, -0.02951275371015072, 0.006999170407652855, -0.017842574045062065, -0.030512629076838493, -0.02870090678334236, 0.030084263533353806, -0.06872772425413132, 0.029888303950428963, 0.08403826504945755, 0.04763834550976753, -0.11135745048522949, 0.07127860933542252, -0.1736023724079132, 0.13911475241184235, 0.000021390500478446484, 0.011882437393069267, -0.1060272604227066, -0.09010081738233566, -0.03589099273085594, -0.029602529481053352, -0.008007626049220562, 0.09759723395109177, -0.1776357889175415, -0.0439668633043766, 0.1934507042169571, -0.0688256248831749, -0.0736076831817627, 0.06345953792333603, -0.07549942284822464, 0.017856786027550697, 0.13295888900756836, 0.09036342054605484, 0.1561366468667984, -0.09486377239227295, -0.07884896546602249, -0.043261393904685974, -0.050474170595407486, 0.20362141728401184, 0.04565545171499252, -0.02017337456345558, 0.022231686860322952, 0.004898062441498041, -0.024057606235146523, -0.030366264283657074, -0.013638938777148724, -0.04064856842160225, -0.015278361737728119, 0.009037225507199764, -0.012184184044599533, -0.03576723858714104, -0.06384418904781342, -0.01938832737505436, -0.10542146861553192, 0.04636593908071518, 0.09118819981813431, -0.06940966099500656, 0.009389073587954044, -0.08816610276699066, 0.017531942576169968, -0.02598286233842373, 0.010518615134060383, -0.1784210056066513, -0.05388714373111725, 0.021310346201062202, -0.07184848189353943, 0.08436395972967148, 0.023978939279913902, 0.03552722930908203, 0.05929460749030113, -0.019133972004055977, 0.015198416076600552, -0.03329363837838173, -0.019313614815473557, -0.02741948328912258, -0.14298927783966064, -0.06079178676009178, -0.04512004181742668, 0.07718135416507721, -0.131162628531456, -0.00010479546472197399, 0.09818153828382492, 0.12857946753501892, 0.023758787661790848, -0.0640806183218956, 0.016157034784555435, -0.031777139753103256, -0.03534925356507301, -0.10572617501020432, -0.05754505470395088, 0.01564823091030121, -0.018599115312099457, 0.16524018347263336, -0.16675850749015808, -0.06764683872461319, 0.10451401770114899, 0.13761292397975922, -0.09958299994468689, 0.04648437723517418, -0.07866596430540085, -0.0164998397231102, -0.05622139200568199, -0.030516866594552994, 0.2765476107597351, 0.03276348114013672, 0.07616157829761505, -0.10732465982437134, -0.10810049623250961, -0.01332115475088358, -0.041994016617536545, -0.021396590396761894, 0.031992945820093155, 0.011263188906013966, -0.15214192867279053, 0.027730176225304604, 0.010584111325442791, 0.10150589048862457, 0.2048490047454834, 0.04490717127919197, -0.09191180020570755, -0.05493217334151268, -0.07368631660938263, 0.0006870281649753451, 0.04527511075139046, 0.026437774300575256, 0.026439517736434937, 0.03798835352063179, 0.05164225026965141, 0.03659568727016449, -0.11403284221887589, 0.007434706203639507, 0.08404053747653961, -0.03791405260562897, -0.06610757857561111, 0.013385753147304058, 0.02189374901354313, 0.07836311310529709, 0.08057508617639542, 0.12489421665668488, -0.05325857549905777, -0.047407519072294235, -0.1403670758008957, 0.1380382925271988, -0.07367205619812012, -0.2361440658569336, -0.11610731482505798, -0.07098010927438736, 0.014948973432183266, 0.008263630792498589, 0.038653414696455, -0.05068191513419151, -0.03805651515722275, -0.09669909626245499, 0.07835666835308075, -0.060461465269327164, -0.025159459561109543, 0.00044163953862152994, 0.008785279467701912, -0.027042651548981667, -0.10561766475439072, -0.026197047904133797, 0.0442824549973011, -0.11000653356313705, -0.017571846023201942, 0.03698466718196869, 0.03553016111254692, 0.1647285670042038, -0.02231927029788494, 0.00009254841279471293, -0.019859513267874718, 0.279787540435791, -0.12521390616893768, 0.06219179555773735, 0.15507586300373077, -0.004370010923594236, 0.06382545828819275, 0.0772380605340004, 0.008027675561606884, -0.05935372784733772, 0.07205250859260559, 0.07129793614149094, -0.08462024480104446, -0.22328753769397736, -0.035594966262578964, -0.0023349220864474773, 0.004732872359454632, 0.11421117931604385, 0.05804692953824997, 0.0620088092982769, 0.0053318096324801445, -0.10389909148216248, 0.04853714630007744, 0.019493844360113144, 0.09929274767637253, -0.055501606315374374, -0.00848163291811943, 0.04648113250732422, -0.0580766461789608, 0.01729145273566246, 0.1288582980632782, 0.04063824191689491, 0.19917495548725128, -0.07041355222463608, 0.09088809788227081, 0.06814146786928177, 0.10432440787553787, 0.02699352242052555, 0.015442133881151676, -0.018958140164613724, 0.019144151359796524, -0.0013185233110561967, -0.0893591120839119, -0.003534369170665741, 0.036071471869945526, 0.0503031387925148, -0.031789738684892654, -0.033809732645750046, -0.054313018918037415, 0.0347287580370903, 0.24374417960643768, 0.007578969467431307, -0.16332416236400604, -0.09423458576202393, 0.05003776401281357, -0.08632393181324005, -0.062457237392663956, -0.000290808267891407, 0.08450257033109665, -0.21152254939079285, 0.06604502350091934, -0.02357720583677292, 0.10552401095628738, -0.12448141723871231, -0.00245051272213459, 0.09283571690320969, 0.033726766705513, -0.06010148301720619, 0.09422766417264938, -0.16725988686084747, 0.05182372033596039, -0.008970418944954872, 0.0739615336060524, -0.07113832980394363, 0.03238878771662712, 0.009526317939162254, 0.04380236193537712, 0.08666328340768814, 0.01745634153485298, 0.014566184021532536, 0.024356594309210777, -0.04729541391134262, 0.005684484262019396, 0.049201998859643936, -0.13287347555160522, 0.11613074690103531, -0.022510970011353493, 0.03317886218428612, -0.042801957577466965, -0.07686714082956314, -0.0833323672413826, -0.16354672610759735, 0.0829358696937561, -0.13374298810958862, 0.014411024749279022, -0.0694928839802742, -0.0235968679189682, 0.03482945263385773, 0.2400617003440857, -0.03414243832230568, -0.08293125033378601, -0.11745598912239075, -0.02915370836853981, 0.12991176545619965, -0.07755507528781891, 0.004733125679194927, -0.004235848784446716, 0.1928531527519226, -0.0019171593012288213, -0.1334603875875473, -0.019837023690342903, -0.059077758342027664, -0.1636894941329956, -0.01371035072952509, 0.1645231693983078, 0.06017307937145233, 0.03412557393312454, 0.01771894469857216, 0.003631712170317769, -0.058836374431848526, -0.16967402398586273, 0.019985856488347054, 0.1259571760892868, -0.009595820680260658, 0.011712056584656239, 0.06913966685533524, 0.032690081745386124, -0.12348862737417221, 0.01803337037563324, 0.05345053970813751, 0.16359691321849823, -0.07366780191659927, 0.17981666326522827, 0.04156827554106712, -0.09441863745450974, -0.16418343782424927, -0.0019746168982237577, 0.015580098144710064, 0.026905084028840065, 0.039395373314619064, -0.2185865342617035, 0.0652504712343216, 0.030825477093458176, -0.0017421423690393567, 0.07188987731933594, -0.32701101899147034, -0.14949870109558105, 0.011879445053637028, -0.0004752053937409073, -0.11094707250595093, -0.042640503495931625, -0.0464913472533226, -0.08582624047994614, -0.24716082215309143, 0.09541749954223633, -0.12219283729791641, 0.07867614179849625, 0.02374083921313286, 0.1039828434586525, 0.04407791793346405, -0.0464676097035408, 0.12456409633159637, -0.007101401686668396, 0.057711727917194366, -0.10274320095777512, -0.056496426463127136, 0.07120576500892639, -0.06684064865112305, 0.08486714959144592, 0.017955806106328964, 0.0848824679851532, -0.1139385849237442, -0.07859838008880615, -0.07016874849796295, 0.005570115055888891, -0.05834520235657692, -0.0788496658205986, -0.09766070544719696, 0.08203978091478348, 0.12999732792377472, -0.036660872399806976, -0.09377188235521317, -0.05466407909989357, 0.008043422363698483, 0.06148015707731247, 0.13123267889022827, 0.0734206810593605, -0.0776100754737854, 0.0035894708707928658, 0.017086805775761604, 0.025045616552233696, -0.17270199954509735, 0.04390848055481911, 0.09452911466360092, 0.052126746624708176, 0.08710324764251709, 0.00579102011397481, -0.1592424064874649, 0.007738687098026276, 0.04672566428780556, -0.18401280045509338, -0.13849157094955444, -0.049014680087566376, 0.0255354605615139, -0.09913477301597595, -0.05548548325896263, 0.12150730192661285, -0.034107085317373276, -0.04533875733613968, 0.005623240955173969, 0.04335534945130348, -0.04738786071538925, 0.08635541796684265, 0.0004933670861646533, 0.04145444184541702, -0.07539556175470352, 0.10902868956327438, 0.07344987988471985, 0.0271836519241333, 0.040494468063116074, 0.05795298144221306, -0.07705191522836685, 0.015781624242663383, -0.09761536866426468, 0.0058772144839167595, -0.018244652077555656, -0.012728971429169178, 0.021786805242300034, -0.042132291942834854, 0.04258215054869652, 0.08764383941888809, -0.021890336647629738, 0.11732476949691772, -0.04230237379670143, 0.007523749023675919, -0.12691661715507507, 0.06745774298906326, 0.04039095342159271, 0.025093557313084602, -0.11136684566736221, 0.19454623758792877, 0.020481448620557785, 0.0986468493938446, -0.034629661589860916, -0.05756211280822754, -0.056427761912345886, -0.007921208627521992, -0.10006922483444214, -0.045506857335567474, -0.09862575680017471, -0.024773573502898216, -0.00693884864449501, -0.02501206286251545, -0.02610792964696884, 0.04532788321375847, -0.04057407006621361, -0.06102588772773743, -0.062434833496809006, 0.052182625979185104, -0.1433395892381668, 0.04823097586631775, 0.11149930208921432, -0.054982226341962814, 0.1205810084939003, 0.05718226358294487, -0.03829338774085045, 0.017095249146223068, -0.10699474811553955, 0.029276225715875626, -0.029947763308882713, 0.017947431653738022, 0.015523768030107021, -0.15594466030597687, 0.002395227085798979, -0.03807299584150314, -0.07727840542793274, 0.0022109942510724068, -0.02492382377386093, -0.13300570845603943, -0.002186291618272662, 0.08057461678981781, -0.027143796905875206, -0.07267628610134125, 0.0710766538977623, 0.06853049248456955, 0.015721751376986504, 0.0644024908542633, -0.023125415667891502, 0.06565181165933609, -0.1711261123418808, -0.05051933974027634, 0.011717502027750015, 0.03201284632086754, 0.029413769021630287, -0.009398212656378746, 0.03927939385175705, -0.016610903665423393, 0.19777746498584747, 0.014553717337548733, -0.02906765416264534, 0.029992960393428802, -0.04907618835568428, -0.005541740916669369, 0.039940740913152695, 0.08029899001121521, -0.03561468422412872, -0.037352319806814194, -0.0018558879382908344, -0.023958729580044746, -0.09918130934238434, -0.017802728340029716, 0.10778851807117462, 0.026419412344694138, 0.2074984759092331, -0.054776325821876526, 0.06102436035871506, -0.01091418694704771, -0.13206535577774048, -0.011684439145028591, -0.03684196248650551, 0.043981779366731644, -0.052933238446712494, 0.038631193339824677, 0.17757506668567657, -0.15703710913658142, 0.12185429781675339, 0.019000081345438957, -0.05809431150555611, -0.11924467235803604, -0.19464558362960815, -0.016866737976670265, -0.041296251118183136, 0.03230450674891472, -0.14493650197982788, 0.09855224937200546, 0.039168838411569595, 0.03160933405160904, -0.0706525593996048, 0.13370539247989655, -0.07869338989257812, -0.12445292621850967, 0.04000340774655342, 0.012795216403901577, 0.036016035825014114, 0.04534256085753441, 0.08210708945989609, 0.025606906041502953, 0.011072426103055477, 0.07173823565244675, 0.04409913718700409, 0.03240085393190384, 0.038815319538116455, -0.02928444929420948, -0.04038887470960617, 0.03053087554872036, -0.0027425535954535007, 0.036337960511446, 0.10096263140439987, 0.06502708792686462, -0.01779329776763916, -0.017750823870301247, 0.291655957698822, -0.03625546768307686, -0.02803715690970421, -0.18461968004703522, 0.1685309112071991, 0.007685527671128511, -0.00805026013404131, 0.03813853859901428, -0.12135349214076996, 0.0077653140760958195, 0.11091326177120209, 0.15100431442260742, -0.019570335745811462, 0.02082771249115467, -0.023077111691236496, 0.01624266803264618, 0.0342537946999073, 0.08324017375707626, 0.0710982084274292, 0.20706695318222046, -0.04033380374312401, 0.042496126145124435, -0.016011135652661324, -0.01683504693210125, -0.007820365019142628, 0.10102474689483643, -0.03936690464615822, -0.000688983011059463, -0.04837145283818245, 0.10919776558876038, -0.07260756194591522, -0.28596872091293335, -0.03586798906326294, -0.02800668403506279, -0.08872120082378387, 0.072241872549057, -0.030329644680023193, -0.021744947880506516, 0.08214486390352249, 0.027587678283452988, -0.04327351972460747, 0.15089532732963562, 0.051686979830265045, -0.03925182670354843, 0.0054677207954227924, 0.10670439898967743, -0.03716311976313591, 0.18002444505691528, -0.02633616514503956, 0.0034475165884941816, 0.07512877136468887, 0.022209828719496727, -0.12177293747663498, 0.0010003247298300266, 0.04057605192065239, -0.07210402190685272, -0.026991024613380432, 0.2019379734992981, 0.017371997237205505, 0.033850815147161484, 0.06908474862575531, -0.03504073619842529, 0.02553916536271572, -0.0384121872484684, 0.07459908723831177, -0.14605863392353058, 0.06461868435144424, -0.08049125224351883, 0.12776637077331543, 0.18903133273124695, -0.06357035785913467, 0.030337832868099213, -0.05413524806499481, -0.006348960567265749, -0.027323460206389427, 0.0686676949262619, -0.017749762162566185, -0.10200421512126923, 0.010421447455883026, 0.027323057875037193, 0.02520282007753849, -0.17424529790878296, -0.07055222243070602, 0.07587993144989014, -0.05787840858101845, 0.0192999430000782, 0.1672055721282959, 0.04058174788951874, 0.05491042137145996, -0.039932455867528915, 0.01021687500178814, -0.016108576208353043, 0.11629719287157059, -0.1669604480266571, -0.07578060030937195 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/dd37b530cf20f2ce699f91e02a476a8a.847x847x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dua Lipa</div> <a href="https://genius.com/artists/dua-lipa"> <div style="text-align: center; font-size: 14px;">@dua-lipa</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Dua Lipa. Dataset is available [here](https://huggingface.co/datasets/huggingartists/dua-lipa). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dua-lipa") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2wxz1liw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Dua Lipa's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3uj930yj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3uj930yj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/dua-lipa') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/dua-lipa") model = AutoModelWithLMHead.from_pretrained("huggingartists/dua-lipa") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/dua-lipa"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/dua-lipa
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/dua-lipa", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dua-lipa #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dua Lipa</div> <a href="URL <div style="text-align: center; font-size: 14px;">@dua-lipa</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Dua Lipa. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Dua Lipa's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Dua Lipa.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Dua Lipa's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dua-lipa #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Dua Lipa.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Dua Lipa's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dua-lipa #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Dua Lipa.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Dua Lipa's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.012421787716448307, 0.14762693643569946, -0.003151443786919117, 0.03796613961458206, 0.09502936899662018, 0.008073529228568077, 0.09616024792194366, 0.10028502345085144, -0.0002372492745053023, 0.07349956780672073, 0.06853082776069641, 0.019222266972064972, 0.074691042304039, 0.10634934157133102, 0.08425796031951904, -0.26389071345329285, 0.033042434602975845, -0.09688019752502441, -0.008055726066231728, 0.11633243411779404, 0.10160695761442184, -0.05532638356089592, 0.08843973278999329, 0.03642908111214638, -0.07857205718755722, 0.017420396208763123, -0.0029629250057041645, -0.065701425075531, 0.08713994920253754, 0.07019861042499542, 0.03977196663618088, 0.029082361608743668, 0.06410251557826996, -0.19031932950019836, 0.02969311736524105, 0.12584581971168518, 0.033219143748283386, 0.06902489811182022, 0.04129745811223984, -0.08141256123781204, 0.17728839814662933, -0.018805231899023056, 0.10218493640422821, 0.04255787655711174, -0.12117256969213486, -0.13807131350040436, -0.12645238637924194, 0.07282271981239319, 0.10433395951986313, 0.08343358337879181, -0.03030397556722164, 0.040672969073057175, -0.032266199588775635, 0.04260430857539177, 0.22753342986106873, -0.2321799397468567, -0.019464310258626938, 0.09038759768009186, 0.041719816625118256, 0.010849065147340298, -0.08084306120872498, 0.012737286277115345, 0.04508349299430847, 0.020361440256237984, 0.04713989421725273, -0.01572345942258835, 0.19235412776470184, 0.020111752673983574, -0.10090808570384979, -0.07881871610879898, 0.1188056617975235, -0.02765408530831337, -0.08047746121883392, -0.1351359337568283, -0.0008138510747812688, 0.004507166799157858, 0.03276771306991577, -0.009693790227174759, 0.002097206423059106, 0.0056938547641038895, -0.03292488306760788, -0.09863533824682236, -0.0834682360291481, -0.03611910343170166, -0.0323728546500206, 0.07299597561359406, 0.029831817373633385, 0.033557359129190445, -0.07254563271999359, 0.22381217777729034, -0.017379796132445335, -0.0993519052863121, -0.04956812039017677, -0.09571535140275955, -0.08403012156486511, -0.054350417107343674, 0.007802151143550873, -0.000612723408266902, -0.0489644780755043, 0.1530236154794693, -0.013325966894626617, 0.029466230422258377, -0.014839839190244675, -0.01884005032479763, 0.14930620789527893, 0.14147193729877472, -0.10281393676996231, -0.02105993777513504, 0.05493227019906044, -0.008172569796442986, -0.05967383086681366, -0.055831700563430786, -0.009197625331580639, -0.01014666073024273, 0.03052002750337124, 0.086293064057827, 0.06708333641290665, 0.05881086364388466, 0.010000309906899929, -0.06553415954113007, 0.09781581908464432, -0.13979721069335938, 0.015989622101187706, -0.008807043544948101, -0.04202304407954216, 0.02538863942027092, 0.044768430292606354, 0.02157934568822384, -0.09731105715036392, 0.12351882457733154, -0.056632090359926224, -0.048462022095918655, -0.08316797763109207, -0.08743320405483246, 0.0008339074556715786, -0.013578185811638832, -0.039638224989175797, -0.07274311035871506, -0.17484316229820251, -0.042263489216566086, 0.033716581761837006, -0.05477655306458473, -0.042045727372169495, 0.024955060333013535, -0.024399256333708763, 0.01061563566327095, -0.010707741603255272, -0.03351219370961189, -0.03015078790485859, 0.032080553472042084, -0.05137668922543526, 0.03318508341908455, 0.0811564102768898, 0.048594266176223755, -0.10640069842338562, 0.07406079769134521, -0.16272462904453278, 0.13313311338424683, -0.012837136164307594, 0.022742776200175285, -0.09185219556093216, -0.09130365401506424, -0.02487441524863243, -0.02830119989812374, 0.0018316005589440465, 0.10570043325424194, -0.19311708211898804, -0.03702198714017868, 0.20013593137264252, -0.07813728600740433, -0.07701390981674194, 0.0709209069609642, -0.07652953267097473, 0.026502203196287155, 0.12825420498847961, 0.06471267342567444, 0.15716922283172607, -0.12479790300130844, -0.059016481041908264, -0.046076152473688126, -0.0568404495716095, 0.20632286369800568, 0.05199629068374634, -0.013356873765587807, 0.005419523920863867, 0.012568299658596516, -0.0408148393034935, -0.023818964138627052, -0.01939314790070057, -0.03620186448097229, -0.013849243521690369, 0.009478080086410046, 0.0008667128277011216, -0.04311249777674675, -0.07299413532018661, -0.028121812269091606, -0.10635547339916229, 0.050467509776353836, 0.09918677061796188, -0.06396835297346115, 0.0026176993269473314, -0.08883398771286011, 0.014636986888945103, -0.031764622777700424, 0.01159723661839962, -0.1662641167640686, -0.06504684686660767, 0.020223071798682213, -0.06362669169902802, 0.08345657587051392, 0.03106149286031723, 0.03158940374851227, 0.056584782898426056, -0.013093273155391216, 0.020765813067555428, -0.05305848643183708, -0.02252385951578617, -0.015248306095600128, -0.14234952628612518, -0.05160408467054367, -0.047084659337997437, 0.08289983123540878, -0.11430535465478897, 0.006855087820440531, 0.08514148741960526, 0.12734752893447876, 0.02077632024884224, -0.05717691034078598, 0.021113969385623932, -0.03579551354050636, -0.028074251487851143, -0.10653737932443619, -0.05542329326272011, 0.00903742853552103, -0.020335454493761063, 0.13893046975135803, -0.16211241483688354, -0.06877857446670532, 0.10858771204948425, 0.1264529526233673, -0.09548056870698929, 0.04613947495818138, -0.08112207055091858, -0.011908560991287231, -0.05682765319943428, -0.03587052598595619, 0.26080700755119324, 0.03353399410843849, 0.07554388791322708, -0.10731762647628784, -0.09467879682779312, -0.00981063861399889, -0.047927480190992355, -0.03606465086340904, 0.023177335038781166, 0.03636306896805763, -0.14176450669765472, 0.036477673798799515, 0.005218890495598316, 0.10504944622516632, 0.19619275629520416, 0.04390190169215202, -0.08467848598957062, -0.059654369950294495, -0.06924381107091904, -0.006106474436819553, 0.05620148032903671, 0.015990156680345535, 0.03119739703834057, 0.04241242632269859, 0.05592234805226326, 0.037053775042295456, -0.1179002895951271, 0.010044148191809654, 0.0718408152461052, -0.045479703694581985, -0.06729194521903992, 0.013253632932901382, 0.0218505859375, 0.08258861303329468, 0.0957050770521164, 0.1413353979587555, -0.06510961055755615, -0.04766334965825081, -0.13616180419921875, 0.13691872358322144, -0.08778291940689087, -0.2685776352882385, -0.12757869064807892, -0.07023505121469498, 0.007625354453921318, 0.013709465973079205, 0.02731604501605034, -0.05668521672487259, -0.04612748697400093, -0.08476673066616058, 0.11504863947629929, -0.04378393664956093, -0.02160242572426796, 0.016780143603682518, 0.021803606301546097, -0.025980690494179726, -0.11002059280872345, -0.03201718628406525, 0.037681370973587036, -0.0974416434764862, -0.010163677856326103, 0.033654436469078064, 0.03626590594649315, 0.15204018354415894, -0.007684828247874975, -0.002972796093672514, -0.02241792157292366, 0.28710928559303284, -0.12218823283910751, 0.07149797677993774, 0.16668327152729034, -0.009222324006259441, 0.05532321333885193, 0.0905853807926178, 0.007046528160572052, -0.0708407610654831, 0.07440409064292908, 0.07743404805660248, -0.07834668457508087, -0.208780437707901, -0.035808265209198, -0.016492139548063278, 0.018193043768405914, 0.1080615445971489, 0.04658457636833191, 0.04144292697310448, 0.005055976565927267, -0.1016288474202156, 0.049399808049201965, 0.022421104833483696, 0.10191069543361664, -0.044817715883255005, -0.014394192956387997, 0.05148236081004143, -0.057344164699316025, 0.017743535339832306, 0.1339305192232132, 0.04333914443850517, 0.19474919140338898, -0.06598193198442459, 0.0741657093167305, 0.08038873970508575, 0.10368967801332474, 0.026086408644914627, 0.015088442713022232, -0.01826159842312336, 0.016148941591382027, -0.0015275287441909313, -0.08674561232328415, -0.020917663350701332, 0.041447389870882034, 0.03345241770148277, -0.02394581399857998, -0.04671416059136391, -0.059588536620140076, 0.043020352721214294, 0.23390688002109528, 0.012748192995786667, -0.16922345757484436, -0.10212845355272293, 0.05695517361164093, -0.06706760078668594, -0.0640777200460434, -0.013165553100407124, 0.054374706000089645, -0.22000660002231598, 0.07434337586164474, -0.024170244112610817, 0.10689536482095718, -0.11997991055250168, -0.0029075886122882366, 0.08943363279104233, 0.04476016387343407, -0.06116893142461777, 0.09915581345558167, -0.1881837099790573, 0.05627099797129631, -0.010575511492788792, 0.07344906032085419, -0.0679256021976471, 0.031740572303533554, 0.007946636527776718, 0.0495702363550663, 0.07968400418758392, 0.016478972509503365, 0.014347702264785767, 0.0029310225509107113, -0.044359248131513596, 0.008697779849171638, 0.05928024649620056, -0.11686614900827408, 0.1207406297326088, -0.035684648901224136, 0.032726988196372986, -0.03618088737130165, -0.08676135540008545, -0.08144556730985641, -0.1534440964460373, 0.08928975462913513, -0.13033488392829895, 0.0026236858684569597, -0.06946738064289093, -0.018317731097340584, 0.03671703860163689, 0.250031441450119, -0.05626750364899635, -0.08796633780002594, -0.13470569252967834, 0.00204713037237525, 0.13885115087032318, -0.07809021323919296, 0.007626703940331936, -0.014226065948605537, 0.19606487452983856, 0.011583271436393261, -0.1344822198152542, -0.012912081554532051, -0.06889313459396362, -0.17131684720516205, -0.00950550939887762, 0.17182005941867828, 0.054917894303798676, 0.029376020655035973, 0.0049331942573189735, -0.002519756555557251, -0.05261244252324104, -0.17332422733306885, 0.02120223455131054, 0.1586962193250656, -0.017840895801782608, 0.02315407432615757, 0.037761591374874115, 0.024606112390756607, -0.1261613667011261, 0.021907953545451164, 0.04436078295111656, 0.17712323367595673, -0.06724965572357178, 0.18733298778533936, 0.0305369570851326, -0.0886615663766861, -0.15983201563358307, 0.018928710371255875, 0.024392753839492798, 0.038627032190561295, 0.015114594250917435, -0.20892414450645447, 0.04721101000905037, 0.031359292566776276, 0.0005124830640852451, 0.06064840778708458, -0.3226544260978699, -0.14697031676769257, 0.00833972729742527, 0.004618838895112276, -0.11201772838830948, -0.039263539016246796, -0.035775747150182724, -0.08694134652614594, -0.26451998949050903, 0.10402395576238632, -0.10317288339138031, 0.07254063338041306, 0.016060490161180496, 0.10475249588489532, 0.0483248233795166, -0.04236065596342087, 0.1283295750617981, -0.02739802747964859, 0.06181120499968529, -0.10576474666595459, -0.05572584643959999, 0.06097385659813881, -0.06246166676282883, 0.10351739823818207, 0.029300222173333168, 0.08892201632261276, -0.09131542593240738, -0.08944972604513168, -0.07649143785238266, 0.006168989464640617, -0.06314554065465927, -0.0925884023308754, -0.10032007843255997, 0.08427155017852783, 0.12144488096237183, -0.04426565021276474, -0.1194235235452652, -0.05475885421037674, -0.0028100931085646152, 0.03919955715537071, 0.11405223608016968, 0.06904810667037964, -0.06544622033834457, 0.010903654620051384, 0.01989366114139557, 0.017437100410461426, -0.16921529173851013, 0.04734185338020325, 0.09072170406579971, 0.03887879475951195, 0.10680347681045532, 0.01037943921983242, -0.16157056391239166, -0.0007618976524099708, 0.05035635083913803, -0.1643812358379364, -0.12097419053316116, -0.04522419348359108, 0.010461218655109406, -0.10927823930978775, -0.059914570301771164, 0.1312815546989441, -0.032253462821245193, -0.037774402648210526, 0.0031643067486584187, 0.0492248572409153, -0.044510409235954285, 0.08039220422506332, 0.0076303742825984955, 0.04024038463830948, -0.06953004002571106, 0.1100495308637619, 0.06737689673900604, 0.01568540185689926, 0.03791292384266853, 0.0565476268529892, -0.08535195887088776, 0.010396820493042469, -0.09635335952043533, 0.022499697282910347, -0.03320738300681114, -0.010586181655526161, 0.009883478283882141, -0.05343741178512573, 0.03931431099772453, 0.07323690503835678, -0.012748582288622856, 0.11182092130184174, -0.03708217293024063, 0.014702646993100643, -0.13180820643901825, 0.07134013622999191, 0.04061390832066536, 0.022521529346704483, -0.11275173723697662, 0.18566571176052094, 0.026543663814663887, 0.10799854248762131, -0.03707817569375038, -0.0555519200861454, -0.0640421211719513, -0.012469733133912086, -0.08094185590744019, -0.045737165957689285, -0.09235983341932297, -0.020253509283065796, -0.00020275055430829525, -0.043244462460279465, -0.023768799379467964, 0.039964232593774796, -0.033921051770448685, -0.05790461227297783, -0.07359139621257782, 0.0413040928542614, -0.14208339154720306, 0.030621880665421486, 0.12835462391376495, -0.05679698660969734, 0.11658883839845657, 0.054221998900175095, -0.02800699509680271, 0.025460051372647285, -0.11694549024105072, 0.03938284516334534, -0.01725204661488533, 0.023324454203248024, 0.022397048771381378, -0.16211186349391937, 0.009762805886566639, -0.0383550301194191, -0.06434010714292526, 0.0020927402656525373, -0.01031424105167389, -0.13415226340293884, -0.005267050117254257, 0.07923789322376251, -0.031590525060892105, -0.06788545101881027, 0.06772848218679428, 0.05360088124871254, 0.023831231519579887, 0.05832260102033615, -0.022544702515006065, 0.07935114204883575, -0.159845232963562, -0.05480553209781647, 0.0017667626962065697, 0.036485712975263596, 0.04422321543097496, -0.02042279951274395, 0.04142460599541664, -0.016800234094262123, 0.19919951260089874, 0.02666574902832508, -0.015866342931985855, 0.03376304358243942, -0.058617208153009415, 0.008476127870380878, 0.04531483352184296, 0.07097603380680084, -0.03298737108707428, -0.03936513885855675, -0.006449971813708544, -0.022940147668123245, -0.09434491395950317, -0.049942322075366974, 0.11334649473428726, 0.04706251248717308, 0.18625178933143616, -0.058182019740343094, 0.07107879221439362, -0.018435638397932053, -0.1199970692396164, -0.029426638036966324, -0.05103641748428345, 0.03480520471930504, -0.05746414512395859, 0.06939826160669327, 0.16210277378559113, -0.16501551866531372, 0.1227194219827652, 0.02416122704744339, -0.0624297671020031, -0.11363989859819412, -0.17390580475330353, -0.018657179549336433, -0.04559082165360451, 0.030050592496991158, -0.14324907958507538, 0.0874304547905922, 0.024900106713175774, 0.03156818449497223, -0.07135660201311111, 0.1403493881225586, -0.08490465581417084, -0.12205330282449722, 0.04297737404704094, 0.02705148421227932, 0.02892201952636242, 0.047082751989364624, 0.08481065928936005, 0.020000915974378586, 0.02428114414215088, 0.07062908262014389, 0.03893714025616646, 0.02366972342133522, 0.03532083332538605, -0.03308410197496414, -0.04295198619365692, 0.03235180675983429, -0.002187795238569379, 0.029716605320572853, 0.0926213264465332, 0.06009965017437935, -0.016202330589294434, -0.021202336996793747, 0.3031498193740845, -0.03630366548895836, -0.044290803372859955, -0.19199952483177185, 0.15677902102470398, 0.0013786277268081903, -0.01052397582679987, 0.025852249935269356, -0.12139279395341873, -0.002880105981603265, 0.137396439909935, 0.15910016000270844, -0.02774815447628498, 0.017684027552604675, -0.033539872616529465, 0.0206257626414299, 0.03980886563658714, 0.10196016728878021, 0.07558433711528778, 0.206248477101326, -0.03356702998280525, 0.037879664450883865, -0.012963677756488323, -0.022294320166110992, 0.0008387971320189536, 0.09944687783718109, -0.03311702981591225, -0.0004232195788063109, -0.059237148612737656, 0.10630098730325699, -0.05387609452009201, -0.27631065249443054, -0.028425421565771103, -0.030396131798624992, -0.09790754318237305, 0.06204941123723984, -0.04269927740097046, -0.022068558260798454, 0.08589798957109451, 0.0252025555819273, -0.04861336946487427, 0.16825361549854279, 0.04999540373682976, -0.04458114132285118, -0.00296800397336483, 0.10660727322101593, -0.006060906685888767, 0.16882319748401642, -0.02650470659136772, 0.00813194178044796, 0.08167704194784164, 0.0189784187823534, -0.11824984848499298, 0.012208987027406693, 0.043198153376579285, -0.0607823021709919, -0.01594499684870243, 0.1953849345445633, 0.014500713907182217, 0.011268912814557552, 0.0738084688782692, -0.05467529222369194, 0.018819129094481468, -0.058279361575841904, 0.05673428252339363, -0.1501864492893219, 0.07589739561080933, -0.09476248919963837, 0.1272766888141632, 0.19809655845165253, -0.06394483149051666, 0.02838604897260666, -0.06072918325662613, 0.014150629751384258, -0.030085451900959015, 0.07939723879098892, -0.02002061903476715, -0.10390865802764893, 0.0045126513577997684, 0.03511715680360794, 0.022970611229538918, -0.19106288254261017, -0.0732928141951561, 0.06927690654993057, -0.04950323328375816, 0.02679787389934063, 0.1784083992242813, 0.01237137708812952, 0.06039256229996681, -0.04168364033102989, -0.009388470090925694, -0.012691851705312729, 0.11792445927858353, -0.15529188513755798, -0.08082779496908188 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/95697394e4f58c9aa507e408f51008db.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Duran Duran</div> <a href="https://genius.com/artists/duran-duran"> <div style="text-align: center; font-size: 14px;">@duran-duran</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Duran Duran. Dataset is available [here](https://huggingface.co/datasets/huggingartists/duran-duran). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/duran-duran") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/dy133fuf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Duran Duran's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/386u7cc3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/386u7cc3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/duran-duran') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/duran-duran") model = AutoModelWithLMHead.from_pretrained("huggingartists/duran-duran") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/duran-duran"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/duran-duran
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/duran-duran", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/duran-duran #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Duran Duran</div> <a href="URL <div style="text-align: center; font-size: 14px;">@duran-duran</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Duran Duran. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Duran Duran's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Duran Duran.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Duran Duran's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/duran-duran #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Duran Duran.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Duran Duran's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/duran-duran #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Duran Duran.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Duran Duran's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.040499452501535416, 0.15095798671245575, -0.0027252722065895796, 0.05674932524561882, 0.1090303584933281, 0.01691094972193241, 0.08358954638242722, 0.10655755549669266, 0.006439642980694771, 0.0834447368979454, 0.07084028422832489, 0.03569332882761955, 0.07285702228546143, 0.07362043112516403, 0.06760954856872559, -0.2307354062795639, 0.04162084311246872, -0.09272149205207825, 0.007249998394399881, 0.08687600493431091, 0.08728630095720291, -0.0658782497048378, 0.0774279460310936, 0.01645132154226303, -0.06183873862028122, 0.016469594091176987, -0.002014489844441414, -0.05529995262622833, 0.08995766192674637, 0.06361474096775055, 0.041178710758686066, 0.03624643012881279, 0.06712882220745087, -0.18094439804553986, 0.027584541589021683, 0.125870019197464, 0.02868993580341339, 0.07185107469558716, 0.05599275603890419, -0.07921671122312546, 0.12764506042003632, -0.015320648439228535, 0.09847855567932129, 0.047704629600048065, -0.11498578637838364, -0.11209824681282043, -0.15402311086654663, 0.09042422473430634, 0.09356097131967545, 0.08487619459629059, -0.028897574171423912, 0.07735936343669891, -0.023589694872498512, 0.034839943051338196, 0.22358718514442444, -0.23254312574863434, -0.007983162999153137, 0.08098369091749191, 0.07068115472793579, 0.03199990838766098, -0.09409601241350174, 0.008250582031905651, 0.049814414232969284, 0.036245159804821014, 0.020273545756936073, -0.01959655061364174, 0.18530677258968353, 0.016207626089453697, -0.10476014018058777, -0.06957449018955231, 0.0935465544462204, -0.02292770706117153, -0.08459139615297318, -0.12172705680131912, -0.0019911814015358686, -0.027454722672700882, 0.02672192081809044, 0.0049368394538760185, 0.003952284809201956, 0.0009477577405050397, -0.037963028997182846, -0.09956309199333191, -0.06600262224674225, -0.04782428964972496, -0.01333723496645689, 0.04280441999435425, 0.05073272064328194, 0.027939360588788986, -0.08340246975421906, 0.2234601527452469, 0.010784327052533627, -0.09314365684986115, -0.052267830818891525, -0.11508303880691528, -0.07918200641870499, -0.04064079374074936, 0.001757446094416082, -0.021560678258538246, -0.0235292911529541, 0.14020605385303497, -0.029053382575511932, 0.024297572672367096, -0.03495059162378311, -0.002343428321182728, 0.1319723129272461, 0.14555947482585907, -0.13701337575912476, -0.0470355786383152, 0.06567975133657455, 0.0060488395392894745, -0.05961014702916145, -0.042310066521167755, 0.007369447965174913, -0.009635381400585175, 0.044708456844091415, 0.08721192181110382, 0.08694013953208923, 0.05833945795893669, 0.008825830183923244, -0.05599083751440048, 0.08550627529621124, -0.1273173838853836, 0.013515699654817581, -0.007838270626962185, -0.06150646507740021, 0.02979116141796112, 0.06538750976324081, 0.007726083509624004, -0.10527357459068298, 0.10337533056735992, -0.07464415580034256, -0.05343031883239746, -0.07979212701320648, -0.11658717691898346, -0.0005852981121279299, -0.04650742933154106, -0.030694859102368355, -0.07962777465581894, -0.16679205000400543, -0.05343708023428917, 0.013172374106943607, -0.055271830409765244, -0.013242394663393497, 0.015767721459269524, -0.03456337749958038, 0.01349230483174324, -0.009843476116657257, -0.023630205541849136, -0.024021552875638008, 0.03598722442984581, -0.08274178951978683, 0.03159654885530472, 0.06534000486135483, 0.047812700271606445, -0.10973513126373291, 0.08119993656873703, -0.11706314980983734, 0.12109369039535522, -0.030795427039265633, 0.010942679829895496, -0.09230443090200424, -0.07821549475193024, -0.01600297912955284, -0.0395454540848732, 0.036764707416296005, 0.12952914834022522, -0.16251587867736816, -0.016806460916996002, 0.19824999570846558, -0.06302481144666672, -0.0648154467344284, 0.06231161579489708, -0.07017483562231064, 0.030699346214532852, 0.11256929486989975, 0.05823656544089317, 0.1512797325849533, -0.12262120842933655, -0.08654193580150604, -0.05446113646030426, -0.06732699275016785, 0.17524906992912292, 0.026894284412264824, -0.027835791930556297, 0.03752441704273224, 0.0022724426817148924, -0.03714780509471893, 0.0008464999846182764, -0.025109639391303062, -0.030401786789298058, -0.01797345280647278, -0.01588446833193302, 0.009357246570289135, -0.036355387419462204, -0.04186766967177391, -0.014460000209510326, -0.0956791415810585, 0.07116096466779709, 0.10055579245090485, -0.0666738972067833, 0.01644337736070156, -0.09302070736885071, 0.0317373126745224, -0.0625603199005127, 0.02130233868956566, -0.1697736382484436, -0.05999216437339783, 0.02211080491542816, -0.0739617645740509, 0.05123300477862358, 0.012060767039656639, 0.03834916278719902, 0.07178015261888504, -0.015070946887135506, -0.0064179194159805775, -0.05462554842233658, 0.00452384864911437, -0.04373985528945923, -0.16132418811321259, -0.04233519360423088, -0.047265928238630295, 0.07102770358324051, -0.10610270500183105, 0.004249482415616512, 0.06601623445749283, 0.1349087506532669, 0.02139468304812908, -0.06183374673128128, 0.036028798669576645, -0.024882787838578224, -0.029833735898137093, -0.11086168140172958, -0.04807880520820618, 0.004268093034625053, -0.016465481370687485, 0.1470007747411728, -0.14345455169677734, -0.11304455995559692, 0.12296570092439651, 0.12284129112958908, -0.08822567760944366, 0.07003682106733322, -0.068359375, -0.02720521204173565, -0.03689383342862129, -0.05742378905415535, 0.22404807806015015, 0.039590779691934586, 0.08714298158884048, -0.07991009950637817, -0.07094044238328934, 0.004288339987397194, -0.03207694739103317, -0.046954426914453506, 0.04176758974790573, 0.034356314688920975, -0.14227129518985748, 0.05310804769396782, -0.014020193368196487, 0.09135150164365768, 0.16695091128349304, 0.03561272844672203, -0.09136024117469788, -0.047218721359968185, -0.06970293074846268, 0.009809755720198154, 0.09438786655664444, 0.022419903427362442, 0.0356307253241539, 0.03519468009471893, 0.050256866961717606, 0.040759533643722534, -0.1087205708026886, 0.009245863184332848, 0.05194789543747902, -0.02406141720712185, -0.06682601571083069, 0.027049941942095757, 0.01940928027033806, 0.08893503993749619, 0.0791894793510437, 0.11055119335651398, -0.05504791438579559, -0.05125749111175537, -0.13117654621601105, 0.13321144878864288, -0.10458632558584213, -0.19301056861877441, -0.1302482634782791, -0.07024773955345154, 0.0009081265889108181, 0.009892739355564117, 0.032204948365688324, -0.05355024337768555, -0.03819083422422409, -0.08940833061933517, 0.09742292016744614, -0.028529217466711998, -0.013726127333939075, -0.0038125058636069298, 0.014828182756900787, -0.017925895750522614, -0.12023364007472992, -0.02809135429561138, 0.022106673568487167, -0.0690581426024437, -0.0017782587092369795, 0.02364695630967617, 0.060152798891067505, 0.14295220375061035, 0.004946926608681679, -0.0058984775096178055, -0.01726122759282589, 0.25890859961509705, -0.10903460532426834, 0.06058259308338165, 0.1630636602640152, -0.004437728319317102, 0.05923869088292122, 0.06581597030162811, -0.004930592142045498, -0.058810655027627945, 0.06302232295274734, 0.06391491740942001, -0.06428458541631699, -0.20308223366737366, -0.031023791059851646, -0.017023654654622078, 0.02374414913356304, 0.10439274460077286, 0.0383763462305069, 0.03286087512969971, 0.013705221936106682, -0.09355053305625916, 0.059716563671827316, 0.021931074559688568, 0.10069248825311661, -0.055289339274168015, -0.008703412488102913, 0.03714241087436676, -0.05845091864466667, 0.036334142088890076, 0.1174178272485733, 0.05019190534949303, 0.23354394733905792, -0.07534431666135788, 0.05703873932361603, 0.08883967250585556, 0.1037416011095047, 0.009218593128025532, 0.030605828389525414, -0.02296309731900692, 0.03626596927642822, 0.013253382407128811, -0.0892021581530571, -0.0006093417759984732, 0.03372242674231529, 0.023979533463716507, -0.013060678727924824, -0.06477059423923492, -0.06828270107507706, 0.05003224313259125, 0.22266092896461487, 0.03138414025306702, -0.16912487149238586, -0.09872768074274063, 0.062207579612731934, -0.03882212191820145, -0.05713732913136482, -0.022448459640145302, 0.05769927054643631, -0.20769861340522766, 0.031694408506155014, -0.036947865039110184, 0.09973207861185074, -0.11965857446193695, -0.0029986409936100245, 0.05729454383254051, 0.03735482692718506, -0.06778224557638168, 0.06582199037075043, -0.166714608669281, 0.05937441810965538, -0.007515470497310162, 0.08519118279218674, -0.05337785556912422, 0.020796656608581543, 0.03497624769806862, 0.03832175210118294, 0.08705481886863708, 0.0127017293125391, 0.0687989592552185, -0.043361447751522064, -0.04685209318995476, -0.0027823110576719046, 0.048707131296396255, -0.08251853287220001, 0.12656056880950928, -0.027087023481726646, 0.03265570104122162, -0.022432861849665642, -0.07365041226148605, -0.10509689897298813, -0.1412506103515625, 0.07507257908582687, -0.13337968289852142, -0.0012596264714375138, -0.06623625010251999, -0.02360159531235695, 0.007049489766359329, 0.19580702483654022, -0.1135321632027626, -0.08025722205638885, -0.12421631813049316, 0.005515817552804947, 0.1406613141298294, -0.07464245706796646, 0.0024025877937674522, -0.005463387351483107, 0.15018092095851898, -0.005798383615911007, -0.13888242840766907, -0.0029089509043842554, -0.07280730456113815, -0.18043239414691925, -0.03481592983007431, 0.11545360088348389, 0.07199269533157349, 0.03101549856364727, -0.000951511028688401, 0.004850063938647509, -0.043818555772304535, -0.1649499088525772, 0.017624469473958015, 0.15513768792152405, 0.01551623921841383, 0.013783016242086887, 0.01607479341328144, 0.022718342021107674, -0.1315712034702301, 0.022282756865024567, 0.038103558123111725, 0.18625958263874054, -0.07276670634746552, 0.15836548805236816, 0.016330871731042862, -0.09271946549415588, -0.1845197230577469, 0.02981298789381981, 0.00025733839720487595, 0.03198021277785301, 0.01693805307149887, -0.17044642567634583, 0.013312985189259052, 0.02619742415845394, -0.0017316780285909772, 0.07297494262456894, -0.3469730019569397, -0.14883103966712952, 0.03384950011968613, 0.029231030493974686, -0.08211155235767365, -0.049311500042676926, -0.03146166726946831, -0.08028458803892136, -0.24073806405067444, 0.07141536474227905, -0.09833072870969772, 0.08093245327472687, 0.0073532117530703545, 0.06850695610046387, 0.04346191883087158, -0.062482867389917374, 0.13393624126911163, -0.021623723208904266, 0.06322828680276871, -0.0902676209807396, -0.05022355169057846, 0.08641413599252701, -0.06364963948726654, 0.09379532933235168, 0.033436499536037445, 0.09043645858764648, -0.10233960300683975, -0.06885626167058945, -0.07757698744535446, 0.007695054169744253, -0.060495294630527496, -0.09235036373138428, -0.078761525452137, 0.09866982698440552, 0.1271805763244629, -0.03868918493390083, -0.1069297045469284, -0.038714949041604996, -0.03505157306790352, 0.04998113587498665, 0.08368729799985886, 0.1180376410484314, -0.08508045226335526, 0.0195540189743042, 0.008859734050929546, 0.029843928292393684, -0.1491212248802185, 0.033834539353847504, 0.08610641956329346, 0.0322292186319828, 0.1038278266787529, 0.014091014862060547, -0.1648654341697693, 0.032007861882448196, 0.0382860042154789, -0.1404878795146942, -0.1084381714463234, -0.021198928356170654, -0.014198586344718933, -0.08210262656211853, -0.04127626493573189, 0.13297931849956512, -0.04840680584311485, -0.030794674530625343, -0.0055429949425160885, 0.06515784561634064, -0.052550461143255234, 0.10883265733718872, 0.02358686365187168, 0.03632880747318268, -0.06521286070346832, 0.1238403394818306, 0.0695297047495842, 0.011014442890882492, 0.03519758582115173, 0.039598338305950165, -0.08739935606718063, 0.0020642278250306845, -0.09988889843225479, 0.025828663259744644, -0.05584396421909332, -0.010979893617331982, -0.01384661067277193, -0.042334653437137604, 0.02436278760433197, 0.07946562767028809, -0.018816448748111725, 0.119502954185009, -0.038645174354314804, -0.011790917254984379, -0.14448022842407227, 0.07428532093763351, 0.05223534628748894, 0.025265568867325783, -0.10578031837940216, 0.16193321347236633, 0.026215260848402977, 0.09651640802621841, -0.03854485601186752, -0.04793862625956535, -0.07662396878004074, -0.013315405696630478, -0.1621054708957672, -0.04772873595356941, -0.0732676237821579, -0.03603971377015114, -0.01855623908340931, -0.03565094619989395, -0.013764195144176483, 0.057030972093343735, -0.02149408496916294, -0.07346832752227783, -0.05954912304878235, 0.05823830887675285, -0.1497037410736084, 0.008035505190491676, 0.11020830273628235, -0.06368007510900497, 0.10962659120559692, 0.0626225396990776, -0.022579997777938843, 0.014641236513853073, -0.08760325610637665, 0.03133474662899971, -0.03966442868113518, 0.012757213786244392, 0.03896106407046318, -0.13852576911449432, 0.005295504815876484, -0.058899883180856705, -0.07871127128601074, 0.009628240950405598, 0.01139908842742443, -0.12461452931165695, 0.004518086556345224, 0.05764158442616463, 0.011014068499207497, -0.06570235639810562, 0.06817866116762161, 0.06254715472459793, 0.03686603531241417, 0.060298267751932144, -0.037069473415613174, 0.07792150229215622, -0.152556911110878, -0.0541243851184845, 0.005938106682151556, 0.020373012870550156, 0.06606321781873703, -0.003161703236401081, 0.049401137977838516, -0.011846954934298992, 0.18292099237442017, -0.00582655007019639, -0.018848370760679245, 0.04302212595939636, -0.043104514479637146, -0.02727431431412697, 0.05252532660961151, 0.04406256228685379, -0.040072955191135406, -0.026474950835108757, -0.03910290077328682, 0.001394679769873619, -0.06508710235357285, -0.03783435374498367, 0.10272182524204254, 0.06380894780158997, 0.17501331865787506, -0.03649933263659477, 0.06263449788093567, -0.029240582138299942, -0.10227297246456146, -0.026119757443666458, -0.041935767978429794, 0.04049960523843765, -0.073182612657547, 0.07448948919773102, 0.152537539601326, -0.15247993171215057, 0.10752757638692856, 0.011796250939369202, -0.05946869030594826, -0.08462722599506378, -0.13960333168506622, -0.006808001548051834, -0.02863200567662716, 0.03798394650220871, -0.11840599775314331, 0.0753558874130249, 0.024782825261354446, 0.03445582464337349, -0.06933335214853287, 0.12630099058151245, -0.07130277901887894, -0.10813600569963455, 0.027744663879275322, 0.026822108775377274, 0.014996250160038471, 0.0484435148537159, 0.07055065780878067, 0.03046015277504921, 0.008719097822904587, 0.06054927036166191, 0.04106320068240166, 0.026165200397372246, 0.04668176919221878, -0.01425197720527649, -0.04805043339729309, 0.03228967636823654, 0.014906346797943115, 0.027606261894106865, 0.12525738775730133, 0.08214607834815979, -0.010995274409651756, -0.031467288732528687, 0.28054672479629517, -0.03218550235033035, -0.031406089663505554, -0.17491024732589722, 0.16542185842990875, 0.0377197191119194, -0.01328356470912695, 0.026286432519555092, -0.15231917798519135, 0.0017905887216329575, 0.13327175378799438, 0.1736660748720169, -0.05832746624946594, 0.008750851266086102, -0.03610442206263542, 0.012390878051519394, 0.025786463171243668, 0.08735042065382004, 0.07540985196828842, 0.19292809069156647, -0.041433826088905334, 0.06549068540334702, -0.012066754512488842, -0.011679400689899921, -0.0046404823660850525, 0.12167112529277802, -0.03052089363336563, 0.006020815577358007, -0.0634993240237236, 0.09994366019964218, -0.06995779275894165, -0.2899700701236725, 0.009058943949639797, -0.03811908885836601, -0.09342159330844879, 0.0517350398004055, -0.045606281608343124, -0.026971636340022087, 0.08979560434818268, 0.023975709453225136, -0.016447806730866432, 0.14378778636455536, 0.033764008432626724, -0.025064004585146904, -0.014335482381284237, 0.08478444069623947, -0.011311653070151806, 0.18774090707302094, -0.028401406481862068, -0.008878251537680626, 0.08628196269273758, 0.032518420368433, -0.1252926141023636, 0.012190764769911766, 0.0465245321393013, -0.08026473969221115, -0.013050379231572151, 0.17585653066635132, 0.008326547220349312, 0.016558125615119934, 0.053022127598524094, -0.028185417875647545, 0.03175939992070198, -0.07747729122638702, 0.03998381271958351, -0.13861343264579773, 0.05820716917514801, -0.07394608855247498, 0.15075913071632385, 0.1819980889558792, -0.06998458504676819, 0.03601822629570961, -0.05219074338674545, -0.008437528274953365, -0.020981168374419212, 0.06136319041252136, -0.017024794593453407, -0.10218038409948349, 0.03195774927735329, 0.021679246798157692, 0.03387484326958656, -0.1991431564092636, -0.06851974874734879, 0.052005983889102936, -0.04687053710222244, 0.024845290929079056, 0.16947296261787415, 0.028314851224422455, 0.05154837667942047, -0.03736972063779831, 0.001704815891571343, -0.02190055325627327, 0.11045482009649277, -0.13209345936775208, -0.09515620023012161 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a96a6042b4c0a4c0bdae647768c5e42b.668x668x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Джизус (Dzhizus)</div> <a href="https://genius.com/artists/dzhizus"> <div style="text-align: center; font-size: 14px;">@dzhizus</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Джизус (Dzhizus). Dataset is available [here](https://huggingface.co/datasets/huggingartists/dzhizus). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dzhizus") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/35paacn1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Джизус (Dzhizus)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1ug3yebo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1ug3yebo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/dzhizus') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/dzhizus") model = AutoModelWithLMHead.from_pretrained("huggingartists/dzhizus") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/dzhizus"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/dzhizus
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/dzhizus", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dzhizus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Джизус (Dzhizus)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@dzhizus</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Джизус (Dzhizus). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Джизус (Dzhizus)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Джизус (Dzhizus).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Джизус (Dzhizus)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dzhizus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Джизус (Dzhizus).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Джизус (Dzhizus)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 56, 79, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/dzhizus #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Джизус (Dzhizus).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Джизус (Dzhizus)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.028458653017878532, 0.17700281739234924, -0.005186333321034908, 0.07017981261014938, 0.07512981444597244, -0.002414633519947529, 0.07268647104501724, 0.1235562115907669, -0.007973849773406982, 0.0814860612154007, 0.06546288728713989, 0.04524141922593117, 0.08434532582759857, 0.07989058643579483, 0.02918856404721737, -0.2552061676979065, 0.03130591660737991, -0.06144026294350624, -0.03459590673446655, 0.08826985210180283, 0.0893440991640091, -0.07598670572042465, 0.07475783675909042, 0.009568426758050919, -0.04322135075926781, -0.00923526007682085, 0.0072785476222634315, -0.058290112763643265, 0.06349284201860428, 0.07832343876361847, 0.0362234003841877, 0.051186978816986084, 0.06573811918497086, -0.17261752486228943, 0.023159075528383255, 0.11822938919067383, 0.028086796402931213, 0.08793333172798157, 0.0756862610578537, -0.03866134583950043, 0.1211087629199028, -0.05815292149782181, 0.08627960830926895, 0.0443798303604126, -0.10394760221242905, -0.08746354281902313, -0.14176392555236816, 0.048541389405727386, 0.08089074492454529, 0.06318627297878265, -0.016820713877677917, 0.07804844528436661, -0.05606353282928467, 0.053252287209033966, 0.23878325521945953, -0.27905958890914917, -0.013949640095233917, 0.04522654414176941, 0.04912073165178299, 0.015799518674612045, -0.09013161808252335, 0.015292413532733917, 0.025113366544246674, 0.03736063838005066, 0.05805036798119545, -0.04283035174012184, 0.14440390467643738, -0.01984225958585739, -0.10609644651412964, -0.0698503851890564, 0.08793173730373383, -0.021562885493040085, -0.0799972414970398, -0.11135254800319672, -0.019700827077031136, -0.0019875862635672092, 0.021822702139616013, 0.0011467563454061747, 0.005903545767068863, -0.007529009599238634, -0.079607754945755, -0.1239052414894104, -0.06969380378723145, -0.05116640403866768, -0.031013891100883484, 0.06380375474691391, 0.06188330426812172, 0.03672465682029724, -0.05602497607469559, 0.19754880666732788, 0.032033562660217285, -0.11433038115501404, -0.0873427465558052, -0.10828569531440735, -0.09010489284992218, -0.036540813744068146, -0.0011941941920667887, 0.005757397040724754, -0.005518618039786816, 0.14847157895565033, -0.033963508903980255, 0.02543092705309391, -0.04408438503742218, 0.017991000786423683, 0.09519161283969879, 0.1400231271982193, -0.10615610331296921, -0.04655782878398895, 0.08585414290428162, -0.03269601985812187, -0.03771321848034859, -0.043298717588186264, -0.010243590921163559, -0.05703550949692726, 0.047669634222984314, 0.09288851171731949, 0.07790599018335342, 0.05060560628771782, -0.007318816147744656, -0.05123506486415863, 0.014279286377131939, -0.1441292017698288, 0.034270431846380234, -0.005346549209207296, -0.06021907925605774, 0.001593989902175963, 0.05395052954554558, -0.019286079332232475, -0.12226004898548126, 0.0690780058503151, -0.06559677422046661, -0.026595192030072212, -0.08126649260520935, -0.10159607231616974, 0.014837914146482944, -0.03247451409697533, -0.021619124338030815, -0.0800970047712326, -0.15518829226493835, -0.03317420184612274, 0.01752566173672676, -0.07543205469846725, -0.017203692346811295, 0.020599765703082085, -0.039885252714157104, 0.0026411348953843117, -0.006047361064702272, 0.015606624074280262, -0.012896775268018246, 0.0610310398042202, -0.08203989267349243, 0.046616557985544205, 0.06946606189012527, 0.04146091267466545, -0.10280066728591919, 0.08428968489170074, -0.14543437957763672, 0.1543482095003128, -0.03491975739598274, -0.05103442072868347, -0.09015341848134995, -0.11325251311063766, -0.0053537082858383656, -0.05198702961206436, 0.04726390168070793, 0.12647710740566254, -0.1545892208814621, -0.006377470679581165, 0.22302600741386414, -0.0750957652926445, -0.03979913890361786, 0.08864729851484299, -0.06925314664840698, 0.030609196051955223, 0.11579621583223343, 0.04906107112765312, 0.1498359590768814, -0.0798775926232338, -0.0805039331316948, -0.023733599111437798, -0.06929173320531845, 0.17975884675979614, 0.041059091687202454, -0.018476277589797974, 0.0527292862534523, -0.004739917814731598, -0.014564409852027893, -0.029206503182649612, -0.036480020731687546, -0.03412530571222305, -0.014367738738656044, -0.007482578977942467, 0.02257728762924671, -0.04663604497909546, -0.017832184210419655, -0.014977188780903816, -0.0954030230641365, 0.04254445061087608, 0.09646733105182648, -0.07496358454227448, 0.035290706902742386, -0.10440454632043839, 0.044670455157756805, -0.06137596443295479, 0.022544147446751595, -0.16453921794891357, -0.02941359393298626, 0.026367586106061935, -0.0617508664727211, 0.05719039589166641, 0.010604951530694962, 0.055480435490608215, 0.079727903008461, -0.035408906638622284, 0.010430125519633293, -0.05776019021868706, -0.0012652967125177383, -0.06081647425889969, -0.15128983557224274, -0.05633193626999855, -0.040079496800899506, 0.049805860966444016, -0.10546088963747025, -0.003622489981353283, 0.09561040997505188, 0.1546454280614853, 0.03885137289762497, -0.05461446940898895, 0.029735352843999863, -0.02477150782942772, -0.012538455426692963, -0.10843383520841599, -0.04906957224011421, 0.018979473039507866, -0.03197602927684784, 0.141367569565773, -0.13981007039546967, -0.0699089840054512, 0.10200431197881699, 0.08986688405275345, -0.08054476231336594, 0.03450430929660797, -0.05313797667622566, -0.027829840779304504, -0.059363093227148056, -0.038927752524614334, 0.20553745329380035, 0.04126040264964104, 0.08430210500955582, -0.09466831386089325, -0.06710832566022873, -0.0069619445130229, -0.03464261069893837, -0.002470930339768529, 0.05716723948717117, 0.02722232975065708, -0.22669440507888794, 0.054260220378637314, 0.008369346149265766, 0.05748044699430466, 0.15684588253498077, 0.00982630904763937, -0.10143203288316727, -0.06557702273130417, -0.028935465961694717, 0.014596149325370789, 0.08747284859418869, 0.028701480478048325, 0.05468413233757019, 0.03813007101416588, 0.04820455238223076, 0.024173885583877563, -0.11895102262496948, 0.02615342102944851, 0.0469922199845314, -0.044384319335222244, -0.04262975603342056, -0.005815381184220314, 0.03327695280313492, 0.09314510971307755, 0.07685548067092896, 0.09104212373495102, -0.0252457857131958, -0.04640577360987663, -0.11156172305345535, 0.13490411639213562, -0.09937366843223572, -0.18692567944526672, -0.10995747894048691, -0.061595745384693146, 0.022166017442941666, 0.019807901233434677, 0.023656049743294716, -0.0031190747395157814, -0.03425779193639755, -0.07466502487659454, 0.05559328943490982, -0.04611055925488472, -0.009995403699576855, -0.00456733163446188, 0.05080153048038483, -0.0021432761568576097, -0.11564793437719345, -0.021124230697751045, 0.020960785448551178, -0.09114784002304077, 0.008801158517599106, 0.038759101182222366, 0.02925543300807476, 0.11655446887016296, -0.0025626663118600845, 0.006090808659791946, -0.031210152432322502, 0.2339548021554947, -0.10981947928667068, 0.053708627820014954, 0.14518657326698303, -0.041098177433013916, 0.07031556963920593, 0.08347615599632263, -0.0008584336028434336, -0.05236296355724335, 0.04193448647856712, 0.041052401065826416, -0.061310380697250366, -0.20009571313858032, -0.0061150481924414635, -0.044157177209854126, 0.023988934233784676, 0.10467017441987991, 0.03622368350625038, -0.0003122721682302654, 0.02565310150384903, -0.09493419528007507, 0.07043050974607468, 0.08400224149227142, 0.09523732960224152, -0.020471971482038498, -0.006246400065720081, 0.06446698307991028, -0.05347977578639984, 0.020256780087947845, 0.10258690267801285, 0.030765995383262634, 0.2771964967250824, -0.09752510488033295, 0.06598751991987228, 0.07741965353488922, 0.08376242965459824, 0.02448078617453575, 0.04080156981945038, -0.010934373363852501, 0.05406702682375908, 0.0005740819615311921, -0.09461265802383423, -0.012568763457238674, 0.0356629379093647, 0.04032660648226738, -0.026726391166448593, -0.041001517325639725, -0.0570484958589077, 0.03538911044597626, 0.20422668755054474, 0.0946682021021843, -0.1418013572692871, -0.08924056589603424, 0.07159123569726944, -0.05130856856703758, -0.0648726373910904, -0.015367262065410614, 0.0972529724240303, -0.21701064705848694, 0.016675060614943504, -0.026560509577393532, 0.11711188405752182, -0.1683994084596634, -0.02452397719025612, -0.016205843538045883, 0.06133484095335007, -0.05830543860793114, 0.07832769304513931, -0.2080272138118744, 0.06504527479410172, 0.009362151846289635, 0.10379566252231598, -0.05681705102324486, 0.03622231259942055, 0.056202374398708344, 0.017883868888020515, 0.09747759997844696, 0.015391608700156212, 0.00457915710285306, -0.0748891830444336, -0.0808432325720787, 0.007850601337850094, 0.06651279330253601, -0.05572284013032913, 0.11562955379486084, -0.03076563961803913, 0.019559377804398537, -0.020452089607715607, -0.052784983068704605, -0.1080336645245552, -0.14639799296855927, 0.07689696550369263, -0.1316804587841034, 0.005712045356631279, -0.05741707980632782, -0.025486934930086136, 0.037108153104782104, 0.19973863661289215, -0.09220591932535172, -0.1059558317065239, -0.10910452157258987, 0.027362942695617676, 0.14799107611179352, -0.08552273362874985, 0.03172608092427254, 0.018956275656819344, 0.1390421837568283, 0.016522090882062912, -0.12711003422737122, -0.011442804709076881, -0.0493619441986084, -0.19646599888801575, -0.012555663473904133, 0.12434637546539307, 0.06723100692033768, 0.05208493396639824, 0.024510901421308517, 0.017755312845110893, -0.013057439588010311, -0.1522676944732666, 0.01119446661323309, 0.10881096869707108, 0.06609179824590683, 0.040324196219444275, 0.010873622260987759, 0.040820252150297165, -0.11671002954244614, 0.03123539686203003, 0.06971859931945801, 0.22476418316364288, -0.07800328731536865, 0.15153725445270538, 0.00724033685401082, -0.08687182515859604, -0.175665944814682, -0.005026267841458321, 0.015620683319866657, 0.03478391841053963, 0.0068984320387244225, -0.18806013464927673, -0.013243577443063259, 0.03171851858496666, -0.015630384907126427, 0.12025785446166992, -0.31335315108299255, -0.12508678436279297, 0.03646232932806015, 0.032601822167634964, -0.04279143363237381, -0.027675805613398552, -0.058052778244018555, -0.06313997507095337, -0.22679491341114044, 0.10554937273263931, -0.11405725032091141, 0.10034523904323578, 0.010112660937011242, 0.013818396255373955, 0.040685251355171204, -0.04589804634451866, 0.14224672317504883, -0.06918623298406601, 0.04833211749792099, -0.09777694940567017, -0.014090873301029205, 0.05644499137997627, -0.05745961517095566, 0.06417588889598846, 0.0184966791421175, 0.07681447267532349, -0.0635533481836319, -0.06107081100344658, -0.07613184303045273, 0.017215505242347717, -0.06418944895267487, -0.08732377737760544, -0.08879958093166351, 0.09429429471492767, 0.11771341413259506, -0.025854453444480896, -0.09971398860216141, -0.031591564416885376, -0.054008908569812775, 0.0829385370016098, 0.10056384652853012, 0.10042602568864822, -0.0714590772986412, 0.00003876248956657946, -0.0016079870983958244, 0.04799802973866463, -0.094027079641819, 0.06078273802995682, 0.08645495772361755, 0.030989211052656174, 0.10611838102340698, 0.0316602997481823, -0.1527835875749588, 0.03386538103222847, 0.02153780311346054, -0.11524491757154465, -0.11873506009578705, -0.01859360933303833, -0.024403026327490807, -0.07456905394792557, -0.038404904305934906, 0.14826172590255737, -0.0329195074737072, -0.041383691132068634, 0.013321593403816223, 0.0634254589676857, -0.04313987120985985, 0.12555262446403503, 0.04150084778666496, 0.0381336510181427, -0.07612095773220062, 0.10210947692394257, 0.0700581818819046, 0.03971951827406883, 0.03468452766537666, 0.07101892679929733, -0.0943465605378151, -0.004258848261088133, -0.06989262253046036, -0.0013992965687066317, 0.003871298860758543, -0.006973938550800085, -0.011711266823112965, -0.052125848829746246, 0.04121702164411545, 0.09138642251491547, -0.006374625023454428, 0.12009179592132568, -0.024254893884062767, 0.008154318667948246, -0.11207687854766846, 0.07936625182628632, 0.05965440720319748, 0.020477203652262688, -0.07998465746641159, 0.15673023462295532, 0.01788974180817604, 0.10180369764566422, -0.044922079890966415, -0.046308018267154694, -0.08460166305303574, -0.008000629022717476, -0.17481128871440887, -0.011563392356038094, -0.08962928503751755, -0.04192512482404709, -0.0205330029129982, -0.039509065449237823, -0.03443075716495514, 0.05944489315152168, -0.03346274793148041, -0.06983088701963425, -0.06541724503040314, 0.03759782388806343, -0.1535499542951584, -0.02497577667236328, 0.11659572273492813, -0.09585589170455933, 0.1160745844244957, 0.05854329094290733, -0.03253164887428284, 0.003142185276374221, -0.04838649183511734, -0.002946209628134966, -0.03379281610250473, 0.012749562039971352, 0.02586725912988186, -0.15643811225891113, 0.023929933086037636, -0.0553056038916111, -0.05047678202390671, 0.010468455031514168, 0.036403167992830276, -0.11505348980426788, -0.006841021124273539, 0.013196437619626522, -0.0005234397249296308, -0.06603240221738815, 0.08114708960056305, 0.03037874959409237, 0.0493553951382637, 0.06573375314474106, -0.031740929931402206, 0.10323165357112885, -0.15708428621292114, -0.039582207798957825, 0.018671914935112, 0.0031845143530517817, 0.09547919034957886, -0.013375374488532543, 0.06860236078500748, -0.019890233874320984, 0.15641257166862488, -0.02634119614958763, -0.03474561870098114, 0.02499239705502987, -0.02793210931122303, 0.0007740363944321871, 0.046726807951927185, 0.07621634751558304, -0.016162797808647156, -0.05143725499510765, -0.025296369567513466, -0.0011309217661619186, -0.04784361645579338, -0.06241527199745178, 0.13048480451107025, 0.06501056998968124, 0.15070341527462006, -0.027654558420181274, 0.05101890489459038, -0.018634647130966187, -0.12055322527885437, -0.03143927454948425, -0.0016423763008788228, 0.02387726865708828, -0.0529407374560833, 0.07072071731090546, 0.1382260024547577, -0.1573224663734436, 0.12313317507505417, 0.012076088227331638, -0.06710242480039597, -0.10839249193668365, -0.1792227029800415, -0.036936912685632706, -0.01014825887978077, 0.03325046971440315, -0.12041313201189041, 0.06747501343488693, 0.04791269451379776, 0.0337723083794117, -0.05761197209358215, 0.09157954901456833, -0.04347086697816849, -0.11730366945266724, 0.02167951874434948, 0.03407280892133713, 0.03996094688773155, 0.06389625370502472, 0.03809516876935959, 0.02581910230219364, 0.03057219088077545, 0.07508007436990738, 0.03720228374004364, 0.044099822640419006, 0.011672084219753742, -0.013539323583245277, -0.04752340912818909, 0.013094458729028702, 0.026052961125969887, 0.042041271924972534, 0.14087022840976715, 0.06346587836742401, -0.014028506353497505, -0.03378770127892494, 0.3002403974533081, -0.052404191344976425, -0.07369773089885712, -0.1707618236541748, 0.1871686428785324, 0.0220604557543993, -0.010952526703476906, 0.041236452758312225, -0.1428631842136383, 0.005998427979648113, 0.13771601021289825, 0.16354228556156158, -0.06424090266227722, 0.01366577111184597, -0.00550260953605175, 0.008326476439833641, 0.03960234671831131, 0.07828383892774582, 0.04315265268087387, 0.20571516454219818, -0.06283808499574661, 0.05973224714398384, 0.013860761187970638, -0.00322048831731081, -0.05242762714624405, 0.1337164342403412, -0.04287087917327881, 0.014602155424654484, -0.07545056939125061, 0.06978454440832138, -0.053740907460451126, -0.2530560791492462, 0.014282778836786747, -0.03668050467967987, -0.1027563288807869, 0.057604655623435974, -0.06021818891167641, -0.023904042318463326, 0.07292929291725159, 0.020272206515073776, 0.007764508482068777, 0.11001881957054138, 0.04387727007269859, -0.020624104887247086, -0.00016339460853487253, 0.09829378128051758, -0.020551420748233795, 0.19514045119285583, -0.009872845374047756, 0.04030986130237579, 0.09287780523300171, 0.03844311460852623, -0.11886309832334518, 0.004145258106291294, 0.04671657085418701, -0.07635152339935303, -0.005175439640879631, 0.19998958706855774, -0.0038602668792009354, -0.010701511055231094, 0.07205497473478317, -0.005257450044155121, 0.01906648837029934, -0.04576960578560829, 0.028351161628961563, -0.12295978516340256, 0.02653481438755989, -0.08924376964569092, 0.12110341340303421, 0.16957634687423706, -0.061867084354162216, 0.03786320984363556, -0.055913377553224564, -0.0036090777721256018, 0.00025743411970324814, 0.0304572694003582, -0.02202538587152958, -0.08317041397094727, 0.013007650151848793, 0.05465623363852501, 0.04202435910701752, -0.17998382449150085, -0.0780012235045433, 0.048679105937480927, -0.060031451284885406, -0.014945564791560173, 0.14764992892742157, 0.010245771147310734, 0.044994402676820755, -0.034211888909339905, -0.06881733983755112, -0.03365783020853996, 0.07058180123567581, -0.1382489651441574, -0.06742755323648453 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b501daeff73d1b17610f47a5668f690a.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ed Sheeran</div> <a href="https://genius.com/artists/ed-sheeran"> <div style="text-align: center; font-size: 14px;">@ed-sheeran</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ed Sheeran. Dataset is available [here](https://huggingface.co/datasets/huggingartists/ed-sheeran). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ed-sheeran") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3nju68bo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ed Sheeran's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3hu7zc76) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3hu7zc76/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ed-sheeran') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ed-sheeran") model = AutoModelWithLMHead.from_pretrained("huggingartists/ed-sheeran") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/ed-sheeran"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/ed-sheeran
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ed-sheeran", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ed-sheeran #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ed Sheeran</div> <a href="URL <div style="text-align: center; font-size: 14px;">@ed-sheeran</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Ed Sheeran. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Ed Sheeran's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ed Sheeran.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ed Sheeran's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ed-sheeran #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ed Sheeran.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ed Sheeran's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 88, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ed-sheeran #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Ed Sheeran.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ed Sheeran's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03589225932955742, 0.16208066046237946, -0.003076395718380809, 0.052169255912303925, 0.0913037359714508, 0.01298437174409628, 0.07326779514551163, 0.10854701697826385, 0.006992836948484182, 0.07452674955129623, 0.06283257156610489, 0.0489598885178566, 0.07038116455078125, 0.07816190272569656, 0.061276279389858246, -0.24429461359977722, 0.041695233434438705, -0.07526255398988724, 0.01846136525273323, 0.09475913643836975, 0.08914373070001602, -0.08040741086006165, 0.07868630439043045, 0.04212326928973198, -0.05592850595712662, 0.004021260421723127, -0.00017713071429170668, -0.057136472314596176, 0.0791042298078537, 0.07823827117681503, 0.04442746192216873, 0.030044682323932648, 0.0720037892460823, -0.17786437273025513, 0.0271083302795887, 0.12024503201246262, 0.028096135705709457, 0.07977873831987381, 0.055726341903209686, -0.0750504732131958, 0.12361684441566467, -0.023074062541127205, 0.08823548257350922, 0.05003545805811882, -0.10365580767393112, -0.10921131819486618, -0.1384548395872116, 0.08332612365484238, 0.07988741993904114, 0.08869937062263489, -0.03479762375354767, 0.09641110897064209, -0.03471443057060242, 0.051024120301008224, 0.24235832691192627, -0.2397860735654831, -0.007620302960276604, 0.07530681788921356, 0.06176365166902542, 0.015253101475536823, -0.09144503623247147, 0.015111715532839298, 0.049707502126693726, 0.027385098859667778, 0.049859195947647095, -0.01782829873263836, 0.1494382619857788, 0.017462564632296562, -0.11660858988761902, -0.07197904586791992, 0.09175202995538712, -0.014444870874285698, -0.07547763735055923, -0.1416710615158081, -0.005603456404060125, -0.023638661950826645, 0.03669120371341705, 0.00787816010415554, 0.0009879367426037788, -0.0024659528862684965, -0.04718554764986038, -0.11243676394224167, -0.07823725044727325, -0.03307207301259041, -0.031086990609765053, 0.05849924683570862, 0.04303577169775963, 0.03139413520693779, -0.06330878287553787, 0.212457075715065, 0.010801473632454872, -0.10033903270959854, -0.056944023817777634, -0.1036410853266716, -0.09611184149980545, -0.057026207447052, -0.0063467170111835, 0.005295066628605127, -0.03032645396888256, 0.15177683532238007, -0.03345952183008194, 0.02442224696278572, -0.03120504505932331, 0.002268332988023758, 0.13748081028461456, 0.14736883342266083, -0.13575628399848938, -0.028486408293247223, 0.0630398765206337, -0.001388140139169991, -0.06030832976102829, -0.0449870266020298, -0.004173163790255785, -0.022254234179854393, 0.054184649139642715, 0.07267157733440399, 0.0660054087638855, 0.06373582780361176, 0.0014981466811150312, -0.058900393545627594, 0.06498666107654572, -0.1364404857158661, 0.014200485311448574, -0.0030494392849504948, -0.058882251381874084, 0.02976941503584385, 0.054635416716337204, 0.012710710056126118, -0.10361194610595703, 0.08483937382698059, -0.08490167558193207, -0.04396611824631691, -0.08202941715717316, -0.11538543552160263, 0.00022156687919050455, -0.04826837778091431, -0.027489153668284416, -0.07704200595617294, -0.16262394189834595, -0.04499973729252815, 0.023945603519678116, -0.0598582923412323, -0.02467602863907814, 0.020817406475543976, -0.03481527790427208, 0.01398181077092886, -0.011961248703300953, -0.009937597438693047, -0.024382274597883224, 0.03067496418952942, -0.08432715386152267, 0.03153903782367706, 0.08289168030023575, 0.0440840981900692, -0.11296077817678452, 0.06856382638216019, -0.1529548466205597, 0.12435395270586014, -0.03006589598953724, 0.002760968403890729, -0.09431660175323486, -0.08593908697366714, -0.013077549636363983, -0.0311717726290226, 0.024218739941716194, 0.12370218336582184, -0.16566212475299835, -0.01887505315244198, 0.1935114562511444, -0.06899075210094452, -0.07119525969028473, 0.07469047605991364, -0.07652658224105835, 0.0275973342359066, 0.10655111074447632, 0.062339141964912415, 0.15279528498649597, -0.12135277688503265, -0.07793667167425156, -0.03089129365980625, -0.0687725692987442, 0.1804874986410141, 0.034330084919929504, -0.03259334713220596, 0.036669474095106125, -0.0021940963342785835, -0.03099115937948227, -0.0033952605444937944, -0.030831823125481606, -0.03294067457318306, -0.012426258064806461, -0.006128041073679924, 0.0061637326143682, -0.03716707602143288, -0.04196969419717789, -0.01103783119469881, -0.10209528356790543, 0.06329142302274704, 0.10073387622833252, -0.07902329415082932, 0.016992758959531784, -0.10362964868545532, 0.0416434146463871, -0.05607791990041733, 0.003869061591103673, -0.17907525599002838, -0.051282793283462524, 0.02305840142071247, -0.07788334786891937, 0.05977616086602211, 0.03284359723329544, 0.044413816183805466, 0.06698766350746155, -0.01627257838845253, -0.004322905093431473, -0.03609805554151535, 0.0034304519649595022, -0.05051962658762932, -0.1621541976928711, -0.05129646137356758, -0.044954683631658554, 0.08522093296051025, -0.11837825924158096, 0.0025212906766682863, 0.09183382242918015, 0.14757588505744934, 0.024941546842455864, -0.05811668559908867, 0.02956760674715042, -0.038483988493680954, -0.03465253487229347, -0.10132897645235062, -0.04563680291175842, 0.00880886148661375, -0.03312033414840698, 0.1536969691514969, -0.1405780017375946, -0.10034602135419846, 0.12557049095630646, 0.095775306224823, -0.08125175535678864, 0.02361122891306877, -0.06611696630716324, -0.017112094908952713, -0.05866314098238945, -0.06348472088575363, 0.23019351065158844, 0.04481330141425133, 0.08808081597089767, -0.09519241005182266, -0.0864921286702156, -0.003458780236542225, -0.032322369515895844, -0.045169174671173096, 0.043583374470472336, 0.02465532347559929, -0.1663147509098053, 0.05042239651083946, -0.0177148524671793, 0.08118829876184464, 0.18782499432563782, 0.025031328201293945, -0.09573192149400711, -0.055426910519599915, -0.07065673917531967, -0.0007910333224572241, 0.0778534784913063, 0.005336632486432791, 0.036830443888902664, 0.043440692126750946, 0.044500332325696945, 0.04231291264295578, -0.11158792674541473, 0.013024033047258854, 0.05891333147883415, -0.030100764706730843, -0.049906741827726364, 0.020177513360977173, 0.02635573036968708, 0.08407589048147202, 0.06893865764141083, 0.10179192572832108, -0.04948072507977486, -0.05423042178153992, -0.13301683962345123, 0.13522648811340332, -0.09349527955055237, -0.19212743639945984, -0.13340671360492706, -0.06317926943302155, 0.007542912382632494, 0.007335831876844168, 0.026767458766698837, -0.03854883834719658, -0.04765107110142708, -0.10195369273424149, 0.07956413179636002, -0.03384174779057503, -0.013013263233006, 0.0070555671118199825, 0.01603848673403263, -0.02045716531574726, -0.12695498764514923, -0.026603849604725838, 0.024264678359031677, -0.07131057232618332, 0.005250756628811359, 0.024966932833194733, 0.05802273750305176, 0.1401437222957611, 0.0035859686322510242, 0.008412500843405724, -0.021735643967986107, 0.28380703926086426, -0.11339596658945084, 0.060271624475717545, 0.15617398917675018, -0.00978416483849287, 0.06037392094731331, 0.06420117616653442, -0.0003872980596497655, -0.04920189827680588, 0.05727630853652954, 0.06878651678562164, -0.05783548206090927, -0.20719014108181, -0.03807652369141579, -0.01659119315445423, -0.006247516255825758, 0.10265767574310303, 0.029515253379940987, 0.03078339248895645, 0.020114753395318985, -0.09533064812421799, 0.04993972182273865, 0.03748451918363571, 0.0927184671163559, -0.05472704768180847, -0.005772475618869066, 0.050367265939712524, -0.048462945967912674, 0.025954188778996468, 0.11583773046731949, 0.02017616480588913, 0.2450670748949051, -0.07627879083156586, 0.07149650901556015, 0.08736474066972733, 0.09751783311367035, 0.01778813824057579, 0.04556088149547577, -0.024093054234981537, 0.028039947152137756, 0.009022977203130722, -0.09190215915441513, -0.0002347559347981587, 0.041127827018499374, 0.041363075375556946, -0.013090702705085278, -0.05261969938874245, -0.061876218765974045, 0.055435169488191605, 0.2302073985338211, 0.04395141825079918, -0.17313842475414276, -0.08677263557910919, 0.06654773652553558, -0.04892457276582718, -0.04897395893931389, -0.017047889530658722, 0.07260774075984955, -0.20480774343013763, 0.04025998339056969, -0.035151608288288116, 0.10574716329574585, -0.1358039379119873, -0.004327526316046715, 0.04528830945491791, 0.050149332731962204, -0.06812795251607895, 0.07912730425596237, -0.16385582089424133, 0.08636300265789032, 0.0051242392510175705, 0.07793843746185303, -0.07422951608896255, 0.017060985788702965, 0.035187192261219025, 0.031251754611730576, 0.100491963326931, 0.014295517466962337, 0.04261493682861328, -0.064926877617836, -0.04082382842898369, -0.005485891830176115, 0.057369958609342575, -0.07713906466960907, 0.13414832949638367, -0.03191535919904709, 0.028617514297366142, -0.017324743792414665, -0.04859668388962746, -0.11715061962604523, -0.1471739262342453, 0.06627966463565826, -0.11901822686195374, -0.00017217105778399855, -0.06001996994018555, -0.0330173633992672, -0.013367298059165478, 0.19180430471897125, -0.08987553417682648, -0.08253052830696106, -0.13230617344379425, 0.008311254903674126, 0.15042775869369507, -0.08402098715305328, 0.009193266741931438, 0.002960279816761613, 0.17287752032279968, -0.0003305328427813947, -0.1275712549686432, -0.007946134544909, -0.06671489030122757, -0.17829462885856628, -0.017642514780163765, 0.12292356789112091, 0.09033598005771637, 0.04236025735735893, 0.015533856116235256, 0.007126820273697376, -0.040894947946071625, -0.1675880253314972, 0.020213736221194267, 0.15723362565040588, 0.02634904906153679, 0.035498201847076416, 0.006558370776474476, 0.017983246594667435, -0.12939614057540894, 0.022586343809962273, 0.055323123931884766, 0.18543057143688202, -0.07515797019004822, 0.13501639664173126, 0.023812323808670044, -0.08977872133255005, -0.16994290053844452, 0.03028351441025734, 0.004168871324509382, 0.036376893520355225, 0.03137703612446785, -0.1697634905576706, 0.02082362025976181, 0.03513256832957268, -0.0014772748108953238, 0.04158058017492294, -0.3200077414512634, -0.1442738175392151, 0.03810404986143112, 0.02303554117679596, -0.09731175005435944, -0.03964640572667122, -0.038893427699804306, -0.07413124293088913, -0.24007610976696014, 0.0902794823050499, -0.13806819915771484, 0.07903705537319183, 0.020252244547009468, 0.0579698346555233, 0.04608413204550743, -0.06244761124253273, 0.12857934832572937, -0.012138355523347855, 0.07079626619815826, -0.08504021167755127, -0.04285888373851776, 0.09605319797992706, -0.05468885228037834, 0.09777729958295822, 0.03705242648720741, 0.08142916858196259, -0.10347534716129303, -0.06846775114536285, -0.0811990350484848, 0.012939786538481712, -0.05928201228380203, -0.09654385596513748, -0.08510453253984451, 0.1043645590543747, 0.13527731597423553, -0.04035407677292824, -0.08472025394439697, -0.04497462511062622, -0.029709285125136375, 0.06615029275417328, 0.11038891226053238, 0.08903300017118454, -0.0743754506111145, 0.013279208913445473, 0.010565150529146194, 0.02475564554333687, -0.12139501422643661, 0.04253372922539711, 0.08763087540864944, 0.0341494120657444, 0.11326494067907333, 0.017845025286078453, -0.17123427987098694, 0.02567129023373127, 0.03249500319361687, -0.14796936511993408, -0.11340372264385223, -0.036242589354515076, -0.03174376115202904, -0.08498965203762054, -0.04781954735517502, 0.13527226448059082, -0.02692239359021187, -0.033452898263931274, -0.0018629726255312562, 0.05600086599588394, -0.040151000022888184, 0.10824833065271378, 0.030802439898252487, 0.04213950037956238, -0.06724758446216583, 0.10569161921739578, 0.06501622498035431, 0.007680589333176613, 0.03294416889548302, 0.03970755264163017, -0.09023138880729675, -0.006008386146277189, -0.08434085547924042, 0.024696795269846916, -0.059273481369018555, -0.00722921546548605, -0.004114937037229538, -0.04258722811937332, 0.027096953243017197, 0.09328177571296692, 0.0010273874504491687, 0.1108747199177742, -0.02718237042427063, -0.00899959821254015, -0.12415479123592377, 0.08235350251197815, 0.054378144443035126, 0.013183549977838993, -0.10935970395803452, 0.18766778707504272, 0.018904106691479683, 0.08309868723154068, -0.044056277722120285, -0.046613626182079315, -0.08412405848503113, -0.010362525470554829, -0.13836270570755005, -0.03936570882797241, -0.08935143798589706, -0.032334864139556885, -0.014752637594938278, -0.038816146552562714, -0.019454844295978546, 0.050406694412231445, -0.026979485526680946, -0.061937857419252396, -0.05086645856499672, 0.056138165295124054, -0.14990700781345367, 0.003917821682989597, 0.1138782724738121, -0.06926458328962326, 0.11009161174297333, 0.045576855540275574, -0.02888619340956211, 0.012061177752912045, -0.0946984514594078, 0.02009136602282524, -0.030683329328894615, 0.016648678109049797, 0.04094047471880913, -0.15170936286449432, 0.009175047278404236, -0.05122968927025795, -0.060313865542411804, 0.011153364554047585, 0.005488653667271137, -0.11660284548997879, -0.0010158574441447854, 0.06981471925973892, 0.003158726030960679, -0.07818708568811417, 0.07467566430568695, 0.07445688545703888, 0.024336719885468483, 0.07795567065477371, -0.026317046955227852, 0.07978436350822449, -0.16212023794651031, -0.04263710975646973, 0.011653522960841656, 0.020760471001267433, 0.07738177478313446, -0.009717102162539959, 0.04896795377135277, -0.024659594520926476, 0.19732560217380524, 0.009577388875186443, -0.017194896936416626, 0.039272185415029526, -0.02708515152335167, -0.016088278964161873, 0.045690953731536865, 0.06288608908653259, -0.03811807557940483, -0.031632523983716965, -0.017769629135727882, -0.006258422043174505, -0.062838114798069, -0.03184771537780762, 0.11205946654081345, 0.050185445696115494, 0.16408416628837585, -0.028438260778784752, 0.0682123452425003, -0.03229235112667084, -0.1180892288684845, -0.032760828733444214, -0.02600106969475746, 0.036011677235364914, -0.06796754896640778, 0.07469890266656876, 0.15734420716762543, -0.16165482997894287, 0.11659955233335495, 0.014776910655200481, -0.06384191662073135, -0.1055695116519928, -0.1920662373304367, -0.02170843444764614, -0.01732761040329933, 0.03791124001145363, -0.13207636773586273, 0.07928459346294403, 0.034560274332761765, 0.033386796712875366, -0.05883181467652321, 0.11242048442363739, -0.07139300554990768, -0.11520898342132568, 0.03185102343559265, 0.030088823288679123, 0.017909925431013107, 0.033878736197948456, 0.06576795876026154, 0.03218204528093338, 0.006558358669281006, 0.0546543151140213, 0.032329898327589035, 0.025543496012687683, 0.040144555270671844, -0.019230825826525688, -0.054834671318531036, 0.018599078059196472, 0.0017077503725886345, 0.03167746588587761, 0.10567717999219894, 0.07279445230960846, -0.008626328781247139, -0.03818057104945183, 0.2840553820133209, -0.04129413142800331, -0.02991751953959465, -0.1770165115594864, 0.15199211239814758, 0.03245208039879799, -0.0007298933924175799, 0.03545738756656647, -0.14696066081523895, 0.013615859672427177, 0.16075783967971802, 0.16967451572418213, -0.05985403433442116, 0.015573947690427303, -0.028798015788197517, 0.011214136146008968, 0.029228901490569115, 0.07307707518339157, 0.0691087543964386, 0.18921546638011932, -0.04698173701763153, 0.06347258388996124, -0.01135864108800888, -0.020094798877835274, -0.005870426073670387, 0.10906632989645004, -0.029466120526194572, 0.01015879213809967, -0.0619971789419651, 0.08947283029556274, -0.06686236709356308, -0.2681562304496765, -0.017847659066319466, -0.024124639108777046, -0.08817481994628906, 0.048110559582710266, -0.046569667756557465, -0.014491233043372631, 0.0877995416522026, 0.020220419391989708, -0.023738930001854897, 0.14554041624069214, 0.03872507065534592, -0.038788411766290665, -0.011737828142940998, 0.09236866980791092, -0.014088994823396206, 0.18830528855323792, -0.017655938863754272, 0.011755866929888725, 0.09758242964744568, 0.027095580473542213, -0.11782778799533844, 0.014686786569654942, 0.04475998505949974, -0.07840600609779358, -0.011365744285285473, 0.18502910435199738, 0.013503012247383595, 0.02052736096084118, 0.05775697901844978, -0.05174843966960907, 0.04034866765141487, -0.06637721508741379, 0.03986814618110657, -0.13805772364139557, 0.050535667687654495, -0.08555404841899872, 0.14987793564796448, 0.1843787282705307, -0.06547215580940247, 0.026277216151356697, -0.04562714695930481, -0.005989690776914358, -0.02084064669907093, 0.057354625314474106, -0.021133407950401306, -0.1010667085647583, 0.023802796378731728, 0.020877687260508537, 0.023045819252729416, -0.18570536375045776, -0.07094217836856842, 0.049429379403591156, -0.06396859884262085, 0.01754690892994404, 0.16328701376914978, 0.04000839963555336, 0.05649309232831001, -0.034620251506567, 0.01254747249186039, -0.023083455860614777, 0.10125668346881866, -0.1513349711894989, -0.08353656530380249 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f52808edb2078f52ddab162623f0c6e3.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ЕГОР КРИД (EGOR KREED)</div> <a href="https://genius.com/artists/egor-kreed"> <div style="text-align: center; font-size: 14px;">@egor-kreed</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ЕГОР КРИД (EGOR KREED). Dataset is available [here](https://huggingface.co/datasets/huggingartists/egor-kreed). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/egor-kreed") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3l7nf6hj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ЕГОР КРИД (EGOR KREED)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1mtfkshl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1mtfkshl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/egor-kreed') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/egor-kreed") model = AutoModelWithLMHead.from_pretrained("huggingartists/egor-kreed") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/egor-kreed"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/egor-kreed
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/egor-kreed", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/egor-kreed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">ЕГОР КРИД (EGOR KREED)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@egor-kreed</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ЕГОР КРИД (EGOR KREED). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ЕГОР КРИД (EGOR KREED)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ЕГОР КРИД (EGOR KREED).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ЕГОР КРИД (EGOR KREED)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/egor-kreed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ЕГОР КРИД (EGOR KREED).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ЕГОР КРИД (EGOR KREED)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 57, 80, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/egor-kreed #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ЕГОР КРИД (EGOR KREED).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ЕГОР КРИД (EGOR KREED)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03137272968888283, 0.15734653174877167, -0.005925091914832592, 0.07829871028661728, 0.06622473150491714, -0.0019434824353083968, 0.06516634672880173, 0.1120072528719902, 0.0008660483872517943, 0.057723380625247955, 0.0644581988453865, 0.045461900532245636, 0.07693178951740265, 0.12042708694934845, 0.01734897308051586, -0.2504032552242279, 0.01195867732167244, -0.05880733206868172, -0.024834295734763145, 0.09049492329359055, 0.09081701189279556, -0.08139142394065857, 0.05445290729403496, 0.007226878777146339, -0.046995531767606735, -0.007709321565926075, 0.0009121891926042736, -0.06344074010848999, 0.060619551688432693, 0.08197691291570663, 0.057532571256160736, 0.04636862128973007, 0.04376068338751793, -0.1632920801639557, 0.031842149794101715, 0.11218446493148804, 0.04157031700015068, 0.08740514516830444, 0.05697401240468025, -0.05882410332560539, 0.09907104820013046, -0.06987061351537704, 0.09282729029655457, 0.035838719457387924, -0.10103259980678558, -0.12041407078504562, -0.11734022200107574, 0.03507890924811363, 0.05380278453230858, 0.04776488244533539, -0.017946910113096237, 0.07040310651063919, -0.06194046512246132, 0.07878279685974121, 0.24168337881565094, -0.24663197994232178, -0.0006839804700575769, 0.012628491967916489, 0.031611524522304535, 0.030391033738851547, -0.08233707398176193, -0.00025811028899624944, 0.02107725292444229, 0.03862980380654335, 0.07248993217945099, -0.05002262815833092, 0.06267131865024567, -0.03236199542880058, -0.10935674607753754, -0.06530210375785828, 0.09372485429048538, -0.025733113288879395, -0.08566191792488098, -0.10673034191131592, -0.03399647772312164, -0.0598585307598114, 0.029154185205698013, 0.026749862357974052, 0.0045259022153913975, -0.019372254610061646, -0.08336466550827026, -0.11978201568126678, -0.05129314959049225, -0.07000502198934555, -0.041014641523361206, 0.11160680651664734, 0.061481229960918427, 0.034304503351449966, -0.05765902251005173, 0.19964414834976196, 0.06905006617307663, -0.11596537381410599, -0.08529549092054367, -0.099065862596035, -0.09707440435886383, -0.026997815817594528, -0.00855022668838501, 0.0168047696352005, -0.003338150680065155, 0.15476009249687195, -0.04133855178952217, 0.014767322689294815, -0.0526520274579525, 0.03791595995426178, 0.10648461431264877, 0.12349023669958115, -0.09103081375360489, -0.019406350329518318, 0.10797347128391266, -0.03367505595088005, -0.030811745673418045, -0.05624459683895111, -0.00940465647727251, -0.08075477182865143, 0.06021130830049515, 0.1075490340590477, 0.06352940201759338, 0.05347161740064621, -0.041266586631536484, -0.05395609512925148, 0.02191784791648388, -0.1555745154619217, 0.023110054433345795, 0.016576463356614113, -0.076203852891922, -0.022741403430700302, 0.07201110571622849, -0.03349415957927704, -0.12135700136423111, 0.06994718313217163, -0.05220301076769829, -0.025808261707425117, -0.08715026825666428, -0.11505252122879028, 0.004593768157064915, -0.04130075126886368, -0.007420184090733528, -0.08742313832044601, -0.1618397980928421, -0.025843307375907898, 0.01140277273952961, -0.06729518622159958, -0.027878880500793457, 0.006383269093930721, -0.02850942872464657, -0.006088059861212969, -0.01765592209994793, 0.058472368866205215, -0.025265270844101906, 0.06956637650728226, -0.08595521003007889, 0.07278729975223541, 0.056380659341812134, 0.03524993732571602, -0.11342812329530716, 0.07948444783687592, -0.1443203240633011, 0.1834249496459961, -0.035537440329790115, -0.07171784341335297, -0.07905610650777817, -0.09989501535892487, -0.01859322190284729, -0.041103508323431015, 0.04850916564464569, 0.10574234277009964, -0.15487180650234222, -0.01398702897131443, 0.2419787049293518, -0.05895300582051277, -0.047109268605709076, 0.09272245317697525, -0.08311236649751663, 0.044571805745363235, 0.10215241461992264, 0.057029686868190765, 0.13364747166633606, -0.06562945246696472, -0.07279785722494125, -0.007766979746520519, -0.05656173452734947, 0.17283490300178528, 0.05116887763142586, -0.010482723824679852, 0.049441903829574585, -0.006275879219174385, -0.024931954219937325, 0.007460049819201231, -0.035061392933130264, -0.03604592755436897, -0.013023997657001019, -0.023267164826393127, 0.03455114737153053, -0.05445920675992966, -0.006751260720193386, -0.011682719923555851, -0.09760915488004684, 0.07052755355834961, 0.10778587311506271, -0.08094777911901474, 0.04651302099227905, -0.10597160458564758, 0.02986854873597622, -0.05210074037313461, 0.023467522114515305, -0.1922375112771988, -0.013331444934010506, 0.032321300357580185, -0.07543958723545074, 0.05612652003765106, 0.01957407221198082, 0.03994982689619064, 0.08335471898317337, -0.03708698973059654, -0.00006477630813606083, -0.052119266241788864, 0.004086353350430727, -0.0628788024187088, -0.17190758883953094, -0.03882444277405739, -0.04534589871764183, 0.041062142699956894, -0.09545458108186722, -0.00558237312361598, 0.11677122116088867, 0.13942447304725647, 0.04428832605481148, -0.04137919843196869, 0.04293656349182129, -0.0022376838605850935, -0.007184524554759264, -0.09896364063024521, -0.037745967507362366, 0.020966259762644768, -0.05718553066253662, 0.1431724727153778, -0.1536920815706253, -0.08024656027555466, 0.10542532801628113, 0.07975800335407257, -0.0891835168004036, 0.03274204581975937, -0.04930702969431877, -0.023903610184788704, -0.06282858550548553, -0.03010118380188942, 0.23827700316905975, 0.04653038829565048, 0.10300388932228088, -0.10415934026241302, -0.07736584544181824, -0.01847994700074196, -0.03833107277750969, 0.03176611289381981, 0.07991024106740952, -0.010578406974673271, -0.21019934117794037, 0.040873005986213684, 0.0041886260733008385, 0.014413437806069851, 0.19996638596057892, 0.005718878470361233, -0.10145995020866394, -0.06643839180469513, -0.028477972373366356, 0.015400798991322517, 0.08476121723651886, 0.0008094215882010758, 0.05278762802481651, 0.037565696984529495, 0.03450241684913635, 0.0266750268638134, -0.1187123954296112, 0.033360641449689865, 0.04875941202044487, -0.04607531800866127, -0.04382774606347084, 0.005238254088908434, 0.034406691789627075, 0.09094162285327911, 0.06687931716442108, 0.07904531806707382, -0.01961982250213623, -0.054410919547080994, -0.10475362092256546, 0.14267708361148834, -0.09548193216323853, -0.18106244504451752, -0.09830311685800552, -0.05878932401537895, 0.030622240155935287, 0.010684900917112827, 0.018531398847699165, 0.014653466641902924, -0.02357272244989872, -0.08139056712388992, 0.042676087468862534, -0.019820448011159897, -0.008787165395915508, -0.000569176918361336, 0.043260931968688965, -0.002622787142172456, -0.11935941129922867, -0.01886236108839512, 0.025682562962174416, -0.08719152212142944, 0.0006418180419132113, 0.05462801083922386, 0.03654438629746437, 0.11600178480148315, -0.020701617002487183, 0.0061905281618237495, -0.028786184266209602, 0.22749924659729004, -0.10614241659641266, 0.035415273159742355, 0.13127915561199188, -0.07310635596513748, 0.05685107037425041, 0.07459564507007599, 0.0013092816807329655, -0.044611573219299316, 0.05331246927380562, 0.03826059401035309, -0.0615043081343174, -0.19747522473335266, -0.002776623936370015, -0.04283734783530235, 0.015016242861747742, 0.09779397398233414, 0.04471442103385925, -0.03113754279911518, 0.02194887213408947, -0.07888133823871613, 0.07830654084682465, 0.07146836072206497, 0.08995985984802246, -0.01988198794424534, -0.010328288190066814, 0.060557492077350616, -0.06224849447607994, 0.02623390592634678, 0.0929066613316536, 0.045964524149894714, 0.2608061134815216, -0.1240394189953804, 0.09599974751472473, 0.09329947084188461, 0.06441621482372284, 0.04898170009255409, 0.02903391234576702, -0.033397696912288666, 0.06256849318742752, -0.0043412125669419765, -0.09496854990720749, -0.02862492762506008, 0.030708711594343185, 0.019765567034482956, -0.010441918857395649, -0.019915016368031502, -0.06906615942716599, 0.04686811938881874, 0.2230149209499359, 0.07936109602451324, -0.1410646140575409, -0.09489794820547104, 0.07546965777873993, -0.038427047431468964, -0.056672703474760056, -0.020844224840402603, 0.10566823184490204, -0.20691914856433868, -0.0012588391546159983, -0.01745719648897648, 0.11864293366670609, -0.20165666937828064, -0.027410846203565598, -0.0370929092168808, 0.07933312654495239, -0.06011713296175003, 0.06572072207927704, -0.23615314066410065, 0.056222978979349136, 0.009992754086852074, 0.11681105941534042, -0.060221850872039795, 0.02240963652729988, 0.06148051843047142, 0.008605876006186008, 0.08834246546030045, 0.01949419640004635, 0.014277992770075798, -0.12092652171850204, -0.06927486509084702, 0.02344459854066372, 0.04554321616888046, -0.050427425652742386, 0.10544415563344955, -0.02616800181567669, 0.014816115610301495, -0.012549001723527908, -0.0838342234492302, -0.10065897554159164, -0.1336577832698822, 0.05088294669985771, -0.12077628821134567, 0.01709672249853611, -0.051734402775764465, -0.026286903768777847, 0.04989086464047432, 0.1759716123342514, -0.11803872883319855, -0.11569821089506149, -0.08716100454330444, 0.04285524785518646, 0.12123068422079086, -0.09830962866544724, 0.03824317827820778, 0.019698964431881905, 0.1285102665424347, 0.011520221829414368, -0.11289652436971664, 0.008034772239625454, -0.04341530054807663, -0.20479236543178558, -0.011337686330080032, 0.07740399986505508, 0.07739757001399994, 0.06359041482210159, 0.011175243183970451, 0.011298432014882565, -0.02326999045908451, -0.1429799348115921, 0.010214236564934254, 0.11647272855043411, 0.04675053060054779, 0.056270621716976166, -0.0004223783907946199, 0.04079017415642738, -0.10511180013418198, 0.017281275242567062, 0.10103965550661087, 0.2600683569908142, -0.07574982196092606, 0.14092567563056946, 0.03349442407488823, -0.10081423074007034, -0.18358777463436127, -0.0006882260204292834, 0.019914396107196808, 0.0424620546400547, 0.0075240712612867355, -0.20410428941249847, -0.020529452711343765, 0.04617897793650627, -0.010542508214712143, 0.14040857553482056, -0.3142017722129822, -0.14038099348545074, 0.07571808993816376, 0.05231361836194992, -0.0368824228644371, -0.03067965619266033, -0.04870685189962387, -0.07797013968229294, -0.17098671197891235, 0.12367728352546692, -0.11949038505554199, 0.11365632712841034, 0.017872575670480728, -0.01402947586029768, 0.034596409648656845, -0.04281678795814514, 0.13092665374279022, -0.07883772253990173, 0.06208532676100731, -0.08445309847593307, -0.016177687793970108, 0.05670744553208351, -0.05508388578891754, 0.054394565522670746, 0.018043862655758858, 0.09244450181722641, -0.036748457700014114, -0.0653977170586586, -0.07607229799032211, 0.029719609767198563, -0.051202308386564255, -0.0926620215177536, -0.09403016418218613, 0.0994473546743393, 0.10878531634807587, -0.02271345630288124, -0.10460053384304047, -0.044889554381370544, -0.07152429223060608, 0.08587685972452164, 0.09811767935752869, 0.12734845280647278, -0.060699328780174255, 0.005336237605661154, -0.012874914333224297, 0.06629780679941177, -0.08342797309160233, 0.0590045191347599, 0.08017425239086151, 0.039705436676740646, 0.11288882791996002, 0.02858763374388218, -0.1542433202266693, 0.054782383143901825, 0.019440721720457077, -0.11697550863027573, -0.11190316081047058, -0.009398318827152252, -0.03209197148680687, -0.06620290130376816, -0.06434715539216995, 0.13804320991039276, -0.02654549852013588, -0.040508098900318146, 0.024797789752483368, 0.04608689621090889, -0.03344809636473656, 0.11992392688989639, 0.07063808292150497, 0.04396916925907135, -0.07772304117679596, 0.10297709703445435, 0.06650053709745407, 0.04138800874352455, 0.04995473101735115, 0.05248042196035385, -0.10346448421478271, 0.008758927695453167, -0.07969864457845688, 0.028230763971805573, 0.011748243123292923, -0.013593722134828568, -0.035545289516448975, -0.04223688691854477, 0.033876094967126846, 0.11857028305530548, -0.002700770040974021, 0.12227834761142731, -0.027905622497200966, 0.017631536349654198, -0.09804167598485947, 0.11069954186677933, 0.03851667791604996, 0.023032963275909424, -0.0621817484498024, 0.1660434901714325, 0.032180894166231155, 0.10412639379501343, -0.04296135902404785, -0.053393591195344925, -0.07824370265007019, 0.005097775254398584, -0.18224774301052094, -0.0030720364302396774, -0.07357040047645569, -0.029896490275859833, -0.03132477402687073, -0.027674291282892227, -0.032847072929143906, 0.06092068552970886, -0.03901390731334686, -0.05396648868918419, -0.04551200941205025, 0.02806953340768814, -0.15877585113048553, -0.04558470845222473, 0.11129980534315109, -0.09229523688554764, 0.11397089064121246, 0.06330709904432297, -0.044414740055799484, 0.00014850542356725782, -0.08647859841585159, 0.008359340019524097, -0.023602332919836044, 0.015013450756669044, 0.026953620836138725, -0.1463208794593811, 0.025965718552470207, -0.0585898794233799, -0.031795792281627655, 0.013910103589296341, 0.06057009473443031, -0.12219039350748062, 0.016720524057745934, 0.034876760095357895, 0.014980748295783997, -0.07628902792930603, 0.0941685140132904, 0.025283778086304665, 0.07582619041204453, 0.06703325361013412, -0.033325523138046265, 0.09946927428245544, -0.1462574601173401, -0.03516257181763649, 0.02917516976594925, -0.007906327955424786, 0.07430460304021835, -0.01236238144338131, 0.06475450843572617, -0.035738613456487656, 0.19612179696559906, -0.021770277991890907, -0.049557413905858994, 0.02359928749501705, -0.035658273845911026, -0.01119487639516592, 0.0444449745118618, 0.09162864089012146, -0.022071706131100655, -0.04468737170100212, -0.021129410713911057, 0.004705000668764114, -0.03749573230743408, -0.025058457627892494, 0.13729524612426758, 0.0659119188785553, 0.16177533566951752, -0.029531296342611313, 0.043234724551439285, -0.01132227759808302, -0.09902989864349365, -0.038507066667079926, 0.011799204163253307, 0.035084374248981476, -0.06182672455906868, 0.08183049410581589, 0.1267884075641632, -0.15561847388744354, 0.12748564779758453, 0.026812607422471046, -0.08215079456567764, -0.1255132406949997, -0.19254601001739502, -0.033173203468322754, 0.013821051456034184, 0.02184666134417057, -0.12272167950868607, 0.060241226106882095, 0.06024065613746643, 0.031043997034430504, -0.0474543422460556, 0.10516121983528137, -0.029048752039670944, -0.10851160436868668, 0.031891074031591415, 0.0189619529992342, 0.03316756710410118, 0.032203350216150284, 0.022821051999926567, 0.05478140711784363, 0.04075329005718231, 0.06367714703083038, 0.04665298014879227, 0.021687332540750504, 0.0009547605295665562, -0.009269565343856812, -0.052334900945425034, 0.006281973794102669, 0.0309002622961998, 0.04152263328433037, 0.14274685084819794, 0.08245587348937988, -0.013204093091189861, -0.02883840911090374, 0.29700443148612976, -0.0330539345741272, -0.07768997550010681, -0.16431082785129547, 0.14847160875797272, 0.010523556731641293, -0.0061630443669855595, 0.05156274139881134, -0.14066146314144135, 0.0023496400099247694, 0.10657799988985062, 0.15994520485401154, -0.07193601131439209, 0.03266036882996559, -0.004891558550298214, 0.010268439538776875, 0.025034168735146523, 0.07897905260324478, 0.04608168825507164, 0.1930234134197235, -0.06266496330499649, 0.07359956204891205, 0.015195502899587154, -0.005140501074492931, -0.033375099301338196, 0.12042853236198425, -0.022600805386900902, 0.023470228537917137, -0.08999786525964737, 0.046405013650655746, -0.08843960613012314, -0.2545672655105591, 0.006943651475012302, -0.03000052087008953, -0.1160581037402153, 0.03577530384063721, -0.07250221818685532, -0.01750035770237446, 0.062334951013326645, 0.008371114730834961, 0.01371267531067133, 0.09398336708545685, 0.03616328909993172, -0.008556739427149296, -0.010702810250222683, 0.09522848576307297, -0.012652921490371227, 0.18220248818397522, -0.00945387315005064, 0.0673648789525032, 0.0964338555932045, 0.030712436884641647, -0.11842469871044159, 0.019991442561149597, 0.03433837369084358, -0.06256820261478424, 0.0006834923988208175, 0.21091501414775848, -0.007523215375840664, 0.0020082949195057154, 0.0769374892115593, 0.01670379564166069, 0.03955814614892006, -0.07104543596506119, 0.015232727862894535, -0.1305665373802185, 0.004504778888076544, -0.07913327217102051, 0.10497476905584335, 0.17802631855010986, -0.05883871763944626, 0.03343089669942856, -0.04835718870162964, -0.009355110116302967, 0.011953367851674557, 0.01041971892118454, -0.02238490618765354, -0.06905777007341385, 0.025654712691903114, 0.11152499169111252, 0.04441171512007713, -0.18937385082244873, -0.07092033326625824, 0.031454574316740036, -0.06819871068000793, -0.001979165943339467, 0.13538920879364014, -0.00869764108210802, 0.06777051836252213, -0.0325021855533123, -0.06610964983701706, -0.029564695432782173, 0.06032044067978859, -0.1486649066209793, -0.07030610740184784 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/faa3dae99bf1fe365927608fd55c745a.330x330x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Егор Летов (Egor Letov)</div> <a href="https://genius.com/artists/egor-letov"> <div style="text-align: center; font-size: 14px;">@egor-letov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Егор Летов (Egor Letov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/egor-letov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/egor-letov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1omrcegx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Егор Летов (Egor Letov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3lk60u9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3lk60u9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/egor-letov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/egor-letov") model = AutoModelWithLMHead.from_pretrained("huggingartists/egor-letov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/egor-letov"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/egor-letov
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/egor-letov", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/egor-letov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Егор Летов (Egor Letov)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@egor-letov</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Егор Летов (Egor Letov). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Егор Летов (Egor Letov)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Егор Летов (Egor Letov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Егор Летов (Egor Letov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/egor-letov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Егор Летов (Egor Letov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Егор Летов (Egor Letov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 57, 80, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/egor-letov #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Егор Летов (Egor Letov).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Егор Летов (Egor Letov)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03758978098630905, 0.1615884006023407, -0.006110657937824726, 0.0838375836610794, 0.07441473007202148, 0.0017555784434080124, 0.07439281046390533, 0.10959206521511078, 0.00672310683876276, 0.05796225741505623, 0.06837143003940582, 0.043595679104328156, 0.06875438988208771, 0.12037176638841629, 0.017881425097584724, -0.2328883558511734, 0.014303147792816162, -0.05766566842794418, -0.028902770951390266, 0.08663783967494965, 0.09278490394353867, -0.07828347384929657, 0.05529310554265976, 0.007889962755143642, -0.04525158554315567, -0.0020783196669071913, 0.007787515874952078, -0.057766955345869064, 0.05893594026565552, 0.09146485477685928, 0.05224205553531647, 0.037113264203071594, 0.04557937756180763, -0.16512660682201385, 0.02683299034833908, 0.10918829590082169, 0.030723487958312035, 0.0898880660533905, 0.07175513356924057, -0.06519589573144913, 0.09894038736820221, -0.05836492031812668, 0.09501033276319504, 0.03598081320524216, -0.10560250282287598, -0.11392245441675186, -0.11152440309524536, 0.030628185719251633, 0.04789168760180473, 0.05732416361570358, -0.01711314171552658, 0.07198743522167206, -0.06056772172451019, 0.08002036064863205, 0.24426685273647308, -0.25138089060783386, -0.004557223059237003, 0.014668742194771767, 0.035208895802497864, 0.02561977319419384, -0.08278326690196991, -0.0045591057278215885, 0.028185104951262474, 0.04426869750022888, 0.07508653402328491, -0.042990826070308685, 0.07269802689552307, -0.02972250245511532, -0.10922285914421082, -0.0723111554980278, 0.0916711613535881, -0.030585063621401787, -0.08473055809736252, -0.10567653924226761, -0.037290867418050766, -0.056530360132455826, 0.036886557936668396, 0.024638574570417404, 0.006167923100292683, -0.006250011269003153, -0.07327938824892044, -0.12571971118450165, -0.05732369422912598, -0.06653106957674026, -0.03682916611433029, 0.10042191296815872, 0.04996127635240555, 0.03894247114658356, -0.061700399965047836, 0.20100903511047363, 0.08137074112892151, -0.11437179893255234, -0.07899634540081024, -0.0984136313199997, -0.1035185381770134, -0.031053559854626656, -0.009105033241212368, 0.016609715297818184, -0.007013909053057432, 0.16690894961357117, -0.043947283178567886, 0.01573503389954567, -0.059338390827178955, 0.03649013116955757, 0.1024472638964653, 0.12027072161436081, -0.08364380151033401, -0.024478623643517494, 0.09564820677042007, -0.04029933363199234, -0.02901546284556389, -0.05843683332204819, -0.017014939337968826, -0.07859504967927933, 0.058135293424129486, 0.10459653288125992, 0.0645427331328392, 0.04343147203326225, -0.04791618511080742, -0.050768282264471054, 0.017594361677765846, -0.15928657352924347, 0.030711347237229347, 0.015024644322693348, -0.06887983530759811, -0.019916623830795288, 0.07661927491426468, -0.042462579905986786, -0.1266964226961136, 0.06235025078058243, -0.05623597279191017, -0.019633695483207703, -0.08843779563903809, -0.1147942990064621, 0.005022226367145777, -0.02772863768041134, -0.011672461405396461, -0.08938737958669662, -0.1667787879705429, -0.02673717774450779, 0.01539133582264185, -0.07009211927652359, -0.012376043014228344, 0.00552266463637352, -0.028088372200727463, -0.009703123942017555, -0.016660530120134354, 0.04458065703511238, -0.028466155752539635, 0.06663361936807632, -0.0805148333311081, 0.06830140203237534, 0.06198924779891968, 0.030511125922203064, -0.11245071142911911, 0.07603051513433456, -0.12883062660694122, 0.18096214532852173, -0.029975958168506622, -0.0631006583571434, -0.07613268494606018, -0.09834899753332138, -0.0078623928129673, -0.037747520953416824, 0.05295532941818237, 0.11106834560632706, -0.16202643513679504, -0.009559530764818192, 0.23832570016384125, -0.0671621784567833, -0.043913498520851135, 0.09842044860124588, -0.08299314230680466, 0.0476570688188076, 0.10530125349760056, 0.04617034271359444, 0.13353194296360016, -0.06695854663848877, -0.06408515572547913, -0.010685221292078495, -0.05608914792537689, 0.17265228927135468, 0.04788775369524956, -0.0107674989849329, 0.04133683815598488, -0.009319186210632324, -0.01982584036886692, 0.005371736828237772, -0.03708460181951523, -0.038607288151979446, -0.010138152167201042, -0.023543452844023705, 0.040280383080244064, -0.05521044507622719, -0.012495315633714199, -0.01954146847128868, -0.09847384691238403, 0.07548022270202637, 0.10979929566383362, -0.08246082067489624, 0.04731017351150513, -0.11670141667127609, 0.0384930856525898, -0.05637713521718979, 0.018569575622677803, -0.1932539939880371, -0.00445962231606245, 0.024848107248544693, -0.059896279126405716, 0.0482507199048996, 0.02719036489725113, 0.04736044257879257, 0.08406323194503784, -0.03265073895454407, 0.002644818741828203, -0.05148819461464882, -0.002185446908697486, -0.054588839411735535, -0.1785261183977127, -0.045973263680934906, -0.048931725323200226, 0.05259876325726509, -0.1156415045261383, -0.007300658151507378, 0.11170653998851776, 0.14364324510097504, 0.045833565294742584, -0.048800643533468246, 0.03811739385128021, -0.007479366380721331, -0.015525235794484615, -0.10366394370794296, -0.04088590294122696, 0.028056150302290916, -0.0600128136575222, 0.12759628891944885, -0.1537940800189972, -0.06454329192638397, 0.10996129363775253, 0.07004834711551666, -0.09381737560033798, 0.02656145766377449, -0.04636654630303383, -0.02065754495561123, -0.06464160978794098, -0.033139314502477646, 0.2260170727968216, 0.043225593864917755, 0.1012507975101471, -0.10127373784780502, -0.07132798433303833, -0.018654057756066322, -0.04372798278927803, 0.025358138605952263, 0.07563143968582153, -0.009558551013469696, -0.20545707643032074, 0.045617248862981796, -0.0025897754821926355, 0.014416811056435108, 0.20571303367614746, 0.014448284171521664, -0.10197695344686508, -0.0700480118393898, -0.01818978413939476, 0.022366300225257874, 0.0860336646437645, -0.008455216884613037, 0.05279341712594032, 0.034523315727710724, 0.02988523431122303, 0.028519831597805023, -0.11687234044075012, 0.029470598325133324, 0.05639185383915901, -0.04964696988463402, -0.032906319946050644, -0.011545054614543915, 0.028832988813519478, 0.0888807401061058, 0.05844679847359657, 0.08218064159154892, -0.015181797556579113, -0.049368444830179214, -0.1130344346165657, 0.13939136266708374, -0.09774015098810196, -0.1940387338399887, -0.10810937732458115, -0.06201045960187912, 0.02947838418185711, 0.024975860491394997, 0.02247682772576809, 0.00846331287175417, -0.028859954327344894, -0.07852602750062943, 0.03931805118918419, -0.0188138447701931, -0.008986043743789196, 0.013123317621648312, 0.048721473664045334, 0.011274750344455242, -0.12209232896566391, -0.015723736956715584, 0.027801282703876495, -0.08979238569736481, 0.0020438842475414276, 0.050048865377902985, 0.032236166298389435, 0.10779007524251938, -0.0180789977312088, 0.0065076625905931, -0.029889637604355812, 0.23966388404369354, -0.10256889462471008, 0.022716758772730827, 0.14722277224063873, -0.07673195004463196, 0.05082748830318451, 0.0626092329621315, 0.0026064030826091766, -0.0569106824696064, 0.05032385140657425, 0.027434781193733215, -0.06123222038149834, -0.2027266025543213, -0.006146061699837446, -0.047312770038843155, 0.01683381386101246, 0.10857848823070526, 0.04399080574512482, -0.0289861299097538, 0.018385281786322594, -0.08206003904342651, 0.0803915485739708, 0.07200084626674652, 0.09211192280054092, -0.017551535740494728, -0.010437406599521637, 0.06447718292474747, -0.05681859701871872, 0.030827542766928673, 0.09597384184598923, 0.03481115400791168, 0.24651379883289337, -0.1126529797911644, 0.10129279643297195, 0.07932061702013016, 0.06273134052753448, 0.04136958345770836, 0.03633742406964302, -0.03061634488403797, 0.062482453882694244, 0.0010257406393066049, -0.09915713220834732, -0.0408979095518589, 0.02949444204568863, 0.018339350819587708, -0.00822835136204958, -0.023457899689674377, -0.06559166312217712, 0.05242089554667473, 0.19408532977104187, 0.0779314935207367, -0.15435466170310974, -0.10050421208143234, 0.07198099046945572, -0.039964351803064346, -0.06281431764364243, -0.026006465777754784, 0.11818957328796387, -0.20004785060882568, -0.0027636990416795015, -0.00990871712565422, 0.12009534984827042, -0.19720584154129028, -0.022723127156496048, -0.030767099931836128, 0.07749541848897934, -0.057749249041080475, 0.06637208163738251, -0.23158934712409973, 0.046855974942445755, 0.01229588408023119, 0.11654213070869446, -0.05853201448917389, 0.032297275960445404, 0.05551326647400856, 0.0017339905025437474, 0.08715784549713135, 0.01770014315843582, 0.02799447812139988, -0.11196282505989075, -0.07050139456987381, 0.015150677412748337, 0.04092505946755409, -0.05049946904182434, 0.10072524100542068, -0.0292584877461195, 0.018963970243930817, -0.012229148298501968, -0.0884845107793808, -0.09398934990167618, -0.13945718109607697, 0.05355445295572281, -0.12140021473169327, 0.024280671030282974, -0.05047871172428131, -0.028637440875172615, 0.06031574308872223, 0.18330763280391693, -0.12220955640077591, -0.11231441050767899, -0.09568477421998978, 0.04924102872610092, 0.12457656860351562, -0.08796679228544235, 0.041143033653497696, 0.029445065185427666, 0.13875868916511536, 0.009870138019323349, -0.10566190630197525, 0.005494744051247835, -0.046334702521562576, -0.20295986533164978, -0.016831014305353165, 0.0861131101846695, 0.07544641941785812, 0.067064069211483, 0.0131990946829319, 0.005940335337072611, -0.021233316510915756, -0.13999295234680176, 0.0017455944325774908, 0.11965563148260117, 0.037042681127786636, 0.04858998954296112, 0.008170085959136486, 0.02887195348739624, -0.09874119609594345, 0.018145645037293434, 0.09244825690984726, 0.25239479541778564, -0.07637042552232742, 0.1409529447555542, 0.028585324063897133, -0.10358966141939163, -0.17001309990882874, 0.009993942454457283, 0.022347869351506233, 0.04520289599895477, 0.007749286945909262, -0.20381559431552887, -0.015272757038474083, 0.04452797770500183, -0.007163580507040024, 0.146619513630867, -0.3050573468208313, -0.13483794033527374, 0.06594304740428925, 0.04393359273672104, -0.04034676402807236, -0.029195211827754974, -0.04889147728681564, -0.08208754658699036, -0.1880943328142166, 0.1204647645354271, -0.10889225453138351, 0.10762862861156464, 0.023245202377438545, -0.011052985675632954, 0.03912792354822159, -0.04111667349934578, 0.13985420763492584, -0.0867961198091507, 0.06380706280469894, -0.08627287298440933, 0.00019165176490787417, 0.052995920181274414, -0.04991389811038971, 0.05577054247260094, 0.015463855117559433, 0.08470407873392105, -0.035138681530952454, -0.07131314277648926, -0.0644334927201271, 0.023922009393572807, -0.05206328257918358, -0.09371629357337952, -0.08094041794538498, 0.09463383257389069, 0.11098969727754593, -0.02294609695672989, -0.10515975952148438, -0.045937731862068176, -0.072666697204113, 0.08568896353244781, 0.10267861932516098, 0.10331174731254578, -0.07713259011507034, 0.008525462821125984, -0.010148612782359123, 0.06965263932943344, -0.08462926000356674, 0.06399113684892654, 0.07700595259666443, 0.037567541003227234, 0.11490883678197861, 0.03148169070482254, -0.1494438648223877, 0.04616786539554596, 0.023245327174663544, -0.12727132439613342, -0.09823372215032578, -0.007644889876246452, -0.0271358210593462, -0.06682183593511581, -0.0657564103603363, 0.14484167098999023, -0.02915196865797043, -0.03503608703613281, 0.029327070340514183, 0.04459379240870476, -0.03854837641119957, 0.1228172704577446, 0.06004009768366814, 0.03773251548409462, -0.07865917682647705, 0.0938352420926094, 0.07169236242771149, 0.0455322265625, 0.04957343265414238, 0.05201873555779457, -0.09655755758285522, 0.00673209922388196, -0.08421675860881805, 0.039302583783864975, 0.005871221888810396, -0.01700337417423725, -0.037748388946056366, -0.03990572690963745, 0.03665167838335037, 0.1136704832315445, 0.005953006912022829, 0.12248823791742325, -0.026760170236229897, 0.02156338281929493, -0.09979992359876633, 0.0935821458697319, 0.052310340106487274, 0.020973332226276398, -0.06455519795417786, 0.18052785098552704, 0.030271919444203377, 0.08797984570264816, -0.04120554029941559, -0.050451625138521194, -0.08230694383382797, 0.01228957250714302, -0.19319994747638702, 0.0014379204949364066, -0.07785817235708237, -0.028495969250798225, -0.02096887305378914, -0.02432398684322834, -0.030692661181092262, 0.05862512066960335, -0.03526744246482849, -0.053261589258909225, -0.043021515011787415, 0.023197168484330177, -0.16537079215049744, -0.040004465728998184, 0.10451855510473251, -0.09786663949489594, 0.11201057583093643, 0.06764069944620132, -0.043635737150907516, -0.003282377263531089, -0.0890822634100914, 0.003796755336225033, -0.021344566717743874, 0.011362118646502495, 0.031157854944467545, -0.14616894721984863, 0.028230400756001472, -0.05003548786044121, -0.03758808597922325, 0.01261075772345066, 0.06951639801263809, -0.12177223712205887, 0.017216293141245842, 0.03858758509159088, 0.014462602324783802, -0.06899704784154892, 0.09198343753814697, 0.033000726252794266, 0.07136370241641998, 0.0697508379817009, -0.03292682021856308, 0.09989368170499802, -0.1518172025680542, -0.0383082814514637, 0.028411660343408585, -0.003468910465016961, 0.06744159013032913, -0.007082929834723473, 0.0663795918226242, -0.040194980800151825, 0.18321357667446136, -0.013480066321790218, -0.03928672894835472, 0.020864436402916908, -0.03679019957780838, -0.000045462184061761945, 0.041076503694057465, 0.08083345741033554, -0.02497045509517193, -0.037978652864694595, -0.026689128950238228, 0.002351673087105155, -0.025007938966155052, -0.019911667332053185, 0.12420119345188141, 0.05601387470960617, 0.14539240300655365, -0.02363300882279873, 0.03254144638776779, -0.014614044688642025, -0.11148304492235184, -0.04404960945248604, 0.01070628222078085, 0.03383097052574158, -0.06015251949429512, 0.0741693452000618, 0.13429071009159088, -0.15425358712673187, 0.1255650520324707, 0.027330640703439713, -0.07714857906103134, -0.11750634014606476, -0.18867090344429016, -0.027710098773241043, 0.008114482276141644, 0.020870763808488846, -0.12696881592273712, 0.059050288051366806, 0.05580388754606247, 0.031842298805713654, -0.04832503944635391, 0.09727813303470612, -0.01816202700138092, -0.1101098582148552, 0.019742101430892944, 0.021813707426190376, 0.04113852232694626, 0.02840506099164486, 0.01662958599627018, 0.050197407603263855, 0.04486120864748955, 0.0627719908952713, 0.050883885473012924, 0.03958301991224289, 0.0043164948001503944, -0.006669697351753712, -0.051860641688108444, 0.006379027850925922, 0.02775234915316105, 0.03136088699102402, 0.15802696347236633, 0.0775836855173111, -0.00963344145566225, -0.029203932732343674, 0.2937832474708557, -0.0379653200507164, -0.08239400386810303, -0.1714889407157898, 0.15816336870193481, 0.011265290901064873, -0.001308458624407649, 0.04714573919773102, -0.13763757050037384, 0.0035676639527082443, 0.11514423787593842, 0.16399672627449036, -0.07013768702745438, 0.03136253356933594, -0.0017366628162562847, 0.00956201832741499, 0.026313168928027153, 0.07676021754741669, 0.037322673946619034, 0.20220674574375153, -0.055679067969322205, 0.06831341981887817, 0.011216621845960617, -0.00446345517411828, -0.03255288675427437, 0.12084044516086578, -0.032252922654151917, 0.028595255687832832, -0.08338341861963272, 0.04423345997929573, -0.07955539971590042, -0.25632381439208984, 0.018028799444437027, -0.03138167783617973, -0.11309368163347244, 0.04226929694414139, -0.056380704045295715, -0.020991958677768707, 0.07026563584804535, 0.0103389210999012, 0.010740135796368122, 0.0986146405339241, 0.031936515122652054, -0.014959007501602173, -0.015085454098880291, 0.09221842885017395, -0.011313077993690968, 0.1944170892238617, -0.007990186102688313, 0.060990285128355026, 0.09035879373550415, 0.04315910115838051, -0.12151942402124405, 0.0114241698756814, 0.03940363973379135, -0.06224929168820381, 0.0008632250828668475, 0.19438190758228302, -0.016966722905635834, 0.01566779799759388, 0.07466419041156769, 0.007864734157919884, 0.02949283830821514, -0.0627751350402832, 0.02114797756075859, -0.1222689226269722, -0.0025611105374991894, -0.07991782575845718, 0.0994531512260437, 0.17921441793441772, -0.05769652873277664, 0.02606140822172165, -0.04842755198478699, 0.002057067584246397, 0.014550972729921341, 0.008185851387679577, -0.02608329802751541, -0.07879022508859634, 0.022390788421034813, 0.11282864212989807, 0.042349692434072495, -0.18004266917705536, -0.07851799577474594, 0.03678887337446213, -0.06950963288545609, -0.007157971151173115, 0.13476549088954926, -0.010095051489770412, 0.06863750517368317, -0.03163415938615799, -0.042898062616586685, -0.025866098701953888, 0.060927119106054306, -0.13301073014736176, -0.0739707499742508 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/ec76d346c4c8b057169194c1781021fd.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elton John</div> <a href="https://genius.com/artists/elton-john"> <div style="text-align: center; font-size: 14px;">@elton-john</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Elton John. Dataset is available [here](https://huggingface.co/datasets/huggingartists/elton-john). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/elton-john") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/188xpm2n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Elton John's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1rgstntu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1rgstntu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/elton-john') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/elton-john") model = AutoModelWithLMHead.from_pretrained("huggingartists/elton-john") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/elton-john"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/elton-john
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/elton-john", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/elton-john #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elton John</div> <a href="URL <div style="text-align: center; font-size: 14px;">@elton-john</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Elton John. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Elton John's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Elton John.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Elton John's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/elton-john #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Elton John.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Elton John's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/elton-john #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Elton John.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Elton John's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.027328120544552803, 0.1578979790210724, -0.0027052860241383314, 0.04593753442168236, 0.09746795892715454, 0.01223065983504057, 0.08824436366558075, 0.11308781057596207, 0.021498069167137146, 0.07511863112449646, 0.07514671236276627, 0.03587783873081207, 0.0659497007727623, 0.09168794751167297, 0.06696650385856628, -0.2301187962293625, 0.03412767872214317, -0.08122885972261429, 0.013767296448349953, 0.09998169541358948, 0.09357933700084686, -0.06583971530199051, 0.0827413946390152, 0.027954576537013054, -0.07112842053174973, 0.02074611373245716, -0.000751512823626399, -0.06444084644317627, 0.09409642219543457, 0.06592411547899246, 0.03735537454485893, 0.025034921243786812, 0.06793365627527237, -0.19053249061107635, 0.028664331883192062, 0.1249915361404419, 0.0341181680560112, 0.07957316935062408, 0.050428856164216995, -0.07941631227731705, 0.14021871984004974, -0.018836332485079765, 0.09802229702472687, 0.05236239731311798, -0.11816735565662384, -0.12930288910865784, -0.1339818239212036, 0.09861667454242706, 0.09956123679876328, 0.08542177081108093, -0.026865914463996887, 0.07414230704307556, -0.021126823499798775, 0.04301454499363899, 0.23867326974868774, -0.24041685461997986, -0.006851086392998695, 0.0873526930809021, 0.0653335452079773, 0.022950030863285065, -0.0825926885008812, 0.015963159501552582, 0.04973363131284714, 0.029396606609225273, 0.04385395720601082, -0.021147198975086212, 0.15092724561691284, 0.02803606353700161, -0.10167092084884644, -0.0813089981675148, 0.10800918191671371, -0.018730754032731056, -0.07425064593553543, -0.12865200638771057, -0.005051278509199619, -0.0213861595839262, 0.04187566414475441, 0.0013287439942359924, -0.0002847535943146795, 0.006687711458653212, -0.03893040865659714, -0.11978757381439209, -0.08165311068296432, -0.03476516902446747, -0.016552235931158066, 0.06388825923204422, 0.04145200923085213, 0.0350414402782917, -0.0855238288640976, 0.22433805465698242, -0.031648192554712296, -0.09797515720129013, -0.05319470912218094, -0.10051676630973816, -0.08236539363861084, -0.048670392483472824, 0.00790067296475172, 0.0028389603830873966, -0.04068247973918915, 0.15488380193710327, -0.03387076035141945, 0.020472241565585136, -0.01591436006128788, 0.003018705639988184, 0.14337007701396942, 0.13998912274837494, -0.11137963086366653, -0.032223209738731384, 0.06461285054683685, -0.0038499783258885145, -0.06918296962976456, -0.05052340030670166, -0.011956335976719856, -0.011833027005195618, 0.04189147427678108, 0.07618784159421921, 0.06989780813455582, 0.056377019733190536, 0.010839907452464104, -0.06345120072364807, 0.07397090643644333, -0.12478827685117722, 0.015970338135957718, -0.010323339141905308, -0.05589617043733597, 0.01657785288989544, 0.06548738479614258, 0.020472578704357147, -0.10027850419282913, 0.10997841507196426, -0.06715009361505508, -0.05129348859190941, -0.08004385232925415, -0.1052905023097992, -0.007328073959797621, -0.06280676275491714, -0.02847219631075859, -0.07945362478494644, -0.1859280914068222, -0.04241195693612099, 0.024117184802889824, -0.043244197964668274, -0.03135155513882637, 0.022722532972693443, -0.025355177000164986, 0.007167862728238106, -0.01901109330356121, -0.03154977038502693, -0.029743852093815804, 0.029302852228283882, -0.06328152865171432, 0.03234632685780525, 0.06534179300069809, 0.04454415664076805, -0.11384662240743637, 0.06715195626020432, -0.13031986355781555, 0.11428042501211166, -0.012795421294867992, 0.021800706163048744, -0.09925063699483871, -0.07408057898283005, -0.012140319682657719, -0.023342790082097054, 0.012347829528152943, 0.09870842844247818, -0.15911243855953217, -0.029346833005547523, 0.1889438033103943, -0.06218871474266052, -0.08548463135957718, 0.06335465610027313, -0.07343889027833939, 0.04321104660630226, 0.11630873382091522, 0.08028335124254227, 0.15283812582492828, -0.12322893738746643, -0.06937422603368759, -0.04791627451777458, -0.06657839566469193, 0.17357872426509857, 0.03884148597717285, -0.023040927946567535, 0.03455263003706932, 0.002667404944077134, -0.02875395305454731, -0.014603612013161182, -0.02657955512404442, -0.03120248392224312, -0.024562330916523933, -0.015893833711743355, -0.008027195930480957, -0.04203284531831741, -0.05518021807074547, -0.027497723698616028, -0.10245779901742935, 0.06309455633163452, 0.10020620375871658, -0.06581070274114609, 0.015228328295052052, -0.09928007423877716, 0.01807655580341816, -0.048546284437179565, 0.004078157711774111, -0.16822697222232819, -0.04515687748789787, 0.02276020310819149, -0.05412745848298073, 0.07998707890510559, 0.040703631937503815, 0.03945783153176308, 0.06882716715335846, -0.009366093203425407, -0.008433382026851177, -0.04110930487513542, -0.007932158187031746, -0.041405607014894485, -0.15683624148368835, -0.05416717752814293, -0.04769943654537201, 0.061631251126527786, -0.11566568911075592, 0.006010883953422308, 0.06742755323648453, 0.13579481840133667, 0.024716239422559738, -0.06278539448976517, 0.02912600338459015, -0.037123311311006546, -0.03681926801800728, -0.10910281538963318, -0.04436810314655304, 0.0050041573122143745, -0.021137220785021782, 0.14801651239395142, -0.15889514982700348, -0.0868457779288292, 0.11369401961565018, 0.11380498856306076, -0.08147714287042618, 0.05973251909017563, -0.07484464347362518, -0.018967481330037117, -0.05013062432408333, -0.04955115541815758, 0.2675705552101135, 0.030654754489660263, 0.09271606057882309, -0.09251868724822998, -0.08665391057729721, -0.004572492558509111, -0.04278288036584854, -0.03650365024805069, 0.03226962313055992, 0.03322794660925865, -0.1530228704214096, 0.043580733239650726, -0.01182958297431469, 0.09106847643852234, 0.18805155158042908, 0.04476885497570038, -0.0921597108244896, -0.05108863115310669, -0.0755184218287468, -0.0005638985312543809, 0.0801292210817337, 0.005142826121300459, 0.02888038568198681, 0.04038324952125549, 0.05200285464525223, 0.044795822352170944, -0.1181732639670372, 0.011284847743809223, 0.07165798544883728, -0.028865789994597435, -0.05293368175625801, 0.016594121232628822, 0.023295355960726738, 0.083683080971241, 0.07807092368602753, 0.11651062220335007, -0.060016751289367676, -0.04908948391675949, -0.1374547779560089, 0.13385140895843506, -0.08824814856052399, -0.21834351122379303, -0.13610289990901947, -0.07069627195596695, 0.011943092569708824, 0.017267217859625816, 0.04765963926911354, -0.049572817981243134, -0.045305199921131134, -0.10109540075063705, 0.09100918471813202, -0.050550445914268494, -0.02019936591386795, 0.0070759267546236515, 0.018552912399172783, -0.020675497129559517, -0.12293031811714172, -0.03260631486773491, 0.028835969045758247, -0.0856146514415741, -0.0012277710484340787, 0.028739094734191895, 0.04434534162282944, 0.1515159159898758, -0.012480905279517174, 0.01092328131198883, -0.02452431060373783, 0.26839521527290344, -0.10400896519422531, 0.05898096784949303, 0.1753295660018921, -0.0017494425410404801, 0.05415019020438194, 0.0656496211886406, -0.0009542361949570477, -0.058862730860710144, 0.06317076832056046, 0.07249458879232407, -0.06688746809959412, -0.21994347870349884, -0.028656186535954475, -0.0054847863502800465, 0.014218345284461975, 0.12273230403661728, 0.038611531257629395, 0.05705386400222778, 0.01254673395305872, -0.09927816689014435, 0.05650228634476662, 0.014094896614551544, 0.10692819952964783, -0.07019595801830292, -0.007725019473582506, 0.04684869572520256, -0.04939943552017212, 0.03679550066590309, 0.12166658043861389, 0.04008688032627106, 0.20930881798267365, -0.06525011360645294, 0.07900495827198029, 0.08022540807723999, 0.09821135550737381, 0.020465251058340073, 0.023214066401124, -0.025355612859129906, 0.023076621815562248, 0.005349400918930769, -0.08870879560709, -0.006534861400723457, 0.0450015515089035, 0.03417539969086647, -0.004486721940338612, -0.05540289729833603, -0.060156334191560745, 0.04517214372754097, 0.22760185599327087, 0.027175987139344215, -0.1738479882478714, -0.09919295459985733, 0.05975615233182907, -0.05383823439478874, -0.06557878106832504, -0.010849661193788052, 0.06565091013908386, -0.20642335712909698, 0.03785744309425354, -0.023739468306303024, 0.11799566447734833, -0.1180741935968399, 0.002303582848981023, 0.06636451184749603, 0.03692704066634178, -0.06361424177885056, 0.08061482012271881, -0.16233694553375244, 0.07204031944274902, 0.0005406970740295947, 0.07968837767839432, -0.06149161607027054, 0.022756529971957207, 0.01481735147535801, 0.04306316748261452, 0.08470117300748825, 0.013860298320651054, 0.030735602602362633, -0.03771538287401199, -0.0436275415122509, -0.0000702884717611596, 0.05444619432091713, -0.11160468310117722, 0.1287102997303009, -0.032104022800922394, 0.03317074105143547, -0.02611885406076908, -0.08600480854511261, -0.10477042198181152, -0.13964255154132843, 0.07293074578046799, -0.10453296452760696, 0.007349566090852022, -0.06601123511791229, -0.019340956583619118, 0.009103282354772091, 0.22691994905471802, -0.0845458135008812, -0.0762154757976532, -0.13686025142669678, 0.0019792888779193163, 0.13350877165794373, -0.07763470709323883, -0.00003903790275217034, -0.006968441419303417, 0.17236658930778503, -0.010384304448962212, -0.13184215128421783, -0.0014266731450334191, -0.07104665040969849, -0.169693261384964, -0.02993243932723999, 0.1512393355369568, 0.06524209678173065, 0.03272869810461998, 0.0045655579306185246, 0.004118851851671934, -0.054008737206459045, -0.15875913202762604, 0.03168118745088577, 0.16517141461372375, 0.015854069963097572, 0.02364380657672882, 0.031018484383821487, 0.026633430272340775, -0.12695102393627167, 0.012846005149185658, 0.05527009814977646, 0.19273093342781067, -0.07705557346343994, 0.16583430767059326, 0.01449661422520876, -0.09660019725561142, -0.16156770288944244, 0.03274359554052353, 0.003265432082116604, 0.029037710279226303, 0.021723173558712006, -0.17487755417823792, 0.032069891691207886, 0.021119125187397003, -0.0025004807393997908, 0.06116379797458649, -0.3423421382904053, -0.15284326672554016, 0.02342032641172409, 0.020856739953160286, -0.08969619125127792, -0.04466501995921135, -0.03122643008828163, -0.07402496784925461, -0.26501163840293884, 0.08786613494157791, -0.11434438079595566, 0.08105528354644775, 0.006533403880894184, 0.0868026539683342, 0.04915459081530571, -0.05931933596730232, 0.12878897786140442, -0.027350418269634247, 0.06424976885318756, -0.08753253519535065, -0.05587201565504074, 0.08966931700706482, -0.0709943100810051, 0.10360642522573471, 0.026676908135414124, 0.09074748307466507, -0.1263367086648941, -0.07391418516635895, -0.0695166066288948, 0.012108156457543373, -0.05673292279243469, -0.09956692159175873, -0.08425116539001465, 0.08274482190608978, 0.12197519838809967, -0.03645957633852959, -0.0763230100274086, -0.051354292780160904, 0.0010904440423473716, 0.06294739991426468, 0.10029317438602448, 0.07526186853647232, -0.09250111132860184, 0.011576544493436813, 0.009024876169860363, 0.028600197285413742, -0.17491336166858673, 0.03840625286102295, 0.0915907621383667, 0.03756712004542351, 0.1090903952717781, 0.01181466318666935, -0.16503764688968658, 0.016149675473570824, 0.03652774170041084, -0.16660059988498688, -0.09939181804656982, -0.043262090533971786, 0.02021424099802971, -0.08380160480737686, -0.041431937366724014, 0.14239314198493958, -0.04462099447846413, -0.03896978497505188, -0.0030610666144639254, 0.048587504774332047, -0.045828282833099365, 0.09223564714193344, 0.018125493079423904, 0.046322956681251526, -0.06169413775205612, 0.11793173849582672, 0.06501121819019318, 0.012418374419212341, 0.039060406386852264, 0.05671605467796326, -0.08215130865573883, -0.0009212069562636316, -0.08287613093852997, 0.03306063264608383, -0.05213306099176407, -0.015586486086249352, 0.000529821845702827, -0.03629785403609276, 0.03415628895163536, 0.10710447281599045, -0.014894361607730389, 0.10268615931272507, -0.03643376752734184, -0.004270728211849928, -0.13743679225444794, 0.06919768452644348, 0.037668585777282715, 0.02328784391283989, -0.12062402069568634, 0.19671787321567535, 0.026412390172481537, 0.09528043866157532, -0.03451132774353027, -0.05652887746691704, -0.0732753798365593, -0.007044459227472544, -0.12926927208900452, -0.040231045335531235, -0.07762175053358078, -0.030499279499053955, -0.009419610723853111, -0.04360096901655197, -0.01600191555917263, 0.05317367985844612, -0.02879301831126213, -0.06045523285865784, -0.055344730615615845, 0.049018725752830505, -0.14437410235404968, 0.016534261405467987, 0.10964541882276535, -0.05409771203994751, 0.11074050515890121, 0.05418875440955162, -0.03324265778064728, 0.017433812841773033, -0.10835506021976471, 0.03292495757341385, -0.024775953963398933, 0.009628389962017536, 0.0320979505777359, -0.14312343299388885, 0.006176323164254427, -0.05235907435417175, -0.061769209802150726, 0.00432334141805768, -0.00001215199245052645, -0.1227356493473053, -0.002612945856526494, 0.07912928611040115, -0.006556367501616478, -0.07212785631418228, 0.06354471296072006, 0.06893914192914963, 0.029446011409163475, 0.058399591594934464, -0.0315694734454155, 0.07846719771623611, -0.161971315741539, -0.048445895314216614, 0.007640995550900698, 0.0247779693454504, 0.04312847554683685, -0.007941103540360928, 0.03608058765530586, -0.022918494418263435, 0.18717235326766968, 0.008967911824584007, -0.010011282749474049, 0.03877686336636543, -0.06501622498035431, -0.01065682340413332, 0.04242635518312454, 0.06963630020618439, -0.04675362631678581, -0.02390797808766365, -0.01373972836881876, -0.008565545082092285, -0.06824799627065659, -0.03515731543302536, 0.11228492110967636, 0.04982620105147362, 0.18246154487133026, -0.035393957048654556, 0.0579635314643383, -0.02584707736968994, -0.11934774369001389, -0.02880483865737915, -0.02804172970354557, 0.034289680421352386, -0.07075116038322449, 0.06703601032495499, 0.17956741154193878, -0.15841272473335266, 0.10788054019212723, 0.016614321619272232, -0.050996966660022736, -0.10462427884340286, -0.16095328330993652, -0.016203058883547783, -0.03550679609179497, 0.038317710161209106, -0.13362374901771545, 0.09044655412435532, 0.018548330292105675, 0.032192353159189224, -0.06383200734853745, 0.11337621510028839, -0.06551250070333481, -0.10838966071605682, 0.021298209205269814, 0.022727347910404205, 0.02477019466459751, 0.03153504431247711, 0.0777566134929657, 0.029099348932504654, 0.0037170234136283398, 0.06094801053404808, 0.03933582082390785, 0.029401622712612152, 0.03757014498114586, -0.020190060138702393, -0.05329278111457825, 0.024948835372924805, 0.006368722766637802, 0.027509644627571106, 0.09391096979379654, 0.07100333273410797, -0.01988924853503704, -0.029128961265087128, 0.3087276220321655, -0.04079766198992729, -0.04353664070367813, -0.1661560982465744, 0.17291967570781708, 0.02990139089524746, -0.01455534528940916, 0.028653563931584358, -0.13337981700897217, 0.00699954479932785, 0.14719441533088684, 0.17420102655887604, -0.03344503045082092, 0.014686107635498047, -0.041390351951122284, 0.013503912836313248, 0.03228621184825897, 0.0753147229552269, 0.06924447417259216, 0.18419647216796875, -0.04500727728009224, 0.04614529386162758, -0.006034515332430601, -0.009589958004653454, -0.006979992147535086, 0.10318566113710403, -0.03538854792714119, 0.0026726643554866314, -0.055832017213106155, 0.08846043050289154, -0.062077514827251434, -0.267841100692749, -0.013351613655686378, -0.048020463436841965, -0.08518699556589127, 0.05444977805018425, -0.017529651522636414, -0.027753790840506554, 0.09246690571308136, 0.017550941556692123, -0.037553656846284866, 0.13348008692264557, 0.03744171932339668, -0.05449995398521423, -0.015818819403648376, 0.08585178107023239, -0.03069254755973816, 0.19445250928401947, -0.023707671090960503, 0.0012833504006266594, 0.08457770943641663, 0.020499028265476227, -0.1242222934961319, 0.005941492505371571, 0.039154667407274246, -0.07358328253030777, -0.023668581619858742, 0.19291161000728607, 0.00545383058488369, 0.04758410528302193, 0.06058676168322563, -0.07854022085666656, 0.023684976622462273, -0.06282715499401093, 0.050003886222839355, -0.13713198900222778, 0.051506489515304565, -0.07658379524946213, 0.14453458786010742, 0.1728597730398178, -0.071088507771492, 0.017267273738980293, -0.05586753413081169, 0.004722675308585167, -0.01774357445538044, 0.07258658111095428, -0.020847562700510025, -0.10335150361061096, 0.024080676957964897, 0.022027304396033287, 0.023588141426444054, -0.20275889337062836, -0.07503559440374374, 0.054370325058698654, -0.05293623358011246, 0.017417483031749725, 0.17205847799777985, 0.047823384404182434, 0.06228620558977127, -0.03657159209251404, -0.013394895009696484, -0.011718773283064365, 0.11936318874359131, -0.14778055250644684, -0.09425471723079681 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/76c536a17ca35f7edd1f78e129609fe0.573x573x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Eminem</div> <a href="https://genius.com/artists/eminem"> <div style="text-align: center; font-size: 14px;">@eminem</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Eminem. Dataset is available [here](https://huggingface.co/datasets/huggingartists/eminem). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/eminem") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/391kfg7f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Eminem's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1361uz9o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1361uz9o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/eminem') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/eminem") model = AutoModelWithLMHead.from_pretrained("huggingartists/eminem") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/eminem"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/eminem
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/eminem", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/eminem #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Eminem</div> <a href="URL <div style="text-align: center; font-size: 14px;">@eminem</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Eminem. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Eminem's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Eminem.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Eminem's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/eminem #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Eminem.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Eminem's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/eminem #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Eminem.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Eminem's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.012441260740160942, 0.16127058863639832, -0.0032463334500789642, 0.04169510304927826, 0.0891498327255249, 0.005888282787054777, 0.09795542061328888, 0.09737088531255722, 0.0054105715826153755, 0.07545428723096848, 0.06752743571996689, 0.016603313386440277, 0.06337228417396545, 0.1057591512799263, 0.08341075479984283, -0.2511937916278839, 0.03213271498680115, -0.0876568928360939, 0.005657774396240711, 0.10900070518255234, 0.0986766517162323, -0.06341007351875305, 0.08089066296815872, 0.04859909415245056, -0.08586772531270981, 0.017466438934206963, -0.006479295901954174, -0.06949774920940399, 0.0715276449918747, 0.056692466139793396, 0.03966136276721954, 0.037117812782526016, 0.07022469490766525, -0.17950809001922607, 0.027945278212428093, 0.12633459270000458, 0.034325771033763885, 0.07474018633365631, 0.05053917318582535, -0.07925080507993698, 0.13424620032310486, -0.008104859851300716, 0.0955132246017456, 0.04598581790924072, -0.11741262674331665, -0.1471758931875229, -0.1296137124300003, 0.07084747403860092, 0.10587674379348755, 0.08626917004585266, -0.032352741807699203, 0.035833459347486496, -0.029103009030222893, 0.035739727318286896, 0.2263544201850891, -0.24337221682071686, -0.008645793423056602, 0.07147487998008728, 0.04866275563836098, 0.017068248242139816, -0.08035260438919067, 0.01582670398056507, 0.0368632972240448, 0.0181888360530138, 0.05262425169348717, -0.011058145202696323, 0.18539464473724365, 0.02692168578505516, -0.10253429412841797, -0.07567618787288666, 0.11339357495307922, -0.011681907810270786, -0.07626546919345856, -0.1369752138853073, 0.004971771501004696, -0.033922791481018066, 0.0381697341799736, -0.011462902650237083, -0.0005347869009710848, 0.0010685280431061983, -0.06846734136343002, -0.10183085501194, -0.08107505738735199, -0.028246931731700897, -0.030249258503317833, 0.06627430021762848, 0.03092038445174694, 0.030851582065224648, -0.07910946756601334, 0.22252388298511505, -0.0021849588956683874, -0.10695125162601471, -0.04270600900053978, -0.09052912890911102, -0.0892641618847847, -0.051686134189367294, 0.0035312240943312645, -0.012533171102404594, -0.05252126231789589, 0.16932673752307892, -0.008248298428952694, 0.018660347908735275, 0.0012878483394160867, -0.0034342934377491474, 0.15150925517082214, 0.13965217769145966, -0.10656783729791641, -0.038409750908613205, 0.061804309487342834, -0.006442551966756582, -0.06376155465841293, -0.06150606647133827, -0.023957829922437668, -0.006995395757257938, 0.04050077870488167, 0.07403039187192917, 0.055354148149490356, 0.0531986728310585, 0.015636716037988663, -0.071346715092659, 0.09326004981994629, -0.13830795884132385, 0.02434760332107544, -0.010887865908443928, -0.04590068757534027, 0.011903339996933937, 0.03867603838443756, 0.026701536029577255, -0.09766339510679245, 0.11776909232139587, -0.06266263872385025, -0.042249035090208054, -0.0855371430516243, -0.08530394732952118, 0.002610829658806324, -0.02877679280936718, -0.03063548542559147, -0.0800979733467102, -0.1706673502922058, -0.033646102994680405, 0.04233183339238167, -0.055032823234796524, -0.03669803589582443, 0.03466946259140968, -0.02237391658127308, 0.012092607095837593, -0.015853174030780792, -0.053729087114334106, -0.02412036433815956, 0.029061749577522278, -0.059213787317276, 0.026882024481892586, 0.0889807716012001, 0.05568576231598854, -0.11324351280927658, 0.06622626632452011, -0.17368656396865845, 0.12028088420629501, -0.012304013594985008, 0.013378444127738476, -0.09832888841629028, -0.07953006029129028, -0.036427877843379974, -0.036083295941352844, 0.010238267481327057, 0.08740704506635666, -0.17582106590270996, -0.03966496139764786, 0.16939426958560944, -0.05959515646100044, -0.07663083076477051, 0.07817453145980835, -0.07971378415822983, 0.022651512175798416, 0.11248404532670975, 0.10483794659376144, 0.1369314342737198, -0.12419887632131577, -0.06478617340326309, -0.04690731689333916, -0.060054533183574677, 0.2048213928937912, 0.0488746352493763, -0.017778750509023666, 0.046045608818531036, 0.004092822317034006, -0.012670258991420269, -0.002902484964579344, -0.015793871134519577, -0.03990229219198227, -0.013961856253445148, 0.010400059632956982, -0.0062896134331822395, -0.040140751749277115, -0.06390273571014404, -0.020220443606376648, -0.11340322345495224, 0.07305397838354111, 0.09657320380210876, -0.059576429426670074, 0.0021324569825083017, -0.10403192788362503, 0.0294676274061203, -0.04699534922838211, -0.003221247112378478, -0.16689206659793854, -0.03685322403907776, 0.02165377512574196, -0.07497596740722656, 0.08774224668741226, 0.009785535745322704, 0.035977866500616074, 0.06165361776947975, -0.010746053420007229, -0.0014813324669376016, -0.055525824427604675, -0.005939253140240908, -0.030370034277439117, -0.13690026104450226, -0.061313413083553314, -0.04106200113892555, 0.08173323422670364, -0.10983393341302872, 0.0034774800296872854, 0.08267403393983841, 0.1361914575099945, 0.025116361677646637, -0.06853123009204865, 0.014145620167255402, -0.046086233109235764, -0.03301774710416794, -0.10471577197313309, -0.05572381615638733, 0.011772587895393372, -0.010180393233895302, 0.14507664740085602, -0.16977643966674805, -0.07300396263599396, 0.11558086425065994, 0.10913166403770447, -0.08635369688272476, 0.05611118674278259, -0.07439514249563217, -0.015389125794172287, -0.051434699445962906, -0.041820090264081955, 0.25143104791641235, 0.03191712871193886, 0.08386535197496414, -0.10760115832090378, -0.09799305349588394, -0.003539004363119602, -0.048575617372989655, -0.028217313811182976, 0.02002682164311409, 0.028908759355545044, -0.17038168013095856, 0.044778913259506226, 0.02193957008421421, 0.08670800924301147, 0.20801284909248352, 0.03687586635351181, -0.09377400577068329, -0.06910713762044907, -0.08287250995635986, -0.007137852720916271, 0.07774721086025238, 0.02650301717221737, 0.03873080760240555, 0.03814354166388512, 0.061365194618701935, 0.03890801593661308, -0.11515957862138748, 0.0030298002529889345, 0.07864892482757568, -0.03463713079690933, -0.05925123393535614, 0.019773166626691818, 0.025199800729751587, 0.07602689415216446, 0.07544814795255661, 0.12616413831710815, -0.056180816143751144, -0.050265438854694366, -0.13150712847709656, 0.12439558655023575, -0.08918745815753937, -0.23340091109275818, -0.12000821530818939, -0.06791355460882187, 0.01822720654308796, 0.008948386646807194, 0.038413628935813904, -0.04734444245696068, -0.0397057868540287, -0.09710948169231415, 0.08459208905696869, -0.06101401895284653, -0.029224170371890068, 0.015480559319257736, 0.018551452085375786, -0.02445855177938938, -0.11112618446350098, -0.03387106582522392, 0.039141152054071426, -0.08816585689783096, -0.01205686666071415, 0.026695752516388893, 0.04056797921657562, 0.1597696840763092, -0.015486277639865875, 0.00927645992487669, -0.019549597054719925, 0.2890407145023346, -0.1295335590839386, 0.07744497060775757, 0.16447164118289948, 0.000725986436009407, 0.05909484252333641, 0.0719040110707283, 0.0030666361562907696, -0.04697166383266449, 0.06165521219372749, 0.07571570575237274, -0.07142475992441177, -0.20491673052310944, -0.03829813003540039, -0.008771107532083988, 0.008474172092974186, 0.10458111763000488, 0.041869666427373886, 0.06864222139120102, 0.0062483688816428185, -0.09630642086267471, 0.054116569459438324, 0.03800118714570999, 0.0999249517917633, -0.06996594369411469, 0.0033390780445188284, 0.04787503927946091, -0.04376981779932976, 0.020515184849500656, 0.1251719743013382, 0.038249142467975616, 0.2146921455860138, -0.05536976084113121, 0.08810196816921234, 0.07464273273944855, 0.10679054260253906, 0.029070772230625153, 0.014025663956999779, -0.01931832544505596, 0.021436480805277824, -0.00038830138510093093, -0.089776411652565, 0.011353625915944576, 0.03475134074687958, 0.026938393712043762, -0.027343610301613808, -0.04189050942659378, -0.05692164599895477, 0.04975740239024162, 0.22681394219398499, 0.015791449695825577, -0.16580495238304138, -0.0886862725019455, 0.05770411342382431, -0.06478758901357651, -0.05797146260738373, -0.008907369337975979, 0.07183773815631866, -0.20208033919334412, 0.046843159943819046, -0.033512040972709656, 0.10590992867946625, -0.0998053178191185, -0.0033295731991529465, 0.09452451765537262, 0.04065753147006035, -0.06135263293981552, 0.09434487670660019, -0.1579522043466568, 0.06049302592873573, -0.0015434984816238284, 0.08322723954916, -0.05547754466533661, 0.02615891769528389, 0.013725358992815018, 0.049697741866111755, 0.08460161089897156, 0.021726779639720917, 0.0036268068943172693, -0.023766931146383286, -0.035447925329208374, -0.003755823941901326, 0.061535146087408066, -0.10402191430330276, 0.11620474606752396, -0.030628414824604988, 0.03437453508377075, -0.028987785801291466, -0.06337999552488327, -0.1100078746676445, -0.16179583966732025, 0.08253950625658035, -0.11587726324796677, 0.006099493242800236, -0.0602794885635376, -0.014012113213539124, 0.024197641760110855, 0.22383512556552887, -0.050632644444704056, -0.07511038333177567, -0.1349262297153473, -0.012847655452787876, 0.142411470413208, -0.07633838802576065, 0.005311860237270594, -0.010582259856164455, 0.1806170493364334, 0.001028281170874834, -0.13993048667907715, -0.005567822139710188, -0.06268496066331863, -0.1714785397052765, -0.02450094185769558, 0.14433671534061432, 0.06432706862688065, 0.032156337052583694, 0.015590222552418709, 0.01162265706807375, -0.06045055761933327, -0.16818928718566895, 0.03287665545940399, 0.1461690068244934, -0.00003505767017486505, 0.003108963603153825, 0.03161343187093735, 0.03269851580262184, -0.11824188381433487, 0.019842946901917458, 0.045684508979320526, 0.17972710728645325, -0.08141963928937912, 0.17064063251018524, 0.03292503580451012, -0.09356112033128738, -0.15357369184494019, 0.012103554792702198, 0.014669607393443584, 0.031503479927778244, 0.04033488780260086, -0.19861319661140442, 0.04733165726065636, 0.04329449310898781, -0.006190087180584669, 0.05639227479696274, -0.3288865387439728, -0.14950311183929443, 0.01540193147957325, -0.00910673476755619, -0.11798182129859924, -0.037213753908872604, -0.02870296686887741, -0.08665648847818375, -0.2600908875465393, 0.10081177204847336, -0.1107030063867569, 0.08377640694379807, 0.029549088329076767, 0.09511101245880127, 0.043523937463760376, -0.04977620393037796, 0.12048280984163284, -0.005928667727857828, 0.06949087977409363, -0.09081818908452988, -0.08135256916284561, 0.07288079708814621, -0.06750071048736572, 0.10390724241733551, 0.021554026752710342, 0.08376437425613403, -0.12155815958976746, -0.07682844251394272, -0.06658291816711426, 0.011159815825521946, -0.05575587972998619, -0.09229910373687744, -0.09609029442071915, 0.09645970165729523, 0.12647978961467743, -0.04544803872704506, -0.08362717926502228, -0.043128594756126404, -0.01646370440721512, 0.056636761873960495, 0.10019773244857788, 0.06776542961597443, -0.08032326400279999, 0.010326988063752651, 0.012985396198928356, 0.02608645334839821, -0.15511532127857208, 0.04792027547955513, 0.08473721891641617, 0.0386350192129612, 0.10662081092596054, 0.00888723973184824, -0.16947932541370392, 0.01228991150856018, 0.041450243443250656, -0.16297630965709686, -0.100527323782444, -0.04817306995391846, 0.032907914370298386, -0.07936695218086243, -0.05074658989906311, 0.11943312734365463, -0.029523763805627823, -0.044336948543787, 0.012482515536248684, 0.05367874726653099, -0.04473736882209778, 0.08068770915269852, 0.01915016770362854, 0.039926476776599884, -0.05896333232522011, 0.12028826028108597, 0.07420118153095245, 0.01772966794669628, 0.03447839990258217, 0.05591512471437454, -0.08868727087974548, 0.007477360777556896, -0.09151742607355118, 0.009933801367878914, -0.026781495660543442, -0.005503315478563309, 0.017703458666801453, -0.03777145966887474, 0.023406021296977997, 0.08795303851366043, -0.009956828318536282, 0.1028708890080452, -0.03148901090025902, 0.008535472676157951, -0.1330314725637436, 0.08677957206964493, 0.040909480303525925, 0.01956351473927498, -0.11248189210891724, 0.19201408326625824, 0.03077555261552334, 0.09462017565965652, -0.04241563379764557, -0.05556512624025345, -0.06623902916908264, -0.014260021969676018, -0.09825470298528671, -0.04817454516887665, -0.08951147645711899, -0.03302423655986786, -0.0057709794491529465, -0.03509483113884926, -0.02294735610485077, 0.04072524234652519, -0.034746237099170685, -0.060981955379247665, -0.061935313045978546, 0.0441502146422863, -0.13671812415122986, 0.027206433936953545, 0.11362272500991821, -0.05231160297989845, 0.11284579336643219, 0.0607156865298748, -0.02165202796459198, 0.006826941389590502, -0.11158358305692673, 0.022641895338892937, -0.03697613999247551, 0.022113487124443054, 0.03416365385055542, -0.15830960869789124, 0.005588560365140438, -0.0456807017326355, -0.05944088473916054, -0.0006588161922991276, -0.0037892877589911222, -0.13227057456970215, -0.007871044799685478, 0.07105762511491776, -0.029271386563777924, -0.08463788777589798, 0.06690456718206406, 0.0536811389029026, 0.024490151554346085, 0.06793256849050522, -0.02251848205924034, 0.07835304737091064, -0.17097023129463196, -0.045689549297094345, 0.01271825935691595, 0.03090466745197773, 0.023147258907556534, -0.005849580280482769, 0.034762442111968994, -0.02626960352063179, 0.20397204160690308, 0.029851704835891724, -0.03964119777083397, 0.036584045737981796, -0.06358806788921356, 0.0024271977599710226, 0.040861763060092926, 0.04681497812271118, -0.044657833874225616, -0.03715839609503746, -0.018634604290127754, -0.026614179834723473, -0.09555380791425705, -0.0435662567615509, 0.09070427715778351, 0.05016051605343819, 0.1732192486524582, -0.048290278762578964, 0.05353948101401329, -0.0220916960388422, -0.13251428306102753, -0.024992726743221283, -0.038868777453899384, 0.04165089130401611, -0.06185327097773552, 0.08746412396430969, 0.17675073444843292, -0.16310493648052216, 0.12586581707000732, 0.015531688928604126, -0.058297790586948395, -0.10984168201684952, -0.20067493617534637, -0.015343823470175266, -0.04852622374892235, 0.03565835580229759, -0.13450580835342407, 0.10023581236600876, 0.02579020895063877, 0.032179929316043854, -0.06944966316223145, 0.112324059009552, -0.0760960578918457, -0.11105454713106155, 0.029872527346014977, 0.01783706434071064, 0.030528569594025612, 0.04255690053105354, 0.08393587172031403, 0.03264567255973816, 0.011147838085889816, 0.07028986513614655, 0.03378818929195404, 0.028505761176347733, 0.04088764265179634, -0.02631215937435627, -0.04985198751091957, 0.02767864614725113, -0.00408063642680645, 0.03610789030790329, 0.07889773696660995, 0.06037554144859314, -0.008258591406047344, -0.028906414285302162, 0.29117336869239807, -0.03406490013003349, -0.032907187938690186, -0.17830029129981995, 0.14958380162715912, 0.009014878422021866, -0.00688894372433424, 0.022463714703917503, -0.12948523461818695, 0.0043662493117153645, 0.1411971002817154, 0.1710319072008133, -0.03715616464614868, 0.010870959609746933, -0.03474755212664604, 0.011408856138586998, 0.02878069132566452, 0.07611873000860214, 0.062348414212465286, 0.21117734909057617, -0.03977971151471138, 0.04424862936139107, -0.02112826704978943, -0.023890625685453415, -0.012899644672870636, 0.10737665742635727, -0.03091263584792614, 0.0004708593478426337, -0.05195450410246849, 0.10219728946685791, -0.05858030915260315, -0.2592913806438446, -0.0310348030179739, -0.02622465416789055, -0.09234379231929779, 0.06314954161643982, -0.017050664871931076, -0.02973218820989132, 0.08772532641887665, 0.017845068126916885, -0.041401904076337814, 0.14111235737800598, 0.049049343913793564, -0.03637514263391495, 0.011035646311938763, 0.09550455212593079, -0.01568526402115822, 0.18056394159793854, -0.021253129467368126, 0.012611735612154007, 0.07987784594297409, 0.0294229444116354, -0.11134331673383713, 0.014283863827586174, 0.04071483016014099, -0.059849631041288376, -0.02404048480093479, 0.19861829280853271, 0.013383680954575539, 0.033207111060619354, 0.0687965676188469, -0.04955868795514107, 0.031151147559285164, -0.0693695917725563, 0.047351811081171036, -0.14256924390792847, 0.056352924555540085, -0.0777290016412735, 0.1342969834804535, 0.18656644225120544, -0.07337486743927002, 0.014272102154791355, -0.04875069856643677, 0.0011710042599588633, -0.014295334927737713, 0.05825916677713394, -0.01472267135977745, -0.09051374346017838, 0.019247710704803467, 0.03761199489235878, 0.022142542526125908, -0.16848386824131012, -0.06785894930362701, 0.057475149631500244, -0.06669174879789352, 0.0246525127440691, 0.17731013894081116, 0.04413660615682602, 0.056665848940610886, -0.04040263220667839, 0.011926106177270412, -0.006415799725800753, 0.10806311666965485, -0.15948761999607086, -0.08132167905569077 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4b5472082f220eb9c2ca6b22f4d12f45.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Enigma</div> <a href="https://genius.com/artists/enigma"> <div style="text-align: center; font-size: 14px;">@enigma</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Enigma. Dataset is available [here](https://huggingface.co/datasets/huggingartists/enigma). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/enigma") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/8bx90lw6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Enigma's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1c1t20ji) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1c1t20ji/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/enigma') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/enigma") model = AutoModelWithLMHead.from_pretrained("huggingartists/enigma") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/enigma"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/enigma
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/enigma", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/enigma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Enigma</div> <a href="URL <div style="text-align: center; font-size: 14px;">@enigma</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Enigma. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Enigma's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Enigma.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Enigma's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/enigma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Enigma.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Enigma's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/enigma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Enigma.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Enigma's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.015382084995508194, 0.15897580981254578, -0.003058980219066143, 0.04090886190533638, 0.09135041385889053, 0.011267433874309063, 0.08578505367040634, 0.10261359065771103, 0.0031964839436113834, 0.0753181204199791, 0.06972446292638779, 0.01836950145661831, 0.07282363623380661, 0.11433995515108109, 0.07905110716819763, -0.25646787881851196, 0.03108656406402588, -0.09779153764247894, 0.004114252515137196, 0.11477472633123398, 0.0982184112071991, -0.06032465770840645, 0.0856386125087738, 0.040599580854177475, -0.06744594871997833, 0.019287144765257835, -0.00007805466884747148, -0.06633501499891281, 0.0899655818939209, 0.06535859405994415, 0.0341152623295784, 0.019315602257847786, 0.0623403824865818, -0.18651188910007477, 0.029988408088684082, 0.12499959766864777, 0.03678271174430847, 0.07451748847961426, 0.04492025822401047, -0.07611481100320816, 0.15448954701423645, -0.020866524428129196, 0.09674423933029175, 0.04617493227124214, -0.11745262891054153, -0.14710915088653564, -0.12760572135448456, 0.08547723293304443, 0.09682989120483398, 0.09004367142915726, -0.0295161921530962, 0.04606425762176514, -0.019401915371418, 0.04344276711344719, 0.23409304022789001, -0.24177496135234833, -0.014798983931541443, 0.08116107434034348, 0.04205309972167015, 0.03234180435538292, -0.07775319367647171, 0.01613175868988037, 0.043916232883930206, 0.022200345993041992, 0.04343967139720917, -0.017024802044034004, 0.19669568538665771, 0.02373010851442814, -0.10101751983165741, -0.08195199072360992, 0.11624078452587128, -0.026504892855882645, -0.07471880316734314, -0.13662411272525787, -0.002156624337658286, -0.015282469801604748, 0.037222739309072495, -0.006293608341366053, -0.0014455419732257724, 0.0031387910712510347, -0.03254082053899765, -0.11071412265300751, -0.08858007192611694, -0.031737904995679855, -0.029038628563284874, 0.07765188813209534, 0.03167819604277611, 0.03565864637494087, -0.08335188776254654, 0.2306525707244873, -0.01926449127495289, -0.0980159342288971, -0.05549870431423187, -0.09326361119747162, -0.09394034743309021, -0.057731274515390396, 0.007089187391102314, 0.004806196317076683, -0.0551232248544693, 0.16421416401863098, -0.03595614433288574, 0.032354921102523804, -0.004430905915796757, -0.01184582244604826, 0.15292656421661377, 0.13671553134918213, -0.10354886204004288, -0.031080109998583794, 0.05658784136176109, -0.013441381976008415, -0.06490933895111084, -0.05721883103251457, -0.011785050854086876, -0.019338928163051605, 0.03490138798952103, 0.08499792218208313, 0.06344463676214218, 0.06042191758751869, 0.012353500351309776, -0.06497255712747574, 0.0852753221988678, -0.13721758127212524, 0.01728118769824505, -0.003394514322280884, -0.047562774270772934, 0.013485100120306015, 0.0442877821624279, 0.017290499061346054, -0.10557150840759277, 0.11174387484788895, -0.06401428580284119, -0.04947357624769211, -0.08173402398824692, -0.09000472724437714, -0.00499829463660717, -0.0198231041431427, -0.04176514223217964, -0.06888794153928757, -0.17017753422260284, -0.0406237430870533, 0.03436501324176788, -0.050127528607845306, -0.04051611199975014, 0.029498526826500893, -0.019303541630506516, 0.012081626802682877, -0.01589515246450901, -0.02983255870640278, -0.028506062924861908, 0.02365333028137684, -0.05966850742697716, 0.029545225203037262, 0.07486185431480408, 0.04421766847372055, -0.11539480835199356, 0.07173915207386017, -0.16094881296157837, 0.12761381268501282, -0.014881539158523083, 0.0189424566924572, -0.1002042219042778, -0.09015604108572006, -0.02000531554222107, -0.03290573135018349, -0.0000018015388150161016, 0.09917082637548447, -0.17068499326705933, -0.033723775297403336, 0.19858978688716888, -0.0723257064819336, -0.0842866599559784, 0.06989578902721405, -0.07727130502462387, 0.03585122898221016, 0.125751331448555, 0.06922577321529388, 0.1523805409669876, -0.11170343309640884, -0.06293317675590515, -0.0458444245159626, -0.06697079539299011, 0.20380620658397675, 0.05007229372859001, -0.01885981857776642, 0.022062454372644424, 0.004690958186984062, -0.04177899658679962, -0.024073302745819092, -0.01911463402211666, -0.038506362587213516, -0.013645226135849953, 0.013423741795122623, -0.005256658419966698, -0.045735422521829605, -0.06421008706092834, -0.02796177566051483, -0.1040617972612381, 0.046139027923345566, 0.09806394577026367, -0.06869693845510483, 0.008798751048743725, -0.09576865285634995, 0.011520211584866047, -0.03498552739620209, 0.010680408217012882, -0.1716303527355194, -0.061635538935661316, 0.02374022640287876, -0.06975680589675903, 0.08375784754753113, 0.03449026495218277, 0.039397649466991425, 0.05935891345143318, -0.013071158900856972, 0.011633113957941532, -0.04610949382185936, -0.016992753371596336, -0.02467728592455387, -0.1505897343158722, -0.05824482813477516, -0.04798641800880432, 0.08868887275457382, -0.11900646239519119, 0.007291390094906092, 0.09681236743927002, 0.12331513315439224, 0.02009187452495098, -0.061913710087537766, 0.01759088970720768, -0.044807128608226776, -0.03320552408695221, -0.1073887050151825, -0.052019666880369186, 0.009488525800406933, -0.023586362600326538, 0.15602131187915802, -0.16967207193374634, -0.08321800827980042, 0.10172711312770844, 0.12746559083461761, -0.09009212255477905, 0.03212524577975273, -0.08099744468927383, -0.015044162981212139, -0.04571637511253357, -0.04124142602086067, 0.27378422021865845, 0.037017375230789185, 0.08010215312242508, -0.10432732105255127, -0.09760280698537827, -0.008928505703806877, -0.04734620451927185, -0.03254153952002525, 0.022250941023230553, 0.024199778214097023, -0.18687288463115692, 0.037569765001535416, -0.008756621740758419, 0.09883011877536774, 0.2012781947851181, 0.04856029897928238, -0.08666259050369263, -0.05951950326561928, -0.07569291442632675, -0.0024857399985194206, 0.056645262986421585, 0.011387034319341183, 0.028387388214468956, 0.04387513920664787, 0.059643764048814774, 0.044220708310604095, -0.11502179503440857, 0.01360285934060812, 0.07505211979150772, -0.03867827355861664, -0.05338650196790695, 0.016193414106965065, 0.02133444882929325, 0.07898079603910446, 0.09274652600288391, 0.14041420817375183, -0.06017233431339264, -0.04659886285662651, -0.14413592219352722, 0.13696935772895813, -0.08698004484176636, -0.24926036596298218, -0.13710395991802216, -0.07915899157524109, 0.020283663645386696, 0.008655779995024204, 0.032276805490255356, -0.051456768065690994, -0.042993899434804916, -0.0905328318476677, 0.08935943245887756, -0.0517711378633976, -0.022358182817697525, 0.013558872044086456, 0.017837941646575928, -0.02441198192536831, -0.11345035582780838, -0.03376612439751625, 0.03862948343157768, -0.09638562053442001, -0.010519844479858875, 0.03308628872036934, 0.04033782705664635, 0.1596032977104187, -0.013829577714204788, 0.004562183283269405, -0.02263014391064644, 0.285839706659317, -0.11918768286705017, 0.0726514533162117, 0.15915796160697937, -0.0147700235247612, 0.05877911299467087, 0.07634371519088745, 0.003400217741727829, -0.060785431414842606, 0.07394592463970184, 0.07516980171203613, -0.07474630326032639, -0.2194478064775467, -0.02966001071035862, -0.012055978178977966, 0.012863907031714916, 0.12058532238006592, 0.049450282007455826, 0.052157409489154816, 0.006309402175247669, -0.10166040062904358, 0.03855324909090996, 0.02878785878419876, 0.10286463052034378, -0.056812215596437454, -0.00875853467732668, 0.04560641199350357, -0.05380050837993622, 0.03175658360123634, 0.13099247217178345, 0.04561847448348999, 0.2031903862953186, -0.07069115340709686, 0.09592537581920624, 0.07724665105342865, 0.09062298387289047, 0.027696985751390457, 0.01661411114037037, -0.022827517241239548, 0.017269212752580643, -0.00028114201268181205, -0.08852364122867584, -0.012370612472295761, 0.043448563665151596, 0.0347883477807045, -0.01801084354519844, -0.04252862557768822, -0.05234117433428764, 0.04687841609120369, 0.23243556916713715, 0.016286972910165787, -0.17123740911483765, -0.10471531003713608, 0.0556119941174984, -0.06917215883731842, -0.06268380582332611, -0.019095929339528084, 0.07088260352611542, -0.2178082913160324, 0.06777294725179672, -0.03224816918373108, 0.10852023214101791, -0.11836528778076172, -0.002144663594663143, 0.08728045225143433, 0.047259099781513214, -0.06546469777822495, 0.09731752425432205, -0.1693350076675415, 0.06001923605799675, -0.009336290881037712, 0.07581628113985062, -0.06950996816158295, 0.030740194022655487, 0.008944807574152946, 0.05411175265908241, 0.07928583025932312, 0.0214514322578907, 0.020474310964345932, -0.002896979684010148, -0.045254457741975784, 0.005729802418500185, 0.05509411543607712, -0.1174868792295456, 0.1236247569322586, -0.033308304846286774, 0.033228229731321335, -0.036364078521728516, -0.08741401135921478, -0.08376217633485794, -0.15788698196411133, 0.08770379424095154, -0.12159496545791626, 0.0019713910296559334, -0.07006057351827621, -0.02097487635910511, 0.030694719403982162, 0.2530934512615204, -0.05533967539668083, -0.08007747679948807, -0.13574174046516418, 0.011546769179403782, 0.13463054597377777, -0.08242902159690857, 0.010598727501928806, -0.013996712863445282, 0.1916164606809616, 0.004274007864296436, -0.1265333741903305, -0.009637177921831608, -0.06596772372722626, -0.17044825851917267, -0.013558199629187584, 0.1589510589838028, 0.06431365758180618, 0.031766507774591446, 0.003500021994113922, 0.0005594271933659911, -0.05054698511958122, -0.17047138512134552, 0.02900722622871399, 0.15770332515239716, -0.007197687868028879, 0.019115859642624855, 0.04746150225400925, 0.021182669326663017, -0.12886583805084229, 0.02005719766020775, 0.057214733213186264, 0.17735512554645538, -0.07291366159915924, 0.17811521887779236, 0.0243865717202425, -0.09167226403951645, -0.15708470344543457, 0.02369111403822899, 0.02139473706483841, 0.033450644463300705, 0.027451055124402046, -0.20157739520072937, 0.03909644857048988, 0.031362250447273254, -0.0022983753588050604, 0.05789567530155182, -0.3282015025615692, -0.1487244963645935, -0.0006792364874854684, 0.008952246978878975, -0.11710681021213531, -0.032102104276418686, -0.036359407007694244, -0.07478683441877365, -0.2604534924030304, 0.09178852289915085, -0.10154331475496292, 0.07410281896591187, 0.019335929304361343, 0.09611281752586365, 0.044985439628362656, -0.05414430797100067, 0.1307779997587204, -0.031778477132320404, 0.05844537913799286, -0.09991257637739182, -0.0634627416729927, 0.08042352646589279, -0.0670025646686554, 0.1035212054848671, 0.03012138232588768, 0.09095791727304459, -0.09592214971780777, -0.08382176607847214, -0.07488269358873367, 0.00707636121660471, -0.05988014489412308, -0.0936225950717926, -0.09609642624855042, 0.08844970911741257, 0.12451235949993134, -0.03901239484548569, -0.09317584335803986, -0.0539914108812809, -0.006684551015496254, 0.054810669273138046, 0.11571035534143448, 0.0762915313243866, -0.07826542109251022, 0.003739663166925311, 0.01957693323493004, 0.020308926701545715, -0.16314393281936646, 0.04737573117017746, 0.09201352298259735, 0.03757374361157417, 0.10833150148391724, 0.009614173322916031, -0.16957344114780426, 0.006319423206150532, 0.04803355410695076, -0.16637709736824036, -0.1229357197880745, -0.04467424377799034, 0.01777549460530281, -0.10479558259248734, -0.047629307955503464, 0.13231559097766876, -0.03070555068552494, -0.039048995822668076, 0.003839267650619149, 0.047543734312057495, -0.04604168236255646, 0.09010569006204605, 0.0057671512477099895, 0.04398103803396225, -0.06607403606176376, 0.11546697467565536, 0.06773770600557327, 0.013338671997189522, 0.04162077605724335, 0.07090027630329132, -0.0907706543803215, 0.008021037094295025, -0.09203115105628967, 0.011888479813933372, -0.02871314063668251, -0.014589420519769192, 0.013781832531094551, -0.03780693560838699, 0.04358872026205063, 0.07453303039073944, -0.015832776203751564, 0.1092081367969513, -0.042640116065740585, 0.009801811538636684, -0.12422294169664383, 0.07321767508983612, 0.03523646295070648, 0.02339858002960682, -0.11736776679754257, 0.19085559248924255, 0.02812262810766697, 0.10114260762929916, -0.03583675995469093, -0.062086090445518494, -0.05935695394873619, -0.009173646569252014, -0.09107674658298492, -0.046078428626060486, -0.09231197088956833, -0.026411553844809532, -0.004035503603518009, -0.04218162223696709, -0.025872891768813133, 0.04747282713651657, -0.03372146189212799, -0.05895482003688812, -0.0715513676404953, 0.041977446526288986, -0.13557212054729462, 0.03318265080451965, 0.12225838750600815, -0.05677779018878937, 0.12295263260602951, 0.0564090758562088, -0.03587820380926132, 0.02281177043914795, -0.11752372235059738, 0.03812031075358391, -0.017958523705601692, 0.016759611666202545, 0.025348467752337456, -0.15784558653831482, 0.0064158192835748196, -0.04287048056721687, -0.06541964411735535, 0.0040329089388251305, -0.004338051192462444, -0.12816539406776428, -0.0006926109199412167, 0.08639433979988098, -0.02355988137423992, -0.07252516597509384, 0.06822367757558823, 0.05493823438882828, 0.01728866808116436, 0.060322146862745285, -0.021520886570215225, 0.0788806676864624, -0.16388942301273346, -0.05207763984799385, 0.006400085985660553, 0.03454713150858879, 0.04684022068977356, -0.014156722463667393, 0.03578939288854599, -0.023290717974305153, 0.19425581395626068, 0.01664648950099945, -0.029227925464510918, 0.03696048632264137, -0.0653059259057045, 0.0008281872724182904, 0.048127397894859314, 0.07377509027719498, -0.03849119693040848, -0.03904517740011215, -0.0006614769226871431, -0.019022967666387558, -0.09260797500610352, -0.03574487566947937, 0.11857668310403824, 0.032739900052547455, 0.1952332854270935, -0.04967769980430603, 0.06417462974786758, -0.01958846114575863, -0.12530577182769775, -0.016532720997929573, -0.04604925215244293, 0.03458843007683754, -0.059005629271268845, 0.06067071855068207, 0.1842995434999466, -0.1605907678604126, 0.11712998151779175, 0.021320970728993416, -0.059715915471315384, -0.11295709013938904, -0.19097961485385895, -0.017843889072537422, -0.03922656178474426, 0.029812730848789215, -0.13861915469169617, 0.09198570996522903, 0.018615717068314552, 0.03658692166209221, -0.07071170210838318, 0.138008251786232, -0.07184473425149918, -0.12459704279899597, 0.031611256301403046, 0.023480260744690895, 0.03241293504834175, 0.04831494390964508, 0.08099145442247391, 0.026389868929982185, 0.014007151126861572, 0.07240503281354904, 0.04002445191144943, 0.02681657299399376, 0.03555331379175186, -0.023320866748690605, -0.04465815797448158, 0.02935594879090786, -0.002674537943676114, 0.025640398263931274, 0.08690480887889862, 0.06209815666079521, -0.016510073095560074, -0.02264138124883175, 0.3031812310218811, -0.036118291318416595, -0.0431460440158844, -0.18346631526947021, 0.17061865329742432, 0.009332130663096905, -0.0054928092285990715, 0.028513669967651367, -0.12736067175865173, 0.005630197003483772, 0.12235904484987259, 0.16424894332885742, -0.026381302624940872, 0.01810341142117977, -0.02762945368885994, 0.018350621685385704, 0.03531092777848244, 0.09311587363481522, 0.0636371374130249, 0.1965208202600479, -0.03665287047624588, 0.050168443471193314, -0.0095206368714571, -0.01650369167327881, 0.002143359277397394, 0.0979616791009903, -0.03177327290177345, 0.011381404474377632, -0.057895123958587646, 0.10015355795621872, -0.048269182443618774, -0.27376458048820496, -0.029191315174102783, -0.028543801978230476, -0.09596582502126694, 0.06655899435281754, -0.023211441934108734, -0.024463478475809097, 0.09176909923553467, 0.030076006427407265, -0.049069102853536606, 0.14564955234527588, 0.05047746002674103, -0.04636204615235329, -0.009862812235951424, 0.11039422452449799, -0.028702231124043465, 0.18366283178329468, -0.028578931465744972, 0.007075809873640537, 0.08644610643386841, 0.014780411496758461, -0.12509950995445251, 0.002997842850163579, 0.03953377902507782, -0.06119142100214958, -0.023866426199674606, 0.19385682046413422, 0.01465145405381918, 0.026494400575757027, 0.06893151253461838, -0.06517184525728226, 0.021289436146616936, -0.05389273166656494, 0.05907087400555611, -0.14733488857746124, 0.06335797905921936, -0.0848289281129837, 0.12858161330223083, 0.18622387945652008, -0.06618592143058777, 0.026724856346845627, -0.0571160726249218, 0.005779576953500509, -0.02313750982284546, 0.08054288476705551, -0.020704714581370354, -0.11133609712123871, 0.010877334512770176, 0.027851132676005363, 0.02446543611586094, -0.17802195250988007, -0.07137779891490936, 0.06751562654972076, -0.04791215434670448, 0.02353343926370144, 0.1719459742307663, 0.02784750610589981, 0.0617680698633194, -0.03747415542602539, -0.01040020864456892, -0.013592544943094254, 0.11586588621139526, -0.16518765687942505, -0.08107095211744308 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f43534295450e1b0a276620dffdc3740.379x379x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Enya</div> <a href="https://genius.com/artists/enya"> <div style="text-align: center; font-size: 14px;">@enya</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Enya. Dataset is available [here](https://huggingface.co/datasets/huggingartists/enya). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/enya") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/16cuy8yb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Enya's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/il8ldqo8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/il8ldqo8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/enya') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/enya") model = AutoModelWithLMHead.from_pretrained("huggingartists/enya") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/enya"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/enya
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/enya", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/enya #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Enya</div> <a href="URL <div style="text-align: center; font-size: 14px;">@enya</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Enya. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Enya's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Enya.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Enya's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/enya #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Enya.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Enya's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/enya #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Enya.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Enya's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.019048228859901428, 0.1452842354774475, -0.0028927677776664495, 0.034617383033037186, 0.09139905124902725, 0.001055251806974411, 0.08311519771814346, 0.10696328431367874, -0.0077126845717430115, 0.06961248070001602, 0.08327249437570572, 0.01657944731414318, 0.06640171259641647, 0.135900616645813, 0.09177438169717789, -0.26590847969055176, 0.03096741996705532, -0.10194579511880875, 0.019586263224482536, 0.11891036480665207, 0.09391359239816666, -0.0581984780728817, 0.08680146187543869, 0.03937476500868797, -0.0665271207690239, 0.03566272556781769, -0.02093628980219364, -0.07490253448486328, 0.09439007192850113, 0.0827082172036171, 0.03506863862276077, 0.027653543278574944, 0.06772530823945999, -0.19826938211917877, 0.03383256122469902, 0.12317659705877304, 0.02343241311609745, 0.06684284657239914, 0.03741534426808357, -0.07765625417232513, 0.1701841950416565, -0.03270288556814194, 0.09401652961969376, 0.03839251399040222, -0.10476752370595932, -0.17798805236816406, -0.11557038873434067, 0.07884172350168228, 0.10819068551063538, 0.08532974123954773, -0.03423308953642845, 0.045016299933195114, -0.0012574000284075737, 0.04454897716641426, 0.23893630504608154, -0.23685653507709503, -0.01323991920799017, 0.0812939926981926, 0.03801364824175835, 0.04392363503575325, -0.07319029420614243, 0.016055665910243988, 0.05658124014735222, 0.025800397619605064, 0.053197991102933884, -0.013838175684213638, 0.2215634435415268, 0.02150220423936844, -0.09412706643342972, -0.08369805663824081, 0.1104261502623558, -0.028361627832055092, -0.08011370897293091, -0.15693576633930206, 0.0028616052586585283, -0.028902115300297737, 0.0441182404756546, -0.014619086869060993, -0.003980573732405901, -0.0037006912752985954, -0.04041469469666481, -0.10221955180168152, -0.09796646982431412, -0.022524990141391754, -0.025258546695113182, 0.07869844883680344, 0.03125450387597084, 0.03147788345813751, -0.07545977085828781, 0.22943861782550812, 0.007590115070343018, -0.10409370064735413, -0.057433128356933594, -0.09119918942451477, -0.09885404258966446, -0.057571444660425186, 0.010237525217235088, 0.018371978774666786, -0.06527738273143768, 0.1730368584394455, -0.04106028750538826, 0.0333443321287632, 0.01368254330009222, -0.02317306213080883, 0.15673355758190155, 0.13287441432476044, -0.09366434067487717, -0.02754424512386322, 0.040806036442518234, -0.019432928413152695, -0.06470987945795059, -0.061034176498651505, -0.019339492544531822, -0.019542289897799492, 0.025977125391364098, 0.09553980827331543, 0.04046361520886421, 0.05070170760154724, 0.03115045465528965, -0.056195247918367386, 0.10564181953668594, -0.14509093761444092, 0.009919440373778343, -0.01270661037415266, -0.03267006576061249, 0.01772432029247284, 0.04186691716313362, 0.015600244514644146, -0.09980165958404541, 0.11790231615304947, -0.049920570105314255, -0.05719095841050148, -0.06747857481241226, -0.08354496955871582, -0.006184617523103952, -0.013881482183933258, -0.038690727204084396, -0.09088792651891708, -0.1577143669128418, -0.030459212139248848, 0.023888379335403442, -0.041862159967422485, -0.03775918483734131, 0.03563779219985008, -0.03223681077361107, 0.0015478340210393071, -0.019269434735178947, -0.023811256512999535, -0.033265694975852966, 0.016369186341762543, -0.05640025436878204, 0.0339607335627079, 0.08451568335294724, 0.03353934735059738, -0.10949882119894028, 0.0648314356803894, -0.14336948096752167, 0.14230987429618835, -0.003778536571189761, 0.01685093529522419, -0.10555315017700195, -0.09902025014162064, -0.026714088395237923, -0.02196742594242096, -0.005832077469676733, 0.09368896484375, -0.18431414663791656, -0.04339135065674782, 0.1972736120223999, -0.07316433638334274, -0.08802416175603867, 0.07212686538696289, -0.0790773555636406, 0.033959049731492996, 0.13836103677749634, 0.056248754262924194, 0.14667752385139465, -0.1154470220208168, -0.07050981372594833, -0.045376528054475784, -0.057166095823049545, 0.22090888023376465, 0.05613012984395027, -0.005877702031284571, 0.0274440199136734, 0.008916839025914669, -0.02476782537996769, -0.0316464863717556, -0.023605773225426674, -0.04560815915465355, -0.0073595792055130005, 0.017552493140101433, -0.011974495835602283, -0.053291160613298416, -0.0676850751042366, -0.023350641131401062, -0.11651477962732315, 0.04353681206703186, 0.10791889578104019, -0.07984092831611633, 0.012981710024178028, -0.09711294621229172, -0.006839951034635305, -0.03381534665822983, 0.01997634395956993, -0.18658627569675446, -0.05833619832992554, 0.023347852751612663, -0.07493983954191208, 0.08491673320531845, 0.0204372089356184, 0.036302920430898666, 0.06583845615386963, -0.007614323403686285, 0.014974541962146759, -0.05415784940123558, -0.02180689014494419, -0.03142928704619408, -0.14422035217285156, -0.06792552024126053, -0.05335316061973572, 0.07935284823179245, -0.1404721587896347, 0.007112057413905859, 0.10032779723405838, 0.1161874458193779, 0.02375754714012146, -0.05104381963610649, 0.00014986081805545837, -0.03188919648528099, -0.04606166109442711, -0.11192265897989273, -0.06513050198554993, 0.003715330036357045, -0.04706452414393425, 0.15361972153186798, -0.17670254409313202, -0.0735873356461525, 0.09643805027008057, 0.1593877226114273, -0.10367932170629501, 0.020586034283041954, -0.09155380725860596, -0.009781361557543278, -0.05367957055568695, -0.03889400139451027, 0.2741234004497528, 0.038775328546762466, 0.0797327533364296, -0.1142117902636528, -0.10092433542013168, -0.0017471277387812734, -0.04158239811658859, -0.03382095694541931, 0.03198015317320824, 0.019834596663713455, -0.1700657159090042, 0.025077516213059425, -0.0004950572620145977, 0.11518148332834244, 0.21446341276168823, 0.05688275024294853, -0.09973584860563278, -0.06157112121582031, -0.09352076798677444, -0.0012356647057458758, 0.051871705800294876, 0.03271573781967163, 0.025608837604522705, 0.04092661663889885, 0.05167163535952568, 0.04020687937736511, -0.11160191148519516, 0.007980980910360813, 0.08455565571784973, -0.04381332919001579, -0.04819900169968605, 0.016766099259257317, 0.01428069919347763, 0.07826313376426697, 0.07844176888465881, 0.14289487898349762, -0.07201609760522842, -0.04678689315915108, -0.14164559543132782, 0.14461266994476318, -0.07766196131706238, -0.2757934629917145, -0.1426185816526413, -0.0798945501446724, 0.0261466596275568, 0.007103707175701857, 0.04922271892428398, -0.07082873582839966, -0.04264343902468681, -0.1051676869392395, 0.08755796402692795, -0.0537446029484272, -0.0128987031057477, 0.009361818432807922, 0.022457443177700043, -0.03622308745980263, -0.1096632108092308, -0.03018059767782688, 0.039030805230140686, -0.10298338532447815, -0.01278302539139986, 0.029483161866664886, 0.04168380796909332, 0.15274673700332642, -0.010491430759429932, -0.006131174508482218, -0.0347752720117569, 0.2830057442188263, -0.12659722566604614, 0.06401709467172623, 0.15726254880428314, -0.0253202673047781, 0.05485669896006584, 0.08198720216751099, 0.006167321000248194, -0.0677247866988182, 0.07893025130033493, 0.07057792693376541, -0.09006460756063461, -0.22833342850208282, -0.027290916070342064, -0.004406294319778681, 0.019616661593317986, 0.1306275874376297, 0.05998910591006279, 0.06459709256887436, -0.00465911952778697, -0.1060083732008934, 0.04336805269122124, 0.025965431705117226, 0.11254757642745972, -0.0659036934375763, -0.006290709599852562, 0.048610229045152664, -0.06430161744356155, 0.02515062503516674, 0.14143842458724976, 0.04346994683146477, 0.20905762910842896, -0.05683041736483574, 0.09970059245824814, 0.07982075959444046, 0.09490853548049927, 0.03369800001382828, 0.0038964543491601944, -0.0019810970406979322, 0.013297442346811295, -0.003366529941558838, -0.0952509269118309, -0.0023935113567858934, 0.05449676513671875, 0.026436233893036842, -0.02519080974161625, -0.04309259355068207, -0.04218282178044319, 0.04645128175616264, 0.23136532306671143, -0.014270897954702377, -0.18261341750621796, -0.11472497135400772, 0.04408412054181099, -0.08039163798093796, -0.046159714460372925, -0.026035571470856667, 0.07663360983133316, -0.2175837755203247, 0.07421298325061798, -0.027749547734856606, 0.1085704043507576, -0.11346998810768127, 0.0024352052714675665, 0.08599433302879333, 0.050293516367673874, -0.06403916329145432, 0.0997576117515564, -0.16543813049793243, 0.06710918247699738, -0.012937870807945728, 0.07451067864894867, -0.07548417896032333, 0.027473730966448784, -0.0063496846705675125, 0.04757200554013252, 0.09025615453720093, 0.011422671377658844, 0.015172514133155346, -0.007185737136751413, -0.046080272644758224, 0.013976276852190495, 0.05780136212706566, -0.12454313039779663, 0.12717686593532562, -0.02251318097114563, 0.036117393523454666, -0.043623048812150955, -0.0973401665687561, -0.085514135658741, -0.17262177169322968, 0.08507823199033737, -0.12745510041713715, -0.002799590351060033, -0.07004383951425552, -0.034605372697114944, 0.040959689766168594, 0.25751563906669617, -0.060235779732465744, -0.07560712099075317, -0.13370074331760406, 0.016868364065885544, 0.14505980908870697, -0.09092262387275696, 0.012662802822887897, -0.005185786169022322, 0.21851055324077606, 0.00033453619107604027, -0.12023492902517319, -0.02397708036005497, -0.06354515999555588, -0.16587060689926147, -0.004684110637754202, 0.1631985753774643, 0.06956537812948227, 0.02432653307914734, 0.012555297464132309, -0.018875783309340477, -0.04835496470332146, -0.17148327827453613, 0.023432321846485138, 0.16397088766098022, -0.01104013156145811, -0.0018965665949508548, 0.04720975086092949, 0.012294641695916653, -0.14409075677394867, 0.0056461431086063385, 0.04953569546341896, 0.18544310331344604, -0.07740530371665955, 0.18632762134075165, 0.04534651339054108, -0.09527850151062012, -0.13872770965099335, 0.0005840932135470212, 0.039844393730163574, 0.04131383076310158, 0.04724102094769478, -0.2146337777376175, 0.03850998356938362, 0.046423718333244324, 0.010872120968997478, 0.02902510203421116, -0.3363408148288727, -0.16006149351596832, -0.005293065216392279, 0.004877937957644463, -0.15067444741725922, -0.03927551582455635, -0.0317319892346859, -0.09868896007537842, -0.23815321922302246, 0.10375946760177612, -0.10822344571352005, 0.07397913187742233, 0.03047247789800167, 0.09840603917837143, 0.0424838662147522, -0.03898628056049347, 0.13563336431980133, -0.01955782063305378, 0.0665423795580864, -0.09153594821691513, -0.05228933319449425, 0.072483129799366, -0.07393898814916611, 0.09030604362487793, 0.03158513084053993, 0.07748300582170486, -0.09695598483085632, -0.09384513646364212, -0.0560954213142395, -0.0012892240192741156, -0.05160979554057121, -0.09150030463933945, -0.09078323841094971, 0.08261954039335251, 0.12585021555423737, -0.04653137922286987, -0.08450976014137268, -0.06385210901498795, -0.003756898222491145, 0.024888470768928528, 0.12411115318536758, 0.07106315344572067, -0.06631742417812347, 0.001310571446083486, 0.016254564747214317, 0.009891063906252384, -0.1825680285692215, 0.04701035097241402, 0.09424170106649399, 0.033992916345596313, 0.10903435200452805, 0.005452729761600494, -0.17005133628845215, 0.00996576901525259, 0.05484936013817787, -0.15826012194156647, -0.12602387368679047, -0.03789355233311653, 0.028446467593312263, -0.09480276703834534, -0.046348512172698975, 0.13199658691883087, -0.03480904921889305, -0.040442533791065216, 0.00016873120330274105, 0.037992194294929504, -0.03651515021920204, 0.08694270998239517, -0.0069768778048455715, 0.040439341217279434, -0.06530442088842392, 0.1208365261554718, 0.07124574482440948, 0.003678366541862488, 0.04570193216204643, 0.06677839905023575, -0.08840316534042358, 0.017694635316729546, -0.10569844394922256, -0.0002348807902308181, -0.03676334023475647, -0.022201793268322945, 0.027025161311030388, -0.026495615020394325, 0.04903087019920349, 0.07922530919313431, -0.012261681258678436, 0.09878501296043396, -0.04614098370075226, 0.023657014593482018, -0.1274305135011673, 0.06992107629776001, 0.03976501524448395, 0.019485848024487495, -0.11200124025344849, 0.19748206436634064, 0.043270181864500046, 0.10811587423086166, -0.03648736700415611, -0.06424606591463089, -0.04759633541107178, -0.008342277258634567, -0.07908579707145691, -0.031444251537323, -0.08857941627502441, -0.024367058649659157, -0.0037073714192956686, -0.03139607235789299, -0.03879869356751442, 0.04660571739077568, -0.02971421182155609, -0.06016381457448006, -0.07297597080469131, 0.04649300500750542, -0.14056430757045746, 0.03314691409468651, 0.11594855040311813, -0.05866844579577446, 0.12408927828073502, 0.052039604634046555, -0.036320608109235764, 0.026099616661667824, -0.13504275679588318, 0.05214569345116615, -0.0020601702854037285, 0.024885093793272972, 0.018371544778347015, -0.15130223333835602, 0.005434431601315737, -0.03171756491065025, -0.06924713402986526, 0.0024798756930977106, -0.030806221067905426, -0.13175739347934723, -0.008709155023097992, 0.0907568708062172, -0.019089750945568085, -0.0653587058186531, 0.07117518782615662, 0.054820433259010315, 0.02120142988860607, 0.06478480994701385, -0.011009219102561474, 0.07241979986429214, -0.1692347675561905, -0.05962357297539711, -0.0028006609063595533, 0.03770206496119499, 0.04599827527999878, -0.02779035083949566, 0.03316306695342064, -0.023021889850497246, 0.21724756062030792, 0.01486955489963293, 0.0028876278083771467, 0.03797590732574463, -0.07870515435934067, -0.012187586165964603, 0.043360114097595215, 0.08845546096563339, -0.01799517497420311, -0.02886263094842434, -0.001609046128578484, -0.029605304822325706, -0.08915557712316513, -0.014425378292798996, 0.09276193380355835, 0.015494797378778458, 0.21921461820602417, -0.05415182188153267, 0.062252581119537354, -0.017855843529105186, -0.11449911445379257, -0.03715495765209198, -0.044689398258924484, 0.02465454488992691, -0.04788189008831978, 0.06129245087504387, 0.19793224334716797, -0.15219341218471527, 0.11395486444234848, 0.045610461384058, -0.0585089772939682, -0.12164046615362167, -0.18968753516674042, -0.017239617183804512, -0.03408905491232872, 0.02692747674882412, -0.14205683767795563, 0.09267532080411911, 0.018055936321616173, 0.04328992962837219, -0.06245286390185356, 0.1322583556175232, -0.07363926619291306, -0.13823367655277252, 0.039695143699645996, 0.020496072247624397, 0.03428345546126366, 0.04698994755744934, 0.09083978086709976, 0.03306121751666069, 0.004731908440589905, 0.07085829973220825, 0.0396575927734375, 0.030879778787493706, 0.04016731306910515, -0.02873111516237259, -0.0374331921339035, 0.028671586886048317, -0.005411120131611824, 0.020333169028162956, 0.09231993556022644, 0.0686955451965332, -0.020217901095747948, -0.014764159917831421, 0.31481948494911194, -0.017396971583366394, -0.03228716924786568, -0.18556325137615204, 0.1543910950422287, 0.023406388238072395, 0.0045182607136666775, 0.022740306332707405, -0.12183550000190735, 0.008010833524167538, 0.11626478284597397, 0.14802676439285278, -0.013132615946233273, 0.021656475961208344, -0.023849813267588615, 0.020487597212195396, 0.032652780413627625, 0.10388663411140442, 0.0648384764790535, 0.19400596618652344, -0.02439148724079132, 0.0553840696811676, -0.015971746295690536, -0.015103857032954693, 0.01215388160198927, 0.10011055320501328, -0.040149372071027756, 0.0033526604529470205, -0.05247674509882927, 0.10223852843046188, -0.05685115233063698, -0.3064538836479187, -0.036129605025053024, -0.014862093143165112, -0.09285464137792587, 0.08176589757204056, -0.022089531645178795, -0.01825263351202011, 0.08289670199155807, 0.03170725703239441, -0.05423486605286598, 0.16215890645980835, 0.055590253323316574, -0.04637685418128967, -0.004380428697913885, 0.11256704479455948, -0.03418079391121864, 0.1690792590379715, -0.03670634329319, 0.017956621944904327, 0.07579514384269714, 0.014483566395938396, -0.1209370568394661, 0.007557010743767023, 0.04075881838798523, -0.04305538162589073, -0.01363000925630331, 0.19837523996829987, 0.010253239423036575, 0.019663693383336067, 0.0771038606762886, -0.05706647410988808, 0.01663312129676342, -0.03371989727020264, 0.05979856848716736, -0.13043569028377533, 0.06768163293600082, -0.08009107410907745, 0.11397721618413925, 0.17347411811351776, -0.06761333346366882, 0.033596333116292953, -0.05572913959622383, 0.010553348809480667, -0.027985235676169395, 0.07464895397424698, -0.014105207286775112, -0.11703643947839737, 0.007754463702440262, 0.030405521392822266, 0.01844761334359646, -0.17045749723911285, -0.07899975776672363, 0.07939039915800095, -0.05408605560660362, 0.020723549649119377, 0.17834310233592987, 0.014109787531197071, 0.0576176792383194, -0.04062017425894737, -0.008625048212707043, -0.007256050128489733, 0.11115991324186325, -0.17471475899219513, -0.08168758451938629 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/86da58e97d308e9127100e7954dc1d74.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Epic Rap Battles of History</div> <a href="https://genius.com/artists/epic-rap-battles-of-history"> <div style="text-align: center; font-size: 14px;">@epic-rap-battles-of-history</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Epic Rap Battles of History. Dataset is available [here](https://huggingface.co/datasets/huggingartists/epic-rap-battles-of-history). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/epic-rap-battles-of-history") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ujomrrjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Epic Rap Battles of History's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s03lfls) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s03lfls/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/epic-rap-battles-of-history') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/epic-rap-battles-of-history") model = AutoModelWithLMHead.from_pretrained("huggingartists/epic-rap-battles-of-history") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/epic-rap-battles-of-history"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/epic-rap-battles-of-history
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/epic-rap-battles-of-history", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/epic-rap-battles-of-history #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Epic Rap Battles of History</div> <a href="URL <div style="text-align: center; font-size: 14px;">@epic-rap-battles-of-history</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Epic Rap Battles of History. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Epic Rap Battles of History's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Epic Rap Battles of History.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Epic Rap Battles of History's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/epic-rap-battles-of-history #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Epic Rap Battles of History.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Epic Rap Battles of History's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 93, 21, 54, 76, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/epic-rap-battles-of-history #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Epic Rap Battles of History.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Epic Rap Battles of History's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03132065758109093, 0.18447653949260712, -0.005956962238997221, 0.08766257762908936, 0.06750450283288956, 0.005245400592684746, 0.05244848132133484, 0.11286664754152298, -0.004612750839442015, 0.044078610837459564, 0.040768977254629135, 0.03821534290909767, 0.07398541271686554, 0.09640717506408691, 0.02989044412970543, -0.21397314965724945, -0.002577204955741763, -0.046611104160547256, -0.039631061255931854, 0.09617201238870621, 0.09132727980613708, -0.0603041909635067, 0.0475577637553215, 0.003938766196370125, -0.062920480966568, -0.0018669215496629477, 0.0010650750482454896, -0.054242976009845734, 0.05255788937211037, 0.07200115919113159, 0.06775820255279541, 0.03434853255748749, 0.044304072856903076, -0.17148326337337494, 0.03188790753483772, 0.10990260541439056, 0.02723091095685959, 0.07314309477806091, 0.05981079488992691, -0.07241930067539215, 0.07946314662694931, -0.04907294735312462, 0.09093395620584488, 0.04808526113629341, -0.10769026726484299, -0.14118921756744385, -0.11652769148349762, 0.030346622690558434, 0.04637903347611427, 0.048382166773080826, -0.012256636284291744, 0.04893378168344498, -0.04335368052124977, 0.07561762630939484, 0.2303684949874878, -0.2295464277267456, -0.014513926580548286, 0.016494648531079292, 0.06023858115077019, 0.040596235543489456, -0.08219510316848755, -0.0068268910981714725, 0.012008264660835266, 0.05597541481256485, 0.07812752574682236, -0.041370026767253876, 0.07040343433618546, -0.018727274611592293, -0.106877401471138, -0.0701591819524765, 0.07148584723472595, -0.04118791222572327, -0.08837110549211502, -0.11110112816095352, -0.025352947413921356, -0.08712442964315414, 0.03085855394601822, 0.019746853038668633, 0.017222795635461807, 0.004382468294352293, -0.0758437067270279, -0.12240554392337799, -0.04955853149294853, -0.06914251297712326, -0.037723783403635025, 0.11533331871032715, 0.04523363709449768, 0.027943726629018784, -0.05158549174666405, 0.19811652600765228, 0.10109830647706985, -0.11452457308769226, -0.09203817695379257, -0.0867399200797081, -0.10541598498821259, -0.03970513120293617, -0.015957273542881012, 0.0025957399047911167, -0.006091330200433731, 0.15654154121875763, -0.04326608031988144, -0.001303614815697074, -0.07475923746824265, 0.02809971384704113, 0.09529950469732285, 0.10703374445438385, -0.06331318616867065, -0.03895865008234978, 0.1156081110239029, -0.036170803010463715, -0.025971850380301476, -0.04916372522711754, -0.023940538987517357, -0.06183844804763794, 0.045639872550964355, 0.1177498996257782, 0.06037826091051102, 0.027643553912639618, -0.05052174627780914, -0.06123191490769386, 0.04682118818163872, -0.15390272438526154, 0.030776793137192726, 0.012285999022424221, -0.049211543053388596, -0.01873061992228031, 0.07172505557537079, -0.042790286242961884, -0.1273326426744461, 0.051558151841163635, -0.04979578033089638, -0.013430195860564709, -0.08498732000589371, -0.10298731923103333, 0.021368129178881645, 0.0014012656174600124, -0.02417079731822014, -0.09478886425495148, -0.1687467396259308, -0.01549577247351408, 0.015169860795140266, -0.0686074048280716, -0.03016354888677597, 0.02280239388346672, -0.027309276163578033, -0.018644442781805992, -0.011281909421086311, 0.027427010238170624, -0.027688587084412575, 0.07633979618549347, -0.0774710550904274, 0.0698176771402359, 0.06679988652467728, 0.03255413472652435, -0.10877837985754013, 0.06252865493297577, -0.160274937748909, 0.18298578262329102, -0.023487115278840065, -0.05017121136188507, -0.07372050732374191, -0.08881343901157379, -0.019831322133541107, -0.02805480733513832, 0.030144987627863884, 0.09234724193811417, -0.15555359423160553, -0.021399613469839096, 0.2648036479949951, -0.07100855559110641, -0.049784719944000244, 0.09903482347726822, -0.0797831118106842, 0.01962018944323063, 0.11187673360109329, 0.05849393457174301, 0.10827640444040298, -0.04220288619399071, -0.06646224111318588, -0.042785998433828354, -0.03955461084842682, 0.1698698252439499, 0.060263242572546005, -0.005820966325700283, 0.04681302607059479, -0.01864187978208065, -0.020608089864253998, 0.01030312106013298, -0.01461715716868639, -0.03901541605591774, -0.02772391401231289, -0.024465709924697876, 0.02109949104487896, -0.05062513425946236, -0.022287312895059586, -0.014435602352023125, -0.11537808179855347, 0.09597569704055786, 0.10422932356595993, -0.07509063184261322, 0.049914292991161346, -0.11997547000646591, 0.040581606328487396, -0.06564489006996155, 0.013057162053883076, -0.19546552002429962, -0.0033646500669419765, 0.02805621735751629, -0.10983109474182129, 0.06788468360900879, 0.0011261217296123505, 0.044064778834581375, 0.0848616436123848, -0.045488595962524414, 0.014763938263058662, -0.06496596336364746, 0.005332557950168848, -0.05032126232981682, -0.16365592181682587, -0.04897219315171242, -0.05067173019051552, 0.048374783247709274, -0.11260894685983658, -0.0012769846944138408, 0.13760346174240112, 0.1491398960351944, 0.04968902841210365, -0.06169119477272034, 0.04494525492191315, -0.002208094811066985, -0.012394493445754051, -0.10307531803846359, -0.047971293330192566, 0.02841009944677353, -0.04729736968874931, 0.1294436901807785, -0.1438474953174591, -0.056944575160741806, 0.1164804995059967, 0.08179225027561188, -0.09313871711492538, 0.028932485729455948, -0.03697200492024422, -0.017290126532316208, -0.07202155888080597, -0.04215894639492035, 0.2093985229730606, 0.03965810686349869, 0.09751125425100327, -0.10508128255605698, -0.07460420578718185, -0.02917969413101673, -0.03088478371500969, 0.05351901799440384, 0.059470292180776596, -0.027866920456290245, -0.20462429523468018, 0.048620790243148804, 0.030880920588970184, 0.0013460079208016396, 0.19895780086517334, 0.01586240343749523, -0.10088033229112625, -0.07259175926446915, -0.03013703040778637, 0.03352002426981926, 0.07843852788209915, -0.021617131307721138, 0.05810452625155449, 0.030259376391768456, 0.029934417456388474, 0.023390689864754677, -0.11411868780851364, 0.024355687201023102, 0.06533295661211014, -0.05071459338068962, -0.038102153688669205, -0.01833897829055786, 0.029537025839090347, 0.09214114397764206, 0.05428694188594818, 0.09302888810634613, -0.01356101781129837, -0.05575314536690712, -0.10155028849840164, 0.13191185891628265, -0.09823087602853775, -0.19563449919223785, -0.08777088671922684, -0.07413800805807114, 0.03621664270758629, 0.014321642927825451, 0.02987959049642086, 0.009593893773853779, -0.018376007676124573, -0.07530917972326279, 0.04147860407829285, -0.013841645792126656, -0.025613335892558098, 0.01286356896162033, 0.05474771186709404, -0.004673936869949102, -0.12106641381978989, -0.011085973121225834, 0.04828409478068352, -0.10663719475269318, -0.005285290069878101, 0.05044236779212952, 0.02450421266257763, 0.12517930567264557, -0.015361015684902668, 0.003532386850565672, -0.018539350479841232, 0.20514872670173645, -0.11669124662876129, 0.043264176696538925, 0.140201598405838, -0.06788457185029984, 0.051111698150634766, 0.060402218252420425, 0.0162983275949955, -0.05278049781918526, 0.041962988674640656, 0.02787264809012413, -0.06307679414749146, -0.2000194787979126, -0.010623167268931866, -0.05035659670829773, -0.0012238759081810713, 0.09253950417041779, 0.04873168468475342, -0.017700206488370895, 0.011891398578882217, -0.083805151283741, 0.07494773715734482, 0.06687110662460327, 0.08362575620412827, -0.028385579586029053, 0.0013084710808470845, 0.056070227175951004, -0.06265205889940262, 0.03003610298037529, 0.11031947284936905, 0.06182266026735306, 0.23059651255607605, -0.10240647941827774, 0.10615766048431396, 0.07431971281766891, 0.06002674251794815, 0.06003236770629883, 0.01673082262277603, -0.025194315239787102, 0.05822838470339775, -0.001475757802836597, -0.09112296998500824, -0.021981656551361084, 0.028585653752088547, 0.02030579373240471, -0.009243967942893505, 0.005922584794461727, -0.11080540716648102, 0.059599656611680984, 0.2138313353061676, 0.06913481652736664, -0.13223351538181305, -0.0881195142865181, 0.08511891961097717, -0.06291256099939346, -0.06725258380174637, -0.010781769640743732, 0.09520626813173294, -0.1908174604177475, 0.006763705983757973, -0.020382484421133995, 0.11428650468587875, -0.1842978298664093, -0.03235954791307449, 0.0007403079071082175, 0.08262414485216141, -0.05390118435025215, 0.060420431196689606, -0.21395602822303772, 0.022567104548215866, 0.013858577236533165, 0.11380306631326675, -0.053207218647003174, 0.032692160457372665, 0.06803803890943527, 0.014212924987077713, 0.09664681553840637, 0.02223282679915428, 0.014812054112553596, -0.08372914046049118, -0.06901676952838898, 0.02174714393913746, 0.03444845229387283, -0.07909130305051804, 0.10856950283050537, -0.024667099118232727, 0.013400278985500336, -0.020477643236517906, -0.10075652599334717, -0.0703115239739418, -0.1490817815065384, 0.05125260353088379, -0.13902735710144043, 0.05057466775178909, -0.06067918241024017, -0.020766090601682663, 0.06849534064531326, 0.19389615952968597, -0.1141866147518158, -0.11887643486261368, -0.09230951964855194, 0.02043662592768669, 0.11007939279079437, -0.06948373466730118, 0.04858315736055374, 0.029316479340195656, 0.1493542194366455, 0.003442412940785289, -0.10347948223352432, 0.013752921484410763, -0.03969777002930641, -0.19527961313724518, -0.019563881680369377, 0.08378378301858902, 0.0741768479347229, 0.07672819495201111, 0.024181917309761047, 0.01732536032795906, -0.025851484388113022, -0.13201868534088135, -0.005913093686103821, 0.10222699493169785, 0.025408316403627396, 0.062170810997486115, 0.009143735282123089, 0.03043046034872532, -0.09497564285993576, 0.0036326779518276453, 0.09648532420396805, 0.24251626431941986, -0.07476585358381271, 0.13273462653160095, 0.038906119763851166, -0.10881126672029495, -0.18344265222549438, -0.01199947576969862, 0.008307947777211666, 0.039616942405700684, 0.021934984251856804, -0.2102273851633072, 0.0012470788788050413, 0.05805705115199089, -0.0061275591142475605, 0.158762127161026, -0.315874844789505, -0.12637397646903992, 0.04409753903746605, 0.04139840230345726, -0.05830136686563492, -0.05592642351984978, -0.05063873901963234, -0.09054690599441528, -0.1718522608280182, 0.1431054174900055, -0.13523559272289276, 0.1092200055718422, 0.017997272312641144, -0.021130407229065895, 0.032145436853170395, -0.03937992453575134, 0.1312641054391861, -0.08065179735422134, 0.0597199946641922, -0.0786629468202591, 0.010861178860068321, 0.06810642033815384, -0.04807261750102043, 0.03417229652404785, 0.01143285445868969, 0.07000648230314255, -0.0494612418115139, -0.07419900596141815, -0.06368153542280197, 0.021429160609841347, -0.04772751405835152, -0.08263152837753296, -0.08451803773641586, 0.09467211365699768, 0.10054716467857361, -0.03494994342327118, -0.08971278369426727, -0.05228617042303085, -0.0393226183950901, 0.09085260331630707, 0.10704503208398819, 0.09661641716957092, -0.08407913893461227, 0.00009017428237712011, -0.013763598166406155, 0.06280307471752167, -0.09617583453655243, 0.06773149967193604, 0.07124314457178116, 0.04876502975821495, 0.09869079291820526, 0.023997049778699875, -0.13954468071460724, 0.05805362015962601, 0.025383587926626205, -0.11430084705352783, -0.11755730956792831, -0.012913621962070465, -0.0034847117494791746, -0.06668873876333237, -0.07624278217554092, 0.1450573354959488, -0.01958327554166317, -0.05477125197649002, 0.043793246150016785, 0.0551571249961853, -0.042915813624858856, 0.11464791744947433, 0.059922825545072556, 0.033511653542518616, -0.08936833590269089, 0.10421431064605713, 0.069912388920784, 0.018788568675518036, 0.03737904131412506, 0.08034839481115341, -0.09786535054445267, 0.0048652952536940575, -0.08861278742551804, 0.006805206183344126, 0.0028634490445256233, -0.0020195746328681707, -0.032112717628479004, -0.059781305491924286, 0.029477523639798164, 0.13063986599445343, 0.009787410497665405, 0.12417662888765335, -0.02339024841785431, 0.019766412675380707, -0.09517213702201843, 0.10448437929153442, 0.050756633281707764, 0.03161315247416496, -0.051906149834394455, 0.17676979303359985, 0.027366921305656433, 0.0761764720082283, -0.040216099470853806, -0.046768009662628174, -0.07301845401525497, 0.005942483898252249, -0.2163945734500885, -0.005699487868696451, -0.08665703237056732, -0.021348148584365845, -0.022903792560100555, -0.020238608121871948, -0.028138307854533195, 0.051407136023044586, -0.042265765368938446, -0.051120150834321976, -0.049544285982847214, 0.015079098753631115, -0.15313832461833954, -0.033074166625738144, 0.10460592061281204, -0.10325504839420319, 0.11375027894973755, 0.06651858985424042, -0.04899441823363304, -0.006284692324697971, -0.09297674894332886, 0.0004919578786939383, -0.0284647885710001, 0.019672811031341553, 0.017389865592122078, -0.154684916138649, 0.03350057825446129, -0.03864504396915436, -0.04291282594203949, 0.018368421122431755, 0.06277041882276535, -0.12090692669153214, 0.007229491602629423, 0.03485449030995369, 0.02293047122657299, -0.06217079609632492, 0.0840294286608696, 0.06783133000135422, 0.06453800201416016, 0.06489560008049011, -0.02114539034664631, 0.09737256169319153, -0.16389355063438416, -0.03279269114136696, 0.01784190908074379, -0.001860644668340683, 0.04151801019906998, 0.007162727881222963, 0.06112973764538765, -0.02153807133436203, 0.2068406045436859, -0.03668816387653351, -0.04275668412446976, 0.031873900443315506, -0.014474291354417801, 0.0047308593057096004, 0.03540946915745735, 0.06877203285694122, -0.025492273271083832, -0.04225828871130943, -0.030601289123296738, -0.022221090272068977, -0.03998512774705887, -0.036333221942186356, 0.11313190311193466, 0.07776834070682526, 0.15640655159950256, -0.028695978224277496, 0.030482066795229912, 0.009308280423283577, -0.11297257244586945, -0.01810493879020214, 0.02591203711926937, 0.026698539033532143, -0.06278388947248459, 0.08071526139974594, 0.12439753115177155, -0.14530126750469208, 0.1316503882408142, 0.028238149359822273, -0.07128370553255081, -0.10518454760313034, -0.18632005155086517, -0.022555524483323097, 0.0027138246223330498, 0.0032688891515135765, -0.12814012169837952, 0.08783656358718872, 0.07652132958173752, 0.02850903384387493, -0.04064309969544411, 0.10800086706876755, -0.01771535538136959, -0.11338599771261215, 0.03154508024454117, 0.011440166272222996, 0.04348799213767052, 0.05818257853388786, 0.031079862266778946, 0.047455795109272, 0.05009985715150833, 0.07079698890447617, 0.06851580739021301, 0.02718663215637207, -0.004319918807595968, -0.028529010713100433, -0.04923218861222267, 0.007994348183274269, 0.023002132773399353, 0.018376775085926056, 0.16130661964416504, 0.07004889100790024, -0.012290699407458305, -0.011398701928555965, 0.2866328954696655, -0.04032152518630028, -0.0839431956410408, -0.16950681805610657, 0.12362015247344971, 0.0021453045774251223, -0.014465020038187504, 0.04963104799389839, -0.12343603372573853, 0.02744540199637413, 0.11535307765007019, 0.1269664764404297, -0.07284895330667496, 0.03391929343342781, 0.011970922350883484, 0.011032208800315857, 0.013917690142989159, 0.05646369233727455, 0.035793501883745193, 0.20396970212459564, -0.06277797371149063, 0.06541023403406143, 0.011524900794029236, -0.01001000963151455, -0.03257518634200096, 0.1025291308760643, -0.04540107026696205, 0.023470373824238777, -0.07926972210407257, 0.05781015753746033, -0.07921001315116882, -0.2536695897579193, 0.009040607139468193, -0.024034589529037476, -0.11878761649131775, 0.03378919139504433, -0.0379314087331295, -0.027014058083295822, 0.05533643811941147, 0.02346460521221161, -0.0023308945819735527, 0.13429492712020874, 0.023375503718852997, -0.010859616100788116, -0.012912613339722157, 0.10140552371740341, -0.026330364868044853, 0.18532636761665344, -0.005629715975373983, 0.04702967032790184, 0.08625715970993042, 0.039377838373184204, -0.12246914952993393, 0.007260392419993877, 0.03210344910621643, -0.06281165033578873, 0.00043017943971790373, 0.21981991827487946, -0.013862299732863903, 0.019027939066290855, 0.07574735581874847, 0.03956465795636177, 0.03520616143941879, -0.06149115040898323, -0.00266955210827291, -0.11800490319728851, -0.015411186031997204, -0.0733325183391571, 0.1004660353064537, 0.1819014698266983, -0.06463082879781723, 0.03490283712744713, -0.04199192300438881, -0.007156515959650278, 0.02185630239546299, 0.03042403794825077, -0.010642467066645622, -0.07793599367141724, 0.007952767424285412, 0.10577283799648285, 0.049752142280340195, -0.16992168128490448, -0.08709733933210373, 0.03973772004246712, -0.06859886646270752, -0.014163791202008724, 0.14111004769802094, 0.0100800059735775, 0.07660763710737228, -0.025857193395495415, -0.010565797798335552, -0.01974491961300373, 0.0637858584523201, -0.1430063098669052, -0.06343995779752731 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1dcb4e1dc4242207c27fe5cd0d4090e8.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">FACE</div> <a href="https://genius.com/artists/face"> <div style="text-align: center; font-size: 14px;">@face</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from FACE. Dataset is available [here](https://huggingface.co/datasets/huggingartists/face). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/face") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/xtozoqtm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on FACE's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/knkqp5iy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/knkqp5iy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/face') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/face") model = AutoModelWithLMHead.from_pretrained("huggingartists/face") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/face"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/face
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/face", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/face #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">FACE</div> <a href="URL <div style="text-align: center; font-size: 14px;">@face</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from FACE. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on FACE's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from FACE.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on FACE's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/face #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from FACE.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on FACE's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 81, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/face #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from FACE.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on FACE's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02978942170739174, 0.15052953362464905, -0.002523526782169938, 0.03300600126385689, 0.08493786305189133, -0.004936959128826857, 0.0911063551902771, 0.10558987408876419, -0.004720679949969053, 0.06773853302001953, 0.08297277241945267, 0.010575314052402973, 0.07018230110406876, 0.14047518372535706, 0.09899227321147919, -0.26937589049339294, 0.03223421052098274, -0.11077851802110672, 0.030810000374913216, 0.1260298639535904, 0.0875767320394516, -0.05638059228658676, 0.0846036896109581, 0.04169696196913719, -0.07400517165660858, 0.02935194969177246, -0.015890078619122505, -0.07183461636304855, 0.09727635234594345, 0.08597173541784286, 0.027540968731045723, 0.036973483860492706, 0.06959336251020432, -0.1855887472629547, 0.038178056478500366, 0.12573742866516113, 0.03094596229493618, 0.07176222652196884, 0.04016641527414322, -0.0679420456290245, 0.17717453837394714, -0.01847001351416111, 0.08748985081911087, 0.04417316988110542, -0.10308140516281128, -0.18732084333896637, -0.11783365160226822, 0.08385104686021805, 0.09472452104091644, 0.07875283807516098, -0.031862352043390274, 0.047450192272663116, 0.01040406059473753, 0.04536004737019539, 0.24042154848575592, -0.23717527091503143, -0.012356922030448914, 0.0969078540802002, 0.026878388598561287, 0.04342123493552208, -0.07427089661359787, 0.01633286103606224, 0.046002037823200226, 0.017144905403256416, 0.047258470207452774, -0.014263967052102089, 0.21171997487545013, 0.018907614052295685, -0.09031099826097488, -0.09181731939315796, 0.10768502205610275, -0.03060794062912464, -0.0857408195734024, -0.1651967167854309, 0.004423825535923243, -0.02825605310499668, 0.04042269289493561, -0.016385331749916077, -0.00676889019086957, -0.0011452287435531616, -0.03527466580271721, -0.10194647312164307, -0.09545154124498367, -0.02893470786511898, -0.031093990430235863, 0.07735112309455872, 0.023257402703166008, 0.03615803271532059, -0.07520004361867905, 0.2390022724866867, 0.008051322773098946, -0.10582192242145538, -0.053339045494794846, -0.09997233748435974, -0.09848301112651825, -0.05062983185052872, 0.012217572890222073, 0.017247246578335762, -0.06561962515115738, 0.1569826453924179, -0.03209945186972618, 0.03315645828843117, 0.0030375260394066572, -0.023898709565401077, 0.15917636454105377, 0.13305293023586273, -0.09662763774394989, -0.024123458191752434, 0.042638376355171204, -0.0096748573705554, -0.0637832060456276, -0.06811192631721497, -0.013684860430657864, -0.025378819555044174, 0.021532414481043816, 0.09480705112218857, 0.04388856887817383, 0.05705006793141365, 0.03676488623023033, -0.05930951237678528, 0.11665841937065125, -0.1454266905784607, 0.0028897763695567846, -0.00950532965362072, -0.03493370860815048, 0.0224422849714756, 0.04742240905761719, 0.013949176296591759, -0.0928492546081543, 0.10477565228939056, -0.04828488081693649, -0.0604407899081707, -0.06771916896104813, -0.08627644926309586, -0.011783486232161522, -0.00020845752442255616, -0.051375437527894974, -0.09033451974391937, -0.1584492325782776, -0.03156835958361626, 0.0176139734685421, -0.0326310358941555, -0.04266754910349846, 0.04887140542268753, -0.03251238167285919, -0.008372756652534008, -0.018575426191091537, -0.022679278627038002, -0.03242072835564613, 0.020128943026065826, -0.06226576492190361, 0.036121003329753876, 0.08015833795070648, 0.02947598695755005, -0.10645146667957306, 0.06866239011287689, -0.16471119225025177, 0.14601236581802368, -0.012731637805700302, 0.011109347455203533, -0.10213757306337357, -0.10022584348917007, -0.03119613043963909, -0.027610458433628082, -0.01051021832972765, 0.09573746472597122, -0.19134202599525452, -0.04218592867255211, 0.19925056397914886, -0.08074372261762619, -0.08605002611875534, 0.0636676624417305, -0.076993428170681, 0.037666723132133484, 0.14332221448421478, 0.05538316071033478, 0.17739300429821014, -0.12525732815265656, -0.070683054625988, -0.03634566813707352, -0.05892448499798775, 0.2281397134065628, 0.055670365691185, -0.008066128008067608, 0.014493484050035477, 0.021098405122756958, -0.026889875531196594, -0.029396753758192062, -0.02347443997859955, -0.044636111706495285, -0.009465299546718597, 0.014865187928080559, -0.00877933669835329, -0.05343133956193924, -0.07303851842880249, -0.00959852896630764, -0.10973378270864487, 0.02320222370326519, 0.1133517250418663, -0.07665654271841049, 0.005822477862238884, -0.09337633848190308, 0.0021399324759840965, -0.027186991646885872, 0.024755926802754402, -0.19768261909484863, -0.06934875249862671, 0.024075359106063843, -0.07462970167398453, 0.08316333591938019, 0.03305691480636597, 0.037123147398233414, 0.06875696778297424, 0.0031590904109179974, 0.02678961120545864, -0.05326627194881439, -0.02688821218907833, -0.024946754798293114, -0.13965767621994019, -0.07547577470541, -0.05200587585568428, 0.09845475852489471, -0.1280745565891266, 0.009586306288838387, 0.10440046340227127, 0.10567983984947205, 0.02275071293115616, -0.058856718242168427, 0.007047309540212154, -0.042681533843278885, -0.03881622850894928, -0.11151938140392303, -0.06450149416923523, 0.0042624338530004025, -0.037213072180747986, 0.15191078186035156, -0.17959578335285187, -0.06291112303733826, 0.09471006691455841, 0.17797283828258514, -0.09894032776355743, -0.00468828110024333, -0.0985674113035202, -0.0039939857088029385, -0.04973296448588371, -0.04099709913134575, 0.27206870913505554, 0.045958537608385086, 0.07587045431137085, -0.11490015685558319, -0.0941234901547432, 0.00400239322334528, -0.032764680683612823, -0.02412552572786808, 0.02208166942000389, 0.016098197549581528, -0.15121038258075714, 0.018374035134911537, -0.007464545778930187, 0.1369219571352005, 0.20943278074264526, 0.05564378201961517, -0.09760192036628723, -0.05876797437667847, -0.09218019992113113, -0.0034554661251604557, 0.05311455950140953, 0.039443980902433395, 0.027124004438519478, 0.046343956142663956, 0.04693804681301117, 0.03462063893675804, -0.10960374027490616, 0.007828803732991219, 0.08064094185829163, -0.04861142858862877, -0.05265454575419426, 0.01909550465643406, 0.019168030470609665, 0.08144426345825195, 0.07517552375793457, 0.1439294070005417, -0.08163817226886749, -0.05192317068576813, -0.1384049504995346, 0.13810713589191437, -0.07368762791156769, -0.28075867891311646, -0.14358574151992798, -0.07118046283721924, 0.009488224051892757, 0.00335054867900908, 0.03795758634805679, -0.06098043546080589, -0.03900635242462158, -0.10752026736736298, 0.09150192141532898, -0.04526480287313461, -0.013844243250787258, 0.0007928335689939559, 0.01672256551682949, -0.03546031937003136, -0.11504333466291428, -0.02916286326944828, 0.040764376521110535, -0.10745686292648315, -0.017749983817338943, 0.034372180700302124, 0.03966457396745682, 0.15508341789245605, -0.008754701353609562, -0.006763306446373463, -0.038215577602386475, 0.28833848237991333, -0.12381818145513535, 0.060029055923223495, 0.1764165759086609, -0.027774043381214142, 0.05475703254342079, 0.0758768618106842, 0.008174697868525982, -0.07136841118335724, 0.07822060585021973, 0.06505130231380463, -0.09415185451507568, -0.20615391433238983, -0.0290081724524498, -0.002380293793976307, 0.028424708172678947, 0.13221411406993866, 0.06153993308544159, 0.05261833593249321, -0.0037580961361527443, -0.10441846400499344, 0.03999480977654457, 0.028724048286676407, 0.10632055252790451, -0.06267912685871124, -0.019244877621531487, 0.05207769572734833, -0.0651317909359932, 0.0242790337651968, 0.14503911137580872, 0.04243750125169754, 0.20333383977413177, -0.06789485365152359, 0.09145801514387131, 0.08027957379817963, 0.105527862906456, 0.04094768688082695, 0.008571911603212357, 0.009503770619630814, 0.011417628265917301, -0.0023799065966159105, -0.10117567330598831, -0.022201407700777054, 0.04475279897451401, 0.029686789959669113, -0.024099040776491165, -0.03904353454709053, -0.03964992240071297, 0.03752432018518448, 0.23125101625919342, -0.02918432652950287, -0.17875994741916656, -0.11514533311128616, 0.032439760863780975, -0.07791056483983994, -0.050936996936798096, -0.029174700379371643, 0.0786195620894432, -0.2257257103919983, 0.06906264275312424, -0.03150840476155281, 0.10814466327428818, -0.12223395705223083, 0.008798404596745968, 0.07672779262065887, 0.04698873311281204, -0.06397265195846558, 0.10108558088541031, -0.15376506745815277, 0.05968505144119263, -0.011061194352805614, 0.05770304799079895, -0.08801904320716858, 0.028906583786010742, 0.0005611336673609912, 0.051375679671764374, 0.08714760839939117, 0.008555129170417786, 0.03591037541627884, -0.004956392105668783, -0.058250267058610916, 0.016537901014089584, 0.05701581388711929, -0.12698610126972198, 0.1217394694685936, -0.02310863509774208, 0.038507845252752304, -0.05310925468802452, -0.09069819003343582, -0.08937620371580124, -0.1738778054714203, 0.09376765787601471, -0.1320081204175949, 0.0005703644710592926, -0.07417551428079605, -0.034190062433481216, 0.03249705582857132, 0.26206067204475403, -0.05510585010051727, -0.06886617839336395, -0.1377098560333252, 0.02737523429095745, 0.14701968431472778, -0.08732227236032486, 0.0069907912984490395, -0.015842236578464508, 0.22772371768951416, -0.003402787260711193, -0.12588538229465485, -0.030185913667082787, -0.0604020357131958, -0.1643805354833603, -0.0008333828300237656, 0.1617463082075119, 0.06405844539403915, 0.023364651948213577, 0.010502970777451992, -0.02695195935666561, -0.04693106561899185, -0.1765783280134201, 0.018350103870034218, 0.17201143503189087, -0.01927248388528824, -0.006524980999529362, 0.0517086498439312, 0.012870815582573414, -0.13625341653823853, 0.021475525572896004, 0.0466199591755867, 0.1772902011871338, -0.07932010293006897, 0.196080282330513, 0.040432728826999664, -0.08541004359722137, -0.14845174551010132, 0.007094663567841053, 0.04588331654667854, 0.04266535863280296, 0.06150566786527634, -0.21802443265914917, 0.039148375391960144, 0.046996138989925385, 0.005865443032234907, 0.03256068378686905, -0.3323865532875061, -0.15969844162464142, -0.00015325802087318152, 0.010082046501338482, -0.16308893263339996, -0.037522368133068085, -0.034563347697257996, -0.10033036023378372, -0.24461063742637634, 0.10059323161840439, -0.11599930375814438, 0.0697014331817627, 0.031744711101055145, 0.09758362919092178, 0.04885473847389221, -0.04041812941431999, 0.137067973613739, -0.02200254425406456, 0.07388423383235931, -0.0920228511095047, -0.05052533745765686, 0.08223442733287811, -0.07306140661239624, 0.09521494060754776, 0.03985238075256348, 0.08413565903902054, -0.09321384131908417, -0.09158194065093994, -0.05803073197603226, -0.004706236068159342, -0.04651092365384102, -0.08854899555444717, -0.09053101390600204, 0.07991627603769302, 0.11398106068372726, -0.046968456357717514, -0.10198532044887543, -0.07700563222169876, 0.00519931735470891, 0.035770151764154434, 0.1266009658575058, 0.07319733500480652, -0.061154939234256744, -0.0016003159107640386, 0.021347222849726677, 0.005983597133308649, -0.1802508383989334, 0.045309167355298996, 0.0909474790096283, 0.03612906113266945, 0.09911950677633286, 0.0023739170283079147, -0.17019647359848022, 0.007352367043495178, 0.054409466683864594, -0.16591939330101013, -0.12515470385551453, -0.03954620286822319, 0.04154181480407715, -0.10294187813997269, -0.0518624410033226, 0.13432958722114563, -0.02971820905804634, -0.03721360117197037, 0.0004821016627829522, 0.029376452788710594, -0.030275797471404076, 0.08436614274978638, -0.010929702781140804, 0.04223071411252022, -0.07285043597221375, 0.11877763271331787, 0.0667295828461647, 0.008677334524691105, 0.037915829569101334, 0.05183141306042671, -0.0941300168633461, 0.019773613661527634, -0.11761010438203812, 0.005020372103899717, -0.020714981481432915, -0.018241988494992256, 0.030813874676823616, -0.0285593643784523, 0.04419441148638725, 0.08483976125717163, -0.016612021252512932, 0.10609675198793411, -0.04771173372864723, 0.022702064365148544, -0.1224791407585144, 0.06713716685771942, 0.0263669453561306, 0.017912732437253, -0.10464338213205338, 0.1984463930130005, 0.04250365495681763, 0.11749199032783508, -0.03878805413842201, -0.07417942583560944, -0.04163957014679909, -0.01294599287211895, -0.07073775678873062, -0.03982264921069145, -0.08515067398548126, -0.02411867491900921, -0.0009571480914019048, -0.023569032549858093, -0.03257245942950249, 0.04387735575437546, -0.032403357326984406, -0.058072566986083984, -0.07350443303585052, 0.045166004449129105, -0.14833608269691467, 0.0409967340528965, 0.11970514059066772, -0.05452914535999298, 0.13171252608299255, 0.05506062135100365, -0.0339866504073143, 0.02474137395620346, -0.13375204801559448, 0.05088100582361221, -0.0020537949167191982, 0.031545981764793396, 0.013093256391584873, -0.14062051475048065, 0.00994090922176838, -0.032478585839271545, -0.077129065990448, 0.005363051779568195, -0.015142257325351238, -0.12850533425807953, -0.006906821392476559, 0.10209424048662186, -0.005225074477493763, -0.06401810050010681, 0.07260673493146896, 0.05534787103533745, 0.026687635108828545, 0.05158484727144241, -0.00392476050183177, 0.06453104317188263, -0.17952390015125275, -0.06872648000717163, -0.005997661035507917, 0.03472576290369034, 0.05099852383136749, -0.03715293109416962, 0.0366581566631794, -0.011880689300596714, 0.22779017686843872, 0.02894016169011593, 0.005076056811958551, 0.032512009143829346, -0.06080329790711403, -0.0025300602428615093, 0.03522713854908943, 0.0748395174741745, -0.007535623386502266, -0.01870632730424404, 0.01444222591817379, -0.023372681811451912, -0.10374808311462402, -0.02374923974275589, 0.0907578244805336, -0.002091097179800272, 0.20948657393455505, -0.06970832496881485, 0.07262974232435226, -0.015919487923383713, -0.09335966408252716, -0.040961187332868576, -0.05176219344139099, 0.024364545941352844, -0.06039078161120415, 0.046063076704740524, 0.18901056051254272, -0.14394047856330872, 0.12125817686319351, 0.056393858045339584, -0.05422436445951462, -0.12612353265285492, -0.19378110766410828, -0.006435948424041271, -0.038098663091659546, 0.025181002914905548, -0.13837280869483948, 0.0947396382689476, 0.020624786615371704, 0.04085079953074455, -0.05924414098262787, 0.13805024325847626, -0.09524490684270859, -0.14548242092132568, 0.04527784883975983, 0.01731240749359131, 0.03137512132525444, 0.03210778906941414, 0.08907227218151093, 0.04320394620299339, 0.006119447760283947, 0.0724954679608345, 0.04157232120633125, 0.03675348684191704, 0.03492308408021927, -0.031749531626701355, -0.039415668696165085, 0.025599908083677292, -0.016170358285307884, 0.014029969461262226, 0.10249467194080353, 0.06800304353237152, -0.015131335705518723, -0.019616492092609406, 0.31263208389282227, -0.012965815141797066, -0.02898946776986122, -0.18311646580696106, 0.15367203950881958, 0.008072217926383018, 0.004214015789330006, 0.016869358718395233, -0.11593858897686005, 0.009868388064205647, 0.12078218162059784, 0.14975391328334808, -0.03023662231862545, 0.02725173905491829, -0.022725077345967293, 0.018198540434241295, 0.03449787199497223, 0.12163668125867844, 0.057689957320690155, 0.19520419836044312, -0.02059408463537693, 0.05763355642557144, -0.01612778939306736, -0.021718433126807213, 0.01995447278022766, 0.10431594401597977, -0.044216837733983994, 0.001763370935805142, -0.05228971317410469, 0.10252552479505539, -0.05742623284459114, -0.3054657578468323, -0.039879899471998215, -0.011824030429124832, -0.08681824803352356, 0.08035144209861755, -0.03486384451389313, -0.0138441426679492, 0.07818977534770966, 0.026523107662796974, -0.04666541889309883, 0.1748843640089035, 0.0507294163107872, -0.048073820769786835, -0.013542020693421364, 0.1131686121225357, -0.04475259780883789, 0.16025203466415405, -0.04123224690556526, 0.01839374378323555, 0.06749598681926727, 0.008044332265853882, -0.12491806596517563, 0.0032472696620970964, 0.03639363497495651, -0.05304969474673271, -0.028530407696962357, 0.19608017802238464, 0.018207157030701637, 0.02265222929418087, 0.07175189256668091, -0.04936039820313454, 0.019161025062203407, -0.02555691823363304, 0.06597791612148285, -0.12900537252426147, 0.06881217658519745, -0.07628918439149857, 0.11515893042087555, 0.16491706669330597, -0.06165074557065964, 0.04038972780108452, -0.06232103705406189, 0.009226606227457523, -0.030185401439666748, 0.07095825672149658, -0.016721341758966446, -0.11495950073003769, 0.0010718791745603085, 0.029705720022320747, 0.006520128343254328, -0.1712862253189087, -0.08312948048114777, 0.08252841234207153, -0.054973822087049484, 0.032512467354536057, 0.17588865756988525, 0.0002855697530321777, 0.058390386402606964, -0.03654806315898895, -0.003593871835619211, -0.00147047801874578, 0.11479220539331436, -0.18243828415870667, -0.07525540888309479 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://assets.genius.com/images/default_avatar_300.png?1627659427&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fascinoma</div> <a href="https://genius.com/artists/fascinoma"> <div style="text-align: center; font-size: 14px;">@fascinoma</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Fascinoma. Dataset is available [here](https://huggingface.co/datasets/huggingartists/fascinoma). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/fascinoma") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/fascinoma") model = AutoModelWithLMHead.from_pretrained("huggingartists/fascinoma") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/za989b3u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Fascinoma's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/kklye04t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/kklye04t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/fascinoma') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/fascinoma"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/fascinoma
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/fascinoma", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/fascinoma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fascinoma</div> <a href="URL <div style="text-align: center; font-size: 14px;">@fascinoma</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Fascinoma. Dataset is available here. And can be used with: Or with Transformers library: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Fascinoma's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Fascinoma.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Fascinoma's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/fascinoma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Fascinoma.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Fascinoma's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 59, 73, 18, 47, 40 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/fascinoma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Fascinoma.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nOr with Transformers library:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Fascinoma's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.0007438663160428405, 0.1692623347043991, -0.0041850595735013485, 0.0668029859662056, 0.10210300981998444, 0.0027797312941402197, 0.07273450493812561, 0.11106887459754944, -0.04454979673027992, 0.07380259037017822, 0.04975629970431328, 0.024427272379398346, 0.0720377266407013, 0.10279512405395508, 0.06261687725782394, -0.2364789843559265, 0.00502933282405138, -0.0682452991604805, -0.009624159894883633, 0.10897958278656006, 0.08805205672979355, -0.07895053923130035, 0.09639521688222885, 0.021896522492170334, -0.07587786763906479, 0.02545657567679882, 0.01632680557668209, -0.06976338475942612, 0.0915684700012207, 0.08810918778181076, 0.031602684408426285, 0.038484808057546616, 0.056822340935468674, -0.1395047903060913, 0.030954862013459206, 0.13461102545261383, 0.01841367781162262, 0.07858125120401382, 0.05459105223417282, -0.07800856232643127, 0.15331660211086273, -0.0205508004873991, 0.08750685304403305, 0.057348817586898804, -0.11627528816461563, -0.09249599277973175, -0.14075955748558044, 0.042209651321172714, 0.05624724179506302, 0.08801296353340149, -0.024869222193956375, 0.07324838638305664, -0.02071276865899563, 0.0435851588845253, 0.25302013754844666, -0.2547076940536499, -0.016361931338906288, 0.026216743513941765, 0.02770172618329525, 0.05912018194794655, -0.0792786180973053, 0.040931422263383865, 0.05352003872394562, 0.03848334029316902, 0.06027738377451897, -0.020511720329523087, 0.171388640999794, 0.0036827176809310913, -0.09168989211320877, -0.08324366062879562, 0.09936682879924774, -0.03575247898697853, -0.08762260526418686, -0.11822108924388885, -0.003414933569729328, 0.004706592299044132, 0.037836406379938126, -0.010328846052289009, -0.007544487714767456, 0.00022777497360948473, -0.07909180968999863, -0.13108108937740326, -0.09344927966594696, -0.04010343179106712, -0.04652799293398857, 0.053623996675014496, 0.048888616263866425, 0.034230075776576996, -0.06860584020614624, 0.20272211730480194, 0.039853788912296295, -0.09683854132890701, -0.05599416419863701, -0.10700025409460068, -0.06633388996124268, -0.034052398055791855, 0.0014420822262763977, -0.0020062141120433807, -0.018222186714410782, 0.14596450328826904, -0.03844335675239563, 0.006367719732224941, -0.06460732221603394, 0.0023444986436516047, 0.1315811723470688, 0.11014483124017715, -0.1247878149151802, -0.02614409849047661, 0.07607024163007736, -0.025442764163017273, -0.07044495642185211, -0.06224508956074715, -0.0018022413132712245, -0.04166300594806671, 0.04228391498327255, 0.08196556568145752, 0.07007855176925659, 0.0561152882874012, 0.021998539566993713, -0.053911447525024414, 0.03969305753707886, -0.14262507855892181, 0.008284210227429867, -0.008461667224764824, -0.047014474868774414, 0.01808188483119011, 0.041328802704811096, -0.013689509592950344, -0.10279057919979095, 0.07423336058855057, -0.07927607744932175, -0.058082465082407, -0.0809076577425003, -0.09680400043725967, 0.0035096611827611923, -0.05678188428282738, -0.03199714794754982, -0.09888355433940887, -0.13576793670654297, -0.03944559395313263, -0.004244059789925814, -0.07317905128002167, -0.005929186474531889, 0.03183587267994881, -0.01707683876156807, 0.0010950797004625201, -0.006910834461450577, -0.007946728728711605, -0.01610967144370079, 0.05365624651312828, -0.07367786765098572, 0.045693524181842804, 0.07793134450912476, 0.04879588633775711, -0.125941202044487, 0.0611843541264534, -0.14949147403240204, 0.1256091594696045, -0.031148681417107582, -0.002021915977820754, -0.09368846565485, -0.10443061590194702, -0.04071956127882004, -0.03880211338400841, 0.03220267966389656, 0.11690425127744675, -0.16661028563976288, -0.03349977359175682, 0.20164057612419128, -0.07245038449764252, -0.055995550006628036, 0.08472459763288498, -0.07275006175041199, 0.05812222510576248, 0.12120112776756287, 0.06639628112316132, 0.12619490921497345, -0.06187808886170387, -0.07514223456382751, -0.05238936468958855, -0.09459591656923294, 0.21091070771217346, 0.026444565504789352, -0.008800473995506763, 0.03382714092731476, 0.0023601201828569174, -0.007050866261124611, -0.02338002808392048, -0.04570300132036209, -0.03421119600534439, -0.006062150467187166, -0.014469493180513382, 0.0033560902811586857, -0.050903379917144775, -0.039235785603523254, -0.023030638694763184, -0.0914260596036911, 0.01577608846127987, 0.07873142510652542, -0.07542669028043747, 0.019023820757865906, -0.10539662837982178, 0.02603091113269329, -0.011286851949989796, 0.018035074695944786, -0.16806308925151825, -0.035978250205516815, 0.01661400869488716, -0.04457702115178108, 0.08785362541675568, 0.0005262754275463521, 0.0382864810526371, 0.06718903034925461, -0.01272595301270485, 0.03568028658628464, -0.05871882289648056, -0.006388581357896328, -0.046055760234594345, -0.1449192613363266, -0.02930464595556259, -0.0393734835088253, 0.055053628981113434, -0.0964147076010704, 0.0019176264759153128, 0.10924351215362549, 0.13068841397762299, 0.021120266988873482, -0.053730566054582596, 0.013295323587954044, -0.033073846250772476, -0.04203919693827629, -0.10718510299921036, -0.04691837728023529, -0.000981203862465918, -0.0010458220494911075, 0.1629110425710678, -0.14112283289432526, -0.06305882334709167, 0.11034136265516281, 0.09784051030874252, -0.10405250638723373, 0.057327378541231155, -0.06908515095710754, -0.015512969344854355, -0.0722663477063179, -0.050055574625730515, 0.2495964765548706, 0.02749089151620865, 0.09029245376586914, -0.09641406685113907, -0.06669428199529648, 0.009471534751355648, -0.030646393075585365, -0.034700822085142136, 0.030993003398180008, 0.019950484856963158, -0.23153965175151825, 0.05674603581428528, -0.011346554383635521, 0.09518178552389145, 0.17707021534442902, 0.046304866671562195, -0.1018909215927124, -0.04053342714905739, -0.07141030579805374, 0.019490975886583328, 0.05045835301280022, 0.023198150098323822, 0.03578778728842735, 0.039397239685058594, 0.03964155912399292, 0.04417937248945236, -0.10726802051067352, 0.003961293492466211, 0.07016400247812271, -0.03149877488613129, -0.05321511998772621, 0.012200905941426754, 0.023502672091126442, 0.10139445960521698, 0.0668400228023529, 0.10951653867959976, -0.054537929594516754, -0.03893059492111206, -0.12175879627466202, 0.12984491884708405, -0.09487921744585037, -0.27095547318458557, -0.12598221004009247, -0.04049820452928543, 0.028665367513895035, 0.02264902926981449, 0.03819838538765907, -0.03380810469388962, -0.02973535843193531, -0.08158566057682037, 0.05483262240886688, -0.03999357670545578, -0.004047467838972807, 0.0038008822593837976, 0.04550229012966156, -0.022673405706882477, -0.11085239797830582, -0.021832216531038284, 0.028945274651050568, -0.13220462203025818, 0.010913383215665817, 0.01775740273296833, 0.06970846652984619, 0.12664397060871124, -0.019131194800138474, 0.002712299581617117, -0.032233674079179764, 0.24990426003932953, -0.12954853475093842, 0.055638764053583145, 0.15135012567043304, -0.01630515046417713, 0.05512179061770439, 0.026487097144126892, -0.004902415443211794, -0.06067938730120659, 0.07311858236789703, 0.0786132737994194, -0.08146081864833832, -0.2067250907421112, -0.007588683627545834, -0.008430340327322483, 0.028657525777816772, 0.11482417583465576, 0.055113535374403, 0.044737718999385834, 0.023779885843396187, -0.09218215942382812, 0.05062469094991684, 0.052957579493522644, 0.08250399678945541, -0.03359229862689972, -0.013253647834062576, 0.06902677565813065, -0.05743321031332016, 0.0074706897139549255, 0.1254207342863083, 0.02394770458340645, 0.24521499872207642, -0.0875014141201973, 0.06914792954921722, 0.08562140166759491, 0.08189290761947632, 0.02729364112019539, 0.03892754018306732, -0.01784953847527504, 0.03224872052669525, -0.015652785077691078, -0.08797167986631393, -0.008345354348421097, 0.0316908098757267, 0.00972739513963461, -0.04587662220001221, -0.04196516424417496, -0.05782032385468483, 0.04392968490719795, 0.21085038781166077, 0.03026570938527584, -0.1431189477443695, -0.09254434704780579, 0.03942427039146423, -0.04193040728569031, -0.061280641704797745, -0.005436462815850973, 0.10844218730926514, -0.20874930918216705, 0.02759641408920288, -0.02621966041624546, 0.11359436064958572, -0.12218894809484482, -0.0026232691016048193, 0.03773774951696396, 0.028313877061009407, -0.0769846960902214, 0.0973447859287262, -0.2090238332748413, 0.06659149378538132, 0.004640817176550627, 0.07869395613670349, -0.06997305899858475, 0.0052299886010587215, 0.03241787850856781, 0.052442219108343124, 0.10674207657575607, 0.012477356940507889, 0.03541187942028046, -0.06958389282226562, -0.06238376721739769, 0.005395202431827784, 0.07592571526765823, -0.08348385989665985, 0.12196541577577591, -0.03183084353804588, 0.04345249384641647, -0.027944395318627357, -0.046222783625125885, -0.10799403488636017, -0.162587970495224, 0.07977136224508286, -0.12945684790611267, -0.025471622124314308, -0.054683733731508255, -0.0406467467546463, 0.043791960924863815, 0.19615386426448822, -0.056467894464731216, -0.07923154532909393, -0.12642261385917664, 0.03025643527507782, 0.13516342639923096, -0.07793211191892624, 0.018373603001236916, 0.022934047505259514, 0.155357226729393, 0.009957586415112019, -0.13977155089378357, -0.021667517721652985, -0.04915937781333923, -0.19221526384353638, -0.00041322503238916397, 0.1276986449956894, 0.07968926429748535, 0.04879024997353554, 0.03395061194896698, 0.012846319004893303, -0.01842130534350872, -0.15854552388191223, 0.03956599533557892, 0.13191859424114227, 0.040363408625125885, 0.026721425354480743, 0.03810352459549904, 0.03779678791761398, -0.14451520144939423, 0.013040863908827305, 0.07286898046731949, 0.17449277639389038, -0.0874960646033287, 0.17603786289691925, -0.004566337913274765, -0.10412634909152985, -0.18526297807693481, 0.02122773602604866, 0.004098294768482447, 0.03860887140035629, 0.061265118420124054, -0.21524374186992645, -0.004869342315942049, 0.03947901725769043, 0.0002977016265504062, 0.08189944922924042, -0.30625253915786743, -0.1321650743484497, 0.014029674232006073, 0.019635306671261787, -0.06274035573005676, -0.028305446729063988, -0.024003690108656883, -0.07450417429208755, -0.22033379971981049, 0.09464798122644424, -0.12063195556402206, 0.1038694754242897, 0.018914135172963142, 0.06264135241508484, 0.0488363541662693, -0.043451402336359024, 0.11204211413860321, -0.05214671418070793, 0.059856776148080826, -0.10319158434867859, -0.04907927289605141, 0.09418734908103943, -0.021953506395220757, 0.07262856513261795, 0.0373312272131443, 0.08076082170009613, -0.0640135183930397, -0.076126828789711, -0.07830895483493805, 0.019622130319476128, -0.05394769832491875, -0.08967449516057968, -0.10327644646167755, 0.10063474625349045, 0.12480323016643524, -0.039523717015981674, -0.12653672695159912, -0.056658390909433365, -0.014082729816436768, 0.08066951483488083, 0.10981512814760208, 0.07516355067491531, -0.060738567262887955, 0.003921151161193848, 0.005063258111476898, 0.02230413630604744, -0.11529944092035294, 0.059333138167858124, 0.09202158451080322, 0.03253322094678879, 0.09048053622245789, 0.03551746532320976, -0.1687212586402893, 0.03329187259078026, 0.055812496691942215, -0.1507304608821869, -0.11605440080165863, -0.0476263090968132, -0.04557115212082863, -0.07243984937667847, -0.03875782713294029, 0.1400688886642456, -0.04748560115695, -0.042325299233198166, -0.0039573307149112225, 0.0509880930185318, -0.03978532552719116, 0.1278282254934311, 0.02988342195749283, 0.02579113468527794, -0.06086515635251999, 0.10796429961919785, 0.07582173496484756, 0.03310821205377579, 0.048856109380722046, 0.04897845536470413, -0.08969525992870331, 0.0018748329021036625, -0.08540873974561691, -0.028677839785814285, -0.032380495220422745, -0.0019244534196332097, -0.006337928585708141, -0.030019432306289673, 0.03924451395869255, 0.10580611228942871, -0.014765935949981213, 0.12379507720470428, -0.04459242522716522, 0.013049593195319176, -0.12647801637649536, 0.06946716457605362, 0.03426746279001236, 0.014044975861907005, -0.0841282531619072, 0.21310661733150482, 0.02513774298131466, 0.1003095805644989, -0.05732087790966034, -0.05192123353481293, -0.05970427766442299, -0.011770335957407951, -0.11044588685035706, -0.03969738259911537, -0.06816320866346359, -0.05672324076294899, -0.022170107811689377, -0.04345061630010605, -0.026356467977166176, 0.049486663192510605, -0.024573268368840218, -0.0645924061536789, -0.06603305041790009, 0.033155858516693115, -0.16324077546596527, 0.014027911238372326, 0.12228365987539291, -0.05639495700597763, 0.11953732371330261, 0.04626249521970749, -0.03789316862821579, 0.004523578565567732, -0.09305626899003983, 0.009781262837350368, -0.0323997437953949, 0.017321836203336716, 0.01967165246605873, -0.13268794119358063, 0.01863006502389908, -0.05848633497953415, -0.06548061966896057, 0.020076880231499672, 0.03736274689435959, -0.11617878824472427, -0.00860690139234066, 0.06324987858533859, -0.004961234983056784, -0.06483953446149826, 0.06746325641870499, 0.041714031249284744, 0.04351986572146416, 0.05490861088037491, -0.033677492290735245, 0.08587782084941864, -0.15861399471759796, -0.050243932753801346, 0.004430290777236223, 0.0036005291622132063, 0.08460381627082825, -0.016459038481116295, 0.056549329310655594, -0.0085458280518651, 0.20027461647987366, 0.039902444928884506, -0.02885429933667183, 0.03545435890555382, -0.04030865803360939, 0.002817219588905573, 0.03524959087371826, 0.07188574969768524, -0.019762331619858742, -0.046629540622234344, -0.020827731117606163, 0.006466895341873169, -0.07913460582494736, -0.04487380012869835, 0.12446415424346924, 0.04810543730854988, 0.1495521068572998, -0.0652981847524643, 0.0712655559182167, -0.010474168695509434, -0.11843062192201614, -0.05131084844470024, -0.023544523864984512, 0.022219670936465263, -0.07240009307861328, 0.025154070928692818, 0.18128171563148499, -0.14692340791225433, 0.12340458482503891, -0.006149998866021633, -0.05562465265393257, -0.11844046413898468, -0.1859470009803772, -0.026868604123592377, -0.02326999045908451, 0.027139995247125626, -0.1339709311723709, 0.0964498221874237, 0.02357131987810135, 0.03356390818953514, -0.07458647340536118, 0.1222408190369606, -0.06470699608325958, -0.12285402417182922, 0.04117890074849129, 0.03184797987341881, 0.03963875398039818, 0.03846640884876251, 0.059168167412281036, 0.03043130785226822, 0.03785295784473419, 0.07196605950593948, 0.023781394585967064, 0.051351845264434814, 0.03191521018743515, -0.03906181454658508, -0.03925951197743416, 0.013787331990897655, -0.0011149063939228654, 0.04102221503853798, 0.07754641026258469, 0.07445366680622101, -0.007295848336070776, -0.025020692497491837, 0.33132752776145935, -0.02706408128142357, -0.033400047570466995, -0.16644379496574402, 0.16512355208396912, 0.036110445857048035, 0.0016277129761874676, 0.02634887769818306, -0.12486647814512253, 0.02007986418902874, 0.15720462799072266, 0.18999212980270386, -0.06288821995258331, 0.01822376623749733, -0.034018002450466156, 0.020454630255699158, 0.07499610632658005, 0.10258509963750839, 0.06753824651241302, 0.1926300972700119, -0.04285997152328491, 0.04643229395151138, -0.023938391357660294, 0.0062122889794409275, -0.035510726273059845, 0.11462758481502533, -0.020987220108509064, 0.02410893514752388, -0.0681486502289772, 0.09010425209999084, -0.025659190490841866, -0.25441601872444153, -0.0323043055832386, -0.049509793519973755, -0.09302134811878204, 0.06001405045390129, -0.05713050812482834, -0.0219406820833683, 0.08417028188705444, 0.033065568655729294, 0.004102292936295271, 0.12060754001140594, 0.06253758817911148, -0.03659312054514885, 0.011291044764220715, 0.09825077652931213, -0.037646058946847916, 0.1803494542837143, -0.03059503622353077, 0.007409027777612209, 0.07964625954627991, 0.03882493078708649, -0.11289595812559128, -0.0002443620178382844, 0.02235889621078968, -0.05092683434486389, -0.011517721228301525, 0.18078315258026123, 0.014142518863081932, -0.023052750155329704, 0.06462492793798447, -0.05292457714676857, 0.03938940167427063, -0.0735311210155487, 0.058954477310180664, -0.1116701066493988, 0.051027558743953705, -0.09412417560815811, 0.13115717470645905, 0.1805189847946167, -0.07078181207180023, 0.03389829397201538, -0.05441144108772278, -0.019079525023698807, -0.00827856920659542, 0.06272342056035995, -0.020884821191430092, -0.11318512260913849, -0.017016062512993813, 0.00811942107975483, 0.012792053632438183, -0.18570709228515625, -0.05393648520112038, 0.05420625954866409, -0.0562356561422348, 0.003630624385550618, 0.15983417630195618, 0.017854630947113037, 0.04286276176571846, -0.044923458248376846, -0.0459824800491333, -0.013141440227627754, 0.09818502515554428, -0.15554212033748627, -0.05731866508722305 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5c2952ca198d8eda91b478829b867fd6.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fear Factory</div> <a href="https://genius.com/artists/fear-factory"> <div style="text-align: center; font-size: 14px;">@fear-factory</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Fear Factory. Dataset is available [here](https://huggingface.co/datasets/huggingartists/fear-factory). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/fear-factory") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/24xjxpf5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Fear Factory's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3gju7udi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3gju7udi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/fear-factory') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/fear-factory") model = AutoModelWithLMHead.from_pretrained("huggingartists/fear-factory") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/fear-factory"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/fear-factory
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/fear-factory", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/fear-factory #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fear Factory</div> <a href="URL <div style="text-align: center; font-size: 14px;">@fear-factory</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Fear Factory. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Fear Factory's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Fear Factory.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Fear Factory's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/fear-factory #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Fear Factory.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Fear Factory's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/fear-factory #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Fear Factory.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Fear Factory's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.018404047936201096, 0.14386305212974548, -0.002787552773952484, 0.04121500626206398, 0.08782478421926498, 0.015555731020867825, 0.0893552228808403, 0.08929342776536942, 0.004409725312143564, 0.07317443192005157, 0.06940192729234695, 0.006439757067710161, 0.06362855434417725, 0.10441907495260239, 0.07562090456485748, -0.24687542021274567, 0.02730957418680191, -0.09936129301786423, -0.0036283780355006456, 0.1182134822010994, 0.10314500331878662, -0.053087614476680756, 0.0828859880566597, 0.035143762826919556, -0.058463990688323975, 0.029410885646939278, 0.009952194057404995, -0.059963591396808624, 0.09876806288957596, 0.059579141438007355, 0.0384291410446167, 0.0049931057728827, 0.07369236648082733, -0.16528423130512238, 0.036474112421274185, 0.12727327644824982, 0.03769508749246597, 0.06588104367256165, 0.04847152903676033, -0.09389346837997437, 0.15803028643131256, -0.029947781935334206, 0.1075652539730072, 0.04855244979262352, -0.11421144008636475, -0.1774226427078247, -0.12623576819896698, 0.09427423775196075, 0.11005113273859024, 0.09879676252603531, -0.03047812171280384, 0.04609640687704086, 0.009849188849329948, 0.05382578447461128, 0.24608683586120605, -0.21899238228797913, -0.023513421416282654, 0.06763938814401627, 0.05463225767016411, 0.03754867613315582, -0.07769792526960373, 0.025516238063573837, 0.05800831690430641, 0.03217761963605881, 0.056241583079099655, -0.020923949778079987, 0.2005639523267746, 0.008554440923035145, -0.10638730973005295, -0.07994040846824646, 0.09294532984495163, -0.03507058322429657, -0.0712275505065918, -0.13824303448200226, -0.0033942509908229113, -0.008302023634314537, 0.033774882555007935, -0.01015817653387785, -0.010697642341256142, 0.00017614006355870515, -0.04240021854639053, -0.08621314913034439, -0.0874863862991333, -0.029342051595449448, -0.021353548392653465, 0.09545677155256271, 0.019648615270853043, 0.04508774355053902, -0.08198274672031403, 0.207179456949234, -0.0071614389307796955, -0.10018359869718552, -0.03673902153968811, -0.08504734933376312, -0.09285172820091248, -0.05077440291643143, 0.008260712958872318, -0.0064284005202353, -0.06276706606149673, 0.12603628635406494, -0.07959955185651779, 0.031069355085492134, 0.0015068117063492537, -0.023036181926727295, 0.1423807293176651, 0.13412603735923767, -0.10751089453697205, -0.027722017839550972, 0.04760700836777687, -0.006799064576625824, -0.05611661821603775, -0.04889634624123573, 0.00218964577652514, -0.023180877789855003, 0.0329505130648613, 0.08454886823892593, 0.03864377737045288, 0.06623321026563644, 0.009787836112082005, -0.05829324945807457, 0.0715835839509964, -0.14479798078536987, 0.01689814031124115, 0.009735893458127975, -0.03115030936896801, 0.004163543693721294, 0.05892687290906906, 0.0024228820111602545, -0.099866583943367, 0.10662791132926941, -0.05822552368044853, -0.05731334909796715, -0.08324811607599258, -0.09263843297958374, -0.010981403291225433, 0.009902148507535458, -0.044515665620565414, -0.07051415741443634, -0.15329813957214355, -0.03595494478940964, 0.03894038125872612, -0.033056583255529404, -0.044296372681856155, 0.03429728001356125, -0.015290230512619019, 0.009665517136454582, -0.005448509939014912, -0.021898498758673668, -0.024693476036190987, 0.022326022386550903, -0.06288035213947296, 0.039900317788124084, 0.08552302420139313, 0.03191192448139191, -0.10581449419260025, 0.07938848435878754, -0.1525123417377472, 0.12455302476882935, -0.01111302338540554, 0.03927908465266228, -0.10058888047933578, -0.09509629011154175, -0.01700548641383648, -0.03318540379405022, -0.003987571690231562, 0.10730314254760742, -0.16275902092456818, -0.04014218598604202, 0.20402787625789642, -0.08692499995231628, -0.08796962350606918, 0.06816058605909348, -0.07706106454133987, 0.030309496447443962, 0.13827544450759888, 0.06596705317497253, 0.15950876474380493, -0.1279328167438507, -0.05130521208047867, -0.028510713949799538, -0.07605209946632385, 0.2200046181678772, 0.04426633194088936, -0.015395201742649078, -0.023075642064213753, 0.01064863707870245, -0.03398079425096512, -0.017608119174838066, -0.014638515189290047, -0.03493042662739754, -0.008303103037178516, 0.018920112401247025, -0.010896719992160797, -0.044050734490156174, -0.08467911183834076, -0.02867671474814415, -0.10449369996786118, 0.01631513237953186, 0.10988274216651917, -0.07135282456874847, 0.00010246609599562362, -0.08836645632982254, 0.007129809819161892, -0.02807639166712761, 0.007707039825618267, -0.1733197420835495, -0.05602582171559334, 0.009896659292280674, -0.07682623714208603, 0.09165018796920776, 0.02462603524327278, 0.045528560876846313, 0.057611268013715744, -0.003989535383880138, 0.021617509424686432, -0.030191104859113693, -0.024349870160222054, -0.02939741313457489, -0.1609671711921692, -0.0513051375746727, -0.05373762920498848, 0.09498371183872223, -0.1294998675584793, 0.004281335044652224, 0.09660565853118896, 0.11034197360277176, 0.021526914089918137, -0.05729999765753746, 0.019741082563996315, -0.05027071386575699, -0.024771161377429962, -0.10640145093202591, -0.05158445984125137, 0.005072352476418018, -0.043835610151290894, 0.16837666928768158, -0.19166237115859985, -0.08752188086509705, 0.09923389554023743, 0.14330613613128662, -0.09722180664539337, 0.03379741311073303, -0.08451513946056366, -0.0006208858103491366, -0.045572295784950256, -0.037530019879341125, 0.27828454971313477, 0.03424457088112831, 0.07996590435504913, -0.10642240196466446, -0.0958285927772522, -0.015029755420982838, -0.04654701426625252, -0.041942548006772995, 0.03285730630159378, 0.0036997352726757526, -0.19130641222000122, 0.02401525340974331, -0.001920689712278545, 0.08941897749900818, 0.21047121286392212, 0.05374785512685776, -0.08537272363901138, -0.05623496696352959, -0.08579643815755844, 0.0021127574145793915, 0.0645206943154335, 0.02414196915924549, 0.034790992736816406, 0.041141703724861145, 0.03664720058441162, 0.040136855095624924, -0.1165335476398468, 0.012095121666789055, 0.0743633508682251, -0.04299163818359375, -0.04514951631426811, 0.016478246077895164, 0.026547566056251526, 0.08195143193006516, 0.0858234316110611, 0.12262552231550217, -0.07373113185167313, -0.05220790579915047, -0.15602774918079376, 0.14475759863853455, -0.08799435198307037, -0.2555897831916809, -0.13306136429309845, -0.04966307803988457, 0.017691846936941147, 0.005451143719255924, 0.03132414072751999, -0.06301913410425186, -0.05118377506732941, -0.09869137406349182, 0.08868599683046341, -0.062245409935712814, -0.01563102751970291, 0.020452164113521576, 0.016542216762900352, -0.009546373039484024, -0.12051409482955933, -0.026152916252613068, 0.03819591552019119, -0.0958932638168335, -0.015454121865332127, 0.030781513080000877, 0.027782347053289413, 0.16839207708835602, -0.011538517661392689, 0.0002795737236738205, -0.028093427419662476, 0.2947346866130829, -0.12113287299871445, 0.05582334101200104, 0.14248418807983398, -0.02758532203733921, 0.0657074898481369, 0.08744706958532333, 0.0039002203848212957, -0.0603371299803257, 0.07265089452266693, 0.07525017857551575, -0.07273629307746887, -0.21069736778736115, -0.02881578356027603, -0.004809750709682703, 0.008652487769722939, 0.12374445050954819, 0.0561138354241848, 0.037858497351408005, 0.016603626310825348, -0.10828705877065659, 0.02203707955777645, 0.044664397835731506, 0.101583331823349, -0.08822773396968842, -0.01966858096420765, 0.03444793075323105, -0.04796681925654411, 0.02067532390356064, 0.13047409057617188, 0.026083720847964287, 0.20918594300746918, -0.07618794590234756, 0.09185560792684555, 0.07115527242422104, 0.08513202518224716, 0.027905341237783432, 0.029987378045916557, -0.027202868834137917, 0.019196046516299248, -0.005550121422857046, -0.09009519219398499, -0.013495332561433315, 0.039694104343652725, 0.02350330352783203, 0.008315234445035458, -0.03798522427678108, -0.04777069389820099, 0.056206777691841125, 0.25960585474967957, 0.006482619792222977, -0.19274382293224335, -0.10949485003948212, 0.05166264623403549, -0.07736765593290329, -0.06008446589112282, -0.01861531287431717, 0.053279805928468704, -0.20238324999809265, 0.09236276149749756, -0.037755392491817474, 0.10610572248697281, -0.09108483791351318, 0.0019066747045144439, 0.07257702201604843, 0.04534122347831726, -0.06239842623472214, 0.09568294137716293, -0.14894556999206543, 0.07508599758148193, -0.012083889916539192, 0.08110737800598145, -0.06464850157499313, 0.023493925109505653, 0.014004741795361042, 0.07084272056818008, 0.08512414246797562, 0.017287982627749443, 0.01659737154841423, 0.011324739083647728, -0.034239012748003006, 0.014958868734538555, 0.04985026270151138, -0.12471538037061691, 0.1271056979894638, -0.0438532717525959, 0.029100047424435616, -0.04017910361289978, -0.10697533935308456, -0.07999451458454132, -0.15836328268051147, 0.08176203817129135, -0.13585089147090912, -0.0026254826225340366, -0.07693436741828918, -0.01618550904095173, 0.039481405168771744, 0.25070199370384216, -0.0640527531504631, -0.08392482250928879, -0.13758087158203125, 0.0017364555969834328, 0.1407090723514557, -0.08071333169937134, -0.001918867463245988, -0.015378111973404884, 0.2111307829618454, -0.009062845259904861, -0.1273084282875061, -0.022510254755616188, -0.06732653826475143, -0.16414187848567963, -0.009702010080218315, 0.16684088110923767, 0.06867377460002899, 0.033085502684116364, 0.020532794296741486, -0.007161103188991547, -0.048091989010572433, -0.16695620119571686, 0.012871075421571732, 0.14605790376663208, -0.018936876207590103, 0.01824764721095562, 0.0434223972260952, -0.004504959098994732, -0.14545270800590515, 0.024792741984128952, 0.036270350217819214, 0.1725352257490158, -0.07178898900747299, 0.16812047362327576, 0.04762861505150795, -0.09656111896038055, -0.16613180935382843, 0.009506430476903915, 0.035254042595624924, 0.035375673323869705, 0.046817533671855927, -0.16612380743026733, 0.03740528225898743, 0.018764248117804527, -0.0013487200485542417, 0.05406082049012184, -0.3281043767929077, -0.152093768119812, 0.00806461926549673, 0.021061496809124947, -0.1138543039560318, -0.043548066169023514, -0.023312507197260857, -0.09403958171606064, -0.1991514265537262, 0.08907432854175568, -0.14084391295909882, 0.0687534287571907, 0.028317280113697052, 0.11246483772993088, 0.05146602913737297, -0.052061110734939575, 0.1430806815624237, -0.04810481145977974, 0.07934042811393738, -0.10031717270612717, -0.05857415124773979, 0.08037149161100388, -0.07377755641937256, 0.09647148847579956, 0.021534275263547897, 0.08867897093296051, -0.08949925750494003, -0.08774746209383011, -0.06377686560153961, 0.016874630004167557, -0.056472599506378174, -0.07966659218072891, -0.10004561394453049, 0.08429314941167831, 0.12392356246709824, -0.051294900476932526, -0.11327452957630157, -0.06373042613267899, 0.001430106582120061, 0.04875174164772034, 0.1306280642747879, 0.07965639233589172, -0.08390302211046219, 0.024531789124011993, 0.023310989141464233, 0.029307881370186806, -0.15100063383579254, 0.05524108186364174, 0.0861997976899147, 0.04141898453235626, 0.110124871134758, 0.004526794422417879, -0.16503861546516418, 0.007062792312353849, 0.0623459592461586, -0.16908426582813263, -0.14128953218460083, -0.04453285411000252, -0.007310179062187672, -0.12121732532978058, -0.06122102960944176, 0.1414995938539505, -0.026104586198925972, -0.030650544911623, -0.005131186451762915, 0.053931884467601776, -0.06257740408182144, 0.0830036997795105, -0.0042019071988761425, 0.040647320449352264, -0.06414588540792465, 0.1038903221487999, 0.06922516971826553, -0.006913397461175919, 0.03958696871995926, 0.08918475359678268, -0.08431319147348404, 0.004704033024609089, -0.08502712100744247, 0.036009445786476135, -0.012880547903478146, -0.008252046070992947, 0.012833050452172756, -0.05008793994784355, 0.03175325319170952, 0.09382524341344833, -0.019552193582057953, 0.11313532292842865, -0.03461555764079094, 0.016444362699985504, -0.1302613466978073, 0.07843736559152603, 0.04566838964819908, 0.011066369712352753, -0.113902248442173, 0.21447275578975677, 0.03561478108167648, 0.09176301956176758, -0.042256537824869156, -0.055414121598005295, -0.0612800195813179, -0.008965227752923965, -0.10009054839611053, -0.029183506965637207, -0.09344707429409027, -0.012437887489795685, 0.004415594507008791, -0.027546586468815804, -0.027257055044174194, 0.047784291207790375, -0.026844261214137077, -0.05425601452589035, -0.06889985501766205, 0.03228310868144035, -0.1320779174566269, 0.024486228823661804, 0.12104221433401108, -0.05059303343296051, 0.11547849327325821, 0.06431229412555695, -0.03930109739303589, 0.02256152220070362, -0.14374369382858276, 0.03468567878007889, -0.011922494508326054, 0.008821280673146248, 0.00774860754609108, -0.16742074489593506, 0.0022443507332354784, -0.04069727659225464, -0.0556911900639534, 0.003832698566839099, -0.016279755160212517, -0.1227007657289505, -0.0008477469673380256, 0.10563535243272781, -0.02067553997039795, -0.06546986848115921, 0.05848468467593193, 0.05758092179894447, 0.0169855784624815, 0.06191687658429146, -0.03232059255242348, 0.08116709440946579, -0.1703629493713379, -0.04719913378357887, 0.007290365174412727, 0.04267248883843422, 0.018626825883984566, -0.010932366363704205, 0.03637683019042015, -0.023823482915759087, 0.1842179000377655, 0.03301249071955681, -0.017578478902578354, 0.03833827003836632, -0.0761222317814827, 0.0012740574311465025, 0.04643852263689041, 0.061998311430215836, -0.04590318724513054, -0.032305870205163956, -0.001959671266376972, -0.031574420630931854, -0.08898239582777023, -0.03578462824225426, 0.08981214463710785, 0.03490408509969711, 0.20001330971717834, -0.05543573573231697, 0.06135493516921997, -0.0066071124747395515, -0.1070781797170639, -0.034966085106134415, -0.04026069864630699, 0.03042464144527912, -0.04809994250535965, 0.03189053758978844, 0.21247924864292145, -0.1477145403623581, 0.11930659413337708, 0.028315400704741478, -0.06527681648731232, -0.12067091464996338, -0.18397685885429382, -0.024855302646756172, -0.03236551955342293, 0.03712397813796997, -0.13837939500808716, 0.08497749269008636, 0.01638486050069332, 0.03763262927532196, -0.06399533152580261, 0.13003601133823395, -0.07773931324481964, -0.13217931985855103, 0.0410761684179306, 0.03006412275135517, 0.027581989765167236, 0.06575111299753189, 0.10019829869270325, 0.035968322306871414, 0.0021365229040384293, 0.06604839116334915, 0.04017212986946106, 0.018827205523848534, 0.040107134729623795, -0.030280008912086487, -0.03887186571955681, 0.029166024178266525, -0.000018268437997903675, 0.027275238186120987, 0.10980305820703506, 0.062031324952840805, -0.019391030073165894, -0.02883756533265114, 0.27861499786376953, -0.04078134894371033, -0.048554401844739914, -0.19237865507602692, 0.18340645730495453, -0.009311779402196407, -0.003427070565521717, 0.02498236857354641, -0.11546652019023895, 0.00971456803381443, 0.12929460406303406, 0.16820360720157623, -0.030032740905880928, 0.024975722655653954, -0.04922176152467728, 0.021802077069878578, 0.02316504344344139, 0.08740067481994629, 0.06527499854564667, 0.2111736536026001, -0.04050466790795326, 0.06144721433520317, -0.0036793320905417204, -0.00878947228193283, -0.008017243817448616, 0.08976437896490097, -0.04831849783658981, 0.018030252307653427, -0.05196930095553398, 0.10697821527719498, -0.040100447833538055, -0.29389137029647827, -0.030538612976670265, -0.007112654857337475, -0.08782155811786652, 0.07287836819887161, -0.03881428763270378, -0.016547134146094322, 0.09510773420333862, 0.03775385767221451, -0.0571378655731678, 0.15394484996795654, 0.04388514533638954, -0.060130149126052856, -0.014142236672341824, 0.11792296916246414, -0.025880366563796997, 0.19126400351524353, -0.02598366141319275, 0.006407808978110552, 0.07280793786048889, -0.006083316169679165, -0.12591832876205444, -0.0013503114460036159, 0.0353790782392025, -0.05993635952472687, -0.020057914778590202, 0.20452317595481873, 0.0051232874393463135, 0.010354315862059593, 0.06030375137925148, -0.058344002813100815, 0.023297766223549843, -0.0407116562128067, 0.05628304183483124, -0.13388779759407043, 0.062098558992147446, -0.08813819289207458, 0.12221900373697281, 0.19870223104953766, -0.05569237470626831, 0.03799695521593094, -0.05869448184967041, 0.003832208691164851, -0.0253556277602911, 0.06550359725952148, -0.01324683241546154, -0.11595256626605988, -0.002364097163081169, 0.031900618225336075, 0.010553241707384586, -0.1981005072593689, -0.07099783420562744, 0.06623519957065582, -0.04577237367630005, 0.03742433711886406, 0.16231590509414673, 0.01741468533873558, 0.05620058253407478, -0.03235615789890289, -0.01577010005712509, -0.0012313650222495198, 0.11813352257013321, -0.16997121274471283, -0.07872187346220016 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/99d09eb55276442d715ac14f06173a4e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Florence + The Machine</div> <a href="https://genius.com/artists/florence-the-machine"> <div style="text-align: center; font-size: 14px;">@florence-the-machine</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Florence + The Machine. Dataset is available [here](https://huggingface.co/datasets/huggingartists/florence-the-machine). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/florence-the-machine") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/icjt5evm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Florence + The Machine's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1zfb9y24) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1zfb9y24/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/florence-the-machine') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/florence-the-machine") model = AutoModelWithLMHead.from_pretrained("huggingartists/florence-the-machine") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/florence-the-machine"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/florence-the-machine
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/florence-the-machine", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/florence-the-machine #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Florence + The Machine</div> <a href="URL <div style="text-align: center; font-size: 14px;">@florence-the-machine</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Florence + The Machine. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Florence + The Machine's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Florence + The Machine.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Florence + The Machine's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/florence-the-machine #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Florence + The Machine.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Florence + The Machine's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 52, 74, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/florence-the-machine #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Florence + The Machine.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Florence + The Machine's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.04598144069314003, 0.1861347258090973, -0.002887506503611803, 0.06371501833200455, 0.11330550163984299, 0.02602524869143963, 0.0672796294093132, 0.10288738459348679, 0.04144277423620224, 0.08824225515127182, 0.055997733026742935, 0.041398171335458755, 0.07817067950963974, 0.06274112313985825, 0.04551771283149719, -0.22264735400676727, 0.03563275560736656, -0.09103575348854065, -0.021690266206860542, 0.09249626100063324, 0.0910554975271225, -0.08025702834129333, 0.08655358105897903, 0.02251710742712021, -0.07227133214473724, 0.019213229417800903, 0.00072409154381603, -0.05127562955021858, 0.08974587172269821, 0.1063629537820816, 0.0378151461482048, 0.02373778261244297, 0.07679137587547302, -0.15922649204730988, 0.02919301763176918, 0.11906832456588745, 0.031360361725091934, 0.07226943224668503, 0.09049734473228455, -0.07723691314458847, 0.1255517452955246, -0.012677885591983795, 0.07248538732528687, 0.05493810772895813, -0.09673865139484406, -0.07655259221792221, -0.1488945186138153, 0.044118113815784454, 0.060418229550123215, 0.10187387466430664, -0.027298809960484505, 0.09056141972541809, -0.04163641855120659, 0.05558234825730324, 0.24257147312164307, -0.24428094923496246, -0.019694581627845764, 0.06328645348548889, 0.05846443772315979, 0.0323924645781517, -0.08597646653652191, 0.03403494134545326, 0.041876520961523056, 0.023303793743252754, 0.003201209707185626, -0.013409284874796867, 0.18619035184383392, 0.01130180899053812, -0.10596121847629547, -0.0761534571647644, 0.09231873601675034, -0.013102447614073753, -0.07749515771865845, -0.12157844752073288, 0.007987074553966522, 0.0011425054399296641, 0.028423340991139412, 0.018096022307872772, -0.0080427136272192, 0.004809824284166098, -0.04537314921617508, -0.10878390073776245, -0.064153753221035, -0.0418064147233963, -0.013281078077852726, 0.10723855346441269, 0.04424438253045082, 0.03943570703268051, -0.06653322279453278, 0.2150557041168213, 0.027580883353948593, -0.08716408163309097, -0.04738948121666908, -0.09312453866004944, -0.08887534588575363, -0.043949779123067856, -0.008996769785881042, 0.016745414584875107, -0.015944289043545723, 0.12184371799230576, -0.010784093290567398, 0.013667444698512554, -0.043089359998703, 0.011962484568357468, 0.12940745055675507, 0.14487811923027039, -0.16077132523059845, -0.07765812426805496, 0.07695455104112625, -0.010695460252463818, -0.07022218406200409, -0.04688291624188423, -0.001345058437436819, -0.036484245210886, 0.027264049276709557, 0.09146559238433838, 0.08747357875108719, 0.0618756078183651, 0.004395877011120319, -0.05601181834936142, 0.03611450642347336, -0.14098422229290009, 0.027837218716740608, 0.00417797826230526, -0.08144531399011612, 0.04109229892492294, 0.03513997048139572, -0.004376796539872885, -0.11636614054441452, 0.07187049090862274, -0.08945871889591217, -0.05598797649145126, -0.08661969006061554, -0.12486642599105835, -0.0004887787508778274, -0.055696554481983185, -0.021701263263821602, -0.06864640861749649, -0.15164470672607422, -0.047466836869716644, 0.010792577639222145, -0.08405227214097977, -0.015706626698374748, 0.025638753548264503, -0.026835184544324875, -0.00007411753904307261, 0.0032500859815627337, -0.005696658510714769, -0.017255054786801338, 0.03693927824497223, -0.0856592059135437, 0.029732655733823776, 0.07412590086460114, 0.0436367467045784, -0.11525389552116394, 0.05897865444421768, -0.14208729565143585, 0.1250360608100891, -0.04298272356390953, 0.01363730151206255, -0.10465860366821289, -0.07812140882015228, -0.00972909014672041, -0.03708060458302498, 0.044185277074575424, 0.1389780193567276, -0.15579192340373993, -0.010488230735063553, 0.17976437509059906, -0.06917180866003036, -0.056902650743722916, 0.09676431119441986, -0.05995285138487816, 0.038171783089637756, 0.10838133096694946, 0.04431498795747757, 0.1463056057691574, -0.10884390771389008, -0.0868125855922699, -0.029755227267742157, -0.08078469336032867, 0.17427487671375275, 0.028224501758813858, -0.019623635336756706, 0.015710555016994476, 0.008596218191087246, -0.04699161276221275, 0.005722528789192438, -0.043794263154268265, -0.026861021295189857, -0.011966630816459656, -0.021674934774637222, -0.008831593208014965, -0.03744977340102196, -0.04226407781243324, -0.001310710678808391, -0.10462496429681778, 0.009917092509567738, 0.10156372934579849, -0.0862966775894165, 0.018892701715230942, -0.11262506991624832, 0.08598576486110687, -0.02922562137246132, 0.009482107125222683, -0.1748385727405548, -0.045042455196380615, 0.0262562595307827, -0.05436703562736511, 0.05584419146180153, 0.031972188502550125, 0.049084123224020004, 0.08549795299768448, -0.012058802880346775, 0.01220966037362814, -0.029707513749599457, 0.0009242098312824965, -0.05408215522766113, -0.17424719035625458, -0.05337689444422722, -0.04619273915886879, 0.09845864027738571, -0.1301240622997284, 0.0037638049107044935, 0.12581932544708252, 0.14515650272369385, 0.018964983522892, -0.059274978935718536, 0.01883874088525772, -0.03787994012236595, -0.036153677850961685, -0.10780472308397293, -0.04339411482214928, 0.007727422285825014, -0.031119754537940025, 0.15400494635105133, -0.13458937406539917, -0.09225664287805557, 0.12190251797437668, 0.1066967248916626, -0.07430105656385422, 0.026679931208491325, -0.07094363868236542, -0.0074900491163134575, -0.03982343524694443, -0.06751699000597, 0.22886638343334198, 0.05674353986978531, 0.08473189175128937, -0.08784539252519608, -0.0585346557199955, 0.0031712213531136513, -0.02128753811120987, -0.06774649024009705, 0.046228595077991486, 0.05029625445604324, -0.17546992003917694, 0.03327993303537369, -0.02609502524137497, 0.06838985532522202, 0.18352586030960083, 0.04797870293259621, -0.09694141149520874, -0.05021349713206291, -0.06649117916822433, 0.0073699201457202435, 0.07244835793972015, 0.0013726961333304644, 0.057065363973379135, 0.03801603615283966, 0.027297010645270348, 0.05170755088329315, -0.11351153999567032, 0.0026404946111142635, 0.0495784617960453, -0.026432983577251434, -0.05438755825161934, 0.02275008335709572, 0.021559955552220345, 0.09687642753124237, 0.06215815246105194, 0.06747402250766754, -0.05164775997400284, -0.05451826751232147, -0.11952219903469086, 0.13287875056266785, -0.08081434667110443, -0.2045329362154007, -0.13891340792179108, -0.057082872837781906, 0.008732820861041546, -0.0015843386063352227, 0.02112302929162979, -0.03138092905282974, -0.04869696497917175, -0.10452708601951599, 0.0770406499505043, -0.04015824571251869, -0.0173447597771883, 0.0133076636120677, 0.02734379656612873, -0.03442380204796791, -0.1282435804605484, -0.025299208238720894, 0.01396704651415348, -0.10261498391628265, -0.016064463183283806, 0.01734486036002636, 0.08251243084669113, 0.13465271890163422, -0.00469914311543107, 0.021743591874837875, -0.016318947076797485, 0.2813173532485962, -0.12079141288995743, 0.06218361482024193, 0.1692773848772049, -0.0006023000460118055, 0.0599001944065094, 0.06385036557912827, 0.0044925762340426445, -0.06212839484214783, 0.048852238804101944, 0.06641635298728943, -0.05650065466761589, -0.20415200293064117, -0.03535458818078041, -0.01746361330151558, 0.0059795863926410675, 0.09050573408603668, 0.033004939556121826, 0.0033432585187256336, 0.013903537765145302, -0.09111408144235611, 0.03401556611061096, 0.04684343934059143, 0.08424482494592667, -0.06840255856513977, -0.009188512340188026, 0.04561705142259598, -0.04498179256916046, 0.03164445236325264, 0.13018780946731567, 0.03076309524476528, 0.24831968545913696, -0.08704647421836853, 0.07236611843109131, 0.07640390843153, 0.07637252658605576, 0.01813746988773346, 0.04444528743624687, -0.015236523933708668, 0.020459124818444252, 0.004695457872003317, -0.09001027047634125, 0.0007358607253991067, 0.02629072777926922, 0.05732249841094017, -0.032751765102148056, -0.056380268186330795, -0.04450066387653351, 0.05891691893339157, 0.2186843454837799, 0.025769725441932678, -0.17676791548728943, -0.08197856694459915, 0.057135507464408875, -0.03827784210443497, -0.05107283219695091, -0.019826333969831467, 0.0795653834939003, -0.20580075681209564, 0.016245204955339432, -0.03584566339850426, 0.1074310839176178, -0.12961597740650177, -0.006808745674788952, 0.05785190686583519, 0.05583644285798073, -0.07604973018169403, 0.08379765599966049, -0.14809764921665192, 0.09419231861829758, 0.006270873360335827, 0.08516721427440643, -0.06804131716489792, 0.015076104551553726, 0.041700173169374466, 0.06986480206251144, 0.1069909930229187, 0.012916767038404942, 0.04448838531970978, -0.09230063110589981, -0.05216720327734947, 0.0005114286323077977, 0.05197855457663536, -0.08435980975627899, 0.1231096014380455, -0.041082147508859634, 0.021483134478330612, -0.022158123552799225, -0.07194869220256805, -0.12103409320116043, -0.16356809437274933, 0.0766640231013298, -0.11374881118535995, -0.006867951713502407, -0.0600607730448246, -0.03574660047888756, 0.018251286819577217, 0.2142111361026764, -0.0860193595290184, -0.05138811469078064, -0.14120809733867645, 0.03298616036772728, 0.14608514308929443, -0.08230371028184891, 0.00004128290674998425, -0.0037351353093981743, 0.15967892110347748, 0.0010183881968259811, -0.11271414160728455, -0.011570543982088566, -0.07408410310745239, -0.1712183654308319, -0.017972972244024277, 0.1080009788274765, 0.08321823179721832, 0.042389024049043655, 0.027229435741901398, -0.0007117626373656094, -0.02525181509554386, -0.1713624745607376, 0.01944572851061821, 0.15109257400035858, 0.021800827234983444, 0.03565297648310661, 0.005041937809437513, 0.012806025333702564, -0.1341746747493744, 0.021961620077490807, 0.06193903461098671, 0.1932547390460968, -0.083065927028656, 0.12061221897602081, 0.017490042373538017, -0.09758586436510086, -0.18906302750110626, 0.04883609339594841, -0.0035452377051115036, 0.03605509176850319, 0.028291979804635048, -0.1708751618862152, 0.009150898084044456, 0.0330355279147625, -0.00178666808642447, 0.0466669537127018, -0.35468393564224243, -0.13801440596580505, 0.035522378981113434, 0.047178685665130615, -0.04951872304081917, -0.02477775327861309, -0.029458004981279373, -0.08543078601360321, -0.22239960730075836, 0.06788745522499084, -0.10587510466575623, 0.08017300814390182, 0.019167814403772354, 0.04590597003698349, 0.053559936583042145, -0.0668182298541069, 0.1384403258562088, -0.019504757598042488, 0.06595218181610107, -0.08265871554613113, -0.05524352937936783, 0.09916586428880692, -0.03527216985821724, 0.08624808490276337, 0.026011774316430092, 0.07206708192825317, -0.0957452729344368, -0.07102078944444656, -0.06500925868749619, 0.030298903584480286, -0.05470196157693863, -0.07845427095890045, -0.07628606259822845, 0.11317978799343109, 0.12306254357099533, -0.027183519676327705, -0.13216541707515717, -0.050193335860967636, -0.0641903504729271, 0.09888233244419098, 0.10724776238203049, 0.11309867352247238, -0.053389549255371094, 0.022721709683537483, 0.01870611310005188, 0.022645797580480576, -0.0653676763176918, 0.04602712392807007, 0.09354091435670853, 0.02677822671830654, 0.09470503777265549, 0.017786305397748947, -0.16519488394260406, 0.020057862624526024, 0.035022471100091934, -0.15698879957199097, -0.14164693653583527, -0.04969129338860512, -0.034195609390735626, -0.07902222126722336, -0.05183485522866249, 0.14628615975379944, -0.024774834513664246, -0.03092098981142044, -0.015428834594786167, 0.06312040984630585, -0.03752893581986427, 0.12918005883693695, 0.013350030407309532, 0.03300890326499939, -0.06323423981666565, 0.10560137778520584, 0.05888470262289047, 0.007983132265508175, 0.021871397271752357, 0.04710101708769798, -0.08419589698314667, -0.013463771902024746, -0.07460448890924454, 0.011239509098231792, -0.050792619585990906, -0.006737598218023777, -0.03308120369911194, -0.039179474115371704, 0.026361940428614616, 0.10216674208641052, -0.008080418221652508, 0.11741772294044495, -0.050276268273591995, -0.024460338056087494, -0.14050857722759247, 0.08339596539735794, 0.06339539587497711, -0.007479419466108084, -0.10258524864912033, 0.19992785155773163, 0.019957395270466805, 0.06411654502153397, -0.04186853766441345, -0.05525904893875122, -0.08023416996002197, -0.017677968367934227, -0.132818341255188, -0.04126328229904175, -0.0684465691447258, -0.03149335831403732, -0.03060576319694519, -0.04643898457288742, -0.02810898795723915, 0.04921429976820946, -0.03549356758594513, -0.05659734085202217, -0.050475042313337326, 0.05448977276682854, -0.153993159532547, 0.009742521680891514, 0.11818370223045349, -0.06989552080631256, 0.11948166787624359, 0.052707184106111526, -0.026553930714726448, -0.00278630037792027, -0.10706999152898788, 0.021925289183855057, -0.04797237366437912, 0.0023132003843784332, 0.03558472543954849, -0.14740340411663055, 0.024962132796645164, -0.04633304104208946, -0.06134365499019623, 0.014402635395526886, 0.03548480197787285, -0.1165478453040123, 0.017251187935471535, 0.07510153204202652, -0.012315640226006508, -0.06799709796905518, 0.09008530527353287, 0.09710271656513214, 0.02402671054005623, 0.059162501245737076, -0.023027239367365837, 0.07705455273389816, -0.15500617027282715, -0.03886013105511665, 0.01837490312755108, 0.013928870670497417, 0.06065978854894638, -0.009025762788951397, 0.05876844376325607, -0.011947889812290668, 0.18896019458770752, 0.04372012987732887, -0.027543311938643456, 0.033705536276102066, -0.014279643073678017, -0.0004452646244317293, 0.047616831958293915, 0.03738034889101982, -0.0449669249355793, -0.008891573175787926, -0.020535888150334358, -0.014292709529399872, -0.0681120902299881, -0.01619774103164673, 0.11762741953134537, 0.0525987483561039, 0.1719125658273697, -0.027536790817975998, 0.08051081001758575, -0.04001244902610779, -0.10563535243272781, -0.019943727180361748, -0.04151204973459244, 0.04452153667807579, -0.08594405651092529, 0.09481780230998993, 0.14941149950027466, -0.15780870616436005, 0.1004803329706192, 0.005634438246488571, -0.07169605046510696, -0.1142520159482956, -0.1940363347530365, -0.017711175605654716, -0.019185787066817284, 0.04597163572907448, -0.13141587376594543, 0.09978602826595306, 0.004422303289175034, 0.030761029571294785, -0.07456784695386887, 0.09797223657369614, -0.08803395181894302, -0.10771210491657257, 0.038815855979919434, 0.029533416032791138, 0.025579040870070457, 0.028353573754429817, 0.05412993207573891, 0.009417733177542686, 0.007493450306355953, 0.05251006782054901, 0.04344657063484192, 0.03182920813560486, 0.04155634343624115, -0.023752568289637566, -0.050043825060129166, 0.012421086430549622, 0.0008889093878678977, 0.040670935064554214, 0.11749039590358734, 0.07010037451982498, -0.010194621980190277, -0.036876238882541656, 0.30331772565841675, -0.033832237124443054, -0.0011479636887088418, -0.16159744560718536, 0.14411698281764984, 0.03717580437660217, 0.009739103727042675, 0.03016449697315693, -0.1431530863046646, 0.021685980260372162, 0.15572673082351685, 0.1771615445613861, -0.0853675901889801, 0.005099543835967779, -0.029727697372436523, 0.011328769847750664, 0.04597429186105728, 0.08462828397750854, 0.05705582723021507, 0.18136735260486603, -0.05588943511247635, 0.05696152523159981, -0.01629328541457653, -0.017383219674229622, -0.012540069408714771, 0.13436079025268555, -0.031765397638082504, 0.011135300621390343, -0.07366903126239777, 0.10498376935720444, -0.05580765753984451, -0.2740366756916046, -0.01642347127199173, -0.03877647966146469, -0.09169689565896988, 0.04727153480052948, -0.05723781883716583, -0.018549101427197456, 0.1149333268404007, 0.009203319437801838, -0.03170783817768097, 0.151029571890831, 0.03765133023262024, -0.05255591496825218, -0.03504015505313873, 0.08196674287319183, -0.031778912991285324, 0.21521718800067902, -0.021560367196798325, 0.003282556775957346, 0.09593728184700012, 0.026494484394788742, -0.12978655099868774, -0.004507933743298054, 0.038991399109363556, -0.07712505012750626, -0.00731249712407589, 0.17839331924915314, 0.0015528108924627304, 0.04017183557152748, 0.05045568570494652, -0.04200005158782005, 0.06253169476985931, -0.11415176093578339, 0.031162714585661888, -0.1252904087305069, 0.05428469926118851, -0.09109525382518768, 0.14406873285770416, 0.19205905497074127, -0.06648018956184387, 0.02973870187997818, -0.04522101208567619, -0.004605281166732311, -0.021646808832883835, 0.054432790726423264, -0.011523107998073101, -0.12318792194128036, 0.014926593750715256, 0.020299246534705162, 0.020478112623095512, -0.16731439530849457, -0.07865458726882935, 0.039365820586681366, -0.04985266178846359, 0.008148347027599812, 0.16145269572734833, 0.05487930029630661, 0.04141285642981529, -0.031900886446237564, -0.029107751324772835, -0.018584059551358223, 0.09686670452356339, -0.14038081467151642, -0.07839125394821167 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3192bff259bbe651686374ba3b8553bd.828x828x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghost</div> <a href="https://genius.com/artists/ghost"> <div style="text-align: center; font-size: 14px;">@ghost</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ghost. Dataset is available [here](https://huggingface.co/datasets/huggingartists/ghost). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ghost") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1n8515nl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ghost's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2qimq3aa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2qimq3aa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ghost') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ghost") model = AutoModelWithLMHead.from_pretrained("huggingartists/ghost") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/ghost"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/ghost
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ghost", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ghost #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghost</div> <a href="URL <div style="text-align: center; font-size: 14px;">@ghost</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Ghost. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Ghost's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ghost.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ghost's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ghost #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ghost.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ghost's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 49, 71, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ghost #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Ghost.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ghost's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03541821241378784, 0.1735704094171524, -0.0020629114005714655, 0.03823785483837128, 0.09118136763572693, -0.012133877724409103, 0.05791834741830826, 0.10401911288499832, 0.004774532280862331, 0.08194556087255478, 0.08153138309717178, 0.03259696438908577, 0.07059947401285172, 0.15001031756401062, 0.09873950481414795, -0.2494811862707138, 0.04395541921257973, -0.12978123128414154, 0.02232726849615574, 0.11734926700592041, 0.054982151836156845, -0.06683968752622604, 0.08636634051799774, 0.009439103305339813, -0.055974964052438736, 0.029741184785962105, -0.03292955458164215, -0.06451698392629623, 0.10241790860891342, 0.0841546356678009, -0.004983953665941954, 0.024693898856639862, 0.0653672069311142, -0.15225684642791748, 0.0439731627702713, 0.123043492436409, 0.03680479899048805, 0.073542021214962, 0.02769157662987709, -0.04234379902482033, 0.1668940931558609, -0.0038693463429808617, 0.0799897164106369, 0.045011457055807114, -0.10370542109012604, -0.1651102900505066, -0.10857570916414261, 0.08147436380386353, 0.11089418083429337, 0.09573238343000412, -0.030273333191871643, 0.03856668248772621, 0.019818872213363647, 0.03639955818653107, 0.2518346607685089, -0.17114593088626862, -0.011527244001626968, 0.11581435799598694, 0.026554014533758163, 0.05633363500237465, -0.07913262397050858, 0.02461129054427147, 0.05458386242389679, 0.02458353526890278, 0.01706942729651928, -0.024903127923607826, 0.20002658665180206, 0.03462967276573181, -0.09546711295843124, -0.10022671520709991, 0.08475054800510406, -0.038898710161447525, -0.07639981806278229, -0.14878904819488525, -0.011538143269717693, -0.02247774973511696, 0.04687090590596199, -0.018719041720032692, -0.007065677084028721, -0.012453070841729641, -0.024247849360108376, -0.0931726023554802, -0.08126996457576752, -0.05174250900745392, -0.006473889574408531, 0.07378194481134415, 0.01776297017931938, 0.03131426125764847, -0.06600288301706314, 0.242147296667099, 0.027721524238586426, -0.0907648429274559, -0.07069499790668488, -0.10281052440404892, -0.09194191545248032, -0.031480975449085236, 0.030054248869419098, 0.019492588937282562, -0.049030601978302, 0.16112743318080902, -0.04619492590427399, 0.04417010024189949, 0.00625305762514472, -0.020527753978967667, 0.16349159181118011, 0.11666552722454071, -0.09805365651845932, -0.0036442650016397238, 0.05206087976694107, 0.0078071849420666695, -0.04141942784190178, -0.06943164765834808, -0.02072976902127266, -0.02299315296113491, 0.0143474992364645, 0.11736192554235458, 0.04667472466826439, 0.052446383982896805, 0.04059337079524994, -0.06870844960212708, 0.14324964582920074, -0.14505012333393097, 0.002880257787182927, -0.00809985026717186, -0.022430118173360825, -0.006458297371864319, 0.051808200776576996, -0.004745380952954292, -0.09807079285383224, 0.10633616149425507, -0.039309293031692505, -0.05991744622588158, -0.06878139823675156, -0.07828046381473541, 0.0007540430524386466, -0.012299641035497189, -0.04855676740407944, -0.09053611755371094, -0.1657983809709549, -0.038497284054756165, 0.015329789370298386, -0.03140545263886452, -0.059382472187280655, 0.04141383618116379, -0.048516951501369476, -0.01845894567668438, -0.027799827978014946, 0.012930157594382763, -0.03693782165646553, -0.0014896398643031716, -0.06796108186244965, 0.03984783962368965, 0.08483945578336716, 0.02613339200615883, -0.10258091241121292, 0.07737996429204941, -0.17646197974681854, 0.13138216733932495, -0.024863192811608315, 0.01987502910196781, -0.09756538271903992, -0.09613759815692902, -0.03727021813392639, -0.040887169539928436, 0.003538690274581313, 0.1267300248146057, -0.19286376237869263, -0.043609850108623505, 0.19670370221138, -0.09831596165895462, -0.10171402245759964, 0.06120822951197624, -0.06170935556292534, 0.021229377016425133, 0.11826986819505692, 0.04529671370983124, 0.1311461478471756, -0.11794755607843399, -0.06021684780716896, -0.056482329964637756, -0.07210368663072586, 0.23039661347866058, 0.050602879375219345, -0.024936284869909286, 0.004889378324151039, 0.018455060198903084, -0.024645116180181503, -0.033021628856658936, -0.01079566590487957, -0.045011796057224274, -0.0006820139824412763, 0.013257451355457306, 0.004804539959877729, -0.0393035002052784, -0.08769683539867401, 0.004497164860367775, -0.09898154437541962, -0.0004649190523196012, 0.10873979330062866, -0.069755919277668, 0.008224911987781525, -0.07792860269546509, 0.01049805898219347, -0.05045362189412117, 0.04018930345773697, -0.19418565928936005, -0.05654308944940567, 0.019191136583685875, -0.08829782903194427, 0.08455249667167664, 0.023720242083072662, 0.04199123755097389, 0.08591730147600174, 0.012599713169038296, 0.012292634695768356, -0.06046644598245621, -0.01957928016781807, -0.025631766766309738, -0.148236945271492, -0.07821416854858398, -0.054403968155384064, 0.09548023343086243, -0.1332608014345169, -0.001225533545948565, 0.09309934079647064, 0.09427162259817123, 0.003247571177780628, -0.06431970000267029, 0.030146174132823944, -0.03957383334636688, -0.038226418197155, -0.11887579411268234, -0.06237337738275528, -0.009203804656863213, -0.04249333217740059, 0.14341911673545837, -0.19141006469726562, -0.08510569483041763, 0.08463775366544724, 0.19021320343017578, -0.0839594304561615, 0.007622264325618744, -0.09933614730834961, -0.012460133992135525, -0.043316975235939026, -0.04842806234955788, 0.3075089454650879, 0.06235446408390999, 0.06930115818977356, -0.11364036053419113, -0.09047164022922516, 0.004829819779843092, -0.011594169773161411, -0.014918125234544277, 0.04613684117794037, 0.03892776370048523, -0.12862727046012878, 0.020975386723876, -0.001320148934610188, 0.13527077436447144, 0.20608879625797272, 0.05979619920253754, -0.09131839871406555, -0.04948951676487923, -0.10834251344203949, 0.00027020377456210554, 0.07114642858505249, 0.013823335990309715, 0.03373335674405098, 0.04144517704844475, 0.04389181360602379, 0.0321529358625412, -0.10246437788009644, 0.0028759632259607315, 0.061757318675518036, -0.04930726811289787, -0.031716398894786835, 0.029788788408041, 0.0205680001527071, 0.06169115751981735, 0.0789056047797203, 0.14406082034111023, -0.07905920594930649, -0.054532766342163086, -0.14052169024944305, 0.13410906493663788, -0.07502707839012146, -0.30237218737602234, -0.15905922651290894, -0.013115308247506618, -0.004446842707693577, 0.0029966465663164854, 0.05089583247900009, -0.07970137149095535, -0.048487402498722076, -0.12086129188537598, 0.11884491890668869, -0.05664963275194168, -0.029491998255252838, -0.007919357158243656, 0.01285554002970457, -0.03717648610472679, -0.11199197173118591, -0.03248853236436844, 0.04551194608211517, -0.10902383178472519, -0.025448517873883247, 0.05971609055995941, 0.046672262251377106, 0.16027680039405823, 0.007422931492328644, -0.0013561476953327656, -0.030828990042209625, 0.2617417275905609, -0.11139372736215591, 0.06514419615268707, 0.1964394599199295, -0.02681722864508629, 0.059543658047914505, 0.07762043923139572, 0.0039034427609294653, -0.0644669309258461, 0.07119672745466232, 0.07384488731622696, -0.10190294682979584, -0.19940660893917084, -0.03273851424455643, -0.004165309481322765, 0.05031854659318924, 0.1337970346212387, 0.07462917268276215, 0.05332997813820839, -0.0000758385649533011, -0.10229715704917908, 0.014544007368385792, 0.01849781721830368, 0.12224715948104858, -0.06288639456033707, -0.027887169271707535, 0.033510707318782806, -0.05837417021393776, 0.032384227961301804, 0.14144954085350037, 0.022281192243099213, 0.1928577572107315, -0.07290849089622498, 0.07478801906108856, 0.08280420303344727, 0.07877731323242188, 0.03311134874820709, 0.009883923456072807, 0.024972256273031235, 0.00794332567602396, -0.0017477113287895918, -0.10797413438558578, -0.04594440758228302, 0.06232994794845581, 0.013020739890635014, -0.007389539387077093, -0.044546596705913544, -0.020812565460801125, 0.035269517451524734, 0.2151002734899521, -0.039140038192272186, -0.18267448246479034, -0.13318829238414764, 0.028775954619050026, -0.06451980024576187, -0.055824026465415955, -0.03022676147520542, 0.08925674855709076, -0.23491744697093964, 0.06336376816034317, -0.05489758774638176, 0.1169009879231453, -0.10699143260717392, 0.011785282753407955, 0.048125412315130234, 0.045103807002305984, -0.058486998081207275, 0.1018049344420433, -0.10854040086269379, 0.0499325692653656, -0.0225584227591753, 0.05342061445116997, -0.09364749491214752, 0.03250463679432869, 0.012767938897013664, 0.046353865414857864, 0.0929691269993782, 0.014661122113466263, 0.026549534872174263, -0.008392859250307083, -0.06479257345199585, 0.028578968718647957, 0.03434520587325096, -0.14146354794502258, 0.11679238826036453, -0.02008833736181259, 0.03338916599750519, -0.07676568627357483, -0.06491776555776596, -0.07438597083091736, -0.15974751114845276, 0.09130941331386566, -0.130196675658226, 0.01372012123465538, -0.06871266663074493, -0.032793547958135605, 0.024853307753801346, 0.27637359499931335, -0.08310555666685104, -0.07461600750684738, -0.13256554305553436, 0.03156958520412445, 0.15704388916492462, -0.08480377495288849, 0.008880285546183586, -0.023266028612852097, 0.22051115334033966, -0.0020777250174432993, -0.13263821601867676, -0.032682690769433975, -0.07496006786823273, -0.1765424758195877, -0.004026614595204592, 0.16478516161441803, 0.055378738790750504, 0.016596214845776558, -0.0022664328571408987, -0.01934729516506195, -0.048771437257528305, -0.17705994844436646, 0.02949722856283188, 0.23142486810684204, -0.005238738376647234, -0.010058421641588211, 0.03992156684398651, 0.04985984042286873, -0.1279139667749405, 0.007341466844081879, 0.036076869815588, 0.17983558773994446, -0.07219178974628448, 0.21746475994586945, 0.03758092597126961, -0.09151546657085419, -0.1661558747291565, -0.002782363211736083, 0.03370967507362366, 0.035553283989429474, 0.06127939745783806, -0.21776148676872253, 0.06038939207792282, 0.049146413803100586, 0.007802506443113089, 0.030884133651852608, -0.3469711244106293, -0.1513821929693222, -0.008590907789766788, 0.016000015661120415, -0.17250202596187592, -0.03465460613369942, -0.03332690894603729, -0.09960319101810455, -0.2415875792503357, 0.05960522219538689, -0.12681883573532104, 0.060125499963760376, 0.02387939766049385, 0.12858109176158905, 0.05578923225402832, -0.05070771276950836, 0.13675442337989807, -0.038255032151937485, 0.07084304094314575, -0.09652015566825867, -0.07595038414001465, 0.0837145745754242, -0.09334951639175415, 0.10428491234779358, 0.02669498510658741, 0.08747556060552597, -0.05493435636162758, -0.08094044029712677, -0.05043766647577286, -0.001386716146953404, -0.03702331334352493, -0.08557860553264618, -0.08354456722736359, 0.08170878887176514, 0.11492718011140823, -0.03300636261701584, -0.09174928069114685, -0.07103033363819122, 0.008546051569283009, 0.043231431394815445, 0.11900151520967484, 0.032977424561977386, -0.05974145606160164, 0.009186708368360996, 0.018363624811172485, 0.012791718356311321, -0.14916552603244781, 0.05316782370209694, 0.10149098932743073, 0.04517700895667076, 0.08833165466785431, 0.007522630505263805, -0.1636384129524231, 0.008448614738881588, 0.044835854321718216, -0.18215832114219666, -0.15303103625774384, -0.03942465782165527, 0.0468728244304657, -0.10128097236156464, -0.029907651245594025, 0.12913045287132263, -0.02687930129468441, -0.028606969863176346, 0.003055970650166273, 0.044888656586408615, -0.0077380589209496975, 0.08345195651054382, -0.03601381182670593, 0.05332095921039581, -0.08388496190309525, 0.1389445811510086, 0.05743686854839325, -0.017725417390465736, 0.05248882621526718, 0.06891188770532608, -0.08549240231513977, 0.01598415896296501, -0.10760100930929184, 0.02149181254208088, -0.008301462978124619, -0.02186376042664051, 0.02838015742599964, -0.014543000608682632, 0.04628126695752144, 0.08078861981630325, -0.030068237334489822, 0.0999750867486, -0.03834661841392517, 0.03220264986157417, -0.12384242564439774, 0.06754088401794434, 0.015374608337879181, 0.020304039120674133, -0.12097448855638504, 0.20586782693862915, 0.04026579484343529, 0.12447123229503632, -0.0384710393846035, -0.08040593564510345, -0.03769724443554878, -0.013290180824697018, -0.05629146471619606, -0.025741079822182655, -0.09337422996759415, -0.030288394540548325, -0.00045324538950808346, -0.0018708111019805074, -0.031206483021378517, 0.0583609938621521, -0.033583175390958786, -0.06753288954496384, -0.0832756981253624, 0.04369097575545311, -0.14999431371688843, 0.033721987158060074, 0.11425627768039703, -0.04436348006129265, 0.12114489078521729, 0.053813643753528595, -0.04374411329627037, 0.02280697226524353, -0.15302766859531403, 0.05530716851353645, 0.021393107250332832, 0.03192903473973274, 0.017426859587430954, -0.13799448311328888, -0.013129673898220062, -0.03461667150259018, -0.08416818827390671, -0.0005802122177556157, -0.012732906267046928, -0.12548911571502686, -0.01539996825158596, 0.11405977606773376, -0.011998631060123444, -0.05112457647919655, 0.07083789259195328, 0.035393111407756805, 0.019260859116911888, 0.03868694230914116, -0.013229350559413433, 0.0814502015709877, -0.1738348752260208, -0.0749240517616272, -0.004709918983280659, 0.04631665721535683, 0.04536551982164383, -0.036252304911613464, 0.03618425503373146, -0.0169203020632267, 0.21673336625099182, 0.037681516259908676, 0.02170156128704548, 0.020655890926718712, -0.07437172532081604, 0.015306941233575344, 0.026102300733327866, 0.057639919221401215, -0.015733202919363976, -0.03111657127737999, 0.008266331627964973, -0.018393201753497124, -0.09200838208198547, -0.0008144958992488682, 0.0919838547706604, -0.00548528041690588, 0.20805124938488007, -0.06365437805652618, 0.0639493316411972, -0.024869384244084358, -0.08134332299232483, -0.04222699999809265, -0.046981580555438995, 0.039382386952638626, -0.06408392637968063, 0.07425137609243393, 0.1719800978899002, -0.13156405091285706, 0.11813703179359436, 0.04400867968797684, -0.039054255932569504, -0.1169431060552597, -0.20780089497566223, -0.0092616006731987, -0.05096038430929184, 0.02638915367424488, -0.12859730422496796, 0.09292450547218323, 0.01256007794290781, 0.03758348524570465, -0.06513586640357971, 0.15493477880954742, -0.06212764233350754, -0.14303451776504517, 0.028975514695048332, 0.016918865963816643, 0.02401205338537693, 0.04402350261807442, 0.09562601894140244, 0.07289360463619232, -0.011870809830725193, 0.06696252524852753, 0.04732061177492142, 0.034280408173799515, 0.03949485719203949, -0.026797406375408173, -0.03488828241825104, 0.0260009765625, -0.01890367828309536, 0.009711112827062607, 0.10756422579288483, 0.08831771463155746, -0.024714993312954903, -0.021360596641898155, 0.2859996557235718, -0.022906098514795303, -0.014586426317691803, -0.16355380415916443, 0.18344491720199585, 0.0042810398153960705, -0.0009782856795936823, 0.01629859395325184, -0.13136038184165955, 0.003466165391728282, 0.09235484153032303, 0.14117851853370667, -0.024579772725701332, 0.01983894221484661, -0.031921785324811935, 0.019426777958869934, 0.020992029458284378, 0.11581762135028839, 0.052373357117176056, 0.19453293085098267, -0.021231386810541153, 0.05625738948583603, -0.01207401230931282, -0.025482676923274994, 0.005823372397571802, 0.0787406861782074, -0.050492845475673676, -0.009176135994493961, -0.04552840813994408, 0.09190483391284943, -0.08859862387180328, -0.29470521211624146, -0.036055296659469604, -0.033281151205301285, -0.08249678462743759, 0.063709557056427, -0.0313616544008255, -0.004811824765056372, 0.0853809118270874, 0.03086821548640728, -0.046457499265670776, 0.1725233793258667, 0.04874027892947197, -0.05893777310848236, -0.02869085781276226, 0.10887474566698074, -0.07152505964040756, 0.1875138133764267, -0.04711899161338806, 0.010491953231394291, 0.06701706349849701, 0.0016869520768523216, -0.13697625696659088, 0.0033187700901180506, 0.033546123653650284, -0.08390576392412186, -0.020627662539482117, 0.20386697351932526, 0.025455880910158157, 0.019408760592341423, 0.05571260675787926, -0.020115412771701813, 0.0004291387740522623, 0.0002500948612578213, 0.07715976983308792, -0.11697369068861008, 0.06962667405605316, -0.08193850517272949, 0.11613424122333527, 0.14419841766357422, -0.05840986222028732, 0.03741459175944328, -0.07800712436437607, 0.020517321303486824, -0.04541608691215515, 0.05274277180433273, -0.008759268559515476, -0.11327356100082397, 0.00818994827568531, 0.005830651614814997, 0.004599908832460642, -0.18741372227668762, -0.09144880622625351, 0.07024835050106049, -0.0409420020878315, 0.04289514571428299, 0.16403809189796448, -0.005865227896720171, 0.050332993268966675, -0.033494189381599426, 0.003128874348476529, 0.005468463990837336, 0.13079482316970825, -0.1793263554573059, -0.0754159539937973 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c4407bb331c50916c1dfdc7f875f73a9.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghostemane</div> <a href="https://genius.com/artists/ghostemane"> <div style="text-align: center; font-size: 14px;">@ghostemane</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ghostemane. Dataset is available [here](https://huggingface.co/datasets/huggingartists/ghostemane). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ghostemane") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1ou29taa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ghostemane's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/futdflju) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/futdflju/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ghostemane') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ghostemane") model = AutoModelWithLMHead.from_pretrained("huggingartists/ghostemane") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/ghostemane"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/ghostemane
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ghostemane", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ghostemane #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghostemane</div> <a href="URL <div style="text-align: center; font-size: 14px;">@ghostemane</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Ghostemane. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Ghostemane's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ghostemane.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ghostemane's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ghostemane #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Ghostemane.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ghostemane's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/ghostemane #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Ghostemane.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Ghostemane's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.016205070540308952, 0.1758970320224762, -0.002908768132328987, 0.05057184025645256, 0.08998575806617737, 0.007100985385477543, 0.06587078422307968, 0.10271195322275162, 0.013940361328423023, 0.08018685132265091, 0.06683550775051117, 0.03199443221092224, 0.06768519431352615, 0.0902891457080841, 0.07190600782632828, -0.2306946963071823, 0.04358593374490738, -0.10897275805473328, -0.01696985587477684, 0.10192271322011948, 0.08377517759799957, -0.0634361281991005, 0.08652378618717194, 0.021552463993430138, -0.0588228777050972, 0.015823695808649063, 0.0036389431916177273, -0.05864504352211952, 0.09314523637294769, 0.057196296751499176, 0.026885993778705597, 0.013805915601551533, 0.06975594907999039, -0.1563488245010376, 0.03314640000462532, 0.1267555058002472, 0.0363917239010334, 0.07317783683538437, 0.040037572383880615, -0.06023320555686951, 0.12265285849571228, 0.000082500817370601, 0.10635876655578613, 0.05336827039718628, -0.12772859632968903, -0.12015071511268616, -0.12048932909965515, 0.07852020114660263, 0.09903622418642044, 0.1010727807879448, -0.02816525101661682, 0.0453903004527092, -0.028870876878499985, 0.037672560662031174, 0.23259641230106354, -0.1832282543182373, -0.016645722091197968, 0.09758217632770538, 0.040770579129457474, 0.03691934794187546, -0.08926421403884888, 0.0172774288803339, 0.044239386916160583, 0.02841498889029026, 0.031286660581827164, -0.020989134907722473, 0.16118186712265015, 0.04266263172030449, -0.1032516360282898, -0.08270100504159927, 0.09457296878099442, -0.03306657820940018, -0.06369388103485107, -0.11710705608129501, -0.021251799538731575, -0.005314540583640337, 0.048492081463336945, -0.0032715564593672752, -0.0004942694213241339, 0.00357677205465734, -0.023927871137857437, -0.09889491647481918, -0.07369109988212585, -0.050179172307252884, -0.01777542196214199, 0.04357868432998657, 0.026503052562475204, 0.03786139562726021, -0.0723935142159462, 0.22791801393032074, -0.005199254024773836, -0.08904893696308136, -0.0584002360701561, -0.09173141419887543, -0.0969063937664032, -0.03848687559366226, 0.018192874267697334, 0.0008057194645516574, -0.03818957135081291, 0.16447798907756805, -0.04326775297522545, 0.03741879388689995, -0.02007107064127922, -0.010631240904331207, 0.14024239778518677, 0.13391268253326416, -0.10387974977493286, -0.01696503721177578, 0.06897153705358505, 0.0014707216760143638, -0.053933508694171906, -0.051114171743392944, -0.01539073046296835, -0.013175686821341515, 0.029214976355433464, 0.09421008080244064, 0.059427227824926376, 0.05615825578570366, 0.011525934562087059, -0.07985445111989975, 0.10717758536338806, -0.13740728795528412, 0.016714032739400864, -0.0024284746032208204, -0.03760469704866409, -0.007138929329812527, 0.05636250600218773, 0.009163443930447102, -0.10214110463857651, 0.10152457654476166, -0.06243395060300827, -0.04644202068448067, -0.08303789794445038, -0.08416707068681717, 0.005719822831451893, -0.0413406640291214, -0.04717585816979408, -0.07088359445333481, -0.190805122256279, -0.04117792472243309, 0.03610378876328468, -0.054030418395996094, -0.049446940422058105, 0.01978841982781887, -0.03187510743737221, 0.012416370213031769, -0.0177468229085207, -0.0036127481143921614, -0.02582360990345478, 0.011857575736939907, -0.06251877546310425, 0.03095213696360588, 0.07172415405511856, 0.043947990983724594, -0.10498521476984024, 0.07626711577177048, -0.17166517674922943, 0.11823982745409012, -0.02543191984295845, 0.020648255944252014, -0.08763054013252258, -0.08034767210483551, -0.022058196365833282, -0.05163934454321861, 0.007693419698625803, 0.12159812450408936, -0.16865362226963043, -0.031196417286992073, 0.19452796876430511, -0.08926505595445633, -0.0835212990641594, 0.08186392486095428, -0.072929747402668, 0.01591569185256958, 0.10390559583902359, 0.07149562984704971, 0.12207064777612686, -0.11331343650817871, -0.04101058095693588, -0.06710603833198547, -0.07964003831148148, 0.19813090562820435, 0.04501790925860405, -0.0371473953127861, 0.01909676007926464, 0.0005270466790534556, -0.03410880267620087, -0.018447881564497948, -0.008743958547711372, -0.03914836421608925, -0.01211406197398901, 0.001175681478343904, 0.017288802191615105, -0.03425667807459831, -0.074069544672966, -0.027578692883253098, -0.10001689940690994, 0.0380275659263134, 0.09295958280563354, -0.060375507920980453, 0.00399627722799778, -0.09123733639717102, 0.009768279269337654, -0.045783329755067825, 0.01158205233514309, -0.1548009067773819, -0.057053565979003906, 0.025317538529634476, -0.08290538936853409, 0.08389298617839813, 0.01915130205452442, 0.04452493041753769, 0.07739603519439697, -0.01886557787656784, -0.0014922170666977763, -0.05765480175614357, -0.011024187318980694, -0.024874180555343628, -0.1530461311340332, -0.04873189702630043, -0.04587263986468315, 0.08512184023857117, -0.11707845330238342, 0.0030226707458496094, 0.08527696877717972, 0.12727157771587372, 0.009272661060094833, -0.07223720848560333, 0.03047063760459423, -0.053688716143369675, -0.023670190945267677, -0.11514333635568619, -0.055205896496772766, 0.0022484774235635996, -0.01649644784629345, 0.14692015945911407, -0.1814112663269043, -0.0806179791688919, 0.10540211200714111, 0.12098801881074905, -0.07606089115142822, 0.06402470916509628, -0.07734565436840057, -0.019697735086083412, -0.0516483448445797, -0.05788467824459076, 0.29198235273361206, 0.03281683847308159, 0.0804043784737587, -0.11164270341396332, -0.1024993509054184, -0.006871791090816259, -0.02916005253791809, -0.02872851863503456, 0.037451986223459244, 0.03712698817253113, -0.16240057349205017, 0.046179529279470444, -0.0025678202509880066, 0.08624643832445145, 0.20503085851669312, 0.03778316453099251, -0.06911157071590424, -0.05885070562362671, -0.08133473992347717, 0.0010587855940684676, 0.09083996713161469, -0.024013781920075417, 0.04213571175932884, 0.03856629505753517, 0.058309465646743774, 0.04228315129876137, -0.11393413692712784, 0.007444572634994984, 0.05404666066169739, -0.04933364689350128, -0.029743243008852005, 0.01917329430580139, 0.031700994819402695, 0.07177281379699707, 0.09068676829338074, 0.13608674705028534, -0.053709886968135834, -0.051334198564291, -0.14434778690338135, 0.12173499166965485, -0.09798213094472885, -0.2559056580066681, -0.15152977406978607, -0.01716543175280094, 0.006726040039211512, 0.017129622399806976, 0.03514472022652626, -0.07254608720541, -0.05418046936392784, -0.10103105753660202, 0.11845852434635162, -0.056492071598768234, -0.029373476281762123, 0.01905539631843567, 0.018195515498518944, -0.015788771212100983, -0.11300400644540787, -0.03981144726276398, 0.03887514770030975, -0.09584295749664307, -0.013591542840003967, 0.04200177267193794, 0.03940568119287491, 0.16827376186847687, -0.0032594858203083277, 0.01283322088420391, -0.014236998744308949, 0.26126107573509216, -0.1040753424167633, 0.08488587290048599, 0.18683552742004395, -0.001971736317500472, 0.06240511313080788, 0.07003278285264969, -0.0024042550940066576, -0.056226227432489395, 0.06528405100107193, 0.08735185116529465, -0.07648377865552902, -0.2056552916765213, -0.03858059644699097, -0.01501881331205368, 0.023616446182131767, 0.10511773824691772, 0.05033205822110176, 0.06227005273103714, 0.00971256010234356, -0.09967561066150665, 0.022418655455112457, 0.03298245742917061, 0.11193501949310303, -0.05009667947888374, -0.010004827752709389, 0.0390167310833931, -0.050174761563539505, 0.03108908049762249, 0.13004601001739502, 0.021633511409163475, 0.185898095369339, -0.06750426441431046, 0.07151597738265991, 0.07574783265590668, 0.08786972612142563, 0.02785448357462883, 0.015132280066609383, -0.012460276484489441, 0.017903398722410202, 0.0031004627235233784, -0.09328190237283707, -0.028151918202638626, 0.046833258122205734, 0.02582865208387375, -0.0017022001557052135, -0.04539535939693451, -0.050572119653224945, 0.049612004309892654, 0.22032013535499573, 0.017558857798576355, -0.17754419147968292, -0.12044267356395721, 0.05641616880893707, -0.06480929255485535, -0.06406162679195404, -0.01831189915537834, 0.07982265204191208, -0.2241499274969101, 0.05582723021507263, -0.046196382492780685, 0.11131353676319122, -0.10139356553554535, 0.0048497398383915424, 0.06822807341814041, 0.04074772074818611, -0.0651022419333458, 0.08830409497022629, -0.13224264979362488, 0.056432656943798065, -0.014381173066794872, 0.07205260545015335, -0.06877495348453522, 0.03130560740828514, 0.025153426453471184, 0.04107695445418358, 0.0810130313038826, 0.02450660988688469, 0.027481399476528168, -0.014570862986147404, -0.03772081807255745, 0.008520256727933884, 0.051886480301618576, -0.12633022665977478, 0.11948225647211075, -0.037934560328722, 0.032549455761909485, -0.0355151891708374, -0.05761057510972023, -0.0750148594379425, -0.13523226976394653, 0.07542605698108673, -0.11581946164369583, 0.009176843799650669, -0.06693048030138016, -0.006690809968858957, 0.0016603583935648203, 0.2428296059370041, -0.1072908565402031, -0.08505187183618546, -0.1412062644958496, -0.0025185169652104378, 0.14789979159832, -0.07566078752279282, 0.011913632974028587, -0.024065149948000908, 0.17430266737937927, 0.0013689901679754257, -0.14055339992046356, -0.013111632317304611, -0.07729633152484894, -0.18251436948776245, -0.02601535990834236, 0.1676402986049652, 0.06417734920978546, 0.026077352464199066, -0.0024018853437155485, 0.009383813478052616, -0.05333508178591728, -0.17053337395191193, 0.04252114146947861, 0.19174312055110931, 0.007787758018821478, 0.031191347166895866, 0.02677140012383461, 0.053917158395051956, -0.11507824063301086, 0.01158161461353302, 0.03087323158979416, 0.17374609410762787, -0.0669669583439827, 0.19808898866176605, 0.009861273691058159, -0.09375812113285065, -0.16811683773994446, 0.02070978470146656, 0.004936791956424713, 0.02331460826098919, 0.006088343448936939, -0.1864374428987503, 0.05844228342175484, 0.03382055088877678, -0.006702404003590345, 0.04542725533246994, -0.33017677068710327, -0.14091871678829193, -0.004571232013404369, 0.008915421552956104, -0.10877591371536255, -0.029407186433672905, -0.0360000841319561, -0.0744105651974678, -0.25997352600097656, 0.0825858786702156, -0.12626874446868896, 0.06820611655712128, 0.010451024398207664, 0.11630986630916595, 0.04690771922469139, -0.0604463666677475, 0.13074538111686707, -0.03601458668708801, 0.06654772162437439, -0.10076655447483063, -0.07018931955099106, 0.10612098127603531, -0.07676681876182556, 0.11493582278490067, 0.033797506242990494, 0.090082086622715, -0.08052653819322586, -0.0742877721786499, -0.07861647754907608, 0.010245765559375286, -0.05324619263410568, -0.09832600504159927, -0.0896390751004219, 0.09516125917434692, 0.12683771550655365, -0.03468308970332146, -0.09483508765697479, -0.04510496184229851, 0.0015379872638732195, 0.07322589308023453, 0.10681765526533127, 0.04783446341753006, -0.0784619078040123, 0.01057157851755619, 0.016887975856661797, 0.02540736086666584, -0.12468660622835159, 0.05812722444534302, 0.09134437143802643, 0.041321031749248505, 0.10506872087717056, 0.015986334532499313, -0.1617862731218338, 0.007346759550273418, 0.0337381549179554, -0.17684222757816315, -0.1255217045545578, -0.0469498485326767, 0.002079993486404419, -0.09838597476482391, -0.03427473455667496, 0.13680170476436615, -0.020766036584973335, -0.026813078671693802, 0.004120695870369673, 0.06363101303577423, -0.02798999659717083, 0.09039590507745743, -0.00018861828721128404, 0.05165516585111618, -0.0762457624077797, 0.13091017305850983, 0.06329813599586487, -0.0007185578579083085, 0.05014526844024658, 0.08813326060771942, -0.08511856198310852, 0.004894565790891647, -0.07682085782289505, 0.03824656456708908, -0.04812946170568466, -0.009233645163476467, -0.0019479991169646382, -0.04334346577525139, 0.04485436901450157, 0.09437109529972076, -0.0189073383808136, 0.11005029082298279, -0.030670205131173134, 0.019641540944576263, -0.12519842386245728, 0.07600998878479004, 0.029872987419366837, 0.01993284560739994, -0.12946878373622894, 0.202036514878273, 0.021852241829037666, 0.0962953194975853, -0.037177566438913345, -0.06101683899760246, -0.07207980006933212, -0.010228507220745087, -0.08765196800231934, -0.0339018739759922, -0.08356206119060516, -0.028321752324700356, -0.0061344848945736885, -0.02792821265757084, -0.017274552956223488, 0.057147733867168427, -0.030475955456495285, -0.06494627147912979, -0.07591771334409714, 0.03714635595679283, -0.1416843980550766, 0.015551505610346794, 0.12340725213289261, -0.049719855189323425, 0.11455351114273071, 0.05596502497792244, -0.04270489513874054, 0.021213816478848457, -0.13282433152198792, 0.03746425732970238, -0.016507571563124657, 0.017130373045802116, 0.028668487444519997, -0.14639779925346375, -0.00472106272354722, -0.049314919859170914, -0.062267668545246124, 0.00823008269071579, 0.01040309015661478, -0.11853858828544617, -0.00010617092630127445, 0.08536402881145477, -0.031674474477767944, -0.06405416876077652, 0.06445375084877014, 0.042726967483758926, 0.008168271742761135, 0.04184335470199585, -0.0371268168091774, 0.09119187295436859, -0.17178311944007874, -0.056700125336647034, 0.017279071733355522, 0.04131181538105011, 0.031831543892621994, -0.004053438547998667, 0.0391010157763958, -0.02461855672299862, 0.18069705367088318, 0.02955043502151966, -0.008410939015448093, 0.03349921107292175, -0.06858943402767181, 0.020512260496616364, 0.0416504330933094, 0.05477450042963028, -0.049248695373535156, -0.05244051665067673, -0.006084822583943605, -0.02463606745004654, -0.07694946974515915, -0.04003315046429634, 0.12060386687517166, 0.05455106496810913, 0.17573678493499756, -0.045709505677223206, 0.0665927603840828, -0.03045901656150818, -0.11604730784893036, -0.014605273492634296, -0.04863639548420906, 0.035791244357824326, -0.06125466525554657, 0.07327554374933243, 0.1599891632795334, -0.16551713645458221, 0.1225273460149765, 0.018513305112719536, -0.04786599427461624, -0.10088469088077545, -0.20530535280704498, -0.023419247940182686, -0.049757879227399826, 0.034172043204307556, -0.13254988193511963, 0.08983544260263443, 0.018499914556741714, 0.03526504337787628, -0.07419591397047043, 0.14165300130844116, -0.05548955127596855, -0.1146293357014656, 0.02240356057882309, 0.034077923744916916, 0.02596617490053177, 0.06775332987308502, 0.08230400830507278, 0.04888371378183365, 0.014504681341350079, 0.06148736923933029, 0.040854793041944504, 0.023488849401474, 0.02761886827647686, -0.016748176887631416, -0.04041629657149315, 0.036276575177907944, -0.006261362228542566, 0.012938623316586018, 0.08824741840362549, 0.07446573674678802, -0.02140515297651291, -0.027746077626943588, 0.27244099974632263, -0.04831909388303757, -0.041120465844869614, -0.17318055033683777, 0.18990442156791687, 0.0016913625877350569, -0.005695217754691839, 0.02962452545762062, -0.13402943313121796, -0.0022867433726787567, 0.11283081769943237, 0.1624728888273239, -0.037021223455667496, 0.011513201519846916, -0.03881954774260521, 0.014188739471137524, 0.03289230912923813, 0.08941397070884705, 0.06315504014492035, 0.20214658975601196, -0.038304708898067474, 0.04703089967370033, 0.0019751491490751505, -0.022478202357888222, -0.0175080057233572, 0.08260951191186905, -0.0424310676753521, 0.0038399933837354183, -0.056096401065588, 0.09014216810464859, -0.06361739337444305, -0.2510250210762024, -0.01426868699491024, -0.04756971076130867, -0.08392579108476639, 0.05343548208475113, -0.036205023527145386, -0.03544354811310768, 0.08507131040096283, 0.0336776003241539, -0.042636625468730927, 0.13249047100543976, 0.04603228718042374, -0.0632469654083252, -0.019583653658628464, 0.10040462017059326, -0.04478900507092476, 0.20953349769115448, -0.026817966252565384, -0.0022956114262342453, 0.08863165229558945, 0.008598778396844864, -0.12053808569908142, 0.015019265934824944, 0.03712306544184685, -0.08641228079795837, -0.023879732936620712, 0.2040397822856903, 0.02380521222949028, 0.024642784148454666, 0.05200419947504997, -0.04176566004753113, 0.006911835633218288, -0.037090059369802475, 0.05548584461212158, -0.14005564153194427, 0.06171679124236107, -0.09524927288293839, 0.1357785314321518, 0.17673400044441223, -0.060941778123378754, 0.03024858981370926, -0.07020717114210129, 0.011703201569616795, -0.035889267921447754, 0.05874944478273392, -0.01640734262764454, -0.101395383477211, 0.016392432153224945, 0.0010348346550017595, 0.019433576613664627, -0.2034725546836853, -0.08903522789478302, 0.04873490706086159, -0.040106020867824554, 0.028308020904660225, 0.168494313955307, 0.027531156316399574, 0.06298362463712692, -0.029894964769482613, 0.009080737829208374, -0.013696447014808655, 0.128840371966362, -0.1503210812807083, -0.0772148072719574 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9dd7d13194aa588b336b78bcf05530f0.638x638x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">​gizmo</div> <a href="https://genius.com/artists/gizmo"> <div style="text-align: center; font-size: 14px;">@gizmo</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ​gizmo. Dataset is available [here](https://huggingface.co/datasets/huggingartists/gizmo). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/gizmo") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3lolgugy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ​gizmo's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/31nxia6i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/31nxia6i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/gizmo') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/gizmo") model = AutoModelWithLMHead.from_pretrained("huggingartists/gizmo") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/gizmo"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/gizmo
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/gizmo", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gizmo #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">​gizmo</div> <a href="URL <div style="text-align: center; font-size: 14px;">@gizmo</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from ​gizmo. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on ​gizmo's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​gizmo.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​gizmo's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gizmo #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from ​gizmo.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​gizmo's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gizmo #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from ​gizmo.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on ​gizmo's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.018004655838012695, 0.15292322635650635, -0.002734092064201832, 0.035229891538619995, 0.09299737215042114, -0.0004746133054140955, 0.0883248820900917, 0.11142496019601822, -0.00909226480871439, 0.07094743102788925, 0.07202931493520737, 0.018614811822772026, 0.07095301896333694, 0.13300581276416779, 0.08936524391174316, -0.27754735946655273, 0.029325442388653755, -0.10417782515287399, 0.027317151427268982, 0.12313006073236465, 0.09161496162414551, -0.053019095212221146, 0.0835169330239296, 0.04217280447483063, -0.07547654956579208, 0.025706879794597626, -0.011304512619972229, -0.07826078683137894, 0.09058728069067001, 0.07461388409137726, 0.025772148743271828, 0.033953215926885605, 0.0679941400885582, -0.18740977346897125, 0.03390035033226013, 0.12629060447216034, 0.02998146414756775, 0.07231608033180237, 0.04692467674612999, -0.07656709104776382, 0.17432302236557007, -0.022422434762120247, 0.0871114507317543, 0.049521107226610184, -0.10752692073583603, -0.16773873567581177, -0.12606970965862274, 0.08080775290727615, 0.09649113565683365, 0.08173681050539017, -0.030607454478740692, 0.04284180328249931, 0.003967795986682177, 0.04251524806022644, 0.24706630408763885, -0.2418392151594162, -0.021361058577895164, 0.09586755186319351, 0.03812067583203316, 0.043141286820173264, -0.08019199222326279, 0.02472729980945587, 0.052300143986940384, 0.022112922742962837, 0.04611988738179207, -0.013113129884004593, 0.22413410246372223, 0.01762600988149643, -0.09516208618879318, -0.0845169797539711, 0.09751192480325699, -0.031040633097290993, -0.08578035980463028, -0.15759848058223724, 0.008165317587554455, -0.024110466241836548, 0.03544141724705696, -0.008554116822779179, -0.007616610731929541, 0.00016501305799465626, -0.047350019216537476, -0.10022920370101929, -0.08955828100442886, -0.03089533932507038, -0.02466798759996891, 0.09157431125640869, 0.024778567254543304, 0.03124760091304779, -0.07488507777452469, 0.23008079826831818, 0.0007364067132584751, -0.10829061269760132, -0.054198991507291794, -0.08967115730047226, -0.08913373947143555, -0.05742456018924713, 0.008190654218196869, 0.019005412235856056, -0.0573599673807621, 0.1694834977388382, -0.036641765385866165, 0.025825759395956993, 0.0015939646400511265, -0.024377549067139626, 0.15407441556453705, 0.12539124488830566, -0.09780707210302353, -0.031416814774274826, 0.048380713909864426, -0.015391901135444641, -0.06856736540794373, -0.06648808717727661, -0.01801208034157753, -0.020534073933959007, 0.025986911728978157, 0.09420528262853622, 0.05111685395240784, 0.0551728755235672, 0.03612196072936058, -0.06086854264140129, 0.10415384918451309, -0.14173884689807892, 0.007771648932248354, -0.014167890883982182, -0.035932231694459915, 0.01589847356081009, 0.03623586893081665, 0.01820995658636093, -0.09256438165903091, 0.11354032903909683, -0.052596982568502426, -0.053539831191301346, -0.0690871998667717, -0.08024787902832031, -0.007847040891647339, -0.016323409974575043, -0.04720963537693024, -0.08611252158880234, -0.15427203476428986, -0.03547406569123268, 0.02379344403743744, -0.046227749437093735, -0.03814804553985596, 0.04634729400277138, -0.03340969607234001, 0.004298457410186529, -0.014792823232710361, -0.01079830527305603, -0.03208251670002937, 0.02573290467262268, -0.05865931510925293, 0.03332318738102913, 0.08863126486539841, 0.03166409581899643, -0.10813692212104797, 0.06569678336381912, -0.16371852159500122, 0.13961093127727509, -0.013275216333568096, 0.017298763617873192, -0.11033529788255692, -0.09267465025186539, -0.024104729294776917, -0.02983223646879196, -0.00829910859465599, 0.09947248548269272, -0.17564117908477783, -0.04265584424138069, 0.18785345554351807, -0.07372573018074036, -0.08207154273986816, 0.06942819803953171, -0.07845566421747208, 0.044144582003355026, 0.13550004363059998, 0.06717970222234726, 0.15454164147377014, -0.11448359489440918, -0.0712856575846672, -0.04864412918686867, -0.05574570223689079, 0.22821380198001862, 0.05338310822844505, -0.007791236508637667, 0.015087555162608624, 0.014354986138641834, -0.02788442187011242, -0.025544608011841774, -0.026248658075928688, -0.0419779010117054, -0.010591212660074234, 0.011803243309259415, -0.0068308524787425995, -0.05004402622580528, -0.06091908738017082, -0.017006894573569298, -0.11248821020126343, 0.027362504974007607, 0.10320188850164413, -0.06909722834825516, 0.006922853644937277, -0.09312412887811661, -0.0005585048347711563, -0.04085385799407959, 0.02108702063560486, -0.18785254657268524, -0.05629349872469902, 0.02580469660460949, -0.06602877378463745, 0.09059971570968628, 0.007340025156736374, 0.040271636098623276, 0.06409721821546555, -0.008462872356176376, 0.022921612486243248, -0.049314890056848526, -0.019532525911927223, -0.03285553678870201, -0.14406880736351013, -0.07069824635982513, -0.05180511996150017, 0.08583247661590576, -0.12496021389961243, 0.008588381111621857, 0.10853037238121033, 0.11957142502069473, 0.022678399458527565, -0.06114547327160835, 0.009990515187382698, -0.0396389476954937, -0.04291918873786926, -0.1150234118103981, -0.06051747500896454, 0.008390766568481922, -0.038559332489967346, 0.1548839807510376, -0.16526706516742706, -0.06987754255533218, 0.09954950958490372, 0.16950498521327972, -0.1076473593711853, 0.011968047358095646, -0.0916583240032196, -0.00682340981438756, -0.05271860957145691, -0.03403826430439949, 0.26808837056159973, 0.03648219630122185, 0.07578301429748535, -0.11026867479085922, -0.0956067144870758, 0.0033404056448489428, -0.03837509825825691, -0.028415659442543983, 0.021896129474043846, 0.023255130276083946, -0.1754293441772461, 0.03141845390200615, -0.008102698251605034, 0.1191180944442749, 0.22169852256774902, 0.05515481159090996, -0.09914954751729965, -0.06027091667056084, -0.09292358160018921, 0.00846241507679224, 0.05169885233044624, 0.027218839153647423, 0.02728206478059292, 0.0441739447414875, 0.04825957491993904, 0.03921116143465042, -0.11217019706964493, 0.006966474000364542, 0.07880272716283798, -0.04333196207880974, -0.05127419903874397, 0.0180559940636158, 0.012874394655227661, 0.08388596773147583, 0.0801994726061821, 0.1383896768093109, -0.0681714117527008, -0.04328375682234764, -0.13734833896160126, 0.13493335247039795, -0.069441057741642, -0.26289960741996765, -0.13604550063610077, -0.0803527906537056, 0.011902461759746075, 0.00870856549590826, 0.03791145235300064, -0.06619832664728165, -0.034243930131196976, -0.09616512060165405, 0.08635595440864563, -0.052331313490867615, -0.01068437471985817, 0.000984684214927256, 0.02431654930114746, -0.03860106319189072, -0.10537008196115494, -0.0301100704818964, 0.03979213908314705, -0.11105789989233017, -0.013200498186051846, 0.027879631146788597, 0.04550495743751526, 0.16087593138217926, -0.006345556583255529, 0.0006706494023092091, -0.0324811115860939, 0.28104379773139954, -0.1324322670698166, 0.06707744300365448, 0.16841323673725128, -0.015402494929730892, 0.05281026288866997, 0.07602562755346298, 0.008286102674901485, -0.06941186636686325, 0.07652878761291504, 0.0706012025475502, -0.09551507979631424, -0.21528840065002441, -0.02380445785820484, -0.00526317348703742, 0.021540207788348198, 0.12670011818408966, 0.05763562396168709, 0.06716562062501907, 0.0036934521049261093, -0.10559039562940598, 0.044198211282491684, 0.029308954253792763, 0.11106053739786148, -0.0881628766655922, -0.010063433088362217, 0.04952128604054451, -0.05841066315770149, 0.02281355857849121, 0.14163701236248016, 0.04621392488479614, 0.2033482789993286, -0.06007297337055206, 0.10637146234512329, 0.07081293314695358, 0.09882894903421402, 0.03659581020474434, 0.011242005974054337, 0.0014211321249604225, 0.008164271712303162, -0.0026397283654659986, -0.09526685625314713, -0.010032345540821552, 0.050576526671648026, 0.032269302755594254, -0.03175933286547661, -0.04237229749560356, -0.05426378920674324, 0.04737168923020363, 0.23969769477844238, -0.02178078331053257, -0.17843933403491974, -0.11559770256280899, 0.03937284275889397, -0.07810444384813309, -0.05021355673670769, -0.029109710827469826, 0.07631296664476395, -0.22099775075912476, 0.0726967602968216, -0.033332422375679016, 0.10594268888235092, -0.114315927028656, 0.0006203614757396281, 0.07915277034044266, 0.04732023552060127, -0.06918234378099442, 0.09864768385887146, -0.1627521961927414, 0.0533471517264843, -0.010698962025344372, 0.07093476504087448, -0.08410034328699112, 0.02913171984255314, 0.006579993758350611, 0.05289161577820778, 0.09308850765228271, 0.010479587130248547, 0.02439468912780285, -0.003421706845983863, -0.04644468426704407, 0.009256097488105297, 0.06757599115371704, -0.13924910128116608, 0.12961098551750183, -0.02364291064441204, 0.03364390507340431, -0.04709550738334656, -0.09885329008102417, -0.09520822763442993, -0.17038416862487793, 0.09607698768377304, -0.13440819084644318, 0.0012658331543207169, -0.07332446426153183, -0.031164541840553284, 0.037628185003995895, 0.274789422750473, -0.04289230704307556, -0.0723511204123497, -0.14098863303661346, 0.014767281711101532, 0.14459198713302612, -0.08298168331384659, 0.009371080435812473, -0.010683178901672363, 0.22258101403713226, -0.006403474602848291, -0.12338576465845108, -0.02024521864950657, -0.06320110708475113, -0.1713159829378128, -0.008304823189973831, 0.16452692449092865, 0.06003784015774727, 0.02752969227731228, 0.01487554982304573, -0.017176656052470207, -0.04026693478226662, -0.17209143936634064, 0.026034846901893616, 0.15520934760570526, -0.013478245586156845, -0.004714095499366522, 0.053709726780653, 0.01744086854159832, -0.14370889961719513, 0.009357958100736141, 0.0502568818628788, 0.17758417129516602, -0.07722139358520508, 0.184991255402565, 0.03231402114033699, -0.08893407136201859, -0.14569441974163055, 0.010344245471060276, 0.03896792232990265, 0.0333956740796566, 0.03789101913571358, -0.2145770788192749, 0.03527175635099411, 0.04063675180077553, 0.0003015332331415266, 0.048858653753995895, -0.3308456242084503, -0.1564542055130005, -0.014114578254520893, 0.00812472403049469, -0.14605142176151276, -0.05019286274909973, -0.038142282515764236, -0.09823230654001236, -0.23625004291534424, 0.11201175302267075, -0.11714907735586166, 0.08015430718660355, 0.029794340953230858, 0.09648743271827698, 0.04809032753109932, -0.045787304639816284, 0.13891465961933136, -0.020839981734752655, 0.061625611037015915, -0.09216442704200745, -0.06796490401029587, 0.07860702276229858, -0.07218997925519943, 0.08524080365896225, 0.03701400384306908, 0.07574886828660965, -0.0922171100974083, -0.09299274533987045, -0.06392798572778702, 0.0011234292760491371, -0.04774201288819313, -0.0955628976225853, -0.09044521301984787, 0.08844655752182007, 0.11284717172384262, -0.04523719847202301, -0.08664389699697495, -0.07286980003118515, 0.0052174534648656845, 0.05143031105399132, 0.11465320736169815, 0.07139691710472107, -0.05556881055235863, 0.00007360676681855693, 0.016763104125857353, 0.012141309678554535, -0.18276433646678925, 0.04542943462729454, 0.09006104618310928, 0.04326530173420906, 0.10231324285268784, 0.0040765502490103245, -0.16938267648220062, 0.007588720414787531, 0.05460475757718086, -0.1612796038389206, -0.12768447399139404, -0.04354232922196388, 0.032257627695798874, -0.09849854558706284, -0.04399866238236427, 0.13558708131313324, -0.033466532826423645, -0.04257039725780487, -0.0014042785624042153, 0.03676909580826759, -0.03945773467421532, 0.08723995089530945, -0.007960704155266285, 0.0393616147339344, -0.07171715050935745, 0.11740461736917496, 0.07060771435499191, 0.012852412648499012, 0.035224735736846924, 0.06488213688135147, -0.09015297144651413, 0.016900822520256042, -0.10541120916604996, -0.0046039121225476265, -0.02783842943608761, -0.011175968684256077, 0.02340235747396946, -0.03162992745637894, 0.04611740633845329, 0.08261829614639282, -0.01574167050421238, 0.09730115532875061, -0.04550931230187416, 0.02398928441107273, -0.13073961436748505, 0.06001639366149902, 0.03189903125166893, 0.02294127084314823, -0.10965123772621155, 0.20793087780475616, 0.03988487645983696, 0.10179471969604492, -0.03943882882595062, -0.06475585699081421, -0.050801172852516174, -0.010830573737621307, -0.07311473041772842, -0.03891623020172119, -0.09386924654245377, -0.02640032023191452, -0.0029667802155017853, -0.031248005107045174, -0.03143107518553734, 0.04374651238322258, -0.038428355008363724, -0.06331206113100052, -0.07722461968660355, 0.04458503797650337, -0.13574661314487457, 0.03890688717365265, 0.11656483262777328, -0.061650361865758896, 0.1282668560743332, 0.057717446237802505, -0.031690213829278946, 0.024051373824477196, -0.1427651047706604, 0.04962815344333649, -0.005454996135085821, 0.017934510484337807, 0.016853200271725655, -0.15182320773601532, 0.009445748291909695, -0.03665325418114662, -0.07014310359954834, 0.006452485453337431, -0.014816276729106903, -0.1356608122587204, -0.012909743934869766, 0.09666640311479568, -0.014914970844984055, -0.0633489191532135, 0.07176470011472702, 0.06270994991064072, 0.021561749279499054, 0.05492229387164116, -0.008707492612302303, 0.07318028807640076, -0.17543357610702515, -0.05902883782982826, -0.007029237691313028, 0.026180922985076904, 0.05131234601140022, -0.02280007116496563, 0.03509772941470146, -0.013866228051483631, 0.20736496150493622, 0.02640034817159176, 0.001573507091961801, 0.03206878900527954, -0.06507427245378494, 0.0072956811636686325, 0.041119154542684555, 0.08446067571640015, -0.011677774600684643, -0.023816565051674843, 0.0008158947457559407, -0.02319532074034214, -0.09145405143499374, -0.022796794772148132, 0.08922988176345825, 0.009458621963858604, 0.21221892535686493, -0.057027727365493774, 0.06929729133844376, -0.018098535016179085, -0.1098468080163002, -0.024031182751059532, -0.0431685633957386, 0.028901660814881325, -0.05430268123745918, 0.045679736882448196, 0.1972052901983261, -0.15506625175476074, 0.11618766188621521, 0.0444275438785553, -0.054778337478637695, -0.11513467878103256, -0.19592250883579254, -0.014431725256145, -0.035331521183252335, 0.03110828436911106, -0.13575561344623566, 0.09945911914110184, 0.023413652554154396, 0.03847174346446991, -0.05796155333518982, 0.13224472105503082, -0.08519523590803146, -0.1380138248205185, 0.04850010201334953, 0.017579907551407814, 0.023829326033592224, 0.04251876473426819, 0.07974397391080856, 0.032785747200250626, 0.0044159479439258575, 0.07459793239831924, 0.03868850693106651, 0.028506746515631676, 0.03999616578221321, -0.02734816074371338, -0.04054572060704231, 0.02762320637702942, -0.01277981698513031, 0.02400307171046734, 0.10475822538137436, 0.06505463272333145, -0.018342696130275726, -0.014201297424733639, 0.31470683217048645, -0.02092692442238331, -0.028364213183522224, -0.18972384929656982, 0.16214054822921753, 0.008883592672646046, 0.0015819334657862782, 0.02077409252524376, -0.1177590861916542, 0.013169941492378712, 0.12009846419095993, 0.14594043791294098, -0.024162063375115395, 0.02151334285736084, -0.022442281246185303, 0.015121030621230602, 0.039227232336997986, 0.10711220651865005, 0.0591357946395874, 0.19075067341327667, -0.026362737640738487, 0.060158729553222656, -0.012579354457557201, -0.02440018765628338, 0.013636037707328796, 0.11340352892875671, -0.03819635137915611, 0.006164076272398233, -0.05224993824958801, 0.10565438121557236, -0.06274587661027908, -0.30395016074180603, -0.03454279899597168, -0.01573394238948822, -0.09425109624862671, 0.07781823724508286, -0.03689780831336975, -0.022257650271058083, 0.08659297972917557, 0.03288343921303749, -0.045972540974617004, 0.14659404754638672, 0.05688108503818512, -0.041352514177560806, -0.005005486775189638, 0.11177762597799301, -0.03559084236621857, 0.17655734717845917, -0.03952950984239578, 0.012017606757581234, 0.07528477162122726, 0.013230656273663044, -0.1298355609178543, 0.006280331406742334, 0.035465408116579056, -0.05814707651734352, -0.017214162275195122, 0.20809566974639893, 0.010786190629005432, 0.021303022280335426, 0.0701080858707428, -0.05841619148850441, 0.025607623159885406, -0.028857940807938576, 0.06545651704072952, -0.13421578705310822, 0.06708002090454102, -0.08242414146661758, 0.11728498339653015, 0.17726130783557892, -0.06890270113945007, 0.03940786421298981, -0.059835392981767654, 0.012459270656108856, -0.023756032809615135, 0.07346173375844955, -0.025356436148285866, -0.11920046806335449, 0.0004584542475640774, 0.03442312404513359, 0.012242925353348255, -0.1714823991060257, -0.07959049940109253, 0.07609093189239502, -0.053302373737096786, 0.018427150323987007, 0.17004071176052094, 0.018390150740742683, 0.053448308259248734, -0.036443259567022324, -0.01330654602497816, -0.005329271778464317, 0.1100335493683815, -0.17869697511196136, -0.07432997971773148 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c9182b5ecce1ab6d22ba0eaddb635424.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gorillaz</div> <a href="https://genius.com/artists/gorillaz"> <div style="text-align: center; font-size: 14px;">@gorillaz</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Gorillaz. Dataset is available [here](https://huggingface.co/datasets/huggingartists/gorillaz). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/gorillaz") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3tuzza9u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Gorillaz's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/12uilegj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/12uilegj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/gorillaz') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/gorillaz") model = AutoModelWithLMHead.from_pretrained("huggingartists/gorillaz") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/gorillaz"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/gorillaz
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/gorillaz", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gorillaz #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gorillaz</div> <a href="URL <div style="text-align: center; font-size: 14px;">@gorillaz</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Gorillaz. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Gorillaz's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Gorillaz.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Gorillaz's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gorillaz #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Gorillaz.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Gorillaz's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gorillaz #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Gorillaz.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Gorillaz's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.005138345528393984, 0.16895033419132233, -0.002718165284022689, 0.042303089052438736, 0.10353613644838333, 0.006322121247649193, 0.08488284051418304, 0.10169875621795654, -0.002565289381891489, 0.06540656089782715, 0.06315138936042786, 0.019822368398308754, 0.07768092304468155, 0.1130896657705307, 0.07716377824544907, -0.2622015178203583, 0.03287353739142418, -0.08903007954359055, 0.011997437104582787, 0.11085622757673264, 0.09264856576919556, -0.06323938071727753, 0.09160613268613815, 0.03846673294901848, -0.06556335836648941, 0.010793173685669899, 0.0004934653406962752, -0.06209049001336098, 0.08182413130998611, 0.055057596415281296, 0.03449765965342522, 0.02348538488149643, 0.07238790392875671, -0.18052825331687927, 0.026769105345010757, 0.11803112924098969, 0.04491886869072914, 0.07100723683834076, 0.05282225087285042, -0.07365649193525314, 0.15070949494838715, -0.024045633152127266, 0.10527341812849045, 0.0512937493622303, -0.11656054854393005, -0.15667280554771423, -0.1272512674331665, 0.0875910073518753, 0.09129678457975388, 0.0899612084031105, -0.029864171519875526, 0.04325196519494057, -0.010629395954310894, 0.044170547276735306, 0.22781024873256683, -0.24035540223121643, -0.01532826665788889, 0.08718536049127579, 0.04227289929986, 0.028259282931685448, -0.08206543326377869, 0.009620241820812225, 0.04791456460952759, 0.014334782026708126, 0.0437445193529129, -0.02312961407005787, 0.1829196810722351, 0.010437739081680775, -0.10778777301311493, -0.08024758100509644, 0.12331031262874603, -0.02218402363359928, -0.07730313390493393, -0.1299397200345993, 0.0036260655615478754, -0.018407583236694336, 0.034612469375133514, 0.006150100380182266, -0.0025484978687018156, 0.0036082551814615726, -0.04451252892613411, -0.10202789306640625, -0.07904378324747086, -0.027057573199272156, -0.02999374456703663, 0.07394389808177948, 0.03097670152783394, 0.037251200526952744, -0.08617789298295975, 0.23076657950878143, 0.00492264935746789, -0.10075798630714417, -0.045913923531770706, -0.09104225784540176, -0.09701519459486008, -0.05840907618403435, 0.0165242999792099, 0.010639102198183537, -0.05434848368167877, 0.15445537865161896, -0.02549339458346367, 0.032854191958904266, -0.023048868402838707, -0.01124147791415453, 0.13925042748451233, 0.152047261595726, -0.0997929647564888, -0.04103795066475868, 0.06086352467536926, -0.012598414905369282, -0.06763477623462677, -0.05664745718240738, -0.016012489795684814, -0.024882204830646515, 0.03149016574025154, 0.0879390612244606, 0.07064317911863327, 0.06786846369504929, 0.015965405851602554, -0.07609333097934723, 0.06490250676870346, -0.1320934295654297, 0.014492866583168507, -0.008136428892612457, -0.04332684725522995, 0.014158426783978939, 0.044037073850631714, 0.017487550154328346, -0.0941636711359024, 0.10676877945661545, -0.0657656192779541, -0.045951686799526215, -0.0851953774690628, -0.08493442088365555, -0.009311369620263577, -0.002143501304090023, -0.041332509368658066, -0.07342448830604553, -0.17918184399604797, -0.03888528794050217, 0.030084364116191864, -0.047002196311950684, -0.05235206335783005, 0.030934125185012817, -0.017490720376372337, 0.017245151102542877, -0.01728801243007183, -0.025830518454313278, -0.030685584992170334, 0.026386871933937073, -0.054222382605075836, 0.030270952731370926, 0.08081074804067612, 0.04026397317647934, -0.11634726822376251, 0.07204509526491165, -0.1594182848930359, 0.1296263337135315, -0.015237155370414257, 0.038082338869571686, -0.09153036773204803, -0.08479040116071701, -0.024480819702148438, -0.0457344613969326, -0.006520196329802275, 0.10161229968070984, -0.18225745856761932, -0.02806749939918518, 0.20712853968143463, -0.07444516569375992, -0.08649234473705292, 0.06938626617193222, -0.08460034430027008, 0.04106095805764198, 0.13071009516716003, 0.0700739249587059, 0.15560829639434814, -0.11374510824680328, -0.056000109761953354, -0.05514596402645111, -0.06279541552066803, 0.20950627326965332, 0.05705738440155983, -0.02525940164923668, 0.006046381313353777, 0.008661139756441116, -0.03758345544338226, -0.011353214271366596, -0.017221342772245407, -0.03630824014544487, -0.01778232678771019, 0.012661008164286613, 0.010155078023672104, -0.042916636914014816, -0.06473681330680847, -0.024631012231111526, -0.09664184600114822, 0.036676112562417984, 0.10718198120594025, -0.07228117436170578, 0.005982126574963331, -0.08645056188106537, 0.011219315230846405, -0.039520252496004105, 0.00806793849915266, -0.16620735824108124, -0.05601959675550461, 0.030044667422771454, -0.0656394213438034, 0.0941832959651947, 0.027331609278917313, 0.041094064712524414, 0.05565132573246956, -0.015282446518540382, 0.012600832618772984, -0.04681346192955971, -0.014540272764861584, -0.02133832685649395, -0.1429651975631714, -0.045530710369348526, -0.04138654097914696, 0.10694210976362228, -0.12675738334655762, 0.008490481413900852, 0.08997800201177597, 0.1313137263059616, 0.030231107026338577, -0.06676842272281647, 0.027328282594680786, -0.04553794488310814, -0.030377138406038284, -0.11413586139678955, -0.04810769110918045, 0.013899315148591995, -0.015792082995176315, 0.15200065076351166, -0.16701607406139374, -0.08225377649068832, 0.10851141810417175, 0.12469513714313507, -0.09385226666927338, 0.03907453641295433, -0.07642019540071487, -0.009632015600800514, -0.04592932388186455, -0.03494840860366821, 0.2785715162754059, 0.029119733721017838, 0.08381923288106918, -0.10430949926376343, -0.09906861186027527, -0.01100254524499178, -0.04431622102856636, -0.016279688104987144, 0.017819609493017197, 0.03863479942083359, -0.1752004474401474, 0.04074721783399582, -0.008840324357151985, 0.10332454741001129, 0.2147485762834549, 0.04329530522227287, -0.08934850245714188, -0.05972181633114815, -0.07692375779151917, 0.005289799999445677, 0.06049160659313202, 0.009866555221378803, 0.028475413098931313, 0.04846051335334778, 0.05689340457320213, 0.04335511848330498, -0.11626443266868591, 0.015794426202774048, 0.07390923798084259, -0.039279330521821976, -0.05053935572504997, 0.008208781480789185, 0.02831706404685974, 0.0800371989607811, 0.09457187354564667, 0.1430189460515976, -0.062238264828920364, -0.04157596081495285, -0.1448744833469391, 0.1315600723028183, -0.0784616693854332, -0.2504490911960602, -0.13885514438152313, -0.08730755746364594, 0.00849098153412342, 0.009283469058573246, 0.022483468055725098, -0.046528760343790054, -0.0375138595700264, -0.08266618847846985, 0.09938124567270279, -0.06195049732923508, -0.015236659906804562, 0.018695510923862457, 0.03078291192650795, -0.017431173473596573, -0.10788790136575699, -0.03378475457429886, 0.037616755813360214, -0.099741630256176, -0.016449740156531334, 0.028920486569404602, 0.04581046104431152, 0.1655413806438446, -0.01682356745004654, 0.005676221568137407, -0.02431318536400795, 0.2851131856441498, -0.11790820956230164, 0.06160962954163551, 0.16116608679294586, -0.01579020917415619, 0.05600639805197716, 0.08560245484113693, 0.0025493346620351076, -0.0660356804728508, 0.08058898150920868, 0.07228025048971176, -0.07801301777362823, -0.2045120894908905, -0.0336785688996315, -0.017071707174181938, 0.02121705561876297, 0.12197688966989517, 0.04543706774711609, 0.043099626898765564, 0.012574912048876286, -0.10070852190256119, 0.04381778463721275, 0.034699633717536926, 0.1142318919301033, -0.07868485152721405, -0.005216076038777828, 0.0490228608250618, -0.056810010224580765, 0.02188037894666195, 0.12937593460083008, 0.044269900768995285, 0.2142810821533203, -0.06119639053940773, 0.08904998749494553, 0.07588794082403183, 0.08983148634433746, 0.034861139953136444, 0.024888886138796806, -0.015011386014521122, 0.015074485912919044, -0.0007651643245480955, -0.08785557001829147, -0.014037775807082653, 0.035680338740348816, 0.03819006681442261, -0.008085629902780056, -0.04756874591112137, -0.06662867963314056, 0.04627976939082146, 0.23201917111873627, 0.00892904307693243, -0.17847241461277008, -0.0962969958782196, 0.05771833285689354, -0.06952939182519913, -0.059806033968925476, -0.021847253665328026, 0.05493122339248657, -0.22806416451931, 0.07268530875444412, -0.029919179156422615, 0.11210613697767258, -0.1406250149011612, -0.007179811131209135, 0.06764185428619385, 0.034625034779310226, -0.06633757054805756, 0.09760714322328568, -0.15764713287353516, 0.057521890848875046, -0.012184993363916874, 0.07411626726388931, -0.06186048313975334, 0.030335301533341408, 0.017663640901446342, 0.059338346123695374, 0.07646731287240982, 0.017649522051215172, 0.021451372653245926, -0.0076159765012562275, -0.04642300307750702, 0.004530159290879965, 0.05440362170338631, -0.1232716292142868, 0.13713599741458893, -0.04071435332298279, 0.035460591316223145, -0.04137403890490532, -0.07668288797140121, -0.09099194407463074, -0.1626676619052887, 0.08323017507791519, -0.13188572227954865, 0.010022626258432865, -0.0688936859369278, -0.017411096021533012, 0.032769039273262024, 0.24956144392490387, -0.06950175017118454, -0.08364347368478775, -0.134996697306633, -0.013316459022462368, 0.13547196984291077, -0.08397991955280304, 0.008778045885264874, -0.017877187579870224, 0.20378251373767853, 0.005007409956306219, -0.13502280414104462, -0.02019326761364937, -0.06268340349197388, -0.17084863781929016, -0.018679283559322357, 0.1527828425168991, 0.052226580679416656, 0.0432724803686142, 0.00944144930690527, -0.0023076182696968317, -0.05571804940700531, -0.17037490010261536, 0.011592349037528038, 0.1542067974805832, -0.004949522670358419, 0.014043270610272884, 0.038585077971220016, 0.009496292099356651, -0.14254683256149292, 0.021552419289946556, 0.06725135445594788, 0.16897080838680267, -0.07619443535804749, 0.16387562453746796, 0.0186966210603714, -0.09039119631052017, -0.15488392114639282, 0.030256792902946472, 0.028616437688469887, 0.025648657232522964, 0.010898841544985771, -0.19224883615970612, 0.040216077119112015, 0.027726884931325912, -0.005529326852411032, 0.06053583323955536, -0.3166142702102661, -0.15431994199752808, -0.003507331945002079, 0.005472550634294748, -0.1192278042435646, -0.039102520793676376, -0.03463531285524368, -0.07650066167116165, -0.26252055168151855, 0.11443423479795456, -0.11389783769845963, 0.07823701947927475, 0.022390542551875114, 0.09155356884002686, 0.04479913040995598, -0.05166574567556381, 0.13340386748313904, -0.031595103442668915, 0.06114078313112259, -0.0963924452662468, -0.06659792363643646, 0.06951577216386795, -0.0696529746055603, 0.09610588848590851, 0.0449833944439888, 0.08560346066951752, -0.11658991128206253, -0.08720078319311142, -0.07515307515859604, 0.0055864108726382256, -0.05085902288556099, -0.0973215252161026, -0.09750256687402725, 0.08853267878293991, 0.1282302290201187, -0.039074596017599106, -0.09530975669622421, -0.05715170130133629, -0.01575467549264431, 0.0599667951464653, 0.10581624507904053, 0.07006487995386124, -0.07651124149560928, -0.0009148435201495886, 0.02072993293404579, 0.011942016892135143, -0.15745392441749573, 0.04755527153611183, 0.08629073202610016, 0.038377050310373306, 0.1115882620215416, 0.012547781690955162, -0.1572725623846054, 0.009178338572382927, 0.05069344863295555, -0.16198228299617767, -0.1175212636590004, -0.045578550547361374, 0.0033920765854418278, -0.11236420273780823, -0.055502910166978836, 0.12471511214971542, -0.02278508059680462, -0.04059524089097977, 0.00021963696053717285, 0.041998233646154404, -0.04763221740722656, 0.08204542100429535, 0.004942798055708408, 0.04278795048594475, -0.07530927658081055, 0.11807947605848312, 0.07781990617513657, 0.02532150223851204, 0.02966412529349327, 0.0700516402721405, -0.09238558262586594, 0.01900104060769081, -0.0975899025797844, 0.033324696123600006, -0.025713788345456123, -0.009786532260477543, 0.008242614567279816, -0.04417935386300087, 0.034137364476919174, 0.07225064933300018, -0.013042560778558254, 0.10237676650285721, -0.03211500123143196, 0.005087397992610931, -0.12932346761226654, 0.0711296796798706, 0.041945405304431915, 0.026808012276887894, -0.12410446256399155, 0.20893433690071106, 0.035749651491642, 0.08840597420930862, -0.0349547453224659, -0.060870759189128876, -0.059833280742168427, -0.009679870679974556, -0.08224157989025116, -0.040263622999191284, -0.0961332619190216, -0.022171203047037125, -0.0031431729439646006, -0.04526732116937637, -0.029153335839509964, 0.04568038880825043, -0.040534067898988724, -0.06149223819375038, -0.06770290434360504, 0.049078065901994705, -0.11953306198120117, 0.030660927295684814, 0.12677060067653656, -0.060562241822481155, 0.1147293746471405, 0.05593959614634514, -0.03033033199608326, 0.02335081622004509, -0.10877036303281784, 0.030730651691555977, -0.019036386162042618, 0.01749490201473236, 0.026866111904382706, -0.16405782103538513, 0.011168375611305237, -0.04354981705546379, -0.06075107306241989, 0.003620287636294961, -0.00317638972774148, -0.13450655341148376, -0.010421013459563255, 0.08780193328857422, -0.02775612100958824, -0.059783559292554855, 0.06444830447435379, 0.048577193170785904, 0.022699417546391487, 0.06690601259469986, -0.02481454238295555, 0.08069046586751938, -0.1636061668395996, -0.054803863167762756, 0.002793853869661689, 0.03199971467256546, 0.054273102432489395, -0.022048920392990112, 0.03304658457636833, -0.013201133348047733, 0.1929888129234314, 0.01923159509897232, -0.013299399055540562, 0.026991065591573715, -0.05397700145840645, 0.01083230972290039, 0.04349019378423691, 0.08018219470977783, -0.03755154088139534, -0.038574449717998505, 0.007857583463191986, -0.011318165808916092, -0.08035606890916824, -0.031217431649565697, 0.1116197407245636, 0.03884846717119217, 0.1803126186132431, -0.056554973125457764, 0.0656575858592987, -0.008209564723074436, -0.12626923620700836, -0.02067819982767105, -0.03716884180903435, 0.03225785866379738, -0.05820109322667122, 0.0700811967253685, 0.18487562239170074, -0.16166982054710388, 0.12093369662761688, 0.0351296067237854, -0.0604332871735096, -0.10684826970100403, -0.17752747237682343, -0.019665701314806938, -0.04505878686904907, 0.03254597634077072, -0.13571546971797943, 0.07806325703859329, 0.028748031705617905, 0.03124983422458172, -0.0727052241563797, 0.13165372610092163, -0.06985986977815628, -0.12919297814369202, 0.03373940289020538, 0.0279385969042778, 0.023011766374111176, 0.033077165484428406, 0.07784830778837204, 0.019444718956947327, 0.009341004304587841, 0.07494742423295975, 0.04084927588701248, 0.017911802977323532, 0.026254378259181976, -0.02062644250690937, -0.03847753629088402, 0.03347676619887352, -0.005714274011552334, 0.03123721480369568, 0.10915816575288773, 0.06181252747774124, -0.022969022393226624, -0.021819407120347023, 0.29593145847320557, -0.040189895778894424, -0.047812316566705704, -0.19145427644252777, 0.16902610659599304, 0.0031607416458427906, -0.00398132111877203, 0.030898170545697212, -0.1267012357711792, 0.0000677771822665818, 0.1492292284965515, 0.14506444334983826, -0.02337001822888851, 0.0187198705971241, -0.03205467015504837, 0.018472159281373024, 0.02938169799745083, 0.0964619517326355, 0.06287768483161926, 0.1987113207578659, -0.02975381538271904, 0.047488983720541, -0.010854831896722317, -0.016092240810394287, -0.0046882834285497665, 0.09818911552429199, -0.03868478909134865, 0.01221832912415266, -0.06159648299217224, 0.10030566900968552, -0.06051541119813919, -0.26317307353019714, -0.03796146810054779, -0.03843006119132042, -0.09629888087511063, 0.05841561406850815, -0.04740472137928009, -0.03405449166893959, 0.08790062367916107, 0.03090907260775566, -0.04638047516345978, 0.1247466430068016, 0.052339330315589905, -0.04425213113427162, -0.012063786387443542, 0.10395092517137527, -0.025472093373537064, 0.2063610702753067, -0.033094439655542374, -0.004720818251371384, 0.08884093165397644, 0.00943270418792963, -0.12994329631328583, 0.003841384081169963, 0.03662557527422905, -0.048915255814790726, -0.01883472315967083, 0.20202061533927917, 0.007317706942558289, 0.026025839149951935, 0.06825719773769379, -0.05108758434653282, 0.029222823679447174, -0.05563252791762352, 0.06608907133340836, -0.1521468609571457, 0.059833135455846786, -0.09174294024705887, 0.1286865621805191, 0.19107240438461304, -0.06919980049133301, 0.03480157628655434, -0.06288686394691467, 0.00394061766564846, -0.021846845746040344, 0.07332317531108856, -0.028487127274274826, -0.10697494447231293, 0.00034424717887304723, 0.03633304312825203, 0.02409568801522255, -0.1939603090286255, -0.06898967921733856, 0.06699708849191666, -0.051574964076280594, 0.02439977414906025, 0.1760246455669403, 0.019794737920165062, 0.05532523989677429, -0.035229165107011795, -0.02391636371612549, -0.01754961721599102, 0.11764156818389893, -0.16659991443157196, -0.07999756932258606 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d7d8da365bad13b7bd5cc89117b697eb.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Green Day</div> <a href="https://genius.com/artists/green-day"> <div style="text-align: center; font-size: 14px;">@green-day</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Green Day. Dataset is available [here](https://huggingface.co/datasets/huggingartists/green-day). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/green-day") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/22eap04b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Green Day's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/183da0m9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/183da0m9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/green-day') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/green-day") model = AutoModelWithLMHead.from_pretrained("huggingartists/green-day") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/green-day"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/green-day
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/green-day", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/green-day #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Green Day</div> <a href="URL <div style="text-align: center; font-size: 14px;">@green-day</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Green Day. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Green Day's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Green Day.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Green Day's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/green-day #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Green Day.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Green Day's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/green-day #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Green Day.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Green Day's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.027619346976280212, 0.15703506767749786, -0.0028513341676443815, 0.03896881267428398, 0.08964771777391434, 0.00232857558876276, 0.08608219772577286, 0.10679977387189865, -0.013168842531740665, 0.07408591359853745, 0.08349991589784622, 0.01348544005304575, 0.0642053484916687, 0.12784181535243988, 0.0935547947883606, -0.2678692042827606, 0.02877085842192173, -0.09762275218963623, 0.010493309237062931, 0.11987760663032532, 0.09352334588766098, -0.050344351679086685, 0.09195616841316223, 0.03587421402335167, -0.07418075948953629, 0.02108903042972088, -0.008597257547080517, -0.07754699885845184, 0.0970531776547432, 0.07632265985012054, 0.021238816902041435, 0.017330216243863106, 0.06128830835223198, -0.18451431393623352, 0.032582517713308334, 0.12539106607437134, 0.02498934604227543, 0.07152868807315826, 0.03609263151884079, -0.08115818351507187, 0.16969719529151917, -0.03653990477323532, 0.09261330962181091, 0.04681224748492241, -0.12449293583631516, -0.18526513874530792, -0.12607446312904358, 0.08004579693078995, 0.09428169578313828, 0.08489975333213806, -0.03687244653701782, 0.04618511348962784, -0.010485277511179447, 0.04082201048731804, 0.2385224848985672, -0.24489401280879974, -0.016446569934487343, 0.09048789739608765, 0.035719580948352814, 0.03210308402776718, -0.08138620108366013, 0.022515103220939636, 0.04707535728812218, 0.024859420955181122, 0.04892515763640404, -0.017841462045907974, 0.21729789674282074, 0.028041502460837364, -0.09823016822338104, -0.07867074757814407, 0.11855243891477585, -0.02558639831840992, -0.08361297100782394, -0.1508193016052246, 0.0036292679142206907, -0.02396642044186592, 0.0344286747276783, 0.00017398095224052668, 0.0005611317465081811, 0.005253089126199484, -0.0483919158577919, -0.0981924757361412, -0.0935911238193512, -0.018461165949702263, -0.02896795980632305, 0.08056388050317764, 0.02683625929057598, 0.03228894993662834, -0.07584916800260544, 0.23531487584114075, -0.009377043694257736, -0.09873954206705093, -0.05964535474777222, -0.0858752578496933, -0.0887121856212616, -0.058278825134038925, 0.007988392375409603, 0.03830404207110405, -0.06071173772215843, 0.1836172491312027, -0.040058959275484085, 0.033768992871046066, 0.011953398585319519, -0.019175490364432335, 0.14379458129405975, 0.1413910835981369, -0.10202038288116455, -0.045045580714941025, 0.05141396448016167, -0.03049217164516449, -0.0600597970187664, -0.059372033923864365, -0.013709448277950287, -0.017527900636196136, 0.02230149880051613, 0.08960694819688797, 0.047532930970191956, 0.06352540105581284, 0.024531252682209015, -0.05450363829731941, 0.10482027381658554, -0.1415114402770996, 0.014671262353658676, -0.01080967579036951, -0.03371226415038109, 0.006921728607267141, 0.04258114844560623, 0.015757746994495392, -0.09723848849534988, 0.10410396754741669, -0.056380584836006165, -0.05516581982374191, -0.06976626813411713, -0.07714419811964035, -0.004020788706839085, 0.004479666706174612, -0.044053900986909866, -0.0755850151181221, -0.1573624312877655, -0.040809787809848785, 0.027249779552221298, -0.04224478080868721, -0.044147200882434845, 0.04303533211350441, -0.03242211043834686, 0.008384977467358112, -0.0072907558642327785, -0.014750029891729355, -0.02967817336320877, 0.027042390778660774, -0.04986007139086723, 0.03381047025322914, 0.07854785025119781, 0.03653240576386452, -0.11373797059059143, 0.06750832498073578, -0.165211483836174, 0.14047949016094208, -0.006515989545732737, 0.021231412887573242, -0.10437831282615662, -0.09507762640714645, -0.023277277126908302, -0.026341278105974197, -0.009745605289936066, 0.0928090289235115, -0.1727994680404663, -0.044772159308195114, 0.1972551941871643, -0.06957881897687912, -0.08075539022684097, 0.07501903176307678, -0.0774841234087944, 0.038709111511707306, 0.14138732850551605, 0.061605244874954224, 0.14651671051979065, -0.11166013032197952, -0.06852640956640244, -0.045514192432165146, -0.0628659799695015, 0.21574769914150238, 0.051380593329668045, -0.01513185165822506, 0.015500995330512524, 0.014345860108733177, -0.04215235635638237, -0.02325708419084549, -0.02378675527870655, -0.03951955959200859, -0.011643079109489918, 0.014252910390496254, -0.002842167392373085, -0.050849348306655884, -0.06714669615030289, -0.026526082307100296, -0.11349330842494965, 0.03781742975115776, 0.09871932864189148, -0.071676105260849, 0.009388776496052742, -0.1008056253194809, 0.0017497192602604628, -0.034430131316185, 0.01892668567597866, -0.18124529719352722, -0.06792338192462921, 0.017125748097896576, -0.06829343736171722, 0.08955496549606323, 0.014151481911540031, 0.03700315207242966, 0.061150845140218735, -0.01815597154200077, 0.023451965302228928, -0.0498088039457798, -0.02757071889936924, -0.03351924940943718, -0.1394364982843399, -0.061691105365753174, -0.04580909013748169, 0.08186262100934982, -0.1430758237838745, 0.00938599556684494, 0.12594549357891083, 0.1096818670630455, 0.02555903233587742, -0.05960792303085327, 0.01092258095741272, -0.03825351223349571, -0.02911463938653469, -0.11995150148868561, -0.05418842285871506, 0.010353031568229198, -0.04332137480378151, 0.1630832701921463, -0.18142002820968628, -0.0667116567492485, 0.10243645310401917, 0.1519782841205597, -0.10971284657716751, 0.035762935876846313, -0.08985050767660141, -0.012952546589076519, -0.060071177780628204, -0.038931313902139664, 0.2681456208229065, 0.031098689883947372, 0.07727068662643433, -0.10649699717760086, -0.10432140529155731, -0.002074513817206025, -0.043248213827610016, -0.02483971416950226, 0.028228580951690674, 0.010069555602967739, -0.1680649369955063, 0.026231052353978157, -0.011458716355264187, 0.117005355656147, 0.20900858938694, 0.048279181122779846, -0.0893138125538826, -0.06587478518486023, -0.0832255557179451, 0.004770881496369839, 0.05901126563549042, 0.01857728511095047, 0.02027096599340439, 0.04126318544149399, 0.05518191307783127, 0.03937062248587608, -0.11731663346290588, 0.009372837841510773, 0.07465124130249023, -0.04578671231865883, -0.04676184803247452, 0.02609224244952202, 0.01334325410425663, 0.08091310411691666, 0.08298353850841522, 0.14761987328529358, -0.06007276102900505, -0.04108257591724396, -0.13871096074581146, 0.14621403813362122, -0.07437091320753098, -0.26392629742622375, -0.13890641927719116, -0.08877255022525787, 0.029991768300533295, 0.009735934436321259, 0.04170894995331764, -0.06521062552928925, -0.041801102459430695, -0.09624994546175003, 0.08855961263179779, -0.044375188648700714, -0.011885681189596653, -0.0008184795151464641, 0.017443625256419182, -0.023957209661602974, -0.1088009849190712, -0.030396955087780952, 0.04261820763349533, -0.1086314246058464, -0.011078939773142338, 0.032723527401685715, 0.034450799226760864, 0.15754729509353638, -0.008275764063000679, -0.0010165995918214321, -0.030263269320130348, 0.29921582341194153, -0.13510018587112427, 0.07158239185810089, 0.1541825532913208, -0.015753386542201042, 0.056643299758434296, 0.07013215869665146, 0.010341250337660313, -0.0807713195681572, 0.07853177189826965, 0.08153802901506424, -0.09234840422868729, -0.22039800882339478, -0.02460920810699463, -0.008393238298594952, 0.023978646844625473, 0.12170897424221039, 0.06449787318706512, 0.05882630869746208, -0.0016309866914525628, -0.10437071323394775, 0.0516267791390419, 0.027221130207180977, 0.10757166147232056, -0.053515274077653885, -0.013246707618236542, 0.04555659741163254, -0.06345673650503159, 0.02243407443165779, 0.14064475893974304, 0.041025977581739426, 0.19768035411834717, -0.05898609012365341, 0.10167523473501205, 0.07607067376375198, 0.10123719274997711, 0.03758342191576958, -0.004647626541554928, -0.010233493521809578, 0.007934588938951492, -0.001123302266933024, -0.09296198934316635, 0.0074364617466926575, 0.04279820993542671, 0.023745711892843246, -0.03315817564725876, -0.03526397421956062, -0.05426522716879845, 0.046303246170282364, 0.2338050901889801, -0.004177591297775507, -0.17646770179271698, -0.1100713387131691, 0.0483090914785862, -0.07750003039836884, -0.05904107913374901, -0.024088550359010696, 0.06931010633707047, -0.22066357731819153, 0.07159421592950821, -0.030313530936837196, 0.10418713837862015, -0.12300015985965729, -0.00354920607060194, 0.08927133679389954, 0.04013383015990257, -0.06837766617536545, 0.09835217893123627, -0.15717598795890808, 0.05511577054858208, -0.010264791548252106, 0.07806165516376495, -0.0728786513209343, 0.027961160987615585, 0.0078061786480247974, 0.0579417422413826, 0.07981355488300323, 0.019290776923298836, 0.009314844384789467, -0.0023892640601843596, -0.04593951255083084, 0.010320048779249191, 0.055948786437511444, -0.13377085328102112, 0.12494322657585144, -0.02505837008357048, 0.03282210975885391, -0.043552905321121216, -0.09581566601991653, -0.0829077661037445, -0.16425324976444244, 0.08999069780111313, -0.12118179351091385, 0.020435815677046776, -0.07511800527572632, -0.024272115901112556, 0.03657092899084091, 0.2662241756916046, -0.05492010712623596, -0.07694356143474579, -0.13946904242038727, 0.013908542692661285, 0.14179883897304535, -0.08108049631118774, 0.00988711230456829, -0.0015808520838618279, 0.20725424587726593, 0.013324297964572906, -0.11855655163526535, -0.013200158253312111, -0.054863400757312775, -0.1790977567434311, -0.006948733236640692, 0.16507172584533691, 0.06870578229427338, 0.025571109727025032, 0.005388888996094465, -0.005056665278971195, -0.04977496340870857, -0.18004447221755981, 0.029316609725356102, 0.1428452581167221, -0.003835307667031884, -0.007444419432431459, 0.055172938853502274, 0.037423375993967056, -0.1271609663963318, 0.00521124666556716, 0.0456714928150177, 0.17128659784793854, -0.07648411393165588, 0.18335464596748352, 0.03301198035478592, -0.09120351821184158, -0.15261319279670715, 0.011947864666581154, 0.02925626002252102, 0.04071881249547005, 0.03571230545639992, -0.21449507772922516, 0.05591760575771332, 0.0440567322075367, 0.0029069194570183754, 0.05928870290517807, -0.32599198818206787, -0.15962933003902435, -0.006863464135676622, -0.0006914906552992761, -0.12563827633857727, -0.043761610984802246, -0.03552701324224472, -0.08264487981796265, -0.23826508224010468, 0.09947993606328964, -0.12650606036186218, 0.0838232934474945, 0.02788129448890686, 0.10454683005809784, 0.03989197686314583, -0.04288497567176819, 0.13871604204177856, -0.011933473870158195, 0.06640151143074036, -0.0943312719464302, -0.06858530640602112, 0.09777840971946716, -0.06813816726207733, 0.08986661583185196, 0.03317185491323471, 0.08314920216798782, -0.09659861028194427, -0.09028982371091843, -0.06559659540653229, 0.001886949292384088, -0.0571606308221817, -0.08534526824951172, -0.09328775852918625, 0.08997044712305069, 0.11162852495908737, -0.0463661327958107, -0.09027674049139023, -0.06562873721122742, -0.0015576736768707633, 0.02509189397096634, 0.1157180592417717, 0.07469000667333603, -0.08163661509752274, -0.00012124110799049959, 0.013709564693272114, 0.016047490760684013, -0.18321114778518677, 0.045793868601322174, 0.08304206281900406, 0.03952965885400772, 0.10555600374937057, 0.004649811424314976, -0.16630502045154572, 0.012369257397949696, 0.05082100257277489, -0.158357635140419, -0.12641896307468414, -0.039157766848802567, 0.01037667691707611, -0.10788454115390778, -0.04854199290275574, 0.13062971830368042, -0.027528123930096626, -0.041683245450258255, 0.005430261138826609, 0.03760642930865288, -0.043666720390319824, 0.09217965602874756, 0.002108935732394457, 0.0425991490483284, -0.07337271422147751, 0.11135955154895782, 0.06767416000366211, 0.013247254304587841, 0.03691743314266205, 0.06796073168516159, -0.09430865198373795, 0.012810020707547665, -0.0980578139424324, 0.00035804155049845576, -0.03267175331711769, -0.015307733789086342, 0.022514473646879196, -0.03556283563375473, 0.05341644212603569, 0.08407127112150192, -0.011466759257018566, 0.1198522225022316, -0.05023365095257759, 0.019180869683623314, -0.11967597156763077, 0.060230690985918045, 0.03624551370739937, 0.018633507192134857, -0.102373406291008, 0.1970703899860382, 0.0400610975921154, 0.1017472892999649, -0.03400249779224396, -0.06766660511493683, -0.05565245822072029, -0.011775757186114788, -0.08474287390708923, -0.039415836334228516, -0.0781153216958046, -0.019466763362288475, -0.009284518659114838, -0.03687750920653343, -0.028610119596123695, 0.04562614858150482, -0.03272867202758789, -0.060426265001297, -0.06983290612697601, 0.04551946371793747, -0.13115835189819336, 0.03895470127463341, 0.12331321835517883, -0.05862322077155113, 0.12695446610450745, 0.04985653609037399, -0.033265870064496994, 0.016374099999666214, -0.1233363002538681, 0.04851885139942169, -0.011224353685975075, 0.006452968344092369, 0.014635524712502956, -0.1621868759393692, 0.005519388243556023, -0.04439585283398628, -0.06044240668416023, 0.011460408568382263, -0.02079048566520214, -0.13575716316699982, 0.0020485646091401577, 0.0808158740401268, -0.01852637156844139, -0.0686376765370369, 0.0631587877869606, 0.046611636877059937, 0.026888510212302208, 0.05352330952882767, -0.014272868633270264, 0.06228886544704437, -0.16889609396457672, -0.055334389209747314, -0.000931466231122613, 0.02752094343304634, 0.04814707115292549, -0.01870247721672058, 0.03989560157060623, -0.01198393665254116, 0.2135712057352066, 0.010915528051555157, -0.015642059966921806, 0.037566252052783966, -0.06138139218091965, -0.006346018984913826, 0.04335736483335495, 0.08272974193096161, -0.024015599861741066, -0.034927573055028915, 0.01095180120319128, -0.02068720944225788, -0.09390521049499512, -0.03532589599490166, 0.10011021792888641, 0.009934513829648495, 0.20897558331489563, -0.05803731456398964, 0.047623563557863235, -0.017917172983288765, -0.1274406909942627, -0.023286813870072365, -0.04892188310623169, 0.029038092121481895, -0.0637618750333786, 0.05780937895178795, 0.1985616832971573, -0.15239933133125305, 0.11681356281042099, 0.044142335653305054, -0.06087644025683403, -0.11952264606952667, -0.18989473581314087, -0.016103126108646393, -0.0333855077624321, 0.031052080914378166, -0.13710786402225494, 0.09499888122081757, 0.02007422037422657, 0.03762359172105789, -0.05793760344386101, 0.1401877999305725, -0.07544910162687302, -0.1335722953081131, 0.04046792909502983, 0.0177838783711195, 0.030017005279660225, 0.04986118897795677, 0.08567526936531067, 0.02167632058262825, 0.0025569465942680836, 0.0757928416132927, 0.04236244037747383, 0.028807001188397408, 0.03687264025211334, -0.032667528837919235, -0.03908298909664154, 0.025260835886001587, 0.001197254634462297, 0.02915705367922783, 0.08091115951538086, 0.062153346836566925, -0.024021446704864502, -0.01785500906407833, 0.3177530765533447, -0.026380762457847595, -0.039396099746227264, -0.188771590590477, 0.1432477831840515, 0.01286084670573473, -0.006655254401266575, 0.01470132078975439, -0.1187724694609642, 0.0237567201256752, 0.12924422323703766, 0.14608536660671234, -0.007485852111130953, 0.022204678505659103, -0.021153651177883148, 0.015852374956011772, 0.04223525896668434, 0.10059285163879395, 0.06155110150575638, 0.20848587155342102, -0.03379880636930466, 0.04012862592935562, -0.009092353284358978, -0.020502936094999313, -0.00006840244168415666, 0.11456617712974548, -0.040673963725566864, 0.010802701115608215, -0.05609671771526337, 0.10062258690595627, -0.05329636484384537, -0.3005090355873108, -0.020406203344464302, -0.01426613051444292, -0.09208070486783981, 0.08076918125152588, -0.046130407601594925, -0.022698182612657547, 0.0870378166437149, 0.035561565309762955, -0.053958792239427567, 0.15038363635540009, 0.05285589024424553, -0.050270289182662964, -0.004974773153662682, 0.10757879912853241, -0.02544269524514675, 0.17790929973125458, -0.036547791212797165, 0.01223009917885065, 0.08285024017095566, 0.009590566158294678, -0.12757626175880432, 0.004182182252407074, 0.02979806624352932, -0.05291543900966644, -0.019468316808342934, 0.19306236505508423, 0.014187346212565899, 0.019610457122325897, 0.06901296973228455, -0.04250375181436539, 0.02185654640197754, -0.037606094032526016, 0.06837654858827591, -0.14420516788959503, 0.053661298006772995, -0.08256518840789795, 0.12207712978124619, 0.17878000438213348, -0.06899485737085342, 0.03337195888161659, -0.057128600776195526, 0.004358225502073765, -0.020909085869789124, 0.0569063164293766, -0.014814275316894054, -0.11554428935050964, 0.011592359282076359, 0.042275890707969666, 0.012781105935573578, -0.17227062582969666, -0.08424840122461319, 0.08343256264925003, -0.04533985257148743, 0.02491690404713154, 0.17359215021133423, 0.020162206143140793, 0.05807972699403763, -0.036609385162591934, -0.0024157152511179447, -0.008674923330545425, 0.11687580496072769, -0.17904800176620483, -0.08142663538455963 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f30e8944a06a196868ee4b077a7926a6.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Григорий Лепс (Grigory Leps)</div> <a href="https://genius.com/artists/grigory-leps"> <div style="text-align: center; font-size: 14px;">@grigory-leps</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Григорий Лепс (Grigory Leps). Dataset is available [here](https://huggingface.co/datasets/huggingartists/grigory-leps). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/grigory-leps") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/32wqexib/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Григорий Лепс (Grigory Leps)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1j0f6nwb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1j0f6nwb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/grigory-leps') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/grigory-leps") model = AutoModelWithLMHead.from_pretrained("huggingartists/grigory-leps") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/grigory-leps"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/grigory-leps
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/grigory-leps", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/grigory-leps #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Григорий Лепс (Grigory Leps)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@grigory-leps</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Григорий Лепс (Grigory Leps). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Григорий Лепс (Grigory Leps)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Григорий Лепс (Grigory Leps).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Григорий Лепс (Grigory Leps)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/grigory-leps #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Григорий Лепс (Grigory Leps).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Григорий Лепс (Grigory Leps)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 86, 21, 58, 81, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/grigory-leps #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Григорий Лепс (Grigory Leps).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Григорий Лепс (Grigory Leps)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02709629386663437, 0.1809481829404831, -0.005923629272729158, 0.0896584764122963, 0.06833391636610031, 0.005503885913640261, 0.09972072392702103, 0.11580544710159302, -0.0038180514238774776, 0.0444876030087471, 0.04202438145875931, 0.040898870676755905, 0.05719644948840141, 0.08091270178556442, 0.02019122987985611, -0.23314806818962097, 0.004607511684298515, -0.05578712746500969, -0.06986092776060104, 0.08324430137872696, 0.10731110721826553, -0.06277231872081757, 0.06771247833967209, 0.02113248035311699, -0.04782566800713539, 0.012062689289450645, 0.023005256429314613, -0.0570109598338604, 0.06762071698904037, 0.07312779128551483, 0.07515177130699158, 0.03627147898077965, 0.05846777558326721, -0.1704852133989334, 0.02387055568397045, 0.11313380300998688, 0.031592898070812225, 0.0730426087975502, 0.08745820075273514, -0.11669068783521652, 0.09917829185724258, -0.05930189788341522, 0.0947396531701088, 0.03752030432224274, -0.13199250400066376, -0.12016270309686661, -0.11054576188325882, 0.04257421940565109, 0.019741838797926903, 0.04590562731027603, -0.015308874659240246, 0.04335274547338486, -0.06779022514820099, 0.08044060319662094, 0.23735401034355164, -0.24187567830085754, -0.01682523638010025, 0.06579763442277908, 0.04571381211280823, 0.02446606568992138, -0.0917142778635025, 0.0008419030345976353, 0.014716795645654202, 0.03731224685907364, 0.054333657026290894, -0.03562995418906212, 0.07544214278459549, 0.008282178081572056, -0.11145628243684769, -0.06573420763015747, 0.11075642704963684, -0.04856029897928238, -0.06437712907791138, -0.09984361380338669, -0.04548976570367813, -0.05360122397542, 0.03580556437373161, 0.04652445390820503, 0.0040580197237432, 0.010275301523506641, -0.07522708177566528, -0.11698649823665619, -0.06564217805862427, -0.06307932734489441, -0.04097573459148407, 0.11764433979988098, 0.05081387609243393, 0.028640812262892723, -0.07063697278499603, 0.19393835961818695, 0.061715707182884216, -0.11227238178253174, -0.05939487740397453, -0.09712814539670944, -0.10342113673686981, -0.022402653470635414, -0.03859666362404823, 0.029525477439165115, 0.0077097462490201, 0.18834729492664337, -0.03647847846150398, 0.01852794736623764, -0.06046490743756294, 0.027920106425881386, 0.10102759301662445, 0.13832204043865204, -0.07777459174394608, -0.018479812890291214, 0.08862123638391495, -0.023751018568873405, -0.06133177503943443, -0.05057376250624657, -0.01299035083502531, -0.06915362924337387, 0.05404100939631462, 0.08684378862380981, 0.06176413968205452, 0.05868997797369957, -0.05334107205271721, -0.05785522609949112, 0.011089833453297615, -0.16536644101142883, 0.026026548817753792, 0.023062486201524734, -0.05631411448121071, -0.018826838582754135, 0.07507843524217606, -0.02597605623304844, -0.10800626873970032, 0.07061150670051575, -0.052337467670440674, -0.01535403449088335, -0.09728219360113144, -0.10832493007183075, -0.005637159571051598, -0.03158625215291977, -0.015850355848670006, -0.06535374373197556, -0.1627342700958252, -0.0240008607506752, 0.04095468297600746, -0.06464992463588715, -0.008398487232625484, 0.0034598316997289658, -0.021371901035308838, -0.0032872448209673166, 0.006680245976895094, -0.008129038847982883, -0.02770346589386463, 0.06619839370250702, -0.06221122294664383, 0.0663873627781868, 0.06752549856901169, 0.03263011947274208, -0.1165350079536438, 0.07813908159732819, -0.13054980337619781, 0.17083439230918884, -0.03983611986041069, -0.07995181530714035, -0.060295213013887405, -0.08873564004898071, -0.019305825233459473, -0.02176016755402088, 0.036551229655742645, 0.07956983149051666, -0.1694284826517105, -0.016716161742806435, 0.24084453284740448, -0.06297382712364197, -0.02810964174568653, 0.1053294911980629, -0.08618968725204468, 0.028604675084352493, 0.08969245851039886, 0.1021672934293747, 0.12467485666275024, -0.06903009861707687, -0.053626563400030136, -0.02877580188214779, -0.04815201833844185, 0.20560400187969208, 0.04588228464126587, -0.012342098169028759, 0.04685583338141441, -0.0008935966761782765, -0.028831716626882553, -0.02321840636432171, -0.033413857221603394, -0.03764283284544945, -0.029038529843091965, -0.018079159781336784, 0.061837200075387955, -0.057583194226026535, -0.0326232835650444, -0.027077307924628258, -0.09765525162220001, 0.10763488709926605, 0.10514625906944275, -0.09707526117563248, 0.03053363598883152, -0.10862643271684647, 0.028328154236078262, -0.05020744726061821, -0.002553126309067011, -0.18291841447353363, -0.023136591538786888, 0.026845866814255714, -0.08235864341259003, 0.07848481833934784, 0.06056120991706848, 0.045038044452667236, 0.07918684184551239, -0.04680041968822479, 0.021258478984236717, -0.0673704519867897, -0.006750417407602072, -0.028657883405685425, -0.1700027585029602, -0.03541163355112076, -0.034326981753110886, 0.07186859101057053, -0.11117169260978699, 0.0069596124812960625, 0.0994749590754509, 0.14202982187271118, 0.029754191637039185, -0.050223249942064285, 0.025187093764543533, -0.017134016379714012, -0.026318861171603203, -0.0886026993393898, -0.03723035380244255, 0.017759796231985092, -0.03188652545213699, 0.13843166828155518, -0.15694691240787506, -0.0685594230890274, 0.11760091036558151, 0.05653243884444237, -0.07914873212575912, 0.03142762556672096, -0.054961640387773514, -0.026327377185225487, -0.06365162134170532, -0.031108740717172623, 0.227315291762352, 0.023613521829247475, 0.10105891525745392, -0.11495428532361984, -0.0824611634016037, -0.030475160107016563, -0.049579598009586334, 0.026687338948249817, 0.06426352262496948, 0.0028268101159483194, -0.19213196635246277, 0.056902192533016205, -0.01601840741932392, 0.017069222405552864, 0.20023146271705627, 0.00920871552079916, -0.09147601574659348, -0.0757906436920166, -0.020136795938014984, 0.024655429646372795, 0.09510200470685959, -0.007199903018772602, 0.06187182664871216, 0.037699438631534576, 0.04943152517080307, 0.04610411077737808, -0.12102998048067093, 0.02878466434776783, 0.06416725367307663, -0.05872359126806259, -0.07180330157279968, -0.0010571071179583669, 0.03367669880390167, 0.08344849199056625, 0.049585554748773575, 0.0937141478061676, -0.03895155340433121, -0.04971999302506447, -0.084719717502594, 0.11463899910449982, -0.10025066137313843, -0.19022755324840546, -0.1275538057088852, -0.06863734126091003, -0.018856951966881752, 0.04027694836258888, 0.021781137213110924, 0.015405671671032906, -0.02864273451268673, -0.06298518180847168, 0.061697106808423996, -0.025703515857458115, -0.02626306563615799, 0.0006604003137908876, 0.05707782879471779, 0.016532234847545624, -0.14841753244400024, -0.02438427321612835, 0.024768328294157982, -0.09686243534088135, 0.000320394552545622, 0.04253757745027542, 0.027429457753896713, 0.1053602397441864, -0.02980186976492405, -0.004649670794606209, -0.012943356297910213, 0.2430335134267807, -0.09088844805955887, 0.04362683743238449, 0.14245735108852386, -0.07813087850809097, 0.055404409766197205, 0.0550837479531765, 0.013575955294072628, -0.07680486142635345, 0.05198110267519951, 0.060373883694410324, -0.052872296422719955, -0.2069695144891739, -0.018751131370663643, -0.047908566892147064, 0.029375256970524788, 0.11021091789007187, 0.03509550541639328, -0.011236535385251045, 0.010394498705863953, -0.08850463479757309, 0.08444074541330338, 0.08281421661376953, 0.08483221381902695, 0.012634724378585815, -0.0009816151577979326, 0.07301796972751617, -0.055918965488672256, 0.01323740929365158, 0.08655506372451782, 0.06182389333844185, 0.22448183596134186, -0.10513539612293243, 0.10717998445034027, 0.08388929814100266, 0.07611048966646194, 0.0740881934762001, 0.030212892219424248, -0.04406571388244629, 0.054674237966537476, 0.0014106715098023415, -0.09454481303691864, -0.04337168112397194, 0.015414046123623848, 0.019169770181179047, -0.011260190047323704, 0.004605181515216827, -0.08756640553474426, 0.06111243739724159, 0.2051912248134613, 0.08585313707590103, -0.13360722362995148, -0.08260512351989746, 0.0656401738524437, -0.02766648307442665, -0.05673520267009735, -0.014522319659590721, 0.10533791035413742, -0.17798830568790436, -0.001478391932323575, -0.009299330413341522, 0.1097429096698761, -0.1774645447731018, -0.018227752298116684, -0.014507477171719074, 0.08331233263015747, -0.06137163192033768, 0.06931144744157791, -0.2008257806301117, 0.0461236871778965, 0.019187642261385918, 0.10029657930135727, -0.05101171135902405, 0.030953537672758102, 0.05191642418503761, 0.01796998456120491, 0.05446695536375046, 0.022921975702047348, 0.010107162408530712, -0.09956838935613632, -0.0794592946767807, 0.017947858199477196, 0.07497364282608032, -0.08377613872289658, 0.11547508835792542, -0.056232064962387085, 0.011884283274412155, -0.008448299020528793, -0.10311885923147202, -0.09200748056173325, -0.1538276970386505, 0.05434027686715126, -0.13451692461967468, 0.03309604898095131, -0.058830827474594116, -0.010805479250848293, 0.024528928101062775, 0.20279094576835632, -0.10537727177143097, -0.10541170835494995, -0.09537924081087112, 0.017493445426225662, 0.1405714601278305, -0.06481897830963135, 0.04309439659118652, 0.020782824605703354, 0.13391347229480743, 0.020559433847665787, -0.11967134475708008, 0.003931608982384205, -0.0469372496008873, -0.2007223218679428, -0.016636159271001816, 0.10631819069385529, 0.06251104176044464, 0.07201838493347168, 0.017985494807362556, 0.0360691212117672, -0.04152684658765793, -0.13298308849334717, -0.018362276256084442, 0.11563631147146225, 0.03429244086146355, 0.0684487372636795, -0.028673356398940086, 0.04905978590250015, -0.09746307879686356, 0.014575925655663013, 0.07084416598081589, 0.2532423138618469, -0.07194703817367554, 0.13388027250766754, 0.027830587700009346, -0.09981974214315414, -0.1753731071949005, 0.009340612217783928, 0.007805577013641596, 0.04154021292924881, 0.010778753086924553, -0.1990700215101242, -0.00021916936384513974, 0.06247009336948395, 0.00034095122828148305, 0.11719181388616562, -0.33359459042549133, -0.14265547692775726, 0.02514926716685295, 0.024973362684249878, -0.07484964281320572, -0.029360752552747726, -0.03219987452030182, -0.07324898988008499, -0.1934853196144104, 0.12274269759654999, -0.10746204853057861, 0.12085448950529099, 0.01809861697256565, -0.018237333744764328, 0.04476799815893173, -0.03915458545088768, 0.14271065592765808, -0.06628953665494919, 0.07862407714128494, -0.07721448689699173, 0.0048374454490840435, 0.09418337047100067, -0.031170159578323364, 0.06424444913864136, 0.012480533681809902, 0.09192373603582382, -0.025131741538643837, -0.08155786991119385, -0.06359505653381348, 0.02332974039018154, -0.05562905594706535, -0.09888172894716263, -0.08059695363044739, 0.07561025768518448, 0.09739784896373749, -0.02600337564945221, -0.10961955785751343, -0.055370692163705826, -0.05769931152462959, 0.08108431845903397, 0.09559834003448486, 0.12312151491641998, -0.08034159988164902, 0.00532037578523159, -0.00012886244803667068, 0.05567748844623566, -0.08542095869779587, 0.06931101530790329, 0.08040925115346909, 0.03583264350891113, 0.1045813262462616, 0.04100126028060913, -0.1289983093738556, 0.028111860156059265, 0.026568429544568062, -0.142322838306427, -0.1132567971944809, -0.01883035898208618, -0.05361761525273323, -0.06827610731124878, -0.06429747492074966, 0.14316728711128235, -0.022205621004104614, -0.04163043200969696, 0.030718734487891197, 0.03354739025235176, -0.035526350140571594, 0.1154424250125885, 0.0554487518966198, 0.029689941555261612, -0.08129961788654327, 0.1079498827457428, 0.07769641280174255, 0.029643593356013298, 0.033441219478845596, 0.03729914128780365, -0.0899624451994896, 0.006157010793685913, -0.06938309967517853, 0.05992297828197479, -0.004597605671733618, 0.0004655019729398191, -0.05715781822800636, -0.03261464461684227, 0.028141045942902565, 0.124791219830513, 0.015685586258769035, 0.13774751126766205, -0.030687181279063225, 0.025366907939314842, -0.12194028496742249, 0.09779339283704758, 0.06023575738072395, 0.044113889336586, -0.06547394394874573, 0.17018455266952515, 0.017584681510925293, 0.05987578630447388, -0.03485589474439621, -0.050399042665958405, -0.08844348043203354, -0.0012882509035989642, -0.17110662162303925, -0.017393751069903374, -0.05035090073943138, -0.020358644425868988, -0.011524357832968235, -0.040223006159067154, -0.018970370292663574, 0.050526559352874756, -0.040751468390226364, -0.050742119550704956, -0.04600769281387329, 0.025900471955537796, -0.17128495872020721, -0.025720473378896713, 0.1251879632472992, -0.10751945525407791, 0.10337290167808533, 0.0766730010509491, -0.04123938828706741, 0.005142153240740299, -0.09670688956975937, 0.0009890770306810737, -0.04463478550314903, 0.020026836544275284, 0.016219591721892357, -0.14346857368946075, 0.040367964655160904, -0.052460167557001114, -0.02813645265996456, 0.014876732602715492, 0.06735926866531372, -0.13229621946811676, 0.019211379811167717, 0.04303231090307236, -0.003176552476361394, -0.06759694218635559, 0.05849606916308403, 0.043894436210393906, 0.08364800363779068, 0.0719476044178009, -0.03669184073805809, 0.079379141330719, -0.14819134771823883, -0.03262411430478096, 0.02421555668115616, -0.02066994644701481, 0.054965026676654816, -0.023470329120755196, 0.055035192519426346, -0.019372519105672836, 0.19798262417316437, -0.0005864113918505609, -0.0269866231828928, 0.013626446947455406, -0.02813662774860859, -0.004133087117224932, 0.05194981023669243, 0.08639771491289139, -0.02406710386276245, -0.03779758885502815, -0.030662020668387413, 0.002953008282929659, -0.042394161224365234, -0.04587775468826294, 0.1098838597536087, 0.07389303296804428, 0.12052004039287567, -0.05732135474681854, 0.04702039808034897, -0.012823921628296375, -0.13013862073421478, -0.027664823457598686, -0.011812846176326275, 0.0216184351593256, -0.07488276064395905, 0.07013539969921112, 0.12279459834098816, -0.16252776980400085, 0.14748865365982056, 0.011605079285800457, -0.07905774563550949, -0.10980002582073212, -0.16801723837852478, -0.028871800750494003, -0.0038558749947696924, 0.019666574895381927, -0.13604427874088287, 0.08177965879440308, 0.057775624096393585, 0.03765568509697914, -0.05308980122208595, 0.10208568722009659, -0.05018062889575958, -0.10147897899150848, -0.011773314327001572, 0.01990285888314247, 0.03889041021466255, 0.04795406013727188, 0.006558919791132212, 0.03571818396449089, 0.04857873171567917, 0.06528299301862717, 0.04617241397500038, 0.04780273139476776, -0.015985535457730293, -0.020694948732852936, -0.04447485879063606, 0.016032114624977112, 0.009890898130834103, 0.025062186643481255, 0.1299392729997635, 0.0641079694032669, -0.014925248920917511, -0.016395196318626404, 0.3202773928642273, -0.03169456496834755, -0.12495056539773941, -0.17620182037353516, 0.1411573439836502, 0.021068869158625603, 0.012049301527440548, 0.0354740172624588, -0.1352476328611374, -0.0020033514592796564, 0.12710188329219818, 0.1604897528886795, -0.05357299745082855, 0.039919398725032806, 0.003744028741493821, 0.014614272862672806, 0.028912369161844254, 0.054892346262931824, 0.03427370265126228, 0.18945105373859406, -0.0509495809674263, 0.04122767597436905, 0.01582036353647709, 0.005331161431968212, -0.037567660212516785, 0.11611830443143845, -0.04437815397977829, 0.007568813860416412, -0.08289783447980881, 0.04181230440735817, -0.060141220688819885, -0.22525818645954132, -0.0013537819031625986, -0.04707974195480347, -0.11177198588848114, 0.034455038607120514, -0.032015763223171234, -0.03837309405207634, 0.06934259086847305, 0.010126663371920586, -0.004948012065142393, 0.09658696502447128, 0.023175114765763283, -0.016618994995951653, 0.0029654414393007755, 0.08888676017522812, 0.0034473943524062634, 0.1820346564054489, -0.006630583666265011, 0.04721422120928764, 0.09357881546020508, 0.03830232843756676, -0.102104052901268, 0.011416220106184483, 0.031748510897159576, -0.06821281462907791, -0.008880505338311195, 0.18652455508708954, -0.011082413606345654, 0.013806801289319992, 0.061497025191783905, -0.002266633789986372, 0.046361587941646576, -0.06365392357110977, 0.03495967015624046, -0.11523448675870895, -0.0031736944802105427, -0.07643184810876846, 0.10465645790100098, 0.19353565573692322, -0.04745316505432129, 0.03368905186653137, -0.05770133063197136, 0.006095605902373791, 0.022633954882621765, 0.0213619377464056, -0.02866983227431774, -0.09771786630153656, 0.006894200574606657, 0.0984349176287651, 0.03356330841779709, -0.17758406698703766, -0.08678169548511505, 0.054896414279937744, -0.0583740659058094, -0.0024412693455815315, 0.1407981812953949, 0.014973796904087067, 0.07947728782892227, -0.028086744248867035, -0.04575485363602638, -0.02786564826965332, 0.06425541639328003, -0.1384180337190628, -0.07181847840547562 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/8dd2a89218346f6bdb326bf84cd9eb49.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Grimes</div> <a href="https://genius.com/artists/grimes"> <div style="text-align: center; font-size: 14px;">@grimes</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Grimes. Dataset is available [here](https://huggingface.co/datasets/huggingartists/grimes). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/grimes") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3796ng30/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Grimes's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/ourv0tjj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/ourv0tjj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/grimes') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/grimes") model = AutoModelWithLMHead.from_pretrained("huggingartists/grimes") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/grimes"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/grimes
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/grimes", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/grimes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Grimes</div> <a href="URL <div style="text-align: center; font-size: 14px;">@grimes</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Grimes. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Grimes's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Grimes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Grimes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/grimes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Grimes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Grimes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/grimes #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Grimes.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Grimes's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.024984067305922508, 0.16039811074733734, -0.0029381036292761564, 0.03360944613814354, 0.08758584409952164, -0.004969101399183273, 0.0851564109325409, 0.10694066435098648, -0.016036124899983406, 0.07848485559225082, 0.08494701236486435, 0.016243739053606987, 0.06493911147117615, 0.12736700475215912, 0.09116797894239426, -0.2675807476043701, 0.03246656805276871, -0.10737568140029907, -0.0007458440959453583, 0.11950994282960892, 0.09152091294527054, -0.04977548494935036, 0.08066171407699585, 0.03398566320538521, -0.07875948399305344, 0.030562112107872963, -0.015296578407287598, -0.0657617524266243, 0.09391337633132935, 0.08535213023424149, 0.030318474397063255, 0.03647705167531967, 0.06533791869878769, -0.18678350746631622, 0.03782905265688896, 0.12168870121240616, 0.02479744516313076, 0.07533777505159378, 0.042558491230010986, -0.07972835749387741, 0.17958901822566986, -0.035681962966918945, 0.08673033118247986, 0.04738051816821098, -0.10417864471673965, -0.17907173931598663, -0.12143772840499878, 0.08773007243871689, 0.09907984733581543, 0.07674235105514526, -0.03349938616156578, 0.03758978843688965, 0.000509503937792033, 0.047354236245155334, 0.23889875411987305, -0.24241794645786285, -0.01604210026562214, 0.0947507917881012, 0.04060398042201996, 0.03999856486916542, -0.07143526524305344, 0.02611495740711689, 0.050702180713415146, 0.02456093765795231, 0.047839537262916565, -0.0102073410525918, 0.21896855533123016, 0.02483237348496914, -0.09630569815635681, -0.08567765355110168, 0.10677316784858704, -0.02959406189620495, -0.08118761330842972, -0.15992532670497894, 0.007627478335052729, -0.02669699490070343, 0.03976418450474739, -0.01181326899677515, -0.01169836986809969, -0.001385472365655005, -0.042896535247564316, -0.09624742716550827, -0.09041114896535873, -0.026648880913853645, -0.022243984043598175, 0.0851689800620079, 0.028491148725152016, 0.030543923377990723, -0.07452544569969177, 0.2294059544801712, 0.011556562967598438, -0.10400905460119247, -0.05742301419377327, -0.08658645302057266, -0.10236650705337524, -0.05825747922062874, 0.003873667446896434, 0.01598994992673397, -0.053441863507032394, 0.18139280378818512, -0.03359069675207138, 0.027789458632469177, 0.008502638898789883, -0.024179046973586082, 0.1548205465078354, 0.11980310082435608, -0.09516086429357529, -0.023723378777503967, 0.04991031810641289, -0.021267788484692574, -0.06471992284059525, -0.06363937258720398, -0.016013814136385918, -0.022998319938778877, 0.03308454528450966, 0.09864261746406555, 0.05309149622917175, 0.05575179681181908, 0.035969387739896774, -0.05962942913174629, 0.10690868645906448, -0.14131532609462738, 0.010999680496752262, -0.008296865038573742, -0.026234781369566917, 0.015388050116598606, 0.042967066168785095, 0.01895023137331009, -0.09968030452728271, 0.11734927445650101, -0.04906884953379631, -0.05749216675758362, -0.0626797080039978, -0.0866873636841774, -0.0028261884581297636, 0.0010467491811141372, -0.04698222875595093, -0.09076911211013794, -0.1539553999900818, -0.030426645651459694, 0.022456400096416473, -0.03962739184498787, -0.050299908965826035, 0.040570661425590515, -0.04110455885529518, 0.0073024979792535305, -0.01679004728794098, -0.014557373709976673, -0.030070459470152855, 0.021701855584979057, -0.06402970105409622, 0.03194529190659523, 0.08670272678136826, 0.031305715441703796, -0.10505769401788712, 0.06206338480114937, -0.1557554453611374, 0.1476103514432907, -0.018617046996951103, 0.01459724735468626, -0.11420706659555435, -0.09442367404699326, -0.028089985251426697, -0.02368321269750595, -0.007094433065503836, 0.1006312295794487, -0.18170936405658722, -0.04394887760281563, 0.19526879489421844, -0.07300404459238052, -0.0773884728550911, 0.07751080393791199, -0.07627173513174057, 0.02247588150203228, 0.13549034297466278, 0.06216508150100708, 0.16096045076847076, -0.11283803731203079, -0.07423578947782516, -0.04828302189707756, -0.06246601417660713, 0.22081510722637177, 0.05870627239346504, -0.009562538005411625, 0.017240554094314575, 0.005634918808937073, -0.01959739811718464, -0.026176387444138527, -0.023362988606095314, -0.04080284759402275, -0.010380095802247524, 0.017669685184955597, -0.00477347569540143, -0.053108084946870804, -0.06486865133047104, -0.018785865977406502, -0.1173880472779274, 0.028521353378891945, 0.10237279534339905, -0.07536777853965759, 0.008773868903517723, -0.08985491842031479, -0.0005640219897031784, -0.04070161655545235, 0.026424093171954155, -0.19350607693195343, -0.07637620717287064, 0.022396115586161613, -0.07791987806558609, 0.09259260445833206, 0.013833030126988888, 0.039152707904577255, 0.06952746212482452, -0.007305517792701721, 0.023859241977334023, -0.04587876796722412, -0.022954007610678673, -0.035644132643938065, -0.1451345831155777, -0.07361704856157303, -0.05433717742562294, 0.08313234895467758, -0.14351968467235565, 0.009206951595842838, 0.11487994343042374, 0.1167304515838623, 0.023138562217354774, -0.05951450765132904, 0.01215345785021782, -0.03772832825779915, -0.041604235768318176, -0.11231508105993271, -0.062457453459501266, 0.002861675573512912, -0.04285362735390663, 0.15963613986968994, -0.1714521199464798, -0.07008633762598038, 0.09317975491285324, 0.17066724598407745, -0.10815099626779556, 0.015596938319504261, -0.09437695145606995, -0.005942946765571833, -0.05492575466632843, -0.04448710381984711, 0.27649787068367004, 0.04320142790675163, 0.07546790689229965, -0.11033391952514648, -0.09992682933807373, 0.000568691932130605, -0.03508120775222778, -0.02496408112347126, 0.0352286733686924, 0.020811766386032104, -0.16834355890750885, 0.024600805714726448, -0.013452027924358845, 0.11939004808664322, 0.20867879688739777, 0.04705251753330231, -0.08889887481927872, -0.05964568257331848, -0.08596467971801758, 0.006405974272638559, 0.047009676694869995, 0.05319998785853386, 0.026876771822571754, 0.04281259700655937, 0.05262790247797966, 0.03478945419192314, -0.11383896321058273, 0.006399333477020264, 0.0805688202381134, -0.04596981033682823, -0.05587466433644295, 0.02619338594377041, 0.015263199806213379, 0.08263292163610458, 0.07838146388530731, 0.14209288358688354, -0.06744793802499771, -0.044622886925935745, -0.14527587592601776, 0.14386485517024994, -0.07295619696378708, -0.25543951988220215, -0.14285962283611298, -0.06200060248374939, 0.01821916550397873, 0.0037495249416679144, 0.047059882432222366, -0.06255000084638596, -0.04022127389907837, -0.10130738466978073, 0.09850945323705673, -0.04733988642692566, -0.0142403244972229, 0.0037036004941910505, 0.011882130056619644, -0.036073870956897736, -0.10727962106466293, -0.028458258137106895, 0.03836540877819061, -0.10081970691680908, -0.01569322682917118, 0.03113670088350773, 0.04392792657017708, 0.15383273363113403, -0.006772113963961601, -0.0037754576187580824, -0.035747040063142776, 0.2863176763057709, -0.12291327863931656, 0.0673680528998375, 0.16098812222480774, -0.017860950902104378, 0.05555529519915581, 0.07383836805820465, 0.012836378999054432, -0.06765758246183395, 0.07522965222597122, 0.07339013367891312, -0.09525519609451294, -0.21403032541275024, -0.03267478570342064, -0.005881792400032282, 0.01755683869123459, 0.13188759982585907, 0.0613030381500721, 0.06583590060472488, -0.005196533165872097, -0.10652389377355576, 0.04508146271109581, 0.030431346967816353, 0.11176303774118423, -0.0748252421617508, -0.0032299032900482416, 0.0518324077129364, -0.06342792510986328, 0.027251437306404114, 0.1389089822769165, 0.03527176007628441, 0.20344178378582, -0.05860484018921852, 0.10063302516937256, 0.07473652809858322, 0.09954970329999924, 0.04128226637840271, 0.011287800967693329, 0.004999806173145771, 0.009844113141298294, -0.0006448493804782629, -0.09851577132940292, -0.005493495613336563, 0.04742072895169258, 0.03492525592446327, -0.028336668387055397, -0.043792758136987686, -0.05306129530072212, 0.039364349097013474, 0.24913497269153595, -0.017404740676283836, -0.17909105122089386, -0.12462296336889267, 0.037767618894577026, -0.0817452147603035, -0.04591242969036102, -0.025482216849923134, 0.07456108927726746, -0.2152131348848343, 0.07048860937356949, -0.03849143162369728, 0.10748977214097977, -0.1071128249168396, 0.005945039447396994, 0.07989852875471115, 0.05052897334098816, -0.06839846819639206, 0.09730854630470276, -0.16166888177394867, 0.0629965141415596, -0.010618049651384354, 0.0676892027258873, -0.07649490237236023, 0.029654616490006447, 0.003433224046602845, 0.052381500601768494, 0.08840825408697128, 0.013387518934905529, 0.007900680415332317, -0.00314989872276783, -0.052819784730672836, 0.015354403294622898, 0.0581221766769886, -0.1437212973833084, 0.12699656188488007, -0.024632232263684273, 0.035462234169244766, -0.04586391523480415, -0.09014886617660522, -0.08769290894269943, -0.16982050240039825, 0.09513354301452637, -0.12577880918979645, 0.006731931120157242, -0.0690770298242569, -0.03505243360996246, 0.030899247154593468, 0.2630627155303955, -0.07397110015153885, -0.07925624400377274, -0.14165925979614258, 0.022883286699652672, 0.13836921751499176, -0.08934395760297775, 0.0027529268991202116, -0.01074534747749567, 0.2164977341890335, -0.006883189082145691, -0.1334492415189743, -0.02168126218020916, -0.06379414349794388, -0.1719713658094406, -0.0018289334839209914, 0.1707683801651001, 0.06259096413850784, 0.02587185986340046, 0.010412832722067833, -0.007660647388547659, -0.04143165424466133, -0.17153674364089966, 0.02477104403078556, 0.15960505604743958, -0.012011962942779064, 0.0034639902878552675, 0.0518491305410862, 0.016941456124186516, -0.1348845660686493, 0.014834036119282246, 0.05372439697384834, 0.1830909103155136, -0.08549108356237411, 0.19043250381946564, 0.03349393233656883, -0.08752700686454773, -0.1569059044122696, 0.0007995259948074818, 0.04450749233365059, 0.038935672491788864, 0.04651084914803505, -0.21527476608753204, 0.046509187668561935, 0.04013634845614433, 0.004243914037942886, 0.03494478762149811, -0.32357123494148254, -0.15908263623714447, -0.014319506473839283, 0.002703422913327813, -0.1399303674697876, -0.045936454087495804, -0.036909397691488266, -0.0914890393614769, -0.23895402252674103, 0.11523041129112244, -0.10460421442985535, 0.07338450849056244, 0.034162718802690506, 0.10853462666273117, 0.04814545810222626, -0.04501578211784363, 0.1352856308221817, -0.017200680449604988, 0.0646875873208046, -0.09327855706214905, -0.059478696435689926, 0.06263513118028641, -0.07535358518362045, 0.08914954215288162, 0.01975918374955654, 0.08047174662351608, -0.09731495380401611, -0.08431269973516464, -0.06144179403781891, 0.00395977171137929, -0.05055074766278267, -0.08523664623498917, -0.09163320064544678, 0.08038271218538284, 0.1233782097697258, -0.04627668857574463, -0.0742393359541893, -0.06913876533508301, 0.011927920393645763, 0.03212032839655876, 0.12351512908935547, 0.07731466740369797, -0.06810124963521957, -0.0018516099080443382, 0.012718739919364452, 0.015551571734249592, -0.19397251307964325, 0.04869377613067627, 0.09947719424962997, 0.0427764393389225, 0.10166289657354355, 0.004858842119574547, -0.16599513590335846, 0.006377192679792643, 0.0500330813229084, -0.1679682731628418, -0.13828331232070923, -0.04184092953801155, 0.025973891839385033, -0.0996304526925087, -0.041837189346551895, 0.1407136172056198, -0.03549940884113312, -0.03999633342027664, 0.0029431600123643875, 0.039438918232917786, -0.036197636276483536, 0.08491102606058121, -0.012964674271643162, 0.049336064606904984, -0.06796913594007492, 0.11041158437728882, 0.06805790215730667, 0.009265409782528877, 0.045805882662534714, 0.06792404502630234, -0.08922352641820908, 0.014492958784103394, -0.10740453004837036, 0.0008950618212111294, -0.032876934856176376, -0.009991076774895191, 0.029396189376711845, -0.02973794750869274, 0.049581319093704224, 0.09385880827903748, -0.02216474711894989, 0.09944584965705872, -0.05086742714047432, 0.020017482340335846, -0.13009841740131378, 0.06441067904233932, 0.03201955929398537, 0.019221827387809753, -0.10407910495996475, 0.20562434196472168, 0.03229605779051781, 0.10420423001050949, -0.03853349760174751, -0.0626329854130745, -0.05010263994336128, -0.017103876918554306, -0.07785581797361374, -0.038320913910865784, -0.08464124798774719, -0.02266625128686428, -0.006699237506836653, -0.03198738768696785, -0.02767939865589142, 0.04845985770225525, -0.035438623279333115, -0.059318676590919495, -0.07501164823770523, 0.04674572870135307, -0.14158345758914948, 0.035321395844221115, 0.11121789366006851, -0.053342223167419434, 0.12984950840473175, 0.054660603404045105, -0.0359448678791523, 0.02675953507423401, -0.13742594420909882, 0.05093757435679436, -0.006884528789669275, 0.019825106486678123, 0.014516383409500122, -0.15204638242721558, 0.0025516606401652098, -0.038588747382164, -0.07030900567770004, 0.009962227195501328, -0.01972174271941185, -0.12672613561153412, -0.003797857789322734, 0.09091964364051819, -0.006536206696182489, -0.0697483941912651, 0.07371453940868378, 0.05011669173836708, 0.026824161410331726, 0.06211113557219505, -0.015426759608089924, 0.07070630043745041, -0.17456239461898804, -0.06166675314307213, -0.003510457230731845, 0.029550641775131226, 0.031054740771651268, -0.02375357784330845, 0.0383538156747818, -0.021684879437088966, 0.1988552063703537, 0.016423828899860382, 0.0005252973060123622, 0.036807574331760406, -0.060179781168699265, -0.002716581104323268, 0.041507307440042496, 0.07706951349973679, -0.014985300600528717, -0.023616624996066093, 0.0012756716459989548, -0.022110724821686745, -0.09532993286848068, -0.02165345847606659, 0.09998023509979248, 0.011038475669920444, 0.20454628765583038, -0.06009344384074211, 0.06426334381103516, -0.021064164116978645, -0.10571202635765076, -0.02856544591486454, -0.043598663061857224, 0.032708290964365005, -0.056240711361169815, 0.047039151191711426, 0.19020122289657593, -0.14903084933757782, 0.11572182923555374, 0.04416768252849579, -0.0541766993701458, -0.12427213042974472, -0.2022998332977295, -0.01171168964356184, -0.03039146028459072, 0.0235693771392107, -0.13931065797805786, 0.09303585439920425, 0.016537712886929512, 0.041141510009765625, -0.05400009825825691, 0.12868516147136688, -0.08729169517755508, -0.13125695288181305, 0.04421237111091614, 0.011677061207592487, 0.02902607060968876, 0.05213836207985878, 0.08436719328165054, 0.040526993572711945, 0.006519233342260122, 0.07412654906511307, 0.03866579011082649, 0.03413410112261772, 0.04203975200653076, -0.03847101703286171, -0.044798344373703, 0.030363744124770164, -0.004457337781786919, 0.020525338128209114, 0.09618893265724182, 0.07267012447118759, -0.022302454337477684, -0.01654363051056862, 0.3099168837070465, -0.014709158800542355, -0.027866041287779808, -0.18829981982707977, 0.16898345947265625, 0.0071241906844079494, 0.005383035633713007, 0.01845882274210453, -0.11638179421424866, 0.012740076519548893, 0.1079675555229187, 0.14919982850551605, -0.015056225471198559, 0.02566850744187832, -0.029243938624858856, 0.017179878428578377, 0.040565986186265945, 0.10909312963485718, 0.06043589487671852, 0.19376103579998016, -0.0232036504894495, 0.05474327132105827, -0.013414471410214901, -0.01809307187795639, 0.00462793605402112, 0.10224760323762894, -0.04521361365914345, 0.0025332027580589056, -0.04502936080098152, 0.10809848457574844, -0.06054980680346489, -0.30109843611717224, -0.04416261985898018, -0.019546987488865852, -0.08983328193426132, 0.07588612288236618, -0.036616042256355286, -0.019647890701889992, 0.08164014667272568, 0.0303177610039711, -0.050711195915937424, 0.1535993367433548, 0.05023769661784172, -0.03922902047634125, 0.0020459319930523634, 0.10791096836328506, -0.04427282139658928, 0.1581762284040451, -0.03571602702140808, 0.016687681898474693, 0.0798436626791954, 0.009188821539282799, -0.13037943840026855, -0.0017029335722327232, 0.03844737634062767, -0.05842192843556404, -0.019467048346996307, 0.20702438056468964, 0.013555760495364666, 0.024705728515982628, 0.07137948274612427, -0.06220366433262825, 0.015855660662055016, -0.040288686752319336, 0.060971423983573914, -0.13030396401882172, 0.07352042943239212, -0.07322708517313004, 0.11502286791801453, 0.17508454620838165, -0.06606946140527725, 0.036111731082201004, -0.057163968682289124, 0.006378508638590574, -0.02841438166797161, 0.07546762377023697, -0.019962893798947334, -0.1218242421746254, 0.009008885361254215, 0.022483443841338158, 0.015288612805306911, -0.17253749072551727, -0.08099295943975449, 0.07307084649801254, -0.048293787986040115, 0.025317706167697906, 0.1781378835439682, 0.025309378281235695, 0.05193009972572327, -0.03665165975689888, -0.02119208313524723, -0.005273505579680204, 0.11752671003341675, -0.17484544217586517, -0.07574029266834259 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9409ae2b38424a74b42cb1e4bb66b83a.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">GSPD</div> <a href="https://genius.com/artists/gspd"> <div style="text-align: center; font-size: 14px;">@gspd</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from GSPD. Dataset is available [here](https://huggingface.co/datasets/huggingartists/gspd). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/gspd") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3jof0sex/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on GSPD's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2nxhrny4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2nxhrny4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/gspd') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/gspd") model = AutoModelWithLMHead.from_pretrained("huggingartists/gspd") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/gspd"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/gspd
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/gspd", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gspd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">GSPD</div> <a href="URL <div style="text-align: center; font-size: 14px;">@gspd</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from GSPD. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on GSPD's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from GSPD.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on GSPD's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gspd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from GSPD.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on GSPD's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 83, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gspd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from GSPD.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on GSPD's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.023696135729551315, 0.1562575250864029, -0.00265701487660408, 0.037066563963890076, 0.08985842764377594, 0.00432967534288764, 0.08423681557178497, 0.10899090766906738, -0.00750110624358058, 0.07310902327299118, 0.07822747528553009, 0.008803381584584713, 0.06775519996881485, 0.12532201409339905, 0.08781673014163971, -0.26647794246673584, 0.02948128618299961, -0.09753263741731644, 0.017620543017983437, 0.1210627555847168, 0.0944746658205986, -0.05320793390274048, 0.0851513147354126, 0.03736434504389763, -0.0695834755897522, 0.023591799661517143, -0.008577286265790462, -0.07087954878807068, 0.08997814357280731, 0.07256695628166199, 0.028255430981516838, 0.021184807643294334, 0.06518050283193588, -0.19207735359668732, 0.031928710639476776, 0.1259285807609558, 0.029181215912103653, 0.0699329525232315, 0.04559336602687836, -0.08091754466295242, 0.17155028879642487, -0.023159539327025414, 0.09240011125802994, 0.04746854305267334, -0.11671558767557144, -0.17655892670154572, -0.12263461202383041, 0.08524024486541748, 0.10184676200151443, 0.08926193416118622, -0.034348659217357635, 0.039216477423906326, -0.007787150796502829, 0.04394524171948433, 0.23691323399543762, -0.24889583885669708, -0.015871411189436913, 0.092819444835186, 0.03781823813915253, 0.0376100055873394, -0.07893586903810501, 0.01756044290959835, 0.0480504184961319, 0.02642866037786007, 0.04656277969479561, -0.014906154945492744, 0.21344473958015442, 0.02405085787177086, -0.09744194149971008, -0.08571979403495789, 0.11547183990478516, -0.030058981850743294, -0.07894796133041382, -0.15071703493595123, 0.004380590748041868, -0.035305868834257126, 0.035645902156829834, -0.00779200391843915, -0.004754646215587854, 0.008292666636407375, -0.039154160767793655, -0.0967550128698349, -0.09255639463663101, -0.032074347138404846, -0.024528397247195244, 0.07716589421033859, 0.02783237397670746, 0.030900422483682632, -0.08200787007808685, 0.23800960183143616, -0.011579521931707859, -0.10048732161521912, -0.058673396706581116, -0.08851791173219681, -0.09366679936647415, -0.05927456542849541, 0.008735650219023228, 0.018047204241156578, -0.06311772018671036, 0.1740899384021759, -0.030803164467215538, 0.03335433080792427, 0.007613568566739559, -0.021540334448218346, 0.14560680091381073, 0.13444973528385162, -0.09805838018655777, -0.035020116716623306, 0.045973725616931915, -0.02077660709619522, -0.0680001974105835, -0.055609170347452164, -0.009459939785301685, -0.01906927116215229, 0.026368027552962303, 0.0899478867650032, 0.04878190904855728, 0.060407642275094986, 0.02279973216354847, -0.05607358366250992, 0.09839527308940887, -0.14166896045207977, 0.012987768277525902, -0.011734744533896446, -0.03210987150669098, 0.012048701755702496, 0.04775789752602577, 0.013542471453547478, -0.09888207912445068, 0.12043822556734085, -0.056381192058324814, -0.0522819422185421, -0.07232801616191864, -0.0780143290758133, -0.007001640275120735, -0.012004389427602291, -0.04849923774600029, -0.07611745595932007, -0.17166787385940552, -0.04079093784093857, 0.026566259562969208, -0.045556455850601196, -0.03595120832324028, 0.037970367819070816, -0.03044741228222847, 0.009164905175566673, -0.011851915158331394, -0.01729712076485157, -0.03254043310880661, 0.02509961649775505, -0.055236756801605225, 0.03524632006883621, 0.0773976594209671, 0.0386701337993145, -0.11410853266716003, 0.06869745254516602, -0.15855033695697784, 0.14157135784626007, -0.013407845981419086, 0.016939997673034668, -0.10300994664430618, -0.09174150973558426, -0.038639456033706665, -0.027718301862478256, -0.007784034125506878, 0.10039646923542023, -0.1841544359922409, -0.036745987832546234, 0.20909298956394196, -0.07410317659378052, -0.08210066705942154, 0.06855423003435135, -0.07384204864501953, 0.038720328360795975, 0.13642476499080658, 0.059452977031469345, 0.1573430597782135, -0.11107431352138519, -0.06796550005674362, -0.04018818587064743, -0.05872210115194321, 0.21122343838214874, 0.05443635582923889, -0.01902746967971325, 0.022991009056568146, 0.011939547955989838, -0.03022260032594204, -0.027865560725331306, -0.021577732637524605, -0.041178856045007706, -0.012889468111097813, 0.014166622422635555, -0.007047601044178009, -0.04965466633439064, -0.06447665393352509, -0.023346543312072754, -0.11018785834312439, 0.03816130384802818, 0.09838733077049255, -0.06940065324306488, 0.009896092116832733, -0.09422050416469574, -0.0025467402301728725, -0.0330771766602993, 0.018513623625040054, -0.19162635505199432, -0.06263221800327301, 0.019251583144068718, -0.06795152276754379, 0.08896756172180176, 0.018654020503163338, 0.04170316085219383, 0.05860473960638046, -0.017369601875543594, 0.023973137140274048, -0.047817230224609375, -0.022076301276683807, -0.03703588247299194, -0.1363590806722641, -0.06284833699464798, -0.050989780575037, 0.08376853168010712, -0.13616427779197693, 0.009391412138938904, 0.11367746442556381, 0.11722429096698761, 0.02432188019156456, -0.06419961899518967, 0.01183750107884407, -0.0382150262594223, -0.03340775519609451, -0.11419792473316193, -0.05775345489382744, 0.010598077438771725, -0.03643099218606949, 0.14816027879714966, -0.17335522174835205, -0.07290907204151154, 0.10024499893188477, 0.15750350058078766, -0.10596229135990143, 0.022219020873308182, -0.08668163418769836, -0.010448132641613483, -0.057998403906822205, -0.0449659638106823, 0.2707524299621582, 0.03451986610889435, 0.0762413740158081, -0.10666744410991669, -0.10434386134147644, -0.0038840542547404766, -0.04016154259443283, -0.027129419147968292, 0.023875394836068153, 0.018980827182531357, -0.17193947732448578, 0.034213364124298096, -0.005494029261171818, 0.11131341010332108, 0.20966385304927826, 0.04780161380767822, -0.09301196783781052, -0.056891102343797684, -0.07751242071390152, 0.0035263076424598694, 0.053408075124025345, 0.018987402319908142, 0.027891218662261963, 0.04464579373598099, 0.056908633559942245, 0.04227931424975395, -0.11876450479030609, 0.01076797116547823, 0.07918858528137207, -0.045834124088287354, -0.05562683567404747, 0.019015081226825714, 0.013952074572443962, 0.08356497436761856, 0.08210603147745132, 0.1456272304058075, -0.06330633163452148, -0.044522155076265335, -0.14393556118011475, 0.14069071412086487, -0.07894231379032135, -0.256102979183197, -0.14067389070987701, -0.07469002902507782, 0.025008974596858025, 0.012047916650772095, 0.03799963742494583, -0.06401599198579788, -0.0411866195499897, -0.09809502959251404, 0.08038384467363358, -0.048265401273965836, -0.014020266011357307, 0.0064553129486739635, 0.018739329650998116, -0.027260953560471535, -0.10838281363248825, -0.03234855458140373, 0.041445713490247726, -0.10182289779186249, -0.015584191307425499, 0.03262043744325638, 0.037506066262722015, 0.16058357059955597, -0.006903218105435371, 0.0015597953461110592, -0.03173106163740158, 0.28498536348342896, -0.12538263201713562, 0.06542131304740906, 0.15882250666618347, -0.017550455406308174, 0.05435750260949135, 0.07290854305028915, 0.006188220344483852, -0.0742105171084404, 0.07665826380252838, 0.07569798082113266, -0.09246483445167542, -0.21803569793701172, -0.02842295728623867, -0.013082019053399563, 0.021712319925427437, 0.1272931843996048, 0.06025368720293045, 0.05898851528763771, 0.004043984226882458, -0.10387874394655228, 0.05009838938713074, 0.030675189569592476, 0.10770758986473083, -0.06898568570613861, -0.009770754724740982, 0.04804467037320137, -0.06559010595083237, 0.027489449828863144, 0.1385975480079651, 0.03908679634332657, 0.20144376158714294, -0.05969424545764923, 0.09091366082429886, 0.08038792014122009, 0.09380470216274261, 0.03809202089905739, 0.010487902909517288, -0.008003408089280128, 0.007374408654868603, -0.0006630634306930006, -0.09589725732803345, -0.0070945764891803265, 0.04721291735768318, 0.023769725114107132, -0.028141193091869354, -0.03555210307240486, -0.05699293315410614, 0.04378784820437431, 0.23541754484176636, -0.0007489464478567243, -0.18195362389087677, -0.10936933010816574, 0.04666690528392792, -0.07687226682901382, -0.05731172114610672, -0.021533748134970665, 0.07074198871850967, -0.2195759415626526, 0.07377820461988449, -0.03196542337536812, 0.1074821874499321, -0.11315187066793442, -0.0010280638234689832, 0.09587132185697556, 0.0409204475581646, -0.06692152470350266, 0.09649576246738434, -0.16847525537014008, 0.06374984979629517, -0.010406914167106152, 0.0754898190498352, -0.07816582918167114, 0.0313958115875721, 0.0035281300079077482, 0.049629516899585724, 0.08779982477426529, 0.014191578142344952, 0.019478237256407738, 0.0011361805954948068, -0.044261496514081955, 0.009997060522437096, 0.06347145140171051, -0.1343338042497635, 0.12433135509490967, -0.026017768308520317, 0.03562018647789955, -0.040382303297519684, -0.0911354273557663, -0.08480868488550186, -0.16779154539108276, 0.0880727767944336, -0.12293219566345215, 0.008610769174993038, -0.07169408351182938, -0.02368456870317459, 0.02938271127641201, 0.2599460184574127, -0.055116184055805206, -0.07685695588588715, -0.13842669129371643, 0.014303736388683319, 0.1371486783027649, -0.0820826068520546, 0.011534440331161022, -0.007391534745693207, 0.20237822830677032, 0.005796813406050205, -0.1257779598236084, -0.01426770631223917, -0.06248035281896591, -0.17127418518066406, -0.008740203455090523, 0.17207935452461243, 0.06474035978317261, 0.02847944013774395, 0.006044830661267042, -0.0069730584509670734, -0.04180442541837692, -0.17625369131565094, 0.024476410821080208, 0.16013535857200623, -0.004213735461235046, 0.007229211740195751, 0.05230548232793808, 0.027634397149086, -0.1288381665945053, 0.012406834401190281, 0.05084623396396637, 0.17662547528743744, -0.07694379985332489, 0.18281471729278564, 0.0244993157684803, -0.09059672802686691, -0.15348203480243683, 0.01332673616707325, 0.031132105737924576, 0.03665377199649811, 0.03801457956433296, -0.20820187032222748, 0.049619730561971664, 0.04264577850699425, -0.0005412406171672046, 0.049895163625478745, -0.32808688282966614, -0.1604953557252884, -0.0027105542831122875, 0.004012438002973795, -0.13831354677677155, -0.044940538704395294, -0.038987044245004654, -0.09046664834022522, -0.25110381841659546, 0.1032937616109848, -0.11384125798940659, 0.0772957131266594, 0.02822699584066868, 0.09311850368976593, 0.04193767160177231, -0.04656504839658737, 0.1360606849193573, -0.01519315131008625, 0.06803953647613525, -0.09491951018571854, -0.05162128061056137, 0.07783932238817215, -0.06747481226921082, 0.09308599680662155, 0.03506215661764145, 0.07978682219982147, -0.09936294704675674, -0.08896129578351974, -0.06617255508899689, -0.0032852289732545614, -0.05270687863230705, -0.09098318219184875, -0.09309267997741699, 0.08414206653833389, 0.1155160665512085, -0.04990322142839432, -0.09089498221874237, -0.06808499991893768, 0.008431012742221355, 0.03885238245129585, 0.12389926612377167, 0.07424058020114899, -0.07749716192483902, -0.0015728542348369956, 0.01742960885167122, 0.013030306436121464, -0.17685627937316895, 0.04611394181847572, 0.0897415354847908, 0.0433708094060421, 0.10758762061595917, 0.009753935970366001, -0.16144044697284698, 0.007001839112490416, 0.05502176284790039, -0.16236935555934906, -0.13235342502593994, -0.043387942016124725, 0.012432069517672062, -0.10895310342311859, -0.04678621143102646, 0.1283356249332428, -0.032375309616327286, -0.03659389168024063, 0.0024798123631626368, 0.040648914873600006, -0.047256600111722946, 0.09628863632678986, -0.004820052534341812, 0.04193684831261635, -0.07186944037675858, 0.11938648670911789, 0.06607501208782196, 0.012082414701581001, 0.03670820593833923, 0.0638071820139885, -0.09268862009048462, 0.015127432532608509, -0.10078246146440506, -0.0032445343676954508, -0.02237195521593094, -0.013896352611482143, 0.023381752893328667, -0.03477036952972412, 0.051356397569179535, 0.07936244457960129, -0.011395823210477829, 0.11047318577766418, -0.05142825096845627, 0.02009725756943226, -0.12513352930545807, 0.06359902024269104, 0.03958703950047493, 0.02326143905520439, -0.11409162729978561, 0.20374460518360138, 0.03285472095012665, 0.09614571183919907, -0.036037810146808624, -0.06263034045696259, -0.05542846396565437, -0.009106306359171867, -0.08116832375526428, -0.041737306863069534, -0.09350787103176117, -0.025860292837023735, -0.004476100206375122, -0.03172618895769119, -0.03026716224849224, 0.04418128356337547, -0.03651167452335358, -0.06004093214869499, -0.07328619062900543, 0.04523602873086929, -0.1356726884841919, 0.04066182300448418, 0.11739030480384827, -0.057184379547834396, 0.12277574092149734, 0.0559571348130703, -0.03469746932387352, 0.0236098300665617, -0.13329941034317017, 0.047402434051036835, -0.003216143697500229, 0.01473373081535101, 0.01630532741546631, -0.1491292119026184, 0.005214865785092115, -0.037109218537807465, -0.0665012076497078, 0.011645684950053692, -0.020584315061569214, -0.13146615028381348, -0.001484725740738213, 0.08580286800861359, -0.011490950360894203, -0.06714238971471786, 0.06487233191728592, 0.06315288692712784, 0.024517472833395004, 0.05609993264079094, -0.015474346466362476, 0.06957393139600754, -0.17484939098358154, -0.05591808259487152, -0.0019373693503439426, 0.03544473275542259, 0.04784361645579338, -0.020685195922851562, 0.038919221609830856, -0.014987742528319359, 0.20924487709999084, 0.015008242800831795, -0.016748059540987015, 0.03785407915711403, -0.05853394418954849, 0.00784223061054945, 0.041999392211437225, 0.08241309970617294, -0.019071541726589203, -0.037885505706071854, 0.005267332307994366, -0.016978997737169266, -0.0919659435749054, -0.024119537323713303, 0.1145053505897522, 0.021220209077000618, 0.1958383470773697, -0.05208618938922882, 0.05540434643626213, -0.019083037972450256, -0.12043291330337524, -0.02845737338066101, -0.04573683813214302, 0.03155489265918732, -0.06295395642518997, 0.05028337612748146, 0.18724244832992554, -0.15969523787498474, 0.1170632615685463, 0.03618796169757843, -0.05919773131608963, -0.1213408038020134, -0.20293016731739044, -0.013100014999508858, -0.03545084223151207, 0.027484655380249023, -0.13750921189785004, 0.09479039907455444, 0.024573350325226784, 0.03813030570745468, -0.061687737703323364, 0.14421185851097107, -0.09594504535198212, -0.13209883868694305, 0.041596025228500366, 0.01891081966459751, 0.0317765511572361, 0.0426560640335083, 0.08482101559638977, 0.029748713597655296, 0.004842441063374281, 0.07398409396409988, 0.03804628551006317, 0.026793036609888077, 0.03326783701777458, -0.02942163497209549, -0.034572675824165344, 0.02738407626748085, -0.00006841258436907083, 0.02638379856944084, 0.09561536461114883, 0.0644112303853035, -0.020920565351843834, -0.01689774915575981, 0.31427597999572754, -0.030584415420889854, -0.039691198617219925, -0.19161450862884521, 0.1589372307062149, 0.014304999262094498, -0.002298510167747736, 0.02031566947698593, -0.12048082053661346, 0.017740558832883835, 0.11984225362539291, 0.14949968457221985, -0.01695474609732628, 0.02513723261654377, -0.02381526120007038, 0.019026879221200943, 0.038403771817684174, 0.10193868726491928, 0.06213991343975067, 0.2071572095155716, -0.029845235869288445, 0.05322621390223503, -0.0074392035603523254, -0.02310599759221077, 0.008407431654632092, 0.10783146321773529, -0.037874314934015274, 0.006724862847477198, -0.05168294906616211, 0.10571707040071487, -0.057847946882247925, -0.28367674350738525, -0.038036227226257324, -0.01548695471137762, -0.09233244508504868, 0.07674537599086761, -0.042150091379880905, -0.021652422845363617, 0.08275309950113297, 0.03408484533429146, -0.049657344818115234, 0.14806436002254486, 0.053841039538383484, -0.04669424146413803, -0.006727572996169329, 0.10996349155902863, -0.027053793892264366, 0.1734602451324463, -0.03371696174144745, 0.009023848921060562, 0.07843510061502457, 0.015345573425292969, -0.1287408322095871, 0.006385399494320154, 0.03338485211133957, -0.05732317268848419, -0.01978340558707714, 0.1959960162639618, 0.012584385462105274, 0.016220293939113617, 0.07017474621534348, -0.05322267487645149, 0.023047273978590965, -0.037950299680233, 0.06174783036112785, -0.14512260258197784, 0.05859702080488205, -0.08375967293977737, 0.12547391653060913, 0.18304628133773804, -0.06828388571739197, 0.03531361743807793, -0.05369827151298523, 0.010728012770414352, -0.0270029678940773, 0.07106444984674454, -0.016466185450553894, -0.11715012788772583, 0.0069714924320578575, 0.03416375070810318, 0.013783276081085205, -0.1698072999715805, -0.07918982207775116, 0.0780574381351471, -0.05205106362700462, 0.02292795479297638, 0.17313064634799957, 0.020776057615876198, 0.05743055418133736, -0.03841139376163483, -0.02736341394484043, -0.007561848498880863, 0.11636955291032791, -0.17413575947284698, -0.078672394156456 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/18e3833ac527a4bf14ddf2acef834795.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gunna</div> <a href="https://genius.com/artists/gunna"> <div style="text-align: center; font-size: 14px;">@gunna</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Gunna. Dataset is available [here](https://huggingface.co/datasets/huggingartists/gunna). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/gunna") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/vcyblers/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Gunna's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3c1xymw6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3c1xymw6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/gunna') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/gunna") model = AutoModelWithLMHead.from_pretrained("huggingartists/gunna") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/gunna"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/gunna
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/gunna", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gunna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gunna</div> <a href="URL <div style="text-align: center; font-size: 14px;">@gunna</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Gunna. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Gunna's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Gunna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Gunna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gunna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Gunna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Gunna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/gunna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Gunna.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Gunna's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.024879658594727516, 0.15284956991672516, -0.0026822227519005537, 0.029258156195282936, 0.08785152435302734, 0.00067699741339311, 0.09075210243463516, 0.10929542779922485, -0.01931723952293396, 0.06506500393152237, 0.07539575546979904, 0.014849849045276642, 0.06848885864019394, 0.1277456432580948, 0.09228694438934326, -0.26393112540245056, 0.03286661207675934, -0.10282546281814575, 0.016126781702041626, 0.12375593930482864, 0.08899573236703873, -0.054065752774477005, 0.07666027545928955, 0.039510730654001236, -0.07079526036977768, 0.03153928741812706, -0.011319535784423351, -0.07157023996114731, 0.09255128353834152, 0.0779770240187645, 0.02691681496798992, 0.029695460572838783, 0.06806477904319763, -0.19152595102787018, 0.03622446954250336, 0.12516559660434723, 0.02528241276741028, 0.06961040943861008, 0.04469319060444832, -0.07432015985250473, 0.18541167676448822, -0.032660458236932755, 0.08664853125810623, 0.048305924981832504, -0.10369119793176651, -0.18631039559841156, -0.12445337325334549, 0.08797468990087509, 0.09698649495840073, 0.0799117386341095, -0.030265308916568756, 0.0396149642765522, 0.008495817892253399, 0.04305899143218994, 0.23694288730621338, -0.24392984807491302, -0.019906621426343918, 0.10351506620645523, 0.03923993930220604, 0.04763204976916313, -0.07873325049877167, 0.022417232394218445, 0.049224913120269775, 0.02252376079559326, 0.04871629178524017, -0.011993597261607647, 0.22756735980510712, 0.02302226424217224, -0.09180327504873276, -0.0916067585349083, 0.10320090502500534, -0.030995652079582214, -0.07983648777008057, -0.1589997261762619, 0.008129969239234924, -0.03233727812767029, 0.035739410668611526, -0.016760531812906265, -0.0073544601909816265, -0.0022404666524380445, -0.04316161945462227, -0.10024160891771317, -0.09369809180498123, -0.029884658753871918, -0.019240165129303932, 0.07319963723421097, 0.02510945312678814, 0.033817242830991745, -0.08221521228551865, 0.2326294332742691, 0.007164474576711655, -0.10251031070947647, -0.057238999754190445, -0.08787810802459717, -0.10011231899261475, -0.054587993770837784, 0.0089137963950634, 0.017672644928097725, -0.05721147358417511, 0.16588877141475677, -0.029457971453666687, 0.029213575646281242, 0.005088347475975752, -0.024374380707740784, 0.14858174324035645, 0.12992601096630096, -0.09252029657363892, -0.03210458159446716, 0.04313332960009575, -0.018846707418560982, -0.07356864213943481, -0.06239643692970276, -0.012796175666153431, -0.0249085184186697, 0.03727908805012703, 0.09373275190591812, 0.04500216245651245, 0.05027078464627266, 0.03899368271231651, -0.060207247734069824, 0.1078592836856842, -0.14215971529483795, 0.008141039870679379, -0.015606719069182873, -0.023109829053282738, 0.02501550316810608, 0.04198973998427391, 0.014678155072033405, -0.09584879875183105, 0.10913872718811035, -0.04801369830965996, -0.057063255459070206, -0.07241223007440567, -0.08341571688652039, -0.009870913811028004, -0.009909258224070072, -0.04981912299990654, -0.0863681361079216, -0.15707841515541077, -0.03217151388525963, 0.02675560861825943, -0.04055606573820114, -0.03953861817717552, 0.040062036365270615, -0.03259487450122833, 0.003577032359316945, -0.011649537831544876, -0.014580737799406052, -0.03272712603211403, 0.021320326253771782, -0.06335285305976868, 0.034412533044815063, 0.09010422229766846, 0.03137028217315674, -0.10155534744262695, 0.06677617877721786, -0.15392307937145233, 0.1463225930929184, -0.013761717826128006, 0.015549630858004093, -0.10982153564691544, -0.09722603112459183, -0.024563094601035118, -0.03112179785966873, -0.011204681359231472, 0.09033689647912979, -0.18929554522037506, -0.038702089339494705, 0.20249474048614502, -0.07809557020664215, -0.08099620789289474, 0.06571895629167557, -0.08143850415945053, 0.03160739690065384, 0.13525713980197906, 0.05749968811869621, 0.16524341702461243, -0.11920034885406494, -0.061949472874403, -0.04264255240559578, -0.06355512887239456, 0.21795988082885742, 0.056136325001716614, -0.004042347893118858, 0.011499506421387196, 0.010463573969900608, -0.02697472833096981, -0.03342653810977936, -0.023896867409348488, -0.043413396924734116, -0.010202602483332157, 0.014928855001926422, -0.009172224439680576, -0.0526483990252018, -0.06764436513185501, -0.020410330966114998, -0.1110825315117836, 0.04205275699496269, 0.1086956262588501, -0.07146913558244705, 0.005046481266617775, -0.09117936342954636, -0.007720725145190954, -0.044891539961099625, 0.02291093021631241, -0.18749256432056427, -0.07277876138687134, 0.02043410949409008, -0.06542456895112991, 0.08767055720090866, 0.028363138437271118, 0.042924776673316956, 0.06771602481603622, -0.005734304431825876, 0.021857118234038353, -0.05166502669453621, -0.019599176943302155, -0.031503140926361084, -0.1404704600572586, -0.07539751380681992, -0.050380051136016846, 0.08631566911935806, -0.1354040503501892, 0.00705060176551342, 0.10593888908624649, 0.11010831594467163, 0.024512050673365593, -0.05885845795273781, 0.0071577951312065125, -0.03894258663058281, -0.03932137414813042, -0.11139333248138428, -0.061936721205711365, 0.00828710850328207, -0.039356570690870285, 0.1558992713689804, -0.16473226249217987, -0.07021068781614304, 0.09615553170442581, 0.16546441614627838, -0.10082157701253891, 0.005662594456225634, -0.09441930800676346, -0.007531485054641962, -0.048280421644449234, -0.03559660539031029, 0.2651548683643341, 0.04289661720395088, 0.07444705069065094, -0.11138447374105453, -0.1056080088019371, 0.0006794182700105011, -0.032851364463567734, -0.02696245349943638, 0.028240138664841652, 0.0091742854565382, -0.1647106260061264, 0.024632932618260384, -0.004508055280894041, 0.12588755786418915, 0.21158801019191742, 0.0517309345304966, -0.10070264339447021, -0.06357908993959427, -0.09028598666191101, 0.00737980380654335, 0.05346253514289856, 0.03393172845244408, 0.02804497815668583, 0.04663194343447685, 0.04940176382660866, 0.03385656327009201, -0.11734756082296371, 0.004962222650647163, 0.08335954695940018, -0.04693298041820526, -0.04834701493382454, 0.023133745416998863, 0.01775258034467697, 0.083622045814991, 0.07756642252206802, 0.14596979320049286, -0.07120811194181442, -0.0527200885117054, -0.13868309557437897, 0.13731519877910614, -0.07047402113676071, -0.25881898403167725, -0.1419871300458908, -0.0685315951704979, 0.021178653463721275, 0.0017775115557014942, 0.03732258453965187, -0.06628435850143433, -0.03476719185709953, -0.09966683387756348, 0.07010263204574585, -0.048750411719083786, -0.014865648932754993, 0.0011520152911543846, 0.024507680907845497, -0.03144410625100136, -0.11041077971458435, -0.032662779092788696, 0.04288493096828461, -0.10949792712926865, -0.012671890668570995, 0.04101526364684105, 0.044187676161527634, 0.15524649620056152, -0.016232049092650414, 0.001441371627151966, -0.03432649374008179, 0.28071078658103943, -0.12493140250444412, 0.06188548728823662, 0.15880849957466125, -0.01861616037786007, 0.055342093110084534, 0.07111692428588867, 0.0080082593485713, -0.06243254616856575, 0.07234874367713928, 0.07343068718910217, -0.09340719133615494, -0.2161293774843216, -0.02378653548657894, -0.007618393283337355, 0.016794271767139435, 0.12796109914779663, 0.05889346823096275, 0.06983096152544022, -0.0003338465467095375, -0.10436835885047913, 0.04326917231082916, 0.03027435578405857, 0.11130541563034058, -0.07484353333711624, -0.005885566119104624, 0.04806352034211159, -0.06275478005409241, 0.028993090614676476, 0.14315637946128845, 0.04095383360981941, 0.2070520520210266, -0.05870015546679497, 0.09655044227838516, 0.07928099483251572, 0.1038418784737587, 0.03460625559091568, 0.009209566749632359, -0.002144403988495469, 0.011009487323462963, -0.002518207998946309, -0.10240250825881958, -0.002064347267150879, 0.05201347544789314, 0.01338525116443634, -0.021677657961845398, -0.03801819682121277, -0.0495782196521759, 0.04338270425796509, 0.24030674993991852, -0.017373129725456238, -0.18008722364902496, -0.12083283066749573, 0.042139340192079544, -0.07719872146844864, -0.048564422875642776, -0.02548067830502987, 0.07327564805746078, -0.22014810144901276, 0.0725935772061348, -0.03397563472390175, 0.1083139181137085, -0.10797131061553955, 0.0008172380621545017, 0.08734197169542313, 0.04799384996294975, -0.06444486975669861, 0.10391577333211899, -0.15987509489059448, 0.0641009584069252, -0.015406942926347256, 0.06410247832536697, -0.0810106173157692, 0.023638112470507622, 0.0028513865545392036, 0.041520822793245316, 0.09344448894262314, 0.011903073638677597, 0.011577180586755276, 0.0004675331001635641, -0.04593530297279358, 0.011546994559466839, 0.05370396748185158, -0.13301534950733185, 0.12837885320186615, -0.027307234704494476, 0.03201967850327492, -0.04743196442723274, -0.0972195640206337, -0.0909237265586853, -0.16968214511871338, 0.08792883157730103, -0.12832805514335632, 0.003943765070289373, -0.07376294583082199, -0.03093578852713108, 0.03758319467306137, 0.26827120780944824, -0.04910555109381676, -0.07389146834611893, -0.1357625126838684, 0.015361111611127853, 0.14141394197940826, -0.0842510238289833, 0.011638048104941845, -0.00913223996758461, 0.22469480335712433, -0.006760634947568178, -0.13167093694210052, -0.025338701903820038, -0.06353562325239182, -0.1645764261484146, -0.0015217283507809043, 0.16918504238128662, 0.06539324671030045, 0.02802170254290104, 0.014197309501469135, -0.014157121069729328, -0.040847375988960266, -0.17067284882068634, 0.02152848057448864, 0.15691111981868744, -0.01573891006410122, -0.004666595254093409, 0.05474415421485901, 0.009837284684181213, -0.14058972895145416, 0.009799440391361713, 0.05261094495654106, 0.1807856559753418, -0.08577936142683029, 0.1890295296907425, 0.027598388493061066, -0.09288698434829712, -0.14165037870407104, 0.005294222384691238, 0.035483136773109436, 0.03385956212878227, 0.04940137267112732, -0.19994057714939117, 0.04319639876484871, 0.04354770481586456, 0.0056022945791482925, 0.04385592043399811, -0.34026607871055603, -0.15986250340938568, -0.006997243966907263, 0.01159638911485672, -0.15116091072559357, -0.04628435894846916, -0.03383238613605499, -0.09851878881454468, -0.23997652530670166, 0.10306505113840103, -0.11042629927396774, 0.0702207162976265, 0.026795757934451103, 0.0984390377998352, 0.0472840815782547, -0.04643125459551811, 0.1340128779411316, -0.013633593916893005, 0.07360529154539108, -0.09932556003332138, -0.05730779096484184, 0.08366117626428604, -0.07174181193113327, 0.0857018455862999, 0.03370419144630432, 0.07888182997703552, -0.09848734736442566, -0.08982479572296143, -0.06085838004946709, -0.008745517581701279, -0.04857417568564415, -0.09217565506696701, -0.09218957275152206, 0.08672749251127243, 0.12078789621591568, -0.048151105642318726, -0.09619763493537903, -0.06986348330974579, 0.01486717164516449, 0.036456745117902756, 0.11650118231773376, 0.07266942411661148, -0.07090439647436142, -0.0013439763570204377, 0.020742719992995262, 0.011013557203114033, -0.17456687986850739, 0.044128160923719406, 0.09514042735099792, 0.04327930137515068, 0.10432139784097672, 0.0030972196254879236, -0.16128073632717133, 0.009877792559564114, 0.052326370030641556, -0.16460318863391876, -0.14052927494049072, -0.04232582077383995, 0.03562195226550102, -0.09525956958532333, -0.0481976754963398, 0.13041189312934875, -0.03766867518424988, -0.03884367272257805, 0.0007499298080801964, 0.03614439070224762, -0.04149584472179413, 0.08272560685873032, -0.01263005007058382, 0.04604610800743103, -0.06703731417655945, 0.11225473880767822, 0.0674465075135231, 0.0030628154054284096, 0.040357936173677444, 0.06760505586862564, -0.08806557208299637, 0.016716184094548225, -0.09908205270767212, 0.004667555447667837, -0.03074040077626705, -0.011980191804468632, 0.03191367909312248, -0.02947281114757061, 0.05257691070437431, 0.08611234277486801, -0.012412657029926777, 0.10130184888839722, -0.04459353908896446, 0.020573412999510765, -0.127140611410141, 0.06856610625982285, 0.037162717431783676, 0.016973918303847313, -0.10979460924863815, 0.2019321471452713, 0.03750438615679741, 0.10560974478721619, -0.03825579211115837, -0.07181479781866074, -0.04269399121403694, -0.010298579931259155, -0.08525589853525162, -0.03236206993460655, -0.0915837362408638, -0.020243821665644646, -0.005739646498113871, -0.029760830104351044, -0.028877107426524162, 0.04494534432888031, -0.03212590888142586, -0.06040247157216072, -0.0737871304154396, 0.045864153653383255, -0.14229346811771393, 0.033699214458465576, 0.11388766765594482, -0.05396505072712898, 0.1237025186419487, 0.05551272630691528, -0.03325587883591652, 0.021661117672920227, -0.13919730484485626, 0.04945210739970207, -0.003953781444579363, 0.018918579444289207, 0.017621109262108803, -0.15428794920444489, 0.010759573429822922, -0.03371347859501839, -0.07484838366508484, 0.00906394049525261, -0.026098178699612617, -0.13260887563228607, -0.013387602753937244, 0.09055367857217789, -0.011796761304140091, -0.06732500344514847, 0.07141119986772537, 0.06193964183330536, 0.018919844180345535, 0.05932271480560303, -0.016220299527049065, 0.07219813019037247, -0.18499593436717987, -0.06527367234230042, -0.0057973540388047695, 0.030579209327697754, 0.03464154526591301, -0.02933947555720806, 0.03384996950626373, -0.018583035096526146, 0.20535284280776978, 0.016908302903175354, 0.0053351204842329025, 0.03554735705256462, -0.07033178210258484, -0.006700877100229263, 0.0382365882396698, 0.0894194021821022, -0.010231654159724712, -0.02607220597565174, 0.00653962604701519, -0.02438756637275219, -0.0967150554060936, -0.017374185845255852, 0.09601805359125137, 0.014844022691249847, 0.20370911061763763, -0.05952979996800423, 0.0658714771270752, -0.0123434504494071, -0.11057088524103165, -0.022060515359044075, -0.04346903786063194, 0.030011234804987907, -0.05831708386540413, 0.05812416598200798, 0.20189835131168365, -0.16177122294902802, 0.12174278497695923, 0.04566320776939392, -0.05373506620526314, -0.11708661168813705, -0.20838183164596558, -0.014029067941009998, -0.03741898387670517, 0.025379015132784843, -0.1390298753976822, 0.09940173476934433, 0.020333006978034973, 0.045591529458761215, -0.05943971872329712, 0.13476385176181793, -0.08569815009832382, -0.13280147314071655, 0.045363325625658035, 0.01724006049335003, 0.031237782910466194, 0.045587703585624695, 0.09200971573591232, 0.040830790996551514, -0.0007866740343160927, 0.07051209360361099, 0.04094504192471504, 0.03733833506703377, 0.037404078990221024, -0.030879566445946693, -0.04155151918530464, 0.0287941787391901, -0.008554286323487759, 0.02394469641149044, 0.0966329351067543, 0.07204202562570572, -0.018095850944519043, -0.01750566065311432, 0.3084052801132202, -0.015271107666194439, -0.04366930201649666, -0.17940926551818848, 0.1601918339729309, 0.00859492551535368, 0.00025194152840413153, 0.020872490480542183, -0.11519607156515121, 0.017544884234666824, 0.11658671498298645, 0.15417087078094482, -0.01451267208904028, 0.02207234501838684, -0.029146596789360046, 0.016959404572844505, 0.037885624915361404, 0.10826299339532852, 0.05766277387738228, 0.1946442574262619, -0.02569103240966797, 0.05698502063751221, -0.01654587872326374, -0.01899014227092266, 0.014501217752695084, 0.10025686025619507, -0.038743142038583755, 0.005467459559440613, -0.042667608708143234, 0.10772404819726944, -0.05654948577284813, -0.2972535789012909, -0.035893119871616364, -0.010765363462269306, -0.09189355373382568, 0.07599721103906631, -0.02948334813117981, -0.02078389562666416, 0.07851362228393555, 0.028391653671860695, -0.04924379289150238, 0.16350920498371124, 0.05375685170292854, -0.04151414707303047, -0.010644923895597458, 0.11205840110778809, -0.024014631286263466, 0.1647050976753235, -0.04085094854235649, 0.012086535803973675, 0.0734846368432045, 0.011426955461502075, -0.1313958615064621, 0.0003332095220685005, 0.03822745755314827, -0.05287548527121544, -0.020485026761889458, 0.20258577167987823, 0.011801662854850292, 0.02154899574816227, 0.07601866871118546, -0.05758117511868477, 0.018236497417092323, -0.045689355581998825, 0.06308695673942566, -0.12858746945858002, 0.06815221905708313, -0.07365711778402328, 0.1186208724975586, 0.17529137432575226, -0.06552708148956299, 0.04045775532722473, -0.06255833059549332, 0.008904374204576015, -0.030388161540031433, 0.07148028165102005, -0.017178012058138847, -0.10368729382753372, 0.004965498577803373, 0.027879932895302773, 0.013511507771909237, -0.17394781112670898, -0.0824691504240036, 0.07904783636331558, -0.05297015607357025, 0.029128694906830788, 0.17931531369686127, 0.018324824050068855, 0.05758525803685188, -0.037963975220918655, -0.01669449172914028, -0.004718917887657881, 0.11620660871267319, -0.17708420753479004, -0.06984365731477737 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e802afac5a0100ca75e520f954182f73.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HyunA (현아)</div> <a href="https://genius.com/artists/hyuna"> <div style="text-align: center; font-size: 14px;">@hyuna</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from HyunA (현아). Dataset is available [here](https://huggingface.co/datasets/huggingartists/hyuna). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/hyuna") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3uo94mxd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on HyunA (현아)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1o8t0mq0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1o8t0mq0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/hyuna') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/hyuna") model = AutoModelWithLMHead.from_pretrained("huggingartists/hyuna") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/hyuna"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/hyuna
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/hyuna", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/hyuna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">HyunA (현아)</div> <a href="URL <div style="text-align: center; font-size: 14px;">@hyuna</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from HyunA (현아). Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on HyunA (현아)'s lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from HyunA (현아).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on HyunA (현아)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/hyuna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from HyunA (현아).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on HyunA (현아)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 54, 77, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/hyuna #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from HyunA (현아).\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on HyunA (현아)'s lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.022963929921388626, 0.17532949149608612, -0.003390352940186858, 0.046999599784612656, 0.10851778835058212, 0.004534604959189892, 0.05689706280827522, 0.11986218392848969, -0.00020802051585633308, 0.07749428600072861, 0.05311236530542374, 0.03579891845583916, 0.09206791967153549, 0.050632230937480927, 0.05692199617624283, -0.2446584552526474, 0.0402655228972435, -0.06954386085271835, 0.002921854378655553, 0.08906359225511551, 0.08453982323408127, -0.08251472562551498, 0.08594202995300293, 0.038219377398490906, -0.0439617782831192, 0.0066789197735488415, -0.005811349023133516, -0.05150086060166359, 0.07903599739074707, 0.07125873863697052, 0.03662563115358353, 0.043101608753204346, 0.06636977940797806, -0.17788642644882202, 0.022441992536187172, 0.11906113475561142, 0.02949078567326069, 0.07884454727172852, 0.05952112004160881, -0.0766005739569664, 0.1373414695262909, -0.03161096200346947, 0.07944779098033905, 0.06535018980503082, -0.10203423351049423, -0.10685345530509949, -0.1433471143245697, 0.059341058135032654, 0.1041242852807045, 0.07934964448213577, -0.029457703232765198, 0.08581923693418503, -0.04785428196191788, 0.038576386868953705, 0.26401305198669434, -0.24816054105758667, -0.0008070690091699362, 0.06605619192123413, 0.05355243757367134, 0.011013460345566273, -0.09409191459417343, 0.018487419933080673, 0.048721469938755035, 0.03396237641572952, 0.04581627994775772, -0.03207085281610489, 0.1427212655544281, 0.0245955903083086, -0.10252933949232101, -0.06886070966720581, 0.09799899160861969, -0.014466377906501293, -0.07233715057373047, -0.12485327571630478, 0.0038597392849624157, -0.04191848635673523, 0.012735707685351372, 0.020508237183094025, 0.004832508508116007, -0.021900225430727005, -0.03469237685203552, -0.10821395367383957, -0.07367883622646332, -0.03527790680527687, 0.000646476517431438, 0.04890570044517517, 0.06081447750329971, 0.028508737683296204, -0.06658443808555603, 0.21454773843288422, 0.03766598552465439, -0.11331506073474884, -0.07140177488327026, -0.10009227693080902, -0.09422513097524643, -0.03771570324897766, -0.005322354380041361, -0.011602879501879215, -0.009719094261527061, 0.1248619332909584, -0.047420017421245575, 0.03803793340921402, -0.04507189616560936, 0.006626664660871029, 0.13094118237495422, 0.13495245575904846, -0.13978010416030884, -0.03778402879834175, 0.07283484190702438, 0.003660157322883606, -0.06088058277964592, -0.05388646200299263, -0.007782971952110529, -0.021414274349808693, 0.057242631912231445, 0.07582902163267136, 0.07227437198162079, 0.062028318643569946, 0.004321157932281494, -0.049903929233551025, 0.03651122376322746, -0.14199578762054443, 0.00023745807993691415, -0.007852003909647465, -0.06235332414507866, 0.021962231025099754, 0.051442503929138184, 0.011231682263314724, -0.11182709038257599, 0.0954844281077385, -0.08808761090040207, -0.040755901485681534, -0.08157791197299957, -0.09734004735946655, -0.003921761643141508, -0.037550874054431915, -0.023648502305150032, -0.06948686391115189, -0.15419425070285797, -0.037749700248241425, 0.014440087601542473, -0.06941612809896469, -0.017385905608534813, 0.022807331755757332, -0.043207693845033646, 0.009083806537091732, -0.013273696415126324, -0.011193998157978058, -0.024417318403720856, 0.040249064564704895, -0.08817081898450851, 0.03943058103322983, 0.07636767625808716, 0.044380057603120804, -0.12024714052677155, 0.08121079206466675, -0.14403416216373444, 0.1262180507183075, -0.04144151881337166, 0.0038242016453295946, -0.0880296528339386, -0.09908986836671829, -0.0053356061689555645, -0.03976497799158096, 0.0300051961094141, 0.12758320569992065, -0.15807785093784332, -0.020330511033535004, 0.20355236530303955, -0.06893331557512283, -0.0607750341296196, 0.07596637308597565, -0.07437543570995331, 0.019310740754008293, 0.10702472925186157, 0.06385216116905212, 0.1304910033941269, -0.10288835316896439, -0.08854352682828903, -0.03781198337674141, -0.07771003991365433, 0.1943506896495819, 0.021764978766441345, -0.009111505933105946, 0.035117242485284805, 0.010947312228381634, -0.033810172230005264, -0.015807149931788445, -0.03837385028600693, -0.042850833386182785, -0.01023759227246046, -0.011396322399377823, 0.002087187021970749, -0.035643041133880615, -0.03165709972381592, -0.000922340084798634, -0.09738418459892273, 0.055169813334941864, 0.09783823043107986, -0.0814131423830986, 0.01933244802057743, -0.10138507187366486, 0.055181294679641724, -0.038676466792821884, 0.011556572280824184, -0.17103901505470276, -0.03535797819495201, 0.015079573728144169, -0.07828910648822784, 0.062065377831459045, 0.03809446468949318, 0.032897718250751495, 0.0740196481347084, -0.019193043932318687, 0.0037040100432932377, -0.04250625893473625, 0.010843930765986443, -0.034984879195690155, -0.17674250900745392, -0.0533548928797245, -0.03580905497074127, 0.1012868732213974, -0.10958252847194672, 0.001514122704975307, 0.10377432405948639, 0.16400307416915894, 0.02213842049241066, -0.05219016969203949, 0.03710546717047691, -0.022216876968741417, -0.035733651369810104, -0.09466428309679031, -0.04365391656756401, 0.003423773217946291, -0.0344187431037426, 0.1573200821876526, -0.14062094688415527, -0.11368120461702347, 0.12220883369445801, 0.09159120917320251, -0.08288145810365677, 0.03068367764353752, -0.06680051982402802, -0.0290265753865242, -0.036752574145793915, -0.06285980343818665, 0.24060943722724915, 0.0418417826294899, 0.10364624857902527, -0.09562145173549652, -0.07716824114322662, 0.008776765316724777, -0.0392596498131752, -0.028185321018099785, 0.04454878717660904, 0.02921498566865921, -0.18797104060649872, 0.04555393382906914, -0.02076990343630314, 0.0774274542927742, 0.19032549858093262, 0.02347606234252453, -0.0934319943189621, -0.05332101508975029, -0.06400436162948608, 0.00247053150087595, 0.08968685567378998, 0.007173371966928244, 0.04256676882505417, 0.0385797955095768, 0.04117664322257042, 0.046712830662727356, -0.1097521111369133, 0.013707440346479416, 0.04482341930270195, -0.024845987558364868, -0.047952696681022644, 0.018501492217183113, 0.03516653925180435, 0.0913655012845993, 0.06620824337005615, 0.09827028959989548, -0.05216868966817856, -0.05773337557911873, -0.12663456797599792, 0.1415475457906723, -0.09283735603094101, -0.21611140668392181, -0.1242535412311554, -0.0921105444431305, 0.0039626494981348515, -0.0008863559341989458, 0.03293275833129883, -0.03835432603955269, -0.03817090392112732, -0.0903099849820137, 0.06863163411617279, -0.036515504121780396, -0.017086071893572807, -0.007817777805030346, 0.036070916801691055, -0.009621923789381981, -0.1177339106798172, -0.02439093217253685, 0.01897168904542923, -0.08352910727262497, 0.009271989576518536, 0.04206747189164162, 0.05989893898367882, 0.13413101434707642, -0.0009971697581931949, 0.010416298173367977, -0.018967274576425552, 0.2659408450126648, -0.11341363191604614, 0.05186782777309418, 0.143235981464386, -0.027699986472725868, 0.06834465265274048, 0.07236304879188538, 0.004842566326260567, -0.04722800850868225, 0.04667473956942558, 0.06552992761135101, -0.06582672894001007, -0.2030518501996994, -0.029575491324067116, -0.026409557089209557, -0.006146506406366825, 0.09767919033765793, 0.03237128257751465, 0.051912225782871246, 0.005717915017157793, -0.0957116112112999, 0.05584340542554855, 0.030741309747099876, 0.09336382895708084, -0.04657217860221863, -0.008118118159472942, 0.048304345458745956, -0.04848077893257141, 0.024130474776029587, 0.09983733296394348, 0.02488863840699196, 0.2580086588859558, -0.0902736485004425, 0.05179767683148384, 0.09429473429918289, 0.10245469212532043, 0.019515512511134148, 0.030507149174809456, -0.03524944186210632, 0.020951958373188972, 0.004228135570883751, -0.09610237926244736, 0.01155014242976904, 0.04765389859676361, 0.03376578912138939, -0.021349554881453514, -0.05796588957309723, -0.06617093831300735, 0.046416644006967545, 0.22726479172706604, 0.05301494523882866, -0.1610191911458969, -0.06312615424394608, 0.06954936683177948, -0.03468935564160347, -0.0540335550904274, -0.01057114452123642, 0.06787750869989395, -0.21036632359027863, 0.05266879126429558, -0.03602210059762001, 0.11000121384859085, -0.14028622210025787, 0.0030159337911754847, 0.03298908844590187, 0.051468610763549805, -0.06163322925567627, 0.08214487880468369, -0.1760173738002777, 0.08903658390045166, 0.0074308463372290134, 0.0724978968501091, -0.06669308245182037, 0.01748594641685486, 0.0420573391020298, 0.027510926127433777, 0.10549554228782654, 0.015375534072518349, 0.012895980849862099, -0.08123942464590073, -0.04305042698979378, 0.005098971538245678, 0.05282033607363701, -0.06725821644067764, 0.1284324824810028, -0.027556955814361572, 0.023168398067355156, -0.030931714922189713, -0.06461368501186371, -0.11031369864940643, -0.15318959951400757, 0.0847071036696434, -0.1134069412946701, 0.0018360584508627653, -0.05515230447053909, -0.024248948320746422, -0.001742497319355607, 0.18954011797904968, -0.10419782251119614, -0.0845981240272522, -0.11984537541866302, 0.030873315408825874, 0.1479998677968979, -0.07785360515117645, 0.010862579569220543, 0.00768944201990962, 0.14447827637195587, 0.012835738249123096, -0.13056989014148712, -0.016933050006628036, -0.04843088611960411, -0.18255485594272614, -0.016285249963402748, 0.1281665414571762, 0.08296015113592148, 0.041898034512996674, 0.015216944739222527, 0.0004762576427310705, -0.018925271928310394, -0.17108428478240967, 0.016476957127451897, 0.14471189677715302, 0.04631014168262482, 0.036368269473314285, 0.0104315634816885, 0.016996227204799652, -0.14007164537906647, 0.029889678582549095, 0.055818814784288406, 0.20368264615535736, -0.08283774554729462, 0.16494572162628174, 0.01769930310547352, -0.08990500122308731, -0.1799219399690628, 0.014243182726204395, 0.00799641851335764, 0.03662401810288429, 0.04027063399553299, -0.16864341497421265, 0.011168446391820908, 0.028668705374002457, -0.007596821989864111, 0.06155920773744583, -0.3153475224971771, -0.13662439584732056, 0.0272169578820467, 0.020675159990787506, -0.07642349600791931, -0.03208265081048012, -0.041814278811216354, -0.06850746273994446, -0.27131015062332153, 0.06918937712907791, -0.1206548660993576, 0.08461271971464157, 0.008323492482304573, 0.046612903475761414, 0.05010040104389191, -0.06339956820011139, 0.13866835832595825, -0.028822025284171104, 0.06796752661466599, -0.08588717132806778, -0.03770717605948448, 0.0974336713552475, -0.05029786750674248, 0.08751567453145981, 0.0108856912702322, 0.07754138857126236, -0.08689992874860764, -0.05352560803294182, -0.0847041979432106, 0.017724348232150078, -0.06320507824420929, -0.08379694819450378, -0.09195682406425476, 0.10591693967580795, 0.13425074517726898, -0.03085046075284481, -0.09516248852014542, -0.05508124828338623, -0.02933979220688343, 0.08360318839550018, 0.10328691452741623, 0.06859851628541946, -0.063543401658535, 0.008779770694673061, 0.014905453659594059, 0.029980609193444252, -0.13879238069057465, 0.05161530524492264, 0.09316408634185791, 0.03083922527730465, 0.10534864664077759, 0.02166019007563591, -0.1736184060573578, 0.03577344864606857, 0.04183878004550934, -0.14433178305625916, -0.11263928562402725, -0.04520348459482193, -0.011018816381692886, -0.07184207439422607, -0.03950366750359535, 0.13611283898353577, -0.035332538187503815, -0.03493977338075638, 0.003552486887201667, 0.06168407201766968, -0.041193410754203796, 0.09642133861780167, 0.02019043266773224, 0.0571780651807785, -0.07837916910648346, 0.09666044265031815, 0.07276833057403564, 0.01930922642350197, 0.03676355257630348, 0.05190328508615494, -0.08997002989053726, -0.0005718853208236396, -0.0967605710029602, 0.02264014258980751, -0.02759833075106144, -0.011941340751945972, -0.015840793028473854, -0.05136587843298912, 0.020239494740962982, 0.09230659902095795, -0.004058623220771551, 0.11650948971509933, -0.018309107050299644, -0.019347721710801125, -0.13339892029762268, 0.07795953005552292, 0.0407123863697052, 0.014613300561904907, -0.11133876442909241, 0.16483087837696075, 0.03635801002383232, 0.10862959921360016, -0.04674697294831276, -0.05666843801736832, -0.07580962777137756, -0.006203593220561743, -0.14795133471488953, -0.03757447376847267, -0.09537266194820404, -0.044023193418979645, -0.020261693745851517, -0.041419923305511475, -0.036560073494911194, 0.060800615698099136, -0.031463123857975006, -0.06359966099262238, -0.05463949218392372, 0.054024357348680496, -0.13511747121810913, 0.0013875208096578717, 0.12465448677539825, -0.07605858892202377, 0.11326202750205994, 0.04079887643456459, -0.04703298583626747, 0.028782863169908524, -0.06932036578655243, 0.018160035833716393, -0.03289166837930679, 0.013038676232099533, 0.039242520928382874, -0.13898858428001404, 0.0020653451792895794, -0.0631423071026802, -0.055524539202451706, 0.009081030264496803, 0.0005674677668139338, -0.11767157912254333, -0.0053718918934464455, 0.046850819140672684, 0.004166769795119762, -0.07328855246305466, 0.07473131269216537, 0.07090726494789124, 0.03206169232726097, 0.06295297294855118, -0.025263529270887375, 0.09007853269577026, -0.16493038833141327, -0.04901599511504173, 0.004890112672001123, 0.00678747845813632, 0.07487805187702179, -0.01914041116833687, 0.05061393603682518, -0.02969801425933838, 0.2036375105381012, -0.003921353258192539, -0.014222513884305954, 0.03831775486469269, -0.021130874752998352, -0.01641576737165451, 0.05179823562502861, 0.05757804960012436, -0.03816206380724907, -0.03981444984674454, -0.020901896059513092, -0.008825473487377167, -0.08019105345010757, -0.04045449197292328, 0.11132001131772995, 0.056233059614896774, 0.17804747819900513, -0.038701049983501434, 0.07033436000347137, -0.028966430574655533, -0.12442152202129364, 0.0015297463396564126, -0.027574533596634865, 0.04027308523654938, -0.061733443289995193, 0.07693749666213989, 0.17482346296310425, -0.15325486660003662, 0.12291646003723145, 0.006847295444458723, -0.07033763080835342, -0.1017010435461998, -0.1779792159795761, -0.023961903527379036, -0.03193105757236481, 0.03648294135928154, -0.12085184454917908, 0.08110851794481277, 0.05213252082467079, 0.028174400329589844, -0.05925590544939041, 0.11329510062932968, -0.03302254527807236, -0.1131562739610672, 0.027258658781647682, 0.03131446987390518, 0.019812069833278656, 0.03639527037739754, 0.06916630268096924, 0.027795108035206795, 0.00831117108464241, 0.05245257169008255, 0.029830286279320717, 0.031643982976675034, 0.040855150669813156, -0.023538557812571526, -0.06015588343143463, 0.03066239506006241, 0.0029655511025339365, 0.04203841835260391, 0.09561846405267715, 0.07001485675573349, -0.014974462799727917, -0.04360309988260269, 0.29699257016181946, -0.03495976701378822, -0.026072567328810692, -0.1714078038930893, 0.18028651177883148, 0.046127237379550934, -0.01576540432870388, 0.03619953244924545, -0.14635635912418365, 0.017155535519123077, 0.1609426885843277, 0.1650097519159317, -0.05931376665830612, 0.013067467138171196, -0.04893133416771889, 0.010634033009409904, 0.021657701581716537, 0.07330073416233063, 0.06418006122112274, 0.19829359650611877, -0.0506276898086071, 0.05119861662387848, -0.018880216404795647, -0.01353211235255003, -0.027647467330098152, 0.11774937063455582, -0.022518012672662735, 0.0027750812005251646, -0.06552263349294662, 0.08414525538682938, -0.0748126357793808, -0.2597918212413788, -0.010680045932531357, -0.048097796738147736, -0.0962907075881958, 0.053983014076948166, -0.04413970559835434, -0.011009425856173038, 0.07997915148735046, 0.013373440131545067, -0.0222570039331913, 0.13861748576164246, 0.04250185191631317, -0.016836579889059067, -0.010210034437477589, 0.09676079452037811, -0.0256792139261961, 0.19307279586791992, -0.021747127175331116, 0.01488396618515253, 0.09263353794813156, 0.03599386289715767, -0.11251258105039597, -0.00341920112259686, 0.045235324651002884, -0.08486269414424896, -0.016133539378643036, 0.2098930925130844, 0.01903672330081463, 0.01197256613522768, 0.05580480024218559, -0.04768633842468262, 0.036463163793087006, -0.08788877725601196, 0.0360884889960289, -0.11460515111684799, 0.04351474344730377, -0.06736346334218979, 0.13879020512104034, 0.172611802816391, -0.06940454244613647, 0.02996918372809887, -0.05119573324918747, -0.017394380643963814, -0.029224852100014687, 0.05681486800312996, -0.02117016538977623, -0.10985788702964783, 0.03030535951256752, 0.03174819424748421, 0.015275226905941963, -0.18032215535640717, -0.06508950889110565, 0.05989058315753937, -0.05861719325184822, 0.010813167318701744, 0.16436666250228882, 0.04130592942237854, 0.04716434329748154, -0.03559144213795662, -0.01566638983786106, -0.027397073805332184, 0.1023031696677208, -0.14820466935634613, -0.08440955728292465 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4683327bb3a8906b18e9af8207c36dc9.645x645x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">I DONT KNOW HOW BUT THEY FOUND ME</div> <a href="https://genius.com/artists/i-dont-know-how-but-they-found-me"> <div style="text-align: center; font-size: 14px;">@i-dont-know-how-but-they-found-me</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from I DONT KNOW HOW BUT THEY FOUND ME. Dataset is available [here](https://huggingface.co/datasets/huggingartists/i-dont-know-how-but-they-found-me). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/i-dont-know-how-but-they-found-me") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1j7uofwh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on I DONT KNOW HOW BUT THEY FOUND ME's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1abhthz2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1abhthz2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/i-dont-know-how-but-they-found-me') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/i-dont-know-how-but-they-found-me") model = AutoModelWithLMHead.from_pretrained("huggingartists/i-dont-know-how-but-they-found-me") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/i-dont-know-how-but-they-found-me"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/i-dont-know-how-but-they-found-me
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/i-dont-know-how-but-they-found-me", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/i-dont-know-how-but-they-found-me #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">I DONT KNOW HOW BUT THEY FOUND ME</div> <a href="URL <div style="text-align: center; font-size: 14px;">@i-dont-know-how-but-they-found-me</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from I DONT KNOW HOW BUT THEY FOUND ME. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on I DONT KNOW HOW BUT THEY FOUND ME's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from I DONT KNOW HOW BUT THEY FOUND ME.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on I DONT KNOW HOW BUT THEY FOUND ME's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/i-dont-know-how-but-they-found-me #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from I DONT KNOW HOW BUT THEY FOUND ME.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on I DONT KNOW HOW BUT THEY FOUND ME's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 97, 21, 62, 84, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/i-dont-know-how-but-they-found-me #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from I DONT KNOW HOW BUT THEY FOUND ME.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on I DONT KNOW HOW BUT THEY FOUND ME's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03067697025835514, 0.1842021495103836, -0.006431981921195984, 0.07676799595355988, 0.0917777270078659, -0.01985022984445095, 0.0999617725610733, 0.08253175020217896, 0.031730592250823975, 0.0934428796172142, 0.005459981504827738, 0.0916048064827919, 0.03248686343431473, 0.07830749452114105, 0.03391239792108536, -0.25802549719810486, -0.0008892572368495166, -0.11696392297744751, 0.024736836552619934, 0.10619844496250153, 0.08843959122896194, -0.04288459196686745, 0.03197566792368889, 0.0006565309013240039, -0.10363096743822098, 0.03216331824660301, -0.004303318448364735, -0.050980255007743835, 0.020065179094672203, 0.048558399081230164, 0.07241909950971603, 0.010805564932525158, 0.044220224022865295, -0.1887001097202301, 0.03279561921954155, 0.10684137046337128, 0.0013651418266817927, 0.05130843445658684, 0.08689620345830917, -0.11960984021425247, 0.1069134995341301, -0.07527782022953033, 0.061094626784324646, 0.048228878527879715, -0.1192217692732811, -0.10430975258350372, -0.10387171804904938, 0.0038991470355540514, 0.08754069358110428, 0.10030258446931839, -0.026450321078300476, 0.07649270445108414, -0.005524035543203354, 0.051721107214689255, 0.2690418064594269, -0.18687987327575684, -0.045967672020196915, 0.06236506253480911, 0.04878129065036774, 0.05906076356768608, -0.08746054768562317, 0.022917985916137695, 0.011863118037581444, 0.04075528681278229, 0.09069330245256424, -0.05379636958241463, 0.041619088500738144, -0.010678081773221493, -0.11791887879371643, -0.020616872236132622, 0.06919097900390625, -0.052903078496456146, -0.06604156643152237, -0.09495942294597626, -0.045519884675741196, 0.0021505034528672695, 0.0213661827147007, 0.0332159698009491, 0.0324898436665535, 0.0038461803924292326, -0.033867284655570984, -0.14354272186756134, -0.0515502467751503, -0.06855782866477966, -0.046411726623773575, 0.13025695085525513, 0.008380341343581676, 0.007498299237340689, -0.026485435664653778, 0.17915670573711395, 0.02739965356886387, -0.12420810014009476, -0.04107405245304108, -0.05398329719901085, -0.10331091284751892, -0.04515058919787407, -0.015300788916647434, -0.05157378315925598, -0.01467511709779501, 0.13124071061611176, -0.011623376980423927, 0.029435589909553528, -0.055188316851854324, -0.0059748925268650055, 0.13268005847930908, 0.1499863713979721, -0.06142221391201019, -0.030734028667211533, 0.09733593463897705, -0.021381070837378502, 0.009639103896915913, -0.05278325825929642, 0.017944063991308212, -0.0011109522311016917, 0.03420012816786766, 0.09269404411315918, 0.05427343025803566, 0.012758007273077965, -0.06966798007488251, -0.062404461205005646, 0.055048953741788864, -0.17605316638946533, 0.07683857530355453, 0.03959552198648453, -0.03694303706288338, 0.003700193017721176, 0.047525204718112946, 0.010793955996632576, -0.10488556325435638, 0.06838174909353256, -0.05343765765428543, 0.05157163366675377, -0.07931903749704361, -0.08223860710859299, 0.02580908127129078, 0.027334894984960556, -0.06393123418092728, -0.061496417969465256, -0.11092396825551987, -0.08252172917127609, 0.05254786089062691, -0.08779768645763397, -0.0042283786460757256, -0.010006769560277462, -0.007399869151413441, -0.014060674235224724, 0.019637223333120346, -0.04381019249558449, -0.007115023676306009, 0.032857898622751236, -0.05668216198682785, 0.04935554414987564, 0.09601432830095291, 0.05742960050702095, -0.11434990912675858, 0.046615421772003174, -0.26862484216690063, 0.14351209998130798, -0.07403665781021118, -0.02104322798550129, -0.0900307148694992, -0.04272035136818886, 0.03155244141817093, -0.026385407894849777, 0.03911909833550453, 0.06570233404636383, -0.17885839939117432, -0.02996613271534443, 0.1716684252023697, -0.06252340227365494, -0.0017134783556684852, 0.09349823743104935, -0.06440317630767822, 0.07609228044748306, 0.11702191084623337, 0.10489306598901749, 0.16778264939785004, -0.13088351488113403, -0.032076917588710785, -0.04693284258246422, -0.008428455330431461, 0.1439208984375, 0.04304441809654236, -0.01755594275891781, 0.040511514991521835, -0.007083321455866098, 0.004678192548453808, -0.052180659025907516, 0.016402913257479668, -0.026745524257421494, -0.004934913944453001, -0.004759692121297121, -0.06705287843942642, -0.032622773200273514, -0.036559343338012695, -0.04483860731124878, -0.06751873344182968, 0.14622534811496735, 0.060982972383499146, -0.06752204149961472, 0.05096793547272682, -0.04033084586262703, 0.00022454916324932128, -0.02599499374628067, -0.00792273972183466, -0.21116399765014648, -0.021381406113505363, 0.036620695143938065, -0.1869274526834488, 0.125341534614563, -0.08630982786417007, 0.0135244932025671, 0.07935845851898193, -0.0018074791878461838, 0.03996928036212921, -0.03838973864912987, 0.001957735512405634, -0.051612015813589096, -0.13233430683612823, -0.02778162807226181, -0.0480114184319973, 0.07763364166021347, -0.08503389358520508, -0.000679338292684406, 0.05711860582232475, 0.13934217393398285, 0.01988982781767845, -0.06448892503976822, 0.06152918562293053, 0.008455194532871246, 0.023010794073343277, -0.07832802087068558, -0.0288842860609293, 0.048110172152519226, -0.0040344009175896645, 0.09403558820486069, -0.1754337102174759, -0.1596088856458664, 0.10390935838222504, 0.019905034452676773, -0.05787127465009689, 0.02431092970073223, -0.017065780237317085, -0.014337459579110146, -0.0925505980849266, -0.04781019687652588, 0.18921315670013428, 0.04589398205280304, 0.0750662162899971, -0.10620296001434326, -0.08426108956336975, -0.03192827105522156, -0.0778844878077507, -0.005010585766285658, 0.09091800451278687, -0.020559608936309814, -0.1957491934299469, 0.050915274769067764, 0.020703451707959175, -0.00018678067135624588, 0.219035342335701, 0.02320055291056633, -0.0666678324341774, -0.0936305820941925, -0.049721792340278625, 0.012962577864527702, 0.015352260321378708, 0.05429159849882126, 0.03714272379875183, 0.02331428974866867, 0.03927929326891899, 0.01891399547457695, -0.1449863463640213, 0.011268924921751022, 0.040169551968574524, -0.036600664258003235, -0.06322729587554932, -0.019683891907334328, 0.019214490428566933, 0.06611045449972153, 0.03518526256084442, 0.1098189726471901, -0.051032379269599915, -0.0558905266225338, -0.10041440278291702, 0.119461290538311, -0.15633027255535126, -0.17391404509544373, -0.12053906917572021, -0.06576621532440186, 0.009227338247001171, 0.006812846288084984, 0.03809564933180809, -0.0032561372499912977, -0.020923402160406113, -0.0884789302945137, 0.10432988405227661, -0.0072737024165689945, -0.1013050302863121, 0.03219402953982353, 0.03432713449001312, -0.020388003438711166, -0.11189673840999603, -0.028890416026115417, 0.0337415412068367, -0.08321569859981537, 0.008927545510232449, 0.03300149738788605, 0.0478668250143528, 0.10966938734054565, 0.03118760697543621, -0.008158591575920582, 0.0060858880169689655, 0.28110429644584656, -0.09807074069976807, 0.10730390250682831, 0.1281585544347763, -0.017429286614060402, 0.10643640160560608, 0.08803977817296982, 0.05243806540966034, -0.054051972925662994, 0.06313029676675797, 0.05778978765010834, -0.0647168830037117, -0.23653918504714966, -0.03697903826832771, -0.05289723351597786, -0.011911139823496342, 0.05297281593084335, 0.026438089087605476, -0.001449965755455196, -0.01415900606662035, -0.0508594885468483, 0.048246655613183975, 0.06822285056114197, 0.08802799880504608, 0.05624035373330116, 0.03344652056694031, 0.044385671615600586, -0.055868927389383316, 0.03713073208928108, 0.09276264905929565, 0.01085161417722702, 0.16076017916202545, -0.027587376534938812, 0.13656410574913025, 0.06250491738319397, 0.02518448978662491, 0.04001079127192497, 0.03740450367331505, -0.018585441634058952, 0.059487152844667435, -0.007853476330637932, -0.11891650408506393, 0.03994045406579971, -0.006097670644521713, -0.02320108935236931, -0.01671992428600788, 0.026667658239603043, -0.05712810531258583, 0.06633802503347397, 0.1849195808172226, 0.03526820242404938, -0.09612090140581131, -0.036955706775188446, 0.059528034180402756, -0.05458390340209007, -0.03598834201693535, -0.020026903599500656, 0.040959589183330536, -0.17066815495491028, 0.04877038300037384, -0.026460468769073486, 0.11896635591983795, -0.12474744766950607, -0.021431153640151024, 0.10741913318634033, 0.15391471982002258, -0.058784276247024536, 0.06345024704933167, -0.1464938074350357, 0.05497296527028084, 0.02907291240990162, 0.10496939718723297, -0.029564158990979195, 0.00885524321347475, 0.025541499257087708, -0.033478911966085434, 0.05390720069408417, 0.04307907819747925, -0.047609470784664154, -0.05419867858290672, -0.07397494465112686, 0.011097586713731289, 0.09884784370660782, -0.12191274762153625, 0.09991779923439026, -0.005990567151457071, -0.016944946721196175, -0.051316309720277786, -0.08374293148517609, -0.1161436066031456, -0.1540367156267166, 0.04943389818072319, -0.06235278770327568, -0.002282221568748355, -0.03086688369512558, -0.018658049404621124, 0.026980744674801826, 0.13586390018463135, -0.030058186501264572, -0.10642002522945404, -0.12044881284236908, -0.018244119361042976, 0.1290481835603714, -0.08709286898374557, 0.003859624732285738, -0.017086192965507507, 0.09111373126506805, -0.007931213825941086, -0.11769035458564758, 0.03536737337708473, -0.05357005074620247, -0.16702678799629211, -0.028170036152005196, 0.15892279148101807, 0.08474845439195633, 0.053711552172899246, -0.017581729218363762, 0.07434884458780289, -0.018251635134220123, -0.14791066944599152, -0.010840432718396187, 0.13130216300487518, -0.010507774539291859, 0.05206302925944328, -0.014168777503073215, 0.019243866205215454, -0.12208165973424911, 0.0012223853264003992, 0.06610212475061417, 0.19450436532497406, -0.04766841232776642, 0.13760706782341003, 0.11396559327840805, -0.11017240583896637, -0.1605251133441925, 0.010472617112100124, 0.030430715531110764, 0.007038936484605074, 0.025899576023221016, -0.25362908840179443, 0.09611120074987411, 0.08810379356145859, -0.005116423591971397, 0.08109194785356522, -0.2916870415210724, -0.13395178318023682, -0.036277689039707184, 0.025161439552903175, -0.13353458046913147, -0.060638513416051865, -0.07274170964956284, -0.06785186380147934, -0.20911581814289093, 0.15654423832893372, -0.16120590269565582, 0.10764260590076447, 0.05149846896529198, 0.06330147385597229, 0.02348049357533455, -0.030140848830342293, 0.1223234012722969, -0.031413376331329346, 0.06824697554111481, -0.06246579438447952, -0.006366412620991468, 0.03298686072230339, -0.06643049418926239, 0.058182548731565475, -0.004399548750370741, 0.05225882679224014, -0.0034976627212017775, -0.06464007496833801, -0.07768771052360535, -0.00377994729205966, -0.08248159289360046, -0.06190641224384308, -0.040193405002355576, 0.07975190877914429, 0.0868336409330368, -0.07472242414951324, -0.03968222066760063, -0.03142256662249565, 0.002265283139422536, 0.12698379158973694, 0.0659208819270134, 0.1303354948759079, -0.10240335762500763, -0.0051847193390131, -0.011816217564046383, 0.035593416541814804, -0.1132204681634903, 0.05338340625166893, 0.07780364900827408, 0.07926914840936661, 0.08534630388021469, -0.013335511088371277, -0.1682150959968567, 0.0013164604315534234, 0.010309266857802868, -0.11768396943807602, -0.09525791555643082, -0.008317663334310055, -0.002170982537791133, -0.04523773118853569, -0.07444026321172714, 0.126516193151474, -0.014583615586161613, -0.059825871139764786, 0.04712545871734619, 0.0323413647711277, -0.012560560368001461, 0.13044358789920807, 0.05863989517092705, 0.01746588945388794, -0.0740828663110733, 0.11759128421545029, 0.08564167469739914, 0.04356461390852928, 0.012431693263351917, 0.1438484638929367, -0.07972607016563416, -0.004468438681215048, -0.028887243941426277, 0.047948531806468964, -0.02685689739882946, 0.023103827610611916, -0.0027160258032381535, -0.01114917453378439, 0.023569239303469658, 0.1385829746723175, 0.036877863109111786, 0.053623367100954056, -0.04483694210648537, 0.018840212374925613, -0.07169251143932343, 0.12051846086978912, 0.061242736876010895, 0.04838952422142029, -0.07876581698656082, 0.08503787964582443, 0.011812567710876465, 0.056477829813957214, -0.028516819700598717, -0.07021650671958923, -0.09179005026817322, -0.0013250616611912847, -0.1452794373035431, 0.0013727524783462286, -0.09489128738641739, -0.011437770910561085, -0.019512100145220757, -0.012751830741763115, -0.01561081875115633, 0.0534742996096611, -0.032339487224817276, -0.07741562277078629, -0.08813659846782684, 0.0217190682888031, -0.16383038461208344, -0.035030364990234375, 0.12428999692201614, -0.08036386966705322, 0.06662602722644806, 0.08038695901632309, -0.04429972171783447, 0.006011336110532284, -0.14264553785324097, 0.0003333747445140034, -0.019030451774597168, 0.026972778141498566, 0.07835134118795395, -0.13694213330745697, -0.00034554320154711604, -0.06066055968403816, 0.014394410885870457, 0.009025881066918373, 0.056421294808387756, -0.1504385769367218, 0.046946410089731216, 0.03203559294342995, -0.054660797119140625, -0.06571153551340103, 0.0641234889626503, 0.07748883962631226, 0.02068692073225975, 0.07108234614133835, -0.0362849123775959, 0.12060078978538513, -0.14791375398635864, -0.03411056473851204, 0.012860155664384365, -0.004643903113901615, -0.004038938321173191, -0.01763087324798107, 0.06065516918897629, -0.03240841627120972, 0.12323373556137085, 0.06742548197507858, 0.011532857082784176, 0.03877652436494827, 0.00022028326930012554, -0.03931779786944389, 0.03861793875694275, -0.00425860146060586, -0.017260827124118805, -0.03538500890135765, 0.011464472860097885, -0.023113464936614037, -0.03735647723078728, -0.051783423870801926, 0.06664493680000305, 0.10571125149726868, 0.18496949970722198, -0.02684864215552807, 0.07871004939079285, 0.010698954574763775, -0.15761786699295044, -0.05548844113945961, 0.004551855381578207, 0.022120274603366852, -0.09090522676706314, 0.029176807031035423, 0.06815776228904724, -0.1339714080095291, 0.14696109294891357, 0.007170182187110186, -0.07390856742858887, -0.13136859238147736, -0.2279653698205948, -0.03338455408811569, 0.013309764675796032, -0.01688581332564354, -0.10150514543056488, 0.11011629551649094, 0.009754595346748829, 0.01946173794567585, -0.010230472311377525, 0.14297161996364594, -0.012612011283636093, -0.12174062430858612, 0.05934104323387146, 0.005569961853325367, 0.03744399547576904, 0.0664416030049324, 0.06793966889381409, 0.03802443668246269, 0.029411179944872856, 0.05584389343857765, 0.07480159401893616, 0.02113618329167366, -0.008668019436299801, -0.10058234632015228, -0.09771961718797684, 0.016968626528978348, 0.02664518915116787, -0.009655063971877098, 0.10378248244524002, 0.08037686347961426, -0.022073587402701378, -0.0072625852189958096, 0.3161589205265045, -0.049868807196617126, -0.07232063263654709, -0.1462181806564331, 0.2470838576555252, -0.048045989125967026, 0.005339717026799917, 0.030648179352283478, -0.13055039942264557, -0.020748896524310112, 0.11131355166435242, 0.1654130518436432, -0.07069402933120728, 0.025752542540431023, -0.0006719049997627735, 0.02032315731048584, 0.00340270041488111, 0.0578632727265358, 0.07268562912940979, 0.2030286341905594, -0.04654886946082115, 0.11144007742404938, -0.056905925273895264, -0.08093608170747757, -0.08718199282884598, 0.05747724324464798, -0.03535441681742668, 0.0021966686472296715, -0.04334162548184395, 0.11328642070293427, -0.06495952606201172, -0.26905569434165955, -0.021249592304229736, -0.0013819948071613908, -0.12496405094861984, 0.03845679759979248, 0.00912282895296812, 0.0201485063880682, 0.08474718779325485, 0.029956143349409103, -0.033612363040447235, 0.11087719351053238, 0.024882188066840172, 0.003091932274401188, 0.0006539516034536064, 0.09360971301794052, -0.11643429845571518, 0.14328612387180328, -0.004034713841974735, 0.0696096420288086, 0.08423459529876709, 0.017531340941786766, -0.09415372461080551, 0.05778028070926666, 0.08332055807113647, -0.12023768573999405, -0.02514030598104, 0.22002927958965302, -0.005531761795282364, -0.0015055008698254824, 0.07338355481624603, 0.0167640820145607, 0.01364032831043005, -0.045121632516384125, 0.01390260923653841, -0.15555155277252197, 0.016074877232313156, -0.10940928757190704, 0.09600377082824707, 0.18551041185855865, -0.0520189069211483, 0.03715920075774193, -0.025006305426359177, -0.019501449540257454, 0.013757159002125263, 0.06122981384396553, -0.013971484266221523, -0.11519905179738998, -0.0006140496116131544, 0.10940394550561905, 0.07788337767124176, -0.13039615750312805, -0.059789057821035385, 0.06430515646934509, -0.04555211961269379, 0.013909073546528816, 0.10293553024530411, 0.014095883816480637, 0.05589599534869194, -0.013454451225697994, -0.08073638379573822, -0.04090448468923569, 0.09662824869155884, -0.13272413611412048, -0.03871205449104309 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/ec1df125fd46ec3ef56f228df021a8cd.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Imagine Dragons</div> <a href="https://genius.com/artists/imagine-dragons"> <div style="text-align: center; font-size: 14px;">@imagine-dragons</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Imagine Dragons. Dataset is available [here](https://huggingface.co/datasets/huggingartists/imagine-dragons). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/imagine-dragons") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/dln6ixis/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Imagine Dragons's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3cj3c8z1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3cj3c8z1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/imagine-dragons') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/imagine-dragons") model = AutoModelWithLMHead.from_pretrained("huggingartists/imagine-dragons") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/imagine-dragons"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/imagine-dragons
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/imagine-dragons", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/imagine-dragons #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Imagine Dragons</div> <a href="URL <div style="text-align: center; font-size: 14px;">@imagine-dragons</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Imagine Dragons. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Imagine Dragons's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Imagine Dragons.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Imagine Dragons's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/imagine-dragons #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Imagine Dragons.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Imagine Dragons's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 84, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/imagine-dragons #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Imagine Dragons.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Imagine Dragons's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.011209361255168915, 0.16488058865070343, -0.0031362869776785374, 0.051325272768735886, 0.08819983154535294, 0.010717804543673992, 0.09438315778970718, 0.10760313272476196, 0.0014466075226664543, 0.05526923015713692, 0.06500843912363052, 0.02149765007197857, 0.07874584943056107, 0.09054668992757797, 0.07641201466321945, -0.2671438455581665, 0.042044010013341904, -0.09651187062263489, -0.019637376070022583, 0.10766801983118057, 0.10071294009685516, -0.057659924030303955, 0.07904142141342163, 0.04111257195472717, -0.073688805103302, 0.00904317107051611, -0.012053427286446095, -0.06297966092824936, 0.09734699130058289, 0.04928845167160034, 0.05177680775523186, 0.016891472041606903, 0.06774412840604782, -0.17596670985221863, 0.03201784938573837, 0.11335241794586182, 0.03742146119475365, 0.07698312401771545, 0.04871360585093498, -0.06009102985262871, 0.1428660899400711, -0.004124277736991644, 0.11254526674747467, 0.05140453577041626, -0.11118166148662567, -0.18316017091274261, -0.13602735102176666, 0.10524188727140427, 0.09457182884216309, 0.08162321150302887, -0.02909778617322445, 0.0377250537276268, -0.02100527659058571, 0.03598591312766075, 0.22983229160308838, -0.2442023754119873, -0.015921469777822495, 0.08626731485128403, 0.04848305135965347, 0.018633291125297546, -0.07536375522613525, 0.014395099133253098, 0.023438891395926476, 0.02890184335410595, 0.04027123376727104, -0.023146778345108032, 0.18694081902503967, 0.014858068898320198, -0.10020853579044342, -0.07451076805591583, 0.12603330612182617, -0.027649693191051483, -0.074331134557724, -0.14611564576625824, 0.0011053025955334306, -0.021980872377753258, 0.034765712916851044, -0.013426595367491245, 0.0031839986331760883, 0.006618187762796879, -0.02617013268172741, -0.11406846344470978, -0.08736918866634369, -0.02896566316485405, -0.030947724357247353, 0.047715745866298676, 0.042789340019226074, 0.03167412430047989, -0.08495088666677475, 0.22852779924869537, -0.013133032247424126, -0.09265831857919693, -0.05094819888472557, -0.09586980193853378, -0.10182241350412369, -0.041163332760334015, 0.0059325965121388435, -0.01845938339829445, -0.044891539961099625, 0.1723162829875946, -0.04028875008225441, 0.031365178525447845, -0.014365391805768013, -0.007664094679057598, 0.1407785266637802, 0.13632982969284058, -0.10751772671937943, -0.020647473633289337, 0.06855739653110504, -0.016553061082959175, -0.06506741046905518, -0.055058546364307404, -0.020897235721349716, -0.011636917479336262, 0.04466106370091438, 0.07932619005441666, 0.07188071310520172, 0.056656502187252045, 0.016991963610053062, -0.06955088675022125, 0.10374893993139267, -0.12137158215045929, 0.01871287077665329, -0.007037808652967215, -0.05107070505619049, 0.011748909018933773, 0.05262064188718796, 0.03445743769407272, -0.08791086077690125, 0.11791326850652695, -0.0520392507314682, -0.05246108025312424, -0.07494768500328064, -0.09678579866886139, -0.0003888708306476474, -0.026000360026955605, -0.0396224744617939, -0.0774933323264122, -0.18135511875152588, -0.034545477479696274, 0.037333160638809204, -0.05241202190518379, -0.045524369925260544, 0.038762759417295456, -0.032271288335323334, 0.013536079786717892, -0.013263198547065258, -0.03482377529144287, -0.018112415447831154, 0.027352340519428253, -0.05747925862669945, 0.0233647208660841, 0.05286314710974693, 0.04423286020755768, -0.10963492840528488, 0.06840592622756958, -0.1716075837612152, 0.1277787834405899, -0.005897635128349066, 0.02212771400809288, -0.0947045087814331, -0.07665195316076279, -0.012277398258447647, -0.03374873846769333, -0.0013235349906608462, 0.0875728577375412, -0.18223533034324646, -0.022989502176642418, 0.19214151799678802, -0.07648222893476486, -0.08464048057794571, 0.07238192111253738, -0.07777781039476395, 0.03716519847512245, 0.12226396799087524, 0.079342320561409, 0.155989870429039, -0.11038245260715485, -0.06097026169300079, -0.049856267869472504, -0.06462915241718292, 0.1852359026670456, 0.05639783293008804, -0.017271539196372032, 0.05116942524909973, 0.012898668646812439, -0.035567913204431534, -0.017353225499391556, -0.005009202752262354, -0.039916735142469406, -0.020312542095780373, 0.0016378496075049043, -0.0018518760334700346, -0.04387218505144119, -0.048080187290906906, -0.028866950422525406, -0.10623396933078766, 0.059081628918647766, 0.09602980315685272, -0.061586443334817886, 0.00872847530990839, -0.09336432069540024, 0.011267881840467453, -0.033437617123126984, 0.013322334736585617, -0.16947703063488007, -0.056767772883176804, 0.027971673756837845, -0.07329653948545456, 0.09237128496170044, 0.03704051673412323, 0.03753965348005295, 0.05863108113408089, -0.013662923127412796, 0.004280899651348591, -0.039945632219314575, -0.010246887803077698, -0.03678441792726517, -0.15095928311347961, -0.05100845918059349, -0.04827875271439552, 0.09310995787382126, -0.11113933473825455, 0.017048822715878487, 0.08462294191122055, 0.12806105613708496, 0.013872908428311348, -0.06406208872795105, 0.017883215099573135, -0.046719301491975784, -0.03548017144203186, -0.10359689593315125, -0.045666877180337906, 0.0127328522503376, -0.03303919732570648, 0.15462148189544678, -0.16151060163974762, -0.0898379310965538, 0.11804989725351334, 0.12237946689128876, -0.09290848672389984, 0.04830724000930786, -0.07005761563777924, -0.019203227013349533, -0.04185759648680687, -0.052506644278764725, 0.2848805785179138, 0.03842843323945999, 0.08383230119943619, -0.10542627424001694, -0.102593332529068, -0.013254305347800255, -0.050017423927783966, -0.024219399318099022, 0.028445018455386162, 0.011520757339894772, -0.1551239788532257, 0.0454351007938385, -0.020620616152882576, 0.09658505767583847, 0.17710180580615997, 0.0388658232986927, -0.06616279482841492, -0.05943707004189491, -0.06757852435112, 0.003520059632137418, 0.06874414533376694, 0.01465359702706337, 0.032611649483442307, 0.04803698882460594, 0.06436337530612946, 0.03481408581137657, -0.12899190187454224, 0.0004830795805901289, 0.07571625709533691, -0.037111446261405945, -0.052091993391513824, 0.01756845973432064, 0.02556961588561535, 0.08589483052492142, 0.08714313805103302, 0.12682710587978363, -0.05534439906477928, -0.0486614964902401, -0.13677656650543213, 0.12902666628360748, -0.08786443620920181, -0.26835548877716064, -0.11716387420892715, -0.085189089179039, 0.011132374405860901, 0.011697206646203995, 0.04416662082076073, -0.0637085810303688, -0.03168872371315956, -0.08868081122636795, 0.06765257567167282, -0.06447600573301315, -0.01957656256854534, 0.010408577509224415, 0.01621708646416664, -0.015207327902317047, -0.11059654504060745, -0.035076554864645004, 0.030573800206184387, -0.08842042833566666, -0.0011219584848731756, 0.032439906150102615, 0.042378563433885574, 0.1621883064508438, -0.01601414754986763, 0.004270401317626238, -0.024707481265068054, 0.2764604687690735, -0.10686619579792023, 0.07843976467847824, 0.17980968952178955, -0.014533957466483116, 0.06404762715101242, 0.07995698601007462, 0.0134337292984128, -0.05572827160358429, 0.06762714684009552, 0.06948135793209076, -0.08067306876182556, -0.20728875696659088, -0.021609989926218987, -0.012938955798745155, 0.005578584503382444, 0.10807603597640991, 0.05667999014258385, 0.06748981773853302, 0.00924455001950264, -0.09303639829158783, 0.05471661686897278, 0.037413641810417175, 0.10494595021009445, -0.061010539531707764, -0.007113337982445955, 0.050035957247018814, -0.047545526176691055, 0.028745528310537338, 0.12401893734931946, 0.05390263721346855, 0.1993865817785263, -0.0642162412405014, 0.09230215847492218, 0.06715520471334457, 0.10368553549051285, 0.029092222452163696, 0.019433656707406044, -0.03057810291647911, 0.020998280495405197, -0.006273164413869381, -0.0822526216506958, 0.0013150809099897742, 0.043820422142744064, 0.03718335181474686, -0.010670080780982971, -0.03563116863369942, -0.0544394813477993, 0.04368484020233154, 0.2358013391494751, 0.00533212348818779, -0.16016048192977905, -0.09218385070562363, 0.06037333235144615, -0.06917672604322433, -0.05694843456149101, -0.023158863186836243, 0.053280819207429886, -0.2204626053571701, 0.06214025989174843, -0.0448034331202507, 0.10922595113515854, -0.12510885298252106, -0.0025660970713943243, 0.0766201987862587, 0.04406805709004402, -0.06080754101276398, 0.08841803669929504, -0.17612603306770325, 0.04852011427283287, -0.01622813194990158, 0.07696059346199036, -0.06527941673994064, 0.035222575068473816, 0.017151042819023132, 0.038558296859264374, 0.07709883153438568, 0.013928147964179516, 0.030550988391041756, -0.008173145353794098, -0.04778839275240898, 0.005875799339264631, 0.046602267771959305, -0.11892924457788467, 0.12376047670841217, -0.03676462545990944, 0.03749217465519905, -0.023364972323179245, -0.07858218997716904, -0.07809963077306747, -0.15393900871276855, 0.08450412005186081, -0.12196364998817444, 0.011003520339727402, -0.07065883278846741, -0.007846713997423649, 0.01312256883829832, 0.2276337742805481, -0.07420948147773743, -0.09699530154466629, -0.14274701476097107, -0.006922410801053047, 0.14080071449279785, -0.07796536386013031, 0.006895878817886114, -0.028324870392680168, 0.18059425055980682, -0.011434793472290039, -0.12197109311819077, -0.006395264528691769, -0.06843824684619904, -0.18814775347709656, -0.028647370636463165, 0.13729964196681976, 0.06724165380001068, 0.04851662740111351, 0.006770535372197628, 0.0029594809748232365, -0.0557510145008564, -0.1701718419790268, 0.021705059334635735, 0.1415335237979889, -0.011515882797539234, 0.013112867251038551, 0.0468018613755703, 0.037603359669446945, -0.13431668281555176, 0.01597050577402115, 0.06374982744455338, 0.18324081599712372, -0.07530935853719711, 0.1803906261920929, 0.019750379025936127, -0.08553104102611542, -0.15386848151683807, 0.012325252406299114, 0.018066078424453735, 0.012254067696630955, 0.017631597816944122, -0.1950353980064392, 0.04631440341472626, 0.038767751306295395, -0.012183492071926594, 0.06554082036018372, -0.32773494720458984, -0.15356853604316711, 0.006050894036889076, 0.0057450225576758385, -0.11452413350343704, -0.05251803994178772, -0.035672761499881744, -0.07709108293056488, -0.23421041667461395, 0.08684647083282471, -0.08691756427288055, 0.07698492705821991, 0.01456545665860176, 0.0911702886223793, 0.040504083037376404, -0.05228077620267868, 0.1342189460992813, -0.034782327711582184, 0.06448695063591003, -0.09497765451669693, -0.057433269917964935, 0.0680026188492775, -0.066861592233181, 0.10966941714286804, 0.018006622791290283, 0.0783594399690628, -0.11590974032878876, -0.07258649915456772, -0.07494628429412842, -0.0007161504472605884, -0.052669983357191086, -0.0947103425860405, -0.10324212908744812, 0.08502024412155151, 0.12884940207004547, -0.0366709902882576, -0.07585965096950531, -0.043225038796663284, -0.013909374363720417, 0.04378312826156616, 0.09883080422878265, 0.09050547331571579, -0.09988495707511902, 0.002620643237605691, 0.018175892531871796, 0.012977469712495804, -0.15915973484516144, 0.034724608063697815, 0.08772378414869308, 0.02982448600232601, 0.11373435705900192, 0.014088097028434277, -0.17358578741550446, 0.018011441454291344, 0.03578939288854599, -0.14762946963310242, -0.12052551656961441, -0.03161274269223213, 0.022783510386943817, -0.10056513547897339, -0.05501563102006912, 0.12881717085838318, -0.03797955438494682, -0.0401577353477478, 0.010059657506644726, 0.0570998378098011, -0.03973561152815819, 0.0866311565041542, 0.014782052487134933, 0.041190847754478455, -0.07464060187339783, 0.12214075028896332, 0.06909266859292984, 0.0390898659825325, 0.04919515177607536, 0.06944872438907623, -0.08603566139936447, 0.01520446129143238, -0.0905124619603157, 0.010054484941065311, -0.043941959738731384, -0.019059378653764725, 0.005326341837644577, -0.056137654930353165, 0.03636792674660683, 0.07178156822919846, -0.014299014583230019, 0.08948705345392227, -0.04159841686487198, 0.007830332033336163, -0.13277044892311096, 0.08446172624826431, 0.0343400314450264, 0.028167616575956345, -0.12410207092761993, 0.17717547714710236, 0.03621313348412514, 0.0833827555179596, -0.033691294491291046, -0.05820246785879135, -0.06278663128614426, -0.004313312470912933, -0.12270455807447433, -0.04446723312139511, -0.09056694060564041, -0.03110589273273945, -0.0007292124209925532, -0.04625784978270531, -0.0037460180465132, 0.04191046580672264, -0.03661814704537392, -0.06615989655256271, -0.062381207942962646, 0.030733447521924973, -0.14506790041923523, 0.016698762774467468, 0.10991159081459045, -0.05198706313967705, 0.11562557518482208, 0.059034280478954315, -0.03843815624713898, 0.02092074789106846, -0.12473325431346893, 0.04493765905499458, -0.017216622829437256, 0.021394336596131325, 0.03420565649867058, -0.15085747838020325, -0.006193216424435377, -0.046670008450746536, -0.07437106966972351, 0.006841191090643406, 0.006197365466505289, -0.1314791887998581, -0.00648009218275547, 0.07212087512016296, -0.01974422112107277, -0.06682751327753067, 0.06325343996286392, 0.0735875740647316, 0.03212321177124977, 0.07105651497840881, -0.022823136299848557, 0.0880068764090538, -0.16651232540607452, -0.053560853004455566, 0.00619512377306819, 0.025930341333150864, 0.04040785878896713, -0.005742122419178486, 0.028753181919455528, -0.016910158097743988, 0.1920926421880722, 0.019226225093007088, -0.022890135645866394, 0.03118337318301201, -0.05011407285928726, 0.0008476024959236383, 0.04531501606106758, 0.07242166996002197, -0.03686715289950371, -0.036303456872701645, 0.0005630863015539944, -0.006170863751322031, -0.08055493980646133, -0.062246598303318024, 0.11381900310516357, 0.03680692985653877, 0.18443730473518372, -0.05173568055033684, 0.07290022075176239, -0.003623615950345993, -0.1331789344549179, -0.02381228655576706, -0.04208063334226608, 0.026401914656162262, -0.06362190842628479, 0.07174036651849747, 0.17651623487472534, -0.16042985022068024, 0.11991129070520401, 0.025396229699254036, -0.05317022278904915, -0.10292708873748779, -0.1834968626499176, -0.013922307640314102, -0.031670261174440384, 0.021615315228700638, -0.1348322629928589, 0.08044686168432236, 0.027118230238556862, 0.031874772161245346, -0.06697122752666473, 0.11308565735816956, -0.06261534988880157, -0.10476668924093246, 0.025561317801475525, 0.02468925714492798, 0.02603159286081791, 0.06774289160966873, 0.08082067221403122, 0.024350009858608246, 0.028925320133566856, 0.0740780457854271, 0.04667478799819946, 0.011379072442650795, 0.03253323957324028, -0.01789502613246441, -0.05340614542365074, 0.03051939606666565, 0.0025602143723517656, 0.02363455854356289, 0.0965801477432251, 0.07137361913919449, -0.01844489574432373, -0.031430840492248535, 0.2868412733078003, -0.03565269708633423, -0.038235969841480255, -0.17312857508659363, 0.17830818891525269, -0.002579091815277934, -0.017900096252560616, 0.033286575227975845, -0.13082797825336456, -0.005681819748133421, 0.1398734599351883, 0.18668392300605774, -0.03801274672150612, 0.015254816971719265, -0.03786781057715416, 0.015608824789524078, 0.024118540808558464, 0.0927298441529274, 0.07259755581617355, 0.21475818753242493, -0.03699941188097, 0.06975027173757553, -0.01612573117017746, -0.025378679856657982, -0.013328943401575089, 0.08978179842233658, -0.021976549178361893, 0.00973751861602068, -0.05688648298382759, 0.09902074933052063, -0.059294089674949646, -0.2880791425704956, -0.019914524629712105, -0.01186046190559864, -0.08784835040569305, 0.07054021954536438, -0.0369737483561039, -0.02740948460996151, 0.08126668632030487, 0.02716788649559021, -0.036170683801174164, 0.13900026679039001, 0.03854701295495033, -0.03837210685014725, -0.0021100828889757395, 0.11050689965486526, -0.01610327512025833, 0.18751616775989532, -0.025778383016586304, -0.0018231527647003531, 0.08726606518030167, 0.016572406515479088, -0.1214267909526825, 0.003497575642541051, 0.0421672947704792, -0.0508449487388134, -0.017423337325453758, 0.19610686600208282, 0.01769237592816353, 0.03239221125841141, 0.0728340819478035, -0.057984884828329086, 0.02735341154038906, -0.06232520192861557, 0.055050358176231384, -0.149079829454422, 0.06297080963850021, -0.09009440988302231, 0.13309913873672485, 0.18959791958332062, -0.07040558755397797, 0.031492430716753006, -0.054976556450128555, -0.008396245539188385, -0.025478633120656013, 0.06757648289203644, -0.02353808283805847, -0.10519631206989288, 0.013130271807312965, 0.0594790056347847, 0.030590882524847984, -0.1864805370569229, -0.079673171043396, 0.04982250928878784, -0.05872625112533569, 0.02775322087109089, 0.1593848019838333, 0.03619908541440964, 0.0656801387667656, -0.038123633712530136, 0.03320406749844551, -0.02670087292790413, 0.11562927812337875, -0.16035933792591095, -0.07361055165529251 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/0af64278d82733c4487d404fd3703ef7.894x894x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">John K. Samson</div> <a href="https://genius.com/artists/john-k-samson"> <div style="text-align: center; font-size: 14px;">@john-k-samson</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from John K. Samson. Dataset is available [here](https://huggingface.co/datasets/huggingartists/john-k-samson). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/john-k-samson") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2s15m338/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on John K. Samson's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/18ill893) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/18ill893/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/john-k-samson') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/john-k-samson") model = AutoModelWithLMHead.from_pretrained("huggingartists/john-k-samson") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/john-k-samson"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/john-k-samson
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/john-k-samson", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/john-k-samson #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">John K. Samson</div> <a href="URL <div style="text-align: center; font-size: 14px;">@john-k-samson</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from John K. Samson. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on John K. Samson's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from John K. Samson.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on John K. Samson's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/john-k-samson #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from John K. Samson.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on John K. Samson's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 87, 21, 53, 75, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/john-k-samson #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from John K. Samson.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on John K. Samson's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.02258872054517269, 0.19874800741672516, -0.0036491937935352325, 0.05961649864912033, 0.0917750671505928, -0.004473092500120401, 0.056476082652807236, 0.11357487738132477, -0.013877184130251408, 0.07214773446321487, 0.07455632835626602, 0.056743159890174866, 0.0885695368051529, 0.05619577318429947, 0.04225119948387146, -0.25099948048591614, 0.03099033422768116, -0.060219939798116684, -0.006720473989844322, 0.09003141522407532, 0.07383637130260468, -0.08421631157398224, 0.08894868940114975, 0.03478506952524185, -0.03403022512793541, 0.0008868617587722838, 0.0174159687012434, -0.05793430656194687, 0.0705304816365242, 0.0806947574019432, 0.03236997500061989, 0.04041412100195885, 0.05576641112565994, -0.16046269237995148, 0.024016723036766052, 0.12021803110837936, 0.03916795551776886, 0.08800196647644043, 0.06329414993524551, -0.04704372584819794, 0.11338792741298676, -0.045040737837553024, 0.08835524320602417, 0.06082536652684212, -0.10436063259840012, -0.07912988215684891, -0.1431513875722885, 0.0536363422870636, 0.07859864085912704, 0.07722977548837662, -0.027188317850232124, 0.10007907450199127, -0.03418949618935585, 0.052893683314323425, 0.25367772579193115, -0.24506135284900665, -0.008547965437173843, 0.04142807051539421, 0.056785814464092255, 0.010219933465123177, -0.08472761511802673, 0.021409979090094566, 0.04073884338140488, 0.033020250499248505, 0.05902736634016037, -0.04333800822496414, 0.12752395868301392, 0.002919609658420086, -0.10579170286655426, -0.06949940323829651, 0.10104809701442719, -0.01333538256585598, -0.08150743693113327, -0.11836184561252594, 0.0010968736605718732, -0.004756023176014423, 0.02488483302295208, 0.009070075117051601, 0.0007086779223755002, -0.017492711544036865, -0.07493194192647934, -0.12345550209283829, -0.07653499394655228, -0.035471756011247635, -0.019455915316939354, 0.04822779819369316, 0.053479649126529694, 0.0389140248298645, -0.06633878499269485, 0.19762100279331207, 0.004794128239154816, -0.10175708681344986, -0.08107652515172958, -0.12559068202972412, -0.0777275562286377, -0.03977566584944725, -0.009786202572286129, -0.01227528415620327, -0.022449763491749763, 0.1409849375486374, -0.021821660920977592, 0.03265685215592384, -0.04267376288771629, 0.005535245873034, 0.11167621612548828, 0.14228764176368713, -0.12156534194946289, -0.037485070526599884, 0.07957135140895844, -0.013609255664050579, -0.0571012869477272, -0.04710981994867325, 0.007244257256388664, -0.04123198986053467, 0.05287625268101692, 0.06943509727716446, 0.07836585491895676, 0.07090446352958679, 0.005383496172726154, -0.05185193568468094, 0.03379049152135849, -0.1329096108675003, 0.010410966351628304, -0.022801242768764496, -0.05964284390211105, 0.013489993289113045, 0.060400187969207764, 0.003663397626951337, -0.11312472820281982, 0.07933130115270615, -0.08522792160511017, -0.042051512748003006, -0.08086813241243362, -0.1161685585975647, 0.0055084978230297565, -0.06155367195606232, -0.012585412710905075, -0.08451046794652939, -0.16315682232379913, -0.03883606567978859, 0.011386892758309841, -0.056274186819791794, -0.022792529314756393, 0.02887583337724209, -0.04302512854337692, 0.0017178604612126946, -0.016465960070490837, 0.017557552084326744, -0.014837407507002354, 0.045434415340423584, -0.09112069755792618, 0.04895830154418945, 0.06341435760259628, 0.03783804178237915, -0.1262991726398468, 0.07194549590349197, -0.16061294078826904, 0.14522691071033478, -0.03894943371415138, -0.026989653706550598, -0.09339416027069092, -0.09497390687465668, -0.019890204071998596, -0.04067477583885193, 0.04271169379353523, 0.13673655688762665, -0.15716736018657684, -0.01831921376287937, 0.20874467492103577, -0.0699784904718399, -0.050221946090459824, 0.07057841122150421, -0.06970016658306122, 0.031538497656583786, 0.1266239434480667, 0.058707378804683685, 0.14481478929519653, -0.08917925506830215, -0.09796600043773651, -0.025944704189896584, -0.08273152261972427, 0.17756830155849457, 0.02253766916692257, -0.022386755794286728, 0.037142716348171234, 0.009286551736295223, -0.010801770724356174, -0.007521974388509989, -0.028693370521068573, -0.026083199307322502, -0.01124397199600935, -0.014744136482477188, 0.017350871115922928, -0.0436667874455452, -0.024601131677627563, -0.007753288839012384, -0.09490208327770233, 0.05230092257261276, 0.08205178380012512, -0.06989781558513641, 0.02564748004078865, -0.0968635082244873, 0.03368982672691345, -0.06580700725317001, 0.016607383266091347, -0.18443502485752106, -0.022068405523896217, 0.01074392069131136, -0.05709255859255791, 0.06936301290988922, 0.030518369749188423, 0.046377431601285934, 0.07333510369062424, -0.025324013084173203, 0.010167932137846947, -0.03192758560180664, 0.01314820908010006, -0.06353653222322464, -0.14970311522483826, -0.04917529970407486, -0.033543407917022705, 0.06509874761104584, -0.09879633039236069, 0.0041765435598790646, 0.09089934825897217, 0.15044286847114563, 0.03985972702503204, -0.059900302439928055, 0.03513317182660103, -0.02304580807685852, -0.02088285982608795, -0.10071633011102676, -0.04687780141830444, 0.005393794737756252, -0.042401596903800964, 0.16454851627349854, -0.14404074847698212, -0.11929350346326828, 0.12239835411310196, 0.0849260538816452, -0.07935766130685806, 0.041785966604948044, -0.053904008120298386, -0.026822153478860855, -0.0395490899682045, -0.06490422785282135, 0.23570460081100464, 0.049755457788705826, 0.09429051727056503, -0.08814189583063126, -0.0791483148932457, 0.0036626369692385197, -0.03256529942154884, -0.019464489072561264, 0.0469232015311718, 0.044561516493558884, -0.2210422158241272, 0.046826548874378204, -0.006481983233243227, 0.07310640066862106, 0.16429556906223297, 0.019149497151374817, -0.1000884622335434, -0.04722771421074867, -0.07822467386722565, 0.010991574265062809, 0.0721951574087143, 0.023826083168387413, 0.05595466494560242, 0.03910135105252266, 0.04749042168259621, 0.029807019978761673, -0.11188589781522751, 0.01866159960627556, 0.052578069269657135, -0.01284088660031557, -0.057227469980716705, 0.01841401495039463, 0.03934285789728165, 0.08192569762468338, 0.06904306262731552, 0.1105816587805748, -0.038177575916051865, -0.05150822550058365, -0.1217595711350441, 0.1382773220539093, -0.09705610573291779, -0.20427647233009338, -0.12563031911849976, -0.08861695975065231, 0.01786150224506855, 0.010357802733778954, 0.03893261030316353, -0.029794272035360336, -0.04292760044336319, -0.10168863832950592, 0.061974529176950455, -0.048908647149801254, -0.011088158935308456, -0.02105766162276268, 0.02929980307817459, -0.006385220214724541, -0.10722976177930832, -0.024768244475126266, 0.022599775344133377, -0.06688772886991501, 0.0012394168879836798, 0.036520302295684814, 0.05118397995829582, 0.11241093277931213, -0.007135152351111174, 0.0009132964769378304, -0.036150842905044556, 0.2710346579551697, -0.09890300780534744, 0.046999502927064896, 0.15884408354759216, -0.042384058237075806, 0.06771743297576904, 0.052509795874357224, -0.007094829808920622, -0.041785407811403275, 0.046739012002944946, 0.06125306710600853, -0.06564869731664658, -0.19915734231472015, -0.0048311869613826275, -0.032766278833150864, 0.02179626189172268, 0.1166311502456665, 0.01975799724459648, 0.01854202337563038, 0.03287127614021301, -0.0881727933883667, 0.07008207589387894, 0.06335745006799698, 0.10492067784070969, -0.012117769569158554, -0.017441971227526665, 0.062191542237997055, -0.05072689801454544, 0.024608733132481575, 0.10334953665733337, 0.023159174248576164, 0.24896293878555298, -0.08963186293840408, 0.04387301579117775, 0.08747459948062897, 0.07868961989879608, 0.01740666665136814, 0.05251670628786087, -0.018810149282217026, 0.036354776471853256, -0.0035874354653060436, -0.09189338982105255, -0.018672624602913857, 0.0381024070084095, 0.03226044028997421, -0.020654398947954178, -0.059416383504867554, -0.047042109072208405, 0.024069769307971, 0.21192124485969543, 0.07317284494638443, -0.1667577475309372, -0.08959831297397614, 0.07270567119121552, -0.044023334980010986, -0.0538213737308979, -0.0092941764742136, 0.08346708118915558, -0.2110697329044342, 0.04506118223071098, -0.0443434938788414, 0.12008488923311234, -0.14500071108341217, -0.0042634340934455395, -0.004381768871098757, 0.054693110287189484, -0.06428704410791397, 0.06592155992984772, -0.1608930379152298, 0.0682358667254448, 0.018580803647637367, 0.07813284546136856, -0.07873240858316422, 0.020230568945407867, 0.04676114022731781, 0.023181941360235214, 0.09684840589761734, 0.007123385090380907, -0.00484937708824873, -0.09208249300718307, -0.06204981729388237, 0.009133491665124893, 0.05057511478662491, -0.05876314640045166, 0.12800228595733643, -0.0374588668346405, 0.02866465412080288, -0.022236628457903862, -0.05001433193683624, -0.12407247722148895, -0.16665005683898926, 0.06660544872283936, -0.10551125556230545, 0.0015909686917439103, -0.05193120241165161, -0.028003137558698654, 0.01984287239611149, 0.19635728001594543, -0.10029281675815582, -0.08901181817054749, -0.11356806010007858, 0.04285508021712303, 0.15848414599895477, -0.08030994236469269, 0.015499163419008255, 0.012103374116122723, 0.1301596760749817, 0.01088219415396452, -0.1331026703119278, -0.014827023260295391, -0.05293657258152962, -0.17145641148090363, -0.019048620015382767, 0.11036336421966553, 0.07524428516626358, 0.048393912613391876, 0.01709846779704094, 0.015541020780801773, -0.020597973838448524, -0.15283527970314026, 0.009467026218771935, 0.13737519085407257, 0.07215803861618042, 0.04493839293718338, 0.0241083987057209, 0.026036906987428665, -0.13288603723049164, 0.039226796478033066, 0.06794262677431107, 0.19449695944786072, -0.07890819013118744, 0.1444198489189148, -0.0036856229417026043, -0.08548746258020401, -0.1735447347164154, 0.021605415269732475, -0.004251196514815092, 0.03152577951550484, 0.04675761237740517, -0.14724110066890717, 0.0074058291502296925, 0.023924555629491806, -0.00256427563726902, 0.07462725043296814, -0.28758731484413147, -0.14172644913196564, 0.026628850027918816, 0.037077900022268295, -0.03760956972837448, -0.019829319790005684, -0.041650332510471344, -0.07002769410610199, -0.2393886297941208, 0.07335136830806732, -0.10984209924936295, 0.09023866057395935, 0.016241690143942833, 0.032177962362766266, 0.04717482998967171, -0.061410099267959595, 0.12780846655368805, -0.06025979667901993, 0.05744355171918869, -0.09189283102750778, -0.024992704391479492, 0.08745408803224564, -0.05297501012682915, 0.07247533649206161, 0.005468876101076603, 0.07991602271795273, -0.061249591410160065, -0.060912396758794785, -0.07649632543325424, 0.015741854906082153, -0.054781172424554825, -0.08629442006349564, -0.08314342051744461, 0.09620914608240128, 0.12406663596630096, -0.02515861950814724, -0.09588807821273804, -0.05645597353577614, -0.03155023977160454, 0.0894007682800293, 0.12918324768543243, 0.08894987404346466, -0.06045455113053322, 0.015140318311750889, 0.0007664018194191158, 0.04048846289515495, -0.11742844432592392, 0.045912981033325195, 0.08642241358757019, 0.023425891995429993, 0.09937048703432083, 0.02364806830883026, -0.16362544894218445, 0.04285106807947159, 0.024470588192343712, -0.133726567029953, -0.1132543757557869, -0.03204548358917236, -0.028131255879998207, -0.08719898015260696, -0.038560088723897934, 0.15256556868553162, -0.04143613949418068, -0.04092324152588844, -0.0008501437841914594, 0.062250036746263504, -0.03640814125537872, 0.11516489833593369, 0.023571601137518883, 0.04382336139678955, -0.07180407643318176, 0.09507488459348679, 0.060752250254154205, 0.003381518181413412, 0.03733875975012779, 0.03993590176105499, -0.09069789201021194, -0.005426062270998955, -0.08920368552207947, 0.00022212282055988908, -0.013309577479958534, -0.005854455754160881, -0.003591496031731367, -0.04110218584537506, 0.03540252894163132, 0.0996677353978157, -0.020092548802495003, 0.11295689642429352, -0.032159473747015, -0.006398041732609272, -0.12436453253030777, 0.08059030771255493, 0.0462944358587265, 0.01606575958430767, -0.09891665726900101, 0.15378083288669586, 0.022300980985164642, 0.0904868021607399, -0.04104476794600487, -0.041062574833631516, -0.07171386480331421, -0.019081320613622665, -0.1516246497631073, -0.029728790745139122, -0.09194044023752213, -0.04128669574856758, -0.023834483698010445, -0.03531583398580551, -0.031692467629909515, 0.0578874908387661, -0.023344015702605247, -0.06605786830186844, -0.05248738452792168, 0.05153375118970871, -0.1438184380531311, -0.004751432687044144, 0.1250881403684616, -0.07408171892166138, 0.10590965300798416, 0.036712512373924255, -0.04649707302451134, 0.015863262116909027, -0.0470476858317852, 0.010612286627292633, -0.02447417564690113, 0.01440933533012867, 0.028306053951382637, -0.12498993426561356, 0.008086849935352802, -0.05669546499848366, -0.040458861738443375, 0.009540497325360775, 0.0010030167177319527, -0.10520840436220169, -0.008301718160510063, 0.061767980456352234, 0.008420263417065144, -0.0794248878955841, 0.069679856300354, 0.05882202461361885, 0.029443815350532532, 0.07412848621606827, -0.025607498362660408, 0.09453286975622177, -0.16333118081092834, -0.03786207735538483, 0.010523767210543156, -0.006548678502440453, 0.0905751958489418, -0.022388776764273643, 0.06479673087596893, -0.020851103588938713, 0.18259190022945404, -0.004306420683860779, -0.014143054373562336, 0.03974699229001999, -0.02283898927271366, 0.0036521642468869686, 0.052197590470314026, 0.07628899812698364, -0.02787652611732483, -0.05685178190469742, -0.021031608805060387, 0.010973339900374413, -0.06198781728744507, -0.04662460461258888, 0.13493667542934418, 0.07436089962720871, 0.1478269100189209, -0.03189273923635483, 0.056717392057180405, 0.0031074360013008118, -0.10876063257455826, -0.024854356423020363, -0.007190490607172251, 0.035812634974718094, -0.059255994856357574, 0.07600422203540802, 0.14704430103302002, -0.1457487940788269, 0.11422764509916306, 0.00433905515819788, -0.05849636346101761, -0.12013932317495346, -0.20000600814819336, -0.030519427731633186, -0.009387291967868805, 0.034855883568525314, -0.12504942715168, 0.07346812635660172, 0.03646843507885933, 0.022697480395436287, -0.05911227688193321, 0.10080335289239883, -0.04868199676275253, -0.11810892820358276, 0.025013674050569534, 0.02765592187643051, 0.015423485077917576, 0.03688123822212219, 0.0586252436041832, 0.0375014953315258, 0.02085690014064312, 0.059516649693250656, 0.02285541594028473, 0.031167255714535713, 0.029402295127511024, -0.02134661190211773, -0.058673229068517685, 0.013003336265683174, 0.026152897626161575, 0.05387149378657341, 0.11094488948583603, 0.06798997521400452, -0.013022717088460922, -0.04436947777867317, 0.2962731420993805, -0.046283625066280365, -0.03566053509712219, -0.16740520298480988, 0.16943950951099396, 0.031133271753787994, -0.011849060654640198, 0.034190330654382706, -0.1519223153591156, 0.02280914969742298, 0.1595931202173233, 0.17428714036941528, -0.05707839876413345, 0.010784655809402466, -0.039723481982946396, 0.00863152276724577, 0.02616148442029953, 0.07880542427301407, 0.056174661964178085, 0.18254989385604858, -0.053717341274023056, 0.06278730928897858, 0.010533928871154785, -0.0023172637447714806, -0.025722520425915718, 0.10021930187940598, -0.031215351074934006, 0.005259437952190638, -0.06196391582489014, 0.08021047711372375, -0.06546289473772049, -0.25450819730758667, -0.012991741299629211, -0.04300805553793907, -0.08636198192834854, 0.05441829934716225, -0.05502363294363022, -0.016025420278310776, 0.07890094071626663, 0.015586008317768574, -0.002809674944728613, 0.11169096827507019, 0.037417277693748474, -0.02986959181725979, -0.005467248149216175, 0.09052661061286926, -0.009664242155849934, 0.18071968853473663, -0.012311075814068317, 0.02649819105863571, 0.09759436547756195, 0.04009711742401123, -0.11861661821603775, -0.015330331400036812, 0.0362221859395504, -0.07854536920785904, -0.008824769407510757, 0.1947581171989441, 0.01341237686574459, 0.019406650215387344, 0.06300773471593857, -0.05409285053610802, 0.03342195600271225, -0.0715230256319046, 0.04110727459192276, -0.11112409830093384, 0.038748931139707565, -0.08786343038082123, 0.14708390831947327, 0.170365571975708, -0.06564204394817352, 0.02962244674563408, -0.048107851296663284, -0.022736579179763794, -0.018564116209745407, 0.03163851797580719, -0.029579319059848785, -0.08683161437511444, 0.01084923930466175, 0.031320974230766296, 0.014647399075329304, -0.20727713406085968, -0.06817520409822464, 0.04737361520528793, -0.059511054307222366, 0.0036970162764191628, 0.150395929813385, 0.028197934851050377, 0.038933392614126205, -0.035654276609420776, -0.06330633163452148, -0.02466508373618126, 0.09318196773529053, -0.1466035097837448, -0.07374150305986404 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/de14b272004b51dea8071e7cba21cbac.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">John Lennon</div> <a href="https://genius.com/artists/john-lennon"> <div style="text-align: center; font-size: 14px;">@john-lennon</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from John Lennon. Dataset is available [here](https://huggingface.co/datasets/huggingartists/john-lennon). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/john-lennon") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/f3d8fseh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on John Lennon's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/36mtogkg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/36mtogkg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/john-lennon') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/john-lennon") model = AutoModelWithLMHead.from_pretrained("huggingartists/john-lennon") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/john-lennon"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/john-lennon
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/john-lennon", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/john-lennon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">John Lennon</div> <a href="URL <div style="text-align: center; font-size: 14px;">@john-lennon</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from John Lennon. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on John Lennon's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from John Lennon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on John Lennon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/john-lennon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from John Lennon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on John Lennon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 85, 21, 51, 73, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/john-lennon #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from John Lennon.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on John Lennon's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.026313286274671555, 0.17518459260463715, -0.0026243883185088634, 0.04663476347923279, 0.08878779411315918, 0.005903322249650955, 0.08710317313671112, 0.11223947256803513, 0.005311219487339258, 0.0728311762213707, 0.07594485580921173, 0.02967221289873123, 0.06752127408981323, 0.08214552700519562, 0.07323557883501053, -0.22571079432964325, 0.041681237518787384, -0.0819147527217865, -0.004080712795257568, 0.10273650288581848, 0.0900735929608345, -0.06317199766635895, 0.08168763667345047, 0.03053135611116886, -0.07066287100315094, 0.016616955399513245, -0.0013635560171678662, -0.06166984885931015, 0.09115388989448547, 0.06362269818782806, 0.031154336407780647, 0.03209047392010689, 0.06815306842327118, -0.18902698159217834, 0.02999505214393139, 0.13149131834506989, 0.041350506246089935, 0.07954912632703781, 0.04923870041966438, -0.07762128859758377, 0.14239993691444397, -0.005526945926249027, 0.09617646038532257, 0.052084729075431824, -0.11674980074167252, -0.13964036107063293, -0.13598255813121796, 0.09372138231992722, 0.08939076215028763, 0.08084238320589066, -0.027072664350271225, 0.06689948588609695, -0.020341265946626663, 0.03979504108428955, 0.25066038966178894, -0.2268671840429306, -0.011354752816259861, 0.07915758341550827, 0.05283644422888756, 0.021993344649672508, -0.07702205330133438, 0.009687097743153572, 0.051786188036203384, 0.024982446804642677, 0.041691768914461136, -0.01805051416158676, 0.1685723215341568, 0.039372704923152924, -0.10258252173662186, -0.08458135277032852, 0.11839436739683151, -0.026352345943450928, -0.07344186305999756, -0.133566215634346, -0.000834663980640471, -0.011041457764804363, 0.04602120816707611, -0.002350173657760024, -0.005797869060188532, 0.004828733392059803, -0.044765058904886246, -0.12665832042694092, -0.07955069839954376, -0.03709594905376434, -0.01399199292063713, 0.06034494563937187, 0.04463303089141846, 0.04209699481725693, -0.07806020230054855, 0.22684724628925323, -0.03156623616814613, -0.09579873830080032, -0.0518619567155838, -0.09995666891336441, -0.08209976553916931, -0.04939946159720421, 0.009487036615610123, 0.009435229934751987, -0.04176266863942146, 0.16113834083080292, -0.022742286324501038, 0.009431765414774418, -0.022375015541911125, 0.0009471905650570989, 0.1444689929485321, 0.128622904419899, -0.11784619092941284, -0.033635664731264114, 0.06165800988674164, 0.0031003712210804224, -0.0769045278429985, -0.0492580272257328, -0.016202285885810852, -0.016471879556775093, 0.043735504150390625, 0.07516807317733765, 0.07054175436496735, 0.05141492187976837, 0.012270823121070862, -0.06942423433065414, 0.08690281212329865, -0.12586823105812073, 0.012209135107696056, -0.010023022070527077, -0.05228828638792038, 0.024743204936385155, 0.06030673533678055, 0.017134016379714012, -0.10394001007080078, 0.10803736746311188, -0.06443426758050919, -0.04822289198637009, -0.07959520816802979, -0.1012696772813797, -0.004343614913523197, -0.06384245306253433, -0.036700427532196045, -0.06635917723178864, -0.18680593371391296, -0.03737881779670715, 0.02607886493206024, -0.046493515372276306, -0.03002799302339554, 0.0228041410446167, -0.019369173794984818, -0.0009133098064921796, -0.014854810200631618, -0.03691963478922844, -0.027925049886107445, 0.0359574556350708, -0.0637083575129509, 0.03730941191315651, 0.07245302200317383, 0.048874907195568085, -0.11917464435100555, 0.06236966326832771, -0.1392621397972107, 0.11254575103521347, -0.018889952450990677, 0.01571134477853775, -0.10142018646001816, -0.07614685595035553, -0.013699852861464024, -0.029957838356494904, 0.005301988683640957, 0.09803608059883118, -0.17295825481414795, -0.03160040080547333, 0.184730663895607, -0.06941413134336472, -0.07323475182056427, 0.07106863707304001, -0.07791062444448471, 0.0459214523434639, 0.11731129884719849, 0.07313366234302521, 0.15368865430355072, -0.12154977768659592, -0.056033674627542496, -0.05186837166547775, -0.06540336459875107, 0.18008707463741302, 0.04279496520757675, -0.02785801887512207, 0.028051991015672684, 0.007158268243074417, -0.030764734372496605, -0.02057390846312046, -0.015696905553340912, -0.037859488278627396, -0.025024939328432083, -0.013385958969593048, 0.0002251079713460058, -0.03721683472394943, -0.05936873331665993, -0.028268471360206604, -0.10226471722126007, 0.051607903093099594, 0.10256367921829224, -0.06712326407432556, 0.013209951110184193, -0.0938844084739685, 0.022093890234827995, -0.05443321540951729, 0.001456193276681006, -0.16340982913970947, -0.03526213392615318, 0.023983724415302277, -0.06043313071131706, 0.08051230013370514, 0.045899927616119385, 0.041122741997241974, 0.07344330847263336, -0.011176462285220623, 0.0031975489109754562, -0.03237210214138031, -0.008601700887084007, -0.02956399694085121, -0.1488707810640335, -0.05374094098806381, -0.04564575105905533, 0.06486166268587112, -0.1129310131072998, 0.006134174298495054, 0.08740879595279694, 0.13257652521133423, 0.028335850685834885, -0.06821132451295853, 0.030076632276177406, -0.040580861270427704, -0.03496512398123741, -0.10927244275808334, -0.04186614230275154, 0.004977889824658632, -0.0031817045528441668, 0.14003406465053558, -0.1492026001214981, -0.08528924733400345, 0.11637432873249054, 0.12847678363323212, -0.08868829905986786, 0.05218640714883804, -0.07816337049007416, -0.017301587387919426, -0.05927259847521782, -0.0458337739109993, 0.257570743560791, 0.03147098794579506, 0.08850263059139252, -0.10077933967113495, -0.09187006205320358, -0.005794495809823275, -0.032773151993751526, -0.0368882492184639, 0.035209715366363525, 0.036525193601846695, -0.152862548828125, 0.043897997587919235, -0.015046685934066772, 0.08956601470708847, 0.20126956701278687, 0.03792540729045868, -0.09691198915243149, -0.05697082728147507, -0.07074771076440811, 0.0009837818797677755, 0.0814678892493248, 0.0030847785528749228, 0.03105924464762211, 0.04296988621354103, 0.046553485095500946, 0.04259810969233513, -0.1263008862733841, 0.003996098879724741, 0.07283733785152435, -0.03272535279393196, -0.04737227410078049, 0.014856773428618908, 0.02381528727710247, 0.08081378787755966, 0.08263882994651794, 0.12243975698947906, -0.0601220577955246, -0.04886113479733467, -0.1314011663198471, 0.11675519496202469, -0.08685655891895294, -0.2096008062362671, -0.13744288682937622, -0.06301066279411316, 0.007978904992341995, 0.014393326826393604, 0.03773709759116173, -0.049179110676050186, -0.04292627424001694, -0.10182473063468933, 0.09130480140447617, -0.051763661205768585, -0.03025280497968197, -0.0013443197822198272, 0.029052462428808212, -0.030402803793549538, -0.12011435627937317, -0.029265649616718292, 0.03439009189605713, -0.09381679445505142, -0.012706784531474113, 0.016543051227927208, 0.043027665466070175, 0.14574995636940002, -0.004609592724591494, 0.01834050752222538, -0.021500106900930405, 0.2678031325340271, -0.11085810512304306, 0.06735723465681076, 0.16318607330322266, 0.0018369648605585098, 0.05118313804268837, 0.0646628886461258, 0.0004501905059441924, -0.04925723373889923, 0.05755089223384857, 0.06573722511529922, -0.07161513715982437, -0.20899078249931335, -0.030226202681660652, -0.005019135773181915, 0.025211451575160027, 0.1299571394920349, 0.03566514328122139, 0.05854800343513489, 0.014248882420361042, -0.10058436542749405, 0.055535804480314255, 0.02872808836400509, 0.10478661209344864, -0.07280943542718887, -0.005081923212856054, 0.04631482809782028, -0.050831086933612823, 0.03070693276822567, 0.13233697414398193, 0.0449921190738678, 0.21859070658683777, -0.06961505860090256, 0.08994200825691223, 0.07561805844306946, 0.11449001729488373, 0.02231406979262829, 0.028092671185731888, -0.025066157802939415, 0.02679392695426941, 0.0023409659042954445, -0.09684892743825912, -0.0028896392323076725, 0.0462811142206192, 0.04012450948357582, -0.009811123833060265, -0.038315411657094955, -0.07848265767097473, 0.040505167096853256, 0.2372097671031952, 0.0328935869038105, -0.16740436851978302, -0.09600597620010376, 0.06143908575177193, -0.055039893835783005, -0.05438396707177162, 0.0011386206606402993, 0.07287972420454025, -0.21066133677959442, 0.0391823872923851, -0.021478839218616486, 0.1109628677368164, -0.12722213566303253, -0.00428382121026516, 0.06972293555736542, 0.03523622080683708, -0.06405247002840042, 0.08458235114812851, -0.1497676819562912, 0.073935866355896, -0.00010894641309278086, 0.07545895129442215, -0.06707539409399033, 0.02001926116645336, 0.020922722294926643, 0.0416313074529171, 0.09068413078784943, 0.011440490372478962, 0.03322780877351761, -0.035594139248132706, -0.043829984962940216, -0.005463206674903631, 0.04930119216442108, -0.11316902190446854, 0.12186815589666367, -0.0404975563287735, 0.028032336384058, -0.029137378558516502, -0.07316891849040985, -0.09291982650756836, -0.15110301971435547, 0.07477565109729767, -0.10682923346757889, -0.005497721489518881, -0.06616520881652832, -0.02279076725244522, 0.024584395810961723, 0.22955922782421112, -0.06763014197349548, -0.0726504921913147, -0.13582102954387665, -0.01441622618585825, 0.14313089847564697, -0.06960829347372055, -0.008441521786153316, -0.013210912235081196, 0.17776396870613098, -0.014643005095422268, -0.1329100877046585, -0.007100390270352364, -0.06161920726299286, -0.1690962165594101, -0.02244821935892105, 0.16425876319408417, 0.06776736676692963, 0.032741814851760864, 0.004810170270502567, 0.013480664230883121, -0.056680213660001755, -0.158434197306633, 0.03094952553510666, 0.15591050684452057, 0.010964409448206425, 0.027883389964699745, 0.03301827982068062, 0.021081291139125824, -0.1263008415699005, 0.014240294694900513, 0.05116361379623413, 0.18028759956359863, -0.07917860895395279, 0.17126116156578064, 0.018632324412465096, -0.08921264111995697, -0.16534565389156342, 0.03538801148533821, -0.006489637307822704, 0.021340377628803253, 0.010530444793403149, -0.17631734907627106, 0.026685986667871475, 0.030166061595082283, -0.0032296329736709595, 0.0646124854683876, -0.33666449785232544, -0.15593966841697693, 0.024321120232343674, 0.01936991885304451, -0.08949832618236542, -0.04124286770820618, -0.03196614980697632, -0.07847238332033157, -0.274456262588501, 0.0952376276254654, -0.11810522526502609, 0.07580048590898514, 0.008579290471971035, 0.08705905079841614, 0.04760661721229553, -0.06275110691785812, 0.12304732948541641, -0.019927408546209335, 0.06207570433616638, -0.09097784012556076, -0.06532037258148193, 0.09161049127578735, -0.06233666464686394, 0.10488901287317276, 0.03496984392404556, 0.08740861713886261, -0.11277985572814941, -0.08186265081167221, -0.07743845134973526, 0.0035890289582312107, -0.05570720508694649, -0.10168103873729706, -0.09614485502243042, 0.09491394460201263, 0.11823222786188126, -0.036086104810237885, -0.08955073356628418, -0.050180476158857346, 0.002690036315470934, 0.07346027344465256, 0.1038995161652565, 0.07231546938419342, -0.08692952990531921, 0.015131078660488129, 0.010921343229711056, 0.02795046754181385, -0.1670200526714325, 0.03604613617062569, 0.0878586545586586, 0.042091649025678635, 0.10847815126180649, 0.006903709843754768, -0.16933342814445496, 0.008747626096010208, 0.029796801507472992, -0.17723989486694336, -0.12087838351726532, -0.04911738634109497, 0.0014213804388418794, -0.08103681355714798, -0.042714085429906845, 0.13817177712917328, -0.04483846202492714, -0.03922924026846886, 0.0028964912053197622, 0.04881224036216736, -0.046036865562200546, 0.09589394927024841, 0.024867305532097816, 0.043650634586811066, -0.06342102587223053, 0.11649397015571594, 0.06384071707725525, 0.023119192570447922, 0.030857164412736893, 0.060259852558374405, -0.08257045596837997, -0.0007091847946867347, -0.08634775876998901, 0.02286793291568756, -0.036655936390161514, -0.010623463429510593, 0.012340069748461246, -0.03277098014950752, 0.032798074185848236, 0.09858585894107819, -0.007774594705551863, 0.10168546438217163, -0.03799968212842941, -0.006203453056514263, -0.13707417249679565, 0.07450994849205017, 0.03687064349651337, 0.016630109399557114, -0.09737983345985413, 0.19912156462669373, 0.0219024196267128, 0.08995106816291809, -0.035935841500759125, -0.06140643730759621, -0.06774704158306122, -0.0065165976993739605, -0.13087043166160583, -0.04920525103807449, -0.08645187318325043, -0.030859654769301414, -0.009559299796819687, -0.045539528131484985, -0.015405635349452496, 0.05055307596921921, -0.030530473217368126, -0.05177022144198418, -0.056407373398542404, 0.04309671372175217, -0.14723224937915802, 0.024511059746146202, 0.11979680508375168, -0.05516275018453598, 0.10720618069171906, 0.04794888198375702, -0.04068492725491524, 0.016844622790813446, -0.09854349493980408, 0.022430457174777985, -0.03736067935824394, 0.010119943879544735, 0.03226576745510101, -0.15429383516311646, 0.005679145455360413, -0.045368120074272156, -0.05731832608580589, 0.006199109833687544, 0.005171142518520355, -0.11552763730287552, 0.002382037229835987, 0.08641356229782104, -0.015908734872937202, -0.07120005786418915, 0.0634675845503807, 0.07472330331802368, 0.022470582276582718, 0.05758370831608772, -0.029614906758069992, 0.08123157918453217, -0.15775108337402344, -0.050019554793834686, 0.00744601571932435, 0.01530548743903637, 0.048683442175388336, -0.00012216002505738288, 0.033803097903728485, -0.020162412896752357, 0.19171683490276337, 0.0037721607368439436, -0.019447235390543938, 0.0415223129093647, -0.05881147086620331, -0.012862509116530418, 0.04267417639493942, 0.05764629691839218, -0.036001432687044144, -0.03143686056137085, -0.019038595259189606, -0.01273952703922987, -0.07869880646467209, -0.027616197243332863, 0.11261001974344254, 0.04756991192698479, 0.18642137944698334, -0.04926588386297226, 0.06565872579813004, -0.016566557809710503, -0.10965747386217117, -0.009974490851163864, -0.026227544993162155, 0.03759398311376572, -0.07041914016008377, 0.08670463413000107, 0.17924199998378754, -0.16569340229034424, 0.11642640084028244, 0.022224185988307, -0.051806192845106125, -0.10678143799304962, -0.19265121221542358, -0.018404124304652214, -0.035510990768671036, 0.03898560255765915, -0.13092710077762604, 0.09178905934095383, 0.01909482292830944, 0.04126996546983719, -0.06712397187948227, 0.11112742871046066, -0.06830759346485138, -0.1060473695397377, 0.034754447638988495, 0.02501579187810421, 0.02087102271616459, 0.035302795469760895, 0.08038894087076187, 0.029962841421365738, -0.005749984178692102, 0.0679180771112442, 0.03628390654921532, 0.02738025039434433, 0.031240809708833694, -0.024588773027062416, -0.04965032637119293, 0.023303937166929245, 0.005469245370477438, 0.029015764594078064, 0.09144192934036255, 0.06918606907129288, -0.012533416040241718, -0.024631695821881294, 0.2980906367301941, -0.03505438193678856, -0.05443502962589264, -0.17353804409503937, 0.14659056067466736, 0.020311901345849037, -0.014652722515165806, 0.03828386217355728, -0.12530165910720825, 0.009884691797196865, 0.1541641354560852, 0.18593385815620422, -0.03191166743636131, 0.01375657506287098, -0.03828287497162819, 0.014809245243668556, 0.03523202985525131, 0.0666193962097168, 0.06163190305233002, 0.18867214024066925, -0.042248327285051346, 0.037790969014167786, -0.0006815277738496661, -0.017948590219020844, -0.008329483680427074, 0.10236696153879166, -0.03295258805155754, -0.002409112174063921, -0.06081858649849892, 0.08764989674091339, -0.050740376114845276, -0.2734927833080292, -0.019515886902809143, -0.04202326014637947, -0.09132369607686996, 0.055752310901880264, -0.02104809693992138, -0.03759956359863281, 0.08799536526203156, 0.017802638933062553, -0.037687916308641434, 0.13947756588459015, 0.03944201394915581, -0.06133529171347618, -0.0178669486194849, 0.0958993136882782, -0.02384568192064762, 0.1858162134885788, -0.0213575828820467, -0.003481292864307761, 0.08175583928823471, 0.019957229495048523, -0.12132487446069717, 0.010064494796097279, 0.04036136344075203, -0.07186860591173172, -0.039070550352334976, 0.1949070245027542, 0.005192582495510578, 0.046232566237449646, 0.06827934086322784, -0.07200171798467636, 0.03090219758450985, -0.05794339254498482, 0.05002954229712486, -0.14091667532920837, 0.053850967437028885, -0.08371977508068085, 0.13925977051258087, 0.18002699315547943, -0.06689857691526413, 0.0187001321464777, -0.05911580100655556, 0.004022641573101282, -0.023605316877365112, 0.07666101306676865, -0.018873142078518867, -0.08751478046178818, 0.013315992429852486, 0.01240849681198597, 0.022684691473841667, -0.2021862119436264, -0.07604208588600159, 0.05564108118414879, -0.055837441235780716, 0.021978937089443207, 0.1757778823375702, 0.04376506432890892, 0.06470735371112823, -0.0331222303211689, -0.005870508961379528, -0.01350907701998949, 0.1053050234913826, -0.14898298680782318, -0.08631575107574463 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d20ee1f900287060716f7594ccba7ea3.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joji</div> <a href="https://genius.com/artists/joji"> <div style="text-align: center; font-size: 14px;">@joji</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Joji. Dataset is available [here](https://huggingface.co/datasets/huggingartists/joji). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/joji") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ns61e8zi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Joji's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/jz3ft48t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/jz3ft48t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/joji') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/joji") model = AutoModelWithLMHead.from_pretrained("huggingartists/joji") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/joji"], "widget": [{"text": "I am"}]}
text-generation
huggingartists/joji
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/joji", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/joji #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> HuggingArtists Model </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joji</div> <a href="URL <div style="text-align: center; font-size: 14px;">@joji</div> </a> </div> I was made with huggingartists. Create your own bot based on your favorite artist with the demo! ## How does it work? To understand how the model was developed, check the W&B report. ## Training data The model was trained on lyrics from Joji. Dataset is available here. And can be used with: Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on Joji's lyrics. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: Or with Transformers library: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Joji.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Joji's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/joji #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on lyrics from Joji.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Joji's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 82, 21, 50, 72, 26, 47, 77 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingartists #lyrics #lm-head #causal-lm #en #dataset-huggingartists/joji #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on lyrics from Joji.\n\nDataset is available here.\nAnd can be used with:\n\n\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on Joji's lyrics.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n\n\nOr with Transformers library:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Aleksey Korshuk*\n\n![Follow](URL\n\n![Follow](URL\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.014420767314732075, 0.14955991506576538, -0.00279498309828341, 0.03305615857243538, 0.08972304314374924, -0.006016930565237999, 0.08078042417764664, 0.11181074380874634, -0.015103929676115513, 0.07291840761899948, 0.0807463526725769, 0.015418472699820995, 0.07071179896593094, 0.1436508744955063, 0.08550886064767838, -0.2758246064186096, 0.03500349447131157, -0.09936735779047012, 0.037698276340961456, 0.12016523629426956, 0.0946367010474205, -0.0527837872505188, 0.08811429888010025, 0.03677014634013176, -0.07868153601884842, 0.033927615731954575, -0.020310455933213234, -0.07076551020145416, 0.08776519447565079, 0.07872900366783142, 0.025065278634428978, 0.03576643764972687, 0.06775622814893723, -0.19675536453723907, 0.035338420420885086, 0.12369301170110703, 0.02875053882598877, 0.072483591735363, 0.04566088318824768, -0.07366550713777542, 0.1733744889497757, -0.028513113036751747, 0.08460894972085953, 0.049139540642499924, -0.1101161539554596, -0.17940394580364227, -0.12216851115226746, 0.07575420290231705, 0.10471469908952713, 0.07307559251785278, -0.035463299602270126, 0.03999850153923035, 0.0022839659359306097, 0.046010326594114304, 0.25532275438308716, -0.2397315502166748, -0.01755913347005844, 0.08981824666261673, 0.04949471354484558, 0.04450960457324982, -0.08122037351131439, 0.01705995947122574, 0.05879422649741173, 0.022629426792263985, 0.04698804393410683, -0.018660856410861015, 0.21257369220256805, 0.025250384584069252, -0.09286338835954666, -0.07793205231428146, 0.11931297183036804, -0.029263922944664955, -0.08024520426988602, -0.1560557335615158, 0.0027605306822806597, -0.03249596431851387, 0.04064948856830597, -0.017510725185275078, -0.003789856331422925, -0.0007525914697907865, -0.02887619473040104, -0.09354299306869507, -0.0907747745513916, -0.03166558966040611, -0.024881834164261818, 0.05559997260570526, 0.027338147163391113, 0.026336736977100372, -0.07859030365943909, 0.23302961885929108, 0.0036609761882573366, -0.10784938186407089, -0.0575522780418396, -0.09496166557073593, -0.09430059790611267, -0.05925062298774719, 0.012331396341323853, 0.01126464456319809, -0.06027388200163841, 0.16246634721755981, -0.024310506880283356, 0.028192395344376564, -0.00582378963008523, -0.023045336827635765, 0.1594722419977188, 0.1299722045660019, -0.09764757007360458, -0.03711893782019615, 0.044585421681404114, -0.011295412667095661, -0.07224706560373306, -0.05788310244679451, -0.01078089326620102, -0.02918067015707493, 0.027901696041226387, 0.09714015573263168, 0.041659560054540634, 0.05669568106532097, 0.033081650733947754, -0.05120052769780159, 0.1088399663567543, -0.14808861911296844, 0.00865138042718172, -0.009979900903999805, -0.03352293744683266, 0.02622104249894619, 0.051174942404031754, 0.014354433864355087, -0.10082846879959106, 0.09980260580778122, -0.0494341142475605, -0.05104702711105347, -0.06593186408281326, -0.08651399612426758, -0.00456831743940711, -0.010416056029498577, -0.04712514206767082, -0.08927136659622192, -0.1580812782049179, -0.0356098972260952, 0.019738102331757545, -0.04503887891769409, -0.03991391882300377, 0.03881971910595894, -0.03400234505534172, -0.0025182468816637993, -0.019267207011580467, -0.011752829886972904, -0.032372232526540756, 0.022801658138632774, -0.05371028557419777, 0.04128968343138695, 0.09032460302114487, 0.03581605851650238, -0.10885236412286758, 0.06685786694288254, -0.14964257180690765, 0.1387464553117752, -0.00809024553745985, 0.014789148233830929, -0.11477183550596237, -0.09330591559410095, -0.02145528979599476, -0.027162956073880196, -0.009884784929454327, 0.09738191217184067, -0.18828175961971283, -0.03858804702758789, 0.20161302387714386, -0.0776909738779068, -0.07979831099510193, 0.07266182452440262, -0.07515714317560196, 0.04914286360144615, 0.14085634052753448, 0.05820842087268829, 0.15220852196216583, -0.11651774495840073, -0.06261282414197922, -0.04463912546634674, -0.057525407522916794, 0.22862136363983154, 0.05406929925084114, -0.004634538199752569, 0.024456143379211426, 0.016403304412961006, -0.019849995151162148, -0.031216925010085106, -0.022875109687447548, -0.04218139126896858, -0.009148984216153622, 0.014941990375518799, -0.007423962000757456, -0.046292126178741455, -0.06615389138460159, -0.014052028767764568, -0.10646823048591614, 0.04516894742846489, 0.10476475954055786, -0.07360127568244934, 0.012470673769712448, -0.0885954424738884, -0.014958438463509083, -0.04660632088780403, 0.0237702876329422, -0.18697799742221832, -0.046727657318115234, 0.024496478959918022, -0.07417237758636475, 0.07667792588472366, 0.03644740581512451, 0.038900986313819885, 0.06419071555137634, -0.010404281318187714, 0.023999882861971855, -0.0469573438167572, -0.019252173602581024, -0.03270832076668739, -0.14063997566699982, -0.07285372167825699, -0.056132227182388306, 0.08012717217206955, -0.14370204508304596, 0.006424622610211372, 0.09800741076469421, 0.116990827023983, 0.02912968210875988, -0.055103600025177, 0.016901852563023567, -0.03487393260002136, -0.03997159004211426, -0.11312785744667053, -0.06267306208610535, 0.001988342497497797, -0.03546644374728203, 0.1665940135717392, -0.1722286343574524, -0.0642622783780098, 0.0925813838839531, 0.1666399985551834, -0.10373464971780777, 0.013818259350955486, -0.09500166028738022, -0.01583460532128811, -0.05055752396583557, -0.03933661803603172, 0.2557544708251953, 0.03625473007559776, 0.08040978014469147, -0.11455333977937698, -0.10170894861221313, 0.00026152608916163445, -0.04238216578960419, -0.02948175184428692, 0.03521619364619255, 0.018529677763581276, -0.17891646921634674, 0.026269955560564995, -0.00971301831305027, 0.11650881171226501, 0.22584553062915802, 0.0515323281288147, -0.10208723694086075, -0.06259621679782867, -0.08655243366956711, 0.004026412032544613, 0.044345322996377945, 0.03410796448588371, 0.025450611487030983, 0.045731157064437866, 0.0530114509165287, 0.037925902754068375, -0.10457310825586319, 0.00966944731771946, 0.07665619999170303, -0.048378270119428635, -0.046310245990753174, 0.026923565194010735, 0.017112748697400093, 0.08166218549013138, 0.07707011699676514, 0.14966849982738495, -0.074494369328022, -0.04703301191329956, -0.1391022950410843, 0.13422678411006927, -0.07752520591020584, -0.26132145524024963, -0.13504596054553986, -0.07359681278467178, 0.02297654189169407, 0.005021914839744568, 0.04433825984597206, -0.06595345586538315, -0.04125519096851349, -0.10668391734361649, 0.08590617030858994, -0.04682764410972595, -0.016978872939944267, 0.00015331928443629295, 0.022186174988746643, -0.03328925371170044, -0.10859352350234985, -0.026503542438149452, 0.04234312102198601, -0.11127155274152756, -0.02099338360130787, 0.018892450258135796, 0.04126814380288124, 0.14538462460041046, -0.0035917973145842552, -0.003064891090616584, -0.033123910427093506, 0.274029016494751, -0.12029818445444107, 0.06953871250152588, 0.17055468261241913, -0.020942645147442818, 0.04798973724246025, 0.07990771532058716, -0.0003717032668646425, -0.06920214742422104, 0.07817674428224564, 0.07339277863502502, -0.08899581432342529, -0.22043342888355255, -0.01736350730061531, -0.007359666284173727, 0.03200751915574074, 0.1298372894525528, 0.061051737517118454, 0.04940079525113106, -0.008692645467817783, -0.1072193905711174, 0.04889697954058647, 0.03731340169906616, 0.10862534493207932, -0.082133948802948, -0.01187954843044281, 0.04436817392706871, -0.06741941720247269, 0.0290722344070673, 0.13862530887126923, 0.04740184172987938, 0.19251108169555664, -0.060568343847990036, 0.10843075066804886, 0.08135636895895004, 0.10420625656843185, 0.037744540721178055, 0.007008019834756851, -0.002003288362175226, 0.011305879801511765, -0.0028757744003087282, -0.09865087270736694, -0.008579595945775509, 0.04767923057079315, 0.028808334842324257, -0.016591159626841545, -0.039286140352487564, -0.05524665117263794, 0.04583713784813881, 0.22552470862865448, -0.018713457509875298, -0.18062905967235565, -0.10926702618598938, 0.04500142112374306, -0.08717260509729385, -0.05610215291380882, -0.024510329589247704, 0.08296937495470047, -0.21953774988651276, 0.07092064619064331, -0.0316084660589695, 0.11019744724035263, -0.11805522441864014, 0.0022694054059684277, 0.08207186311483383, 0.044065237045288086, -0.062054913491010666, 0.09770432859659195, -0.17003963887691498, 0.05514572933316231, -0.010102338157594204, 0.07225894927978516, -0.07236208766698837, 0.02939077652990818, -0.002659639110788703, 0.05835171043872833, 0.0875193253159523, 0.009051092900335789, 0.034055374562740326, 0.0028863337356597185, -0.043255507946014404, 0.014719538390636444, 0.050868913531303406, -0.1326693743467331, 0.12291491031646729, -0.02669435180723667, 0.034374069422483444, -0.0523936003446579, -0.0879112109541893, -0.09593594819307327, -0.16920065879821777, 0.09372886270284653, -0.13085971772670746, 0.01582942344248295, -0.06995502859354019, -0.03085598163306713, 0.04153957590460777, 0.26309967041015625, -0.060091957449913025, -0.06905967742204666, -0.1400875747203827, 0.021778671070933342, 0.14460980892181396, -0.08387241512537003, 0.0019417103612795472, -0.009098007343709469, 0.21877418458461761, -0.005234365817159414, -0.12223585695028305, -0.02556784637272358, -0.057748809456825256, -0.17395275831222534, -0.004989281762391329, 0.16241247951984406, 0.06650210171937943, 0.0214697178453207, 0.015703732147812843, -0.01922924444079399, -0.045527439564466476, -0.16595904529094696, 0.020908398553729057, 0.17505063116550446, -0.008916999213397503, -0.012132962234318256, 0.0486045777797699, 0.009951826184988022, -0.13267318904399872, 0.009118810296058655, 0.042497653514146805, 0.1770728975534439, -0.07354040443897247, 0.19140742719173431, 0.04430937394499779, -0.09829049557447433, -0.1447727084159851, 0.002618390368297696, 0.04000231251120567, 0.039967261254787445, 0.04734368249773979, -0.2011362910270691, 0.037154678255319595, 0.04266238585114479, 0.006264259573072195, 0.03264530375599861, -0.3372833728790283, -0.15743488073349, -0.012578030116856098, 0.004927125759422779, -0.1449679285287857, -0.04520346596837044, -0.036191824823617935, -0.09981926530599594, -0.26342782378196716, 0.0940096378326416, -0.12131955474615097, 0.07618512958288193, 0.02839350700378418, 0.09298452734947205, 0.0437658317387104, -0.042915161699056625, 0.13964253664016724, -0.018335435539484024, 0.06901860982179642, -0.09572508186101913, -0.06299882382154465, 0.06520060449838638, -0.074666827917099, 0.09456942230463028, 0.02864960767328739, 0.07533036917448044, -0.09949766844511032, -0.09236546605825424, -0.06610842794179916, 0.0020796465687453747, -0.05200773850083351, -0.08854184299707413, -0.08612992614507675, 0.08525332063436508, 0.12201675772666931, -0.04454541578888893, -0.08137961477041245, -0.07902989536523819, 0.004731908906251192, 0.04954879358410835, 0.12084919214248657, 0.08214697241783142, -0.047533657401800156, -0.0014457963407039642, 0.01913708634674549, 0.015010532923042774, -0.18400882184505463, 0.05004929006099701, 0.0883583128452301, 0.03543377295136452, 0.10956615954637527, -0.0003310272004455328, -0.17110300064086914, 0.010724980384111404, 0.05002136901021004, -0.16531501710414886, -0.11522772908210754, -0.03798237815499306, 0.020940350368618965, -0.09691402316093445, -0.04557633772492409, 0.13740624487400055, -0.03746919706463814, -0.04177705943584442, 0.004662640858441591, 0.04383154585957527, -0.04232127591967583, 0.08354833722114563, -0.012701542116701603, 0.04211323335766792, -0.06990614533424377, 0.11802363395690918, 0.06922324746847153, 0.010774608701467514, 0.038977380841970444, 0.07163936644792557, -0.09027308970689774, 0.0164062287658453, -0.10086842626333237, 0.015464934520423412, -0.009498325176537037, -0.013882234692573547, 0.02549414336681366, -0.03119651786983013, 0.046932756900787354, 0.09642583876848221, -0.016422497108578682, 0.10553298145532608, -0.04243043437600136, 0.022385209798812866, -0.13455301523208618, 0.0701649859547615, 0.0383342020213604, 0.02079596370458603, -0.10260520130395889, 0.20320595800876617, 0.0345783568918705, 0.1070149764418602, -0.036443885415792465, -0.06400761753320694, -0.05071417614817619, -0.012980015017092228, -0.07829567044973373, -0.03564685210585594, -0.09180653840303421, -0.023496756330132484, -0.006689597386866808, -0.032993242144584656, -0.03530311584472656, 0.04473519325256348, -0.03144185245037079, -0.060027703642845154, -0.07792439311742783, 0.055384863168001175, -0.13984453678131104, 0.03650374338030815, 0.11713520437479019, -0.05600891634821892, 0.12328022718429565, 0.04851750656962395, -0.03856608644127846, 0.027703488245606422, -0.13890276849269867, 0.04686417803168297, -0.0018998117884621024, 0.015641577541828156, 0.019581085070967674, -0.14958451688289642, 0.003996535670012236, -0.03511761501431465, -0.06881595402956009, 0.0017601681174710393, -0.015914877876639366, -0.13490311801433563, -0.012631584890186787, 0.08682078123092651, -0.01120564341545105, -0.06779581308364868, 0.072960264980793, 0.056369129568338394, 0.02393684722483158, 0.04989929124712944, -0.01326617132872343, 0.07025045901536942, -0.17340554296970367, -0.06293875724077225, -0.0015471155056729913, 0.0233584176748991, 0.05017278715968132, -0.02502060867846012, 0.0346364788711071, -0.018605733290314674, 0.20791147649288177, 0.018805785104632378, -0.010005667805671692, 0.03688595071434975, -0.08486538380384445, -0.017471464350819588, 0.04454875364899635, 0.077609121799469, -0.019670404493808746, -0.024747982621192932, 0.000980598502792418, -0.024460673332214355, -0.09707757830619812, -0.017909936606884003, 0.08669853210449219, 0.017295846715569496, 0.21036092936992645, -0.05265999212861061, 0.059008289128541946, -0.01788197085261345, -0.09542598575353622, -0.021310707554221153, -0.04610031843185425, 0.032856088131666183, -0.05671006441116333, 0.04473917558789253, 0.20464164018630981, -0.15180277824401855, 0.11084693670272827, 0.045799076557159424, -0.05596369504928589, -0.12256783246994019, -0.2019311636686325, -0.016952328383922577, -0.03269416466355324, 0.026741482317447662, -0.13890816271305084, 0.10449853539466858, 0.014921333640813828, 0.0418180413544178, -0.0610760860145092, 0.13106761872768402, -0.06670675426721573, -0.14244365692138672, 0.047614097595214844, 0.012993283569812775, 0.0304428543895483, 0.036958206444978714, 0.08991795033216476, 0.04147251322865486, 0.004128364380449057, 0.06840098649263382, 0.044038861989974976, 0.033787086606025696, 0.03576454892754555, -0.03528674691915512, -0.04460582137107849, 0.03056490235030651, -0.004761684685945511, 0.019401410594582558, 0.09629692882299423, 0.0701717734336853, -0.024447374045848846, -0.012906636111438274, 0.31022393703460693, -0.012949693016707897, -0.026972392573952675, -0.19101591408252716, 0.14322765171527863, 0.02144406922161579, 0.002530408790335059, 0.020280690863728523, -0.11276662349700928, 0.01196106243878603, 0.11943548172712326, 0.13699640333652496, -0.010476010851562023, 0.022346220910549164, -0.024616708979010582, 0.018524272367358208, 0.03907421603798866, 0.10290825366973877, 0.05870482698082924, 0.18345379829406738, -0.02425834722816944, 0.06313455104827881, -0.010216457769274712, -0.024647898972034454, 0.012164294719696045, 0.10549187660217285, -0.04038774594664574, 0.007348013576120138, -0.05019121244549751, 0.09884250909090042, -0.05537095293402672, -0.3066984713077545, -0.03489973023533821, -0.009525884874165058, -0.09023068100214005, 0.07289635390043259, -0.023314831778407097, -0.020473787561058998, 0.07769792526960373, 0.030152032151818275, -0.04487147927284241, 0.17007958889007568, 0.0516543872654438, -0.03400209918618202, -0.0054749795235693455, 0.10776317119598389, -0.04547278583049774, 0.1591498851776123, -0.036558687686920166, 0.0005780919454991817, 0.07084336131811142, 0.008067135699093342, -0.1318938285112381, 0.008492019958794117, 0.035455550998449326, -0.049251314252614975, -0.022323518991470337, 0.2090313881635666, 0.011572275310754776, 0.029063180088996887, 0.071653813123703, -0.0532873272895813, 0.01885838806629181, -0.045997049659490585, 0.05635663866996765, -0.13317835330963135, 0.0719463899731636, -0.07264396548271179, 0.11553129553794861, 0.17779852449893951, -0.06817402690649033, 0.03860935568809509, -0.06314870715141296, 0.01662272773683071, -0.031536590307950974, 0.06991857290267944, -0.016786789521574974, -0.10825547575950623, 0.002090692752972245, 0.03983011469244957, 0.017865734174847603, -0.1624288111925125, -0.07627397030591965, 0.07178458571434021, -0.05762307345867157, 0.020935675129294395, 0.17728911340236664, 0.01263489294797182, 0.05472204089164734, -0.036432284861803055, -0.03830314800143242, -0.00016165773558896035, 0.11845237016677856, -0.1777312010526657, -0.0806475356221199 ]